
MP/M TM

Multi-Programming Monitor Control Program

USER'S GUIDE

Copyright (c) 1979, 1980

Digital Research
P.O. Box 579

801 Lighthouse Avenue
Pacific Grove, CA 93950

(408) 649-3896
TWX 910 360 5001

All Rights Reserved Digital Research 1980

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
II

COPYRIGHT

Copyright (c) 1979 by Digital Research. All rights
reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, maqnetic, optical , chemical,
manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

This manual is, however, tutorial, in nature. Thus,
the reader is granted permission to include the
example programs, either in whole or in part, in his
own programs.

DISCLAIMER

Diqital Research makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantability or fitness for any particular
purpose. Further, Digital Research reserves the
right to revise this publication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

Fourth Printing: July 1981

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
III

Table of Contents

1. MP/M Features and Facilities 1
1.1 Introduction 1
1.2 Functional Description of MP/M 3
1.3 Console Commands 4
1.4 Commonly Used System Programs 8
1.5 Standard Resident System Processes 13

2. MP/M Interface Guide 17

2.1 Introduction 17
2.2 Basic Disk Operating System Functions 29
2.3 Queue and Process Descriptor Data Structures . . . 53
2.4 Extended Disk Operating System Functions 62
2.5 Preparation of Page Relocatable Programs 81
2.6 Installation of Resident System Processes 83

3. MP/M Alteration Guide 85

3.1 Introduction 85
3.2 Basic I/0 System Entry Points 96
3.3 Extended I/0 System Entry Points 102
3.4 System File Components 107
3.5 System Generation 110
3.6 MP/M Loader. 114

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
IV

Appendix

A. Flag Assignments 116

B. Process Priority Assignments 117

C. BDOS Function Summary 118

D. XDOS Function Summary 119

E. Memory Segment Base Page Reserved Locations . . . 120

F. Operation of MP/M on the Intel MDS-800 121

G. Sample Page Relocatable Program 122

H. Sample Resident System Process 127

I. Sample XIOS 131

J. MP/M DDT Enhancements 148

K. Page Relocatable (PRL) File Specification 149

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
V

FOREWORD

This manual is intended as a guide for three different
levels of MP/M users. Section 1 contains all the information
required to enable a person to operate applications programs
running under the MP/M Operating System. Thus, the first section
of this manual should enable the casual user to operate the
system with a minimum amount of study and training.

The second section of this manual describes the MP/M system
organization including the structure of memory and system call
functions. The intention is to provide the necessary information
required to write page relocatable programs and resident system
processes which operate under MP/M, and which use the real-time
multi-tasking, peripheral and disk I/O facilities of the system.

The last section provides the information needed to tailor
MP/M to another computer system. In particular, the hardware
dependent basic and extended I/O system entry points are
described. Preparation of the MP/M loader using a CP/M 2.0 BIOS
is also covered.

The system generation procedure is also described in the
last section. This procedure is of interest to all three levels
of MP/M users because it describes how to configure MP/M for a
particular applications environment. This configuration includes
the specification of memory segmentation, number of consoles, and
selection optional resident system processes such as the printer
spooler.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
VI

This page was intentionally left blank.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
1

1. MP/M FEATURES AND FACILITIES

1.1 Introduction

The purpose of the MP/M multi-programming monitor control
program is to provide a microcomputer operating system which
supports multi-terminal access with multi-programming at each
terminal.

OVERVIEW

The MP/M operating system is an upward compatible version
of CP/M 2.0 with a number of added facilities. These added
facilities are contained in new logical sections of MP/M called
the extended I/O system and the extended disk operating system.
In this manual the name XIOS will refer to the combined basic and
extended I/O system. BDOS will refer to the standard CP/M 2.0
basic disk operating system functions and XDOS will refer to the
extended disk operating system. As an upward compatible version,
users can easily make the transition from CP/M to the MP/M
operating system. In fact, existing CP/M *.COM files can be run
under MP/M, providing that the program has been correctly
written. That is, BDOS calls are made for I/O, and the only
direct BIOS calls made are for console and printer I/O. There
must also be at least 4 bytes of extra stack in the CP/M *.COM
program.

The following basic facilities are provided:

o multi-terminal support
o Multi-Programming at each terminal
o Support for bank switched memory and

memory protection
o Concurrency of I/0 and CPU operations
o Interprocess communication, mutual

exclusion and synchronization
o Ability to operate in sequential, polled

or interrupt driven environments
o System timing functions
o Logical interrupt system utilizing flags
o Selection of system options at system

generation time
o Dynamic system configuration at load time

The following optional facilities are provided:

o Spooling list files to the printer
o Scheduling programs to be run by date and time
o Displaying complete system run-time status
o Setting and reading of the date and time

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
2

HARDWARE ENVIRONMENT

The hardware environment for MP/M must include an 8080 or
Z80 CPU, a minimum of 32K bytes of memory, 1 to 16 consoles, 1 to
16 logical (or physical) disk drives each containing up to eight
megabytes, and a clock/timer interrupt.

The distributed form of the MP/M operating system is
configured for a polled I/O environment on the Intel MDS-800 with
two consoles and a real-time clock. Multi-programming at two
terminals is supported with this configuration. To improve the
system performance and capability the following incremental
hardware additions can be utilized by the operating system:

a. Full Interrupt System
b. Banked Memory
c. Additional Consoles

MEMORY SIZE

The MP/M operating system requires less than 15K bytes of
memory when configured for two consoles and eight memory segments
on the Intel MDS-800. Each additional console requires 256
bytes.

Optional resident system processes can be specified at
system generation which require varying amounts of memory.

PERFORMANCE

When MP/M is configured for a single console and is
executing a single process, its speed approximates that of CP/M.
In environments where either multiple processes and/or users are
running, the speed of each individual process is degraded in
proportion to the amount of I/O and compute resources required.
A process which performs a large amount of I/O in proportion to
computing exhibits only minor speed degradation. This also
applies to a process that performs a large amount of computing,
but is running concurrently with other processes that are largely
I/O bound. On the other hand, significant speed degradation
occurs in environments in which more than one compute bound
process is running.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
3

1.2 Functional Description of MP/M

The MP/M Operating System is based on a real-time
multi-tasking nucleus. This nucleus provides process
dispatching, queue management, flag management, memory management
and system timing functions.

MP/M is a priority driven system. This means that the
highest priority ready process is given the CPU resource. The
operation of determining the highest priority ready process and
then giving it the CPU is called dispatching. Each process in
the system has a process descriptor. The purpose of the process
descriptor is to provide a data structure which contains all the
information the system needs to know about a process. This
information is used during dispatching to save the state of the
currently running process, to determine which process is to be
run, and then to restore that processes state. Process
dispatching is performed at each system call, at each interrupt,
and at each tick of the system clock. Processes with the same
priority are "round-robin" scheduled. That is, they are given
equal slices of CPU time.

Queues perform several critical functions in a real-time
multi-tasking environment. They can be used for the
communication of messages between processes, to synchronize
processes, and for mutual exclusion. As the name "queue"
implies, they provide a first in first out list of messages, and
as implemented in MP/M, a list of processes waiting for messages.

The flag management provided by MP/M is used to synchronize
processes by signaling a significant event. Flags provide a
logical interrupt system for MP/M which is independent of the
physical interrupt system. Flags are used to signal interrupts,
mapping an arbitrary physical interrupt environment into a
regular structure.

MP/M manages memory in pre-defined memory segments. Up to
eight memory segments of 48K can be managed by MP/M. This
management of memory is consistent with hardware environments
where memory is banked and/or protected in fixed segments.

System timing functions provide time of day, the capability
to schedule programs to be loaded from disk and executed, and the
ability to delay the execution of a process for a specified
period of time.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
4

1.3 Console Commands

The purpose of this section is to describe the console
commands which make up the operator interface to the MP/M
operating system. It is important to note from the outset that
there are no system defined or built-in commands. That is, the
system has no reserved or special commands. All commands in the
system are provided by resident system processes specified during
system generation and programs residing on disk in either the
CP/M *.COM file format or in the MP/M *.PRL (page relocatable)
file format.

When MP/M is loaded from disk a configuration table and
memory segment map are displayed on console #0. When the loading
is complete each of the 1 to 16 configured consoles is a system
or master console. Additional slave consoles (maximum total of
slave and master consoles is 16) can be accessed using XDOS
system calls.

After loading, the following message is displayed on each
console:

MP/M
xA>

The 'x' shown in the prompt is the user code. At cold
start an association is made between the user code and console
number. The initial user code is equal to the console number.
For example, console #0 is initialized to user #0 and the
following prompt is displayed on console #0:

OA>

The default user code can then be changed to any desired
user code with the USER command (see USER in section 1.4). All
users have access to files with a user code of 0. Thus, system
files and programs should have a user code of 0. Caution must be
used when operating under a user code of 0 since all its files
can be accessed while operating under any other user code. In
general, user code 0 should be reserved for files which are
accessed by all users. In the event that a file with the same
name is present under user code 0 and another user code, the
first file found-in the directory will be accessed.

The 'A' in the prompt is the default (currently logged)
disk for the console. This can be changed individually at any
console by typing in a disk drive name (A,B,C,...,or P) followed
by a colon (:) when the prompt has been received. Since there
are no built-in commands, the default disk specified must
contain the desired command files (such as DIR, REN, ERA
etc.) , or each command must be preceeded by an "A:".

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
5

RUNNING A PROGRAM

A program is run by typing in the program name followed by
a carriage return, <cr>. some programs obtain parameters on the
same line following the program name. Characters on the line
following the program name constitute what is called the command
tail. The command tail is copied into location 0080H (relative
to the base of the memory segment in which the program resides)
and converted to upper case by the Command Line Interpreter
(CLI). The CLI also parses the command tail producing two file
control blocks at 005CH and 006CH respectively.

The programs which are provided with MP/M are described in
sections 1.4 and 1.5.

ABORTING A PROGRAM

A program may be aborted by typing a control C (^C) at the
console. The affect of the ^C is to terminate the program which
currently owns the console. Thus, a detached program cannot be
aborted with a C. A detached program must first be attached and
then aborted. A running program may also be aborted using the
ABORT command (see ABORT in section 1.5).

RUNNING A RESIDENT SYSTEM PROCESS

At the operator interface there is no difference between
running a program from disk and running a resident system
process. The actual difference is that resident system processes
do not need to be loaded from disk because they are loaded by the
MP/M loader when a system cold start is performed and remain
resident.

DETACHING FROM A PROGRAM

There are two methods for detaching from a running program.
The first is to type a control D (^D) at the console. The second
method is for a program to make an XDOS detach call.

The restriction on the former method, typing D, is that
the running program must be performing a check console status to
observe the detach request. A check console status is
automatically performed each time a user program makes a BDOS
disk function call.

ATTACHING TO A DETACHED PROGRAM

A program which is detached from a console, that is it does
not own a console, may be attached to a console by typing
'ATTACH' followed by the program name. A program may only be
attached to the console from which it was detached. If the
terminal message process (TMP) has ownership of the console and

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
6

the user enters a ^D, the next highest priority ready process
which is waiting for the console begins running.

LINE EDITING AND OUTPUT CONTROL

The Terminal message Process (TMP) allows certain line
editing functions while typing in command lines:

rubout Delete the last character typed at the console,
removes and echoes the last character

ctl-C MP/M abort program. Terminate running process.

ctl-D MP/M detach console.

ctl-E Physical end of line.

ctl-H Delete the last character typed at the console,
backspaces one character position.

ctl-j (line feed) terminate current input.

ctl-M (carriage return) terminates input.

ctl-R Retype current command line: types a "clean line"
following character deletion with rubouts.

ctl-U Remove current line after new line.

ctl-X Delete the entire line typed at the console,
backspaces to the beginning of the current line

ctl-Z End input from the console.

The control functions ctl-P, ctl-Q and ctl-S affect console
output as shown below.

ctl-P Copy all subsequent console output to the list
device. Output is sent to both the list device
and the console device until the next ctl-P
is typed. If the list device is not available
a 'Printer busy' message is displayed on the
console.

ctl-Q Obtain ownership of the printer mutual exclusion
message. Obtaining the printer using this command
will ensure that the MP/M spooler, PIP, and other
ctl-P or ctl-Q commands entered from other
consoles will not be allowed access to the
printer. The printer is "owned" by the TMP until
another ctl-P or ctl-Q is entered, releasing the
printer. The ctl-P should be used when a program
(such as a CP/M *.COM file) is executed that does

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
7

not obtain the printer mutual exclusion message
prior to accessing the printer. If the list
device is not available a 'Printer busy' message
is displayed on the console.

ctl-S Stop the console output temporarily. Program
execution and output continue when the next
character is typed at the console (e.g., another
ctl-S). This feature is used to stop output on
high speed consoles, such as CRT's, in order to
view a segment of output before continuing.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
8

1.4 Commonly Used System Programs

The commonly used system programs (CUSPs) or transient
commands, as they are called in CP/M, are loaded from the
currently logged disk and executed in a relocatable memory
segment if their type is PRL or in an absolute TPA if their type
is COM.

This section contains a brief description of the CUSPs.
Operation of many of the CUSPs is identical to that under CP/M.
In these cases the commands are marked with an asterisk '*' and
the reader is referred to the Digital Research document titled
"An Introduction to CP/M Features and Facilities" for a complete
description of the CUSP.

GET/SET USER CODE

The USER command is used to display the current user code
as well as to set the user code value. Entering the command USER
followed by a <cr> will display the current user code. Note that
the user code is already displayed in the prompt.

1A>user
user = 1

Entering the command USER followed by a space, a user code
and then a <cr> will set the user code to the specified user
code. Legal user codes are in the range 0 to 15.

1A>user 3
user = 3
3A>

CONSOLE

The CONSOLE command is used to determine the console number
at which the command is entered. The console number is sometimes
of interest when examining the system status to determine the
processes which are detached from consoles.

1A>console
Console = 0

DISK RESET

The DSKRESET (disk reset) command is used to enable the
operator to change disks. If no parameter is entered all the
drives are reset. Specific drives to be reset may be included
as parameters.

1A>DSKRESET

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
9

1A>DSKRESET B:,E:

If there are any open files on the drive(s) to be reset,
the disk reset is denied and the cause of the disk reset
failure is shown:

1A>DSKRESET B:

Disk reset denied, Drive B: Console 0 Program Ed

The reason that disk reset is treated so carefully is that
files left open (e.g.- in the process of being written) will lose
their updated information if they are not closed prior to a disk
reset.

ERASE FILE *

The ERA (erase) command removes specified files having the
current user code. If no files can be found on the selected
diskette which satisfy the erase request, then the message "No
file" is displayed at the console.

An attempt to erase all files,

2B>ERA *.*

will produce the following response from ERA:

Confirm delete all user files (Y/N)?

A second form of the erase command(ERAQ) enables the
operator to selectively delete files that match the
specified filename reference. For example:

OA>ERAQ *.LST
A:XIOS LST? y
A:MYFILE LST? N

 TYPE A FILE *

The TYPE command displays the contents of the specified
ASCII source file on the console device. The TYPE command
expands tabs (ctl-I characters), assuming tab positions are set
at every eighth column.

The TYPE command has a pause mode which is specified by
entering a 'P' followed by two decimal digits after the
filename. For example:

0A>TYPE DUMP.ASM P23

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
10

The specified number of lines will be displayed and then TYPE
will pause until a <cr> is entered.

The TYPE program is small and relatively slow because it
buffers only one sector at a time. The larger PIP program can
be used for faster displays in the following manner:

OA>PIP CON:=MYFILE.TEX

FILE DIRECTORY *

The DIR (directory) command causes the names of files on
the specified or logged-in disk to be listed on the console
device. If no files can be found on the selected diskette which
satisfy the directory request, then the message "Not found" is
typed at the console.

The DIR command can include files which have the system
attribute set. This is done by using the 'S' option. For
example:

OA>DIR *.COM S

RENAME FILE *

The REN (rename) command allows the user to change the name
of files on disk. If the destination filename exists the
operator is given the option of deleting the current destination
file before renaming the source file.

TEXT EDITOR *

The ED (editor) command allows the user to edit ASCII text
files.

PERIPHERAL INTERCHANGE PROGRAM *

The PIP (peripheral interchange program) command allows the
user to perform disk file and peripheral transfer operations.
See the Digital Research document titled "CP/M 2.0 User's Guide
for CP/M 1.4 Owners" for a detailed description of new PIP
operations.

ASSEMBLER *

The ASM (assembler) command allows the user to assemble the
specified program on disk.

SUBMIT *

The SUBMIT command allows the user to submit a file of
commands for batch processing.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
11

STATUS *

The STAT (status) command provides general statistical
information about the file storage. See the Digital Research
document titled "CP/M 2.0 User's Guide for CP/M 1.4 Owners" for a
detailed description of new STAT operations.

DUMP *

The DUMP command types the contents of the specified disk
file on the console in hexadecimal form.

LOAD *

The LOAD command reads the specified disk file of type HEX
and produces a memory image file of type COM which can
subsequently be executed.

GENMOD

The GENMOD command accepts a file which contains two
concatenated files of type HEX which are offset from each other
by 0100H bytes, and produces a file of type PRL (page
relocatable) . The form of the GENMOD command is as follows:

1A>genmod b:file.hex b:file.prl $1000

The first parameter is the file which contains two concatenated
files of type HEX. The second parameter is the name of the
destination file of type PRL. The optional third parameter is a
specification of additional memory required by the program beyond
the explicit code space. The form of the third parameter is a
'$' followed by four hex ASCII digits. For example, if the
program has been written to use all of 'available' memory for
buffers, specification of the third parameter will ensure a
minimum buffer allocation.

GENHEX

The GENHEX command is used to produce a file of type HEX
from a file of type COM. This is useful to be able to
generate HEX files for GENMOD input. The GENHEX command has
two parameters, the first is the COM file name and the second is
the offset for the HEX file. For example:

OA>GENHEX PROG.COM 100

PRLCOM

The PRLCOM command accepts a file of PRL type and produces
a file of COM type. If the destination COM file exists, a query
is made to determine if the file should be deleted before
continuing.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
12

OA>prlcom b:program.prl a:program.com

DYNAMIC DEBUGGING TOOL *

The DDT (dynamic debugging tool) command loads and executes
the MP/M debugger. In systems with banked memory multiple DDT
programs can be running concurrently in absolute TPAs. A PRL
(relocatable) version of DDT is also provided which enables
multiple DDTs to run in a non-banked system. The name of the
relocatable DDT is RDT.

MP/M DDT enhancements are described in Appendix J.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
13

1.5 Standard Resident System Processes

The standard resident system processes (RSPs) are new
programs specifically designed to facilitate use of the MP/M
operating system. The RSPs may either be present on disk as
files of the PRL type, or they may be resident system processes.
Resident system processes are selected at the time of system
generation.

SYSTEM STATUS

The MPMSTAT command allows the user to display the run-time
status of the MP/M operating system. MPMSTAT is invoked by
typing 'MPMSTAT’ followed by a <cr>. A sample MPMSTAT output is
shown below:

****** MP/M Status Display ******

Top of memory = FFFFH
Number of consoles = 02
Debugger breakpoint restart # = 06
Stack is swapped on BDOS calls
Z80 complementary registers managed by dispatcher
Ready Process(es)

MPMSTAT Idle
Process(es) DQing:

[Sched] Sched
[ATTACH] ATTACH
[CliQ] cli

Process(es) NQing:
Delayed Process(es):
Polling Process (es)

PIP
Process(es) Flag Waiting:

01 - Tick
02 - Clock

Flag(s) Set:
03

Queue(s):
MPMSTAT Sched CliQ ATTACH MXParse
MXList [TmpO]MXDisk

Process(es) Attached to Consoles:
[0] - MPMSTAT
[1] - PIP

Process(es) Waiting for Consoles:
[0] - TMPO DIR
[1] - TMPl

Memory Allocation:
Base = OOOOH Size = 4000H Allocated to PIP [1]
Base = 4000H Size = 2000H * Free *
Base = 6000H Size = 1100H Allocated to DIR [0]

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
14

The MP/M status display is intepreted as follows:

Ready Process (es): The ready processes are those
processes which are ready to run and are waiting for the
CPU. The list of ready processes is ordered by the
priority of the processes and includes the console number
at which the process was initiated. The highest priority
ready process is the running process.

Process(es) DQing: The processes DQing are those
processes which are waiting for messages to be written to
the specified queue. The queue name is in brackets
followed by the names of processes, in priority order,
which have executed read queue operations on the queue.

Process(es) NQing: The processes NQing are those
processes which are waiting for an available buffer to
write a message to the specified queue. The queue name is
in brackets followed by the names of the processes, in
priority order, which are waiting for buffers.

Delayed Process(es): The delayed processes are those
which are delaying for a specified number of ticks of the
system time unit.

Polling Process(es): The polling processes are those
which are polling a specified I/O device for a device ready
status.

Process(es) Flag Waiting: The processes flag waiting
are listed by flag number and process name.

Flag(s) Set: The flags which are set are displayed.

Queue(s): All the queues in the system are listed by
queue name. Queue names which are all in capital letters
are accessible by command line interpreter input. For
example, the SPOOL queue can be sent a message to spool a
file by entering 'SPOOL' followed by a file name.
Processes DQing from queues which have a name that matches
the process name are given the console resource when they
receive a message. Queue names that begin with 'MX' are
called mutual exclusion queues. The display of a mutual
exclusion queue includes the name of the process, if any,
which has the mutual exclusion message.

Process(es) Attached to Consoles: The process
attached to each console is listed by console number and
process name.

Process(es) Waiting for. Consoles: The processes
waiting for each console are listed by console number and
process name in priority order. They are processes which

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
15

have detached from the console and are then waiting for the
console before they can continue execution.

Memory Allocation: The memory allocation map shows
the base, size, bank, and allocation of each memory
segment. Segments which are not allocated are shown as '*
Free *', while allocated segments are identified by process
name and the console in brackets associated with the
process. Memory segments which are set as pre-allocated
during system generation by specifying an attribute of OFFH
are shown as Reserved

SPOOLER

The SPOOL command allows the user to spool ASCII text files
to the list device. Multiple file names may be specified in the
command tail. The spooler expands tabs (ctl-I characters),
assuming tab positions are set at every eighth column.

The spooler queue can be purged at any time by using the
STOPSPLR command.

An example of the SPOOL command is shown below:

1A>SPOOL LOAD.LST,LETTER.PRN

The non-resident version of the spooler (SPOOL.PRL) differs
in its operation from the SPOOL.RSP as follows: it uses all of
the memory available in the memory segment in which it is
running for buffer space; it displays a message
indicating its status and then detaches from the console; it
may be aborted from a console other than the initiator only by
specifying the console number of the initiator as a parameter of
the STOPSPLR command.

3B>STOPSPLR 2

DATE AND TIME

The TOD (time of day) command allows the user to read and
set the date and time. Entering 'TOD' followed by a <cr> will
cause the current date and time to be displayed on the console.
Entering 'TOD' followed by a date and time will set the date and
time when a <cr> is entered following the prompt to strike a key.
Each of these TOD commands is illustrated below:

1A>TOD <cr>

Wed 02/06/?0 09:15:37

-or-

1A>TOD 2/9/80 10:30:00

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
16

Strike key to set time
Sat 02/09/80 10:30:00

Entering 'TOD P' will cause the current time and date to be
continuously displayed until a key is struck at the console.

SCHEDULER

The SCHED (scheduler) command allows the user to schedule a
program for execution. Entering 'SCHED' followed by a date, time
and command line will cause the command line to be executed when
the specified date and time is reached.

In the example shown below, the program 'SAMPLE' will be
loaded from disk and executed on February 8, 1980 at 10:30 PM.
Note that only hours and minutes are specified, not seconds.
Programs are scheduled to the nearest minute.

1A>SCHED 2/8/79 22:30 SAMPLE

ABORT

The ABORT command allows the user to abort a running
program. The program to be aborted is entered as a
parameter in the ABORT command.

1A>ABORT RDT

A program initiated from another console may only be
aborted by including its console number as a parameter of the
ABORT command.

3B>ABORT RDT 1

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
17

2. MP/M INTERFACE GUIDE

This section describes MP/M system organization including
the structure of memory and system call functions. The intention
is to provide the necessary information required to write page
relocatable programs and resident system processes which operate
under MP/M, and which use the real-time, multi-tasking,
peripheral, and disk I/O facilities of the system.

2.1 Introduction

MP/M is logically divided into several modules. The three
primary modules are named the Basic and Extended I/O System
(XIOS), the Basic Disk Operating System (BDOS), and the Extended
Disk Operating System (XDOS). The XIOS is a hardware-dependent
module which defines the exact low level interface to a
particular computer system which is necessary for peripheral
device I/O. Although a standard XIOS is supplied by Digital
Research, explicit instructions are provided for field
reconfiguration of the XIOS to match nearly any hardware
environment.

MP/M memory structure is shown below:

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
18

: :

high : SYSTEM.DAT :
: :

: :
: CONSOLE.DAT :
: :

: :
: USERSYS.STK :
: :

: :
: XIOS :
: :

: :
: BDOS or ODOS :
: :

: :
: XDOS :
: :

: :
: RSPs :
: :

: :
: BNKBDOS (Optional) :
: :

: :
: MEMSEG.USR :
: :

 . . .
: :
: MEMSEG.USR :
: :

: :
: ABSOLUTE TPA :

low : :

The exact memory addresses for each of the memory segments
shown above will vary with MP/M version and depend on the
operator specifications made during the system generation
process.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
19

The memory segments are described as follows:

SYSTEM.DAT The SYSTEM.DAT segment contains 256 bytes
used by the loader to dynamically configure the
system. After loading, the segment is used for
storage of system data such as submit flags. See
section 3.4 under SYSTEM DATA for a detailed
description of the byte allocation.

CONSOLE.DAT The CONSOLE.DAT segment varies in length
with the number of consoles. Each console
requires 256 bytes which contains the TMP's
process descriptor, stack and buffers.

USERSYS.STK The USERSYS.STK segment is optional
depending upon whether or not the user intends to
run CP/M *.COM files. This segment contains 64
bytes of stack space per user memory segment and
is used as a temporary stack when user programs
make BDOS calls. Specification of the option to
include this segment is made during system
generation. The size of the USERSYS.STK segment
varies as follows:

OOOH - No user system stacks
100H - 1 to 4 memory segments
200H - 5 to 8 memory segments

XIOS The XIOS segment contains the user
Customized basic and extended I/O system in page
relocatable format.

BDOS/ODOS The BDOS segment contains the disk file and
multiple console management functions. The
segment is about 1400H bytes in length.

The ODOS segment contains the resident portion of
the banked BDOS file and console management
functions. The segment is about 800H bytes in
length.

XDOS The XDOS segment contains the MP/M nucleus
and the extended disk operating system. The
segment is about 2000H bytes in length.

RSPs The operator makes a selection of Resident
System Processes during system generation. The
RSPs require varying amounts of memory.

BNKBDOS (Optional) The BNKBDOS segment is present only
in systems with a bank switched BDOS. it
contains the non-resident portion of the banked
BDOS disk file management. This segment is about
EOOH bytes in length.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
20

MEMSEG.USR The user can specifiy 1 to 8 user memory
segments during the system generation process.
These memory segments may be in the same address
space with different bank numbers.

TPA The ABSOLUTE TPA is a user memory segment
which is based at OOOOH. In systems with bank
switched memory there may be more than one
ABSOLUTE TPA.

Each user memory segment, including the TPA, is further
divided into two regions. The first is called the system
parameter area. The system parameter area occupies the first
100H bytes of the. memory segment and is defined similarily to
that of CP/M. See APPENDIX E for a detailed description of the
system parameter area. This area is also called the memory
segment base page.

The second region of the user memory segment is the user
code area. This area begins at 0100H relative to the base of the
memory segment. When a program is loaded, code is placed into
the user memory segment beginning at the start of the user code
area.

Transient programs are loaded into memory by the Command
Line Interpreter (CLI). CLI receives commands from the Terminal
Message Process (TMP) which accepts the operator console input.
The TMP is a reentrant program which is executed by as many
processes as there are system consoles. The operator
communicates with the TMP by typing command lines following each
prompt. Each command line generally takes one of the forms:

command
command filel
command filel file2

where "command" is either a queue such as SPOOL or ATTACH, or the
name of a transient command or program.

A brief discussion of CLI operation will describe the
loading of transient programs.

When CLI receives a command line it parses the first entry
on the command line and then tries to open a queue using the
parsed name. If the open queue succeeds the command tail is
written to the queue and the CLI operation is finished. If the
open queue fails, a file type of PRL is entered for the parsed
file name and a file open is attempted. If the file open
succeeds then the header of the PRL file is read to determine the
memory requirements. A relocatable memory request is made to
obtain a memory segment in which to load and run the program. if
this request is satisfied the PRL file is read into the memory

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
21

segment, relocated, and it is executed, completing the CLI
operation.

If the PRL file type open fails then the file type of COM
is entered for the parsed file name and a file open is attempted.
If the open succeeds then a memory request is made for an
absolute TPA, memory segment based at OOOOH. If this request is
satisfied the COM file is read into the absolute TPA and it is
executed completing the CLI operation.

If the command is followed by one or two file
specifications, the CLI prepares one or two file control block
(FCB) names in the system parameter area. These optional FCB’s
are in the form necessary to access files through MP/M BDOS
calls, and are described in the next section.

The CLI creates a process descriptor for each program which
is loaded, setting up a 20 level stack which forces a branch to
the base of the user code area of the memory segment. The
default stack is set up so that a return from the loaded program
causes a branch to the MP/M facility which terminates the
process. This stack has 19 levels available which can generally
be used by the transient program since it is sufficiently large
to handle system calls.

The transient program then begins execution, perhaps using
the I/O facilities of MP/M to communicate with the operator's
console and peripheral devices, including the disk subsystem.
The I/O system is accessed by passing a "function number" and an
"information address" to MP/M through the entry point at the
memory segment base +0005H. In the case of a disk read, for
example, the transient program sends the number corresponding to
a disk read, along with the address of an FCB to MP/M. MP/M, in
turn, performs the operation and returns with either a disk read
completion indication or an error number indicating that the disk
read was unsuccessful. The function numbers and error indicators
are given in sections 2.2 and 2.4,

OPERATING SYSTEM CALL CONVENTIONS

The purpose of this section is to provide detailed
information for performing direct operating system calls from
user programs. many of the functions listed below, however, are
more simply accessed through the I/O macro library provided with
the MAC macro assembler, and listed in the Digital Research
manual entitled "MAC Macro Assembler: Language manual and
Applications Guide."

MP/M facilities which are available for access by transient
programs fall into two general categories: simple device I/O,
disk file I/O, and the XDOS functions.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
22

The simple device operations include:

Read/Write a Console Character
Write a List Device Character
Print Console Buffer
Read Console Buffer
Interrogate Console Ready

The BDOS operations which perform disk Input/Output are

Disk System Reset
Drive Selection
File Creation
File Open
File Close
Directory Search
File Delete
File Rename
Random or Sequential Read
Random or Sequential Write
Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address
Set/Reset File Indicators
Reset Drive
Access/Free Drive
Random Write With Zero Fill

The XDOS functions are

Absolute and Relocatable Memory Request
Memory Free
Device Poll
Flag Waiting and Setting
Make Queue
Open Queue
Delete Queue
Read and Conditional Read Queue
Write and Conditional Write Queue
Delay
Dispatch
Terminate and Create Process
Set Priority
Attach and Detach Console
Set and Assign Console
Send CLI Command
Call Resident System Procedure
Parse Filename
Get Console Number
System Data Address
Get Date and Time
Return Process Descriptor Address
Abort Specified Process

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
23

As mentioned above, access to the MP/M functions is
accomplished by passing a function number and information address
through the primary entry point at location memory segment base
+0005H. In general, the function number is passed in register C
with the information address in the double byte pair DE. Single
byte values are returned in register A, with double byte values
returned in HL (a zero value. is returned when the function number
is out of range). For reasons of compatibility, register A = L
and register B = H upon return in all cases. Note that the
register passing conventions of MP/M agree with those of Intel's
PL/M systems programming language.

The list of MP/M BDOS function numbers is given below.

0 System Reset 21 Write Sequential
1 Console Input 22 Make File
2 Console Output 23 Rename File
3 Raw Console Input 24 Return Login Vector
4 Raw Console Output 25 Return Current Disk
5 List Output 26 Set DMA Address
6 Direct Console I/O 27 Get Addr(Alloc)
7 Get I/O Byte 28 Write Protect Disk
8 Set I/O Byte 29 Get R/O Vector
9 Print String 30 Set File Attributes
10 Read Console Buffer 31 Get Addr(Disk Parms)
11 Get Console Status 32 Set/Get User Code
12 Return Version Number 33 Read Random
13 Reset Disk System 34 Write Random
14 Select Disk 35 Compute File Size
15 Open File 36 Set Random Record
16 Close File 35 Compute File Size
17 Search for First 36 Set Random Record
18 Search for Next 37 Reset Drive
19 Delete File 38 Access Drive
20 Read Sequential 39 Free Drive

40 Write Random With Zero Fill

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
24

The list of MP/M XDOS function numbers is given below.

128 Absolute Memory Rqst 143 Terminate Process
129 Relocatable Mem. Rqst 144 Create Process
130 Memory Free 145 Set Priority
131 Poll 146 Attach Console
132 Flag Wait 147 Detach Console
133 Flag Set 148 Set Console
134 Make Queue 149 Assign Console
135 Open Queue 150 Send CLI Command
136 Delete Queue 151 Call Resident Sys. Proc.
137 Read Queue 152 Parse Filename
138 Cond. Read Queue 153 Get Console Number
139 Write Queue 154 System Data Address
140 Cond. Write Queue 155 Get Date and Time
141 Delay 156 Return Proc. Descr. Adr.
142 Dispatch 157 Abort Specified Process

DISK FILE STRUCTURE

MP/M implements a named file structure on each disk,
providing a logical organization which allows any particular file
to contain any number of records from completely empty, to the
full capacity of the drive. Each drive is logically distinct
with a disk directory and file data area. The disk file names
are in three parts: the drive select code, the file name
consisting of one to eight non-blank characters, and the file
type consisting of zero to three non-blank characters. The file
type names the generic category of a particular file, while the
file name distinguishes individual files in each category. The
file types listed below name a few generic categories which have
been established, although they are generally arbitrary:

ASM Assembler Source PLI PL/I Source File
PRN Printer Listing REL Relocatable Module
HEX Hex Machine Code TEX TEX Formatter Source
BAS Basic Source File BAK ED Source Backup
INT Intermediate Code SYM SID Symbol File
COM CCP Command File $$$ Temporary File
PRL Page Relocatable RSP Resident Sys. Process
SPR Sys. Page Reloc. SYS System File

Source files are treated as a sequence of ASCII characters, where
each "line" of the source file is followed by a carriage-return
line-feed sequence (ODH followed by OAH). Thus one 128 byte MP/M
record could contain several lines of source text. The end of an
ASCII file is denoted by a control-Z character (1AH) or a real
end of file (i.e. no more sectors), returned by the MP/M read
operation. Control-Z characters embedded within machine code
files (e.g., COM files). are ignored, however, and the end of file
condition returned by MP/M is used to terminate read operations.

Files in MP/M can be thought of as a sequence of up to

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
25

65536 records of 128 bytes each, numbered from 0 through 65535,
thus allowing a maximum of 8 megabytes per file. Note, however,
that although the records may be considered logically contiguous,
they are not necessarily physically contiguous in the disk data
area. Internally, all files are broken into 16K byte segments
called logical extents, so that counters are easily maintained as
8-bit values. Although the decomposition into extents is
discussed in the paragraphs which follow, they are of no
particular consequence to the programmer since each extent is
automatically accessed in both sequential and random access
modes.

In the file operations starting with function number 15, DE
usually addresses a file control block (FCB). Transient programs
often use the default file control block area reserved by MP/M at
location memory segment base +005CH for simple file operations.
The basic unit of file information is a 128 byte record used for
all file operations, thus a default location for disk I/O is
provided by MP/M at location memory segment base +0080H which is
the initial default DMA address (see function 26). All directory
operations take place in a reserved area which does not affect
write buffers as was the case in CP/M release 1, with the
exception of Search First and Search Next, where compatibility is
required.

The File Control Block (FCB) data area consists of a
sequence of 33 bytes for sequential access and a series of 36
bytes in the case that the file is accessed randomly. The
default file control block normally located at memory segment
base +005CH can be used for random access files, since the three
bytes starting at memory segment base +007DH are available for
this purpose.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
26

The FCB format is shown with the following fields:

:dr:f1:f2:/ /:f8:t1:t2:t3:ex:s1:s2:rc:d0:/ /:dn:cr:r0:r1:r2:

 00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35

where

dr drive code (0 - 16)
0 => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,
...
16=> auto disk select drive P.

fl...f8 contain the file name in ASCII
upper case, with high bit = 0

tl,t2,t3 contain the file type in ASCII
upper case, with high bit = 0
tl', t2', and t3' denote the
bit of these positions,
tl' = 1 => Read/only file,
t2' = 1 => SYS file, no DIR list
t3' = 0 => File has been updated

ex contains the current extent number,
normally set to 00 by the user, but
in range 0 - 31 during file I/O

sl reserved for internal system use

s2 reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

rc record count for extent "ex"
takes on values from 0 – 128

d0..dn filled-in by MP/M, reserved for
system use

cr current record to read or write in
a sequential file operation, normally
set to zero by user

rO,rl,r2 optional random record number in the
range 0-65535, with overflow to r2,
rO,rl constitute a 16-bit value with
low byte rO, and Iiigh byte rl

Each file being accessed through MP/M must have a
corresponding FCB which provides the name and allocation

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
27

information for all subsequent file operations. When accessing
files, it is the programmer's responsibility to fill the lower
sixteen bytes of the FCB and initialize the "cr" field.
Normally, bytes 1 through 11 are set to the ASCII character
values for the file name and file type, while all other fields
are zero.

FCB's are stored in a directory area of the disk, and are
brought into central memory before proceeding with file
operations (see the OPEN and MAKE functions). The memory copy of
the FCB is updated as file operations take place and later
recorded permanently on disk at the termination of the file
operation (see the CLOSE command).

The CLI constructs the first sixteen bytes of two optional
FCB's for a transient by scanning the remainder of the line
following the transient name, denoted by "filel" and "file2" in
the prototype command line described above, with unspecified
fields set to ASCII blanks. The first FCB is constructed at
location memory segment base +005CH, and can be used as-is for
subsequent file operations. The second FCB occupies the dO ...
dn portion of the first FCB, and must be moved to another area of
memory before use. If, for example, the operator types

PROGNAME B:X.ZOT Y.ZAP

the file PROGNAME.PRL is loaded into a user memory segment or if
it is not on the disk, the file PROGNAME.COM is loaded into the
TPA, and the default FCB at memory segment base +005CH is
initialized to drive code 2, file name "X" and file type "ZOT".
The second drive code takes the default value 0, which is placed
at memory segment base +006CH, with the file name "Y" placed into
location memory segment base +006DH and file type "ZAP" located 8
bytes later at memory segment base +0075H. All remaining fields
through "cr" are set to zero. Note again that it is the
programmer's responsibility to move this second file name and
type to another area, usually a separate file control block,
before opening the file which begins at memory segment base
+005CH, due to the fact that the open operation will overwrite
the second name and type.

If no file names are specified in the original command,
then the fields beginning at memory segment base +005DH and
+006DH contain blanks. In all cases, the CLI translates lower
case alphabetics to upper case to be consistent with the MP/M
file naming conventions.

As an added convenience, the default buffer area at
location memory segment base +0080H is initialized to the command
line tail typed by the operator following the program name. The
first position contains the number of characters, with the
characters themselves following the character count.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
28

Given the above command line, the area beginning at memory
segment base +0080H is initialized as follows:

Memory Segment Base +008OH:
+00 +01 +02 +03 +04 +05 +06 +07 +08 +09 +10 +11 +12 +13 +14
 14 “ “ “B” “:” “X” “.” “Z” “O” “T” “ “ “Y” “.” “Z” “A” “P”

where the characters are translated to upper case ASCII with
uninitialized memory following the last valid character. Again,
it is the responsibility of the programmer to extract the
information from this buffer before any file operations are
performed, unless the default DMA address is explicitly changed.

The individual functions are described in detail in the
sections which follow.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
29

2.2 Basic Disk operating System Functions

In general, the Basic Disk Operating System (BDOS)
facilities are identical to that of CP/M 2.0. Each function is
covered in this section by describing the entry parameters,
returned values, and any differences between CP/M and MP/M.

* *
* FUNCTION 0: SYSTEM RESET *
* *

* Entry Parameters: *
* Register C: 00H *

The SYSTEM RESET function terminates the calling program,
releasing the memory segment, console, and mutual exclusion
messages owned by the calling program. When the console is
released it is usually given back to the terminal message process
(TMP) for that console.

Effectively the operation of the SYSTEM RESET function is
the same for MP/M as it is for CP/M 2.0 because the program
is terminated and the operator receives the prompt to enter
another command. However, MP/M does not re-initialize the disk
subsystem by selecting and logging-in disk drive A.

* *

 * FUNCTION 1:. CONSOLE INPUT *
 * *

 * Entry Parameters: *
 * Register C: 01H *
 * *
 * Returned Value: *
 * Register A: ASCII Character *

The CONSOLE INPUT function reads the next console character
to register A. Graphic characters, along with carriage return,
line feed, and backspace (ctl-H) are echoed to the console. Tab
characters (ctl-I) are expanded in columns of eight characters.
A check is made for start/stop scroll (ctl-S) and start/stop
printer echo (ctl-P). The BDOS does not return to the calling
program until a character. has been typed, thus suspending
execution if a character is not ready.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
30

* *
* FUNCTION 2: CONSOLE OUTPUT *
* *

* Entry Parameters: *
* Register C: 02H *
* Register E: ASCII Character *
* *

The ASCII character from register-E is sent to the console
device. Similar to function 1, tabs are expanded and checks are
made for start/stop scroll and printer echo.

* *
* FUNCTION 3: RAW CONSOLE INPUT *

* Entry Parameters: *
* Register C: 03H *
* *
* Returned Value: *
* Register A: ASCII Character *

The RAW CONSOLE INPUT function reads the next console
character to Register A. There is no testing of the input
character, that is, the system wi11 directly pass through all
characters including the control characters without any
interpretation. This function does not require that the console
be attached, nor does it attach the console.

The READER INPUT function is not supported under MP/M. All
character I/O devices such as the reader/punch are treated as
consoles. MP/M supports up to 16 consoles or character I/O
devices.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
31

* *
* FUNCTION 4: RAW CONSOLE OUTPUT *
* *

* Entry Parameters: *
* Register C: 04H *
* Register E: ASCII Character *
* *

The RAW CONSOLE OUTPUT function sends the ASCII
character from register E to the console device. There is no
testing of the output character, that is, tabs are not expanded
and no checks are made for start/stop scroll and printer echo.
This function does not require that the console be attached,
nor does it attach the console. Thus, unsolicited messages may
be sent to other consoles by simply changing the console byte of
the process descriptor and then using this function.

The PUNCH OUTPUT function is not supported under MP/M.

* *
* FUNCTION 5: LIST OUTPUT *
* *

* Entry Parameters: *
* Register C: 05H *
* Register E: ASCII Character *
* *

The LIST OUTPUT function sends the ASCII character in
register E to the logical listing device.

Caution must be observed in the use of the printer since
there is no implicit list device ownership. That is, the list
device is not "opened" or "closed". MP/M affords a secondary
explicit means to resolve printer mutual exclusion. A
queue named 'MXList' is created by the system to handle mutual
exclusion. To properly obtain use of the printer a program
should open the 'MXList' queue and read the message. When the
message is obtained the printer may be used. When printing is
completed the message should be written back to the 'MXList'
queue. This technique is used by the MP/M PIP, SPOOLer, and TMP
c-tl-P operations.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
32

* *
* FUNCTION 6: DIRECT CONSOLE I/0 *
* *

* Entry Parameters: *
* Register C: 06H *
* Register E: OFFH (input) or *
* 0FEH (status)or *
* char (output) *
* *
* Returned Value: *
* Register A: char or status *
* (no value) *

Direct console I/O is supported under MP/M for those
specialized applications where unadorned console input and output
is required. Use of this function should, in general, be avoided
since it bypasses all of MP/M's normal control character
functions (e.g., control-S and control-P) . Programs which
perform direct I/O through the BIOS under previous releases of
CP/M, however, should be changed to use direct I/O under BDOS so
that they can be fully supported under MP/M and CP/M.

Upon entry to function 6, register E either contains
hexadecimal FF, denoting a console input request, a hexadecimal
FE, denoting a console input status request, or register E
contains an ASCII character. If the input value is FF, then
function 6 returns the next console input character.

If the input value is FE, then function 6 returns a value
of FF if a character is ready, or a 00 if no character has been
received.

If the input value in E is not FF or FE, then function 6
assumes that E contains a valid ASCII character which is sent to
the console.

Note that BDOS functions 3 and 4 (raw console input/output)
can be used for totally transparent console I/O. When using
functions 3 and 4, the console status operation can be performed
by using function 6 with a parameter of FE.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
33

* *
* FUNCTION 7: GET I/O BYTE *
* *

* *
* Not supported under MP/M *
* *

The GET I/O BYTE function is not supported under MP/M.

* *
* FUNCTION 8: SET I/O BYTE *
* *

* *
* Not supported under MP/M *
* *

The SET I/O BYTE function is not supported under MP/M.

* *
* FUNCTION 9: PRINT STRING *
* *

* *
* Entry Parameters: *
* Register C: 09H *

 * Registers DE: String Address *
 * *

The PRINT STRING function sends the character string stored
in memory at the location given by DE to the console device,
until a “$" is encountered in the string. Tabs are expanded as
in function 2, and checks are made for start/stop scroll and
printer echo.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
34

* *
* FUNCTION 10: READ CONSOLE BUFFER *
* *

* Entry Parameters: *
* Register C: OAH *
* Registers DE: Buffer Address *
* *
* Returned Value: *
* Console Characters in Buffer *

The READ BUFFER function reads a line of edited console
input into a buffer addressed by registers DE. Console input is
terminated when either the input buffer overflows. The READ
BUFFER takes the form:

DE: +0 +1 +2 +3 +4 +5 +6 +7 +8 . . . +n
 --

 :mx:nc:c1:c2:c3:c4:c5:c6:c7: . . . :??:
 --

where "mx" is the maximum number of characters which the buffer
will hold (1 to 255), "nc" is the number of characters read (set
by BDOS upon return), followed by the characters read from the
console. if nc < mx, then uninitialized positions follow the
last character, denoted by "??" in the above figure. A number of
control functions are recognized during line editing:

rub/del removes and echoes the last character
ctl-C reboots when at the beginning of line
ctl-E causes physical end of line
ctl-H backspaces one character position
ctl-J (line feed) terminates input line
ctl-M (return) terminates input line
ctl-R retypes the current line after new line
ctl-U removes current line after new line
ctl-X backspaces to beginning of current line

Note also that certain functions which return the carriage to the
leftmost position (e.g., ctl-X) do so only to the column position
where the prompt ended (in earlier releases, the carriage
returned to the extreme left margin). This convention makes
operator data input and line correction more legible.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
35

* *
* FUNCTION 11: GET CONSOLE STATUS *
* *

* Entry Parameters: *
* Register C: OBH *
* *
* Returned Value: *
* Register A: Console Status *

The CONSOLE STATUS function checks to see if a character
has been typed at the console. If a character is ready, the
value OFFH is returned in register A. Otherwise a OOH value is
returned.

* *
* FUNCTION 12: RETURN VERSION NUMBER *
* *

* Entry Parameters: *
* Register C: OCH *
* *
* Returned Value: *
* Registers HL: Version Number *

Function 12 provides information which allows version
independent programming. A two-byte value is returned, with H =
00 designating the CP/M release (H = 01 for MP/M), and L = 00 for
all releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20
in register L, with subsequent version 2 releases in the
hexadecimal range 21, 22, through 2F. Using function 12, for
example, you can write application programs which provide both
sequential and random access functions, with random access
disabled when operating under early releases of CP/M.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
36

* *
* FUNCTION 13: RESET DISK SYSTEM *
* *

* Entry Parameters: *
* Register C: ODH *
* *
* Returned Value: *
* Register A: Return Code *

The RESET DISK function is used to programmatically restore
the file system to a reset state where all disks are set to
read/write (see functions 28 and 29), and the default DMA address
is reset to the memory segment base +0080H. This function can be
used, for example, by an application program which requires a
disk change without a system reboot.

The RESET DISK SYSTEM function is qualified in MP/M. if
there are any open files on any drive, the reset disk system
is denied and the reason is displayed on the console. The
returned value indicates whether or not the reset disk was
successful. If any process is currently accessing a drive, an
error code of OFFH is returned in the A register. A return code
of 0 indicates success.

* *
* FUNCTION 14: SELECT DISK *
* *

* Entry Parameters: *
* *
* Register C: OEH *
* Register E: Selected Disk *
* *

The SELECT DISK function designates the disk drive named in
register E as the default disk for subsequent file operations,
with E = 0 for drive A, 1 for drive B, and so-forth through 15
corresponding to drive P in a full sixteen drive system. The
drive is placed in an "on-line" status which, in particular,
activates its directory until the next cold start, warm start, or
disk system reset operation. If the disk media is changed while
it is on-line, the drive automatically goes to a read/only status
in a standard MP/M environment (see function 28). FCB's which
specify drive code zero (dr = OOH) automatically reference the
currently selected default drive. Drive code values between 1
and 16, however, ignore the selected default drive and directly
reference drives A through P.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
37

* *
* FUNCTION 15: OPEN FILE *
* *

* Entry Parameters: *
* Register C: OFH *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *

The OPEN FILE operation is used to activate a file which
currently exists in the disk directory for either the currently
active user code or user code 0. The BDOS scans the referenced
disk directory for a match in positions 1 through 14 of the FCB
referenced by DE (byte sl is automatically zeroed), where an
ASCII question mark (3FH) matches any directory character in any
of these positions. Normally, no question marks are included
and, further, bytes "ex" and "s2" of the FCB are zero.

If a directory element is matched, the relevant directory
information is copied into bytes dO through dn of the FCB, thus
allowing access to the files through subsequent read and write
operations. Note that an existing file must not be accessed
until a sucessful open operation is completed. Upon return, the
open function returns a "directory code" with the value 0 through
3 if the open was successful, or OFFH (255 decimal) if the file
cannot be found. If question marks occur in the FCB then the
first matching FCB is activated. Note that the current record
("cr") must be zeroed by the program if the file is to be
accessed sequentially from the first record.

The open-file operation will succeed for files with either
the current user code or user code 0. This presents a problem
when files with the same name exist under both the current user
code and under user code 0. When such a situation exists the
first one found in the directory will be opened. Even though
this should not present a problem because user code 0 is intended
only for system and commonly used files, a potential problem can
be detected by using the search file function. The search file
function enables examination of the directory FCB and thus the
actual file user code can be determined.

Opening a file sets the appropriate bit in the drive active
vector of the calling processes process descriptor. This bit is
cleared only by terminating the process or making a free drive
(function 39) call. Setting of the bit in the drive active
vector will prevent any other process from resetting the drive on
which the file was opened.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
38

* *
* FUNCTION 16: CLOSE FILE *
* *

* Entry Parameters: *
* Register C: 10H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *

The CLOSE FILE function performs the inverse of the open
file function. Given that the FCB addressed by DE has been
previously activated through an open or make function (see
functions 15 and 22), the close function permanently records the
new FCB in the referenced disk directory. The FCB matching
process for the close is identical to the open function. The
directory code returned for a successful close operation is 0, 1,
2, or 3, while a OFFH (255 decimal) is returned if the file name
cannot be found in the directory. A file need not be closed if
only read operations have taken place. If write operations have
occurred, however, the close operation is necessary to
permanently record the new directory information.

Note that the close file function does not affect the drive
active vector of the calling processes process descriptor. The
free drive function (function 39) must be used to reset the bit
of the drive active vector.

* *
* FUNCTION 17: SEARCH FOR FIRST *
* *

* Entry Parameters: *
* Register C: 11H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *

SEARCH FIRST scans the directory for a match with the file
given by the FCB addressed by DE. Files with either the
currently active user code or user code 0 will match. The value
255 (hexadecimal FF) is returned if the file is not found,
otherwise 0, 1, 2, or 3 is returned indicating the file is
present. In the case that the file is found, the current DMA
address is filled with the record containing the directory entry,
and the relative starting position is A * 32 (i.e., rotate the A

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
39

register left 5 bits, or ADD A five times). Although not
normally required for application programs, the directory
information can be extracted from the buffer at this position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from "fl" through "ex" matches the corresponding field
of any directory entry on the default or auto-selected disk
drive. If the "dr" field contains an ASCII question mark, then
the auto disk select function is disabled, the default disk is
searched, with the search function returning any matched entry,
allocated or free, belonging to any user number. This latter
function is not normally used by application programs, but does
allow complete flexibility to scan all current directory values.
If the "dr" field is not a question mark, the "s2" byte is
automatically zeroed.

To determine the user code of a successful search (it may
be the currently active user code or user code 0), the returned
directory code can be used as described above to index into the
DMA buffer and the user code of the directory FCB can be
obtained.

* *
* FUNCTION 18: SEARCH FOR NEXT *
* *

* Entry Parameters: *
* Register C: 12H *
* *
* Returned Value: *
* Register A: Directory Code *

The SEARCH NEXT function is similar to the Search First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
40

* *
* FUNCTION 19: DELETE FILE *
* *

* Entry Parameters: *
* Register C: 13H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *

The DELETE FILE function removes files which match the FCB
addressed by DE. The filename and type may contain ambiguous
references (i.e., question marks in various positions), but the
drive select code cannot be ambiguous, as in the Search and
Search Next functions.

Function 19 returns a decimal 255 if the referenced file or
files cannot be found, otherwise a value in the range 0 to 3 is
returned.

* *
* FUNCTION 20: READ SEQUENTIAL *
* *

* Entry Parameters: *
* Register C: 14H *
* Registers DE: FCB Address *
* *
* Returned Value *
* Register A: Directory Code *

Given that the FCB addressed by DE has been activated
through an open or make function (numbers 15 and 22), the READ
SEQUENTIAL function reads the next 128 byte record from the file
Into memory at the current DMA address. The record is read from
position "cr" of the extent, and the "cr" field is automatically
Incremented to the next record position. If the "cr" field
overflows then the next logical extent is automaticall1y opened
and the “cr" field is reset to zero in preparation for the next
read operation. The value 00H is returned in the A register if
the read operation was successful, while a non-zero value is
returned if no data exists at the next record position (e.g. end
of file occurs).

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
41

* *
* FUNCTION 21: WRITE SEQUENTIAL *
* *

* Entry Parameters: *
* Register C: 15H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *

Given that the FCB addressed by DE has been activated
through an open or make function (numbers 15 and 22), the WRITE
SEQUENTIAL function writes the 128 byte data record at the
current DMA address to the file named by the FCB. the record is
placed at position "cr" of the file, and the "cr" field is
automatically incremented to the next record position. If the
"cr" field overflows then the next logical extent is
automatically opened and the "cr” field is reset to zero in
preparation for the next write operation. Write operations can
take place into an existing file, in which case newly written
records overlay those which already exist in the file. Register
A = OOH upon return from a successful write operation, while a
non-zero value indicates a full disk.

* *
* FUNCTION 22: MAKE FILE *
* *

* Entry Parameters: *
* Register C: 16H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *

The MAKE FILE operation is similar to the open file
operation except that the FCB must name a file which does not
exist in the currently referenced disk directory (i.e., the one
named explicitly by a non-zero “dr" code, or the default disk if
"dr" is zero). The FDOS creates the file and initializes both
the directory and main memory value to an empty file. The
programmer must ensure that no duplicate file names occur, and a
preceding delete operation is sufficient if there is any
possibility of duplication. Upon return, register A = 0, 1, 2,
or 3 if the operation was successful and OFFH (255 decimal) if no
more directory space is available. The make function has the
side-effect of activating the FCB and thus a subsequent open is

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
42

not necessary.

Making a file sets the appropriate bit in the drive active
vector of the calling processes process descriptor. This bit is
cleared only by terminating the process or making a free drive
(function 39) call. Setting of the bit in the drive active
vector will prevent any other process from resetting the drive on
which the file was opened.

* *
* FUNCTION 23: RENAME FILE *
* *

* Entry Parameters: *
* Register C: 17H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *

The RENAME FILE function uses the FCB addressed by DE to
change all occurrences of the file named in the first 16 bytes to
the file named in the second 16 bytes. The drive code "dr" at
position 0 is used to select the drive, while the drive code for
the new file name at position 16 of the FCB is assumed to be
zero. Upon return, register A is set to a value between 0 and 3
if the rename was successful, and OFFH (255 decimal) if the first
file name could not be found in the directory scan.

* *
* FUNCTION 24: RETURN LOGIN VECTOR *
* *

* Entry Parameters: *
* Register C: 18H *
* *
* Returned Value: *
* Registers HL: Login Vector *

The login vector value returned by MP/M is a 16-bit value
in HL, where the least significant bit of L corresponds to the
first drive A, and the high order bit of H corresponds to the
sixteenth drive, labelled P. A "0" bit indicates that the drive
is not on-line, while a "l" bit marks an drive that is actively
on-line due to an explicit disk drive selection, or an implicit
drive select caused by a file operation which specified a
non-zero "dr" field. Note that compatibility is maintained with

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
43

earlier releases, since registers A and L contain the same values
upon return.

* *
* FUNCTION 25: RETURN CURRENT DISK *
* *

* Entry Parameters: *
* Register C: 19H *
* *
* Returned Value: *
* Register A: Current Disk *

Function 25 returns the currently selected default disk
number in register A. The disk numbers range from 0 through 15
corresponding to drives A through P.

* *
* FUNCTION 26: SET DMA ADDRESS *
* *

* Entry Parameters: *
* Register C: 1AH *
* Registers DE: DMA Address *

"DMA" is an acronym for Direct Memory Address, which is
often used in connection with disk controllers which directly
access the memory of the mainframe computer to transfer data to
and from the disk subsystem. Although many computer systems use
non-DMA access (i.e., the data is transfered through programmed
I/O operations), the DMA address has, in MP/M, come to mean the
address at which the 128 byte data record resides before a disk
write and after a disk read. Upon cold start, warm start, or
disk system reset, the DMA address is automatically set to
BOOT+0080H. The Set DMA function, however, can be used to change
this default value to address another area of memory where the
data records reside. Thus, the DMA address becomes the value
specified by DE until it is changed by a subsequent Set DMA
function, cold start, warm start, or disk system reset.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
44

* *
* FUNCTION 27: GET ADDR(ALLOC) *
* *

* Entry Parameters: *
* Register C: 1BH *
* *
* Returned Value: *
* Registers HL: ALLOC Address *

An "allocation vector" is maintained in main memory for
each on-line disk drive. Various system programs use the
information provided by the allocation vector to determine the
amount of remaining storage (see the STAT program). Function 27
returns the base address of the allocation vector for the
currently selected disk drive. The allocation information may,
however, be invalid if the selected disk has been marked
read/only. Although this function is not normally used by
application programs, additional details of the allocation vector
are found in the "CP/M 2.0 Alteration Guide."

* *
* FUNCTION 28: WRITE PROTECT DISK *
* *

* Entry Parameters: *
* Register C: 1CH *
* *

The disk write protect function provides temporary write
protection for the currently selected disk. Any attempt to write
to the disk, before the next cold or warm start operation
produces the message

Bdos Err on d: R/O

Use of this function is not recommended while operating
under MP/M because it will deny read/write access to files on the
disk by another user.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
45

* *
* FUNCTION 29: GET READ/ONLY VECTOR *
* *

* Entry Parameters: *
* Register C: 1DH *
* *
* Returned Value: *
* Registers HL: R/O Vector Value *

Function 29 returns a bit vector in register pair HL which
indicates drives which have the temporary read/only bit set.
Similar to function 24, the least significant bit corresponds to
drive A, while the most significant bit corresponds to drive P.
The R/O bit is set either by an explicit call to function 28, or
by the automatic software mechanisms within MP/M which detect
changed disks.

* *
* FUNCTION 30: SET FILE ATTRIBUTES *
* *

* Entry Parameters: *
* Register C: 1EH *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *

The SET FILE ATTRIBUTES function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/0, System, and Update attributes (tl', t2', and
t3’) can be set or reset. The DE pair addresses an unambiguous
file name with the appropriate attributes set or reset. Function
30 searches for a match, and changes the matched directory entry
to contain the selected indicators. Indicators fl' through f4'
are not presently used, but may be useful for applications
programs, since they are not involved in the matching process
during file open and close operations. Indicators f5’ through
f8' are reserved for future system expansion.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
46

* *
* FUNCTION 31: GET ADDR(DISK PARMS) *
* *

* Entry Parameters: *
* Register C: 1FH *
* *
* Returned Value: *
* Registers HL: DPB Address *

The address of the BIOS resident disk parameter block is
returned in HL as a result of this function call. This address
can be used for either of two purposes. First, the disk
parameter values can be extracted for display and space
computation purposes, or transient programs can dynamically
change the values of current disk parameters when the disk
environment changes, if required. Normally, application programs
will not require this facility.

* *
* FUNCTION 32: SET/GET USER CODE *
* *

* Entry Parameters: *
* Register C: 20H *
* Register E: OFFH (get) or *
* User Code (set) *
* *
* Returned Value: *
* Register A: Current Code or *
* (no value) *

An application program can change or interrogate the
currently active user number by calling function 32. If register
E = OFFH, then the value of the current user number is returned
in register A, where the value is in the range 0 to 15. If
register E is not OFFH, then the current user number is changed
to the value of E (modulo 16) .

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
47

* *
* FUNCTION 33: READ RANDOM *
* *

* Entry Parameters: *
* Register C: 21H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Return Code *

The READ RANDOM function is similar to the sequential file
Read operation of previous releases, except that the read
operation takes place at a particular record number, selected by
the 24-bit value constructed from the three byte field following
the FCB (byte positions rO at 33, rl at 34, and r2 at 35). Note
that the sequence of 24 bits is stored with least significant byte
first (rO) middle byte next (rl), and high byte last (r2). MP/M
does not reference byte r2, except in computing the size of a file
(function 35). Byte r2 must be zero, however, since a non-zero
value indicates overflow past the end of file.

Thus, the r0,rl byte pair is treated as a double-byte, or
"word" value, which contains the record to read. This value ranges
from 0 to 65535, providing access to any particular record
of the 8 megabyte file. In order to process a file using random
access, the base extent (extent 0) must first be opened. Although
the base extent may or may not contain any allocated data, this
ensures that the file is properly recorded in the directory, and
is visible in DIR requests. The selected record number is then
stored into the random record field (rO,rl), and the BDOS is
called to read the record. Upon return from the call, register A
either contains an error code, as listed below, or the value 00
indicating the operation was successful. In the latter case, the
current DMA address contains the randomly accessed record. Note
that contrary to the sequential read operation, the record number
is not advanced. Thus, subsequent random read operations continue
to read the same record.

Upon each random read operation, the logical extent and
current record values are automatically set. Thus, the file can
be sequentially read or written, starting from the current
randomly accessed position. Note, however, that in this case,
the last randomly read record will be re-read as you switch from
random mode to sequential read, and the last record will be
re-written as you switch to a sequential write operation. You can,
of course, simply advance the random record position following
each random read or write to obtain the effect of a sequential I/O
operation.

Error codes returned in register A following a random read

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
48

are listed below.

01 reading unwritten data
02 (not returned in random mode)
03 cannot close current extent
04 seek to unwritten extent
05 (not returned in read mode)
06 seek past physical end of disk

Error code 01 and 04 occur when a random read operation accesses
A data block which has not been previously written, or an extent
which has not been created, which are equivalent conditions.
Error 3 does not normally occur under proper system operation,
but can be cleared by simply re-reading, or re-opening extent
zero as long as the disk is not physically write protected.
Error code 06 occurs whenever byte r2 is non-zero under the
current 2.0 release. Normally, non-zero return codes can be
treated as missing data, with zero return codes indicating
operation complete.

* *
* FUNCTION 34: WRITE RANDOM *
* *

* Entry Parameters: *
* Register C: 22H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Return Code *

The WRITE RANDOM operation is initiated similar to the READ
RANDOM call, except that data is written to the disk from the
current DMA address. Further, if the disk extent or data block
which is the target of the write has not yet been allocated, the
allocation is performed before the write operation continues. As
in the Read Random operation, the random record number is not
changed as a result of the write. The logical extent number and
current record positions of the file control block are set to
correspond to the random record which is being written. Again,
sequential read or write operations can commence following a
random write, with the notation that the currently addressed
record is either read or rewritten again as the sequential
operation begins. You can also simply advance the random record
position following each write to get the effect of a sequential
write operation. Note that in particular, reading or writing the
last record of an extent in random mode does not cause an
automatic extent switch as it does in sequential mode.

The error codes returned by a random write are identical to

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
49

the random read operation with the addition of error code 05,
which indicates that a new extent cannot be created due to
directory overflow.

* *
* FUNCTION 35: COMPUTE FILE SIZE *
* *

* Entry Parameters: *
* Register C: 23H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Random Record Field Set *

When computing the size of a file, the DE register pair
addresses an FCB in random mode format (bytes rO, rl, and r2 are
present). The FCB contains an unambiguous file name which is
used in the directory scan. Upon return, the random record bytes
contain the "virtual" file size which is, in effect, the record
address of the record following the end of the file. if,
following a call to function 35, the high record byte r2 is 01,
then the file contains the maximum record count 65536.
otherwise; bytes rO and rl constitute a 16-bit value (rO is the
least significant byte, as before) which is the file size.

Data can be appended to the end of an existing file by
simply calling function 35 to set the random record position to
the end of file, then performing a sequence of random writes
starting at the preset record address.

The virtual size of a file corresponds to the physical size
when the file is written sequentially. If, instead, the file was
created in random mode and "holes" exist in the allocation, then
the file may in fact contain fewer records than the size
indicates. If, for example, only the last record of an eight
megabyte file is written in random mode (i.e., record number
65535), then the virtual size is 65536 records, although only one
block of data is actually allocated.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
50

* *
* FUNCTION 36: SET RANDOM RECORD *
* *

* Entry Parameters: *
* Register C: 24H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Random Record Field Set *

The SET RANDOM RECORD function causes the BDOS to
automatically produce the random record position from a file
which has been read or written sequentially to a particular
point. The function can be useful in two ways.

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various "key" fields.
As each key is encountered, function 36 is called to compute the
random record position for the data corresponding to this key.
If the data unit size is 128 bytes, the resulting record position
is placed into a table with the key for later retrieval. After
scanning the entire file and tabularizing the keys and their
record numbers, you can move instantly to a particular keyed
record by performing a random read using the corresponding random
record number which was saved earlier. The scheme is easily
generalized when variable record lengths are involved since the
program need only store the buffer-relative byte position along
with the key and record number in order to find the exact
starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write. A file is
sequentially accessed to a particular point in the file, function
36 is called which sets the record number, and subsequent random
read and write operations continue from the selected point in the
file.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
51

* *
* FUNCTION 37: RESET DRIVE *
* *

* Entry Parameters: *
* Register C: 25H *
* Register DE: Drive Vector *
* *
* Returned Value: *
* Register A: Return Code *

The RESET DRIVE function allows resetting of
specified drive(s). The passed parameter is a 16 bit vector of
drives to be reset, the least significant bit is drive A:. If
there are any open files on a specified drive, the reset drive
is denied and the reason is displayed on the console.

The returned value indicates whether or not the reset
drive was successful. If any process is currently accessing a
drive to be reset, an error code of OFFH is returned in the A
register. A return code of 0 indicates success.

* *
* FUNCTION 38: ACCESS DRIVE *
* *

* Entry Parameters: *
* Register C: 26H *
* Register DE: Drive Vector *
* *

The ACCESS DRIVE function allows setting the drive
access bit(s) in the calling processes process descriptor. The
passed parameter is a 16 bit vector of drive(s) to be accessed,
the least significant bit is drive A:.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
52

* *
* FUNCTION 39: FREE DRIVE *
* *

* Entry Parameters: *
* Register C: 27H *
* Register DE: Drive Vector *
* *

The FREE DRIVE function allows freeing the drive
access bit(s) in the calling processes process descriptor. The
passed parameter is a 16 bit vector of drive(s) to be freed,
the least significant bit is drive A:.

* *
* FUNCTION 40: WRITE RANDOM WITH *
* ZERO FILL *

* Entry Parameters: *
* Register C: 28H *
* Register DE: FCB Address *
* *
* Returned Value: *
* Register A: Return Code *

The WRITE RANDOM WITH ZERO FILL operation is similar
to FUNCTION 34: WRITE RANDOM with the exception that a
previously unallocated record is filled with zeroes before the
data is written.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
53

2.3 Queue and Process Descriptor Data Structures

This section contains a description of the queue and
process descriptor data structures used by the MP/M Extended Disk
Operating System (XDOS) .

QUEUE DATA STRUCTURES

A queue is a first in first out (FIFO) mechanism which has
been implemented in MP/M to provide several essential functions
in a multi-tasking environment. Queues can be used for the
communication of messages between processes, to synchronize
processes, and to provide mutual exclusion.

MP/M has been designed to simplify queue management for
both user and system processes. In fact, queues are treated in a
manner similar to disk files. Queues can be created, opened,
written to, read from, and deleted.

A few illustrations should suffice to describe applications
for queues:

COMMUNICATION:

A queue can be used for communication to provide a FIFO
list of messages produced by a producer for consumption by a
consumer. For example, consider a data logging application where
data is continuously received via a serial communication link and
is to be written to a disk file. This would be a difficult
application for a sequential operating system such as CP/M
because arriving serial data would be lost while buffers were
being written to disk. Under MP/M a queue could be used by the
producer to send blocks of received serial data (or simply buffer
pointers) to a consumer which would write the blocks on disk.
MP/M supports concurrency of these operations, allowing the
producer to quickly write a buffer to the queue and then resume
monitoring the serial input.

SYNCHRONIZATION:

When a process attempts to read a message at a queue and
there are no messages posted at the queue, the process is placed
in a priority ordered list of processes waiting for messages at
the queue. The process will remain in that state until a message
arrives. Thus synchronization of processes can be achieved,
allowing the waiting (DQing) process to continue execution when a
message is sent to the queue.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
54

MUTUAL EXCLUSION:

A queue can also be used for mutual exclusion. Mutual
exclusion messages generally have a length of zero. A good
example of mutual exclusion is that which is used by MP/M to
control access to the printer. A queue is created (MXList) and
sent one message. When the printer is to be used by the spooler
or by entering a control-P (^P) at the console an attempt is made
to read the message from the list mutual exclusion queue. This
attempt is made using the MP/M conditional read queue function.
If the message is available, that is it has not been consumed by
some other process, it is read and the printer is used. When
finished with the printer, the message is written back to the
list mutual exclusion queue. If the message is not available the
user who entered the ^P receives a message indicating that the
printer is busy. In the case of the spooler, it waits until the
printer is available before continuing.

QUEUE DATA STRUCTURES

The queue data structures include the queue control block
and the user queue control block. There are two types of queue
control blocks, circular or linked. The type of queue control
block used depends upon the message size. Message sizes of 0 to
2 bytes use circular queues while message sizes of 3 or more
bytes use linked queues.

CIRCULAR QUEUES

The following example illustrates how to setup a queue
control block for a circular queue with 80 messages of a one byte
length. Each example in this section will be shown both in PL/M
and assembly language.

PL/M:

DECLARE CIRCULAR$QUEUE STRUCTURE (
QL ADDRESS,
NAME(8) BYTE,
MSGLEN ADDRESS,
NMBMSGS ADDRESS,
DQPH ADDRESS,
NQPH ADDRESS,
MSG$IN ADDRESS,
MSG$OUT ADDRESS,
MSG$CNT ADDRESS,
BUFFER (80) BYTE)
INITIAL (0,'CIRCQUE ‘, 1,80);

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
55

Assembly Language:

CRCQUE:
DS 2 QL
DB 'CIRCQUE ’ ; NAME
DW 1 MSGLEN
DW 80 NMBMSGS
DS 2 DQPH
DS 2 NQPH
DS 2 MSGIN
DS 2 MSGOUT
DS 2 MSGCNT

BUFFER: DS 80 BUFFER

The elements of the circular queue shown above are defined as
follows:

QL = 2 byte link, set by system
NAME = 8 ASCII character queue name,

set by user
MSGLEN = 2 bytes, length of message,

set by user
NMBMSGS = 2 bytes, number of messages,

set by user
DQPH = 2 bytes, DQ process head,

set by system
NQPH = 2 bytes, NQ process head,

set by system
MSG$IN = 2 bytes, pointer to next

message in, set by system
MSG$OUT = 2 bytes, pointer to next

message out, set by system
MSG$CNT = 2 bytes, number of messages

in the queue, set by system
BUFFER = n bytes, where n is equal to

the message length times the
number of messages, space
allocated by user, set by system

Note: Mutual exclusion queues require
a two byte buffer for the owner process
descriptor address.

Queue Overhead 24 bytes

LINKED QUEUES

The following example illustrates how to setup a queue
control block for a linked queue containing 4 messages. each 33
bytes in length:

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
56

P L/M:

DECLARE LINKED$QUEUE STRUCTURE (
QL ADDRESS,
NAME (8) BYTE,
MSGLEN ADDRESS,
NMBMSGS ADDRESS,
DQPH ADDRESS,
NQPH ADDRESS,
MH ADDRESS,
MT ADDRESS,
BH ADDRESS,
BUFFER (140) BYTE)
INITIAL (0,'LNKQUE ‘,33,4);

Assembly Language:

LNKQUE:
DS 2 ; QL
DB 'LNKQUE ‘ ; NAME
DW 33 ; MSGLEN
DW 4 ; NMBMSGS
DS 2 ; DQPH
DS 2 ; NQPH
DS 2 ; MH
DS 2 ; MT
DS 2 ; BH

BUFFER: DS 2 ; MSG #1 LINK
DS 33 ; MSG #1 DATA
DS 2 ; MSG #2 LINK
DS 33 ; MSG #2 DATA
DS 2 ; MSG #3 LINK
DS 33 ; MSG #3 DATA
DS 2 ; MSG #4 LINK
DS 33 ; MSG #4 DATA

The elements of the linked queue shown above are defined as
follows:

QL = 2 byte link, set by system
NAME = 8 ASCII character queue name,

set by user
MSGLEN = 2 bytes, length of message,

 set by user
NMBMSGS = 2 bytes, number of messages,

set by user
DQPH = 2 bytes, DQ process head,

set by system
NQPH = 2 bytes, NQ process head,

set by system
MH = 2 bytes, message head,

set by system

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
57

MT = 2 bytes, message tail,
set by system

BH = 2 bytes, buffer head,
set by system

BUFFER = n bytes where n is equal to
the message length plus two,
times the number of messages,
space allocated by the user,
set by the system

USER QUEUE CONTROL BLOCK

The user queue control block data structure is used to
provide read/write access to queues in much the same manner that
a file control block provides access to a disk file. Queues are
"opened", an operation which fills in the actual queue control
block address, and then can be read from or written to.

If the actual queue address is known it can be filled in
the pointer field of the user queue control block, the 8 byte
name field can be omitted, and an open operation is not required
in order to access the queue.

The following example illustrates a user queue control
block:

PL/M:

DECLARE USER$QUEUE$CONTROL$BLOCK STRUCTURE (
POINTER ADDRESS,
MSGADR ADDRESS,
NAME (8) BYTE)
INITIAL (0, .BUFFER, 'SPOOL ‘);

DECLARE BUFFER (33) BYTE;

Assembly Language:

UQCB:
DS 2 ; POINTER
DW BUFFER ; MSGADR
DB 'SPOOL ‘; NAME

BUFFER:
DS 33 ; BUFFER

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
58

The elements of the user queue control block shown above
are defined as follows:

POINTER = 2 bytes, set by system to address of
 actual queue during an open queue
 operation, or set by the user if the
 actual queue address is known

MSGADR = 2 bytes, address of-user buffer,
 set by user

NAME = 8 bytes, ASCII queue name,
 set byuser, may be omitted if the
 pointer field is set by the user

QUEUE NAMING CONVENTIONS

The following conventions should be used in the naming of
queues. Queues which are to be directly written to by the
Terminal Message Process (TMP) via the Command Line
Interpreter (CLI) must have an upper case ASCII name. Thus when
an operator enters the queue name followed by a command tail at
a console, the command tail is written to the queue.

In order to make a queue inaccessible by a user at a
console it must contain at least one lower case character.
Mutual exclusion queues should be named upper case 'MX'
followed by 1 to 6 additional ASCII characters. These queues
are treated specially in that they must have a two byte buffer
in which MP/M places the address of the process descriptor owning
the mutual exclusion message.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
59

PROCESS DESCRIPTOR

Each process in the MP/M system has a process descriptor
which defines all the characteristics of the process. The
following example illustrates the process descriptor:

PL/M:

DECLARE CNS$HNDLR STRUCTURE (
PL ADDRESS,
STATUS BYTE,
PRIORITY BYTE,
STKPTR ADDRESS,
NAME (8) BYTE,
CONSOLE BYTE,
MEMSEG BYTE,
B ADDRESS,
THREAD ADDRESS,
DISKSETDMA ADDRESS,
DISK$SLCT BYTE,
DCNT ADDRESS,
SEARCHL BYTE,
SEARCHA ADDRESS,
DRVACT ADDRESS,
REGISTERS (20) BYTE,
SCRATCH (2) BYTE)
INITIAL (0, 0, 200, .CNS$STK (19),

‘CNS ‘,1,OFFH);

DECLARE CNS$STK (20) ADDRESS INITIAL (
OC7C7H,OC7C7H,OC7C7H,OC7C7H,OC7C7H,OC7C7H,
OC7C7H,OC7C7H,OC7C7H,OC7C7H,OC7C7H,OC7C7H,
OC7C7H,OC7C7H,OC7C7H,OC7C7H,OC7C7H,OC7C7H,
OC7C7H,STRT$CNS);

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
60

Assembly Language:

CNSHND:
DW 0 ; PL
DB 0 ; STATUS
DB 200 ; PRIORITY
DW CNSTK+38 ; STKPTR
DB 'CNS ‘; NAME
DB 0 ; CONSOLE
DB OFFH ; MEMSEG (FF = resident)
DS 2 ; B
DS 2 ; THREAD
DS 2 ; DISK SET DMA
DS 1 ; DISK SLCT
DS 2 ; DCNT
DS 1 ; SEARCHL
DS 2 ; SEARCHA
DS 2 ; DRVACT
DS 20 ; REGISTERS
DS 2 ; SCRATCH

CNSTK:
DW OC7C7H,OC7C7H,OC7C7H,OC7C7H
DW OC7C7H,OC7C7H,OC7C7H,OC7C7H
DW OC7C7H,OC7C7H,OC7C7H,OC7C7H
DW OC7C7H,OC7C7H,OC7C7H,OC7C7H
DW OC7C7H,OC7C7H,OC7C7H
DW CNSPR ; CNSTK+38 = PROCEDURE ADR

The elements of the process descriptor shown above are
defined as follows:

PL = 2 byte link field, initially set by
user to address of next process
descriptor, or zero if no more

STATUS = 1 byte, process status, set by system
PRIORITY = 1 byte, process priority, set by user
STKPTR = 2 bytes, stack pointer, initially set

by user
NAME = 8 bytes, ASCII process name, set by user

The high order bit of each byte of the
process name is reserved for use by the
system. The high order bit of the first
byte (identified as NAME(O)') "on" indicates
that the process is performing direct
console BIOS calls and that MP/M is to
ignore all control characters. It is also
used to suppress the normal console status
check done when BDOS disk functions are
invoked. This bit may be set by the user.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
61

CONSOLE = 1 byte, console to be used by process,
set by user

MEMSEG = 1 byte, memory segment table index
B = 2 bytes, system scratch area
THREAD = 2 bytes, process list thread, set

by system
DISKSETDMA = 2 bytes, default DMA address, set by user
DISK$SLCT = 1 byte, default disk/user code
DCNT = 2 bytes, system scratch byte
SEARCHL = 1 byte, system scratch byte
SEARCHA = 2 bytes, system scratch bytes
DRVACT = 2 bytes, 16 bit vector of drives being

accessed by the process
REGISTERS = 20 bytes, 8080 / Z80 register save area
SCRATCH = 2 bytes, system scratch bytes

PROCESS NAMING CONVENTIONS

The following conventions should be used in the naming of
processes. Processes which wait on queues that are to be sent
command tails from the TMPs are given the console resource if
their name matches that of the queue which they are reading.
Processes which are to be protected from abortion by an
operator using the ABORT command must have at least one lower
case character in the process name.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
62

2.4 Extended Disk Operating System Functions

The Extending Disk Operating System (XDOS) functions are
covered in this section by describing the entry parameters and
returned values for each XDOS function. The XDOS calling
conventions are identical to those of the BDOS which are
described in OPERATING SYSTEM CALL CONVENTIONS in section 2.1.

* *
* FUNCTION 128: ABSOLUTE MEMORY *
* REQUEST *

* Entry Parameters: *
* Register C: 80H *
* DE: MD Address *
* *
* Returned Value: *
* Register A: Return code *
* MD filled in *

The ABSOLUTE MEMORY REQUEST function allocates an absolute
block of memory specified by the passed memory descriptor
parameter. This function allows non-relocatable programs, such
as CP/M *.COM files based at the absolute TPA address of 0100H,
to run in the MP/M 1.0 environment. The single passed parameter
is the address of a memory descriptor. The memory descriptor
contains four bytes: the memory segment base page address, the
memory segment page size, the memory segment attributes, and
bank. The only parameters filled in by the user are the base and
size, the other parameters are filled in by XDOS.

The operation returns a "boolean" indicating whether or not
the allocation was made. A returned value of FFH indicates
failure to allocate the requested memory and a value of 0
indicates success. Note that base and size specify base page
address and page size where a page is 256 bytes.

Memory Descriptor Data Structure:

PL/M:
Declare memory$descriptor structure (

base byte,
size byte,
attrib byte,
bank byte);

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
63

Assembly Language:
MEMDES:

DS 1 ; base
DS 1 ; size
DS 1 ; attributes
DS 1 ; bank

* *
* FUNCTION 129: RELOCATABLE MEMORY *
* REQUEST *

* Entry Parameters: *
* Register C: 81H *
* DE: MD Address *
* *
* Returned Value: *
* Register A: Return code *
* MD filled in *

The RELOCATABLE MEMORY REQUEST function allocates the
requested contiguous memory to the calling program. The single
passed parameter is the address of a memory descriptor. The only
memory descriptor parameter filled in by the calling program is
the size, the other parameters, base, attributes and bank, are
filled in by XDOS.

The operation returns a boolean indicating whether or not
the memory request could be satisfied. A returned value of FFH
indicates failure to satisfy the request and a value of 0
indicates success.

Note that base and size specify base page address and page
size where a page is 256 bytes. (See function 128: ABSOLUTE
MEMORY REQUEST for a description of the memory descriptor data
structure.)

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
64

* *
* FUNCTION 130: MEMORY FREE *
* *

* Entry Parameters: *
* Register C: 82H *
* DE: MD Address *
* *

The MEMORY FREE function releases the specified memory
segment back to the operating system. The passed parameter is
the address of a memory descriptor. Nothing is returned as a
result of this operation. (See function 128: ABSOLUTE MEMORY
REQUEST for a description of the memory descriptor data
structure.)

* *
* FUNCTION 131: POLL *
* *

* Entry Parameters: *
* Register C: 83H *
* E: Device Number *
* *

The POLL function polls the specified device until a ready
condition is received. The calling process relinquishes the
processor until the poll is satisfied, allowing other processes
to execute.

Note that the POLL function is intended for use in the
custom XIOS since an association is made in the XIOS between the
device number and the actual code executed for the poll
operation. This does not exclude other uses of the poll function
but it does mean that an application program making a poll call
must be matched to a specific XIOS.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
65

* *
* FUNCTION 132: FLAG WAIT *
* *

* Entry Parameters: *
* Register C: 84H *
* E: Flag Number *
* *
* Returned Value: *
* Register A: Return code *

The FLAG WAIT function causes a process to relinquish the
processor until the flag specified in the call is set. The flag
wait operation is used in an interrupt driven system to cause the
calling process to 'wait' until a specific interrupt condition
occurs.

The operation returns a boolean indicating whether or not a
successful FLAG WAIT was performed. A returned value of FFH
indicates that no flag wait occurred because another process was
already waiting on the specified flag. A returned value of 0
indicates success.

Note that flags are non-queued, which means that access to
flags must be carefully managed. Typically the physical
interrupt handlers will set flags while a single process will
wait on each flag.

* *
* FUNCTION 133: FLAG SET *
* *

* Entry Parameters: *
* Register C: 85H *
* E: Flag number *
* *
* Returned Value: *
* Register A: Return code *

The FLAG SET function wakes up a waiting process. The FLAG
SET function is usually called by an interrupt service routine
after servicing an interrupt and determining which flag is to be
set.

The operation returns a boolean indicating whether or not a
successful FLAG SET was performed. A returned value of FFH
indicates that a flag over-run has occurred, i.e. the flag was
already set when a flag set function was called. A returned
value of 0 indicates success.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
66

* *
* FUNCTION 134: MAKE QUEUE *
* *

* Entry Parameters: *
* Register C: 86H *
* DE: QCB Address *
* *

The MAKE QUEUE function sets up a queue control block. A
queue is configured as either circular or linked depending upon
the message size. Message sizes of 0 to 2 bytes use circular
queues while message sizes of 3 or more bytes use linked queues.

A single parameter is passed to make a queue, the queue
control block address. The queue control block must contain the
queue name, message length, number of messages, and sufficient
space to accomodate the messages (and links if the queue is
linked).

The queue control block data structures for both circular
and linked queues are described in section 2.3.

Queues can only be created either in common memory or by
user programs in non-banked systems. The reason is that queues
are all maintained on a linked list which must be accessible at
all times. I.E., a queue cannot reside in a memory segment which
is bank switched. However, a queue created in common memory can
be accessed by all system and user programs.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
67

* *
* FUNCTION 135: OPEN QUEUE *
* *

* Entry Parameters: *
* Register C: 87H *
* DE: UQCB Address *
* *
* Returned Value: *
* Register A: Return code *

The OPEN QUEUE function places the actual queue control
block address into the user queue control block. The result of
this function is that a user program can obtain access to queues
by knowing only the queue name, the actual address of the queue
itself is obtained as a result of opening the queue. Once a
queue has been opened, the queue may be read from or written to
using the queue read and write operations.

The function returns a boolean indicating whether or not
the open queue operation found the queue to be opened. A
returned value of OFFH indicates failure while a zero indicates
success.

The user queue control block data structure is described in
section 2.3.

* *
* FUNCTION 136: DELETE QUEUE *
* *

* Entry Parameters: *
* Register C: 88H *
* DE: QCB Address *
* *
* Returned Value: *
* Register A: Return Code *

The DELETE QUEUE function removes the specified queue from
the queue list. A single parameter is passed to delete a queue,
the address of the actual queue.

The function returns a boolean indicating whether or not
the delete queue operation deleted the queue. A returned value
of OFFH indicates failure, usually because some process is DQing
from the queue. A returned value of 0 indicates success.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
68

* *
* FUNCTION 137: READ QUEUE *
* *

* Entry Parameters: *
* Register C: 89H *
* DE: UQCB Address *
* *
* Returned Value: *
* Message read *

The READ QUEUE function reads a message from a specified
queue. If no message is available at the queue the calling
process relinquishes the processor until a message is posted at
the queue. The single passed parameter is the address of a user
queue control block. When a message is available at the queue,
it is copied into the buffer pointed to by the MSGADR field of
the user queue control block.

* *
* FUNCTION 138: CONDITIONAL READ *
* QUEUE *

* Entry Parameters: *
* Register C: 8AH *
* DE: UQCB Address *
* *
* Returned Value: *
* Register A: Return code *
* message read if available *

The CONDITIONAL READ QUEUE function reads a message from a
specified queue if a message is available. The single passed
parameter is the address of a user queue control block. If a
message is available at the queue, it is copied into the buffer
pointed to by the MSGADR field of the user queue control block.

The operation returns a boolean indicating whether or not a
message was available at the queue. A returned value of OFFH
indicates no message while a zero indicates that a message was
available and that it was copied into the user buffer.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
69

* *
* FUNCTION 139: WRITE QUEUE *
* *

* Entry Parameters: *
* Register C: 8BH *
* DE: UQCB Address *
* Message to be sent *
* *

The WRITE QUEUE function writes a message to a specified
queue. If no buffers are available at the queue, the calling
process relinquishes the processor until a buffer is available at
the queue. The single passed parameter is the address of a user
queue control block. When a buffer is available at the queue,
the buffer pointed to by the MSGADR field of the user queue
control block is copied into the actual queue.

* *
* FUNCTION 140: CONDITIONAL WRITE *
* QUEUE *
* *

* Entry Parameters: *
* Register C: 8CH *
* DE:UQCB Address *
* Message to be sent *
* *
* Returned Value: *
* Register A: Return code *

The CONDITIONAL WRITE QUEUE function writes a message to a
specified queue if a buffer is available. The single passed
parameter is the address of a user queue control block. If a
buffer is available at the queue, the buffer pointed to by the
MSGADR field of the user queue control block is copied into the
actual queue.

The operation returns a boolean indicating whether or not a
buffer was available at the queue. A returned value of OFFH
indicates no buffer while a zero indicates that a buffer was
available and that the user buffer was copied into it.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
70

* *
* FUNCTION 141: DELAY *
* *

* Entry Parameters: *
* Register C: 8DH *
* DE: Number of Ticks *
* *

The DELAY function delays execution of the calling process
for the specified number of system time units. Use of the delay
operation avoids the typical programmed delay loop. It allows
other processes to use the processor while the specified period
of time elapses. The system time unit is typically 60 Hz (16.67
milliseconds) but may vary according to application. For example
it is likely that in Europe it would be 50 Hz (20 milliseconds).

The delay is specified as a 16-bit integer. Since calling
the delay procedure is usually asynchronous to the actual time
base itself, there is up to one tick of uncertainty in the exact
amount of time delayed. Thus a delay of 10 ticks gaurantees a
delay of at least 10 ticks, but it may be nearly 11 ticks.

* *
* FUNCTION 142: DISPATCH *
* *

* Entry Parameters: *
* Register C: 8EH *
* *

The DISPATCH operation allows the operating system to
determine the highest priority ready process and then to give it
the processor. This call is provided in XDOS to allow systems
without interrupts the capability of sharing the processor among
compute bound processes. Since all user processes usually run at
the same priority, invoking the dispatch operation at various
points in a program will allow other users to obtain the
processor in a round-robin fashion. Invoking the dispatch
function does not take the calling process off of the ready list.

Dispatch is intended for non-interrupt driven environments
in which it is desirable to enable a compute bound process to
relinquish the use of the processor.

Another use of the dispatch function is to safely enable
interrupts following the execution of a disable interrupt
instruction (DI) .

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
71

* *
* FUNCTION 143: TERMINATE PROCESS *
* *

* Entry Parameters: *
* Register C: 8FH *
* D: Conditional *
* Memory Free *
* E: Terminate Code *
* *

The TERMINATE PROCESS function terminates the calling
process. The passed parameters indicate whether or not the
process should be terminated if it is a system process and if the
memory segment is to be released. A OFFH in the E register
indicates that the process should be unconditionally terminated,
a zero indicates that only a user process is to be deleted. If
a user process is being terminated and Register D is a OFFH, the
memory segment is not released. Thus a process which is a child
of a parent process both executing in the same memory segment
can terminate without freeing the memory segment which is also
occupied by the parent.

There are no results returned from this operation, the
calling process simply ceases to exist as far as MP/M is
concerned.

* *
* FUNCTION 144: CREATE PROCESS *
* *

* Entry Parameters: *
* Register C: 90H *
* DE: PD Address *
* *
* Returned Value: *
* PD filled in *

The CREATE PROCESS function creates one or more processes
by placing the passed process descriptors on the MP/M ready list.

A single parameter is passed, the address of a process
descriptor. The first field of the process descriptor is a link
field which may point to another process descriptor.

Processes can only be created either in common memory or by

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
72

user programs in non-banked systems. The reason is that
process descriptors are all maintained on linked lists which
must be accessible at all times.

The process descriptor data structure is described in
section 2.3.

* *
* FUNCTION 145: SET PRIORITY *
* *

* Entry Parameters: *
* Register C: 91H *
* E: Priority *
* *

The SET PRIORITY function sets the priority of the calling
process to that of the passed parameter. This function is useful
in situations where a process needs to have a high priority
during an initialization phase, but after that is to run at a
lower priority.

A single passed parameter contains the new process
priority. There are no results returned from setting priority.

* *
* FUNCTION 146: ATTACH CONSOLE *
* *

* Entry Parameters: *
* Register C: 92H *
* *

The ATTACH CONSOLE function attaches the console specified
in the CONSOLE field of the process descriptor to the calling
process. If the console is already attached to some other
process, the calling process relinquishes the processor until the
console is detached from that process and the calling process is
the highest priority process waiting for the console.

There are no passed parameters and there are no returned
results.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
73

* *
* FUNCTION 147: DETACH CONSOLE *
* *

* Entry Parameters: *
* Register C: 93H *
* *

The DETACH CONSOLE function detaches the console specified
in the CONSOLE field of the process descriptor from the calling
process. If the console is not currently attached no action
takes place.

There are no passed parameters and there are no returned
results.

* *
* FUNCTION 148: SET CONSOLE *
* *

* Entry Parameters: *
* Register C: 94H *
* E: Console *
* *

The SET CONSOLE function detaches the currently attached
console and then attaches the console specified as a calling
parameter. If the console to be attached is already attached to
another process descriptor, the calling process relinquishes the
processor until the console is available.

A single passed parameter contains the console number to be
attached. There are no returned results.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
74

* *
* FUNCTION 149: ASSIGN CONSOLE *
* *

* Entry Parameters: *
* Register C: 95H *
* DE: APB Address *
* *
* Returned Value: *
* Register A: Return code *

The ASSIGN CONSOLE function directly assigns the console to
a specified process. This assignment is done regardless of
whether or not the console is currently attached to some other
process. A single parameter is passed to assign console which is
the address of a data structure containing the console number for
the assignment, an 8 character ASCII process name, and a boolean
indicating whether or not a match with the console field of the
process descriptor is required (true or OFFH indicates it is
required).

The operation returns a boolean indicating whether or not
the assignment was made. A returned value of OFFH indicates
failure to assign the console, either because a process
descriptor with the specified name could not be found, or that a
match was required and the console field of the process
descriptor did not match the specified console. A returned value
of zero indicates a successful assignment.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
75

* *
* FUNCTION 150: SEND CLI COMMAND *
* *

* Entry Parameters: *
* Register C: 96H *
* DE: CLICMD Address *
* *

The SEND CLI COMMAND function permits running programs to
send command lines to the Command Line Interpreter. A single
parameter is passed which is the address of a data structure
containing the default disk/user code, console and command line
itself (shown below).

The default disk/user code is the first byte of the data
structure. The high order four bits contain the default disk
drive and the low order four bits contain the user code. The
second byte of the data structure contains the console number for
the program being executed. The ASCII command line begins with
the third byte and is terminated with a null byte.

There are no results returned to the calling program.

The following example illustrates the SEND CLI COMMAND data
structure:

PL/M:
Declare CLI$command structure (

disk$user byte,
console byte,
command$line (129) byte);

Assembly Language:
CLICMD:

DS 1 ; default disk / user code
DS 1 ; console number
DS 129 ; command line

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
76

* *
* FUNCTION 151: CALL RESIDENT *
* SYSTEM PROCEDURE *

* Entry Parameters: *
* Register C: 97H *
* DE: CPB Address *
* *
* Returned Value: *
* Registers HL: Return code *

The CALL RESIDENT SYSTEM PROCEDURE function permits
programs to call the optional resident system procedures. A
single passed parameter is the address of a call parameter block
data structure (shown below) which contains the address of an 8
character ASCII resident system procedure name followed by a two
byte parameter to be passed to the resident system procedure.

The operation returns a 0001H if the resident system
procedure called is not present, otherwise it returns the code
passed back from the resident system procedure. Typically a
returned value of FFH indicates failure while a zero indicates
success.

The following example illustrates the call parameter block
data structure:

PL/M:
Declare CALL$PB structure (
 Name$adr address,
Param address) initial (
 .name,0);

Declare name (8) byte initial (
 'Procl ‘);

Assembly Language:
CALLPB:

DW NAME
DW 0 ; parameter

NAME:
DB ‘Procl ‘

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
77

* *
* FUNCTION 152: PARSE FILENAME *
* *

* Entry Parameters: *
* Register C: 98H *
* DE: PFCB Address *
* *
* Returned Value: *
* Registers HL: Return code *
* Parsed file control block *

The PARSE FILENAME function prepares a file control block
from an input ASCII string containing a file name terminated by a
null or a carriage return. The parameter is the address of a
data structure (shown below) which contains the address of the
ASCII file name string followed by the address of the target file
control block.

The operation returns an FFFFH if the input ASCII string
contains an invalid file name. A zero is returned if the ASCII
string contains a single valid file name, otherwise the address
of the first character following the file name is returned.

The following example illustrates the parse file name
control block data structure:

PL/M:
Declare ParseFNCB structure (
 File$name$adr address,
 FCB$adr address) initial (
 .fileqname,.fcb);

Declare file$name (128) byte;
Declare fcb (36) byte;

Assembly Language:
PFNCB:

DW FLNAME
DW FCB

FLNAME:
DS 128
DS 36

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
78

* *
* FUNCTION 153: GET CONSOLE NUMBER *
* *

* Entry Parameters: *
* Register C: 99H *
* *
* Returned Value: *
* Register A: Console Number *

The GET CONSOLE NUMBER function obtains the value of the
console field from the process descriptor of the calling program.
There are no passed parameters and the returned result is the
console number of the calling process.

* *
* FUNCTION 154: SYSTEM DATA ADDRESS *
* *

* Entry Parameters: *
* Register C: 9AH *
* *
* Returned Value: *
* Registers HL: System Data Page *
* Address *

The SYSTEM DATA ADDRESS function obtains the base address
of the system data page. The system data page resides in the top
256 bytes of available memory. It contains configuration
information used by the MP/M loader as well as run time data
including the submit flags. The contents of the system data page
are described in section 3.4 under SYSTEM DATA.

There are no passed parameters and the returned result is
the base address of the system data page.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
79

* *
* FUNCTION 155: GET DATE AND TIME *
* *

* Entry Parameters: *
* Register C: 9BH *
* DE: TOD Address *
* *
* Returned Value: *
* Time and date *

The GET DATE AND TIME function obtains the current encoded
date and time. A single passed parameter is the address of a
data structure (shown below) which is to contain the date and
time. The date is represented as a 16-bit integer with day 1
corresponding to January 1, 1978. The time is respresented as
three bytes: hours, minutes and seconds stored as two BCD
digits.

The following example illustrates the TOD data structure:

PL/M:
Declare TOD structure (
date address,
hour byte,
min byte,
sec byte);

Assembly Language:
TOD: DS 2 ; Date

DS 1 ; Hour
DS 1 ; Minute
DS 1 ; Second

* *
* FUNCTION 156: RETURN PROCESS *
* DESCRIPTOR ADDRESS *

* Entry Parameters: *
* Register C: 9CH *
* *
* Returned Value: *
* Register HL: PD Address *
* *

The RETURN PROCESS DESCRIPTOR ADDRESS function obtains
the address of calling processes process descriptor. By
definition this is the head of the ready list.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
80

* *
* FUNCTION 157: ABORT SPECIFIED *
* PROCESS *

* Entry Parameters: *
* Register C: 9DH *
* Register DE: APB Address *
* *
* Returned Value: *
* Register A: Return Code *

The ABORT SPECIFIED PROCESS function permits a process
to terminate another specified process. The passed parameter is
the address of an Abort Parameter Block (ABTPB) which
contains the following data structure:

PL/M:
Declare Abort$paramter$ block structure (
 pdadr address,
termination$code address,
 name (8) byte,
 console byte);

Assembly Language:
APB:

DS 2 ; process desciptor address
DS 2 ; termination code
DS 8 ; process name
DS 1 ; console used by process

If the process descriptor address is known it can be
filled in and the process name and console can be omitted.
Otherwise the process descriptor address field should be a zero
and the process name and console must be specified. In either
case the termination code must be supplied which is the
parameter passed to FUNCTION 143: TERMINATE PROCESS.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
81

2.5 Preparation of Page Relocatable Programs

A page relocatable program is stored on diskette as a file
of type 'PRL’. Appendix K contains a PRL file specification
describing the file format. A page relocatable program is
prepared by assembling the source program twice, in which the
second assembly has 100H added to each ORG statement. The two
hex files generated by assembling the source file twice are
concatenated with PIP and then provided as input to the GENMOD
program. The G9NMOD program (described in section 1.4) produces
a file of type ‘PRL’.

This section describes APPENDIX G: Sample Page Relocatable
Program. The example program illustrates the required use of ORG
statements to access the BDOS and the default file control block.
Note that the initial ORG is OOOOH. Its purpose is to establish
the equate for the symbol BASE, the base of the relocatable
segment. Next an ORG 100H statement establishes the actual
beginning of code for the program. During the second assembly
these two ORG statements are changed to 100H and 200H
respectively. Note that the first assembly will generate a file
which can be LOADed to produce an executable 'COM' file. In
fact, it is desirable to first debug the program as a 'COM' file
and then proceed to make the 'PRL' file.

It is VERY important to use BASE to offset all memory
segment base page references. Do not make a call to absolute
0005H for BDOS calls. In this example BASE is used to offset the
BDOS, FCB, and BUFF equates. When a user program needs to
determine the top of its memory segment the following equate and
code sequence should be used:

MEMSIZE EQU BASE+6

 . . .

LHLD MEMSIZE ;HL = TOP OF MEMORY SEGMENT

The following steps show how to generate a page relocatable file
for this example using the Digital Research Macro Assembler
(MAC):

* Prepare the user program, DUMP.ASM in this example, with
 proper origin statements as described above.

* Assuming a system disk in drive A: and the DUMP.ASM file
 is on drive B:, enter the commands-

1A>MAC B:DUMP $PP+S
;assemble and list the DUMP.ASM file

1A>ERA B:DUMP.HXO

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
82

1A>REN B:DUMP.HXO=B:DUMP.HEX
1A>MAC B:DUMP $PZSZ+R

;assemble the DUMP.ASM file again, offset by 100H
;the offset is generated with the +R MAC option

1A>PIP B:DUMP.HEX=B:DUMP.HXO,B:DUMP.HEX
;concatenate the HEX files

1A>GENMOD B:DUMP.HEX B:DUMP.PRL
;generate the relocatable DUMP.PRL file

The following steps show how to generate a page relocatable
file for this-example using the Digital Research Assembler (ASM):

* Prepare the user program, DUMP.ASM in this example, with
 proper origin statements as described above.

* Assuming a system disk in drive A: and the DUMP.ASM file
 is on drive B:, enter the commands-

1A>ASM B:DUMP
;assemble the DUMP.ASM file

1A>ERA B:DUMP.HXO
1A>REN B:DUMP.HXO;-B:DUMP.HEX
IA>PIP LST:=B:DUMP.PRN[T8]
1A>ERA B:DUMP.PRN

* Edit the DUMP.ASM file, adding 100H to each ORG statement.
 This can be done by concatenating a preamble to the
 program which contains the two initial ORG statements.
 A submit file to perform this function, named ASMPRL.SUB
 is provided on the distribution diskette.

1A>ASM B:DUMP.BBZ
;assemble the DUMP.ASM file a second time

1A>PIP B:DUMP.HEX=B:DUMP.HXO,B:DUMP.HEX
;concatenate the HEX files

1A>GENMOD B:DUMP.HEX B:DUMP.PRL
;generate the relocatable DUMP.PRL file

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
83

2.6 Installation of Resident System Processes

This section contains a description of APPENDIX H: Sample
Resident System Process. The example program illustrates the
required structure of a resident system process as well as the
BDOS/XDOS access mechanism.

The first two bytes of a resident system process are set to
the address of the BDOS/XDOS entry point. The address is filled
in by the loader, providing a simple means for a resident system
process to access the BDOS/XDOS by loading HL from the base of
the program area and then executing a PCHL instruction.

The process descriptor for the resident system process must
immediately follow the first two bytes which contain the address
of the BDOS/XDOS entry point. Observe the manner in which the
process descriptor is initialized in the example. The DS's are
used where storage is simply allocated. The DB's and DW's are
used where data in the process descriptor must be initialized.
Note that the stack pointer field of the process descriptor
points to the address immediately following the stack allocation.
This is the return address which is the actual process entry
point.

It is important that the HEX file generated by assembling
the RSP span the entire program and data area. For this reason
the first two bytes of the resident system process which will
contain the address of the BDOS/XDOS entry point are defined with
a DW. Using a DS would not generate any HEX file code for those
two bytes. The end of the program and data area must be defined
in a likewise manner. If your RSP has DS statements preceding
the END statement it will be necessary to place a DB statment
after the DS statements before the END statement.

The steps to produce a resident system process closely
follow those illustrated in the previous section on page
relocatable programs. The only exception to the procedure is
that the GENMOD output file should have a type of 'RSP' rather
than 'PRL' and the code in the RSP is ORGed at OOOH rather than
100H.

In addition to resident system processes MP/M supports
resident system procedures. The purpose of a resident system
procedure is to provide a means to use a piece of code as a
serially reusable resource. A resident system procedure is set
up by a resident system process. The function of the process is
to create a queue which has the name of the resident system
procedure and to send it one 16 bit message containing the
address of the resident system procedure. Once this is
accomplished the resident system process terminates itself.
Access to the resident system procedure is made by opening the
queue with the resident system procedure name and then reading
the two byte message to obtain the actual memory address of the

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
84

procedure itself. Since there is only one message posted at the
queue, only one process will gain access to the procedure at a
time. When the process executing the resident system procedure
leaves the procedure it sends the two byte message containing the
procedure address back to the queue. This action enables the
next waiting process to use the resident system procedure.

When the MP/M system generation program is executed it
searches the directory for all files with the type 'RSP'. The
user is then prompted with the file name and asked if it should
be included in the generated system file.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
85

3. MP/M ALTERATION GUIDE

3.1 Introduction

The standard MP/M system assumes operation on an Intel
MDS-800 microcomputer development system, but is designed so that
the user can alter a specific set of subroutines which define the
hardware operating environment. In this way, the user can
produce a diskette which operates with any IBM-3741 format
compatible diskette subsystem and other peripheral devices.

Although standard MP/M is configured for single density
floppy disks, field-alteration features allow adaptation to a
wide variety of disk subsystems from single drive minidisks
through high-capacity "hard disk" systems.

In order to achieve device independence, MP/M is distinctly
separated into an XIOS module which is hardware environment
dependent and several other modules which are not dependent upon
the hardware configuration.

The user can rewrite the distribution version of the MP/M
XIOS to provide a new XIOS which provides a customized interface
between-the remaining MP/M modules and the user's own hardware
system. The user can also rewrite-the distribution version of
the LDRBIOS which is used to load the MP/M system from disk.

The purpose of this section is to provide the following
step-by-step procedure for writing both your LDRBIOS and new XIOS
for MP/M:

(1) Implement CP/M 2.0 on the target computer

To simplify the MP/M adaptation process, we assume (and
STRONGLY recommend) that CP/M 2.0 has already been implemented on
the target MP/M machine. If this is not the case it will be
necessary for the user to implement the CP/M 2.0 BIOS as
described in the Digital Research document titled "CP/M 2.0
Alteration Guide" in addition to the MP/M XIOS. The reason that
both the BIOS and XIOS have to be implemented is that the MP/M
loader uses the CP/M 2.0 BIOS to load and relocate MP/M. Once
loaded, MP/M uses the XIOS and not the BIOS. The CP/M 2.0 BIOS
used by the MP/M loader is called the LDRBIOS.

Another good reason for implementing CP/M 2.0 on the target
MP/M machine is that debugging your XIOS is greatly simplified by
bringing up MP/M while running SID or DDT under a CP/M 2.0
system.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
86

(2) Prepare your custom MPMLDR by writing a LDRBIOS

Study the BIOS given in the "CP/M 2.0 Alteration Guide" and
write a version which has a ORG of 1700H. Call this new BIOS by
the name LDRBIOS (loader BIOS). Implement only the primitive
disk read operations on a single drive, and console output
functions.

The first LDRBIOS call made by the MPMLDR is SELDSK:, select
disk. If there are devices which require initialization a call
to the LDRBIOS cold start or other initialization code should be
placed at the beginning of the SELDSK handler.

Note: The MPMLDR uses 4000H - 6FFFH as a buffer area when
loading and relocating the MPM.SYS file.

Test LDRBIOS completely to ensure that it properly performs
console character output and disk reads. Be especially careful
to ensure that no disk write operations occur accidently during
read operations, and check that the proper track and sectors are
addressed on all reads. Failure to make these checks may cause
destruction of the initialized MP/M system after it is patched.

The following steps can be used to integrate a custom
LDRBIOS into the MPMLDR.COM:

A.) Obtain access to CP/M version 1.4 or 2.0 and prepare
the LDRBIOS.HEX file.

B.) Read the MPMLDR.COM file into memory using either DDT
or SID.

A>DDT MPMLDR.COM
DDT VERS 2.0
NEXT PC
1A00 0100

C.) Using the input command (‘I') specify that the
LDRBIOS.HEX file is to be read in and then read ('R') in the
file. The effect of this operation is to overlay the BIOS
portion of the MP/M loader.

-I LDRBIOS. HEX
-R
NEXT PC
1A00 0000

D.) Return to the CP/M console command processor (CCP) by
executing a jump to location zero.

-G0

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
87

E.) Write the updated memory image onto a disk file using
the CP/M 'SAVE' command. The 'X' placed in front of the file
name is used simply to designate an experimental version,
preserving the original.

A>SAVE 26 XMPMLDR.COM

F.) Test XMPMLDR.COM and then rename it to MPMLDR.COM.

(3) Prepare your custom XIOS

If MP/M is being tailored to your computer system for the
first time, the new XIOS requires some relatively simple software
development and testing. The standard XIOS is listed in APPENDIX
I, and can be used as a model for the customized package.

The XIOS entry points, including both basic and extended,
are described in sections 3.2 and 3.3. These sections along with
APPENDIX I provides you with the necessary information to write
your XIOS. We suggest that your initial implementation of an
XIOS utilize polled I/O without any interrupts. The system will
run without even a clock interrupt. The origin of your XIOS
should be OOOOH. Note the two equates needed to access the
dispatcher and XDOS from the XIOS:

ORG OOOOH
PDISP EQU $-3
XDOS EQU PDISP-3

The procedure to prepare an XIOS.SPR file from your
customized XIOS is as follows:

A.) Assemble your XIOS.ASM and then rename the XIOS.HEX
file to XIOS.HXO.

B.) Assemble your XIOS.ASM again specifying the +R option
which offsets the ORG statements by 100H bytes. Or, edit your
XIOS.ASM and change the initial ORG OOOH to an ORG 100H and
assemble it again.

C.) Use PIP to concatenate your two HEX files:

A>PIP XIOS.HEX=XIOS.HXO,XIOS.HEX

D.) Run the GENMOD program to produce the XIOS.SPR file
from the concatenated HEX files.

A>GENMOD XIOS.HEX XIOS.SPR

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
88

*** Warning ***

Make certain that your XIOS.ASM file contains A defined
byte of zero at the end. This is especially critical if your
XIOS.ASM file ends with a defined storage. The reason for this
requirement is that there are no HEX file records produced for
defined store (DS) statements. Thus, the output HEX file is
misleading because it does not identify the true length of
your XIOS. The following example illustrates a properly
terminated XIOS:

begdat equ $
dirbuf: ds 128
alvo: ds 31
csvo: ds 16

db 0 force out hex record at end
end

Note that this same technique must be applied to any
other PRL or RSP programs that you prepare.

(4) Debug your XIOS

An XIOS or a resident system process can be debugged using
DDT or SID running under CP/M 1.4 or 2.0. The debugging
technique is outlined in the following steps:

A.) Determine the amount of memory which is available to
MP/M with the debugger and the CP/M operating system resident.
This can be done by loading the debugger and then listing the
jump instruction at location 0005H. This jump is to the base of
the debugger.

A>DDT
DDT VERS 2.0

-L5

0005 JMP D800

B.) Using GENSYS running under CP/M, generate a MPM.SYS
file which specifies the top of memory determined by the previous
step, allowing at least 256 bytes for a patch area.

...
Top page of memory = D6
...

Also while executing GENSYS specify the breakpoint restart
number as that used by the CP/M SID or DDT which you will be
executing. This restart is usually #7.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
89

...
Breakpoint RST # = 7

...

C.) If a resident system process is being debugged make
certain that it is selected for inclusion in MPM.SYS.

D.) Using CP/M 1.4 or 2.0, load the MPM-LDR.COM file into
memory.

A>DDT MPMLDR.COM
DDT VERS 2.0
NEXT PC
lAO0 0100

E.) Place a ‘B’ character into the second position of
default FCB. This operation can be done with the 'I’ command:

-IB

F.) Execute the MPMLDR.COM program by entering a ‘G'
command:

-G

G.) At point the MP/M loader will load the MP/M operating
system into memory, displaying a memory map.

H.) If you are debugging an XIOS, note the address of the
XIOS.SPR memory segment. If you are debugging a resident system
process, note the address of the resident system process. This
address is the relative OOOOH address of the code being debugged.
You must also note the address of SYSTEM.DAT.

I.) Using the ‘S' command, set the byte at SYSTEM.DAT + 2
to the restart number which you want the MP/M debugger to use.
Do not select the same restart as that being used by the CP/M
debugger.

...
Memory Segment Table:
SYSTEM DAT D600H 0100H
...

-SD602
D602 07 05

J.) Using the ‘X’ command, determine the MP/M beginning
execution address. The address is the first location past the
current program counter.

-X

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
90

 P = OA93

K.) Begin execution of MP/M using the ‘G’ command,
specifying any breakpoints which you need in your code. Actual
memory address can be determined using the 'H' command to add the
code segment base address given in the memory map to the relative
displacement address in your XIOS or resident system process
listing,

The following example shows how to set a breakpoint to
debug an XIOS list subroutine given the memory map:

...
XIOS SPR CDOOH 0500H

-GA94,CDOF

L.) At this point you have MP/M running with CP/M and its
debugger also in memory. Since interrupts are left enabled
during operation of the CP/M debugger, care must be taken to
ensure that interrupt driven code does not execute through a
point at which you have broken.

Since the CP/M debugger operates with interrupts left
enabled it is a somewhat difficult task to debug an interrupt
driven console handler. This problem can be approached by
leaving console #0 in a polled mode while debugging the other
consoles in an interrupt driven mode. Once this is done very
little, if any, debugging would be required to adapt the
interrupt driven code from another console to console #0. It is
further recommended that you maintain a debug version of your
XIOS which has polled I/O for console #0. Otherwise it will not
be possible to run the CP/M debugger underneath the MP/M system
because the CP/M debugger will not be able to get any console
input, as it will all go to the MP/M interrupt driven console #0
handler.

(5) Directly booting MP/M from a cold start

In systems where MP/M is to be booted directly at cold
start rather than loaded and run as a transient program under
CP/M, the customized MPMLDR.COM file and cold start loader can be
placed on the first two tracks of a diskette. If a CP/M
SYSGEN.COM program is available it can be used to write the
MPMLDR.COM file on the first two tracks. If a SYSGEN.COM program
is not available, or if SYSGEN.COM will not work because a
different media such as a mini-diskette or "hard" disk is to be
used, the user must write a simple memory loader, called GETSYS,
which brings the MP/M loader into memory and a program called
PUTSYS, which places the MPMLDR on the first two tracks of a
diskette.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
91

Either the SID or DDT debugger can be used in place of
writing a GETSYS program as is shown in the following example
which also uses SYSGEN in place of PUTSYS. Sample skeletal
GETSYS and PUTSYS programs are described later in this section
(for a more detailed description of GETSYS and PUTSYS see the
"CP/M 2.0 Alteration Guide").

In order to make the MP/M system load and run
automatically, the user must also supply a cold start loader,
similar to the one described in the "CP/M 2.0 Alteration Guide".
The purpose of the cold start loader is to load the MP/M loader
into memory from the first two tracks of the diskette. The CP/M
2.0 cold start loader must be modified in the following manner:
the load address must be changed to 0100H and the execution
address must also be changed to 0100H.

The following techniques are specifically for the MDS-800
which has a boot ROM that loads the first track into location
3000H. However, the steps shown can be applied in general to any
hardware.

If a SYSGEN program is available, the following steps can
be used to prepare a diskette that cold starts MP/M:

A.) Prepare the MPMLDR.COM file by integrating your custom
LDRBIOS as described earlier in this section. Test the
MPMLDR.COM and verify that it operates properly.

B.) Execute either DDT or SID.

A>DDT
DDT VERS 2.0

C.) Using the input command ('I') specify that the
MPMLDR.COM file is to be read in and then read ('R') in the file
with an offset of 880H bytes.

-IMPMLDR.COM
-R880
NEXT PC
2480 0100

D.) Using the 'I' command specify that the BOOT.HEX file
is to be read in and then read in the file with an offset that
will load the boot into memory at 900H. The 'H' command can be
used to calculate the offset.

-H900 3000
3900 D900

-IBOOT.HEX
-RD900
NEXT PC

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
92

2480 0000

E.) Return to the CP/M console command processor (CCP) by
jumping to location zero.

-GO

F.) Use the SYSGEN program to write the new cold start
loader onto the first two tracks of the diskette.

A>SYSGEN
SYSGEN VER 2.0
SOURCE DRIVE NAME (OR RETURN TO SKIP)<cr>
DESTINATION DRIVE NAME (OR RETURN TO REBOOT)B
DESTINATION ON B, THEN TYPE RETURN<cr>
FUNCTION COMPLETE

If a SYSGEN program is not available then the following steps can
be used to prepare a diskette that cold starts MP/M:

A.) Write a GETSYS program which reads the custom
MPMLDR.COM file with location 3380H and the cold start loader (or
boot program) into location 3300H. Code GETSYS so that it starts
at location 100H (base of the TPA).

As in the previous example, note that SID or DDT can be
used to perform this function instead of writing a GETSYS
program.

Run the GETSYS program using an initialized MP/M
diskette to see if GETSYS loads the MP/M loader starting at 3380H
(the operating system actually starts 128 bytes later at 3400H).

C.) Write the PUTSYS program which writes memory starting
at 3380H back onto the first two tracks of the diskette. The
PUTSYS program should be located at 200H.

D.) Test the PUTSYS program using a blank uninitialized
diskette by writing a portion of memory to the first two tracks;
clear memory and read it back. Test PUTSYS completely, since
this program will be used to alter the MP/M system diskette.

E.) Use PUTSYS to place the MP/M loader and cold start
loader onto the first two tracks of a blank diskette.

SAMPLE PUTSYS PROGRAM

The following program provides a framework for the PUTSYS
program. The WRITESEC subroutine must be inserted by the user to
write the specific sectors.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
93

; PUTSYS PROGRAM - WRITE TRACKS 0 AND 1 FROM MEMORY AT 3380M
; REGISTER USE
; A (SCRATCH REGISTER)
; B TRACK COUNT (0, 1)
; C SECTOR COUNT (1,2,. . . .,26)
; DE (SCRATCH REGISTER PAIR)
; HL LOAD ADDRESS
; SP SET TO STACK ADDRESS

START:
LXI SP,3380M ;SET STACK POINTER TO SCRATCH AREA
LXI H, 3380M ;SET BASE LOAD ADDRESS
Mvi B, 0 ;START WITH TRACK 0

WRTRK: ;WRITE NEXT TRACK (INITIALLY 0)
Mvi C,1 ;WRITE STARTING WITH SECTOR I
WRSEC: ;WRITE NEXT SECTOR
CALL WRITESEC ;USER-SUPPLIED SUBROUTINE
LXI D,128 ;MOVE LOAD ADDRESS TO NEXT 1/2 PAGE
DAD D ;HL = HL + 128
INR C ;SECTOR = SECTOR + 1
MOV A,C ;CHECK FOR END OF TRACK
CPI 27
JC WRSEC ;CARRY GENERATED IF SECTOR < 27

; ARRIVE HERE AT END OF TRACK, MOVE TO NEXT TRACK
INR B
MOV A,B ;TEST FOR LAST TRACK
CPI 2
JC WRTRK ;CARRY GENERATED IF TRACK < 2

; ARRIVE HERE AT END OF LOAD, HALT FOR NOW
HLT

; USER-SUPPLIED SUBROUTINE TO WRITE THE DISK
WRITESEC:
; ENTER WITH TRACK NUMBER IN REGISTER 8,
; SECTOR NUMBER IN REGISTER C, AND
; ADDRESS TO FILL IN HL

PUSH B ;SAVE B AND C REGISTERS
PUSH H ;SAVE HL REGISTERS

. .
perform disk write at this point, branch to

label START if an error occurs
. .

POP H ;RECOVER HL
POP B ;RECOVER B AND C REGISTERS
RET ;BACH TO MAIN PROGRAM

END START

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
94

DIGITAL RESEARCH COPYRIGHT

Read your MP/M Licensing Agreement; it specifies your legal
responsibilities when copying the MP/M system. Place the
copyright notice

Copyright (c), 1980
Digital Research

on each copy which is made of your customized MP/M diskette.

DISKETTE ORGANIZATION

The sector allocation for the standard distribution version
of MP/M is given here for reference purposes. The first sector
(see table on the following page) contains an optional software
boot section. Disk controllers are often set up to bring track
0, sector 1 into memory at a specific location (often location
OOOOH). The program in this sector, called BOOT, has the
responsibility of bringing the remaining sectors into memory
starting at location 0100H. If your controller does not have a
built-in sector load, you can ignore the program in track 0,
sector 1, and begin the load from track 0 sector 2 to location
0100H.

As an example, the Intel MDS-800 hardware cold start loader
brings track 0, sector 1 into absolute address 3000H. Upon
loading this sector, control transfers to location 3000H, where
the bootstrap operation commences by loading the remainder of
track 0, and all of track 1 into memory, starting at 0100H. The
user should note that this bootstrap loader is of little use in a
non-MDS environment, although it is useful to examine it since
some of the boot actions will have to be duplicated in your cold
start loader.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
95

Track# Sector# Page# Memory Address MP/M Module name
00 01 (boot address) Cold Start Loader
00 02 00 0100H MPMLDR
00 03 00 0180H “
00 04 01 0200H “
00 05 01 0280H “
00 06 02 0300H “
00 07 02 0380H “
00 08 03 0400H “
00 09 03 0480H “
00 10 04 0500H “
00 11 04 0580H “
00 12 05 0600H “
00 13 05 0680H “
00 14 06 0700H “
00 15 06 0780H “
00 16 07 0800H “
00 17 07 0880H “
00 18 08 0900H “
00 19 08 0980H “
00 20 09 OAOOH “
00 21 09 OA80H “
00 22 10 OBOOH “
00 23 10 OB80H “
00 24 11 OCOOH “
00 25 11 OC80H MPMLDR
00 26 12 ODOOH LDRBDOS
01 01 12 OD80H “
01 02 13 OEOOH “
01 03 13 OE80H “
01 04 14 OFOOH “
01 05 14 OF80H “
01 06 l5 1000H “
01 07 15 1080H “
01 08 16 1100H “
01 09 16 1180H “
01 10 17 1200H “
01 11 17 1280H “
01 12 18 1300H “
01 13 18 1380H “
01 14 19 1400H “
01 15 19 1480H “
01 16 20 1500H “
01 17 20 1580H “
01 18 21 1600H “
01 19 21 1680H LDRBDOS
01 20 22 1700H LDRBIOS
01 21 22 1780H “
01 22 23 1800H “
01 23 23 1880H “
01 24 24 1900H “
01 25 24 1980H “
01 26 25 lAOOH LDRBIOS

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
96

3.2 Basic I/O System Entry Points

The entry points into the BIOS from the cold start loader
and BDOS are detailed below. Entry to the BIOS is through a
"jump vector" located at the base of the BIOS, as shown below
(see Appendix I as well). The jump vector is a sequence of-17
jump instructions which send program control to the individual
BIOS subroutines. The BIOS subroutines may be empty for certain
functions (i.e., they may contain a single RET operation) during
regeneration of MP/M, but the entries must be present in the jump
vector. The extended I/O system entry points (XIOS) immediately
follow the last BIOS entry point.

The jump vector takes the form shown below, where the
individual jump addresses are given to the left:

BIOS+OOH JMP BOOT ;COLD START
BIOS+03H JMP WBOOT ;WARM START
BIOS+06H JMP CONST ;CHECK FOR CONSOLE CHAR READY
BIOS+09H JMP CONIN ;READ CONSOLE CHARACTER IN
BIOS+OCH JMP CONOUT ;WRITE CONSOLE CHARACTER OUT
BIOS+OFH JMP LIST ;WRITE LISTING CHARACTER OUT
BIOS+12H JMP PUNCH ;WRITE CHARACTER TO PUNCH DEVICE
BIOS+15H JMP READER ;READ READER DEVICE
BIOS+18H JMP HOME ;MOVE TO TRACK 00
BIOS+lBH JMP'SELDSK ;SELECT DISK DRIVE
BIOS+lEH JMP SETTRK ;SET TRACK NUMBER
BIOS+21H JMP SETSEC ;SET SECTOR NUMBER
BIOS+24H JMP SETDMA ;SET DMA ADDRESS
BIOS+27H JMP READ ;READ SELECTED SECTOR
BIOS+2AH JMP WRITE ;WRITE SELECTED SECTOR
BIOS+2DH JMP LISTST ;RETURN LIST STATUS
BIOS+30H JMP SECTRAN ;SECTOR TRANSLATE SUBROUTINE

Each jump address corresponds to a particular subroutine
which performs the specific function, as outlined below. There
are three major divisions in the jump table: the system
(re)initialization which results from calls on BOOT and WBOOT,'
simple character I/O performed by calls on CONST, CONIN, CONOUT,
LIST, and LISTST, and diskette I/O performed by calls on HOME,
SELDSK, SETTRK, SETSEC, SETDMA, READ, WRITE, and SECTRAN.

All simple character I/O operations are assumed to be
performed in ASCII, upper and lower case, with high order (parity
bit) set to zero. An end-of-file condition for an input device
is given by an ASCII control-z (1AH). Peripheral devices are
seen by MP/M as "logical" devices, and are assigned to physical
devices within the BIOS.

In order to operate, the BDOS needs only the CONST, CONIN,

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
97

and CONOUT subroutines (LIST and LSTST may be used by PIP, but
not the BDOS).

The characteristics of each device are

CONSOLE The principal interactive consoles which
communicate with the operators, accessed through
CONST, CONIN, and CONOUT. Typically, CONSOLEs are
devices such as CRTs or Teletypes.

LIST The principal listing device, if it exists on your
system, which is usually a hard-copy device, such
as a printer or Teletype.

DISK Disk I/O is always performed through a sequence of
calls on the various disk access subroutines
which set up the disk number to access, the track
and sector on a particular disk, and the direct
memory access (DMA) address involved in the I/0
operation. After all these parameters have been
set up, a call is made to the READ or WRITE
function to perform the actual I/O operation.
Note that there is often a single call to SELDSK
to select a disk drive, followed by a number of
read or write operations to the selected disk
before selecting another drive for subsequent
operations. Similarly, there may be a single
call to set the DMA address, followed by several
calls which read or write from the selected DMA
address before the DMA address is changed. The
track and sector subroutines are always called
before the READ or WRITE operations are
performed.

Note that the READ and WRITE routines
Should perform several retries (10 is standard)
before reporting the error condition to the BDOS.
If the error condition is returned to the BDOS,
it will report the error to the user. The HOME
subroutine may or may not actually perform the
track 00 seek, depending upon your controller
characteristics; the important point is that
track 00 has been selected for the next
operation, and is often treated in exactly the
same manner as SETTRK with a parameter of 00.

The exact responsibilities of each entry point subroutine are
given below:

BOOT The BOOT entry point gets called from the MP/M
loader after it has been loaded by the cold start

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
98

loader and is responsible for basic system
initialization. Note that under MP/M a return
must be made from BOOT to continue execution of
the MP/M loader.

WBOOT The WBOOT entry point performs a BDOS system
reset, terminating the calling process.

CONST Sample the status of the console device specified
by register D and return OFFE in register A if a
character is ready to read, or OOH in register A
if no console characters are ready.

CONIN Read the next character from the console device
specified by register D into register A, and set
the parity bit (high order bit) to zero. If no
console character is ready, wait until a
character is typed before returning.

CONOUT Send the character from register C to the console
output device specified by register D. The
character is in ASCII, with high order parity bit
set to zero. You may want to include a delay on
a line feed or carriage return, if your console
device requires some time interval at the end of
the line (such as a TI Silent 700 terminal). You
can, if you wish, filter out control characters
which cause your console device to react in a
strange way (a control-z causes the Lear Seigler
terminal to clear the screen, for example).

LIST Send the character from register C to the listing
device. The character is in ASCII with zero
parity.

PUNCH The punch device is not implemented under MP/M.
The transfer vector position is preserved to
maintain CP/M compatibility. Note that MP/M
supports up to 16 character I/0 devices, any of
which can be a reader/punch.

READER The reader device is not implemented under MP/M.
See the note above for PUNCH.

HOME Return the disk head of the currently selected
disk (initially disk A) to the track 00 position.
if your controller allows access to the track 0
flag from the drive, step the head until the
track 0 flag is detected. if your controller
does not support this feature, you can translate
the HOME call into a call on SETTRK with a
parameter of 0.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
99

SELDSK Select the disk drive given by register C for
further operations, where register C contains 0
for drive A, 1 for drive B, and so-forth up to 15
for drive P (the standard MP/M distribution
version supports four drives). On each disk
select, SELDSK must return in HL the base address
of a 16-byte area, called the Disk Parameter
Header, described in the digital research
document titled "CP/M 2.0 Alteration Guide". For
standard floppy disk drives, the contents of the
header and associated tables does not change, and
thus the program segment included in the sample
XIOS performs this operation automatically. If
there is an attempt to select a non-existent
drive, SELDSK returns HL=OOOOH as an error
indicator.

On entry to SELDSK it is possible to
determine whether it is the first time the
specified disk has been selected. Register E,
bit 0(least significant bit) is a zero if the
drive has not been previously selected. This
information is of interest in systems which
read configuration information from the disk
in order to set up a dynamic disk definition
table.

Although SELDSK must return the header
address on each call, it is advisable to postpone
the actual physical disk select operation until
an I/O function (seek, read or write) is actually
performed, since disk selects often occur without
utimately performing any disk I/0, and many
controllers will unload the head of the current
disk before selecting the new drive. This would
cause an excessive amount of noise and disk wear.

SETTRK Register BC contains the track number for
subsequent disk accesses on the currently
selected drive. You can choose to seek the
selected track at this time, or delay the seek
until the next read or write actually occurs.
Register BC can take on values in the range 0-76
corresponding to valid track numbers for standard
floppy disk drives, and 0-65535 for non-standard
disk subsystems.

SETSEC Register BC contains the sector number (1 through
26) for subsequent disk accesses on the currently
selected drive. You can choose to send this
information to the controller at this point, or
instead delay sector selection until a read or
write operation occurs.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
100

SETDMA Register BC contains the DMA (disk memory access)
address for subsequent read or write operations.
For example, if B = OOH and C = 80H when SETDMA
is called, then all subsequent read operations
read their data into 80H through OFFH, and all
subsequent write operations get their data from
80H through OFFH, until the next call to SETDMA
occurs. The initial DMA address is assumed to be
80H. Note that the controller need not actually
support direct memory access. If, for example,
all data is received and sent through I/O ports,
the XIOS which you construct will use the 128
byte area starting at the selected DMA address
for the memory buffer during the following read
or write operations.

READ Assuming the drive has been selected, the track
has been set, the sector has been set, and the
DMA address has been specified, the READ
subroutine attempts to read one sector based upon
these parameters, and returns the following error
codes in register A:

0 no errors occurred
1 non-recoverable error condition occurred

Currently, MP/M responds only to a zero or
non-zero value as the return code. That is, if
the value in register A is 0 then MP/M assumes
that the disk operation completed properly. If an
error occurs, however, the XIOS should attempt at
least 10 retries to see if the error is
recoverable. when an error is reported the BDOS
will print the message "BDOS ERR ON x: BAD
SECTOR". The operator then has the option of
typing <cr> to ignore the error, or ctl-C to
abort.

WRITE Write the data from the currently selected DMA
address to the currently selected drive, track,
and sector. The data should be marked as "non
deleted data" to maintain compatibility with
other MP/M systems. The error codes given in the
READ command are returned in register A, with
error recovery attempts as described above.

LISTST Return the ready status of the list device. The
value 00 is returned in A if the list device is
not ready to accept a character, and OFFH if a
character can be sent to the printer. Note that
a 00 value always suffices.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
101

SECTRAN Performs sector -logical to physical sector
translation in order to improve the overall
response of MP/M. Standard MP/M systems are
shipped with a "skew factor" of 6, where six
physical sectors are skipped between each logical
read operation. This skew factor allows enough
time between sectors for most programs to load
their buffers without missing the next sector.
In particular computer systems which use fast
processors, memory, and disk subsystems, the skew
factor may be changed to improve overall
response. Note, however, that you should
maintain a single density IBM compatible version
of MP/M for information transfer into and out of
your computer system, using a skew factor of 6.
In general, SECTRAN receives a logical sector
number in BC, and a translate table address in
DE. The sector number is used as an index into
the translate table, with the resulting physical
sector number in HL. For standard systems, the
tables and indexing code is provided in the XIOS
and need not be changed.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
102

3.3 Extended I/O System Entry Points

The extended I/O facilities include the hardware
environment dependent code to poll devices, handle interrupts and
perform memory management functions.

A jump vector containing the extended I/O system entry
points is located immediately following the BIOS jump vector as
shown below:

BIOS+33H JMP SELMEMORY ;SELECT MEMORY
BIOS+36H JMP POLLDEVICE ;POLL DEVICE
BIOS+39H JMP STARTCLOCK ;START CLOCK
BIOS+3CH JMP STOPCLOCK ;STOP CLOCK
BIOS+3FH JMP EXITREGION ;EXIT CRITICAL REGION
BIOS+42H JMP MAXCONSOLE ;MAXIMUM CONSOLE NUMBER
BIOS+45H JMP SYSTEMINIT ;SYSTEM INITIALIZATION
BIOS+48H JMP IDLE ;IDLE PROCEDURE (Optional)

Each jump address corresponds to a particular subroutine
which performs the specific function. The exact responsibilities
of each entry point subroutine are given below:

SELMEMORY Each time a process is dispatched to run a call
is made to the XIOS memory protection procedure.
If the hardware environment has memory bank
selection/protection it can use the passed
parameter to select/protect areas of memory. The
passed parameter (in registers BC) is a pointer
to a memory descriptor from which the memory
base, size, attributes and bank of the executing
process can be determined. Thus, all other
regions of memory can to be write protected.

POLLDEVICE In hardware environments where there are no
interrupts a polled environment can be created by
coding an XIOS device poll handler. The device
poll handler (POLLDEVICE) is called by the XDOS
with the device to be polled in the C register as
a single parameter. The user written POLLDEVICE
procedure can be coded to access the device
polling routines via a table which contains the
addresses of the device polling procedures. An
association is made between a device number to be
polled and the polling procedure itself. The
polling procedures must return a value of OFFH in
the accumulator if the device is ready, or OOH if
the device is not ready.

STARTCLOCK When a process delays for a specified number of

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
103

ticks of the system time unit, the start clock
procedure is called.

The purpose of the STARTCLOCK procedure is
to eliminate unneccessary system clock interrupt
overhead when there are not any delayed
processes.

In some hardware environments it is not
acutally possible to shut off the system time
unit clock while still maintaining the one second
flag used for the purposes of keeping time of
day. In this situation the STARTCLOCK procedure
simply sets a boolean variable to true,
indicating that there is a delayed process. The
clock interrupt handler can then determine if
system time unit flag is to be set by testing the
boolean.

STOPCLOCK When the system delay list is emptied the stop
clock procedure is called.

The purpose of the STOPCLOCK procedure is
to eliminate unneccessary system clock interrupt
overhead when there are no delayed processes.

In some hardware environments it is not
acutally possible to shut off the system time
unit clock while still maintaining the one second
flag used for the purposes of keeping time of
day. (i.e. a single clock/timer interrupt source
is used.) In this situation the STOPCLOCK
procedure simply sets a boolean variable to
false, indicating that there are no delayed
processes. The clock interrupt handler can then
determine if the system time unit flag is to be
set by testing the boolean.

EXITREGION The purpose of the exit region procedure is to
test a preempted flag, set by the interrupt
handler, enabling interrupts if preempted is
false. This procedure allows interrupt service
routines to make MP/M system calls, leaving
interrupts disabled until completion of the
interrupt handling.

MAXCONSOLE The purpose of the maximum console procedure is
to enable the calling program to determine the
number of physical consoles which the BIOS is
capable of supporting. The number of physical
consoles is returned in the A register.

SYSTEMINIT The purpose of the system initialization

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
104

procedure is to perform required MP/M cold start
initialization. Typical initialization includes
setting up interrupt jump vectors, interrupt
masks, and setting up the base page-in each bank
of a banked memory system.

The SYSTEMINIT entry point is called
prior to any other XIOS call. The MPMLDR
disables interrupts, thus it can be assumed that
interrupts are still disabled upon entry to
SYSTEMINIT. Interrupts are enabled by MP/M
immediately upon return from SYSTEMINIT.

In systems with bank switched memory it
is necessary to setup the base page (OOOOH -
00FFH) within each bank of memory. Both the
MPMLDR and MP/M itself assume that the base
bank (bank #0) is switched in when the MPMLDR
is executed. The base bank is properly
initialized by MP/M prior to entering
SYSTEMINIT. The information required for the
initialization is provided on entry to
SYSTEMINIT in the following registers:

C = MP/M Debugger restart #
DE = MP/M entry point address for the debugger

 Place a jump at the proper debugger
restart location to the address contained
in DE.

HL = BIOS direct jump table address
 Place a jump instruction at location

0000H in each banks base page to the
address contained in HL.

IDLE The idle entry point is
included to permit optimization of system
performance when the user has an XIOS that is
all interrupt driven. If you have polled
devices in your XIOS, the IDLE procedure
may be omitted by placing a NOP instruction
at the BIOS+48H location where there would
otherwise be a jump to an idle procedure.

The idle entry point is called repeatedly
when MP/M is idling. That is, when there are no
other processes ready to run. In systems that
are entirely interrupt driven the idle
procedure should be as follows:

IDLE:
HLT
RET

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
105

INTERRPUT SERVICE ROUTINES

The MP/M operating system is designed to work with
virtually any interrupt architecture, be it flat or vectored.
The function of the code operating at the interrupt level is to
save the required registers, determine the cause of the
interrupt, remove the interrupting condition, and to set an
appropriate flag. Operation of the flags are described in
section 2.4. Briefly, flags are used to synchronize asynchronous
processes. One process, such as an interrupt service routine,
sets a particular flag while another process waits for the flag
to be set.

At a logical level above the physical interrupts the flags
can be regarded as providing 256 levels of virtual interrupts (32
flags are supported under release 1 of MP/M). Thus, logical
interrupt handlers wait on flags to be set by the physical
interrupt handlers. This mechanism allows a common XDOS to
operate on all microcomputers, regardless of the hardware
environment.

As an example consider a hardware environment with a flat
interrupt structure. That is, a single interrupt level is
provided and devices must be polled to determine the cause of the
interrupt. Once the interrupt cause is determined a specific
flag is set indicating that that particular interrupt has
occurred.

At the conclusion of the interrupt processing a jump should
be made to the MP/M dispatcher. This is done by jumping to the
PDISP entry point. The effect of this jump is to give the
processor to the highest priority ready process, usually the
process readied by setting the flag in the interrupt handler, and
then to enable interrupts before jumping to resume execution of
the process.

The only XDOS or BDOS call which should be made from an
interrupt handler is FUNCTION 133: FLAG SET. Any other XDOS
or BDOS call will result in a dispatch which would then enable
interrupts prior to completing execution of the interrupt
handler.

It is recommended that interrupts only be used for
operations which are asynchronous, such as console input or disk
operation complete. In general, operations such as console
output should not be interrupt driven. The reason that
interrupts are not desirable for console output is that the
system is afforded some elasticity by performing polled console
outputs while idling, rather than incurring the dispatch overhead
for each character transmitted. This is particularily true at
higher baud rates.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
106

On systems requiring the Z80 return from interrupt (RETI)
instruction, the jump to PDISP at the end of the interrupt
servicing can be done by placing the address of PDISP on the
stack and then executing an RETI instruction.

TIME BASE MANAGEMENT

The time base management provided by the BIOS performs the
operations of setting the system tick and one second flags. As
described earlier the start and stop clock procedures control the
system tick operation. The one second flag operation is
logically separate from the system tick operation even though it
may physically share the same clock/timer interrupt source.

The purpose of the system time unit tick procedure is to
set flag #1 at system time unit intervals. The system time unit
is used by MP/M to manage the delay list.

The recommended time unit is 16.67 milliseconds,
corresponding to 60 Hz. When operating with 50 Hz the
recommended time unit is 20 milliseconds.

The tick frequency is critical in that it determines the
dispatch frequency for compute bound processes. If the
frequency is too high, a significant amount of system
overhead is incurred by excessive dispatches. If the
frequency is too low, compute bound processes will keep the CPU
resource for accordingly longer periods.

The purpose of the one second flag procedure is to set flag
#2 at each second of real time. Flag #2 is used by MP/M to
maintain a time of day clock.

XIOS EXTERNAL JUMP VECTOR

In order for the XIOS to access the BDOS/XDOS a jump vector
is dynamically built by the MP/M loader and placed directly below
the base address of the XIOS. The jump vector contains two entry
points which provide access to the MP/M dispatcher, XDOS and
BDOS.

The following code illustrates the equates used to access
the jump table:

BASE EQU 0000H ;BASE OF THE BIOS
PDISP EQU BASE-3 ;MP/M DISPATCHER
XDOS EQU PDISP-3 ;MP/M BDOS/XDOS
...
CALL XDOS ;CALL TO XDOS THRU JUMP VECTOR

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
107

3.4 System File Components

The MP/M system file, 'MPM.SYS' consists of five
components: the system data page, the customized XIOS, the BDOS
or ODOS, the XDOS, and the resident system processes. MPM.SYS
resides in the directory with a user code of 0 and is usually
read only. The MP/M loader reads and relocates the MPM.SYS file
to bring up the MP/M system.

SYSTEM DATA

The system data page contains 256 bytes used by the loader
to dynamically configure the system. The system data page can be
prepared using the GENSYS program or it can be manually prepared
using DDT or SID. The following table describes the byte
assignments:

Byte Assignment

000-000 Top page of memory
001-001 Number of consoles
002-002 Breakpoint restart number
003-003 Allocate stacks for user system calls, boolean
004-004 Bank switched memory, boolean
005-005 Z80 CPU, boolean
006-006 Banked BDOS file manager, boolean
007-015 Unassigned, reserved
016-047 Initial memory segment table
048-079 Breakpoint vector table, filled in by DDTs
080-111 Stack addresses for user system calls
112-122 Scratch area for memory segments
123-127 Unassigned, reserved
128-143 Submit flags
144-255 Reserved

CUSTOMIZED XIOS

The customized XIOS is obtained from a file named
'XIOS.SPR'. The 'XIOS.SPR' file is actually a file of type PRL
containing the page relocatable version of the user customized
XIOS. A submit file on the distribution diskette named
'MACSPR.SUB' or 'ASMSPR.SUB' can be used to generate the user
customized XIOS. The following sequence of commands will produce
a 'XIOS.SPR' file given a user ‘XIOS.ASM' file:

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
108

A>SUBMIT MACSPR XIOS

BDOS/ODOS

The Basic Disk Operating System (BDOS) file named
'BDOS.SPR' is a page relocatable file essentially containing the
CP/M 2.0 disk file management. This module handles all the BDOS
system calls providing both multiple console support and disk
file management.

In systems with a banked BDOS, the file named ‘ODOS.SPR’ is
a page relocatable file containing the resident portion of the
banked BDOS.

XDOS

The XDOS file named 'XDOS.SPR' is a page relocatable file
containing the priority driven MP/M nucleus. The nucleus
contains the following code pieces: root module, dispatcher,
queue management, flag management, memory management, terminal
handler, terminal message process, command line interpreter, file
name parser, and time base management.

RESIDENT SYSTEM PROCESSES

Resident system processes are identified by a file type of
RSP. The RSP files distributed with MP/M include: run-time
system status display (MPMSTAT), printer spooler (Spool), abort
named process (ABORT), and a scheduler (SCHED).

At system generation time the user is prompted to select
which RSPs are to be concatenated to the 'MPM.SYS' file.

It is possible for the user to prepare custom resident
system processes. The resident system processes must follow
these rules:

* The file itself must be page relocatable. Page
relocatable files can be simply generated using the submit file
'MACSPR.SUB' or 'ASMSPR.SUB' and then renaming the file to change
the type from 'SPR' to 'RSP'.

* The first two bytes of the resident system process are
reserved for the address of the BDOS/XDOS. Thus a resident
system process can access the BDOS/XDOS by loading the two bytes
at relative 0000-0001H and then performing a PCHL.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
109

* The process descriptor for the resident system process
must begin at the third byte position. The contents of the
process descriptor are described in section 2.3.

BNKBDOS

In addition to the MPM.SYS file a file named 'BNKBDOS.SPR'
is used in systems with a banked BDOS. It is a page relocatable
file containing the non-resident portion of the banked BDOS.
This file is not used by systems without banked memory.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
110

3.5 System Generation

MP/M system generation consists of the preparation of a
system data file and the concatenation of both required and
optional code files to produce a file named 'MPM.SYS'. The
operation is performed using a GENSYS program which can be run
under either MP/M or CP/M. The GENSYS automates the system
generation process by prompting the user for optional parameters
and then prepares the 'MPM.SYS' file.

The operation of GENSYS is illustrated with two sample
executions shown below:

A>GENSYS

MP/M System Generation

Top page of memory = ff
Number of consoles = 2
Breakpoint RST # = 6
Add system call user stacks (Y/N)? y
Z80 CPU (Y/N)? y
Bank switched memory (Y/N)? n
Memory segment bases, (ff terminates list)
: 00
: 50
: aO
: ff
Select Resident System Processes: (Y/N)
ABORT ? n
SPOOL ? n
MPMSTAT ? y
SCHED ? y

The queries made during the system generation shown above
are described as follows:

Top page of memory: Two hex ASCII digits are to be entered
giving the top page of memory. A value of 0 can be entered in
which case the MP/M loader will determine the size of memory at
load time by finding the top page of RAM.

Number of consoles: Each console specified will require
256 bytes of memory. MP/M release 1 supports up to 16 consoles.
During MP/M initialization an XIOS call is made to obtain the
actual maximum number of physical consoles supported by the XIOS.
This number is used if it is less than the number specified
during the GENSYS.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
111

Breakpoint RST #: The breakpoint restart number to be used
by the SID and DDT debuggers is specified. Restart 0 is not
allowed. Other restarts required by the XIOS should also not be
used.

Add system call user stacks (Y/N)?: If you desire to
execute CP/M *.COM files then your response should be Y. A ‘Y’
response forces a stack switch with each system call from a user
program. MP/M requires more stack space than CP/M.

Bank switched memory (Y/N)?: If your system does not have
bank switched memory then you should respond with a ‘N’.
otherwise respond with a 'Y' and additional questions and
responses (as shown in the second example) will be required.

Memory segment bases: Memory segmentation is defined by
the entries which are made. Care must be taken in the entry of
memory bases as all entries must be made with successively higher
bases. If your system has ROM at OOOOH then the first memory
segment base which you specify should be your first actual RAM
location only page relocatable (PRL) programs can be run in
systems that do not have RAM at location OOOOH.

Select Resident System Processes: A directory search is
made for all files of type RSP. Each file found is listed and
included in the generated system file if you respond with a 'Y'.

The second example illustrates a more complicated GENSYS in
which a system is setup with bank switched memory and a banked
BDOS. This procedure requires an initial GENSYS and MPMLDR
execution to determine the exact size of the operating system,
followed by a second GENSYS.

A>GENSYS

MP/M System Generation

Top page of memory = ff
Number of consoles = 2
Breakpoint RST # = 6
Add system call user stacks (Y/N)? y
Z80 CPU (Y/N) y
Bank switched memory (Y/N)? y
Banked BDOS file manager (Y/N)? y
Enter memory segment table: (ff terminates list)
 Base,size,attrib,bank = 0,50,0,0
 Base,size,attrib,bank = ff
Select Resident System Processes: (Y/N)
ABORT ? n
SPOOL ? n.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
112

MPMSTAT ? n
SCHED ? y

The queries made during the system generation shown above
which relate to bank switched memory are described as follows:

Bank switched memory: Respond with a 'Y'.

Bank switched BDOS file manager: Respond with a 'Y' if a
bank switched BDOS is to be used, this will provide an additional
OCOOH bytes of common area for large XIOS's and possibly some
RSP's. The banked BDOS is slower than the non-banked because
FCB's must be copied from the bank of the calling program to
common and then back again each time a BDOS disk function is
invoked.

Memory segment bases: When bank switched memory has been
specified, you are prompted for the base, size, attributes, and
bank for each memory segment. Extreme care must be taken when
making these entries as there is no error checking done by GENSYS
regarding this function. The first entry made will determine the
bank in which the banked BDOS is to reside. It is further
assumed that the bank specified in the first entry is the bank
which is switched in at the time the MPMLDR is executed. The
attribute byte is normally defined as 00. However, if you
wish to pre-allocate a memory segment a value of FFH should
be specified. The bank byte value is hardware dependent
and is usually the value sent to the bank switching
hardware to select the specified bank.

Then execute the MPMLDR in order to obtain the base address of
the operating system. The base address in this example will be
the address of BNKBDOS.SPR (BCOOH).

A>MPMLDR

MP/M Loader

Number of consoles = 2
Breakpoint RST # = 6
Z80 CPU
Banked BDOS file manager
Top of memory = FFFFH

Memory Segment Table:
SYSTEM DAT FFOOH 0100H
CONSOLE DAT FDOOH 0200H
USERSYS STK FCOOH 0100H

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
113

XIOS SPR F600H 0600H
BDOS SPR EEOOH 0800H
XDOS SPR CFOOH 1FOOH
Sched RSP CAOOH 0500H
BNKBDOS SPR BCOOH OEOOH

Memseg Usr OOOOH 5000H Bank OOH

Using the information obtained from the initial GENSYS and MPMLDR
execution the following GENSYS can be executed:

A>GENSYS

MP/M System Generation

Top page of memory = ff
Number of consoles = 2
Breakpoint RST # = 6
Add system call user stacks (Y/N)? y
Z80 CPU (Y/N)? y
Bank switched memory (Y/N)? y
Banked BDOS file manager. (Y/N)? y
Enter memory segment table: (ff terminates list)

Base,size,attrib,bank = O,bc,0,0
Base,size,attrib,bank = O,cO,O,l
Base,size,attrib,bank = O,cO,0,2
Base,size,attrib,bank = ff

Select Resident System Processes: (Y/N)
ABORT ? n
SPOOL ? n
MPMSTAT ? n
SCHED ? y

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
114

3.6 MP/M Loader

The MPMLDR program loads the ‘MPM.SYS’ file and dynamically
relocates and configures the MP/M operating system. MPMLDR can
be run under CP/M or loaded from the first two tracks of a disk
by the cold start loader.

The MPMLDR provides a display of the system loading and
configuration. It does not require any operator interaction.

In the following example the 'MPM.SYS' file prepared by the
first GENSYS example shown in section 3.5 is loaded:

A>MPMLDR

MP/M Loader

Number of consoles = 2
Breakpoint RST # = 6
Z80 CPU
Top of memory = FFFFH

Memory Segment Table:
SYSTEM DAT FFOOH 0100H
CONSOLE DAT FDOOH 0200H
USERSYS STK FCOOH 0100H
XIOS SPR F600H 0600H
BDOS SPR E200H 1400H
XDOS SPR C300H lF00H
MPMSTAT RSP B600H ODOOH
Sched RSP B100H 0500H

Memseg Usr AOOOH 1100H
Memseg Usr 5000H 5000H
Memseg Usr OOOOH 5000H

MP/M
0A>

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
115

In the following example the ‘MPM.SYS’ file prepared by the
second GENSYS example shown in section 3.5 is loaded:

A>MPMLDR

MP/M Loader

Number of consoles = 2
Breakpoint RST # = 6
Z80 CPU
Banked BDOS file manager
Top of memory = FFFFH

Memory Segment Table:
SYSTEM DAT FFOOH 0100H
CONSOLE DAT FD00H 0200H
USERSYS STK FCOOH 0100H
XIOS SPR F600H 0600H
BDOS SPR EEOOH 0800H
XDOS SPR CFOOH lF00H
Sched RSP CAOOH 0500H
BNKBDOS SPR BCOOH OEOOH

Memseg Usr OOOOH COOOH Bank 02H
Memseg Usr OOOOH COOOH Bank 01H
Memseg Usr OOOOH BCOOH Bank OOH

MP/M
0A>

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
116

APPENDIX A: Flag Assignments

+----+
: 0 : Reserved
+----+
: 1 : System time unit tick
+----+
: 2 : One second interval
+----+
: 3 : One minute interval
+----+
: 4 : Undefined

: : Undefined
+----+
: 31 : Undefined
+----+

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
117

APPENDIX B: Process Priority Assignments

 0 - 31 : Interrupt handlers

32 - 63 : System processes

64 - 197 : Undefined

198 : Terminal message processes

199 : Command line interpreter

200 : Default user priority

 201 – 254 : User processes

255 : Idle process

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
118

APPENDIX C: BDOS Function Summary

FUNC FUNCTION NAME INPUT PARAMETERS OUTPUT RESULTS
----------------------------- ---------------- --------------
0 System Reset none none
1 Console Input none A = char
2 Console output E = char none
3 Raw Console Input none A = char
4 Raw Console Output E = char none
5 List Output E = char none
6 Direct Console I/0 see def see def
7 ** Not supported **
8 ** Not supported **
9 Print String DE = .Buffer none
10 Read Console Buffer DE = .Buffer see def
11 Get Console Status none A = 00/01
12 Return Version Number none HL= Version #
13 Reset Disk System none see def
14 Select Disk E=Disk Number see def
15 Open File DE = .FCB A = Dir Code
16 Close File DE = .FCB A = Dir Code
17 Search for First DE = .FCB A = Dir Code
18 Search for Next none A = Dir Code
19 Delete File DE = .FCB A = Dir Code
20 Read Sequential DE = .FCB A = Err Code
21 Write Sequential DE = .FCB A = Err Code
22 Make File DE = .FCB A = Dir Code
23 Rename File DE = .FCB A = Dir Code
24 -Return Login Vector none HL= Login Vect*
25 Return Current Disk none A = Cur Disk#
26 Set DMA Address DE = .DMA none
27 Get Addr(Alloc) none HL= Alloc
28 Write Protect Disk none see def
29 Get R/O Vector none HL= R/O Vect*
30 Set File Attributes DE = .FCB see def
31 Get Addr(disk parms) none HL= DPB
32 Set/Get User Code see def see def
33 Read Random DE = .FCB A = Err Code
34 Write Random DE = .FCB A = Err Code
35 Compute File Size DE = .FCB rO, rl, r2
36 Set Random Record DE = .FCB rO, rl, r2
37 Reset Drive DE = drive vctr A = Err Code
38 Access Drive DE = drive vctr none
39 Free Drive DE = drive vctr none
40 Write Random zerofill DE = .FCB A = Err Code

Note that A = L, and B = H upon return

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
119

APPENDIX D: XDOS Function Summary

FUNC FUNCTION NAME INPUT PARAMETERS OUTPUT RESULTS
---------------------------- ---------------- --------------
128 Absolute Memory Rqst DE = .MD A = err code
129 Relocatable Mem Rqst DE = .MD A = err code
130 Memory Free DE = .MD none
131 Poll E = Device none
132 Flag Wait E = Flag A = err code
133 Flag Set E = Flag A = err code
134 make Queue DE = .QCB none
135 Open Queue DE = .UQCB A = err code
136 Delete Queue DE = .QCB A = err code
137 Read Queue DE = .UQCB none
138 Conditional Read Que DE = .QCB A = err code
139 Write Queue DE = .UQCB none
140 Conditional Write Que DE = .UQCB A = err code
141 Delay DE #ticks none
142 Dispatch none none
143 Terminate Process E = Term. code none
144 Create Process DE = .PD none
145 Set Priority E = Priority none
146 Attach Console none none
147 Detach Console none none
148 Set Console E = Console none
149 Assign Console DE = .APB A = err code
150 Send CLI Command DE = .CLICMD none
151 Call Resident Sys Pr DE .CPB HL = result
152 Parse Filename DE .PFCB see def
153 Get Console Number none A = console #
154 System Data Address none HL = sys data adr
155 Get Date and Time DE = TOD none
156 Return Proc. Dsc. Adr none HL = proc descr adr
157 Abort Spec. Process DE = .ABTPB A = err code

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
120

APPENDIX E: Memory Segment Base Page Reserved Locations

Each memory segment base page, between locations OOH and
OFFH, contains code and data which are used during MP/M
processing. The code and data areas are given below for
reference purposes.

Locations Contents
from to
OOOOH - 0002H Contains a jump instruction to XDOS which

terminates the process. This allows simple
process termination by executing a JMP
OOOOH.

0005H - 0007H Contains a jump instruction to the BDOS &
XDOS, and serves two purposes: JMP 0005H
provides the primary entry point to the
BDOS & XDOS, and LHLD 0006H brings the
address field of the instruction to the HL
register pair. This value is the top of
the memory segment in which the program is
executing. Note that the DDT program will
change the address field to reflect the
reduced memory size in debug mode.

0008H - 003AH (interrupt locations 1 through 7 not used)
However, one restart must be selected for
use by the debugger and specified during
system generation.

003BH - 003FH (not currently used - reserved)

0040H - 004FH 16 byte area reserved for scratch, but is
not used for any purpose in the
distribution version of MP/M

0050H - 005BH (not currently used - reserved)

005CH - 007CH default file control block produced for a
transient program by the command line
interpreter.

007DH - 007FH optional default random record position

0080H – OOFFH default 128 byte disk buffer (also filled
with the command line when a transient is
loaded under the CLI).

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
121

Appendix F: Operation of MP/M on the Intel MDS-800

This section gives operating procedures for using MP/M on
the Intel MDS microcomputer development system. A basic
knowledge of the MDS hardware and software systems is assumed.

MP/M is initiated in essentially the same manner as Intel's
ISIS operating system. The disk drives labelled 0 through 3 on
the MDS, correspond to MP/M drives A through D, respectively.
The MP/M system diskette is inserted into drive 0, and the BOOT
and RESET switches are depressed in sequence. The interrupt 2
light should go on at this point. The space bar is then
depressed on either console device, and the light should go out.
The BOOT switch is then turned off, and the MP/M sign-on message
should appear at both consoles, followed by the "OA>" for the CRT
or "lA>" for the TTY. The user can then issue MP/M commands.

Use of the interrupt switches on the front panel is not
recommended. Effective 'warm-starts' should be initiated at the
console by aborting the running program rather than pushing the
INT 0 switch. Also, depending on the choice of restart for the
debugger the INT switch which will invoke the debugger is not
necessarily #7.

Diskettes should not be removed from the drives until the
user verifies that there are no other users with open files on
the disk. This can be done with the 'DSKRESET' command.

When performing GENSYS operations on the MDS-800, make
certain that a negative response is always made to the Z80 CPU
question. Responding with a 'Y' will lead to unpredictable
results.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
122

APPENDIX G: Sample Page Relocatable Program

**
* Note: *
* This program listing has been *
* included only as a sample and may not *
* reflect changes required by later MP/M *
* releases. For this reason the reader *
* should assemble and list the program *
* as provided on the distribution disk. *
**

page 0
0000 org 0000h
0000 base equ $
0100 org 0100h

;note: either baseOlOO.asm or base02OO.asm must be ap
;to the beginning of this file before assembling.

; title 'file dump program'
; file dump program, reads an input file and
; prints in hex

;copyright (c) 1975, 1976, 1977,.1978, 1979, 19
;digital research
;box 579, pacific grove
;california, 93950

0005 = bdos equ base+5 ;dos entry point
0001 = cons equ 1 ;read console
0002 = typef equ 2 ;type function
0009 = printf equ 9 ;buffer print entry
000b = brkf equ 11 ;break key function
000f = openf equ 15 ;file open
0014 = readf equ 20 ;read function

005c = fcb equ base+5ch ;file control block address
0080 = buff equ base+80h ;input disk buffer address

;non graphic characters
000d = cr equ Odh ;carriage return
000a = lf equ Oah ;line feed

;file control block definitions
005c = fcbdn equ fcb+O ;disk name
005d = fcbfn equ fcb+l ;pfile name
0065 = fcbft equ fcb+9 ;disk file type (3 characters)
0068 = fcbrl equ fcb+12 ;file's current reel number

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
123

006b = fcbrc equ fcb+15 ;file's record count (0 to 128
007c = fcbcr equ fcb+32 ;current (next) record number
007d = fcbln equ fcb+33 ;fcb length

; set up stack
0100 210000 lxi h,O
0103 39 dad sp

; entry stack pointer in hl from the ccp
0104 22lfO2 shld oldsp

; set sp to local stack area (restored at finis)
0107 316102 lxi sp,stktop

; read and print successive buffers
010a cdc601 call setup ;set up input file
OlOd feff cpi 255 ;255 if file not present
010f c2lbOl jnz openok ;skip if open is ok

; file not there, give error message and return
0112 llfdOl lxi d,opnmsg
0115 cdalOl call err
0118 c35601 jmp finis ;to return

openok: ;open operation ok, set buffer index to end
Ollb 3e8O mvi a,80h
Olld 32ldO2 sta ibp ;set buffer pointer to 80h

; hl contains next address to print
0120 210000 lxi h,O ;start with 0000

gloop:
0123 e5 push h ;save line position
0124 cda701 call gnb
0127 el POP h ;recall line position
0128 da5601 jc finis ;carry set by gnb if end file
012b 47 mov b,a

; print hex values
; check for line fold

012c 7d mov a,l
012d e60f ani Ofh ;check low 4 bits
012f c24401 jnz nonum

; print line number
0132 cd7701 call crlf

; check for break key
0135 cd5eOl call break

; accum lsb = 1 if character ready
0138 Of rrc ;into carry
0139 da5lOl jc purge ;don't print any more
013c 7c mov a,h
013d cd9401 call phex
0140 7d mov a,l
0141 cd9401 call phex

nonum:
0144 23 inx h ;to next line number

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
124

0145 3e2O mvi a,’ ‘
0147 cd6aOl call pchar
014a 78 mov a,b
014b cd9401 call phex
014e c32301 jmp gloop

purge:
0151 OeOl mvi c,cons
0153 cd05OO call bdos
finis:

; end of dump, return to cap
; (note that a jmp to 0000h reboots)

0156 cd7701 call crlf
0159 2alfO2 lhld oldsp
015C f9 sphl

; stack pointer contains cap's stack location
015d c9 ret ;to the ccp

subroutines

break: ;check break key (actually any key will do)
015e e5d5c5 push h! push d! push b; environment saved
0161 OeOb mvi c,brkf
0163 cd05OO call bdos
0166 cldlel pop b! pop d! pop h; environment restored
0169 c9 ret

pchar: ;print a character
016a e5d5cS push h! push d! push b; saved
016d OeO2 mvi c,typef
016f 5f mov e,a
0170 cd05OO call bdos
0173 cldlel pop b! pop d! pop h; restored
0176 c9 ret

crlf:
0177 3eOd mvi a,cr
0179 cd6aOl call pchar
017c 3eOa mvi a,lf
017e cd6aOl call pchar
0181 c9 ret

pnib: ;print nibble in reg a
0182 e60f ani Ofh ;low 4 bits
0184 fe0a cpi 10
0186 d28eOl jnc plo

; less than or equal to 9
0189 c630 adi ‘0’
018b c39001 jmp prn

; greater or equal to 10

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
125

018e c637 pl0: adi ‘a’ - 10
0190 cd6aOl prn: call pchar
0193 c9 ret

phex: ;print hex char in reg a
0194 f5 push psw
0195 Of rrc
0196 Of rrc
0197 Of rrc
0198 Of rrc
0199 cd8201 call pnib ;print nibble
019C fl POP psw
019d cd8201 call pnib
OlaO c9 ret

Err: ;print error message
; d,e addresses message ending with

Olal OeO9 mvi c,printf ;print buffer function
Ola3 cd05OO call bdos
Ola6 c9 ret

gnb: ;get next byte
Ola7 3aldO2 lda ibp
Olaa fe8O cpi 80h
Olac c2b801 jnz go

;read another buffer
Olaf cdd30l call diskr
Olb2 b7 ora a ;zero value if read ok
Olb3 cab.801 jz go ;for another byte

; end of data, return with carry set for eof
Olb6 37 stc
Olb7 c9 ret

go: ;read the byte at buff+reg a
Olb8 5f mov e,a ;ls byte of buffer index
Olb9 1600 mvi d,O ;double precision index to de
Olbb 3c inr a ; i nd ex= i nd ex+l
Olbc 32ldO2 sta ibp ;back to memory

; pointer is incremented
; save the current file address

Olbf 218000 lxi h,buff
O.lc2 19 dad d

; absolute character address is in hl
Olc3 7e mov a,m

; byte is in the accumulator
Olc4 b7 ora a ;reset carry bit
Olc5 c9 ret

setup: ;set up file
; open the file for input

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
126

Olc6 af xra a ;zero to accum
Olc7 327cOO sta fcbcr ;clear current record
Olca 115cOO Ixi d,fcb
Olcd OeOf mvi c,openf
Olcf cd05OO call bdos

; 255 in accum if open error
Old2 c9 ret

diskr: ;read disk file record
Old3 e5d5c5 push hl push d! push b
Old6 115cOO lxi d,fcb
Old9 Oe14 mvi c,readf
Oldb cd05OO call bdos
Olde cldlel pop b! pop d! pop h
Olel c9 ret

; fixed message area
signon:

Ole2 46696c6520 db 'file dump mp/m version 1.0$’
opnmsg:

Olfd OdOa4e6f2O db cr,lf,'no input file present on disk$'

; variable area
021d ibp: ds 2 ;input buffer pointer
021f oldsp: ds 2 ;entry sp value from ccp

; stack area
0221 ds 64 reserve 32 level stack

stktop:
0261 end

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
127

APPENDIX H: Sample Resident System Process

 * Note: *
 * This program listing has been *
 * included only as a sample and may not *
 * reflect changes required by later MP/M *
 * releases. For this reason the reader *
 * should assemble and list the program *
 * as provided on the distribution disk. *

page 0

title 'type file on console'
;file type program, reads an input file and pri
;it on the console

;copyright (c) 1979, 1980
;digital research
;p.o. box 579
;pacific grove, ca 93950

0000 org 0000h ;standard rsp start

001a = ctlz equ lah ; control-z used for e
0002 = conout equ 2 ; bdos conout function
0009 = printf equ 9 ; print buffer
0014 = readf equ 20 ; read next record
000f = openf equ 15 ; open fcb
0098 = parsefn equ 152 ; parse file name
0086 = mkque equ 134 ; make queue
0089 = rdque equ 137 ; read queue
0091 = stprior equ 145 ; set priority
0093 = detach equ 147 ; detach console

; bdos entry point address
bdosadr:

0000 0000 dw $-$ ldr will fill this i

; type process descriptor

typepd:
0002 0000 dw 0 ;link
0004 00 db 0 ;status
0005 Oa db 10 ;priority (initial)
0006 1001 dw stack+38 ;stack pointer
0008 5459504520 db 'type ‘ ;name in upper case

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
128

pdconsole:
0010 ds 1 ;console
0011 ff db Offh ;memseg
0012 ds 2 ;b
0014 ds 2 ;thread
0016 3601 dw buff ;disk set dma address
0018 ds 1 ;user code & disk sel
0019 ds 2 ;dcnt
001b ds 1 ;searchl
001C ds 2 ;searcha
00le ds 2 ;active drives
0020 ds 20 ;register save area
0034 ds 2 ;scratch

; type linked queue control block

typelqcb:
0036 0000 dw 0 ;link
0038 5459504520 db 'type ‘ ;name in upper case
0040 4800 dw 72 ;msglen
0042 0100 dw I ;nmbmsgs
0044 ds 2 ;dqph
0046 ds 2 ;nqph
0048 ds 2 ;mh
004a ds 2 ;mt
004c ds 2 ;bh
004e ds 74 ;buf(72 + 2 byte lin

; type user queue control block

typeuserqcb:
0098 3600 dw typelqcb ; pointer
009a 9cOO dw field ; msgadr

;field for message read from type linked qcb

field:
009C ds 1 ;disk select

console:
009d ds 1 ;console

filename:
009e ds 72 ;message body

; parse file name control block

pcb:
OOe6 9eOO dw ;filename file name address
OOe8 1201 dw fcb ;file control block a

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
129

;type stack & other local data structures

stack:
00ea ds 38 ;20 level stack
0110 ba0: dw type ;process entry point
0112 fcb: ds 36 ;file control block
0136 buff: ds 128 ;file buffer

;bdos call prdeedure

bdos:
Olb6 2aOOOO lhld bdosadr ;hl = bdos address
Olb9 e9 pchl

;type main program

type:
Olba Oe86 mvi c,mkque
Olbc 113600 lxi d,typelqcb
Olbf cdb60l call bdos ; make typelqcb
Olc2 Oe9l mvi c,stprior
Olc4 llc800 lxi d,200
Olc7 cdb601 call bdos ; set priority to 200

forever:
Olca Oe89 mvi c,rdque
Olcc 119800 lxi d,typeuserqcb
Olcf cdb60l call bdos ; read from type queue
Old2 0698 mvi c,parsefn
Old4 lle600 lxi d,pcb
Old7 cdb601 call bdos ; parse the file name
Olda 23 inx h
Oldb 7c mov a,h
Oldc b5 ora 1 ; test for Offffh
Oldd calf02 jz error
OleO 3a9dOO Ida console
Ole3 321000 sta pdconsole ; typepd.console = con
Ole6 OeOf mvi c,openf
Ole8 111201 Ixi d,fcb
Oleb cdb601 call bdos ; open file
Olee 3c inr a ;test return code
Olef calf02 jz error ;if it was Offh, no f
Olf2 af xra a ;else,
Olf3 323201 sta fcb+32 ;set next record to

new$sector:
Olf6 Oe14 mvi c,readf
Olf8 111201 lXi d,fcb

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
130

Olfb cdb60l call bdos ;read next record
Olfe b7 ora a
Olff c22702 jnz done ;exit if eof or error
0202 213601 Ixi h,buff ;point to data sector
0205 Oe8O mvi c,128 ;get byte count

next$byte:
0207 7e mov a,m ;get the byte
0208 5f mov e,a ;save in e
0209 fela cpi ctlz
020b ca2702 jz ;done exit if eof
020e c5 push b ;save byte counter
020f e5 push h ;save address registe
0210 OeO2 mvi c,conout
0212 cdb60l call bdos ;write console
0215 el POP h ;restore pointer
0216 cl POP b ;and counter
0217 23 inx h ;bump pointer
0218 Od dcr c ;dcr byte counter
0219 c207O2 jnz next$byte ; more in this sector
021c c3f601 jmp new$sector ;else, we need a new

error:
021f 112fO2 lxi d,err$msg ;point to error messa
0222 OeO9 mvi c,printf ; get function code to
0224 cdb60l call bdos

done:
0227 Oe93 mvi c,detach
0229 cdb60l call bdos ;detach the console
022c c3ca0l jmp forever

err$msg:
022f OdOa46696c db Odh,Oah,'file not found or bad file na

0251 end

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
131

APPENDIX I: Sample XIOS

 * Note: *

 * This program listing has been *
 * included only as a sample and may not *
 * reflect changes.required by later MP/M *
 * releases. For this reason the reader *
 * should assemble and list the program *
 * as provided on the distribution disk. *

page 0
0000 org 0000h

;note: this module assumes that an org statement will
;provided by concatenating either baseOOOO.asm or b
;to the front of this file before assembling.

;title 1xios for the mds-800'

;(four drive single density version)
;-or-

;(four drive mixed double/single density)
;version 1.1 january, 1980

;
;copyright (c) 1979, 1980
;digital research
;box 579, pacific grove
;california, 93950

0000 = false equ 0
ffff = true equ not false
ffff = asm equ true
0000 = mac equ not asm
ffff = sgl equ true
0000 = dbl equ not sgl

if mac
maclib diskdef
endif

0004 = numdisks equ 4 ;number of drives available

;external jump table (below xios base)
fffd = pdisp equ $-3

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
132

fffa = xdos equ pdisp-3

;mds interrupt controller equates
00fd = revrt equ Ofdh ; revert port
Oofc = intc equ Ofch ; mask port
OOf3 = icon equ Of3h ; control port
Ooff = rtc equ Offh ; real time clock
00fd = inte equ 1111$110lb ; enable rst 1

;mds disk controller equates
0078 dskbase equ 78h ; base of disk io prts
0078 = dstat equ dskbase ; disk status
0079 = rtype equ dskbase+l ; result type
007b = rbyte equ dskbase+3 ; result byte
0079 = ilow equ dskbase+l ; iopb low address
007a = ihigh equ dskbase+2 ; iopb high address
0004 = readf equ 4h ; read function
0006 = writf equ 6h ; write function
0004 = iordy equ 4h ; i/o finished mask
000a = retry eq6 10 ; max retries on disk i/o

;basic i/o system jump vector
0000 c34bOO jmp coldstart ;cold start
wboot:
0003 c34bOO jmp warmstart ;warm start
0006 c35000 jmp const ;console status
0009 c35700 jmp conin ;console character in
000c c35eOO jmp conout ;console character out
000f c3acOO jmp list ;list character out
0012 c36cOO jmp rtnempty ;punch not implemented
0015 c36cOO jmp rtnempty ;reader'not implemente
0018 c306O2 jmp home ;move head to home
001b c3e501 jmp seldsk ;select disk
00le c308-O2 jmp settrk ;set track number
0021 c30dO2 jmp setsec ;set sector number
0024 c31202 jmp setdma ;set dma address
0027 c32402 jmp read ;read disk
002a c32902 jmp write ;write disk
002d c3clOO jmp pollpt ;list status
0030 c31802 jmp sect$tran ;sectortransl

;extended i/o system jump vector
0033 c31501 jmp selmemory ;select memory
0036 c3fcOO jmp polldevice ;poll device
0039 c31601 jmp startclock ;start clock
003c c3lcOl jmp stopclock ;stop clock
003f c32101 jmp exitregion ;exit region
0042 c32801 jmp Maxconsole ;maximum console numb
0045 c32bOl jmp systeminit ;system initializatio
0048 c34001 jmp idle ;idle procedure

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
133

coldstart:
warmstart:

004b OeOO mvi C,0 ;see system init
;cold & warm start in
;for compatibility wi

004d c3faff jmp xdos ;system reset, termin
;mp/m 1.0 console handlers

0002 = nmbcns equ 2 ;number of consoles
0083 = poll equ 131 ;xdos poll function
0000 = pllpt equ 0 ;poll printer
0001 = pldsk equ 1 ;poll disk
0002 = plcoo equ 2 ;poll console out #0 (crt:)
0003 = plcol equ 3 ;poll console out #1 (tty:)
0004 = plcio equ 4 ;poll console in #0 (crt:)
0005 = plcil equ 5 ;poll console in #1 (tty:)

const: ;console status
0050 cd6500 call ptbljmp ; compute and jump to hndlr
0053 7900 dw ptost ; console #0 status routine
0055 c900 dw ptlst ; console #1 (tty:) status rt

conin: ; console input
0057 cd65OO call ptbljmp ; compute and jump to hndlr
005a 8100 dw pt0in ;console #0 input
005c dlOO dw ptlin ;console #1 (tty:) input

conout: ;console output
005e cd6500 call ptbljmp ;compute and jump to hndlr
0061 8dOO dw pt0out ;console #0 output
0063 ddOO dw ptlout ;console #1 (tty:) output

ptbljmp: ;compute and jump to handler
;d = console #
;do not destroy <d>

0065 7a mov a,d
0066 fe02 cpi nmbcns
0068 da6eOO jc tbljmp
006b fl POP psw ;throw away table address
rtnempty:
006c af xra a
006d c9 ret

tbljmp: ; compute and jump to handler
;a = table index

006e 87 add a ;double table index for adr o
006f el POP h ;return adr points to jump tb
0070 5f mov e,a
0071 1600 mvi d,O

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
134

0073 19 dad d ; add table index * 2 to tbl b
0074 5e mov e,m ; get handler address
0075 23 inx h
0076 56 mov d,m
0077 eb xchg
0078 e9 pc hl ; jump to computed cns handler

ascii character equates

007f = rubout equ 7fh
0020 = space equ 20h

; serial i/o port address equates

00f6 = dataO equ Of6h
OOf7 = stso equ dataO+l
OOf4 = datal equ Of4h
OOf5 = stsl equ datal+l
00fa = lptport equ Ofah
00fb = lptsts equ lptport+l

; poll console #0 input

polcio:
ptost: ;return Offh if ready,

;000h if not
0079 dbf7 in stso
007b e602 ani 2
007d c8 rz
007e 3eff mvi a,Offh
0080 C9 ret

;console #0 input

pt0in: ;return character in reg a
0081 Oe83 mvi C,poll
0083 le04 mvi e,plciO
0085 cdfaff call xdos ; poll console #0 inpu
0088 dbf6 in dataO ; read character
008a e67f ani 7fh ; strip parity bit
008c c9 ret

;console #0 output

pt0out: ;req c = character to output
008d dbf7 in stso
008f e601 ani Olh
0091 c29900 jnz coOrdy
0094 c5 push b
0095 cd9dOO call ptOwait ;poll console #0 outp
0098 cl POP b

coOrdy:

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
135

0099 79 mov a,c
009a d3f6 out dataO ;transmit character
009C C9 ret

;wait for console #0 output ready
ptOwait:

009d Oe83 mvi C,poll
009f le02 mvi e,plcoO
00al c3faff jmp xdos ;poll console #0 outp

ret

;poll console #0 output

polcoo:
;return Offh if ready,
;000h if not

OOa4 dbf7 in stso
OOa6 e601 ani Olh
OOa8 c8 rz
OOa9 3eff mvi a,0ffh
00ab c9 ret

;line printer driver:

list: ;list output
00ac dbfb in lptsts
00ae e601 ani Olh
OObO c2bcOO jnz lptrdy
OOb3 c5 push b
OOb4 Oe83 mvi C, poll
OOb6 leOO mvi e, pllpt
OOb8 cdfaff call xdos
00bb cl POP b

lptrdy:
OObc 79 mov a,c
OObd 2f cma
00be d3fa out lptport
00CO C9 ret

;poll printer output

pollpt: ;return Offh if ready,
;000h if not

00cl dbfb in lptsts
OOc3 e601 ani Olh
OOc5 c8 rz
OOc6 3eff mvi a,Offh
00cs C9 ret

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
136

; poll console #1 (tty) input

polcil:
ptlst:

;return Offh if ready,
000h ;if not

OOc9 dbf5 in stsl
00cb e602 ani 2
00cd c8 rz
00ce 3eff mvi a,Offh
OOdO c9 ret

console #1 (tty:) input

ptlin:
;return character in reg a

OOdl Oe83 mvi C,poll
OOd3 le05 mvi e,plcil
OOd5 cdfaff call xdos ;poll console #1 inpu
OOd8 dbf4 in datal ;read character
00da e67f ani 7fh ;strip parity bit
OOdc c9 ret

console #1 (tty:) output

ptlout:
OOdd dbf5 in stsl
OOdf e601 ani Olh
00el c2e9OO jnz colrdy

;reg c character to output
OOe4 c5 push b
0Oe5 cdedOO call ptlwait
OOe8 cl POP b

colrdy:
OOe9 79 mov a,c
00ea d3f4 out datal ;transmit character
00ec c9 ret

;wait for conso1e #1 (tty: output r eady

ptlwait:
00ed Oe83 mvi c,pol1
00ef le03 mvi e,plcol
00fl c3faff jmp xdos ; poll console #1 outp

ret

;poll console #1 (tty:) output

polcol:
;return Offh if ready,
;000h if not

OOf4 dbf5 in stsl
OOf6 e601 ani Olh

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
137

OOf8 c8 rz
OOf9 3eff mvi a,Offh
00fb c9 ret

;mp/m 1.0 extended i/o system

0006 nmbdev equ 6 ; number of devices in poll tb
polldevice:

; reg c device # to be polle
; return Offh if ready,
;000h if not

00fc 79 mov a,c
00fd fe06 cpi nmbdev
00ff da0401 jc devok
0102 3eO6 mvi a,nmbdev ;if dev # >= nmbdev,

;set to nmbdev
devok:
0104 cd6eOO call tbljmp ;jump to dev poll code

0107 clOO dw pollpt ;poll printer output
0109 7dO2 dw poldsk ;poll disk ready
010b a400 dw polcoO ;poll console #0 output
010d f400 dw polcol ;poll console #1 (tty:) outpu
010f 7900 dw polciO ;poll console #0 input
0111 C900 dw polcil ;poll console #1 (tty:)input
0113 6cOO dw rtnempty ;bad device handler

;select / protect memory

selmemory:
;reg bc = adr of mem descript
;bc -> base 1 byte,
; size 1 byte,
; attrib 1 byte,
; bank 1 byte.

;this hardware does not have memory protection or
;bank switching

0115 c9 ret

;start clock
startclock:

; will cause flag #1 to be set
; at each system time unit tick

0116 3eff mvi a,Offh
0118 32e301 sta tickn

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
138

Ollb c9 ret

;stop clock

stopclock:
;will stop flag #1 setting at
;system time unit tick

Ollc af xra a
01-ld 32e301 sta tickn
0120 c9 ret

;exit region

exitregion:
; ei if not preempted

0121 3ae401 lda preemp
0124 b7 ora a
0125 cO rnz
0126 fb ei
0127 c9 ret

;maximum console number

maxconsole:
0128 3eO2 mvi a,nmbcns
0,12a c9 ret

system initialization

systeminit:
; note: this system init assumes that the usarts
; have been initialized by the coldstart boot

; setup restart jump vectors
012b 3ec3 mvi a,Oc3h
012d 320800 sta 1*8
0130 214501 lxi h,intlhnd
0133 220900 shld 1*8+1 ;jmp intlhnd at resta

; setup interrupt controller & real time clock
0136 3efd mvi a,inte
0138 d3fc out intc ;enable int 0',1,7
013a af xra a
013b d3f3 out icon ;clear int mask
013d d3ff out rtc ;enable real time clo
013f c9 ret

; idle procedure

idle:
0140 Oe8e mvi c,dsptch
0142 c3faff jmp xdos ;perform a dispatch,

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
139

;of idle must be use
;without interrupts,

;-or-

;ei simply halt until aw
;hlt interrupt
;ret

; mp/m 1.0 interrupt handlers

0085 = flagset equ 133
008e = dsptch equ 142

intlhnd:
;interrupt 1 handler entry po
;location 0008h contains a j
;to intlhnd.

0145 f5 push psw
0146 3eO2 mvi a,2h
0149 d3ff out rtc ;reset real time clock
014a d3fd out revrt ;revert intr cntlr
014c 3aabOl lda slice
014f 3d dcr a ;only service every 16th slic
0150 32abOl sta slice
0153 ca5901 jz tl6ms ;jump if 16ms elapsed
0156 fl POP psw
0157 fb ei
0158 c9 ret

tl6ms:
0159 3elO mvi a,16
015b 32abOl sta slice ;reset slice counter
015e fl POP psw
015f 22ddOl shld svdhl
0162 el POP h
0163 22elOl shld svdret
0166 f5 push psw
0167 210000 Ixi h,O
016a 39 dad sp
016b 22dfOl shld svdsp ; save users stk ptr
016e 3lddOl lxi sp,intstk+48 ;lcl stk for intr hnd
0171 d5 push d
0172 c5 push b
0173 3eff mvi a,Offh
0175 32e401 sta preemp ;set preempted flag
0178 3ae301 lda tickn
017b b7 ora a ; test tickn, indicate
; ; delayed process(es)

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
140

017c ca8601 jz notickn
017f Oe85 mvi c,flagset
0181 le0l mvi e,l
0183 cdfaff call xdos ;set flag #1 each tic

notickn:
0186 21acOl lxi h,cnt64
0189 35 dcr m ;dec 64 tick cntr
018a c29601 jnz notlsec
018d 3640 mvi m,64
018f Oe85 mvi c,flagset
0191 le02 mvi e,2
0193 cdfaff call xdos ;set flag #2 @ 1 sec

notlsec:
0196 af xra a
0197 32e401 sta preemp ;clear preempted flag
019a cl POP b
019b dl POP d
019c 2adfOl lhld svdsp
019f f9 sphl ;restore stk ptr
OlaO fl POP psw
Olal 2aelOl lhld svdret
Ola4 e5 push h
Ola5 2addOl lhld svdhl

;the following dispatch call will force round robin
;scheduling of processes executing at the same prior
;each 1/64th of a second.
;note: interrupts are not enabled until the ditpatche
;resumes the next process. this prevents interrupt
;over-run of the stacks when stuck or high frequency
;interrupts are encountered.

Ola8 c3fdff jmp pdisp ;mp/m dispatch

;bios data segment

Olab 10 slice: db 16 ;16 slices = 16ms = 1 tick
Olac 40 cnt64: db 64 ;64 tick cntr = 1 sec
Olad intstk: ds 48 ;local intrpt stk
Oldd 0000 svdhl: dw 0 ;saved regs hl during int hnd
Oldf 0000 svdsp: dw 0 ;saved sp during int hndl
Olel 0000 svdret: dw 0 ;saved return during int hndl
Ole3 00 tickn: db 0 ;ticking boolean,true delay
Ole4 00 preemp: db 0 ;preempted boolean

 *
 *

* intel mds-800 diskette interface routines
*
* *

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
141

seldsk: ;select disk given by register c
Ole5 210000 lxi h, 0
Ole8 79 mov a,c
Ole9 fe04 cpi numdisks
Oleb dO rnc ;first, insure good select
Olec e602 ani 2
Olee 32baO2 sta dbank ;then save it
Olfl 21c202 lxi h,sel$table
Olf4 0600 mvi b,O
Olf6 09 dad b
Olf7 7e mov a,m
Olf8 32bcO2 sta iof
Olfb 60 mov h,b
Olfc 69 mov l,c
Olfd 29 dad h
Olfe 29 dad h
Olff 29 dad h
0200 29 dad h ;times 16
0201 llc602 Ixi d,dpbase
0204 19 dad d
0205 c9 ret

home: ;move to home position
;treat as track 00 seek

0206 OeOO mvi C,0

settrk: ;set track address given by c
0208 21beO2 lxi h,iot
020b 71 mov m,c
020c c9 ret

setsec: ;set sector number given by c
020d 79 mov a,c ;sector number to accum
020e 32bfO2 sta ios ;store sector number to iopb
0211 c9 ret

setdma: ;set dma address given by regs b,c
0212 69 mov l,c
0213 60 mov h,b
0214 22cOO2 shld iod
0217 c9 ret

sect$tran: ;translate the sector # in <c
0218 60 mov h,b
0219 69 mov l,c
021a 23 inx h ;in case of no translation
021b 7a mov a,d
021c b3 ora e
021d c8 rz
02le eb xchg
021f 09 dad b ;point to physical sector
0220 6e mov l,m
0221 2600 mvi h,O

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
142

0223 c9 ret

read: ;read next disk record (assuming disk/trk/sec/
0224 OeO4 mvi c,readf ;set to read function
0226 c32bO2 jmp setfunc

write: ;disk write function
0229 OeO6 mvi c,writf

setfunc:
; set function for next i/o (command in reg-c)

022b 21bcO2 lxi h,iof ;io function address
022e 7e mov a,m ;get it to accumulator for mas
022f e6f8 ani 1111$1000b ;remove previous comma
0231 bl ora c ;set to new command
0232 77 mov m,a ;replaced in iopb

; single density drive 1 requires bit 5 on in se
; mask the bit from the current i/o function

0233 e620 ani 0010$0000b ;mask the disk select
0235 2lbfO2 lxi h,ios ;address the sector se
0238 b6 ora m ;select proper disk ba
0239 77 mov m,a ;set disk select bit o

waitio:
023a OeOa mvi c,retry ;max retries before perm error

rewait:
; start the i/o function and wait fok- completion

023c cd9302 call intype ;in rtype
023f cda002 call inbyte ;clears the controller
0242 3abaO2 lda dbank ;set bank flags
0245 b7 ora a ;zero if drive 0,1 and
0246 3ebb mvi a,iopb and Offh;low address for iopb
0248 0602 mvi b,iopb shr 8 ;high address for iopb
024a c25502 jnz iodrl ;drive bank 1?
024d d379 out ilow ;low address to contro
024f 78 mov a,b
0250 d37a out ihiqh ;high address
0252 c35aO2 jmp waitO ;towait for complete

iodrl: ;drive bank 1
0255 d389 out ilow+10h ;88 for drive bank 10
0257 78 mov a,b
0258 d38a out ihigh+loh

waitO:
025a c5 push b ; save retry count
025b Oe83 mvi C, poll ; function poll
025d leOl mvi e, pldsk ; device is disk
025f cdfaff call xdos
0262 cl POP b ; restore retry counte

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
143

; check io completion ok
0263 cd9302 call intype ;must be io complete

; 00 unlinked i/o complete, 01 linked i/o com
; 10 disk status changed 11 (not used)

0266 fe02 cpi 10b ;ready status change?
0268 ca8602 jz wready

; must be 00 in the accumulator
026b b7 ora a
026c c28cO2 jnz werror ;some other condition,

; check i/o error bits
026f cda002 call inbyte
0272 17 ral
0273 da8602 jc wready ;unit not ready
0276 lf rar
0277 e6fe ani 11111110b ;any other errors? (d
0279 c28cO2 jnz werror

; read or write is ok, accumulator contains zero
027c c9 ret

poldsk:
027d cdad02 call instat ;get current
0280 e604 ani iordy ; operation co
0282 c8 rz ;not done
0283 3eff mvi a,Offh ;done flag
0285 c9 ret ;to xdos

wready: ;not ready, treat as error for now
0286 cda002 call inbyte ;clear result byte
0289 c38cO2 jmp trycount

werror: ;return hardware malfunction (crc, track, seek
; the mds controller has returned a bit in each
; of the accumulator, corresponding to the condi
; 0 - deleted data (accepted as ok above)
; 1 - crc error
; 2 - seek error
; 3 - address error (hardware malfunction)
; 4 - data over/under flow (hardware malfu
; 5 - write protect (treated as not ready)
; 6 - write error (hardware malfunction)
; 7 - not ready
; (accumulator bits are numbered 7 6 5 4 3 2 1 0
trycount:
; register c contains retry count, decrement 'ti

028c Od dcr c
028d c23cO2 jnz rewait ;for another try

; cannot recover from error

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
144

0290 3eOl mvi a,l ;error code
0292 c9 ret

; intype, inbyte, instat read drive bank 00 or 1
0293 3abaO2intype: lda dbank
0296 b7 ora a
0297 c29dO2. jnz intypl ;skip to bank 10
029a db79 in rtype
029c c9 ret
029d db89 intypl: in rtype+10h ;78 for 0,1 88 for 2,
029f c9 ret

02aO 3abaO2inbyte: lda dbank
02a3 b7 ora a
02a4 c2aaO2 jnz inbytl
02a7 db7b in rbyte
02a9 c9 ret
02aa db8b inbytl: in rbyte+10h
02ac c9 ret
02ad 3abaO2instat: lda dbank
02bO b7 ora a
02bl c2b7O2 jnz instal
02b4 db78 in dstat
02b6 c9 ret
02b7 db88 instal: in dstat+10h
02b9 c9 ret

; data areas (must be in ram)

02ba 00 dbank: db 0 ;disk bank 00 if drive 0,1
; 10 if drive 2,3

iopb: ;io parameter block
02bb 80 db 80h ;normal i/o operation
02bc 04 i0f: db readf ;io function, initial read
02bd 01 ion: db 1 ;number of sectors to read
02be 02 iot: db 2 ;track number
02bf 01 ios: db 1 ;sector number
02cO 0000 iod: dw $-$;io address

sel$table:
if sgl

02c2 00300030 db 00h, 30h, 00h, 30h ; drive select
endif
if dbl
db 00h, 10h, 00h, 30h ; drive select
endif

if mac and sgl

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
145

disks numdisks ;generate dri
diskdef 0,1,26,6,1024,243,64,64,2
diskdef 1,0
diskdef 2,0
diskdef 3,0
endef
endff

if mac and dbl
disks numdisks ;generate dri
diskdef 0,1,52,,2048,243,128,128,2,0
diskdef 1,0
diskdef 2,1,26,6,1024,243,64,64,2
diskdef 3,2
endef
endif

if asm
02c6 dpbase equ $;base of disk param bl
02c6 15030000 dpeO: dw xltO,0000h ;translate table
02ca 00000000 dw 0000h,0000h ;scratch area
02ce 2fO3O6O3 dw dirbuf,dpbO ;dir buff, parm block
02d2 ce03afO3 dw csvO,alvO ;check, alloc vectors
02d6 15030000 dpel: dw xltl,0000h ;translate table
02da 00000000 dw 0000h,0000h ;scratch area
02de 2fO3O6O3 dw dirbuf,dpbl ;dir buff, parm block
02e2 fd03deO3 dw csvl,alvl ;check, alloc vectors
02e6 15030000 dpe2: dw xlt2,0000h ;translate table
02ea 00000000 dw 0000h,0000h ;scratch area
02ee 2fO3O6O3 dw dirbuf,dpb2 ;dir buff, parm block
02f2 2cO4OdO4 dw csv2,alv2 ;check, alloc vectors
02f6 15030000 dpe3: dw xlt3,0000h ;translate table
02fa 00000000 dw 0000h,0000h ;scratch area
02fe 2fO3O6O3 dw dirbuf,dpb3 ;dir buff, parm block
0302 5bO43cO4 dw csv3,alv3 ;check, alloc vectors
0306 dpbO equ $;disk param block

endif

if asm and dbl
dw 52 ;sec per track
db 4 ;block shift
db 15 ;block mask
db 0 ;extnt mask
dw 242 ;disk size-1
dw 127 ;directory max
db 192 ;allocO
db 0 ;allocl
dw 32 ;check size
dw 2 ;offset

x1to equ 0 ;translate table
dpbl equ dpbO
xltl equ x1to
dpb2 equ $

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
146

endif

if asm
0306 laOO dw 26 ;sec per track
0308 03 db 3 ;block shift
0309 07 db 7 ;block mask
030a 00 db 0 ;extnt mask
030b f200 dw 242 ;disk size-1
030d 3fOO dw 63 ;directory max
030f cO db 192 ;allocO
0310 00 db 0 ;allocl
0311 1000 dw 16 ;check size
0313 0200 dw 2 ;offset

endif
if asm and sgl

0315 x1to equ $
endif
if asm and dbl

xlt2 equ $
endif
if asm

0315 01 db 1
0316 07 db 7
0317 Od db 13
0318 13 db 19
0319 19 db 25
031a 05 db 5
031b Ob db 11
031c 11 db 17
031d 17 db 23
03le 03 db 3
031f 09 db 9
0320 Of db 15
0321 15 db 21
0322 02 db 2
0323 08 db 8
0324 Oe db 14
0325 14 db 20
0326 la db 26
0327 06 db 6
0328 Oc db 12
0329 12 db 18
032a 18 db 24
032b 04 db 4
032c Oa db 10
032d 10 db 16
032e 16 db 22

endif

if asm and sgl

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
147

0306 = dpbl equ dpbO
0315 = xltl equ x1to
0306 = dpb2 equ dpbO
0315 = xlt2 equ x1to
0306 = dpb3 equ dpbO
0315 = xlt3 equ x1to

endif

if asm and dbl
dpb3 equ dpb2
xlt3 equ xlt2

endif

if asm
032f begdat equ $
032f dirbuf: ds 128 ;directory access buff

endif

if asm and sgl
03af alvO: ds 31
03ce cSVO: ds 16
03de alvl: ds 31
03fd csvl: ds 16

endif

if asm and dbl
alvo: ds 31
cSVO: ds 32
alvl: ds 31
csvl: ds 32

endif

if asm
040d alv2: ds 31
042c csv2: ds 16
043c alv3: ds 31
045b csv3: ds 16
046b = enddat equ $
013c = datsiz equ $-begdat

endif

046b 00 db 0 ; this last db is reqld to
; ensure that the hex file
;output includes the entire
;diskdef

046c end

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
148

APPENDIX J: MP/M DDT Enhancements

The following commands have been added to the MP/M
debugger to provide a function similar to CP/M's SAVE
command and to simplify the task of patching and debugging PRL
programs.

W: WRITE DISK

The purpose of the WRITE DISK command is to provide
the capability to write a patched program to disk. A single
parameter immediately follows the 'W' which is the number of
sectors (128 bytes/sector) to be written. This parameter is
entered in hexadecimal.

V: VALUE

The purpose of the VALUE command is to facilitate use of
the WRITE DISK comm6nd by computing the parameter to follow the
'W'. A single parameter immediately follows the 'V' which is the
NEXT location following the last byte to be written to disk.

Normally a user would read in a file, edit it, and then
write it back to disk. The read command produces a value for
NEXT. This value can be entered as a parameter folllowitig the
'V' command and the number of sectors to be written out using
the 'W' command will be computed and displayed.

N: NORMALIZE

The purpose of the NORMALIZE command is to relocate a
page relocatable file which has been read into memory by the
debugger. To debug a PRL program the user would read it in
with the 'R' command and then use the 'N' command to relocate
it within the memory segment the debugger is executing.

B: BITMAP BIT SET/RESET

The purpose of the BITMAP BIT SET/RESET command is to
enable the user to update the bitmap of a page relocatable file.
To edit a PRL file the user would read the file in, make
changes to the code, and then determine the bytes which needed
relocation (E.G. the high order address bytes of jump
instructions). The 'B' command would then be used to update
the bit map. There are two parameters specified, the address
to be modified (0100H is the base of the program segment),
followed by a zero or a one. A value of one specifies bit
setting.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
149

APPENDIX K: Page Relocatable (PRL) File Specification

Page relocatable files are stored on diskette in
the following format:

Address: Contents:

0001-0002H Program size

0004-0005H Minimum buffer requirements (additional memory)

0006-OOFFH Currently unused, reserved for future allocation

0100H + Program size = Start of bit map

The bit map is a string of bits identifying which bytes
are to be relocated. There is one bit map byte per 8 bytes of
program. The most significant bit (7) of the first byte of
the bit map indicates whether or not the first byte of the
program is to be relocated. A bit which is on indicates that
relocation is required. The next bit, bit(6), of the first
byte of the bit map corresponds to the second byte of the
program.

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
150

INDEX

Abort (^c) , 5
ABORT, 5, 16
Abort Specified Process, 80
Absolute Memory Request, 62
ABTPB, Abort Parameter Block, 80
Access Drive, 51
APB, Assign Parameter Block, 74
ASM, Assembler, 10
Assign Console, 74
ATTACH, 5
Attach Console, 72

Bank Switched Memory, 102, 112
BDOS, 29-52, 108, 118
BIOS, 96-101
BNKBDOS, 19, 109
Boot, 97

Call Resident System Procedure, 76
Calling Conventions, 21
Circular Queue, 54
CLI, Command Line Interpreter, 20
CLICMD, CLI Command Parameter, 75
Close File, 38
Conditional Read Queue, 68
Conditional Write Queue, 69
Conin, 98
Conout, 98
CONSOLE, 8
Console I/O Direct, 32
Console Input, 29, 30
Console Number, 78
Console Output, 30, 31
Console Status, 35
CONSOLE.DAT, 19
Const, 98
Control Characters, 6
CPB, Call Parameter Block, 76
Create Process, 71

Date and Time, 15
DDT, Dynamic Debugging Tool, 12, 148
Delay, 70
Delete File, 40
Delete Queue,.67
Detach (^d), 5
Detach Console, 73
DIR, File Directory, 10
Direct Console I/O, 32
Diskette Organization, 94

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
151

Dispatch, 70
DMA Address, 43
DSKRESET, 8
DUMP, 11, 122

ERA, ERAQ, Erase File(s), 9
Exitregion, 103

FCB, File Control Block, 25, 26
File Attributes, 45
File Structure, 24
Flag Assignments, 116
Flag Wait, 65
Flag Set, 65
Free Drive, 52

GENHEX, 11
GENMOD, 11
GENSYS, 110
Get ' Console Number, 78
Get Date and Time, 79

Home, 98

Idle, 104
Interrupt Service Routines, 105

LDRBIOS, 86
Line editing, 6
Linked Queue, 55
List, 98
List Output, 31
Listst, 100
LOAD, 11
Login Vector, 42

Make File, 41
Make Queue, 66
Maxconsole, 103
Memory Allocation, 15
MD, Memory Descriptor, 62
Memory Free, 64
Memory Segment Base Page, 120
Memory Structure, 18
MPMLDR, 86, 114
MPMSTAT, 13

ODOS, 108
Open File, 37
Open Queue, 67

Page Relocatable Programs, PRL, 81, 149
Parse Filename, 77

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
152

PFCB, Parse Filename Control Block, 77
PIP, Peripheral Interchange Program, 10
Poll, 64
Polldevice, 102
Print String, 33
PD, Process Descriptor, 59
Process Desciptor Address, 79
Process Naming Conventions, 61
Process Priority, 72, 117
PRLCOM, 11

QCB, Queue Control Block, 54-57
Queue, 53
Queue Naming, 58

Raw Console Input, 30
Raw Console Output, 31
RDT, Relocatable DDT, 12
Read, 100
Read Console Buffer, 34
Read File Random, 47
Read File Sequential,'40
Read Queue, 68
Read/Only Vector, 45
Relocatable memory Request, 63
REN, Rename File, 10, 42
Reset Disk System, 8, 36
Reset Drive, 51
Resident System Procedure, 76, 83
Return Process Descriptor Address, 79
RSP, Resident System Process, 19, 83, 108

SCHED, Scheduler, 16
Search for First, Next, 38, 39
Sectran, 101
Selmemory, 102
Send CLI Command, 75
Seldsk, 99
Select Disk, 36
Set Console, 73
Set DMA Address, 43
Set Priority, 72
Set Random Record, 50
Setdma, 100
Setsec, 99
Settrk, 99
SPOOLer, 15
Startclock, 102
STAT, Status, 11
Stopclock, 103
STOPSPLR, 15
SUBMIT, 10
System Data, 107

MP/M User's Guide

(All Information Herein is Proprietary to Digital Research.)
153

System Data Address, 78
System File Components, 107
System Generation, 110
System Reset, 29
SYSTEM.DAT, 19
Systeminit, 103

Text Editing, ED, 10
Terminate-Process, 71
Tick, 106
Time, 15
Time Base Management, 106
TOD, Date and Time, 15, 79
TPA, 20
TYPE, 9

UQCB, User Queue Control Block, 57
USER, get/set user code, 8, 46
User Queue Control Block, 57
USER,SYS.STK, 19

Version Number, 35

Wboot, 98
Write, 100
Write File Random, 48, 52
Write File Sequential, 41
Write Protect Disk, 44
Write Queue, 69

XDOS, 19, 108, 119
XIOS, 19, 87
XIOS External Jump Vector, 106

