MP/M I
Operating System
PROGRAMMER'S GUIDE

Copyri ght © 1981

Di gital Research
P. O Box 579
801 Li ghthouse Avenue
Paci fic G ove, CA 93950
(408) 649- 3896
TWK 910 360 5001

Al Rights Reserved

Al Information Presented here is Proprietary to Digital Research

COPYRI GHT

Copyright 1981 by Digital Research. Al rights
reserved. No part of this publication may be
reproduced, transmtted, transcribed, stored in a
retrieval system or translated into any |anguage or
conputer |anguage, in any formor by any neans,

el ectroni c, mechanical, magnetic, optical, chemnical,
manual or otherw se, without the prior witten

perm ssion of Digital Research, Post Ofice Box 579,
Paci fic Gove, California, 93950.

However, this manual is tutorial in nature.

Thus, the reader is granted permi ssion to include

t he exanpl e prograns, either in whole or in part, in
hi s own prograns.

DI SCLAI MER

Di gital Research makes no representations or
warranties with respect to the contents hereof and
specifically disclainms any inplied warranties of
nerchantability or fitness for any particul ar
purpose. Further, Digital Research reserves the
right to revise this publication and to nmake changes
fromtime to time in the content hereof wthout
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/Mis a registered trademark of Digital Research.
CP/NET, MP/M and MP/M 11 are tradenarks of Digital
Resear ch.

The "MP/IM 1| Progranmer's Quide" was prepared using
the Digital Research TEX Text Formatter and printed
inthe United States of Anerica by Commercial Press
of Monterey.

KRRk S S O S R A

* First Edition: August 1981 *
* Second Edition: August 1982 *

KRRk S S O S R S R

All Information Presented here is Proprietary to Digital Research

Foreword

M/MIlI T.M, is a multi-user operating systemfor mcroconputers
that use the Intel 8080, the Zilog Z800, or sinmilar 8-bit type
architecture. It will support nulti-termnal access with multi
progranmm ng at each ternminal. It uses the sane Basic Di sk Qperating
System (BDOS) as CP/M@thus assuring conpatibilty of existing
progranms runni ng under CP/M

The mi ni mrum hardware environnment for MP/M 11 nust include an
8080 or Z80 processor, 32K bytes of random access nenory (RAM, a
system console, and a real-tine clock. A typical MP/MI1I Kkernel
occupi es approxi mately 15K bytes.

Thi s manual describes the progranming interface to MP/MI11. It
gives a general description of the nodules that conprise the
operating system the manner in which MP/ MIIl nanages the nmenory
resource and nonitors running processes, as well as detailed
descriptions of all the systementry points. A so included are
descriptions of several utility prograns that are useful for
creating and debuggi ng progranms under MP/MI1. This manual is not
intended as a tutorial. Therefore, famliarity with the nateri al
covered in the User's Guide and with processor architecture and
assenbly | anguage in general is required.

All Information Presented here is Proprietary to Digital Research

v

All Information Presented here is Proprietary to Digital Research

Table of Contents

1 Introduction to MP/ MII

2 The BDOS
2.

2.

o 00 b~ W

1

2

Overview of MP/M I | Features
MP/ M 11 Nucl eus .

Process Di spat chi ng
Queue Managenent

Fl ag Managenent

Devi ce Polling

Menory Managenent .
System Ti mi ng Functions

PrRreRR e
NENINERIRENES
~NOoOOR~RWNE

M/ M1l Menory Structure .

Term nal Message Process .

Command Line Interpreter

Transi ent Prograns .

Resi dent System Processes .

BDOS and XDOS Cal l'i ng Conventi ons
Interface

BDOS Consol e and List I/O Interface
BDCOS Fil e System

Fil e Nam ng Conventi ons . .
Disk Drive and File O gani zatlon
File Control Block Definition
User Nunber Conventions . .
Directory Labels and XFCBs

Fil e Passwords .

File Date and Tine Starrps

File Open Mdes

File Security .

.10 Concurrent File Access

.11 Multi-Sector 1/O0 . .

.12 X1 OGS Bl ocki ng and Debl ocki ng
.13 Reset, Access and Free Drive

. 14 BDGCS Error Handl i ng

O©CO~NOOOUITAWNE

NISEINESESESESESISISISIST SIS
NNPNNNNNDNNNDNDNDNDN

V

All Information Presented here is Proprietary to Digital Research

Consol e and Li st Devi cé i\/a.nage.rre.nt.

=

=Y

QOO NO N B

=
=Y

[y
N

15

18

23
24

26
28
29
33
34
36
37
38

41
43
43
44
47

2

2.

.3

4

Table of Contents
(continued)

Base Page Initialization .

BDOS Function Calls

3 XDOS Interface

4 ASM

(o2 NN @ 2 BRI S

I ntroduction .

Process Descriptor Data Structure
Queue Data Structures .

3.3.1 Gircular Queues

3.3.2 Linked Queues
3.3.3 User Queue Control Block .
3. 3.4 Queue Naning Conventions .
Menory Descriptor Data Structure .
System Dat a Page .

XDOS | nternal Data Segnent

XDOS Error Handling

XDOS Function Calls

Overvi ew

Pr ogr am For mat

Form ng t he Operand
Label s . Co
Nureri ¢ Const ants

Reserved Words
String Constants . . .

el s ke
U WN R

Precedence of Operators
Assenbl er Directives .
4.4.1 The ORG Directive

4.4.2 The END Directive
4.4.3 The EQU Directive

Vi

All Information Presented here is Proprietary to Digital Research

Arithnetic and Logi cal Cpérétbré

53

57

111
111
116
116
118
120
121
121
122
124
125

126

154

154
154
155
156
157
158

159
160

160
161

4.4.4 The SET Directive . .
4.4.5 The |IF and ENDI F Directives .
4.4.6 The DB Directive
4.4.7 The DWDirective
4.4.8 The DS Directive

4.5 Operati on Codes

4.6 Error Messages

5 ROT
5.1 RDT Overvi ew

5.2 I nvoki ng RDT .

5.3 RDT Command Conventi ons

5.4 Term nati ng RDT

5.5 RDT Commands .
5.5.1 The A (Assenble) Command
5.5.2 The B (Bitmap Bit Set/Reset) Commind .
5.5.3 The D (Display) Command -
5.5.4 The F (Fill) Command .
5.5.5 The G (&) Comand
5.5.6 The | (lnput File) Cormand .
5.5.7 The L (List) Command .
5.5.8 The M (Mwve) Command .
5.5.9 The N (Normalize) Command .
5.5.10 The R (Read) Command .
5.5.11 The S (Set) Conmand .
5.5.12 The T (Trace) Command .
5.5.13 The U (Untrace) Conmand
5.5.14 The V (Val ue) Conmand
5.5.15 The W (Wite) Command. . .
5.5.16 The X (Exami ne CPU State) Cormand

Table of Contents
(continued)

VI

All Information Presented here is Proprietary to Digital Research

161
162
163
163
164

164

171

173
174
175
175

175
175
176
176
177
177
178
178
178
179
179
180
181
181
181
182

Table of Contents
(continued)

6 OQher Progranmming Utilities

6.1 GENHEX.
6.2 GENMOD.
6.3 PRLCOM
6.4 DUMP.
6.5 LQOAD.

7 PRL File Generation
7.1 PRL Format . . .
7.2 CGenerating a PRL

8 RSP CGeneration

8.1 RSPs and Resi dent System Procedures .

8.2 Generating an RSP .
8.3 RSP Code
8.4 Banked RSPs .
9 SPR Generation
9.1 System Page Rel ocatable Files .

9.2 Cenerating an SPR

VIII

All Information Presented here is Proprietary to Digital Research

183
183
184
184
185

187
187

191
191
191

192

193

193

Appendixes

A Flag Assignnents .

B Process Priority Assignments .
C BDOS Function Sunmary

D XDOS Function Sunmary

E Sanmpl e Page Rel ocatabl e Program
F Sanmpl e Resident System Process .
G Acronyns and Conventions .

H 4 ossary .

I ASCI| and Hexadeci mal Conversi ons

IX

All Information Presented here is Proprietary to Digital Research

195

197

199

201

203

209

213

215

219

X

All Information Presented here is Proprietary to Digital Research

Section |
Introduction to MP/M 11

1.1 Overview of MP/M || Features

MP/M 11 is a mcroconputer operating systemthat supports
multiple termnals with multi-progranm ng at each terminal. Upward
conpatible with CP/M MP/MII presents a CP/Minterface to each
termnal. In fact, nost CP/M prograns can run wthout nodification
under MP/MI1. However, MP/MII is not limted to this nodel.
Using MM/ MI1's powerful rmulti-progranm ng capability, a single
terminal can initiate nore than one program In addition, the
system functions used by MMM 11 to control the mnulti-progranm ng
environnent are available to application prograns. As a result,
MP/ M 1l supports extended features beyond the CP/ M nodel such as
communi cati on between and synchroni zati on of independently running
progr amns.

Under MP/M 11, there is an inportant distinction between a
program and a process. A programis sinply a block of code residing
somewhere in nmenory or on disk; it is essentially static. A process
on the other hand, is dynanmic, and can be thought of as a "Il ogical
machi ne" that not only executes the programi s code, but al so
executes code in the operating system Wen MPMIIl |oads a
program it also creates a process that is associated with the
| oaded program Subsequently, it is the process, rather than the
programthat controls all access to the system s resources. Thus,
MP/M 11 nonitors the process, not the program This distinction is
a subtle one, but vital to understanding the operation of the system
as a whol e.

Progranms running under MP/M 11 fall into three categories:
CP/ M progranms, MP/M 1l system processes, and MP/ M |1 Resident System
Processes. The first category consists of CP/MIike prograns that
MP/ M1l loads into an avail able nmenory segnment. MP/MII| supports
froml to 7 menory segnents or partitions that can be [oaded with
prograns. once |oaded and initiated, a program becones associ ated
with a process that is maintained by the M/ MII real-tine nucl eus.

The second category consists of MP/M Il system processes that
perform operating systemtasks. For exanple, the Commuand Line
Interpreter (CLI), is the systemprocess that |oads and initiates
user prograns.

The final category consists of those processes that can be
optionally integrated into MP/ M1l during system generation, thus
becom ng a part of the system These processes are call ed Resident
System Processes (RSPS) . Wth RSPs, users can wite custom
processes and include themin the systemalong with those supplied
with MPMMI1Il (see Section 1.7 and Section 8) . Al processes running
under MP/MI1 conpete for the CPU and ot her systemresources on a
priority basis under control of the real-time nucleus.

Al Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 1.1 Overview of MP/MII Features

The following list briefly sumuarizes MP/MI11's capabilities.

. Multi-termnal support. MP/MII| supports up to 16
termnals. Also, a single process can access nultiple
term nal s.

. Mul ti-progranm ng at each terminal. Any system consol e can

initiate multiple prograns or processes. In addition, a
process can generate sub-processes.

. Support for bank-switched nenmory. MP/MI11's nmenory
segnments can either reside in comon nenory or be
di stributed through separate nenory banks, thereby
extending the systenmis effective menory capacity.

. I nt er-process conmuni cation, synchronization, and nutual
excl usion. These functions are provi ded by queues.

. Logi cal interrupt mechanismusing flags. This allows MY/ M
Il to interface with any physical interrupt structure.

. Systemtimng functions. These functions enabl e processes
runni ng under MP/M 11l to conmpute el apsed tines, delay
execution for specified intervals, and to access and set
the current date and tinme. In addition, the user can
schedul e progranms to be run by date and tine. The system
timng is also used to provide round-robin scheduling of
conput e- bound processes executing at the sane priority.

. User -sel ected options at systemgeneration tinme. The
avai |l abl e options include the nunber of system consol es,
t he nunber, size, and location of nmenory segnments, and the
maxi mum nunber of files and | ocked records supported by the
system at one tine. Al so, the user can sel ect which RSPs
to include with MM MI1 during system generation.

Functionally, MP/MII is conposed of three distinct nodul es:
the Basic Disk Qperating System (BDOS) , the Extended D sk Operating
System (XDOS) , and the Extended 1/0O System (XICS) . The MP/ M 1| BDCS
is an upward-conpatible version of the single-user CP/MBDCS. In
nost cases, CP/ M prograns that nake BDOS calls for I/O or direct
BICS calls for printer and console I/OQ can run under MP/M I
wi t hout nodification. However, MP/MIIl's BDOS is extended to
provi de support for nultiple console and |ist devices. In addition,
the file systemis extended to provide services required in multi
user environments.

2

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 1.1 Overview of MP/MII Features
Two maj or extensions to the file system are:

. File locking. Normally, files opened under MP/M 11 cannot
be opened or deleted by other users. This feature prevents
accidental conflicts with other users.

. Shared access to files. As a special option, independent
users can open the sane file in shared or unl ocked node.
MP/ M Il supports record | ocking and unl ocki ng conmands for
files opened in this node, and protects files opened in
shared node from del etion by other users.

The XDOS nodul e gives MP/ M Il its multi-progranm ng
capabilities. It contains the real-time nucleus that nonitors the
execution of processes and arbitrates conflicts for the systenis
resources. It also includes the Terminal nmessage Process (TMP)
whi ch reads and echoes command |ines for the system consol es, and
the Conmand Line Interpreter (CLI) which accepts TMP conmmand | i nes
and initiates user prograns and RSPs. The XDOS al so contains the
set of extended MP/MI1 functions that can be accessed by user
progr amns.

The XICS nodule is sinmlar to the CP/MBIGCS nodul e but is
extended in several ways. Primitive functions such as console 1/0
are nodified to support multiple consoles. Several new primtive
functions support MP/MII's additional features. Al so, new
facilities are added to elimnate wait |oops. The XIOS is the
har dwar e- dependent nodul e that defines MPMMI11l's interface to a
particul ar hardware environnment. Al though a standard XICS is
supplied by Digital Research, the XIOS is usually custom zed to
support the user's own hardware environment. Note: processes
runni ng under MP/ M 11 can nmake direct XICS calls only for consol e
and list I/Q

When MP/MI1 is configured for a single console and is
executing a single program its speed approxi mates that of CP/M
The overhead of the MP/ M 11 dispatcher in such an environment wll
be 7 to 15% In environnents where either multiple processes and/or
users are running, the speed of each individual process is degraded
in proportion to the amount of I/O and conpute resources required.
A process that perforns a | arge amount of 1/Oin proportion to
conputing exhibits only mnor speed degradation. This also applies
to a process that perforns a | arge anount of computing, but is
runni ng concurrently with other processes that are largely I/0
bound. on the other hand, significant speed degradati on occurs in
t hose environments where nore than one conpute-bound process is
runni ng.

3

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 1.2 MP/ M Il Nucl eus
1.2 VP M 11 Nucl eus

MP/MI1Il is controlled by a real-time nulti-tasking nucl eus that
resides within the XDOS nodul e. This nucl eus performs process
di spat chi ng, nmenory managenent, and systemtining tasks. It also
performs queue nanagenent, flag managenent, device polling, and
consol e and |ist device managenent. The foll ow ng sections describe
these functions in greater detail. Many of the system functions
that performthese tasks can also be called by user prograns with
t he XDOS functions.

Al though MP/M 11l is a multi-processing operating system at any
given point in time, only one process has access to the CPU
resource. Unless it is specifically witten to conmuni cate or
synchroni ze execution with other processes, it runs unaware that
ot her processes may be conpeting for the systenm s resources.
Eventual |y, the system suspends the process from execution and gives
anot her process the opportunity to run

1.2.1 Process Di spat chi ng

The primary task of the nucleus is transferring the CPU
resource fromone process to another. This task is called
di spatching and is perforned by a part of the nucleus called the
Di spatcher. Under MP/MI1, each process is associated with a data
structure called a Process Descriptor (see Section 3.2) The
Di spat cher uses this data structure to save and restore the current
state of a running process. Every process in the systemresides in
one of three states: ready, running, or suspended. A ready process
is one that is waiting for the CPU resource. A suspended process is
one that is waiting for some other systemresource or a defined
event. A running process is one that the CPUis currently
executi ng.

A di spatch operation for a running process can be described as
fol | ows:

1) The D spatcher suspends the process from execution and
stores the current state in the Process Descriptor

2) The Dispatcher scans all the suspended processes on the
Ready List and selects the one with the highest priority.

3) The Dispatcher restores the state of the sel ected process
fromits Process Descriptor and gives it the CPU resource.

4) The process executes until it nakes a systemcall, or an

interrupt, or a tick of the system clock occurs. Then
di spatching is repeated.

4

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 1.2 MP/ M Il Nucl eus

Only processes that are placed on the Ready List are eligible
for selection during dispatch. By definition, a process is on the
Ready List if it is waiting for the CPU resource only. Processes
waiting for other systemresources cannot execute until their
resource requirenents are satisfied. Under MMM 11, a process is
bl ocked fromexecution if it is waiting for

* a queue nessage so that it can conplete a read queue
operation.

» space to becone available in a queue so it can conplete a
gueue wite operation

« systemflag to be set.
e console or list device to becone avail abl e.

 a specified nunmber of systemclock ticks before it can be
renmoved fromthe system Del ay List.

e an I /O event to conplete.

These situations are discussed in nore detail in the follow ng
secti ons.
MP/MIIl is a priority-driven system This means that the

Di spat cher selects the highest priority ready process and gives it
the CPU resource. Processes with the same priority are "round
robi n" schedul ed. That is, they are given equal CPU tine slices
when executing CPU bound code. Wth priority dispatching, control
is never passed to a lower priority process if there is a higher
priority process on the Ready List. Since high priority conpute
bound processes tend to nonopolize the CPU resource, it is advisable
to lower their priority to avoid degradi ng overall system
performance. In addition, conpute-bound processes can nake XDOS

Di spatch calls periodically to pronote sharing of the CPU resource
in those systens that do not support a clock. Wien a process nakes
a Dispatch call, the call appears as a null operation to the
process, but allows other processes to gain access to the CPU
resour ce.

MP/ M 11 requires that at |east one process be running at al
times. To ensure this, the system maintains the | DLE process on the
Ready List so it can be dispatched if there are no other processes
avai |l abl e. The IDLE process runs at a very low priority and is
never bl ocked from execution. It does not perform any useful task,
but sinply gives the systema process to run when no ot her ready
processes exist.

5

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 1.2 MP/ M Il Nucl eus
1.2.2 Queue Managenent

Queues perform several critical functions for processes running
under MP/M1I. They are used for comunicati ng nessages between
processes, for synchronizing process execution, and for nutua
excl usion. Queues are special data structures, inmplemented in MP/ M
Il as "menory files" that contain roomfor a specified nunber of
fixed I ength nessages (see Section 3.3). Like files, queues are
nmade, opened, deleted, read from and witten to with XDOS function
calls. When a queue is created with the XDOS Make Queue command, it
i s assigned an 8-character name that identifies the queue in XDOS
Open Queue conmmands. As the nane inplies, nessages are
read froma queue on a first-in, first-out basis.

A process can read nessages froma queue or wite nessages to a
gueue in two ways: conditionally or unconditionally. If no
nessages exi st in the queue when a conditional read is performed, or
the queue is full when a conditional wite is perfornmed, the system
returns an error code to the calling process. On the other hand, if
a process perfornms an unconditional read froman enpty queue, the
system suspends the process from execution until another process
wites a nmessage to the queue. A process suspended in this manner
is placed on the queue's Dequeue list. A similar situation occurs
when a process nmakes an unconditional wite to a full queue. A
process suspended in this way is placed on the queue's Enqueue |ist.
MP/ M 11 uses these Enqueue/ Dequeue lists to synchronize process
executi on.

When nore than one process resides on a queue's Enqueue or
Dequeue list, preference is given to the higher priority process.
Conflicts involving processes with the same priority are resol ved on
a first-cone first-serve basis.

Mut ual excl usi on queues are a special type of queue under MP/ M
Il. They contain one nessage of zero length and are assigned a nane
begi nning with the upper-case letters, MX. In effect, a nmutua
excl usion queue is a binary semaphore. Mitual exclusion queues
ensure that only one process has access to a resource at a tine.
Access to a resource protected by a mutual exclusion queue takes
pl ace as foll ows:

1) The process issues an unconditional Read Queue call fromthe
gueue protecting the resource, thereby suspending itself
until the nessage is avail able.
2) The process accesses the protected resource.
3) The process wites the nessage back to the queue when it has
finished using the protected resource, thus freeing the
resource for other processes.

As an exanple, the disk system nutual exclusion queue, MXdi sk,
ensures that processes serially access the BDOS file system

6

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 1.2 MP/ M Il Nucl eus

Mut ual excl usi on queues have one other feature that is
different fromnormal queues. Wen a process reads a nessage froma
nmut ual excl usi on queue, the nucl eus saves the address of the Process
Descriptor for the process reading the nessage in a two-byte buffer
area of the queue. If the process is aborted while it owns the
mut ual excl usi on nmessage, the nucleus automatically wites the
nessage back to the queue for the aborted process, thus enabling
ot her processes to gain access to the protected resource.

1.2.3 Fl ag Managenent

MP/M11's nucleus uses flags for signaling and synchroni zing
processes with defined events. Processes access the systenis flags
with the XDOS functions, Flag Set and Flag Wait. Internally, a flag
can reside in two states: set or reset. The reset state is further
divided into two categories:

* No process is waiting for the flag to be set.

* Aprocess is waiting for the flag to be set, and bl ocked
fromexecution until it is set.

Note: Two processes are not allowed to wait on the same flag. This
is an error situation referred to as flag "under-run". Sinmlarly, a
process attenpting to set a flag that is already set is another
error situation, called flag "over-run"

Fl ags provide a logical interrupt systemindependent of the
physical interrupt systemof the m croconputer. They are primarily
i ntended for use by the XIOS nodul e to support the Interrupt
Handl er. For exanple, when the Interrupt Handl er receives a
physical interrupt indicating an 1/0 operation is conplete, it sets
a flag and branches to the Dispatcher. A process suspended from
execution because it is waiting for the flag to be set, is placed on
the Ready List, making it eligible for selection during dispatch
once di spatched, the process can assunme the 1/O operation is
conpl et e.

MP/ M 11 supports 32 flags, several of which are reserved. For
exanple, Flag 1 is reserved for the systemclock tick. Because of
their limted nunber, their use by the XICS nodule, and the single
process nature of their design, flags should not be used in
application software except in very special situations. In nost
cases, process conmuni cation and synchroni zation are better
acconpl i shed with queues.

7

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 1.2 MP/ M Il Nucl eus
1.2.4 Devi ce Polling

Devi ce polling is another nechanisma process can use to wait
for an 1/O or external event w thout using flags or consum ng the
CPU resource with a progranmmed delay | oop. Polling is inplenented
in the Xl OS nodul e exclusively. For exanple, assunming that the XIGCS
supports polled console input, when a process nakes a BDOS consol e
i nput call, the process eventually reaches the Xl GS consol e i nput
routi ne where the actual hardware dependent input operation is
performed. Before performing the input operation, the nucleus tests
to see if a character is ready for input. If it is ready, the
nucl eus perfornms the input operation and execution of the process
continues. If a character is not ready, the process nmust wait. In
a single-user environment under CP/M the BIOS can sinply | oop on
consol e status until a character is read. Under MP/MII1, this
t echni que cannot be used because it consunmes the CPU resource. |f
the | ooping process has a high priority, any other lower-priority
processes on the Ready List are denied the CPU resource.

Devi ce polling avoids this situati on because the D spatcher
nmakes the console status test. If a character is not ready, the
XI CS makes an XDOS Poll call. This suspends the running process on
the system Pol | List. Subsequently, in every dispatch operation
t he Dispatcher nmakes a single console status call for the process.
When the status call indicates a character is ready, the nucl eus
renoves the process fromthe Poll List and places it on the Ready
List. Thus device polling is one of the ways a process can wait for
an external or 1/0O event to occur w thout nonopolizing the CPU
resour ce.

1.2.5 Consol e and Li st Device Managenent

Consol e and List devices are special resources under MP/MII.
When the system gives a console or |ist device to a process, it
internally stores the address of the Process Descriptor, thereby
recordi ng ownership of the device by that process. |If another
process attenpts to use the device, the nucleus suspends the calling
process and places it on the device's Wait List. It remains on this
[ist until the process owning the device either term nates execution
or detaches fromthe device. When this occurs, the nucleus selects
the highest priority waiting process, gives it the device, places it
on the Ready List, and performs a dispatch

Processes can own nore than one console or list device. Fields
within the Process Descriptor designate which device is to be used
in 1/0O operations. A process gains ownership of a device by a
nmechani smcall ed attaching. If a process attaches a devi ce when the
device is free, the process gains ownership of the device.
ot herwi se, the process is suspended from execution, as described
above. As an option, a process can conditionally attach to a device
in which case it is notified if another process owns the device.
Condi tional attachment gives a process nore control over its own
execution instead of leaving it up to the nucleus. Thus a process
can avoi d being suspended when it does not depend on a specific
devi ce.

8

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 1.2 MP/ M Il Nucl eus
1,2.6 Menory Managenent

The MP/ M 11l nucl eus can manage fromone to ei ght nmenory
segnents. These segnents are of fixed length, and used prinarily as
regions for |oading transient prograns. The partitions are page
al i gned, which neans that they nust begin on a page boundary.
Because a page is defined as 256 bytes, a page boundary al ways
begi ns at an address where the |oworder byte is 0. The nucl eus
manages the nenory resource with XDOS functions that allocate and
free nenory segnments. Figure 1-1 illustrates how nenory is
organi zed under MP/M I .

Top of Menory

T +
. MPIM I
(Common) : Operating
. System
Top of Banked R R : R + R +
Menor y : : NN NN
. Segnent 0 NN NN
: AT NN NNN NN
AT AT
: AT NN NNN NN
. MPIM I : AT NN NNN NN
(Bank Switched) . Extension : NN NN
R R : NN NNN NN NN NNN NN
AL NN NNN NN AT
AL NN NNN NN AT
AL NN NNN NN AT
Low AL AT NN
Menory AL NN NN
A NN NNNN N AT
T + S + S +
Bank O Bank 1 Bank N

Figure 1-1. MP/ M1l Menory O ganization

The shaded areas represent those regions that can support nenory
segnents. |f bank-switched nenory is not used, avail able nenory is
restricted to bank zero. The total nunber of menory segnents, in
addition to their size and bank | ocations, are system generation
options. Segnent 0, however, is a special segnent reserved for
system nodul es and RSPs. It always resides i mediately bel ow t he
operating systemregion in bank O.

I n bank-sw tched systens, the operating system nodul e resides
in conmon nenory. In addition, all Process Descriptors and queues
nmust reside in the common nmenory region. Typically, the conmmon
nmenory size is 16K but the size can vary on systens capabl e of
switching nenory in units smaller than 16K. As a result, the

9

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 1.2 MP/ M Il Nucl eus

typi cal maxi mum nenory segrment size is 48K, The | argest user nenory
segnent that can be allocated to bank 0 is usually much [ess than
thi s val ue.

More than one nmenory segnment can be defined in a single bank
Menory segnents that do not begin at O can only be used to execute
page rel ocatable (PRL) prograns. Menory segnments begi nning at O,
can execute COM or PRL prograns.

1.2.7 System Ti mi ng Functions

M/ MI11's systemtimng functions include: keeping the tine of
day, delaying the execution of a process for a specified period of
time, and scheduling prograns to be | oaded from di sk and execut ed.
The XDOS internal process, CLOCK, provides the tinme of day for the
system This process issues Flag Wait calls on the system one
second flag, Flag 2. Wien the XICS Interrupt Handler sets this
flag, it wakes up the CLOCK process which then increnments the
internal tinme and date. Subsequently, the CLOCK process mnakes
another Flag Wait call and suspends itself until the flag is set
again. MP/ M1l provides functions that allow the user to set and
access the internal date and tine. In addition, the BDOS uses the
internal tinme and date to record when a file is updated, created, or
| ast accessed.

The XDOS Del ay function replaces the typical progranmed del ay
| oop for delaying process execution. The Delay function requires
that a tick be supported in the XICS and that Flag 1, the system
tick flag, be set every 16 to 20 milliseconds (usually 60 tines a
second) . Wien a process nakes a Delay call, it specifies the nunber
of ticks it is to be suspended from execution. The system nmai ntains
the address of the Process Descriptor for the process on an interna
Delay List along with its current delay tick count. A system
process, TICK, waits on the tick flag and decrenents this del ay
count on each systemtick. Wien the delay count goes to zero, the
process is renmoved fromthe Delay List and placed on the Ready List.

MP/ M 11 can schedul e the execution of a transient programor a

Resi dent System Process only if the Resident System Process, SCHED
is included at system generation tinmne.

10

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 1.3 MP/M 1l Menory Structure
1.3 MP/ M1l Menory Structure

The menory structure of the MP/ MI1 operating systemis shown
in Figure 1-2.

High R + < - - +- - +
Menory . SYSTEM DAT : :

© RESBDOS. SPR : : - .- Comon
o + : : Mernory

BNKX: OS. SPR <-4

: BNKBDOS. SPR ©--- Menory Segment O
Fom - + : Bank O

Low P +
Menory : CONSOLE. DAT :

Figure 1-2. MP/M Il Menory Structure

The exact nenory addresses of each of the nenory segnments shown
above vary with the MP/ M1l version and depend on the user
speci fications nmade during the system generation process.

If the host systemis bank-switched, the nodul es above the
BNKXI CS. SPR nodul e nmust reside in conmon nenory. Common menory is
al ways accessible no matter what bank is used. The nodul es bel ow
t he BNKXI CS. SPR nodul e nmust reside in bank 0, which is defined as
t he bank of nmenory active when MP/M 11| is |oaded. The BNKXI CS. SPR
nodule itself can reside partly in common nmenory and partly in bank
0. If bank-switching is not used, then all of nenmory is conmon.
The nmenory segnents shown in Figure 1-2 are described bel ow

The SYSTEM DAT segnent contai ns 256 bytes used by the M/ M 1|

CGENSYS to dynamically configure the system After |oading, the
systemuses this area for storage of systemdata such as submt

11

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 1.3 MP/M 1l Menory Structure
flags. See Section 3.5 for the details of the SYSTEM DAT segnent

The size of the TMPD. DAT segnment depends on the nunber of
consol es specified for the systemduring the system generation
process. MP/MII supports from1l to 16 consoles, and associ at ed
with each console is a Term nal Message Processor (TMP) , identified
as TMPO t hrough TMP15. The TMP provi des the conmand |ine support
for each console. Each console uses 64 bytes within the TMPD. DAT
segnment to contain a TMP Process Descriptor. The size of the
USERSYS. STK segnent varies according to the nunber of consoles, as
shown in Table---1-1.

Tabl e 1-1. TMPD. DAT Segment Size

Size Nunber of Consol es
OOOH No user system stacks
100H 1 to 4 consoles

200H 5 to 7 consoles

The USERSYS. STK segnment is included if the user selects the
option to add systemcall user stacks during system generation. If
i ncluded, the systemtenporarily uses 64 bytes of stack space in
this segnment when user prograns nake BDOS function calls. This
option allows users to run CP/M* . COMfiles under MP/MII. Sone
BDOS function calls, especially console I/0O functions, consune nore
stack under MP/MI1 than CP/M The system all ocates space for user
system stacks fromthe USERSYS. STK segnent for each user nenory
segnent. The size of the USERSYS. STK segnent varies according to
t he nunber of nenory segnents, as shown in Table 1-2.

Tabl e 1-2. USERSYS. STK Segnent Size

Size Nunber of Menory Segnents
OOOH No user system stacks
100H 1 to 4 nmenory segnents
200H 5 to 7 nenory segnents

The Xl OSJMP. TBL segnent is a copy of the first page of the
BNKXI CS. SPR nodul e. It is required because the system divides the
BDOS nodul e into two sub-nodul es, RESBDOS. SPR and BANKBDOS. SPR. The
RESBDOS nodul e accesses the BNKXIOS via the Xl. OSJMP. TBL nodul e. The
BANKBDOS nodul e accesses the BNKXI OS nodul e directly. The
XI OSIMP. TBL nodul e is 256 bytes in |ength.

The RESBDCS. SPR segnent contains the resident portion of the
BDOS nodul e. The BDOS functions supported by this segnment include
t hose not involved with the BDOS file system such as consol e and
list 1/O The RESBDCS. SPR segnent is approxi mately OBOOH bytes in
[engt h.

12

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer’s Guide 1.3 MP/M 1l Menory Structure

The XDGCS. SPR segnent contains the MP/ M I nucleus and the
ext ended di sk operating system This segnment is approxinmtely 2300H
bytes in | ength.

RSPs can use two segnents within MMM II1. The first segnent
resides in comon nenory, and exists only if one or nore RSPs are
i ncl uded during system generation. This common nenory segnment RSP
contains all RSP Process Descriptors and queues. The second segmrent
nanmed the BRS segment exists in the non-comon portion of menory
segment 0. It is present only when one or nore banked RSPs are
i ncl uded during system generation (See Section 1.7).

The BNKXI CS. SPR nodul e contai ns the user-custoni zed Basi c and
Extended 1/0O Systemin page- relocatable format (PRL) . It can extend
across the comon nenory boundary. In general, code supporting the
BDCOS file systemcan reside in bank O while code supporting consol e
and list 1/O nust reside in common nenory. Refer to the MP/MII
System Guide for nore information regardi ng the BNKXI OS nodul e.

The BNKBDOS. SPR nodul e contai ns the non-resident portion of the
BDOS nodule. Al BDCS functions related to the file systemare
supported by this segment. This segnent is approxi mately 2300H
bytes in | ength.

The BNKXDOS. SPR nodul e contains the non-resident portion of the
XDOS nodul e. This segnent will vary in length with MP/ M1l version

The TMP. SPR nodul e contains the code for the reentrant Terni na
Message Process. This nodule is approximately 300H bytes in | ength.

The BRS segnment contains data and code used by banked RSPs that
does not have to be in conmon nenory. Banked RSPs are val uable
because they mnimze the conmon nmenory requirenent.

The LCKLSTS. DAT segment is a special data structure that
mai ntains a record of open files and | ocked records on the system
Each open file and | ocked record consunes a 10-byte entry in this
segnent. The size of this segnent is determ ned by paraneters
speci fied during system generation.

The size of the CONSOLE. DAT segnment depends on the nunber of
consol es specified for the systemduring the system generation
process. MP/M Il supports from1l to 16 consoles, and associ at ed
with each console is a Term nal Message Processor (TMP) , identified
as TMPO t hrough TMP15. The TMP provi des the conmand |ine support
for each console. Each consol e uses 256 bytes within the
CONSOLE. DAT segnent to contain the stack and buffers for its TWMP
The code for the TMP' s is reentrant and resides within the TMP. SPR
segnent .

The remaining nenory is available for allocation to user nenory
segnments. The size, bank |ocation, and nunber of user nenory

segnents are system generation options. MP/MI1l uses these nenory
segments to | oad and execute transient prograns.

13

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 1.4 Term nal Message Process
1.4 Term nal Message Process

The Termi nal Message Process (TMP) refers to one of a
coll ection of XDOS system processes that are associated with the
system consol es. Each system console has its own TMP desi ghated as
TMPO t hr ough TWMP15. The nunber of system consol es inpl ement ed
depends on the nunber supported in the XIOS and how nmany are
specified during systemgeneration. Cearly, the nunber of system
consol es cannot exceed the nunber supported in the XIOS. However, a
snal | er nunber than the Xl OS supported maxi mrum can be specified
during system generation.

The system nai ntains the buffers, stack, and |ocal variables
for each TMP in each system consol e's region of the CONSCLE. DAT
segnent. The process descriptors for the TMP s are |located in the
TMPD. DAT segnent. The code, which is shared by all the TM s, is a
single re-entrant routine within the TMP. SPR nodul e. Thus, while
each TMP perforns the same function for each system consol e, they
conpete with each other as well as with any other running processes
for the CPU resource.

The TMP provides the command |ine support for system consol es
within MP/MII. This includes displaying the systempronpt at the
consol e:

oA>

and reading the conmmand line. The TMP reads the comand |ine from

one of two sources: the console or a Subnmit file. Normally, it

reads fromthe console with the BDOS Read Buffer |nput conmand.
Alternatively, it reads fromthe N.SUB file (N = the consol e nunber)
on the MP/M 11l systemdisk. This occurs only if the user has
previously entered a subnit file at the console with the SUBM T
facility.

After reading a command |line, the TMP perforns one of two
actions depending on the type of comand entered. |If the conmand
line is a new drive specification:

OA>B:

the TMP i ssues a BDOS Sel ect Disk call to select the new drive. If
t he system supports the newly selected drive, the TMP updates the
drive field of its Process Descriptor, displays the new pronpt:

oB>
and waits for the next comnmand | i ne.

If the conmand is in any other form the TMP assigns its
consol e to another system process, the Conmand Line Interpreter,
(CLI). The TWP then sends the conmand line along with fields
specifying its default drive, user nunber, list device and consol e
nunber to the CLI with the XDOS Send CLI Command. It then attenpts
to attach the console. This suspends the TMP from execution because

14

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 1.4 Term nal Message Process

it no longer owns the system console. Wen the consol e becones
free, the TWMP rei ssues the pronpt and the cycle repeats.

Not e: The conmand | evel default drive and current user numnber
are maintained in the TMP Process Descriptor for each system
console. This information is displayed in the systempronpt. If an
application program changes the current disk or user nunber by
maki ng an explicit BDOS call, the TMP Process Descriptor values are
not changed. The USER utility does update the TMP Process
Descri ptor user nunber when it sets the user nunber to a new val ue.
To do this, it locates the TMP Process Descriptor associated with
t he consol e and updates its user nunber field.

1.5 Conmand Line Interpreter

VWhen the Command Line Interpreter (CLI) receives a conmand |ine
sent to it with the XDOS Send Ci Command, it interprets the
conmand, and initiates the requested transient program or RSP
Normal Iy, the TMP sends the comand |ine to the CLI. However, other
processes can al so use the Send CLI Comand function. Al so, the
BDOS Program Chain function is inplenented internally with the Send
CLI Conmmand. Note: Any process making a Send Ci Command cal |l nust
first assign its console to the CLI

The Send CLI Command function sends the command line to the CLI
by attenpting to wite the command |ine nessage to the system queue,
"diq@. The command |ine nessage contains the current disk, user
nunber, list device and system consol e nunber in addition to the
ASCI| conmand line. The CLIQis a single nmessage queue with a
[ength of 129 bytes. If the CLIQ already contains a comuand |ine
nessage, the nucl eus suspends the process issuing the Send CLI
Conmand, and places it on the CLIQ s Enqueue List, where it renains
until the CLI reads the nessage. Once the CLI reads the nessage,

t he process must conpete with any others that may al so reside on the
Enqueue List for the opportunity to wite its nessage and regain the
ready state. The process with the highest priority that has been

on the list the longest always goes first.

The CLI accepts command |ine nmessages by reading the CLIQ |If
the queue is enpty, the CLI is blocked fromexecution when it issues
the CLIQread comand. In this case, the CLI is suspended on the
CLI Q Dequeue List until another process issues a Send CLI Command,
at which point the CLI is renoved fromthe Dequeue List and pl aced
on the Ready List. Wen it gets the CPU resource, the CLI's read
gueue operation is conpleted and it receives the command |ine
nessage

15

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 1.5 Conmand Line Interpreter

The conmand line read by the CLI nust be in ASCII and usually
takes the form

<command> <conmmand tail >

wher e
<conmand> => {d: }fil enane{; password} or
=> queuenarre
<conmand tail > => <file spec> or
=> <file spec><delinmter><file spec>
<file spec> => {d:}fil ename{.typ}{; password}
<delimter> => one or nore blanks or a tab or
one of the following: "=/[]<>"
d: => MP/MII drive specification, "A"
t hrough " P"
fil enanme => 1 to 8 character file nane
typ => 1 to 3 character file type
passwor d => 1 to 8 character password val ue
gueuenane => 1 to 8 character queue nanme of
Resi dent System Process
Fi el ds enclosed in curly brackets are optional. If there is no

drive specification {d:}, the current default drive is assuned. If
the type field {.typ} is omtted, a type field of all blanks is
inmplied. If the password field {; password} is onitted, a password
field of all blanks is inplied. No type field is included in the
<command> file specification because the CLI assunes either a PRL or
COM t ype.

After the CLI reads a conmand line, it perfornms the follow ng
st eps:

1) It parses the conmand line to pick up the <conmand> fi el d.

2) If there is no drive specification or password field, the
CLlI attenpts to open a queue named by the command fi el d.
If the queue open is successful, the CLI assunes the queue
bel ongs to an RSP, and attenpts to assign the console to
that RSP. If the RSP nane is the sane as its queue nane,
the consol e assignnent is nade. In fact, this is the way a
RSP controls whether or not it receives the console
resource when it is initiated by the CLI. The CLI then
wites the <command tail> nessage along with the current
di sk, user nunber, list device and system consol e nunber to

16

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 1.5 Command Line Interpreter

3)

4)

5)

6)

the RSP's queue. Because the RSP is typically bl ocked from
execution because of a queue read fromits queue, this
sequence initiates the RSP for execution

If the command field does not nane a RSP queue, indicated by
an unsuccessful queue open or the presence of a drive
specification or password field, the CLI assunes it nanmes a
file residing on the default or specified drive. It then
attenpts to open the file, filenane.PRL. If the open is
unsuccessful, it tries again with the file, filenanme. COM
When the current user nunber is non-zero and the file to be
opened does not exist under that user nunber, the BDCS
attenpts to open the file under user 0. The open operation
is successful if the file exists under user 0, and has the
system attri bute set.

If neither open is successful, and no explicit drive
reference was nmade the CLI repeats the sane sequence on the
MP/ M1l systemdrive. (The systemdrive is designated
during system generation) . The CLI does not make this
second attenpt if the systemdrive was referenced in the
first attenpt. In addition, regardless of the file's user
nunber, only files with the systemattribute set are
accepted in the second open sequence.

In all cases, if the file password specified in the
<command> field does not nmatch the password of a file
protected in Read node, a password error terninates the
CLI's open operation.

If the conmand file open is successful, the CLI perforns

di fferent actions dependi ng on whether the opened file is
of type PRL or COM For PRL files, the CLI selects the
snal | est avail abl e nenory segnent which can fit the PRL the
file. For COMfiles, the CLI selects the first available
absol ute nenory segnent to load the file. Note: Mre than
one absolute nmenory segnment can exi st in a bank-sw tched
system

If no nmenory segnent is available, the program | oadi ng by
the CLI is ternminated and the systemreturns an error
nessage. otherw se, the CLI |oads the programinto its
sel ected nenory segnent begi nning at BASE+100H (BASE =
nmenory segnent base address). |If the conmand file is of
the PRL type and the sel ected nenory segnent is not
absolute, the CLI perfornms a relocation operation at this
tinme (See Section 1.6).

The | oad operation can be aborted if a read error occurs,
or in the case of COMfiles, if the selected nenory segment
is not |arge enough to contain the file.

Once the program has been | oaded, the CLI initializes the
nmenory segnent base page begi nning at BASE+OOOH. The base
page initialization is covered in nore detail in Section
2. 4.

17

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 1.5 Command Line Interpreter

7) Once the base page is initialized, the CLI sets up a Process
Descriptor for the | oaded program and assigns the comrand
file name to the process. The CLI also sets the current
di sk, user nunber, list device and consol e nunber fields of
the Process Descriptor to the values received in the
conmand |ine nessage, and gives the process a 20-byte
stack. It then initiates the transient programw th an
XDOS Create Process call. The CLI is then ready to read
t he next conmmand |ine and repeat the cycle.

1.6 Transi ent Prograns

Under MP/MI1, a transient programis one that the CLI | oads
and initiates. As the name transient inplies, the programis not
systemresident. The systemnust load it into an avail abl e nmenory
segnent every tine it executes.

MP/M !l can execute two types of transient prograns. The first
type, absolute programs, nmust run in an absolute nmenory segnent. An
absol ute nenory segnment is one that has a base address of zero (BASE
= O00CH). The command files of absolute transient prograns are
identified by a file type field of COM A COMfile contains the
absol ute nmenory inmage of the file beginning at 100H Thus, the CLI
loads a COMfile into nmenory beginning at 100H MP/MII COMfiles
are equivalent to those in CP/M

The second type of transient program Page Rel ocatable Prograns
(PRLS), can run in relocatable or absolute nmenory segnents. PRL
conmand files have a type field of PRL. A PRL file contains three
regions: a 1-page header, a code region, and a relocation bit map
The header has a field containing the Iength of the program s code
region and a field specifying the mnimum anount of additional data
space required by the program The CLI uses this information to
sel ect a nenory segnent for the program The code regi on contains
the code and initialized data for the program The CLI |oads the
code region into nenory begi nning at BASE+100H, where BASE is the
nmenory segnent base address.

The bit map consists of a bit string where each bit corresponds
to a byte in the code region. The first bit corresponds to the
first byte, the one | oaded i nto BASE+100H. Because the bit map
i medi ately follows the code region in a PRL file, the offset of the
bit map equals the programlength value stored in the PRL header
Each bit equal to 1 identifies the high byte of an address field
that requires relocation. During the program | oad operation, the
CLlI adds the high byte or page offset of the address BASE to the
bytes identified for relocation by the bit map. This dynamically
rel ocates the programand allows it to run in rel ocatable nenory
segnents. PRL's | oaded into absolute nenory segments require no
rel ocation. Note: It is not possible to convert a COMfile into a
PRL file. However, the reverse operation is possible and is
performed with the utility, PRLCOM (see Section 6.3).

18

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 1.6 Transi ent Prograns

As part of the program|oad operation, the CLI initializes the
nmenory segnent base page as foll ows:

BASE+OOOH : Direct XIOS and programternination junp
BASE+005H : BDOS and XDOS function junp

BASE+050H : Conmand file drive

BASE+051H : Password address of Ist file in the command tai
BASE+053H : Password length of Ist file in the conmand tai
BASE+054H : Password address of 2nd file in the command tai
BASE+056H : Password | ength of 2nd file in the conmand t ai
BASE+05CH : Parsed FCB for Ist file in the command tai
BASE+06CH : Parsed FCB for 2nd file in the command tai
BASE+080H : Comrand t ai

Duri ng execution, a transient program makes BDOS or XDOS system
calls by calling BASE+5. Direct XIOS calls are nade with the junp
at BASE+OOOH. Note: Direct XIOS calls are restricted to consol e
and list /O Al nenmory within the segnent bel ow t he address
contained in BASE+6 is available to the transient program Thus,
transient prograns can use this address to size nenory. The
remai ning i nformation placed into the base page is data parsed out
of the command [ine. This information is provided as a conveni ence
to the programmer and is covered in detail in Section 2.

When the CLI initiates a transient program it assigns a 20
byte stack area to the process. This stack is initialized in such a
way that if the programreturns to the system its execution is
term nated. A process can also term nate execution with a junp to
BASE+OOCH, a BDOS System Reset call, or an XDOS Terni nate Process
call.

1.7 Resi dent System Processes

Resi dent System Processes (RSPs) are optional processes that
can be included with MM MI1 during systemgeneration. There are
two types of RSPs: standard and banked. A standard RSP is a page
relocatable file that has a filetype of RSP. Wen integrated into
MP/M 11, a standard RSP resides in the common nmenory region. A
banked RSP consists of two page-relocatable files, both of which
have the sane filenane but have file type fields of RSP and BRS
respectively. Wien a banked RSP is included in MM 11, the RSP
file loads into common nmenory, whereas the BRS file loads into
nmenory segnent 0 in bank 0. Because all Process Descriptors and
gueues nust reside in comon nenory, the comon nodul e of a banked
RSP contains its Process Descriptor and any additional Process
Descri ptors and queues.

The nmenory segnent field of an RSPs Process Descriptor
desi gnat es whether the RSP is standard or banked. Standard RSPs set
the nmenory segnent field to FFH, banked RSPs set the field to zero.
When a RSP is selected during the system generation process, GENSYS
checks this field, and if set to O, includes the BRS file in nmenory
segnment O.

19

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 1.7 Resi dent System Processes

RSPs | oad into nenory as part of the MPMLDR operation, and are
initiated following the XIOS System lInitialization call and prior to
the initialization of the TMPs. Once initiated, an RSP runs |ike
any other process in the system conpeting for the CPU and ot her
system resources on a priority basis.

If a RSP is to be invoked as a built-in comrmand fromthe
consol e command line, it nust performthe follow ng steps:

1) Make a queue with a nessage length sufficiently large to
accept the command tail. The nane of the queue is the
conmand nanme of the RSP. Because the CLI converts conmmand
lines to upper-case, RSP queue nanes nust be upper-case.

If the CLI is to assign the console to the RSP, the RSP s
Process Descriptor name nust be the sane as its queue nane.

2) Make an unconditional Read Queue call to the queue. This
suspends the RSP on its queue's Enqueue List until the CLI
wites it a command |ine nessage.

3) Performits task by maki ng BDOS and XDOS function calls
using the command |ine nessage containing the current
drive, user, list device and system consol e nunber obtai ned
fromthe queue read. Note: An RSP does not make system
calls by calling location 5. The systeminitializes the
first two bytes of a standard RSP and the first two bytes
of the common nodul e of an extended RSP to contain the
systementry point address. The systemsets the first two
bytes of the bank-zero nodul e of an banked RSP to the
begi nni ng address of its correspondi ng conmon nodul e.
RSP' s nmust use these addresses to nmake system calls.

4) After performing its task, the RSP nust make an XDOS Det ach
Consol e call and an XDOS Detach List call if it is assigned
the console by the CLI. It then returns to step 2 and
awai ts anot her command Ii ne.

Anot her special type of RSP is the Resident System Procedure.
A Resident System Procedure provides a nethod of serially utilizing
a bl ock of code as a systemresource. A Resident System Procedure
is set up by a RSP. The process creates a queue with the nanme of
t he Resi dent System Procedure and sends it a single two-byte nessage
contai ning the address of the procedure to be accessed serially.
once this is acconplished, the RSP term nates itself.

The Resi dent System Procedure is accessed by openi ng the queue
and reading the two byte nessage to obtain the actual nenory address
of the procedure. Because only one nessage resides in the queue,
only one process can gain access to the procedure. Wen the process
| eaves the procedure, it wites the nessage containing the procedure
address back to the queue. This enables the next waiting process to
use the Resident System Procedure.

20

All Information Presented here is Proprietary to Digital Research

MP/M |l Progranmmer's Cuide 1.8 BDOS And XDOS Cal i ng Conventi ons
1.8 BDOS and XDOS Cal i ng Conventi ons

M/ M11's BDOS and XDOS system functions can be accessed by
both transi ent prograns and RSPs. Transient prograns make system
calls via the primary entry point at |ocati on BASE+005H, where BASE
equal s the base address of the transient progranis nenory segment.
Standard RSPs obtain the systementry point address fromthe first
two bytes of the program For banked RSPs, the first two bytes of
t he conmon nodul e contain the systementry point address. The first
two bytes of the bank-zero nodule contain the address of the comon
nodul e.

MP/M 11 uses a standard protocol for systemfunction calls. It
is the same protocol used by CP/M In general, when naking a system
call, register C contains the function nunber, and register pair DE
contains the informati on address. Functions return single-byte
values in register A and double-byte values in register pair HL
Any systemcall nade with an out-of-range or non-supported function
nunber, returns a OFFFFH in register pair HL. Note: CP/Mreturns
with HL set to 0 on invalid function calls. For conpatibility,
register A equals L and register B equals H upon return in al
cases. The regi ster passing conventions of MP/MIIl agree with those
of Intel's PL/Msystens progranm ng | anguage.

When entering a transient program the systemsets the stack
pointer to a 10-1evel stack, with the address contai ned i n BASE+001H
pushed onto the stack. Thus, a return to the systemis equival ent
to a junp to BASE+OOOH. Typically, this stack is sufficiently |large
to handl e systemcalls. However, npst transient prograns set up
their own stack and return to the systemvia a junp to |ocation
BASE+OOOH. Because of the way RSPs are integrated into the system
they nmust set up and initialize their own stack

The programer shoul d be aware that BDOS and XDOS function
calls do not restore registers to their entry val ues upon return to
the calling program The responsibility for saving and restoring
any critical register values rests with the calling process.

As an exanple, the following transient programillustrates how
to make systemcalls. This programreads characters continuously
until it encounters an asterisk, at which tine it term nates
execution by returning to the system

ORG OOOCH
BASE EQU $; BEG NNI NG OF MEMORY SEGVENT
BDOS EQU BASE+0005H ; MP/M 11 SYSTEM ENTRY PO NT
CONI'N EQU 1 ; CONSOLE | NPUT FUNCTI ON
ORG 100H ; BASE OF TRANSI ENT PROGRAM AREA
NEXTC Wi C, CONIN ; READ NEXT CHARACTER FUNCTI ON #
CALL BDGS ; RETURN CHARACTER I N A
CPI 1*1 ; END OF PROCESSI NG
JNZ NEXTC ; LOOP | F NOT
RET ; TERM NATE PROGRAM
END
21

All Information Presented here is Proprietary to Digital Research

22

All Information Presented here is Proprietary to Digital Research

Section 2
The BDOS Interface

2.1 BDOS Console and List |/O lInterface

A primary design objective of MM MII has been to achieve CP/M
conpati bility. Thus, fromthe perspective of the applications
programthere are only mnor differences between CP/Mand M/ M I |
with regard to BDOS console and list 1/0O functions. These
differences are described in Section 2.4, BDOS Function Calls.

Each program executing under MP/ M1l has a data structure
called a Process Descriptor which defines the characteristics of the
process. One byte of the Process Descriptor identifies the console
and list I/O device nunbers currently being used by the process.

The high-order 4 bits of this byte, |abeled the CONSCLE/ LI ST field
contain the list device nunber. The |Ioworder 4 bits contain the
consol e devi ce nunber. The BDCS console and list 1/0O functions
obtain the appropriate device nunber fromthe CONSOLE/LIST field of
the Process Descriptor to call the XIOS console or |ist subroutine.

A process nust be attached to a console or list device to
access the device. This applies to both BDOS and direct Xl OS
function calls. MPMII intercepts all BDOS and direct Xl OS
function calls for the console and list devices to deternmine if the
specified device is attached to the calling process. The function
call is pernmitted only if the device is currently unattached, or
attached to the calling process. If the device is attached to sone
ot her process, M/ M 11l perfornms an XDOS Attach call for the
speci fied device. The calling process then bl ocks, suspending
execution, until the device is detached fromthe process owning the
device and the calling process is the highest priority process
requiring the device. Attaching a specific device to a process can
be done explicitly by maki ng XDOS Attach Console or Attach Li st
calls, or inplicitly by making BDOS and direct Xl OS function calls
which in turn force device attachnent.

MP/M 11 maintains tables of processes currently owning the
consol e and |ist devices. These tables contain Process Descriptor
addresses. It is thus possible for one process to own severa
consol e or list devices by having its Process Descriptor address in
several table entries. Miltiple devices can be attached by
repeatedly using the XDOS Set Console or Set List Device function
call followed by an XDOS Attach call. Later, when actual I/Ois to
be performed, the specific console or list device nust be set in the
Process Descriptor by making an appropriate XDOS Set Consol e or Set
Li st Device function call

Al'l console and |ist devices are detached froma process when

it termnates, allow ng processes that were waiting for the devices
to resunme execution

23

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.1 BDOS Console and List 1/0

Wil e performing BDOS console |/0O functions, there are severa
ASCI| control characters that cause MP/MII to take specific
actions. The TC character can abort the process owning the console.
The TD character forces the process owning the console to detach
fromthe console, allow ng another waiting process to gain access to
the consol e, and then attaches the consol e agai n before conti nui ng.
The TS and TQ characters are used to stop and re-start console
di splay output. The TS character will cause consol e di splay out put
to be suspended. At that point a TQ can be typed to resune consol e
di splay output or a TC can be typed to abort the process owning the
consol e. Typing any other key when out put has been suspended will
cause MP/M 11 to send the ASCII Bell character (TG to the console.

2.2 BDCOS Fil e System

The Basi c Di sk Qperating System (BDOS) supports a named file
system on one to sixteen |logical drives. Each logical drive is
divided into two regions: a directory area and a data area. The
directory area defines the files that exist on the drive and
identifies the data area space that belongs to each file. The data
area contains the file data defined by the directory. The directory
area is subdivided into sixteen |ogically independent directories,
each identified by user nunbers O through 15. In general, only
files belonging to the current user nunber are "visible" in the
directory. For exanple, the MP/MII DIR utility only displays files
bel onging to the current user nunber.

The BDOS file systemautomatically allocates directory and data
area space when a file is created or extended and returns previously
al | ocated space to free space when a file is deleted. If no
directory or data space is available for a requested operation, the
BDOS returns an error to the calling process. These actions are
transparent to the calling process. As a result, the user does not
need to be concerned with directory and drive organi zati on when
using the file systemfunctions.

An eight-character filenane field and a three character type
field identifies each file in a directory. An eight character
password can al so be assigned to a file to protect it from
unaut hori zed access. Al BDCS functions that involve file
operations specify the requested file by the filenane and type
fields. Multiple files can be specified by an anbi guous reference.
An anbi guous reference uses one or nore |I'?" marks in the nane or
type field to indicate that any character matches that position
Thus, a nanme and type specification of all "?'"s (equivalent to a
command line file specification of "*.*") natches all files in the
directory that belong to the current user nunber

The BDOS file system supports four categories of functions:
file access functions, directory functions, drive related functions,
and m scel | aneous functions. The file access category includes
functions to nake (create) a new file, open an existing file and
close an existing file. Both the make and open functions activate
the file for subsequent access by read and wite functions. After a

24

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.2 BDOS Fil e System

file has been opened, subsequent BDOS functions can read or wite to
the file, either sequentially or randomy by record position. BDOS
read and wite comands transfer data in 128 byte |l ogical units,
which is the basic record size of the file system The close
function performs two steps to ternminate access to a file. First,

it indicates to the file systemthat the calling process has

fini shed accessing the file. The file then becones available to

ot her processes. In addition, the function nakes any necessary
updates to the directory to pernanently record the current status of
the file.

BDOS directory functions operate on existing file entries in a
drive's directory. This category includes functions to search for
one or nore files, delete one or nore files, renane a file, set file
attributes, assign a password to a file, and conpute the size of a
file. The BDOS search and del ete functions are the only functions
that all ow anbi guous file references. Al other directory and file
related functions require a specific file reference. The BDOS file
system does not allow a process to delete, rename, or set the
attributes of a file that is currently opened by another process.

BDOS drive-related functions include those which select a drive
as the default drive, conmpute a drive's free space, interrogate
drive status and assign a directory |label to a drive. The directory
| abel for a drive controls whether file passwords are to be honored,
and the type of date and tine stanping to be perforned for files on
the drive. Also included in this category are functions to reset
specified drives and to control whether other processes can reset
particul ar drives. Wen a drive is reset, the next operation on the
drive reactivates it by logging it in. The function of the log-in
operation is to initialize the drive for file and directory
operations. Under MP/M 11, a successful drive reset operation mnust
be performed on drives that support renoveabl e nedi a before changing
di sks.

M scel | aneous functions include those that set the current DVA
address, access and update the current user nunber, chain to a new
program and flush the internal bl ocking/deblocking buffer. Al so
i ncluded are functions to set the BDOS nulti-sector count and the
BDCOS error node. The BDOS nulti-sector count deterni nes the nunber
of 128-byte records to be processed by BDOS read, wite, record
| ock, and record unlock functions. It can range fromone to sixteen
128-byte records; the default value is one. The BDOS error node
determi nes whether the BDOS file systemintercepts errors or returns
all errors to the calling process.

25

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.2 BDCS Fil e System

The following |ist summarizes the operations perforned by the
BDCOS file system

Di sk Syst em Reset

Drive Selection

File Creation

File Open

File d ose

Directory Search

File Delete

Fil e Renane

Random or Sequential Read
Random or Sequential Wite
Interrogate Sel ected Di sks
Set DMA Addr ess

Set/ Reset File Indicators
Reset Drive

Access/ Free Drive

Random Wite Wth Zero Fill
Lock and Unl ock Record

Set Multi-Sector Count

Set BDOS Error Mbde

Cet Di sk Free Space

Chain To Program

Fl ush Buffers

Set Directory Label

Return Directory Label
Read and Wite File XFCB
Set/ Get Date and Tine

Set Default Password
Return BDCS Serial Nunber

The followi ng sections contain information on inportant topics
related to the BDOS file system The reader should be familiar with
the content of these sections before attenpting to use the BDOS
functions described individually in Section 2.4.

2.2.1 Fil e Nam ng Conventions

Under MP/M 11, filenames consist of four parts: the drive
select code (d), the filenanme field, the file type field, and the
file password field. The general format for a conmand line file
specification is shown bel ow
{d:}filename{.typ} {;password}
The drive select code field specifies the drive where the file is
| ocated. The filenanme and type fields identify the file. The

password field specifies the password if a file is password
pr ot ect ed.

26

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.2.1 Fil e Nam ng Conventi ons

The drive, type, and password fields are optional and the
delimters " : . ; " are required only when specifying their associated
field. The drive select code can be assigned a value from"A" to
"P" where the actual drive codes supported on a given systemis
determ ned by the XIOS i nplenentation. Wien the drive code is not
specified, the current default drive is indicated. The fil enane
field can contain one to eight non-delimter characters, the file
type field, one to three non-delimter characters, and the password
field, one to eight non-delimter characters. Al al phabetic
characters rmust be in uppercase. In addition, all three fields are
padded with bl anks, if necessary. Onitting the optional type or
password fields inplies a field specification of all blanks.

The MP/M 11 Parse Fil enane function recogni zes certain ASCI
characters as valid delimters when it parses a file froma command
line. The valid characters are shown in Table 2-1

Table 2-1. Valid Filenane Delimters
ASCI | HEX EQUI VALENT

-
w
W)

vV N s
[¢)]
W)

The Parse Fil ename function al so excludes all control characters
fromthe file fields and translates all |ower-case letters to upper
case.

The characters "(" and ")" should be avoided in filenane and
type fields because they are commonly used delinmiters. The
characters "*" and "?" must not be used in filenane and type fields
unl ess they are used to nmake an anbi guous reference. |If the Parse
Fi | enanme function encounters a "*" in a file nane or type field, it
pads the renainder of the field with "?" marks. For exanple, a
filename of "X*.*" is parsed to "X??????7?.???". The BDOS search and
delete functions treat a "?" in the filenanme and type fields as
follows: A "?" in any position matches the corresponding field of
any directory entry belonging to the current user nunber. Thus, a
search operation for "X???????.2??" finds all the current user files
on the directory beginning in "X'. Mst other file rel ated BDOS
functions treat the presence of a "?" in the filenane or type field
as an error.

It is not mandatory to follow the file nam ng conventions of
MP/M 11 when creating or renaning a file with BDOS functions.

However, the conventions nust be used if the file is to be accessed
froma conmand |ine. For exanple, the CLI cannot |ocate a comand

27

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.2.1 Fil e Nam ng Conventi ons

file inthe directory if its filenane or type field contains a
| ower-case letter.

As a general rule, the file type field nanmes the generic
category of a particular file, while the filenanme distinguishes
i ndividual files in each category. Although they are generally
arbitrary, the file types listed bel ow nane sone of the generic
categories that have been established.

ASM Assenbl er Source PLI PL/1 Source File
PRN Printer Listing REL Rel ocat abl e Modul e
HEX Hex Machi ne Code TEX TEX Formatter Source
BAS Basi ¢ Source File BAK ED Source Backup
I NT Internediate File SYM SID Synbol File
Com Command File $$$ Tenporary File
PRL Page Rel ocat abl e RSP Resident Sys. Process
SPR Sys. Page Rel oc. SYS SystemFile
DAT Data File BRS Banked RSP Fil e

2.2.2 Disk Drive and File Organization

The BDOS file system can support fromone to sixteen |ogica
drives. The nmaximum file size supported on a drive is 32 negabytes.
The maxi mum capacity of a drive is determ ned by the data bl ock size
specified for the drive in the XIOS. The data bl ock size is the
basic unit in which the BDOS al |l ocates di sk space to files. Table
2-2 displays the relationship between data bl ock size and drive
capacity.

Tabl e 2-2. Logical Drive Capacity

Data Bl ock Size Maxi mum Drive Capacity
1K 256 Ki | obyt es
2K 64 Megabyt es
4K 128 Megabyt es
8K 256 Megabyt es
16K 512 Megabyt es

Logi cal drives are divided into two regions: a directory area
and a data area. The directory area contains fromone to sixteen
bl ocks | ocated at the beginning of the drive. The actual nunber is
set inthe XICS. This area contains entries that define which files
exi st on the drive. The directory entries corresponding to a
particular file define which data blocks in the drive's data area
belong to the file. These data bl ocks contain the file's records.
The directory area is logically subdivided into sixteen independent
directories identified as user 0 through 15. Each independent
directory shares the actual directory area on the drive. However, a
file's directory entries cannot exist under nore than one user
nunber. In general, only files belonging to the current user nunber
are visible in the directory.

28

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer’s Guide 2.2.2 Disk Drive and Organization

Each disk file consists of a set of up to 242,144 128-byte
records. Each record in a file is identified by its position in the
file. This position is called the record s randomrecord nunber
If afileis created sequentially, the first record has a position
of zero, while the last record has a position one |less than the
nunber of records in the file. Such a file can be read sequentially
in record position order beginning at record zero, or randomy by
record position. Conversely, if a file is created randomy, records
are added to the file by specified position. Afile created in
this way is called "sparse" if positions exist within the file where
a record has not been witten.

The BDOS automatically all ocates data blocks to a file to
contain its records on the basis of the record positions consuned.
Thus, a sparse file that contains two records, one at position zero,
the other at position 242,143, would consune only two data bl ocks in
the data area. Sparse files can only be created and accessed
random y, not sequentially. Note that any data block allocated to a
file is permanently allocated to the file until the file is del eted.
There is no other mechani smsupported by the BDOS for rel easing data
bl ocks belonging to a file.

Source files under MP/Mare treated as a sequence of ASC

characters, where each "line" of the source file is followed by a
carriage-return line-feed sequence (ODH fol l owed by QAH). Thus a
single 128-byte record could contain several |ines of source text.

The end of an ASCI| file is denoted by a control-Z character (1AH)
or areal end of file, returned by the BDOS read operation
Control -Z characters enbedded within machi ne code files such as COM
or PRL files are ignored. The end of file condition returned by
BDOS is used to terminate read operations.

2.2.3 File Control Bl ock Definition

The File Control Block (FCB) is a data structure used with the
BDCOS file access and directory functions. Al of these functions
reference an FCB to determine the file or files to be operated on
Certain fields in the FCB are al so used for invoking special options
associ ated with sone functions. other functions use the FCB to
return data to the calling process. Mst inportantly, when a
process opens a file and subsequently accesses it with read, wite,
| ock, and unlock record functions, the BDOS file system mai ntains
the current file state and position within the user's FCB. In
addition, all BDOS random /O functions specify the randomrecord
nunber with a 3-byte field at the end of the FCB

VWhen naking a file access or directory BDOS function call
regi ster pair DE nust address a FCB. The length of the FCB data
area depends on the BDOS function. For nost functions, the required
length is 33 bytes. For random I/O functions and the Conpute File
Si ze function, the FCB |l ength nust be 36 bytes. Wen either the
BDOS Open or Make File functions specify a file is to be opened in
unl ocked node, the FCB nust be 35 bytes in length. The FCB for nat
is shown on the next page.

29

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide 2.2.3 File Control Block Definition

dr:fl:f2 (f8:tl:t2:t3:ex:sl:s2:rc:dO: cdnicr:rO:rl:r2
000102 ... 080910 11 12 13 14 15 16 ... 31 32 33 34 35
wher e

dr drive code (0 - 16)

0O => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B

16.25 auto di sk select drive P

fl . . .f8 <contain the file nanme in ASCl
upper case, with high bit = 0.
f1'. . . f8 denote the high
order bit of these positions,
and are file attribute bits.

tl,t2,t3 contain the file type in ASC
upper case, with high bit = 0.
tl’, t2' and t3 denote the
hi gh bit of these positions,
and are file attribute bits.
tl' 1 => Read/Only file

t2" =1 => Systemfile
t3" =1 => File has been archived
ex contai ns the current extent numnber

normally set to O by the calling process, but
can range 0 - 31 during file I/O

cS contai ns the FCB checksum val ue for
open FCBs.
rs reserved for internal system use, set

to zero on call to OPEN, MAKE, SEARCH

rc record count for extent "ex"
takes on values from0O — 128

do dn filled-in by MMM reserved for
system use

cr current record to read or wite in
a sequential file operation, normally
set to zero by the calling process when a
file is opened or created

rorl,r2 optional randomrecord nunber in the
range 0-242,143 (0 - 3FFFFH).
ro,rl,r2 constitute a 18 bit val ue
with ow byte rO mniddle byte rl, and
hi gh byte r2.

30

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide 2.2.3 File Control Block Definition

Note : The 2-byte File IDis returned in bytes rO and rl when a
file is successfully opened in unl ocked node (see Section 2.2.8).

For BDCS directory functions, the calling process nust
initialize bytes 0 through 11 of the FCB before issuing the function
call. The Set Directory Label and Wite File XFCB functions also
require the calling process to initialize byte 12. The BDOS Renane
File function requires the calling process to place the new file
nane and type in bytes 17 through 27.

BDOS open or nake function calls require the calling process to
initialize bytes 0 through 12 of the FCB before issuing a file open
or make function call. Normally, byte 12 is set to zero. In
addition, if the file is to be processed fromthe begi nning using
sequential read or wite functions, byte 32 (cr) nust be zeroed.
After an FCB is activated by an open or nake operation, the FCB
shoul d not be nodified by the user. Open FCBs are checksumverified
to protect the integrity of the file system In general, if a
process nodifies an open FCB, the next read, wite, or close
function call will return with a checksumerror. See Section 2.2.9
for nore on FCB checksuns. Nornally, sequential read or wite
functions do not require initialization of an open FCB. However,
random |/ O functions require that a process set bytes 33 through 35
to the requested randomrecord nunber prior to making the function
call.

File directory elenments naintained in the directory area of
each di sk drive have the sanme fornmat as FCB s (excludi ng bytes 32
t hrough 35), except for byte O which contains the file's user
nunber. Both the Open File and Make File functions bring these
el ements (excluding byte 0) into nenory in the FCB specified by the
calling process. Al read and wite operations on a file nust
specify an FCB activated in this nmanner. O herw se, a checksum
error is returned. The BDOS updates the nenory copy of the FCB
during file processing to naintain the current position within the
file. During file wite operations, the BDOS updates the nmenory
copy of the FCB to record the allocation of data to the file, and at
the termnation of file processing, the Cose File function
permanently records this information on disk. Note that data
allocated to a file during file wite operations is not conpletely
recorded in the directory until the calling process issues a
Close File call. Therefore, it is mandatory that a process which
creates or nodifies files, close the files at the term nation of any
write processing, otherw se, data nay be |ost.

As a general rule under M/ M 11, a process should close files
as soon as they are no | onger needed, even if they have not been
nodi fied. The BDOS file systemnaintains an entry in the system
lock Iist (LCKLSTS. DAT nenory segnent) for each file opened by each
process on the system This entry is not renoved fromthe system
lock list until the file is closed or the process owning the entry
term nates. The BDCS file systemuses this entry to prevent other
processes from accessing the file unless the file was opened in a
node t hat supports shared access. Normally, a process nust close a
file before other processes on the system can access the file.

31

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide 2.2.3 File Control Block Definition

Keep in mnd that the space in the systemlock list is a
limted resource under MP/MI1. |If a process attenpts to open a
file and no space exists in the systemlock list, or the process
exceeds the process open file limt (specified during system
generation), the BDOS denies the open operation and usually aborts
the calling process.

The high-order bits of the FCB filenane (fl',...,f8) and type
(t1',t2",t3") fields are called attribute bits. Attributes bits are
1 bit boolean fields where 1 indicates on or true, and O indicates
off or false. Attribute bits have two functions within the file
system as file attributes and interface attributes.

The file attributes (fI',...,f4" and tl',t2',t3") are used to
indicate that a file has a defined attribute. These bits are
recorded in a file's directory FCBs. File Attributes can only be
set or reset by the BDOS Set File Attributes function. Wen the
BDOS Make File function creates a file, it initializes all file
attributes to zero. A process can interrogate file attributes in an
FCB activated by the BDOS Open File function or in directory FCBs
returned by the BDOS Search For First and Search For Next functions.
Note: the BDOS file systemignores the file attribute bits when it
attenpts to locate a file in the directory.

The file attributes (tl’,t2',t3") are defined by the file
system as foll ows:

tl'’: Read/Only attribute - The file systemprevents wite
operations to a file with the read/only attribute set.

t2': SystemAttribute - This attribute, if set, identifies the file
as a MPMM 1l systemfile. Systemfiles are not normally
di spl ayed by the VP M Il DIR utility. In addition, user zero
system files can be accessed on a read/only basis from ot her
user nunbers (see Section 2.2.8).

t3': Archive Attribute - This attribute is designed for user
written archive prograns. Wien a archive program copies a
file to backup storage, it sets the archive attribute of the
copied files. The file systemautonmatically resets the
archive attribute of a directory FCB that has been issued a
write conmand. The archive programcan test this attribute
in each of the file's directory FCBs via the BDOS Search and
Searchn functions. If all directory FCBs have the archive
attribute set, it indicates that the file has not been
nodi fi ed since the previous archive. Note that the MP/MII
PIP utility supports file archival.

Attributes fl' through f8 are available for definition by the user
The interface attributes are f5' through f8 . These attributes
cannot be used as file attributes. Interface attributes f5 and 6’

are used to request options for BDOS calls requiring an FCB address
in register pair DE. They are used by the BDOS Open, Make, d ose,

32

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide 2.2.3 File Control Block Definition

and Delete File functions. Table 2-3 shows the f5 and f6’
interface attribute definitions for these functions.

Table 2-3. BDOS Interface Attri butes

open function f5 =1 : Open in unlocked node
f6’ =1 : Open in read/only node

Make function f5 =1 : Open in unlocked node
f6’ = 1 : Assign password to file

G ose function f5' =1 : Partial dose

Del ete function f5' =1 : Delete file XFCBs only

The interface attributes are discussed in detail for each of the
above functions in Section 2.4. Attributes f5 and f6' are always
reset when control is returned to the calling process. Interface
attributes f7' and f8 are reserved for internal use by the BDOS
file system

The BDOS search and delete functions allow nmultiple file

(anbi guous) reference. In general, a ? mark in the filenane, type,
or extent field matches any value in the correspondi ng positions of
directory FCBs during a directory search operation. The BDOS search
functions also recognize a ? mark in the drive code field, and if
specified, they return all directory entries on the disk regardl ess
of user nunber including enpty entries. A directory FCB beginning
with ESH is an enpty directory entry.

2.2.4 User Nunber Conventi ons

The MP/M 11 User facility divides each drive directory into
sixteen | ogically independent directories, designated as user O
t hrough user 15. Physically, all user directories share the
directory area of a drive. In nost other aspects, however, they are
i ndependent. For exanple, files with the sane nane can exi st on
di fferent user nunbers of the same drive with no conflict. However,
a single file cannot reside under nore than one user nunber

Only one user nunber is active for a process at one tine, and
the current user nunber applies to all drives on the system
Furthernore, the FCB format does not contain any field that can be
used to override the current user nunber. As a result, all file and
directory operations reference directories associated with the
current user nunber. However, it is possible for a process to
access files on different user nunbers by setting the user nunber to
the file's user nunber with the BDOS Set User conmand prior to
i ssuing the desired BDOS function call for the file. Note that this
techni que nmust be used carefully. If a process attenpts to read or
wite to a file under a user nunber that is not the same as the user
nunber that was active when the file was opened, the BDCS file
systemreturns a FCB checksum error

33

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.2.4 User Nunber Conventions

VWhen the CLI initiates a transient programor RSP, its user
nunber is set to the value established by the process issuing the
XDOS Send di Comrand. Nornally, the sending process is the TMWP
However, the sending process nmay be anot her process such as a
transient programthat nmakes a BDOS Chain Programcall. A transient
program can change its user nunber by nmaking a BDOS set user call.
Changi ng the user nunber in this way does not affect the command
i ne user nunber displayed by the TMP. Thus, when a transient
program that has changed its user nunber terninates, the origina
user nunber for the console is restored when the TMP regains
control

User O has special properties under MWP/MII1. Wth sone
restrictions, the file systemautomatically opens a file under user
zero, if it is not present under the current user nunber. O
course, this action is only perfornmed when the current user nunber
is not zero. In addition, a file on user zero nust have the system
attribute (t2') set to be eligible for this operation. This
procedure allows utilities that may include overlays and any ot her
conmonl y accessed files to be placed on user zero, but be available
for access fromother user nunbers. As a result, it elimnates the
need for copying commonly needed utilities to all user nunbers on a
directory, and gives the MP/ MI1l user control over which user zero
files are directly accessible fromother user nunbers. Refer to
Section 2.2.8 for nore information on this topic.

2.2.5 Directory Label s and XFCBs

The BDCS file systemincludes two special types of FCB's, the
XFCB and the Directory Label. The XFCB is an "extended" FCB that
can optionally be associated with a file in the directory. if
present, it contains the file's password field and date and tine
stanmp information. The format of the XFCB is shown bel ow

XFCB FORNMVAT
:dr: file : type :pmsl:s2:rc: password : tsl : ts2
00 01 09 12 13 14 15 16. 25 29

dr drive code (0 - 16)
file file nanme field
type file type field
pm password node
bit 7 - Read node
bit 6 - Wite node
bit 5 - Delete node
*x - bit references are right to left,
relative to 0

sl,s2,rc - reserved for system use

password - 8 byte password field (encrypted)

tsl - 4 byte creation or access tine stanp field
ts2 - 4 byte update tinme stanp field

34

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.2.5 Directory Labels and XFCBs

An XFCB can be created for a file in two ways: automatically,
as part of the BDOS Make function or explicitly, by the BDOS
function, Wite File XFCB. The BDOS fil e system does not
automatically create an XFCB for a file unless a Directory Label is
present on the file's drive. The BDOS Read File XFCB function
returns a file's XFCB if it exists in the directory. Note that in
the directory, an XFCB is identified by a drive byte value (byte 0
inthe FCB) equal to 16 + N, where N equals the user nunber

The Directory Label specifies for a drive if passwords for
password protected files are to be required, if date and tine
stanping for files is to be performed, and if XFCBs are to be
created autonmatically for files by the Make function. The fornmat of
the Directory Label is sinmlar to that of the XFCB as shown bel ow

DI RECTORY LABEL FORVAT

:dr: name : type :dl:sl:s2:rc: password : ts : ts2

00 01 09 12 13 14 15 16.... 25. 29
dr - drive code (0 - 16)
nane - Directory Label nane
type - Directory Label type
dl - Directory Label data byte

bit 7 - require passwords for files

bit 6 - performaccess tinme stanping
bit 5 - performupdate tinme stanping
bit 4 - Make creates XFCBs
bit O - Directory Label exists
*x - bit references are right to left,
relative to O
sl,s2,rc - nla

password - 8 byte password field (encrypted)
tsl 4 byte creation tinme stanp field
ts2 - 4 byte update tinme stanp field

Only one Directory Label can exist in a drive's directory. The
Directory Label nane and type fields are not used to search for a
Directory Label in the directory; they can be used to identify a

di skette or a drive. A Directory Label can be created or its fields
can be updated by the BDOS function, Set Directory Label. This
function can also assign a Directory Label a password. The
Directory Label password, if assigned, cannot be circumvented,
whereas file password protection is an option controlled by the
Directory Label. Thus, access to the Directory Label password
provides a kind of super-user status for that drive.

Note: The BDOS file system provides no function to read the
Directory Label FCB directly. However, the Directory Label data
byte can be read directly with the BDOS function, Return Directory
Label. In addition, the BDOS Search functions (‘?'" in FCB drive

35

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.2.5 Directory Labels and XFCBs

byte) can be used to find the Directory Label on the default drive.
In the directory, the Directory Label is identified by a drive byte
val ue (byte 0 in the FCB) equal to 32 (20H

2.2.6 File Passwords

Files may be assigned passwords in two ways: by the Make File
function if the Directory Label specifies automatic creation of
XFCBs or by the Wite File XFCB function. Afile's password can
al so be changed by the Wite File XFCB function if the origina
password i s supplied. However, a file's password cannot be changed
wi t hout the original password even when password protection for the
drive is disabled by the Directory Label

Password protection is provided in one of three nodes. Table
2-4 shows the difference in access |level allowed to BDOS functions
when the password is not supplied.

Tabl e 2-4. Password Protection Mdes

Passwor d Access | evel allowed when the password

Mode is not supplied

1. Read The file cannot be read

2. Wite The file can be read but not nodified.

3. Delete The file can be nodified but not
del et ed.

If afile is password protected in Read node, the password nust be
supplied to open the file. Afile protected in Wite node cannot be
witten to without the password. A file protected in Del ete node
allows read and wite access, but the user nust specify the password
to delete the file, renane the file, or to nodify the file's
attributes. Thus, password protection in node 1 inplies node 2 and

3 protection, and node 2 protection inplies node 3 protection. Al
three nodes require the user to specify the password to delete the
file, renane the file, or to nodify the file's attributes.

If the correct password is supplied, or if password protection
is disabled by the Directory Label, then access to the BDOS
functions is the sane as for a file that is not password protected.
In addition, the Search For First and Search For Next functions are
not affected by file passwords.

36

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.2.6 File Passwords
Table 2-5 lists the BDOS functions that test for password.

Tabl e 2-5. BDOS Functions That Test For Password
15. Open File

19. Delete File

23. Renane Fil e

30. Set File Attributes

100. Set Directory Labe

103. Wite File XFCB

File passwords are eight bytes in length. They are nuaintained
in the XFCB and Directory Label in encrypted form To nmake a BDOS
function call for a file that requires a password, a process nust
pl ace the password in the first eight bytes of the current DVA or
specify it with the BDOS function, Set Default Password, prior to
maki ng the function call. Note: the BDOS maintains the assigned
default password on a system console basis and retains it across
process termnation.

2.2.7 File Date and Tine Stanps

The BDOCS file systemcan record when a file was created or |ast
accessed, and/or |last updated. It records the creation stanp only
when an XFCB is automatically created by the Make File function. If
an XFCB is created by the Make File XFCB function, the creation
stanp is set to zero. The Close File function makes the update
stanp if a wite operation is nade to the file while the file is
open. The Qpen File function nmakes the access stanp if the file is
successfully opened. The creation date stanp is overwitten when
access stanmping is perforned because only two date and tinme fields
reside in the XFCB and the access and creation tine stanps share the
sane field.

The drive's Directory Label determ nes the type of date and
time stanping supported for files on a drive. If a drive does not
have a Directory Label, or if it is read/only, or if the drive's
directory | abel does not specify date and tinme stanping, then no
date and tinme stanping for files is perfornmed. In addition, a file
must have an XFCB to be eligible for date and tine stanping. For
the Directory Label itself, tinme stanps record when it was created
and | ast updated. No access stanmping for Directory Labels is
support ed.

A process can directly access the date and tinme stanps for a
file by using the Read File XFCB function. No mechanismis provided
to directly update XFCB date and tine fields.

The BDOS file systemuses the MP/ Minternal date and tinme when
it records a date and tinme stanp. On MP/ M1l systens that do not
support a clock, date and tinme stanps record the last initialized
value for the systemdate and tine. The MMM 11 TOD utility can be
used to set the systemdate and tine.

37

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.2.8 Fil e open Modes
2.2.8 File Open Mdes

The BDOCS file system provides three different nodes of opening
files. They are defined as foll ows:

| ocked node:

A process can open a file in |l ocked node only if the file is
not currently opened by another process. once open in | ocked
node, no ot her process can open the file until it is closed.
Thus, if a process successfully opens a file in | ocked node,
that process in effect owns the file until the file is closed
or the process ternminates. Files opened in | ocked node
support read and wite operations unless the file is a
read/only file (attribute tl' set) or the file is password
protected in Wite node and the password is not supplied with
the BDOS Open File call. In both of these cases, only read
operations to the file are allowed. Note: |ocked node is

the default node for opening files under MP/MI1.

unl ocked node:

A process can open a file in unlocked node if the file is not
currently open, or if the file has been opened by anot her
process in unlocked node. This node allows nore than one
process to open the sane file. Files opened in unlocked node
support read and wite operations unless the file is a
read/only file (attribute tl' set) or the file is password
protected in Wite node and the password is not supplied with
the BDOS Open File call. However, when a file opened in

unl ocked node is extended by a wite operation, the BDOS

al l ocates space to the file in data block units, not in 128
byte record units as is nornmally the case. The BDOS record

I ocki ng and unl ocki ng functions are only supported for files
opened in unl ocked node.

VWhen opening a file in unlocked node, a process nust reserve
35 bytes in the FCB, because the Open File function returns a
2-byte value called the File IDin the rOand rl bytes of the
FCB. The File IDis a required paraneter for the BDOS record
[ock and record unl ock comrands.

read/ only node:

A process can open a file in read/only node if the file is
not currently opened by another process, or the file has been
opened by another process in read/only node. This node

all ows nore than one process to open the sane file for

read/ only access.

The open function perforns the follow ng steps for files opened

in |locked or read/only node. If the current user is non-zero, and
the file to be opened does not exist under the current user numnber

38

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.2.8 File Open Modes

t he open function searches user zero for the file. If the file

exi st, under user zero and the file has the systemattribute (t2')
set, the file is opened under user zero. The open node is
automatically forced to read/only when this is done. For nore
information on this, refer to Section 2.2.4.

The open function also perforns the following action for files
opened in | ocked node when the current user nunber is zero. If the
file exists under user zero and has the system (t2’) and read/only
(tl") attributes set, the open node is automatically set to
read/only. Thus, the read/only attribute controls whether a user
zero systemfile can be concurrently opened by a user-zero process
and processes on other user nunbers when each process opens the file
in the default |ocked node. If the read/only attribute is set, al
processes open the file in read/only node and concurrent access of
the file is allowed. However, if the read/only attribute is reset,
the user-zero process opens the file in | ocked node. if it
successfully opens the file, no other process can open it. if
anot her process has the file open, its open operation is denied.

Tabl e 2-6 shows the definition of the FCB interface attributes
f5 and f6' for the BDOS Open File function

Table 2-6. FCB Interface Attributes F5 F6’
Open File Function

f5 =0, f6' = 0 - open in |locked node (default node)
f5 =1, f6' = 0 - open in unlocked node
f5 =0 or 1, f6' =1 - open in read/only

Interface attribute f5 designates the open node for the BDOS Make
File function. Table 2-7 shows the definition of the FCB interface
attribute f5 for the Make File function

Table 2-7. FCB Interface Attri bute F6’
Make Functi on

f5'
f5’

0 - open in | ocked node (default node)
1 - open in unlocked node

Note: the Make File function does not allow opening the file in
read/ only node.

2.2.9 File Security

In general, the security nmeasures inplenented in the BDCOS file
systemare intended to prevent accidental collisions between running
processes. It is not possible to provide total security under M/ M
Il because the BDOS file systemnaintains file allocation
information in open FCBs in the user's nenory region, and MP/ M I
does not support nmenory protection. In the worst case, a program

39

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.2.9 File Security

that "crashes" on MP/MII can take down the entire system

Therefore, MP/MI1 requires that all processes running on the system
be "friendly." However, the BDOS file systemis designed to ensure
that nultiple processes can share the sane file system wi t hout
interfering with each other. It does this in two ways:

. it performs checksumverification of open FCB's.

. it nonitors all open files and | ocked records via the system
[ock list (LCKLSTS. DAT).

User FCBs are checksum validated before |/O operations to
protect the integrity of the file systemfromcorrupted FCBs. The
pen File and Make File functions conpute and assign checksuns to
FCBs. The Read, Wite, Lock Record, Unlock Record and Close File
functions subsequently verify and reconpute the checksuns when the
FCB changes. If the BDOS detects an FCB checksumerror, it does not
performthe requested conmand. Instead, it either term nates the
calling process with an error, or if the process is in BDOS return
error nmode (see Section 2.2.13), it returns to the process with an
error code.

The systemlock list is established during the system
generation process at which tine the user can establish the size of
the list and also define limts for the nunber of files a single
process can open and the nunber of records a single process can
| ock. Each tine a process opens a file or | ocks a record
successfully, the BDOS file systemallocates an entry in the system
lock Iist to record the fact. The file systemuses this information
to:

. prevent a process fromdel eting, renam ng, or updating the
attributes of another process's open file.

. prevent a process fromopening a file currently opened by
anot her process unl ess both processes open the file in | ocked
or read/only node.

. prevent a process fromresetting a drive on which anot her
process has an open file.

. prevent a process fromlocking or updating a record currently
| ocked by anot her process. Refer to Section 2.2.10 for nore
i nformation on record | ocking and unl ocki ng.

For reasons of efficiency, the file systemverifies only for certain
functions whet her another process has the FCB specified file open
These functions are: Open File, Make File, Delete File, Renane

File, and Set File Attributes. For open FCBs, the FCB checksum
control s whether the process can use the FCB. By definition, a

valid FCB checksuminplies that the file has been successfully
opened and an entry for the file resides in the systemlock |ist.
When a process closes a file pernmanently, the file systemrenoves
the file fromthe systemlock Iist and invalidates its FCB checksum
field.

40

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.2.9 File Security

There are several other situations where the file system
renoves open file entries fromthe systemlock list for a process.
For exanple, if a process nakes a delete call for a file that it has
open in |l ocked node, the file systemdeletes the file and al so
renoves the file's entry fromthe systemlock list. Deleting an
open file is not recommended practice under MP/ M but is supported
for files opened in | ocked node (the default open node) , to provide
conpatibility with software witten under earlier rel eases of MP/ M
and CP/M Note that the file system does not delete a file opened
i n unl ocked or read/only node.

To ensure that the process does not use the FCB correspondi ng
to the deleted file, the file system subsequently checks all open
FCBs for the process to ensure that a lock list itemexists for the
FCB. Each open FCB is checked the next tine it is used. If a |lock
list entry exists for the file, the operation is allowed to proceed.
O herwi se, a FCB checksumerror is returned.

The file systemperforns this verification of open FCBs for al
situations where it purges an open file entry fromthe system| ock
list. The following Iist describes these situations:

. A process deletes a file it has open in | ocked node.
. A process renanmes a file it has open in | ocked node.

. A process updates the attributes via the BDOS Set File
Attributes command of a file it has open in | ocked node.

. A process issues a Free Drive call for a drive on which it has
an open file.

. A change in nedia is detected on a drive that has open files.
This situation is a special case because a process cannot
control whether it occurs and it can inpact nore than one
process. Refer to Section 2.2.13 for nore infornmation on this
situation.

The automatic verification of open FCBs by the file systemafter
it purges a file entry fromthe systemlock |ist can affect
performance. Each verification requires a directory search
operation. Therefore, it is strong y reconmended that these
situations be avoided in new prograns devel oped for MP/MII.

2.2.10 Concurrent File Access

More than one process can access the sane file if each process
opens the file in the same shared access node. BDOS supports two
shared access nodes, unl ocked and read/only. Read/only node is

functionally identical to the default |ocked nbode except that nore
than one process can access the file and no process can change it.

41

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.2.10 Concurrent File Access

Fil es opened in unlocked node present a nore conpl ex situation
because a file opened in this node can be nodified by nultiple
processes concurrently. As a result, unlocked node differs in sone
i mportant ways fromthe other open nodes.

When a process opens a file in unlocked node, the file system
returns a 2-byte field called the File IDin the rOand rl bytes of
the FCB. The File IDis a required paranmeter of the BDOS Lock
Record and Unl ock Record functions.

The file system supports two nechani sns that all ow processes to
coordi nate update operations on files open in unl ocked node. The
record | ocki ng and unl ocking functions allow a process to establish
and relinquish tenporary ownership of particular records. A record
| ock does not prevent another process fromreading the | ocked
record; only wite and | ock operations for other processes are
intercepted. As an alternative, the Test and Wite function
verifies the current contents of a record before allowing the wite
operation to proceed.

The Record | ocking and unl ocking functions and the Test and
Wite function provide two fundanental ly different approaches to
record update coordi nation. When a record is |locked, the file
system al l ocates an entry in the systemlock list, identifying the
| ocked record and associating it with the calling process. The
Unl ock Record function renoves the |ocked entry fromthe |ist.
VWhile the | ocked record's entry exists in the systemlock list, no
ot her process can lock or wite to that record. Because the system
lock Iist is alimted resource under MP/ M a process is restricted
regardi ng the nunmber of records it can |ock

The Test and Wite function, on the other hand, perfornms its
verification at the I/Olevel. In a single indivisible operation
it verifies that the user's current version of the record mnatches
the version on disk before allowing the wite operation to proceed.
As a result, it is not restricted |ike the Record Lock function
However, record update coordination can usually be perforned nore
efficiently with the I ock functions.

The BDOS file system perforns additional steps for read and
wite operations to a file open in unlocked node. These added steps
are required because the BDOS file system naintains the current
state of an open file in the user's FCB. Wen nultiple processes
have the sanme file open, FCBs for the sane file exist in each
processes' nmenory. To ensure that all process' have current
information, the file systemupdates the directory inmedi ately when
an FCB for an unlocked file is changed. In addition, the file
systemverifies error situations such as end of file or reading
unwitten data with the directory before returning an error. As a
result, read and wite operations are less efficient for files open
i n unl ocked node when conpared to equival ent operations for files
opened in the default | ocked node.

42

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer’s Guide 2.2.10 Concurrent File Access

Extending a file is also a special situation for files opened
i n unl ocked nmode. Nornmally, when a file is extended, the size of
the file is set to the randomrecord nunber of the last record + 1.
However, when a file opened in unl ocked node is extended, the size
of the file is set to the randomrecord nunber + 1 of the last 128
byte record in the file's last data bl ock. A process nust keep
track of the actual last record of a file extended while open in
unl ocked node, if that is required.

2.2.11 Mul ti-Sector I/0O

The BDOCS file system provides the capability to read or wite
nmultiple 128-byte records in a single BDOS function call. This
multi-sector facility can be visualized as a BDOS "burst" node,
enabling a process to conplete nmultiple I/O operations w thout
interference fromother running processes. The use of this facility
in an application programcan inprove its performance, and al so
enhance overall systemthroughput. For exanple, the PIP utility
performs its sequential 1/Owith a nulti-sector count of 8. Milti
sector 1/O has its greatest inpact, however, in the performance of
sequential I/0O processing on MP/ M 11 systens that support record
bl ocki ng/ debl ocking in their XIOS. Inproved performance is achi eved
by elimnating the need for a | arge percentage of XIOS physica
record pre-read operations.

The nunber of records that can be supported with nmulti-sector
I/0 ranges fromone to sixteen. For transient prograns, the default
val ue i s one because the CLI initializes the multi-sector count of a
transient programto one when it initiates the program The BDCS
Set Multi-Sector Count function can be used to set the count to
anot her val ue.

The multi-sector count determ nes the nunber of operations to
be performed by the followi ng BDOS functions:

o] Sequential Read and Wite functions

o] Random Read and Wite functions including Wite with Zero Fil
and Test and Wite

o] Record Lock and Record Unl ock functions

If the multi-sector count is N, calling one of the above functions
is equivalent to making N function calls. If a multi-sector 1/0
operation is interrupted with an error, the file systemreturns the
nunber of 128-byte records successfully processed in the high-order
ni bbl e of register H
2.2.12 XI GS Bl ocki ng and Debl ocki ng

An optional physical record bl ocking and debl ocking facility

can be inplemented as part of the XIOS when it is necessary to
mai ntai n physical records on disk in units greater than 128-bytes.

43

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.2.12 XI GS Bl ocki ng and Debl ocki ng

In general, record bl ocking and deblocking in the XICS is
transparent to the BDOS file systemas well as to prograns that nake
BDCOS file systemcalls.

If this facility is inplenented, then the XIOS sends data to or
recei ves data fromthe BDOS file systemin |ogical 128-byte records,
but accesses the disk with a | arger physical record size. The Xl CS
uses an internal physical record buffer equal in size to the
physical record size to buffer |ogical records. The process of
bui | di ng up physical records from 128-byte |ogical records is called
bl ocking, and it is required for BDOS wite operations. The reverse
process is called deblocking and it is required for BDOS read
operations. For BDOS wite operations, the Xl OS postpones the
physical wite operation for permanent drives (see Section 2.2.13)
if the wite operation is not to the directory. For BDOS read
operations, the XIOS perforns a physical read only if the current
physical record buffer does not contain the requested | ogical
record. In addition, if the physical record is "pending" as the
result of a previous wite operation, the XICS perfornms a physical
wite operation prior to the read operation.

Post poni ng physical record wite operations has inplications
for sone application prograns. For those programs that involve file
updating, it is often critical to guarantee that the state of a file
on disk parallels the state of the file in nenory after updating the
file. This is only an issue for systens that inplenent blocking and
debl ocki ng because of the postponenent of physical wite operations.
If the system should crash while the physical buffer is pending,
data woul d be lost. To prevent this, the BDOS Flush Buffers
function can be invoked to force the wite of any pendi ng physica
buffers in the X CS.

Not e: The XDOS automatically calls this function when a process
termnates. In addition, the BDOS file systemautonmatically makes a
Flush Buffers call in the Cose File function.

2.2.13 Reset, Access and Free Drive

The BDOS functions Di sk System Reset, Reset Drive, Access
Drive, and Free Drive allow a process to control when a drive's
directory is to be reinitialized for file operations. Wen MP/MII
isinitiated by MPMLDR, all drives are initialized to the reset
state . Subsequently, as drives are referenced, they are
automatically logged-in by the file system The |og-in operation
initializes the drive for BDOS file operations. In general, once a
drive is logged-in, it is not necessary to relog the drive unless a
di sk nmedi a change is to be nade. However, MP/MII| requires that a
successful drive reset be perforned for a drive before a nedia
change. If a drive is in the reset state when the nedia is changed,
the next access to the drive logs in the drive. Note that the D sk
System Reset and Reset Drive functions have sinilar effects except
that the Di sk System Reset function is directed to all drives on the
system The user can specify any conbination of drives to be reset
with the Reset Drive function.

44

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer’s Guide 2.2.13 Reset, Access and Free Drive

Under MP/MI1, the drive reset operation is conditional in
nature. Generally speaking, the file systemcannot reset a drive
for a process if another process has an open file on the drive.
However, the exact action taken by a drive reset operation depends
on whether the drive to be reset is permanent or renoveable. MP/ M
Il determ nes whether a drive is permanent or renoveabl e by
interrogating a bit in the drive's disk paraneter block (DPB) in the
XICS (refer to the MMM Il Systemis Guide for a detail ed discussion
of the DPB) . A high-order bit of 1 in the DPB checksum vector size
field designates the drive as pernanent. Under MP/MII, a drive's
designation is critical to the reset operation, which is described
bel ow.

The BDOS first determines if there are any files currently open
on the drive to be reset. If there are none, the reset takes pl ace.
otherwise, if the drive is a permanent drive and if the drive is not
read/only, the reset operation is not perforned but a successfu
result is returned to the calling process. However, if the drive is
renoveabl e or read/only, the file system determ nes whet her other
processes have open files on the drive. If they do, the drive reset
operation is denied and an error code is returned to the calling
process. If all the files open on the drive belong to the calling
process, the file systemperforns a "qualified" reset operation for
the drive and returns a successful result to the calling process.
This neans that the next time the drive is accessed, the log-in
operation is only performed if a nedia change is detected on the
drive. The logic flow of the drive reset operation is shown in
Fi gure 2-1.

If the file systemdetects a nedia change on a drive after a
qualified reset, it purges all open files on the drive fromthe
system |l ock list and subsequently verifies all open FCBS in file
operations for the owning process (see Section 2.2.9) . The drive is
al so relogged-in. In all other cases where a nedia change is
detected on a drive, the file systemperforns the follow ng steps:
Al'l open files on the drive are purged fromthe systemlock |ist,
and all process owning a purged file are flagged for automatic open
FCB verification. The drive is then placed in read/only status. It
is not relogged-in until a drive reset is issued for the drive.
Note: If a process references a file purged fromthe system| ock
l[ist in a BDOS command that requires an open FCB, it is returned an
FCB checksum error by the BDOS file system

The Access Drive and Free Drive functions perform speci al
actions under MP/MI1. The Access Drive function inserts a "dunmy"
open file iteminto the systemlock Iist for each specified drive.
While that itemexists in the systemlock [ist, the drive cannot be
reset by another process. The Free Drive function purges the open
lock Iist of all itens including open file itens belonging to the
calling process on the specified drives. Any subsequent reference
to those files by a BDOS function call requiring an open FCB results
in a FCB checksumerror return

45

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.2.13 Reset, Access and Free Drive

The BDOS function Wite Protect Disk function has specia
properties under MP/ M II. This function can be used to set the
specified drive to read/only. However, MP/MII does not allow a
process to set a drive read/only if another process has an open file
on the drive. This applies to both renoveabl e and permanent drives.
If a process has successfully set a drive read/only, it can prevent
ot her processes fromresetting the drive by either opening a file on
the drive or issuing an Access Drive call for the drive. Wile the
open file or "dumy" item belonging to the process resides in the
system |l ock list, no other process can reset the drive to take it
out of read/only status.

R +
open files : yes
on drive ? :-------- +
R + :
no :
o - +
Drive . yes
renmoveable ? :---------- +
o - +
: no
T + yes
Drive RO ? 1---------- +
o - +
: no
T ST S + T +
Reset : : don't reset : . Open files . yes
drive : : drive : : belong to TR +
R R + : anot her : :
: : . process ?
T +
no : no
T +
Qualified
reset
per f or med
T +
T + T
Di sk : Di sk
Reset R SR + Reset
success Deni ed
T + T

Figure 2-1. Disk System Reset

46

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.2.14 BDOS Error Handling
2.2.14 BDCS Error Handling

The BDOS file system has an extensive error handling
capability. When it detects an error, it can respond in three ways:

1) It can return to the calling process with return codes in
register AA H and L identifying the error

2) It can display an error nessage on the console and abort the
process.

3) It can display an error nessage on the console and return to

the calling process as in nmethod 1

The file system handles the magjority of errors it detects via nethod
1. The kinds of errors the file system handl es via nethods 2 and 3
are called "physical" and "extended" errors. The BDOS Set Error

Mode function deternmines how the file system handl es physical and
extended errors. The BDOS Error Mdde can exist in three states. In
the default state, the BDOS di splays the error nmessage and

term nates the calling process (nmethod 2). In return error node,

the BDOS returns control to the calling process with the error
identified in registers A, H and L (nmethod 1) . In return and

di spl ay node, the BDOS returns control to the calling process with
the error identified in registers AL H and L, and al so displays the
error nmessage at the console (nethod 3). Both the return nodes
ensure that MP/MI1 does not term nate the process because of a
physical or extended error. The return and display node also allows
the calling process to take advantage of the built-in error
reporting of the BDOS file system Physical and extended errors are
di spl ayed on the console in the follow ng format:

BDOS Err on d: error nessage
BDCOS function: nn File: filenane.type

where "d" is the nane of the drive selected when the error condition
is detected; "error nessage" identifies the error; "nn" is the BDOS
function nunber, and "fil enanme.type" identifies the file specified
by the BDOS function. If the BDOS function did not involve a FCB
the file information is omtted.

The BDOS physical errors are identified by the follow ng error
nessages:

o Bad Sector
0 Sel ect
oFile RO
o RO
The "Bad Sector" error results froman error condition returned to

the BDOS fromthe XIOS nodule. The file system makes Xl OS read and
wite calls to execute file related BDOS calls. If the XIOS read or

47

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.2.14 BDOS Error Handling

wite routine detects an error, it returns an error code to the BDGCS
resulting in this error.

The "Select" error also results froman error condition
returned to the BDOS fromthe XIOS nodul e. The BDOS nakes an XIGS
Select Disk call prior to accessing a drive to performa requested
BDOS function. If the XIOS does not support the selected disk, it
returns an error code resulting in this error.

The "File RIOQ" error is returned whenever a process makes a
wite operation to a file with the RFO attribute set.

The 11R/01' error is returned whenever a process nakes a wite
operation to a disk that is in read/only status. A drive can be
placed in read/only status explicitly with the BDOS Wite Protect
Di sk function, or inplicitly if the file systemdetects a change in
nmedi a on the drive.

The BDCS extended errors are identified by the follow ng error
nessages:

» File opened in Read/only Mde
e File Currently Opened
G ose Checksum Error

* Password Error

* File Already Exists

e Illegal ? in FCB

e Open File Limt Exceeded

* No Roomin System Lock Li st
The "File Opened in Read/only Mdde" error is returned when a process
attenpts to wite to a file opened in read/only node. A file can be
opened in read/only node explicitly, or opened in read/only node
implicitly in tw ways. If a file is opened fromuser zero when the
current user nunber is non-zero, the file is opened in read/only
node. In addition, if a file is password protected in wite node
and the password is not supplied with the open call, this error is
returned if an attenpt is nade to wite to the file.

The "File Currently open" error is returned when a process
attenpts to delete, renanme, or nodify the attributes of a file
opened by another process. This error is also returned when a
process attenpts to open a file in a node inconpatible with the node
in which the file was opened by anot her process.

The "d ose Checksum Error" nessage is returned when the BDOS

detects a checksumerror in the FCB passed to the file systemwith a
BDOS Close File call.

48

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.2.14 BDOS Error Handling

The "File Password" error is returned when the file password is
not supplied, or it is incorrect.

The "File Already Exists" error is returned for the BDOS Make
File and Renane File functions when the BDOS detects a conflict on
file name and type.

The "Illegal ? in FCB" error is returned whenever the BDOS
detects a "?" in the file name or type field of the passed FCB for
the BDOS Renane File, Set File Attributes, Open File, and Make File
functi ons.

The "Open File Linmt Exceeded" error is returned when a process
exceeds the file lock limt specified in the systemlock table
during system generation. The Open File, Mike File, and Access
Drive functions can return this error.

The "No Roomin System Lock List" error is returned when no
roomfor new entries exists within the systemlock list. The
capacity of the systemlock list is a system generation paraneter.
The Open File, Make File, and Access Drive functions can return this
error.

The foll owi ng paragraphs describe the error return code
conventions of the BDOS file system functions. Mdst BDCS file
system functions fall into three categories in regard to return
codes; they return an Error Code, a Directory Code, or an Error
Flag. The error conventions are designed to allow prograns witten
for earlier versions of CP/Mand MP/Mto run wi thout nodification

The foll owi ng BDOS functions return an Error Code in register
A

20. Read Sequenti al

21. Wite Sequenti al

33. Read Random

34. Wite Random

40. Wite Random w Zero Fill
41, Test and Wite Record
42, Lock Record

43, Unl ock Record

The Error Code definitions for register A are shown in Table 2-8.

49

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.2-14 BDOS Error Handling

Tabl e 2-8. BDOS Error Codes

00 : Function successfu
255 : Physical error : refer to register H
01 : Reading unwitten data
No avail able directory space (Wite Sequential)
02 : No avail abl e data bl ock
03 : Cannot close current extent
04 : Seek to unwritten extent
05 : No available directory space
06 : Random record nunber out of range
07 : Record natch error (Test and Wite)
* 08 : Record | ocked by anot her process
(restricted to files opened in unl ocked node)
09 : Invalid FCB (previous BDOS read or wite call
returned an error code and invalidated the FCB)
10 : FCB checksum error
* 11 : Unlocked file unallocated bl ock verify error
12 . Process record lock limt exceeded
13 : Invalid File ID
14 : No roomin BDOS internal |ock table

- returned only for files opened in unlocked node
** - returned only by the Lock Record function
for files opened in unlocked node

The foll owing BDOS functions return a Directory Code in
regi ster A

15. Open File

16. Close File

17. Search For First

18. Search For Next

19. Delete File

22. Make File

23. Renane File

30. Set File Attributes
100. Set Directory Labe
101. Read File XFCB
102. Wite File XFCB

The Directory Code definitions for register A are shown in Table 2-9
Tabl e 2-9. BDOS Directory Codes

00 - 03 : successful function
255 : unsuccessful function

Wth the exception of the BDOS search functions, Directory Code
val ues (0-3) have no significance other than to indicate a

successful result. However, for the search functions, a successfu
Directory Code identifies the relative starting position of the

50

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.2.14 BDOS Error Handling
directory elenment in the calling process' current DVA buffer.

If the Set BDOS Error Mode function is used to place the BDOS
in return error node, the follow ng functions return an Error Flag
on physical errors:

14. Select Disk

35. Compute File Size

38. Access Drive

46. CGet Di sk Free Space

48. Flush Buffers

101. Return Directory Label Data

The Error Flag definition for register Ais shown in Table 2-9.
Tabl e 2-10. BDOS Error Fl ags

00 : successful function
255 : physical error : refer to register H

The BDOCS returns register Hvalues for all three of the above
categories in the follow ng format:

NI N2

where NI denotes the high order nibble and N2 denotes the | ow order
ni bbl e. The follow ng rules govern the assignment of values to N
and N2.

NI For functions that return Error Codes, the BDOS sets N to the
nunber of sectors successfully read or witten before the error
is encountered. This information is returned only when a
process uses the Set Multi-Sector Count function to set the
BDOS | ogi cal sector count to a value other than one; otherw se
the BDOS sets NI to zero. Successful read and wite functions
also set N to zero

Functions that return a Directory Code or an Error Flag set N
to zero.

N2 The val ues contained in N2 identify BDOS physical and extended
errors. The BDOS returns values in N2 only if it is in one of
the return error nodes; otherwise, it sets N2 to zero. Table
2-10 lists the physical and extended error codes returned in
N2.

51

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.2.14 BDOS Error Handling

Tabl e 2-11. BDOS Physical and Extended Errors
00 - no error or not a register Herror
01 - Bad Sector : permanent error
02 - RO : read/only disk
03 - RFYOFile : read/only file

- File Opened in Read/only Mde
04 - Select : drive select error
05 - File Currently Open
06 - O ose Checksum Error
07 - Password Error
08 - File Already Exists
09 - Illegal ? in FCB
10 - Open File Limt Exceeded
11 - No Roomin System Lock Li st

Note: Register His equal to zero if the called function is
successful . In addition, the BDOS sets N2 to zero when register A
returns a val ue other than 255. Except for functions that return
Directory Codes, if register A contains a value of 255 upon return,
N2 identifies the error when the BDOS is in return error node.

The following two functions represent a special case because
they return an address in registers H and L.

27. CGet Addr (Al oc)
31. CGet Addr (Di sk Parns)

When the BDOS is in return error node and it detects a physical
error for these functions, it returns to the calling process with
registers A, H and L all set to 255. otherwi se, they return no
error code.

Under MP/M 11, the follow ng functions al so represent a speci al
case.

13. Reset Di sk System

28. Wite Protect D sk

37. Reset Drive

These functions return to the calling process with registers A H,
and L all set to 255 if another process has an open file or has nade
a BDOS Access Drive call that prevents the reset or wite protect
operation (see Section 2.2.13). If the BDOS is not in return error
node, these functions also display an error nessage identifying the
process that prevented the requested operation.

52

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.3 Base Page Initialization
2.3 Base Page Initialization

The regi on of nenory | ocated from BASE+OOOOH t 0 BASE+OOFFH i s
call ed the base page of a nmenory segnent (BASE = nenory segnent base
address) . The base page contains several segnments of code and data
that are used by transient prograns while running under MP/M11.

The code and data areas are shown bel ow for reference. A

addresses are relative to the beginning of the nenory segnent.

Tabl e 2-12. Base Page Areas

Locati ons
from to

Cont ent s

O000H - 0002H

0003H - 0004H
0005H - 0007H

0008H - 003AH

003BH - 004FH

0050H

0051H - 0052H

Cont ai ns a junp instruction to the XICS
process term nation entry point at Xl OS
BASE + 3. This entry point nay al so be
used for direct XIGS calls to the XICS
consol e status, console input, console
output, and list output primtive
functions.

(Reserved)

Contains a junp instruction to the BDOS
and XDOS, and serves two purposes: JM
OO005H provides the primary entry point to
t he BDOS and XDCOS, and LHLD 0006H pl aces
the address field of the junp instruction
in the HL register pair. This value (-1)

i s the highest address of the menory
segnent avail able to the transient
program Note: The RDT program changes
the address field to reflect the reduced
nmenory size in debug node

Reserved interrupt |ocations for Restarts
1-7

(not currently used - reserved)

Identifies the drive fromwhich the
transient programis read. A value of

zero designates the default drive, a value
of one to sixteen identifies drives A

t hrough P.

Contai ns the address of the password- field
of the first conmand-tail operand in the
default DVA buffer beginning at 0080H

The CLI sets this field to zero if no
password for the first comand-tai

operand is specified.

53

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.3 Base Page Initialization

Tabl e 2-12. (continued)

0054H 0055H

0056H

0057H - 005BH

005CH - 007BH

006CH - 007BH

007CH - 007CH

007DH - 007FH

0080H - OCFFH

Locati on Contents
from to
0053H Cont ai ns the length of the password field

for the first command-tail operand. The

CLI al so sets this field to zero if no
password for the first comand-tail is
speci fi ed.

Cont ai ns t he address of the password field
of t he second comand-tail operand in the
def aul t DVA buffer begi nning at 0080H
The CLI sets this field to zero if no

password for the second conmand-t ai
operand is specified.

Cont ai ns the length of the password field
for the second commuand-tail operand. The

CLlI also sets this field to zero if no
passwor d for the second conmand-tail is
speci fi ed.

(not currently used - reserved)

Default File Control Block (FCB) area 1
initialized by the CLI for a transient
program fromthe first conmand-t ai
operand of the comand line (if it

exi sts).

Default File Control Block (FCB) area 2
initialized by the CLI for a transient
program fromthe second conmand-t ai

operand of the comand line (if it

exi sts). Note: this area overlays the

| ast 16 bytes of default FCB area 1. To
use the information in this area, the
transi ent program nmust copy it to another
| ocation before using FCB area 1

Current record position of default FCB
area 1. This field is used with default
FCB area 1 in sequential record
processi ng.

optional default randomrecord position
This field is an extension of default FCB
area 1 used in randomrecord processing.

Default 128-byte disk buffer (also filled
with the command tail when the CLI |oads a
transi ent program.

54

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.3 Base Page Initialization

The CLI initializes the base page prior to initiating a
transient program The fields at BASE+0050H and above are
initialized fromthe conmand |Iine invoking the transient program
The conmand line format of a transient programusually takes the
form

<command> <conmmand tail >

wher e
<comand> => {d: }fil enanme{; passwor d}
<conmand tail > => (no comand tail)
=> <file spec>
=> <file spec><delinmter><file spec>
<file spec> => {d:}fil ename{.type}{; password}

If a drive {d:} is specified in the <command> field, the CLI
initializes the conmand drive field at O050H to the drive index (A =
1, ... , P=16). Oherwise, it sets the field to zero.

The default FCB at 005CH is defined if a conmand tail is
entered. otherwise, the fields at 5CH 68H to 6BH are set to binary
zeros, the fields from5DH to 67H are set to blanks. The fields at
51H through 53H are set if a password is specified for the first
<file spec> of the command tail. If not, these fields are set to
zero.

The default FCB at 006Ch is defined if a second <file spec>
exists in the command tail. otherwise, the fields at 6CH 78H to
7Bh are set to binary zeros, the fields from5DH to 67H are set to
bl anks. The fields at 54H t hrough 56H are set if a password is
specified for the second <file spec> of the conmand tail. If not,
these fields are set to zero

Transi ent prograns often use the default FCB at 005CH for file
operations. This FCB nmay even be used for randomfile access
because the three bytes starting at 007DH are avail able for this
pur pose. However, a transient program nust copy the contents of the
default FCB at 006CH to another area before using the default FCB at
005CH, because an open operation for the default FCB at 005CH
overwites the FCB data at 006CH

The default DMA address for transient progranms i s BASE+0080H
The CLI also initializes this area to contain the conmand tail of
the conmand line. The first position contains the nunber of
characters in the command line, followed by the comuand |ine
characters. The command |ine characters are preceded by a | eading
bl ank and are translated to ASCI| upper-case. Because the 128-byte
regi on begi nning at BASE+0080H is the default DMA, the BDCS file
system noves 128-byte records to this area with read operations and
accesses 128-byte records fromthis area with wite operations. The
transi ent program rmust extract the comrand tail infornmation from

55

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.3 Base Page Initialization

this buffer before performing file operations unless it explicitly
changes the DMA address with the BDOS Set DVMA Address function. The
base page fields of 0051H t hrough 0056H | ocate the password fields
of the first two file specifications in the conmand tail if they
exi st. These fields are provided so that transient prograns are not
required to parse the command tail for password fields. However,

t he transient program nust save the password, or change the DVA
address before performing file operations.

The following exanple illustrates the initialization of the
command line fields of the base page. Assuming the follow ng
conmand line is typed at the console:

A: PROGRAM B: FI LE. TYP; PASS C: FI LE. TYP; PASSWORD

A hexadeci mal dunp of BASE+0050H t o BASE+COA5H woul d show t he base
page initialization performed by the CLI.

0050H 01 8D 00 04 9D 00 08 00 00 00 OO0 00 02 46 49 4C.FIL
0060H 45 20 20 20 20 54 59 50 00 00 00 00 03 46 49 4CE . .TYP. .FIL
0070H 45 20 20 20 20 54 59 50 00 00 00O OO 00 OO0 OO OO0 E . .TYP. .
0080H 24 20 42 3A 46 49 4C 45 2E 54 59 50 3B 50 41 53 . B: FI LE. TYP; PAS
0090H 53 20 43 3A 46 49 4C 45 2E 54 59 50 3B 50 41 53 S C FI LE. TYP; PAS
OCACH 53 57 4F 52 44 00 SWORD.

56

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.4 BDOS Cal I's: Function O

2.4 BDOS Function Calls

FUNCTI ON 0: SYSTEM RESET

Entry Paraneters:
Regi st er C oH

The System Reset function term nates the calling process,
rel easing all systemresources owned by the process. In general, a
process can own one or nore of the follow ng resources: nenory
segnments, consoles, printers, nutual exclusion nessages, and system
lock Iist entries that record open files and | ocked records. Al
rel eased resources becone avail able to other processes on the
system For exanple, if a systemconsole is released by a
term nating process, it is usually given back to the console's TWP
This occurs when the TMP is the highest priority process waiting for
t he consol e.

Normal Iy, the System Reset function operates the sane way under
M/ M1l as it does under CP/M the calling programtermnates and
t he user receives the conmand pronpt. Note that the disk subsystem
is not reset by System Reset under MP/MII.

For transient prograns, System Reset is equivalent to a junp to
BASE+O.

FUNCTI ON 1: CONSOLE | NPUT

Entry Paraneters:
Regi st er C. O1H

Ret ur ned Val ue:
Regi st er A: ASCI| Character

The Consol e I nput function reads the next character fromthe
consol e device to register A Mst graphic characters, including
carriage return, line feed, and backspace (CONTROL-H) are echoed to
the console. Tab characters (CONTROL-1) are expanded in col ums of
8 characters. However, the term nate process (CONTROL-C) and detach
process (CONTROL-D) characters are intercepted by the BDOS (see
Section 2.1). The BDOS does not return control to the calling
process until a character is typed, thus suspending execution if a
character is not ready.

57

All Information Presented here is Proprietary to Digital Research

MP/ M []

MP/ M I
the calling process if

Programer's Gui de

performs an XDOS Attach Consol e call

2.4 BDOS Calls: Function 1

it does not own the console (see Section

(function 146) for

2.1).

FUNCTI ON 2: CONSOLE QUTPUT

Entry Paraneters:
Regi st er C
Regi st er E:

02H

ASCI | Char act er

The Consol e Qut put function sends

register E to the consol e devi ce.
(CONTRCOL-1) in colums of 8 characters,
(CONTROL-S) , stop scroll (CONTROL-Q ,

the ASCI| character from

It expands tab characters

and checks for start scroll
term nate process (CONTROL-C)

and detach process (CONTROL-D) (see Section 2.1).

MP/M I
the calling process if
2.1).

perfornms an XDOS Attach Consol e call
it does not own the console (see Section

(function 146) for

FUNCTI ON 3: RAW CONSOLE | NPUT

Entry Paraneters:

Regi st er C 03H
Ret ur ned Val ue:
Regi st er A ASCI | Char acter

The Raw Consol e I nput function reads the next consol e character

reads all
wi t hout any testing or

to register A It
characters,

characters including control
interpretation.

(Function 146) for

MP/M 11 performs an XDOS Attach Consol e call
the calling process if it does not own the console (see Section
2.1).

MP/ M 11 does not support the CP/ M Reader

the systemtreats all character

as consol es.

58

| nput function because

I/ O devi ces such as the reader/punch

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide 2.4 BDOS Cal I's: Function 4

FUNCTI ON 4: RAW CONSOLE OQUTPUT

Entry Paraneters:
Regi st er C. 04H
Regi st er E: ASCII Character

The Raw Consol e Qutput function sends the ASCI| character from
register E to the console device. It does not test the output
character; that is, tabs are not expanded and no checks are nade
for control characters.

M/ M 11 performs an XDOS Attach Console call (function 146) for
the calling process if it does not own the console (see Section
2.1).

MP/ M 11 does not support the CP/M Punch Qutput function.

FUNCTI ON 5: LI ST OQUTPUT

Entry Paraneters:
Regi st er C. O5H
Regi st er E: ASCII Character

The List Qutput function sends the ASCI| character in register
E to the list device.

M/ M 11 performs an XDOS Attach List call (function 158) for

the calling process if it does not own the |list device (see Section
2.1).

59

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.4 BDOS Cal I's: Function 6

FUNCTI ON 6: DI RECT CONSCLE 1/0O

Entry Paraneters:
Regi st er C 06H
Regi st er E: OFFH (i nput/
status) or
OFEH (status)or
OFDH (i nput)
char (output)

Ret ur ned Val ue:
Regi st er A char or status
(no val ue)

MP/ M1l supports direct console I/O for those specialized
appl i cati ons where unadorned consol e i nput and output is required.
The progranmer shoul d use direct console I/O carefully because it
bypasses all the normal control character functions. Prograns that
performdirect I/0O through the BIOS under previous rel eases of CP/M
shoul d be changed to use direct I/O under the new BDOS so that they
can be fully supported under future rel eases of MP/ M and CP/ M

A Process calls Function 6 by passing one of four different
values in register E. These are sunmarized in Table 2-13, bel ow

Tabl e 2-13. Function 6 Entry Paraneters

Regi st er Meani ng
E val ue

OFFH consol e i nput/status command, returns
an input character; if no character
is ready, a value of zero is
returned.

OFEH consol e status command (On return,
regi ster A contains 00 if no
character is ready; otherwise it
contai ns FFH.)

OFDH consol e i nput command, returns an
i nput character; this function will
suspend the calling process until a
character is ready.

ASCI | Function 6 assunes register E
Character contains a valid ASCI| character and
sends it to the consol e.

60

All Information Presented here is Proprietary to Digital Research

MP/ M1l Programmer-ls GQuide 2.4 BDOS Cal I's: Function 6

Note: MP/MI1I is not conpatible with MMM 1.1 in regard to
Function 6 with a paranmeter of E=FFH. Under MP/M 1.1 the direct
consol e i nput command (E=FFH) suspends the calling process until a
character is typed, whereas MP/ M Il returns imediately with a zero
if no character is available. To upgrade prograns using Function 6
wi th E=FFH under MP/M 1.1 to MP/MI1, the direct input comand
(E=FDH) nust be used. The change fromMP/M 1.1 was required to
achi eve consistent direct console I/0O handling between CP/M M/ M
I, CP/M86 and MP/ M 86.

M/ M 11 performs an XDOS Attach Console call (Function 146) for
the calling process if it does not own the console (see Section
2.1) . MP/MII perfornms a dispatch if a direct consol e input/status
command (E=FFH) is nmade which returns a zero indicating that a
character is not ready.

FUNCTION 7: GET I/0O BYTE

MP/ M 11 does not support the Get I/0O Byte function.

FUNCTI ON 8: SET 1/0 BYTE

MP/ M 11 does not support the Set |/0O Byte function.

FUNCTI ON 9: PRI NT STRI NG

Entry Paraneters:
Regi st er C. O9H
Regi sters DE: String Address

The Print String function sends the character string stored in
nmenory at the location addressed by register pair DE to the console
until it encounters a "$" in the string. Function 9 expands tab
characters (CONTROL-1) in columms of 8 characters. It al so checks
for start scroll (CONTROL-S) , stop scroll (CONTROL-Q , terminate

61

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.4 BDOS Cal I's: Function 9

process (CONTROL-C) and detach process (CONTROL-D) (see Section
2.1).

M/ M 11 performs an XDOS Attach Console call (Function 146) for
the calling process if it does not own the console (see Section
2.1).

FUNCTI ON 10: READ CONSCLE BUFFER

Entry Paraneters:
Regi st er C OAH
Regi sters DE: Buffer Address

Ret ur ned Val ue:
Consol e Characters in Buffer

The Read Consol e Buffer function reads a |line of edited consol e
input to a buffer addressed by register pair DE. It terninates
i nput when the buffer is filled or when it encounters a return
(CONTROL-M or a line feed (CONTROL-J) character. The input buffer
addressed by DE has the follow ng format:

DE: +0 +1 +2 +3 +4 +5 +6 +7 +8 +n

e e e m e m e, — -

:nx:nc:cl:c2:¢c3:c4:c5:¢c6:c7: ??

e e e m e m e, — -
where "nx" is the nmaxi mum nunber of characters which the buffer

hol ds, and "nc" is the nunber of characters placed in the buffer
The characters entered by the operator follow the "nc" value. The
val ue "nx" nust be set, prior to making a Function 10 call and nay
range in value from1l to 255. Setting "nx" to zero is equival ent
to setting "nx" to one. The value "nc" is returned to the calling
process and may range fromzero to "nx". If nc < nx, then
uninitialized positions follow the |ast character, denoted by "??"
in the above figure. Note that a terminating return or line feed
character is not placed in the buffer and not included in the count
"nc".

62

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.4 BDOS Cal I's: Function 10

Function 10 recogni zes the edit control characters sunmarized
in Table 2-14, bel ow.

Tabl e 2-14. Console Buffer Edit Control Characters

Char act er Edit Control Function
rub/ del renoves and echoes the | ast character
CONTRCOL- C reboots when at the beginning of line
CONTROL- E causes physical end of |ine

CONTROL-H backspaces one character position
CONTROL-J (line feed) term nates input |ine
CONTROL- M (return) term nates input |ine
CONTROL- P echoes console output to the list device
CONTROL- R retypes the current line after new line
CONTROL- U renoves current line after new line
CONTROL- X backspaces to beginning of current line

The control functions that return the cursor to the |eftnost
position (e.g., CONTROL-X) do so only to the colum position where
the pronpt ended (in earlier releases, the cursor returned to the
extreme left margin). This convention sinplifies data input and
line correction.

M/ M1l performs an XDOS Attach Console call (Function 146) for

the calling process if it does not own the console (see Section
2.1).

63

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide 2.4 BDCOS Cal I's: Function 11

FUNCTI ON 11: GET CONSOLE STATUS

Entry Paraneters:
Regi st er C. OBH

Ret ur ned Val ue:
Regi st er A: Consol e Status

The Get Console Status function checks to see if a character
has been typed at the console. If a character is ready, Function 11
returns the value O1H in register A |If a character is not ready,
it returns a value of OOH.

M/ M 11 performs an XDOS Attach Console call (Function 146) for
the calling process if it does not own the console (see Section
2.1).

FUNCTI ON 12: RETURN VERSI ON NUMBER

Entry Paraneters:
Regi st er C. COCH

Ret ur ned Val ue:
Regi sters HL: Version Nunber

The Return Version Nunber function provides information that
al l ows version independent progranming. It returns a two-byte val ue
in register pair H.: H contains O1H for MP/ M and L contains 30H,
the BDCS fil e system version nunmber. Function 12 is useful for
writing applications prograns that provide both random and
sequential file access, and disabling the random access when
operating under early versions of CP/M

XDCOS Function 163 can be called to obtain the MP/ M version
nunber .

64

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.4 BDOS Cal I's: Function 13

FUNCTI ON 13: RESET DI SK SYSTEM

Entry Paraneters:
Regi st er C CDH

Ret ur ned Val ue:
Regi st er A Ret urn Code

The Reset Disk Systemfunction restores the file systemto a
reset state where all the disk drives are set to read/wite (see
Functions 28 and 29), the default disk is set to drive A and the
default DVA address is reset to BASE+0080H. This function can be
used, for exanple, by an application programthat requires disk
changes during operation. Function 37 (Reset Drive) can al so be
used for this purpose.

This function is conditional under M/ MI1. |If another process
has an open file on a renoveable or read/only drive, the disk reset
is denied and no drives are reset.

Upon return, if the reset operation is successful, register A
is set to zero. therwise, register Ais set to OFFH (255 decimal)
If the BDOS error node is not Return Error node (see Function 45),
then an error nessage is displayed at the console, identifying a
process owni ng an open file.

FUNCTI ON 14: SELECT DI SK

Entry Paraneters:

Regi st er C CEH

Regi st er E: Sel ected Di sk
Ret ur ned Val ue:

Regi st er A Error Fl ag
Regi st er H: Physi cal Error

The Sel ect Di sk function designates the disk drive naned in
register E as the default disk for subsequent BDOS fil e operations.
Regi ster Eis set to O for drive A, 1 for drive B, and so-forth
through 15 for drive Pin a full 16 drive system In addition,
function 14 logs in the designated drive if it is currently in the
reset state. Logging-in a drive activates the drive's directory
until the next disk systemreset or drive reset operation.

65

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide 2.4 BDOS Cal I's: Function 14

FCBs that specify drive code zero (dr = OOH) automatically
reference the currently selected default drive. FCBs with drive
code val ues between 1 and 16, however, ignore the sel ected default
drive and directly reference drives A through P

Upon return, register A contains a zero if the select operation

was successful. If a physical error was encountered, the select
function perfornms different actions depending on the BDOS error node
(see Function 45) . If the BDOS error node is in the default node, a

nmessage identifying the error is displayed at the console and the
calling process is termnated. Gtherwi se, the select function
returns to the calling process with register A set to OFFH and
register Hset to one of the follow ng physical error codes:

01 : Permanent error
04 : Select error

FUNCTI ON 15: OPEN FI LE

Entry Paraneters:
Regi st er C. OFH
Regi sters DE: FCB Address

Ret ur ned Val ue:

Regi st er A: Directory Code

Regi st er H. Physical or
Ext ended Error

The Open File function activates the FCB for a file that exists
in the disk directory under the currently active user nunber or user
zero. The calling process passes the address of the FCB in register
pair DE, with byte 0 of the FCB specifying the drive, bytes 1
through 11 specifying the filenane and type, and byte 12 specifying
the extent. Normally, byte 12 of the FCB is initialized to zero.
Interface attributes f5 and Wof the FCB specify the node in
which the file is to be opened as shown bel ow

f5 =0, f6' =0 - Open in |ocked node (default)
f5 =1, f6' = 0 - open in unlocked node
f5' =0or 1, f6© =1 - Open in read/only node

If the file is password protected in Read node, the correct password
nmust be placed in the first eight bytes of the current DVA or have
been previously established as the default password (see Function
106). Note that the current record field of the FCB ("cr") must be
zeroed by the calling process if the file is to be accessed
sequentially fromthe first record.

66

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.4 BDOS Cal I's: Function 15

The Open File function perforns the followi ng steps for files
opened in | ocked or read/only node. If the current user is non
zero, and the file to be opened does not exist under the current
user nunber, the open function searches user zero for the file. If
the file exists under user zero, and has the systemattribute (t2')
set, the file is opened under user zero. The open node is
automatically set to read/only when this is done.

The Open File function also perforns the follow ng action for
files opened in | ocked node when the current user nunber is zero.
If the file exists in the directory under user zero, and has both
the systemattribute (t2') set and the read/only attribute (tl")
set, the open node is automatically set to read/only. Note that
read/only node inplies the file can be concurrently accessed by
ot her processes if they open the file in read/only node.

If the open operation is successful, the user's FCB is
activated for read and wite operations as follows. The rel evant
directory information is copied fromthe matching directory FCB into
bytes dO through dn of the FCB. A checksumis conputed and assi gned
to the FCB. BDOS functions that require an open FCB (e.g. Read
Sequential) verify that the FCB checksumis valid before performng
their operation. if the file is opened in unl ocked node, bytes rO
and rl of the FCB are set to a two byte value called the File ID
The File IDis a required paraneter for the BDOS Lock Record and
Unl ock Record functions. If the open node is forced to read/only
node, interface attribute f8 is set to one in the user's FCB. In
addition, if the referenced file is password protected in Wite node
and the correct password was not passed in the DVA or did not match
the default password, interface attribute f7' is set to one. Wite
operations are not supported for an activated FCB if interface
attribute f7' or f8 is true

The BDOS file systemal so creates an open file itemin the
systemlock list to record a successful open file operation. Wile
this itemexists, no other process can delete, renane, or nodify the
file's attributes. In addition, this item prevents other processes
fromopening the file if the file was opened in | ocked node. It
al so requires that other processes match the file's open node if the
file was opened in unlocked or read/only node. Normally, this item
remains in the systemlock list until the file is permanently cl osed
or the process that opened the file term nates.

When the open operation is successful, the open function al so
nmakes an Access date and tinme stanp for the opened file when the
following conditions are satisfied: the reference drive has a
directory | abel that requests Access date and tine stanping, the
opened file has an XFCB, and the referenced drive is read/wite.

Upon return, the open function returns a directory code in
register Awith the value 0 through 3 if the open was successful, or
FFH (255 decimal) if the file was not found. Register His set to
zero in both of these cases. |If a physical or extended error was
encountered, the open function perfornms different actions dependi ng
on the BDOS error node (see Function 45) . If the BDOS error node is

67

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.4 BDOS Cal I's: Function 19

in the default npde, a nessage identifying the error is displayed at
the console and the process is term nated. otherw se, the open
function returns to the calling process with register A set to OFFH
and register Hset to one of the foll owi ng physical or extended
error codes:

01 : Permanent error

04 : Select error

05 : File is open by another process or by the
current process in an inconpatible node

07 : File password error

09: ?inthe FCB file nanme or type field

10 : Process open file lint exceeded

11 : No roomin the systemlock |ist

FUNCTI ON 16: CLOSE FI LE

Entry Paraneters:
Regi st er C. 10H
Regi sters DE: FCB Address

Ret ur ned Val ue:

Regi st er A: Directory Code

Regi st er H: Physical or
Ext ended Error

The C ose File function perforns the inverse of the open file
function. The calling process passes the address of an FCB in the
regi ster pair DE. The referenced FCB nust have been previously
activated by a successful open or nmake function call (see functions
15 and 22). Interface attribute f51 specifies howthe file is to be
cl osed as shown bel ow

f 5l

0 - Pernanent close (default node)
f 5l 1

- Partial close

The close function first verifies that the referenced FCB has a
valid checksum If the checksumis valid and the referenced FCB
contai ns new i nformati on because of wite operations to the FCB, the
cl ose function permanently records the new information in the
referenced disk directory. Note that the FCB does not contain new
i nformati on and the directory update step is bypassed if only read
and/ or update operations have been made to the referenced FCB
However, the close function always attenpts to | ocate the FCB' s
corresponding entry in the directory, and returns an error if the
directory entry is not found.

68

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.4 BDOS Cal I's: Function 16

If the close function successfully performs the above steps,
and if interface attribute f5 indicates that the close is
permanent, the cl ose function renoves the file's itemfromthe
systemlock list. If the FCB was opened in unlocked node, it also
purges all record lock itens belonging to the file fromthe system
lock list. Because the file's lock list itemis renpoved, the close
function invalidates the FCB's checksumto ensure the referenced FCB
is not subsequently used with BDOS functions that require an open
FCB (e.g. Wite Sequential).

The cl ose function al so nakes an Update date and tinme stanmp for
the closed file when the following conditions are satisfied: the
reference drive has a directory |abel that requests Update date and
time stanping, the referenced file has an XFCB, the referenced drive
is read/wite, and a wite operation to the file was made since the
FCB was opened. None of these steps are perforned for partial close
operations (f5 = 1).

Upon return, the close function returns a Directory Code in
register Awith the value 0 to 3 if the close was successful, or FFH
(255 Decimal) if the file was not found. Register His set to zero
in both of these cases. |If a physical or extended error was
encountered, the close function perforns different actions dependi ng
on the BDOS error node (see Function 45) . If the BDOS error node is
in the default nbde, a nessage identifying the error is displayed at
the console and the calling process is termnated. Ot herw se, the
close function returns to the calling process with register A set to
OFFH and register Hset to one of the foll owi ng physical or extended
error codes:

01 : Pernmanent error
02 : Read/only disk

04 : Select error
06 : FCB checksum error

69

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide 2.4 BDCOS Cal I's: Function 17

FUNCTI ON 17: SEARCH FOR FI RST

Entry Paraneters:
Regi st er C 11H
Regi sters DE: FCB Address

Ret ur ned Val ue:
Regi st er A: Directory Code
Regi st er H: Physical Error

Search For First scans the directory for a match with the FCB
addressed by register pair DE. Two types of searches can be
performed. For standard searches, the calling process initializes
bytes 0 through 12 of the referenced FCB, with byte 0 specifying the
drive directory to be searched, bytes 1 through 11 specifying the
file or files to be searched for, and byte 12 specifying the extent.
Normal ly byte 12 is set to zero. An ASCI| question nmark (63
decimal, 3F hex) in any of the bytes 1 through 12 natches al
entries on the directory in the correspondi ng position. This
facility, called anbi guous reference, can be used to search for
multiple files on the directory. Wien called in the standard node,
the search function scans for the first file entry in the specified
directory that matches the FCB and bel ongs to the current user
numnber .

The search function also initializes the Search For Next
function. After the search function has |located the first directory
entry matching the referenced FCB, the Search For Next function can
be called repeatedly to locate all remaining matching entries. In
terns of execution sequence, however, the Search For Next call nust
either follow a Search For First or Search For Next call with no

ot her intervening BDOS di sk-related function calls.

If byte O of the referenced FCB is set to a question mark, the

search function ignores the renmainder of the referenced FCB and

| ocates the first directory entry residing on the current default
drive. All remaining directory entries can be |ocated by making

nmul tiple Search For Next calls. This type of search operation is

not normally nmade by application prograns, but it does provide
conplete flexibility to scan all current directory val ues. Note

that this type of search operation nmust be perforned to access a
drive's Directory Label (see Section 2.2.5).

Upon return, the search function returns a Directory Code in
register Awith the value 0 to 3 if the search was successful, or
OFFH (255 Decimal) if a matching directory entry was not found.

Regi ster His set to zero in both of these cases. For successful
searches, the current DVAis also filled with the directory record
contai ning the matching entry, and the relative starting position is
A* 32 (i.e. rotate the Aregister left 5 bits, or ADD A five

70

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide 2.4 BDCOS Cal I's: Function 17

times). Al though not normally required for application prograns,
the directory information can be extracted fromthe buffer at this
posi tion.

If a physical error was encountered, the search function
perfornms different actions depending on the BDOS error node (See
function 45). If the BDOS error node is in the default node, a
nessage identifying the error is displayed at the console and the
calling process is termnated. Gtherw se, the search function
returns to the calling process with register A set to OFFH and
register Hset to one of the follow ng physical error codes:

01 Per manent error
04 Sel ect error

FUNCTI ON 18: SEARCH FOR NEXT

Entry Paraneters:

Regi ster C 12H

Ret ur ned Val ue:

Regi st er A Directory Code
Regi st er H: Physi cal Error

The Search For Next function is identical to the Search For
First function, except that the directory scan continues fromthe
last entry that was matched. Function 18 returns a Directory code
in register A analogous to Function 17. Note: In execution
sequence, a Function 18 call nust follow either a Function 17 or
anot her Function 18 call with no other intervening BDOS di sk-rel ated
function calls.

71

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.4 BDOS Cal I's: Function 19

FUNCTI ON 19: DELETE FI LE

Entry Paraneters:
Regi st er C 13H
Regi sters DE: FCB Address

Ret ur ned Val ue:

Regi st er A Directory Code

Regi st er H: Ext ended or
Physi cal Error

The Delete File function renoves files and/or XFCBs that match
the FCB addressed in register pair DE. The filenane and type nay
contai n anbi guous references (i.e., question marks in bytes fl
through t3) , but the "dr" byte cannot be amnbiguous, as it can in the
Search and Search Next functions. Interface attribute f5 specifies
the type of delete operation to be perfornmed as shown bel ow

f5'
f5'

0 - Standard Del ete (default node)
1 - Delete only XFCB' s

If any of the files specified by the referenced FCB are password
protected, the correct password rmust be placed in the first eight
bytes of the current DVA buffer, or have been previously established
as the default password (see Function 106).

For standard del ete operations, the delete function renoves al
directory entries belonging to files that nmatch the referenced FCB
Al disk directory and data space owned by the deleted files is
returned to free space, and becones available for allocation to
other files. Directory XFCBs that were owned by the deleted files
are also renmoved fromthe directory. If interface attribute f5' of
the FCB is set to 1, Function 19 deletes only the directory XFCBs
mat chi ng the referenced FCB. Note: If any of the files natching
the input FCB specification fail the password check, are read/only,
or are currently open by another process, then the delete function
deletes no files or XFCBs. This applies to both types of delete
operations.

A process can delete a file that it currently has open if the
file was opened in | ocked node. However, a checksumerror is
returned if the process nmakes a subsequent reference to the file
with a BDOS function requiring an open FCB. Files open in read/only
or unl ocked node cannot be del eted by any process.

Upon return, the delete function returns a Directory Code in
register Awith the value 0 to 3 if the delete was successful, or
OFFH (255 Decimal) if no file matching the referenced FCB was found.
Regi ster His set to zero in both of these cases. |If a physical or
extended error was encountered, the delete function perforns

72

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.4 BDOS Cal I's: Function 19

di fferent actions depending on the BDOS error node (see Function
45). |If the BDOS error node is the default node, a nessage
identifying the error is displayed at the console and the calling
process is termnated. Gt herwi se, the delete function returns to
the calling process with register A set to OFFH and regi ster H set
to one of the foll owi ng physical or extended error codes:

01 : Per manent error
02 : Read/only disk
03 : Read/only file
04 : Select Error

05 : File open by another process or open
in read/only or unlocked node
07 : File password error
73

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.4 BDOS Cal I's: Function 20

FUNCTI ON 20: READ SEQUENTI AL

Entry Paraneters:
Regi st er C 14H
Regi sters DE: FCB Address

Ret ur ned Val ue:
Regi st er A: Error Code
Regi st er H: Physical Error

The Read Sequential function reads the next one to sixteen
128-byte records froma file into nmenory begi nning at the current
DVA address. The BDOS Mul ti-Sector Count (see Function 44)
det erm nes the nunber of records to be read. The default is one
record. The FCB addressed by register pair DE nust have been
previously activated by an Open or Make function call.

Function 20 reads each record frombyte "cr" of the extent,
then automatically increnents the "cr" field to the next record
position . If the "cr" field overflows then the function
autonmatically opens the next |ogical extent and resets the "cr"
field to O in preparation for the next read operation. The calling
process nust set the "cr" field to O following the open call if the
intent is to read sequentially fromthe beginning of the file.

74

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.4 BDOS Cal I's: Function 20

Upon return, the Read Sequential function sets register Ato
zero if the read operation was successful. otherw se, register A
contains an error code identifying the error as shown bel ow

01 : Reading unwitten data (end of file)
09 : Invalid FCB

10 : FCB checksum error

11 : Unl ocked file verification error

255 : Physical error; refer to register H

Error Code 01 is returned if no data exists at the next
record position of the file. Normally, the no data situation is
encountered at the end of a file. However, it can also occur if an
attenpt is nade to read a data bl ock which has not been previously
witten, or an extent which has not been created. These situations
are usually restricted to files created or appended wi th the BDOS
randomwite functions (see Functions 34 and 40).

Error Code 09 is returned if the FCB was invalidated by a
previ ous BDOS randomread or wite call that returned an error. A
Read Random call (Function 33) for an existing record in the file,
can be nade to revalidate the FCB

Error Code 10 is returned if the referenced FCB fail ed the
FCB checksum t est.

Error Code 11 is returned if the BDOS cannot |ocate the FCB s
directory entry when attenpting to verify that the referenced FCB
contains current information. This error is only returned for files
open i n unl ocked node.

Error Code 255 is returned if a physical error was
encountered and the BDOS error node is Return Error node or Return
and Display Error node (see Function 45) . If the error node is the
default node, a message identifying the physical error is displayed
at the console and the calling process is term nated. Wen a
physical error is returned to the calling process, it is identified
by the four loworder bits of register H as shown bel ow

01 : Permanent error
04 : Select error

The Read Sequential function also sets the four high-order
bits of register Hon all error returns when the BDOS Milti - Sector
Count is greater than one. In this case, the four bits contain an
i nteger set to the nunber of records successfully read before the
error was encountered. This value can range fromO to 15. The
hi gh-order four bits of register Hare always zeroed when the Ml ti
Sector Count is equal to one.

75

All Information Presented here is Proprietary to Digital Research

MY/ M 11 Programmer's Quide 2.4 BDCOS Cal I's: Function 21

FUNCTI ON 21: WRI TE SEQUENTI AL

Entry Paraneters:
Regi st er C. 15H
Regi sters DE: FCB Address

Ret ur ned Val ue:
Regi st er A: Error Code
Regi st er H: Physical Error

The Wite Sequential function wites one to sixteen 128-byte
data records beginning at the current DMA address into the file
naned by the FCB addressed in register pair DE. The BDOS Miul ti
Sector Count (see Function 44) determ nes the nunber of 128 byte
records that are witten. The default is one record. The
referenced FCB nust have been previously activated by a BDOS Open or
Make function call.

Function 21 places the record into the file at the position
i ndicated by the "cr" byte of the FCB, and then autonmatically
increnents the "cr" byte to the next record position. If the "cr"
field overflows, the function automatically opens or creates the
next |ogical extent and resets the "cr" field to O in preparation
for the next wite operation. If Function 21 is used to wite to an
existing file, then the newwy witten records overlay those already
existing in the file. The calling process nust set the "cr" field
to O following an Open or Make call if the intent is to wite
sequentially fromthe beginning of the file.

Upon return, the Wite Sequential function sets register Ato
zero if the wite operation was successful. otherw se, register A
contains an error code identifying the error as shown bel ow

01 No avail able directory space

02 No avail abl e data bl ock

08 Record | ocked by another process
09 Invalid FCB

10 FCB checksum error

11 Unl ocked file verification error

255 Physical error : refer to register H

Error Code 01 is returned when the wite function attenpts to
Ccreate a new extent that requires a new directory entry and no
avail able directory entries exist on the selected disk drive.

Error Code 02 is returned when the wite command attenpts to

all ocate a new data block to the file and no unall ocated data bl ocks
exi st on the sel ected disk drive.

76

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide 2.4 BDCOS Cal I's: Function 21

Error Code 08 is returned if the wite function attenpts to
wite to a record | ocked by another process. This error is only
returned for files open in unl ocked node.

Error Code 09 is returned if the FCB was invalidated by a
previ ous BDOS randomread or wite call that returned an error. A
Read Random call (Function 33) for an existing record in the file
can be nade to revalidate the FCB

Error Code 10 is returned if the referenced FCB fail ed the FCB
checksum t est.

Error Code 11 is returned if the BDOS cannot |ocate the FCB s
directory entry when attenpting to verify that the referenced FCB
contains current information. This error is only returned for files
open i n unl ocked node.

Error Code 255 is returned if a physical error was encountered
and the BDOS error node is Return Error node or Return and Displ ay
Error node (see Function 45). If the error node is the default
node, a nessage identifying the physical error is displayed at the
console and the calling process is term nated. Wen a physica
error is returned to the calling process, it is identified by the
four loworder bits of register H as shown bel ow

01 : Permanent error
02 : Read/only disk
03 : Read/only file or
File open in read/only node or
File password protected in Wite node
04 : Select error

The Wite Sequential function also sets the four high-order bits of
register Hon all error returns when the BDOS Miulti-Sector Count is
greater than one. In this case, the four bits contain an integer
set to the nunber of records successfully witten before the error
was encountered. This value can range fromzero to 15. The high
order four bits of register H are always zeroed when the Mul ti
Sector Count is equal to one.

77

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide 2.4 BDOS Cal I's: Function 22

FUNCTI ON 22: MAKE FI LE

Entry Paraneters:
Regi st er C. 16H
Regi sters DE: FCB Address

Ret ur ned Val ue:

Regi st er A: Directory Code

Regi st er H: Physical or
Ext ended Error

The Make File function creates a new directory entry for a file
under the current user nunber. It also creates an XFCB for the file
if the referenced drive has a Directory Label that invokes automatic
creation of XFCBs. The calling process passes the address of the
FCB in the register pair DE, with byte 0 of the FCB specifying the
drive, bytes 1 through 11 specifying the filenanme and type, and byte
12 set to the extent nunber. Normally, byte 12 is set to zero.

Byte 32 of the FCB (the "cr" field) nust be initialized to zero
(before or after the Make call) if the intent is to wite
sequentially fromthe beginning of the file.

Interface attribute f5' specifies the node in which the file is
to be opened. Interface attribute f6l specifies whether a password
is to be assigned to the created file. The interface attributes are
surmari zed bel ow.

f5 =0 - Open in |locked node (default node)
f5 =1 - Open in unlocked node

f6' =0 - Don't assign password (default)
f6' = 1 - Assign password to created file

When attribute Wis set to 1, the calling process nust place the
password in the first 8 bytes of the current DVA buffer and set byte
9 of the DVA buffer to the password node (See Function 102).

The Make function returns with an error if the referenced FCB
nanes a file that currently exists in the directory under the
current user nunber. A preceding delete operation can be nade if
there is any possibility of duplication

If the make operation is successful, it activates the
referenced FCB for file operations (opens the FCB) and initializes
both the directory entry and the referenced FCB to an enpty file. A
checksumis conputed and assigned to the FCB. BDCS functions that
requi re an open FCB (e.g. Wite Random) verify that the FCB checksum
is valid before performng their operation. If the open node is
unl ocked, bytes rOand rl are set to a two byte value called the
File ID. The File IDis a required paraneter for the BDOS Lock
Record and Unl ock Record functions. Note that the Make File

78

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide 2.4 BDOS Cal I's: Function 22
function initializes all file attributes to zero.

The BDOS file systemal so creates an open file itemin the
systemlock list to record a successful make file operation. Wile
this itemexists, no other process can delete, renane, or nodify the
file's attributes.

If the referenced drive contains a Directory Label that invokes
autonmatic creation of XFCBs, the nake function creates an XFCB and
nmakes a Creation date and tine stanp for the created file. Note
that the Creation tinme stanp is not nmade (the XFCB Creation tine
stanp field is set to zeroes) if an XFCB is assigned to a file by
the BDOS Wite File XFCB call. If interface attribute f6' of the
FCB is 1, the make function al so assigns the password passed in the
DVA to the file.

Upon return, the make function returns a directory code in
register Awith the value 0 through 3 if the nmake operation was
successful, or OFFH (255 decinal) if no directory space was
avail able. Register His set to zero in both of these cases. If a
physi cal or extended error was encountered, the make function
perfornms different actions depending on the BDOS error node (see
Function 45) . If the BDOS error node is the default node, a nessage
identifying the error is displayed at the console and the calling
process is termnated. Gtherw se, the make function returns to the
calling process with register A set to OFFH and register H set to
one of the follow ng physical or extended error codes:

01 : Permanent error

02 : Read/only disk

04 . Select error

08 : File already exists

09 : ?in filename or type field

10 : Process open file linmt exceeded
11 : No roomin the systemlock I|ist

79

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.4 BDOS Cal I's: Function 23

FUNCTI ON 23: RENAME FI LE

Entry Paraneters:
Regi st er C 17H
Regi sters DE: FCB Address

Ret ur ned Val ue:

Regi st er A: Return Code

Regi st er H: Physical or
Ext ended Error

The Renane function uses the FCB addressed by register pair DE
to change all directory entries of the file specified by the
filename in the first 16 bytes of the FCB to the filenanme in the
second 16 bytes. If the file specified by the first filenane is
password protected, the correct password nust be placed in the first
ei ght bytes of the current DVA buffer, or have been previously
established as the default password (see Function 106). The calling
process nust also ensure that the filenames specified in the FCB are
valid and unanbi guous, and that the new fil ename does not already
exi st on the drive. Function 23 uses the "dr" code at byte 0 of the
FCB to select the drive. The drive code at byte 16 of the FCB is
i gnor ed.

A process can renanme a file that it has open if the file was
opened in | ocked node. However, if the process subsequently
references the file with a BDOS function requiring an open FCB, a
checksumerror is returned. Afile open in read/only or unlocked
node cannot be renaned by any process.

Upon return, the rename function returns a Directory Code in
register Awith the value 0 to 3 if the rename was successful, or
OFFH (255 Decimal) if the file naned by the first filenane in the
FCB was not found. Register His set to zero in both of these
cases. If a physical or extended error was encountered, the renane
function perforns different actions depending on the BDOS error node
(see Function 45). If the BDOS error node is the default node, a
nessage identifying the error is displayed at the console and the
process is termnated. O herwi se, the renanme function returns to
the calling process with register A set to OFFH and regi ster H set
to one of the foll owi ng physical or extended error codes:

01 : Permanent error

02 : Read/only disk

03 : Read/only file

04 . Select error

05 : File open by another process
07 : File password error

08 : File already exists

09 : ?2in file nanme or type field

80

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide 2.4 BDOS Cal I's: Function 24

FUNCTI ON 24: RETURN LOG N VECTCOR

Entry Paraneters:
Regi st er C 18H

Ret ur ned Val ue:
Regi sters HL: Logi n Vector

Function 24 returns the login vector in register pair HL. The
login vector is a 16-bit value with the [east significant bit of L
corresponding to drive A and the high-order bit of H correspondi ng
to the 16th drive, labeled P. A "0" bit indicates that the drive
is not on-line, while a "I" bit indicates the drive is active. A
drive is nade active by either an explicit BDOS Sel ect Di sk cal
(nunber 14), or an inplicit selection when a BDOS file operation
specifies a non-zero "dr" byte in the FCB. Function 24 maintains
conpatibilty with earlier rel eases, since registers A and L contain
t he sane val ues upon return

FUNCTI ON 25: RETURN CURRENT DI SK

Entry Paraneters:
Regi st er C 19H

Ret ur ned Val ue:
Regi st er A Current Disk

Function 25 returns the currently selected default disk nunber
in register A The disk nunbers range fromO through 15
corresponding to drives A through P

81

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.4 BDOS Cal I's: Function 26

FUNCTI ON 26: SET DVA ADDRESS

Entry Paraneters:
Regi st er C IAH
Regi sters DE: DMA Address

"DMA" is an acronym for Direct Menory Address, which is often
used in connection with disk controllers that directly access the
nmenory of the conmputer to transfer data to and fromthe disk
subsystem Under MP/M 11, the current DMA is usually defined as the
buffer in nmenory where a record resides before a disk wite and
after a disk read operation. If the BDOS Miulti-Sector Count is
equal to one (see Function 44) , the size of the buffer is 128 bytes.
However, if the BDOS Multi-Sector Count is greater than one, the
size of the buffer nust equal N * 128, where N equals the Milti
Sector Count.

Sone BDOS functions also use the current DVA to pass paraneters
and to return values. For exanple, BDOS functions that check and
assign file passwords, require that the password be placed in the
current DMA. As anot her exanple, Function 46 (Get Di sk Free Space)
returns its results in the first 3 bytes of the current DVA. Wen
the current DVA is used in this context, the size of the buffer in
nmenory is determ ned by the specific requirenents of the called
function.

When a transient programis initiated by the CLI, its DVA
address is set to BASE+0080H. The BDOS Reset Di sk System function
(Function 13) also sets the DVA address to BASE+0080H. The Set DVA
function can change this default value to another nenory address.
The DVA address is set to the value passed in the register pair DE
The DVA address renmmins at this value until it is changed by anot her
Set DMA Address, or Reset Disk Systemcall.

82

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide 2.4 BDCOS Cal I's: Function 27

FUNCTI ON 27: CGET ADDR(ALLOC)

Entry Paraneters:
Regi st er C 1BH

Ret ur ned Val ue:
Regi sters HL: ALLOC Address

MP/M 11 maintains an "allocation vector" in nmain nenory for
each active disk drive. Many prograns comonly use the information
provided by the allocation vector to deternine the anount of free
data space on a drive. Note, however, that the allocation
information nmay be inaccurate if the drive has been narked
read/ only.

Function 27 returns in register pair HL, the base address of
the allocation vector for the currently selected drive. If a
physical error is encountered when the BDOS error node is one of the
return nodes (see Function 45) , Function 27 returns the val ue OFFFFH
in the register pair HL.

In banked switched M/ M 11 systens, the allocation vector nay
be placed in bank zero. This is an XICS option. In this case, a
transi ent programthat has been | oaded i nto another bank cannot
access the allocation vector. However, the BDOS function, Cet Disk
Free Space (Function 46), can be used to directly return the nunber
of free 128 byte records on a drive. In fact, the MM MI11 utilities
that display a drive's free space (STAT, SDIR, and SHOWN use Function
46 for that purpose.

FUNCTI ON 28: WRI TE PROTECT DI SK

Entry Paraneters:
Regi st er C 1CH

Ret ur ned val ue:
Regi st er A Return code

The Wite Protect Disk function provides tenporary wite
protection for the currently selected disk by marking the drive as
read/only. No process can wite to a disk that is in the read/only
state. A successful drive reset operation nust be perfornmed for a
read/only drive to restore it to the read/wite state (see Functions
13 and 37).

83

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.4 BDOS Cal I's: Function 28

The Wite Protect Disk function is conditional under MP/MII.
| f another process has an open file on the drive, this function is
deni ed and the value OFFH is returned to the calling process.
otherwi se, register Ais set to zero. Note that a drive in the
read/only state cannot be reset by a process if another process has
an open file on the drive.

FUNCTI ON 29: CGET READ ONLY VECTOR

Entry Paraneters:
Regi st er C 1DH

Ret ur ned Val ue:
Regi sters HL: R/ O Vector Val ue

Function 29 returns a bit vector in register pair HL that
i ndi cates which drives have the tenporary read/only bit set. The
read/only bit is set either by a BDOS Wite Protect Disk call, or by
the automatic software mechanisms within MM/ M 11 that detect changed
di sk nedi a.

The format of the bit vector is analogous to that of the login
vector returned by Function 24. The |east significant bit
corresponds to drive A, while the nost significant bit corresponds
to drive P.

FUNCTI ON 30: SET FI LE ATTRI BUTES

Entry Paraneters:
Regi st er C 1EH
Regi sters DE: FCB Address

Ret ur ned Val ue:
Regi st er A: Directory Code

The Set File Attributes function is the only BDOS function that
allows a programto manipulate file attributes. O her BDOS
functions can interrogate these file attributes but cannot change
them The file attributes that can be set or reset by Function 30
are: fl' through f4', RO (tl"'), System(t2’'), and Archive (t3").
The register pair DE addresses an FCB containing a filenane with the
appropriate attributes set or reset. The calling process mnust
ensure that it does not specify an anbi guous filenane. In addition,

84

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.4 BDOS Cal I's: Function 30

if the specified file is password protected, the correct password
nmust be placed in the first eight bytes of the current DVA buffer,
or have been previously established as the default password (see
Functi on 106).

Function 30 searches the FCB specified directory for an entry
bel onging to the current user nunber that matches the FCB specified
nane and type fields. The function then updates the directory to
contain the selected indicators. File attributes tl', t2', and t3'
are defined by M M11. They are described in Section 2.2.4.
Attributes fl' through f4' are not presently used, but nay be usefu
for application prograns, because they are not involved in the
mat chi ng process used by the BDOS during Open File and Close File
operations. Indicators f5 through f8 are reserved for use as
interface attributes.

This function is not perforned if the file specified by the
referenced FCB is currently open for another process. It is
performed, however, if the referenced file is open for the calling
process in | ocked node. After successfully setting the attributes
of a file opened by the calling process, any subsequent file
reference requiring an open FCB returns a checksumerror. This
function does not set the attributes of a file currently open in
read/ only or unl ocked node for any process.

Upon return, Function 30 returns a Directory Code in register A
with the value 0 to 3 if the function was successful, or OFFH (255
Decimal) if the file specified by the referenced FCB was not found.
Register His set to zero in both of these cases. If a physical or
extended error was encountered, the Set File Attributes function
performs different actions depending on the BDOS error node (see
Function 45). If the BDOS error node is the default node, a nessage
identifying the error is displayed at the console and the process is
term nated. Ot herwi se, Function 30 returns to the calling process
with register A set to OFFH and register H set to one of the
fol |l owi ng physical or extended error codes:

01 : Permanent error

02 : Read/only disk

04 . Select error

05 : File open by another process
07 : File password error

09 : ?2in file nanme or type field

85

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.4 BDOS Cal I's: Function 31

FUNCTI ON 31: GET ADDR(DI SK PARMS

Entry Paraneters:
Regi st er C | FH

Ret ur ned Val ue:
Regi sters HL: DPB Address

Function 31 returns in register pair HL, the address of the
XI OS-resident Disk Paranmeter Block (DPB) for the currently sel ected
drive. (Refer to the MP/MII System Guide for the format of the
DPB) . The calling process can use this address to extract the disk
paranmeter values for display or to conpute the space on a drive.

If a physical error is encountered when the BDOS error node is
one of the return nodes (see Function 45), Function 31 returns the
value OFFFFH in the register pair HL.

FUNCTI ON 32: SET/ GET USER CODE

Entry Paraneters:

Regi st er C 20H

Regi st er E: OFFH (get) or
User Code (set

Ret ur ned Val ue:
Regi st er A Current Code or
(no val ue)

A process can change or interrogate the currently active user
nunber by calling Function 32. If register E = OFFH, then the val ue
of the current user nunber is returned in register A where the value
isinthe range of O to 15. If register Eis not OFFH, then the
current user nunber is changed to the value of E (nodul o 16).

86

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.4 BDOS Cal I's: Function 33

FUNCTI ON 33: READ RANDOM

Entry Paraneters:
Regi st er C 21H
Regi sters DE: FCB Address

Ret ur ned Val ue:
Regi st er A: Error Code
Regi st er H: Physical Error

The Read Random function is sinilar to the Read Sequenti al
function except that the read operation takes place at a particul ar
random record nunber, selected by the 24-bit val ue constructed from
the three byte (rQ rl, r2) field beginning at position 33 of the
FCB. Note that the sequence of 24 bits is stored with the | east
significant byte first (rQ , the niddle byte next (rl) , and the high
byte last (r2). The randomrecord nunber can range fromO to
242,143. This corresponds to a maxi numvalue of 3 in byte r2.

To read a file with Function 33, the calling process nust first
open the base extent (extent 0). This ensures that the FCB is
properly initialized for subsequent random access operations. (The
base extent may or nmay not contain any allocated data) . Function 33
pl aces the specified record nunber in the randomrecord field, and
then BDOS reads the record into the current DVA address. The
function automatically sets the |ogical extent and current record
val ues, but unlike the Read Sequential function, it does not advance
the record nunmber. Thus a subsequent Read Random call re-reads the
same record. After a randomread operation, a file can be accessed
sequentially, starting fromthe current randomy accessed position
However, the last randomly accessed record is re-read or re-witten
when swi tching fromrandomto sequential node

87

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.4 BDOS Cal I's: Function 33

If the BDOS Multi-Sector count is greater than one (see
Function 44), the Read Random function reads multiple consecutive
records into nenory beginning at the current DMA. The rQrl, and r2
field of the FCB is automatically incremented to read each record.
However, the FCBs randomrecord nunber is restored to the first
record' s value upon return to the calling process. Upon return, the
Read Random function sets register Ato zero if the read operation
was successful. otherw se, register A contains one of the follow ng
error codes:

01 : Reading unwitten data

03 : Cannot d ose current extent

04 : Seek to unwitten extent

06 : Random record nunber out of range

10 : FCB checksum error

11 : Unlocked file verification error
255 : Physical error : refer to register H

Error Code 01 is returned when the Read Random function
accesses a data bl ock that has not been previously witten.

Error Code 03 is returned when the Read Random functi on cannot
close the current extent prior to noving to a new extent.

Error Code 04 is returned when a read random operati on accesses
an extent that has not been created.

Error Code 06 is returned when byte 35 (r2) of the referenced
FCB is greater than 3.

Error Code 10 is returned if the referenced FCB fail ed the FCB
checksum test.

Error Code 11 is returned if the BDOS cannot |ocate the FCB s
directory entry when attenpting to verify that the referenced FCB
contains current information. This error is only returned for files
open i n unl ocked node.

Error Code 255 is returned if a physical error was encountered
and the BDOS error nmode is one of the return nodes (see Function
45). If the error node is the default node, a nessage identifying
t he physical error is displayed at the console and the calling
process is termnated. When a physical error is returned to the
calling process, it is identified by the four | ow order bits of
regi ster H as shown bel ow.

01 : Permanent Error
04 : Select Error

The Read Random function al so sets the four high-order bits of
register Hon all error returns when the BDOS Miul ti-Sector Count is
greater than one. In this case, the four bits contain an integer
set to the nunmber of records successfully read before the error was
encountered. This value can range fromO to 15. The hi gh-order

88

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.4 BDOS Cal I's: Function 33

four bits of register H are always zeroed when the Milti- Sector
Count is equal to one.

FUNCTI ON 34: WWRI TE RANDOM

Entry Paraneters:
Regi st er C 22H
Regi sters DE: FCB Address

Ret ur ned Val ue:
Regi st er A: Error Code
Regi st er H: Physical error

The Wite Random function is anal ogous to the Read Random
Function, except that data is witten to the disk fromthe current
DVA address. |If the disk extent and/or data bl ock where the data is
to be witten is not already allocated, the BDOS autonatically
perfornms the allocation before the wite operation continues.

To wite to a file using the Wite Random function, the calling
process must first open the base extent (extent 0). This ensures
that the FCB is properly initialized for subsequent random access
operations. The base extent nay or may not contain any all ocated
data, but opening extent O records the file in the directory so that
it is can be displayed by the DIR utility. If a process does not
open extent 0 and allocates data to sone other extent, the file will
be invisible to the DR utility.

The Wite Random function sets the | ogical extent and current
record positions to correspond with the randomrecord being witten,
but does not change the random record nunber. Thus sequential read
or wite operations can follow a randomwite, with the current
record being re-read or re-witten as the calling process switches
fromrandomto sequential node.

If the BDOS Miulti-Sector count is greater than one (see
Function 44), the Wite Random function reads nultiple consecutive
records into nenory beginning at the current DMA. The rQrl, and r2
field of the FCB is automatically incremented to wite each record.
However, the FCB' s randomrecord nunber is restored to the first
record' s value upon return to the calling process. Upon return, the
Wite Random function sets register Ato zero if the wite operation
was successful.

89

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.4 BDOS Cal I's: Function 34
O herwi se, register A contains one of the follow ng error codes:

02 : No avail abl e data bl ock

03 : Cannot C ose current extent

05 : No available directory space

06 : Random record nunber out of range

08 : Record | ocked by anot her process

10 : FCB checksum error

11 : Unl ocked file verification error
255 : Physical error : refer to register H

Error Code 02 is returned when the wite command attenpts to
allocate a new data block to the file and no unall ocated data bl ocks
exi st on the selected disk drive.

Error Code 03 is returned when the Read Random functi on cannot
close the current extent prior to noving to a new extent.

Error Code 05 is returned when the wite function attenpts to
Ccreate a new extent that requires a new directory entry and no
avail abl e directory entries exist on the selected disk drive.

Error Code 06 is returned when byte 35 (r2) of the referenced
FCB is greater than 3.

Error Code 08 is returned when the Wite Random function
attenpts to wite to a record | ocked by another process. This error
is only returned for files open in unlocked node.

Error Code 10 is returned if the referenced FCB fail ed the FCB
checksum test.

Error Code 11 is returned if the BDOS cannot |ocate the FCB s
directory entry when attenpting to verify that the referenced FCB
contains current information. This error is only returned for files
open i n unl ocked node.

Error Code 255 is returned if a physical error was encountered
and the BDOS error nmode is one of the return nodes (see Function
45). If the error node is the default node, a nessage identifying
t he physical error is displayed at the console and the calling
process is termnated. When a physical error is returned to the
calling process, it is identified by the four |ow order bits of
regi ster H as shown bel ow.

01 : Permanent error
02 : Read/only disk
03 : Read/only file
File open in read/only node
File password protected in Wite node
04 : Select Error

The Wite Random function also sets the four high-order bits of
register Hon all error returns when the BDOS Miul ti-Sector Count is
greater than one. In this case, the four bits contain an integer

90

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.4 BDOS Cal I's: Function 34

set to the nunmber of records successfully read before the error was
encountered. This value can range fromO to 15. The hi gh-order

four bits of register H are always zeroed when the Milti- Sector
Count is equal to one.

FUNCTI ON 35: COWPUTE FI LE SI ZE

Entry Paraneters:
Regi st er C 23H
Regi sters DE: FCB Address

Ret ur ned Val ue:

Regi st er A: Error Flag

Regi st er H: Physical or
Ext ended error

Random Record Field Set

The Conpute File Size function determines the "virtual" file
size, which is, in effect, the address of the record i mediately
following the end of the file. The "virtual" size of a file
corresponds to the physical size if the file is witten
sequentially. If the file is witten in random node, gaps ni ght
exist in the allocation, and the file nmight contain fewer records
than the indicated size. For exanple, if a single record with
record nunber 262,143 (the MP/M Il nmaxinum is witten to a file
using the Wite Random function, then the "virtual" size of the file
is 262,144 records even though only 1 data block is actually
al | ocat ed.

To compute file size, the calling process passes in register
pair DE, the address of a FCB in random node format (bytes rQ rl
and r2 present) . Note that the FCB nmust contain an unanbi guous
filenanme and type. Function 35 sets the randomrecord field of the
FCB to the randomrecord nunber + 1 of the last record in the file.
If the r2 byte is set to 04, then the file contains the maxi num
record count 262, 144.

A process can append data to the end of an existing file by
calling Function 35 to set the randomrecord position to the end of
file, then perform ng a sequence of randomwites starting at the
preset record address.

Not e: t he BDOS does not require that the file be open to use
Function 35.

Upon return, Function 35 returns a zero in register Aif the

file specified by the referenced FCB was found, or a OFFH in
register Aif the file was not found. Register His set to zero in

91

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.4 BDOS Cal I's: Function 35

both of these cases. If a physical or extended error was
encountered, Function 35 perforns different actions depending on the
BDOS error node (see Function 45). If the BDOS error node is the
default node, a nessage identifying the error is displayed at the
consol e and the process is term nated. O herw se, Function 35
returns to the calling process with register A set to OFFH and
register Hset to one of the follow ng physical or extended errors:

01 : Permanent error
04 : Select error
09 : ?2in file nanme or type field

FUNCTI ON 36: SET RANDOM RECORD

Entry Paraneters:
Regi st er C 24H
Regi sters DE: FCB Address

Ret ur ned Val ue:
Random Record Field Set

The Set Random Record function returns the randomrecord nunber
of the next record to be accessed froma file that has been read or
witten sequentially to a particular point. This value is returned
in the randomrecord field (bytes rOQ, rl, and r2) of the FCB
addressed by the register pair DE. Function 36 can be useful in two
ways.

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various "key" fields.
As each key is encountered, Function 36 is called to conpute the
random record position for the data corresponding to this key. If
the data unit size is 128 bytes, the resulting record nunber m nus
one is placed into a table with the key for later retrieval. After
scanning the entire file and tabul arizing the keys and their record
nunbers, you can nove directly to a particular record by perform ng
a randomread using the correspondi ng randomrecord nunber that was
saved earlier. The schenme is easily generalized when variable
record |l engths are involved since the programneed only store the
buffer-relative byte position along with the key and record nunber
to find the exact starting position of the keyed data at a |l ater
tine.

A second use of Function 36 occurs when switching froma
sequential read or wite over to randomread or wite. Afile is
sequentially accessed to a particular point in the file, Function 36
is called which sets the record nunber, and subsequent random read
and wite operations continue fromthe next record in the file.

92

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.4 BDOS Cal I's: Function 37

FUNCTI ON 37: RESET DRI VE

Entry Paraneters:
Regi st er C 25H
Regi st er DE: Drive Vector

Ret ur ned Val ue
Regi st er A Ret urn Code

The Reset Drive function is used to programatically restore
specified drives to the reset state (a reset drive is not |ogged-in
and is in read/wite status) . The passed paraneter in register pair
DE is a 16 bit vector of drives to be reset, where the | east
significant bit corresponds to the first drive A and the high-order
bit corresponds to the sixteenth drive, |abeled P. Bit val ues of
"I" indicate that the specified drive is to be reset.

This function is conditional under M/ MI1. |If another process
has a file open on a drive to be reset, and the drive is renoveable
or read/only, the Drive Reset function is denied and no drives are
reset.

Upon return, if the reset operation is successful, register A
is set to zero. Gtherwise, register Ais set to OFFH (255 decimal)
If the BDOS error node is not Return Error node (see Function 45),
then an error nessage is displayed at the console, identifying a
process owni ng an open file.

FUNCTI ON 38: ACCESS DRI VE

Entry Paraneters:
Regi st er C. 26H
Regi st er DE: Drive Vector

Ret ur ned Val ue:
Regi st er A: Return Code
Regi st er H Extended Error

The Access Drive function inserts a special open file iteminto
the systemlock list for each specified drive. Wiile the item
exists in the lock list, the drive cannot be reset by anot her
process. As in Function 37, the calling process passes the drive
vector in register pair DE. The format of the drive vector is the
sane as that used in Function 37.

93

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.4 BDOS Cal I's: Function 38

The Access Drive function inserts no itens if insufficient free
space exists in the lock list to support all the newitens or if the
nunber of itens to be inserted puts the calling process over the
lock list open file maximum This maximumis a MP/M 11 GCensys
option. If the BDOS error node is the default node (see Function
45), a nessage identifying the error is displayed at the consol e and
the calling process is termnated. Qtherwi se, the Access Drive
function returns to the calling process, register Ais set to OFFH
and register His set to one of the foll owi ng val ues.

10 : Process Open File linmt exceeded
11 : No roomin the systemlock I|ist

Regi ster Ais set to zero if the Access Drive function is
successful .

FUNCTI ON 39: FREE DRI VE

Entry Paraneters:
Regi st er C 27H
Regi ster DE: Drive Vector

The Free Drive function purges the open lock list of all file
and | ocked record itens that belong to the calling process on the
specified drives. As in Function 38, the calling process passes the
drive vector in register pair DE

Function 39 does not close files associated with purged open
file lock list items. In addition, if a process references a
"purged" file with a BDOS function requiring an open FCB, a checksum
error is returned. Afile that has been witten to should be cl osed
before naking a Free Drive call to the file's drive. otherw se data
may be | ost.

94

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.4 BDOS Cal I s: Function 40

FUNCTI ON 40: WRI TE RANDOM W TH
ZERO FI LL

Entry Paraneters:
Regi st er C 28H
Regi st er DE: FCB addr ess

Ret ur ned Val ue:
Regi st er A Error Code
Regi st er H: Physi cal Error

The Wite Random Wth Zero Fill function is sinmlar to the
Wite Random function (Function 34) with the exception that a
previously unallocated data block is filled with zeroes before the
record is witten. If this function has been used to create a file,
records accessed by a read random operation that contain all zeroes
identify unwitten randomrecord nunbers. Unwitten random records
in allocated data bl ocks of files created using the Wite Random
function contain uninitialized data.

FUNCTI ON 41: TEST AND WRI TE RECORD

Entry Paraneters:
Regi st er C 29H
DE: FCB Addres

Ret ur ned Val ue:
Regi st er A Error Code
Regi st er H: Physi cal Error

The Test and Wite Record provides a neans of verifying the
current contents of a record on disk before updating it. The
cal ling process nmust set bytes rO rl, and r2 of the FCB addressed
by register pair DE to the randomrecord nunber of the record to be
tested. The original version of the record (i.e. the record to be
tested) nust reside at the current DVA address, followed i nmediately
by the new version of the record. The record size can range from
128 bytes to sixteen tines that val ue depending on the BDOS Mul ti
Sector Count (see Function 44).

Function 41 verifies that the first record is identical to the
record on di sk before replacing it with the new version of the

record. If the record on disk does not nmatch, the record on disk is
not changed and an error code is returned to the calling process.

95

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide 2.4 BDOS Cal I's: Function 41

The Test and Wite function is intended for use in situations
where nore than one process has read/wite access to a comon file.
This situation is supported under MP/M11l, when nore than one
process opens the sane file in unlocked node. Function 41 is a
| ogi cal replacenent for the record | ock/unl ock sequence of
operations because it prevents two processes from sinultaneously
updating the sane record. Note that this function is al so supported
for files open in | ocked node to provide conpatibility between MP/ M
Il and CP/M

Upon return, the Test and Wite Random function sets register A
to zero if the function was successful. otherw se, register A
contains one of the follow ng error codes:

01 : Reading unwitten data

03 : Cannot C ose current extent

04 : Seek to unwritten extent

06 : Random record nunber out of range

07 : Records did not match

08 : Record | ocked by anot her process

10 : FCB checksum error

11 : Unlocked file verification error
255 : Physical error : refer to register H

Error Code Ol is returned when the Test and Wite function
accesses a data bl ock that has not been previously witten.

Error Code 03 is returned when the Test and Wite function
cannot close the current extent prior to noving to a new extent.

Error Code 04 is returned when a read operation accesses an
extent that has not been created.

Error Code 06 is returned when byte 35 (r2) of the referenced
FCB is greater than 3.

Error Code 07 is returned when the Test and Wite record test
fails.

Error Code 08 is returned if the specified record is |ocked by
anot her process. This error is only returned for files open in
unl ocked node.

Error Code 10 is returned if the referenced FCB fail ed the FCB
checksum test.

Error Code 11 is returned if the BDOS cannot |ocate the FCB s
directory entry when attenpting to verify that the referenced FCB
contains current information. This error is only returned for files
open i n unl ocked node.

Error Code 255 is returned if a physical error was encountered
and the BDOS error nmode is one of the return nodes (see Function

45). If the error node is the default node, a nessage identifying
t he physical error is displayed at the console and the calling

96

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide 2.4 BDOS Cal I's: Function 41

process is termnated. When a physical error is returned to the
calling process, it is identified by the four | ow order bits of
regi ster H as shown bel ow.

01 : Permanent error
02 : Read/only disk
03 : Read/only file or
File open in read/only node
File password protected in Wite node
04 : Select Error

The Test and Wite function also sets the four high-order bits
of register Hon all error returns when the BDOS Multi-Sector Count
is greater than one. In this case, the four bits contain an integer
set to the nunber of records successfully tested or witten before
the error was encountered. This value can range fromO to 15. The
hi gh-order four bits of register Hare always zeroed when the Ml ti
Sector Count is equal to one.

FUNCTI ON 42: LOCK RECORD

Entry Paraneters:
Regi st er C 2AH
DE: FCB Address

Ret ur ned Val ue:
Regi st er A Error Code
Regi st er H: Physi cal Error

The Lock Record function | ocks one or nore consecutive records
so that no other programw th access to the records can
si mul taneously | ock or update them This function is only supported
for files open in unlocked node. If it is called for a file open in
| ocked or read/only node, no |ocking action is performed and a
successful result is returned. This is done to provide
conpatibility between MP/ MI1 and CP/M

The calling process passes in register pair DE, the address of
an FCB in which the Random Record Field is filled with the random
record nunber of the first record to be | ocked. The nunber of
records to be locked is determ ned by the BDOS Mul ti-Sector Count
(see Function 44) . The current DMA nust contain the 2-byte File ID
returned by the Qpen File function when the referenced FCB was
opened. Note that the File IDis only returned by the Open function
when t he open node is unl ocked.

The Lock Record function requires that each record nunber to be

| ocked reside in an allocated block for the file. In addition
Function 42 verifies that none of the records to be | ocked are

97

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide 2.4 BDOS Cal I's: Function 42

currently | ocked by anot her process. Both of these tests are nade
before any records are | ocked.

A MP/MII system generation paraneter specifies the maximum
nunber of records that nay be | ocked by a single process. Each
| ocked record consunes an entry in the BDOS system | ock table which
is shared by locked record and open file entries. Another M/ M 1|
system generation paraneter sets the size of this table. If there
is not sufficient space in the systemlock table to lock all the
specified records, or the process record lock lint is exceeded,
then the Lock Record function | ocks no records and returns an error
code to the calling process.

Upon return, the Lock Record function sets register Ato zero
if the | ock operation was successful. O herw se, register A
contains one of the follow ng error codes:

01 : Reading unwitten data

03 : Cannot C ose current extent

04 . Seek to unwritten extent

06 : Random record nunmber out of range

08 : Record | ocked by anot her process

10 : FCB checksum error

11 : Unlocked file verification error

12 . Process record lock limt exceeded

13 : Invalid File ID

14 : No roomin the systemlock I|ist
255 : Physical error : refer to register H

Error Code O1 is returned when the Lock Record function
accesses a data bl ock that has not been previously witten.

Error Code 03 is returned when the Lock Record functi on cannot
close the current extent prior to noving to a new extent.

Error Code 04 is returned when the Lock Record function
accesses an extent that has not been created.

Error Code 06 is returned when byte 35 (r2) of the referenced
FCB is greater than 3.

Error Code 08 is returned if the specified record is | ocked by
anot her process.

Error Code 10 is returned if the referenced FCB fail ed the FCB
checksum test.

Error Code 11 is returned if the BDOS cannot |ocate the
referenced FCB's directory entry when attenpting to verify that the
FCB contains current information

Error Code 12 is returned when the sum of the nunmber of records
currently |l ocked by the calling process and the nunber of records to

be | ocked by the Lock Record call, exceeds the maxi mum al | owed
value. This value is an MP/ M Il Gensys paraneter.

98

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide 2.4 BDOS Cal I's: Function 42

Error Code 13 is returned when an invalid File IDis placed in
the current DVA

Error Code 255 is returned if a physical error was encountered
and the BDOS error nmode is one of the return nodes (see Function
45). If the error node is the default node, a nessage identifying
t he physical error is displayed at the console and the calling
process is termnated. When a physical error is returned to the
calling process, it is identified by the four | ow order bits of
regi ster H as shown bel ow.

01 : Permanent error
04 : Select Error

The Lock Record function also sets the four high-order bits of
register Hon all error returns when the BDOS Miul ti-Sector Count is
greater than one. In this case, the four bits contain an integer
set to the nunber of records successfully | ocked before the error
was encountered. This value can range fromO to 15. The hi gh-order
four bits of register H are always zeroed when the Milti- Sector
Count is equal to one.

FUNCTI ON 43: UNLOCK RECORD

Entry Paraneters:
Regi st er C 2BH
DE: FCB Addres

Ret ur ned Val ue:
Regi st er A Error Code
Regi st er H: Physi cal Error

The Unl ock Record function unl ocks one or nore consecutive
records previously | ocked by the Lock Record function. This
function is only supported for files open in unlocked node. If it
is called for a file open in | ocked or read/only node, no | ocking
action is performed and a successful result is returned. This is
done to provide conpatibility between MP/ M I1 and CP/ M

The calling process passes in register pair DE, the address of
an FCB in which the Random Record Field is filled with the random
record nunber of the first record to be unl ocked. The nunber of
records to be unl ocked is deternined by the BDOS Milti-Sector Count
(see Function 44) . The current DMA nust contain the 2-byte File ID
returned by the Qpen File function when the referenced FCB was
opened. Note that the File IDis only returned by the open function
when t he open node is unl ocked.

99

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.4 BDOS Cal I's: Function 43

The Unl ock Record function will not unlock a record that is
currently | ocked by anot her process. However, no error is returned
if a process attenpts to do that. Thus, if the Milti-Sector Count
is greater than one, the Unlock Record function unlocks all records
| ocked by the calling process, while skipping those records | ocked
by ot her processes.

Upon return, the Unlock Record function sets register Ato zero
if the unl ock operation was successful. otherw se, register A
contains one of the follow ng error codes:

01 : Reading unwitten data
03 : Cannot O ose current extent
04 : Seek to unwitten extent
06 : Random record nunber out of range
10 : FCB checksum error
11 : Unl ocked file verification error
13 : Invalid File ID
255 : Physical error : refer to register H

Error Code 01 is returned when the Unl ock Record function
accesses a data bl ock that has not been previously witten.

Error Code 03 is returned when the Unl ock Record function
cannot close the current extent prior to noving to a new extent.

Error Code 04 is returned when the Unl ock Record function
accesses an extent that has not been created.

Error Code 06 is returned when byte 35 (r2) of the referenced
FCB is greater than 3.

Error Code 10 is returned if the referenced FCB fail ed the FCB
checksum test.

Error Code 11 is returned if the BDOS cannot |ocate the
referenced FCB's directory entry when attenpting to verify that the
FCB contains current information

Error Code 13 is returned when an invalid File IDis placed in
the current DNA

Error Code 255 is returned if a physical error was encountered
and the BDOS error node is one of the return nodes (See function
45). If the error node is the default node, a nessage identifying
t he physical error is displayed at the console and the calling
process is termnated. When a physical error is returned to the
calling process, it is identified by the four | ow order bits of
regi ster H as shown bel ow.

01 : Permanent error
04 : Select Error

The Unl ock Record function also sets the four high-order bits
of register Hon all error returns when the BDOS Multi-Sector Count
is greater than one. In this case, the four bits contain an integer

100

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.4 BDOS Cal I's: Function 43

set to the nunmber of records successfully | ocked before the error
was encountered. This value can range fromO to 15. The hi gh-order
four bits of register H are always zeroed when the Milti- Sector
Count is equal to one.

FUNCTI ON 44: SET MULTI - SECTOR CNT

Entry Paraneters:
Regi st er C 2CH
E: Nunmber of Sectors

Ret ur ned Val ue:
Regi st er A Ret urn Code

The Set Multi-Sector Count function provides |ogical record
bl ocki ng under MP/MI1. It enables a process to read and wite from
1 to 16 "physical" records of 128 bytes at a tine during subsequent
BDOS Read and Wite functions. It also specifies the nunber of 128
byte records to be | ocked or unlocked by the BDOS Lock and Unl ock
functi ons.

Function 44 sets the Multi-Sector Count value for the calling
process to the val ue passed in register E. Once set, the specified
Mul ti-Sector Count remains in effect until the calling process nakes
anot her Set Multi-Sector Count function call and changes the val ue.
Note that the Command Line Interpreter (CLI) sets the Milti-Sector
Count to one when it initiates a transient program

The Multi-Sector count affects BDOS error reporting for the
BDCS read, wite, lock and unlock functions. If an error interrupts
these functions when the Milti-Sector is greater than one, they
return the nunber of records successfully processed in the high
order four bits of register H

Upon return, register Ais set to zero if the specified val ue
isinthe range of 1 to 16. Gtherwise, register Ais set to OFFH

101

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.4 BDOS Cal I's: Function 45

FUNCTI ON 45: SET BDOS ERROR MCODE

Entry Paraneters:
Regi st er C 2DH
E: BDCS error node

Ret ur ned Val ue:
None

The SET BDCS Error Mde function deterni nes how physical and
extended errors (see Section 2.2.13) are handled for a process. The
Error Mbde can exist in three nodes: the default node, Return Error
node and Return and Display Error node. In the default node, BDOS
di spl ays a system nessage at the console identifying the error and
term nates the calling process. In the return nodes, BDOS sets
register Ato OFFH (255 Decinal), places an error code identifying
t he physical or extended error in the four |oworder bits of
register H and returns to the calling process. In Return and
Di spl ay node, BDOS di spl ays the system nessage before returning to
the calling process. No system nessages are displayed, however,
when BDOS is in Return Error node.

Function 45 sets the BDOS error node for the calling process to
the node specified in register E. If register Eis set to OFFH (255
Decimal), the error node is set to Return Error node. If register E
is set to OFEH (254 Decinmal), the error node is set to Return and
Di splay node. If register Eis set to any other value, the error
node is set to the default node.

102

All Information Presented here is Proprietary to Digital Research

[fsO [fsl [fs2]

Di sk Free Space Field Format

fso = low byte
fsl = nddle byte
fs2 = high byte

Upon return, register Ais set to zero if the BDOS Error Mdde is the
default node. However, if the BDOS Error Mdde is one of the return
nodes (see Function 45) and a physical error was encountered,
register Ais set to OFFH (255 Decinal), and register His set to
one of the follow ng val ues:

01 - Permanent error
04 - Select error

MP/ M 11 Programer's Quide 2.4 BDOS Cal I's: Function 47

FUNCTI ON 47: CHAIN TO PROGRAM

Entry Paraneters:
Regi st er C 2FH

The Chain To Program function provides a nmeans of chaining from
one programto the next wi thout operator intervention. Al though
there is no passed paraneter for this call, the calling process mnust
pl ace a conmand line termnated by a null byte in the default DWVA
buffer.

Function 47 does not return any values to the calling process
because any errors encountered are handl ed by the Conmand Li ne
Interpreter (CLI).

Not e: Function 47 nakes an XDOS Conditional Attach Consol e
call for the calling process. If the calling process is detached
fromits console, the programchain is not perfornmed and Function 47
returns to the calling process.

FUNCTI ON 48: FLUSH BUFFERS

Entry Paraneters:

Regi st er C 30H

Ret ur ned Val ue:

Regi st er A Error Fl ag

Regi st er H: Per manent Error

The Flush Buffers function forces the wite of any wite
pendi ng records contained in internal blocking/debl ocking buffers.
This function only affects those systens that have inplenented a
write-deferring blocking/deblocking algorithmin their XGOS (see
Section 2.2.12).

Upon return, register Ais set to zero if the flush operation
was successful. If a physical error was encountered, the Flush
Buf fers function perforns different actions dependi ng on the BDOS
error nmode (see Function 45). If the BDOS error nbode is in the
default node, a nessage identifying the error is displayed at the
consol e and the calling process is terninated. otherw se, the Flush
Buf fers function returns to the calling process with register A set
to OFFH and register Hset to the foll ow ng physical error code:

01 : Permanent error

104

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.4 BDOS Cal I's: Function 100

FUNCTI ON 100: SET DI RECTORY LABEL

Entry Paraneters:
Regi st er C 64H
Regi st er DE: FCB Addr ess

Ret ur ned Val ue:
Regi ster A : Directory Code
Regi ster H: Physical or
Ext ended Error

The Set Directory Label function creates a directory |abel or
updates the existing directory |abel for the specified drive. The
cal ling process passes in register pair DE, the address of an FCB
contai ning the nane, type, and extent fields to be assigned to the
directory | abel. The nane and type fields of the referenced FCB are
not used to locate the directory label in the directory; they are
sinmply copied into the updated or created directory |abel. The
extent field of the FCB (byte 12) contains the user's specification
of the directory |abel data byte. The definition of the directory

abel data byte is:

bi t - Require passwords for password-protected files
- Perform access date and tinme stanping
Perform update date and tinme stanping
- Make function creates XFCBs
- Assign a new password to the directory | abe

(@R é) Nep RN
1

If the current directory label is password protected, the correct
password rmust be placed in the first 8 bytes of the current DVA or
have been previously established as the default password (see
function 106). If bit O (the loworder bit) of byte 12 of the FCB
is set to 1, it indicates that a password for the directory |abe
has been placed in the second eight bytes of the current DMA

Function 100 returns a Directory Code in register Awith a
value fromO to 3 if the directory |abel create or update was
successful, or OFFH (255 Decimal) if no space existed in the
referenced directory to create a directory label. Register His set
to zero in both of these cases. If a physical error or extended was
encountered, function 100 perforns different actions depending on
the BDCOS error node (see function 45). If the BDOS error node is
the default node, a nessage identifying the error is displayed at
the console and the calling process is term nated. otherw se,
function 100 returns to the calling process with register A set to
OFFH and register Hset to one of the foll owi ng physical or extended
error codes:

01 : Pernanent error
02 : Read/only disk

04 . Select Error
07 : File password error

105

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide 2.4 BDOS Cal I's: Function 101

FUNCTI ON 101: RETURN DI RECTORY
LABEL DATA

Entry Paraneters:
Regi st er C 65H
Regi st er E: Drive

Ret ur ned Val ue:

Regi sters A : Directory | abel
Data Byte

Regi ster H: Physical Error

The Return Directory Label Data function returns the data byte
of the directory |abel for the specified drive. The calling process
passes the drive nunber in register Ewith O for drive A 1 for
drive B, and so on through 15 for drive Pin a full sixteen drive
system The format of the directory |abel data byte is shown bel ow

bi t - Require passwords for password protected files
- Perform access date and tinme stanping
Perform update data and time stanping
- Make function creates XFCBs
- Directory | abel exists on drive

(@R é) Nep RN
1

Function 101 returns the directory |abel data byte to the calling
process in register A Register A equal to zero indicates that no
directory | abel exists on the specified drive. If a physical error
is encountered by function 101 when the BDOS Error nmode is in one of
the return nodes (see function 45) , this function returns with
register A set to OFFH (255 Decinal) and register H set to one of
the foll ow ng:

01 : Permanent error
04 : Select error

106

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide 2.4 BDOS Cal I's: Function 102

FUNCTI ON 102: READ FI LE XFCB

Entry Paraneters:
Regi st er C. 66H
Regi ster DE: FCB Address

Ret ur ned Val ue:
Regi st er A : Directory Code
Regi st er H : Physical Error

The Read File XFCB function reads the directory XFCB
information for the specified file into bytes 20 through 32 of the
specified FCB. The calling process passes in register pair DE, the
address of an FCB in which the drive, filename, and type fields have
been defi ned.

If function 102 is successful, it sets the following fields in
the referenced FCB:

byte 12 : XFCB password node field
bit 7 - Read node
bit 6 - Wite node
bit 5 - Delete node

Byte 12 equal to zero indicates the file
has not been assigned a password.

byte 13 - 23 : XFCB password field (encrypted)
byte 24 - 27 . XFCB Create or Access tine stanp field
byte 28 - 31 : XFCB Update tinme stanp field

Upon return, function 102 returns a Directory Code in register
Awith the value 0 to 3 if the XFCB read operation was successful,
or OFFH (255 Decinmal) if the XFCB was not found. Register His set
to zero in both of these cases. If a physical error or extended was
encountered, function 102 perforns different actions depending on
the BDOS error node (see function 45) . If the BDOS error node is in
the default node, a nessage identifying the error is displayed at
the console and the calling process is termnated. Qherw se,
function 102 returns to the calling process with register A set to
OFFH and register H set to one of the follow ng physical error
codes:

01 : Permanent error
04 : Select Error

107

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.4 BDOS Cal I's: Function 103

FUNCTI ON 103: WRI TE FI LE XFCB

Entry Paraneters:
Regi st er C. 67H
Regi ster DE: FCB Address

Ret ur ned Val ue:

Regi ster A : Directory Code

Regi ster H: Physical or
Ext ended Error

The Wite File XFCB function creates a new XFCB or updates the
exi sting XFCB for the specified file. The calling process passes in
regi ster pair DE, the address of an FCB in which the drive, naneg,
type, and extent fields have been defined. The "ex" field, if set,
speci fies the password node and whet her a new password is to be
assigned to the file. The for-nmat of the extent byte is shown bel ow

FCB byte 12 (ex) : XFCB password node
bit 7 - Read node
bit 6 - Wite node
bit 5 - Del et e node
bit 0 - assign new password to the file

If bit 0 is set to 1, the new password nust reside in the second 8
bytes of the current DVA. If the FCB is currently password
protected, the correct password nmust reside in the first 8 bytes of
the current DMA, or have been previously established as the default
password (see function 106).

Upon return, function 100 returns a Directory Code in register
Awith the value 0 to 3 if the XFCB create or update was successful
or OFFH (255 Decimal) if no directory |abel existed on the specified
drive, or the file named in the FCB was not found, or no space
existed in the directory to create an XFCB. Register His set to
zero in all of these cases. If a physical error or extended was
encountered, function 103 perforns different actions depending on
the BDCOS error node (see function 45). If the BDOS error node is
the default node, a nmessage identifying the error is displayed at
the console and the calling process is term nated. otherw se,
function 103 returns to the calling process with register A set to
OFFH and register Hset to one of the foll owi ng physical or extended
error codes:

01 : Pernmanent error
02 : Read/only disk

04 . Select Error
07 : File password error

108

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.4 BDOS Cal I's: Function 104

FUNCTI ON 104: SET DATE AND TI ME

Entry Paraneters:
Regi st er C. 68H
Regi ster DE: TOD Address

Ret ur ned Val ue: none

The Set Date and Tine function sets the systeminternal date
and time. The calling process passes the address of a 4-byte
structure containing the date and tinme specification in the register
pair DE. The format of the date and tinme data structure is:

byte 0 - 1 . Date field
byte 2 . Hour field
byte 3 . Mnute field

The date is represented as a 16-bit integer with day 1 correspondi ng
to January 1, 1978. The time is represented as two bytes: hours and
m nutes stored as two BCD digits.

Under MP/M 11, this function also sets the second field of the
systemdate and time to zero.

FUNCTI ON 105: CGET DATE AND TI ME

Entry Paraneters:
Regi st er C 6911
Regi ster DE: TOD Address

Ret urn Val ue TOD

The Get Date and Tine function obtains the systeminternal date
and time. The calling process passes in register pair DE, the
address of a four-byte data structure which receives the date and
time values. The format of the data structure is the sane as the
format described in function 104. This function is equivalent to
MP/M 11 function 155 except that it does not return the seconds
field of the internal tine.

109

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 2.4 BDOS Cal I's: Function 106

FUNCTI ON 106: SET DEFAULT PASSWORD

Entry Paraneters:
Regi st er C 6AH
Regi st er DE: Passwor d Address

Ret ur ned Val ue: none

The Set Default Password function allows a process to specify a
password val ue before a file protected by the password i s accessed.
When the file system accesses a password protected file, it checks
the current DVA and the default password for the correct value. A
password error is not returned if either password is correct. The
default password is naintained by the BDOS in an internal table
i ndexed by the calling process's consol e nunber. once assigned, it
is maintained until another Set Default Password call is nade by a
process havi ng the sane consol e nunber

To make a function 106 call, the calling process sets register
pair DE to the address of an eight byte field containing the
password.

FUNCTI ON 107: RETURN SERI AL NUMBER

Entry Paraneters:

Regi st er C 6BH
Regi st er DE: Serial nunber
field

Function 107 returns the MP/ M I1 serial nunmber to the six-byte
field addressed by register pair DE

110

All Information Presented here is Proprietary to Digital Research

Section 3
XDOS Interface

3.1 | nt roducti on

This section contains information on data structures used in
t he XDOS nodul e. The XDOS uses these data structures to:

* manage the nenory resource
e comuni cat e nessages between processes
* synchroni ze process execution

Al so included are descriptions of the XDOS functions, including the
entry paranmeters and returned val ues, and a di scussion of error
handl i ng by the XDOS. The reader should be thoroughly famliar with
the material covered in Section 1 before proceeding.

3.2 Process Descriptor Data Structure

Each process running under MP/M 11l is associated with a Process
Descriptor that defines all the characteristics of the process. The
XDOS uses the Process Descriptor to save and restore the state of a
process. The Process Descriptor data structure is shown below in
both PL/M and assenbly | anguage.

PL/ M

DECLARE CNS$HNDLR STRUCTURE (
PL ADDRESS,
STATUS BYTE,
PRI ORI TY BYTE,
STKPTR ADDRESS,
NAMVE (8) BYTE,
CONSOLES$LI ST BYTE,
MEMBEG BYTE,
DPARAM ADDRESS,
THREAD ADDRESS,
DI SKSETDVA ADDRESS,
DI SK$SLCT BYTE,
DCNT ADDRESS,
SEARCHL BYTE,
SEARCHA ADDRESS,
PD EXTENT,
REG STERS (10) ADDRESS,
EXTENSI ON ADDRESS,
INITIAL (0,0, 200, . CNS$STK(19) ,
' ONS ‘.1, OFFH) ;

111

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 3.2 Process Descri ptor

DECLARE CNS$STK (20) ADDRESS I NI TI AL (
OC7C7H, OC7C7H, OC7C7H, CC7C7H, OC7CrH, OC7/C7H,
OC7C7H, OC7C7H, OC7C7H, CC7C7H, OC7CrH, OC/C7H,
OC7C7H, OC7C7H, OC7C7H, CC7C7H, OC7CrH, OC/C7H,
OC7C7H, STRT$CNS) ;

Assenbl y Language:

CNSHND:
DW 0 : PL
DB 0 ; STATUS
DB 200 :PRIORI TY
DW CNSTK+38 ; STKPTR
DB ' CNS ‘. NAME
DB 0 ; CONSCOLE/ LI ST
DB OFFH ; MEMBEG (FF = resident)
DS 2 ; DPARAM
DS 2 : THREAD
DS 2 ; DI SK SET DNVA
DS I ; DI SK SLCT
DS 2 ; DCNT
DS 1 ; SEARCHL
DS 2 ; SEARCHA
DS 2 ; PD EXTENT
; REG STERS:
DS 2 s HL'
DS 2 ; DE'
DS 2 : BC
DS 2 . AF'
DS 2 1Y
DS 2 (X
DS 2 ; HL
DS 2 : DE
DS 2 : BC
DS 2 . AF
DS 2 ; EXTENSI ON
CNSTK:
DwW OC7C7H, OC7C7H, OC7C7H, CC7C7H
DwW OC7C7H, OC7C7H, OC7C7H, CC7C7H
DwW OC7C7H, OC7C7H, OC7C7H, CC7C7H
DwW OC7C7H, OC7C7H, CC7C7H
DwW CNSPR ; CNSTK+38 = PROCEDURE ADR
112

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 3.2 Process Descri ptor

The el enments of the Process Descriptor data structure shown
above are defined in Table 3-1.

Tabl e 3-1. Process Descriptor Elenents

El enent Definition

PL 2-byte link field, initially set by user
when creating a process to the address of
next Process Descriptor, or zero if no
nore exist.

STATUS 1 byte, process status, set by system
The Dispatcher reads the status byte to
determine the operation to be perfornmed on
t he process. The val ues of the status
byte are shown bel ow.

00 - process is ready to run

01 - process is dequeueing

02 - process i s enqueuei ng

03- process is polling

04 - process is waiting for a flag
05 - process is on delay list

06 - not inplenented under MP/M I
07 - term nate process

08 - set process priority

09 - Dispatch

10 - Attach console

11 - Detach console

12 - Set console

13 - Attach list

14 - Detach li st

PRI ORI TY 1 byte, process priority, set by user

STKPTR 2 bytes, stack pointer, initially set by
user.

NAVE 8 bytes, ASCI| process nane, set by user

The high-order bit of each byte of the
process nane is reserved for use by the
system The function of each of the high
order bits , shown as NAME (n)is

descri bed bel ow

NAMVE(O ' The high-order bit of NAME(O on
i ndi cates that the process is performnng
direct console BICS calls and that MP/ M I
shoul d ignore all control characters. It
al so suppresses the nornmal consol e status
check done when BDOS di sk functions are
call ed. The user nay set this bit.

113

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 3.2 Process Descri ptor

Table 3-1. (continued)

El enent

Definition

NAME(])"

NAME(2)

NAME(3) '

NAME(4) "

NAME(5) '

NAME(6)

The hi gh-order bit of NAME(l) "on"

i ndi cates that the process is currently
executing code in the serially re-usable
BDOS. MP/M 1| does not allow a process to
Terminate while it is in the BDOS. Any
Attenpt to abort the process will set
NAME(6)' "on". This bit is set by the
system it nust not be set by the user

The hi gh-order bit of NAME(2) "on"

i ndi cates that no stack swap i s done for
this process upon entering the BDOS. This
bit takes precedence over the system

bool ean i ndi cati ng whet her user system
stacks have been all ocat ed. It is

requi red when nore than one process shares
the sane nenory segnent and rmakes BDOS
function calls. The user may set this
bit.

The hi gh-order bit of NAME(3) "on"

I ndicates that |ive keyboard sinulation is
to be suppressed. Live keyboard

simul ation i s done by perform ng consol e
status calls at each BDOS di sk /0O
function call. This bit is set by the
user.

The hi gh-order bit of NAVE(4) "on"

i ndi cates that extended errors resulting
from BDOS calls are to be returned to the
calling programi normally an error
nessage i s di splayed on the consol e and

t he calling programis term nated. This
bit is set by the user.

The hi gh-order bit of NAME(5) "on"

i ndi cates that extended errors resulting
from BDOS calls are to be returned to the
call'ing program and an error message
be di spl ayed on the console. This bit i
set by the user.

The hi gh-order bit of NAME(6) "on"

i ndi cates that an attenpt has been nade
abort the process while either NAME (1) '
NAME(7)' has been on. This bit is set by

t he system

s to
S

to
or

114

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 3.2 Process Descri ptor

Table 3-1. (continued)

El enent Definition

NAMVE(7)’ The high-order bit of NAME(7) "on"
i ndi cates that the process is not to be
aborted by any neans. An attenpt to abort
this process results in setting NAVE(6)1
"on". This bit is set by the user.

CONSOLE/ LI ST 1 byte, loworder four bits contain the
consol e devi ce nunber to be used by
process, and the high-order four bits
contain the |list device nunber, set by

user.

MENVBEG 1 byte, nmenory segnent table index.

DPARAM 2 bytes, reserved for MP/MII.

THREAD 2 bytes, process list thread, set by
system

DI SKSETSDIVA 2 bytes, default DMA address, set hy
system on BDOS set DMA calls, can be set
by user.

DI SK$SLCT 1 byte, default disk/user code, set by

system on BDOS set user and di sk sel ect
calls, can be set by user.

DCNT 2 bytes, reserved for MP/MII.

SEARCHL 1 byte, reserved for MP/M11.

SEARCHA 2 bytes, reserved for MP/MII.

PD EXTENT 2 bytes, reserved for MP/MII.

REQ STERS 20 bytes, 8080 / Z80 regi ster save area,

can be set by user prior to process
creation in order to pass paraneters to a
created process. The followi ng entries
show the regi ster storage allocation.
Bytes are stored in the nornal 8080/ Z80
manner with the | ow order register byte
precedi ng the high-order byte.

115

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 3.2 Process Descri ptor

Table 3-1. (continued)

El enent Definition
Bytes 0- 1 HL', Alternate Z80
Bytes 2- 3 DE, Aternate Z80
Bytes 4- 5 BC, Aternate Z80
Bytes 6- 7 AF1l, Alternate Z80

Bytes 8- 9 1Y
Bytes 10-11 I X
Bytes 12-13 HL
Bytes 14-15 DE
Bytes 16-17 BC
Bytes 18-19 AF

EXTENSI ON 2 bytes, reserved for MP/MII

The foll owi ng conventions should be used in nami ng processes
that are to run under MP/MI1: processes that wait on queues that
recei ve conmand tails fromthe TMPs should have the sane nane as the
gueue that they read. If a process is to be protected from bei ng
aborted by a user with the ABORT comand, its nanme nust have at
| east one | ower-case character

3.3 Queue Data Structures

A queue is a first-in first-out (FIFO nechanismthat is
i mpl enented in MP/MI1 to provide several essential functions in the
mul ti-progranm ng environment. Queues can be used for the
conmuni cati on of nessages between processes, to synchronize
processes, and to provide nutual exclusion.

M/ M 11 is designed to sinplify queue managenent for both user
and system processes. Queues are treated |ike disk files, and can
be created, opened, witten to, read from and del et ed.

The queue data structures used by MP/ M 11 include the Queue
Control Block (QCB) and the User Queue Control Block (UQCB). There
are two types of Queue Control Blocks: circular or |inked. The
type of QCB used depends upon the size of the nessage the queue
contai ns. Message sizes of O to 2 bytes use circular queues while
nessage sizes of 3 or nore bytes use |inked queues.

3.3.1 Circul ar Queues
The following exanple illustrates howto initialize a QCB for a

circul ar queue containing 80 nessages, each of which has a one byte
| ength. The exanple is shown in both PL/M and assenbly | anguage.

116

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 3.3 Queue Data Structures
PL/ M

DECLARE Cl RCULARSQUEUE STRUCTURE (
QL ADDRESS,
NAVE(8) BYTE,
MSGLEN ADDRESS,
NVBVSGS ADDRESS,
DQPH ADDRESS,
NQPH ADDRESS,
MBGS$| N ADDRESS,
MSG$OUT ADDRESS,
MBGSCNT ADDRESS,
BUFFER (80) BYTE
INITIAL (O’ CIROQUE ', 1, 80);

Assenbl y Language:
CRCQUE:

2RRRREERT

BUFFER:

3

80 ; BUFFER

The el ements of the circul ar queue shown above are defined in
Tabl e 3-2. The total queue overhead is 24 bytes.

Table 3-2. G rcular Queue El enents

El enment Definition

Q 2-byte link, set by system

NANVE 8 ASCI| character queue nane, set by user.

MSGLEN 2 bytes, length of nessage, set by user.

NVBMSGS 2 bytes, nunber of nessages, set by user.

DQPH 2 bytes, Dequeue |ist process head, set by
system

NQPH 2 bytes, Enqueue |ist process head, set by
system

MBGSI N 2 bytes, pointer to next nessage in, set
by system

117

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 3.3 Queue Data Structures

Tabl e 3-2. (continued)

El enment Definition

MBGSOUT 2 bytes, pointer to next nessage out, set
by system

MBGSCNT 2 bytes, nunber of nessages in the queue,

set by system

BUFFER n bytes, where n is equal to the nessage
length times the nunber of nmessages. Space
al | ocated by user, set by system NOTE
Mut ual excl usi on queues require a 2-byte
buffer for the owner Process Descriptor
addr ess.

3.3.2 Li nked Queues

The following exanple illustrates howto initialize a QCB for a
i nked queue containing 4 nessages, each 33 bytes in |ength.

PL/ M

DECLARE LI NKEDSQUEUE STRUCTURE (
QL ADDRESS,

NAVE (8) BYTE,

MBGLEN ADDRESS,

NVBVSGS ADDRESS,

DQPH ADDRESS,

NQPH ADDRESS,

MH ADDRESS,

MT ADDRESS,

BH ADDRESS,

BUFFER (140) BYTE

INITIAL (O, ' LNKQUE ', 33,4);

118

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 3.3 Queue Data Structures

Assenbl y Language:

LNKQUE:
DS 2 Q
DB "LINKQUE ; NAME
DW 33 MBGLEN
DW 4 NVBVBGS
DS 2 DQPH
DS 2 NQPH
DS 2 MH
DS 2 MT
DS 2 BH

BUFFER
DS 2 NBG #1 LI NK
DS 33 VBG #1 DATA
DS 2 MBG #2 LI NK
DS 33 VBG #2 DATA
DS 2 VBG #3 LI NK
DS 33 VBG #3 DATA
DS 2 NBG #4 LI NK
DS 33 VBG #4 DATA

The el enments of the |inked queue shown above are defined in Table 3
3. The total queue overhead is 24 bytes.

Tabl e 3-3. Linked Queue El enents

El enment Definition

Q 2-byte link, set by system

NANVE 8 ASCI| character queue nane, set by user.

MSGLEN 2 bytes, length of nessage, set by user.

NVBMSGS 2 bytes, nunber of nessages, set by user.

DQPH 2 bytes, Dequeue |ist process head, set by
system

NQPH 2 bytes, Enqueue |ist process head, set by
system

WH 2 bytes, nessage head, set by system

Mr 2 bytes, nessage tail, set by system

BH 2 bytes, buffer head, set by system

BUFFER n bytes where n is equal to the nessage
Length plus two, tinmes the nunber of
nessages. Space al |l ocated by the user,
set by the system

119

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 3.3 Queue Data Structures
3.3.3 User Queue Control Bl ock

The User Queue Control Block (UQCB) data structure provides
read/ wite access to queues in the same manner that an FCB provides
access to a disk file. Like files, queues are "opened" by an
operation that fills in the actual QCB address, which then can be
read fromor witten to

If the actual queue address is known, it can be used in the
pointer field of the UQCB, in which case the 8-byte nane field can
be omitted, and an open operation is not required to access the
queue. If the address is not known, then an open operation nust be
performed (see Function 135).

The following exanple illustrates howto initialize a UXB in
both PL/M and assenbly | anguage.

PL/ M

DECLARE USER$QUEUE$SCONTROL$BLOCK STRUCTURE (
POl NTER ADDRESS,

MSGADR ADDRESS,

NAME (8) BYTE

INITIAL (O, . BUFFER, * SPOOL *);

DECLARE BUFFER (33) BYTE;

Assenbl y Language:

UQCB:
DS 2 ; PO NTER
Dw BUFFER; SGADR
DB ' SPOOL 3 NAME
BUFFER
DS 33 ; BUFFER
120

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 3.3 Queue Data Structures
The el enments of the UQCB shown above are defined in Table 3-4.

Tabl e 3-4. UQCB El enents

El enent | Definition

PO NTER 2 bytes, set by systemto address of
actual queue during an open gueue
operation, or set by the user if t he
actual queue address is known.

MSGADR 2 bytes, address of user buffer, set by
user.

NAVE 8 bytes, ASCI| queue nane, set by user
may be omitted if the pointer field is set
by the user.

3.3. 4 Queue Nami ng Conventi ons

The foll owi ng conventions should be used in nanmi ng queues under
M MI1Il: if the Term nal Message Processor (TMP) is to wite
directly to the queue, then the queue nust have an upper-case ASCI
nane. Thus, when a user at a system console enters the queue nane
followed by a command tail, the CLI wites the comuand tail directly
to the queue (see Section 1.5).

To make a queue inaccessible by a user at a systemconsole, the
gueue nane must contain at | east one | ower-case ASCI| character
Mut ual excl usi on queues shoul d be naned upper-case ' MX' followed by
1 to 6 additional ASCII characters. These queues nust have a two
byte buffer in which the XDOS places the address of the Process
Descriptor of the process owning the mutual exclusion nessage.

3.4 Menory Descriptor Data Structure

Each process running under MP/M 11l is associated with a Process
Descriptor that contains a nmenory segnment index. This index
identifies a specific Menory Descriptor within MP/M11's Menory
Segrment Table. In MP/ M1l the nenory segnent index can have the
values 0 to 7, corresponding the 8-entry Menory Segmrent
Table, or FFH, indicating that the process is in conmon nenory and
does not use the Menory Segnent Table. The XDOS uses the Menory
Descriptor data structure to allocate and nmanage the nmenory
resource. The Menory Descriptor contains four bytes: the nmenory
segnent base page address, the nmenory segnment page size, the nenory
segnent attributes, and bank. The Menory Descriptor data structure
is shown below in both PL/M and assenbly | anguage.

121

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 3.4 Menory Descri ptor

PL/ M
Decl are nenory$descriptor structure (
base byte,
si ze byte,
attrib byte,
bank byte)
Assenbl y Language:
MEMDES:
DS 1 ; base
DS 1 ; Size
DS 1 ;attributes
DS 1 ; bank

The el ements of the Menory Descriptor shown above are defined
in Table 3-5.

Tabl e 3-5. Menory Descriptor Elenents

El enment Definition

BASE 1 byte, base page address of the nenory
segnent, set by user.

SI ZE 1 byte, size in pages of the nmenory
segnent, set by user.

ATTRI BUTE 1 byte, high-order bit "on" indicates that
the nmenory segnent is allocated, other
bits are reserved for MM/ MII, normally

set by system but a user may pr | e-allocate
a nenory segnent by setting the high-order

bit "on".

BANK 1 byte, bank nunber in the range 0 to 7,
where bank 0 is the bank which is sw tched
in when MP/M Il is |loaded and initialized,

set by user.

3.5 System Dat a Page

The System Data Page is the top 256 bytes of the MP/MII
Qperating System It contains static information about the system
configuration which the user enters when executing GENSYS to perform
system generation. It also contains dynam c information which is
used by MM 11l at run tine.

122

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide 3.5 System Dat a Page

Tabl e 3-6 describes the individual byte assignments within the
System Dat a Page

Table .3-6. System Data Page Byte Assignnents

Byt e Contents

000- 000 Mentt op, top page of nenory

001- 001 Nmb$cns, nunber of system consol es (TMPs)
002- 002 Br kpt $RST, br eakpoi nt RST #

003- 003 Add system call user stacks, bool ean
004- 004 Bank swi tched, bool ean

005- 005 Z80 version, bool ean

006- 006 banked bdos, bool ean

007- 007 XICS junp table page

008- 008 RESBDCS base page

009- 010 CP/ NET naster configuration table address
011-011 XDOS base page

012-012 RSP' s (BNKXI OS top+l) base page

013-013 BNKXI OS base page

014-014 BNKBDCOS base page

015- 015 Maxnenseg, max nenory segnent nunber
016- 047 Initial nenory segnent table

048- 063 Breakpoi nt vector table, filled in by debuggers
064- 079 Reserved for MP/ M 11

080- 095 System cal |l user stack pointer table
096- 119 Reserved for MP/ M 11

120-121 Nmb records in MPM SYS file

122-122 # ticks/sec

123-123 System Dri ve

124-124 Common Menory Base Page

125-125 Nunber of Rsp's

126- 127 Li stcp array Address

128-143 Subfl g, submit flag array

144-186 Reserved for MP/ M 11

187-187 Max | ocked records/ process

188-188 Max open fil es/process

189-190 # list itens

191-192 Pointer to base of |ock table free space
193-193 Total system | ocked records

194-194 Total system open files

195-195 Dayfil e | oggi ng, bool ean

196- 196 Tenporary file drive

197-197 Nunber of printers

197- 241 Reserved for MP/ M 11

242-242 Banked XDOS base page

243- 243 TMP process descriptor base

244- 244 Consol e. dat base

245- 246 BDOS/ XDOS entry poi nt

247- 247 TMP. spr base

248- 248 Nrbr sps, nunber of banked RSPs

249- 249 Brsp base address

250- 251 Brspl, non-resident rsp process |ink
252- 253 Sysdatadr, XDOS internal data segnment address
254- 255 Rspl, resident system process |ink

123

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 3.6 XDOS | nternal Data Segnent
3.6 XDOS | nternal Data Segnent

This section contains information regarding the |ocation of
critical variables contained in the XDOS Internal Data Segnment. The
i nformati on may be useful in sone application prograns. However, it
nmust be accessed with caution. The information nay al so be usefu
i n debugging a systemby permtting access to the Ready List through
the Ready List Root (RLR), both at run tine as well as in a post
nort em dunp

The followi ng exanple, witten in assenbly | anguage,
illustrates a technique for accessing the Ready List Root.

; MP/ M Internal Data Segment Offsets

0 equ 0000h ; time of day

osrlr equ 0005h ready |ist root

osdl r equ 0007h delay list root

osdr | equ 0009h di spatcher ready |i st
osplr equ 000Bh poll Iist root

osslr equ 000Dh swap list root (not used)
osqlr equ OOOFh gueue list root

osthrdrt equ 0011h
osnnbcns equ 0013h
oscnsatt equ 0014h
oscnsque equ 0034h
osnmbfl ags equ 0054h
ossysfla equ 0055h
osnnbsegs equ 0095h
osnsegt bl equ 0096h
ospdt bl equ 00B6h
osnmbl st equ 0256h
osl statt equ 0257h

t hread r oot

nunber of consol es
consol e attach table
consol e queue

nunber of fl ags
system fl ags

nunber of nenory segnents
nmenory segnent table
process descriptor table
nunber of |ist devices
list attach table

osl st que equ 0277h list queue
sysdat adr equ 154 ; get system data page addr
nvi c, sysdat adr
call xdos ; HL = system data page
| xi d, 00f ch ; DE = offset to pointer
dad d
nov e, m
i nXx h
nov d, m ; DE = base of XDOS intrl dseg
| xi h, osrlr ; HL = offset to Ready List Root
dad d
; HL = Addr of Ready List Root

124

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 3.7 XDCS Error Handling
3.7 XDOS Error Handling

The XDOS does not require an error handling capability simlar
to that of the BDOS, because XDOS functions involve "logical" or
internal rather than "physical" or external operations. That is,
the XDOS functions are inplenmented entirely within nenory resident
data structures, and any physical or extended "error" encountered
woul d by definition be catastrophic for the system Therefore,
those XDOS functions that return a value in register Areturn a
"bool ean", which is a code indicating only whether or not the
function is successful. If for sone reason the function is not
successful, the calling process nust be able to handle this error
condition. The return codes for XDOS functions are defined in Table
3-7.

Tabl e 3-7. XDOS Return Codes

Regi ster A Value | Meaning

0 Successful operation
FFH Unsuccessful operation
125

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 3.8 XDOS Call's: Function 128
3.8 XDOS Function Calls

The Extended Di sk Operating System (XDOS) functions are covered
in this section by describing the entry paraneters and returned
val ues for each XDOS function. The XDOS cal ling conventions are
identical to those of the BDOS which are described in Section 2.1.3.

FUNCTI ON 128: ABSOLUTE MEMORY
REQUEST

Entry Paraneters:
Regi st er C 80H
DE: MD Addr ess

Ret ur ned Val ue:
Regi st er A: Return code
MD filled in

The Absol ute Menory Request function allocates to the calling
process a segnent of nenory specified by the Menory Descri ptor
paraneter. This function allows the Command Line Interpreter (CLI)
to | oad non-rel ocatable prograns, such as CP/M*.COMfiles, based at
t he absol ute TPA address of 0100H The calling process passes the
address of a Menory Descriptor in register pair DE, setting the base
byte; the XDOS sets the other bytes upon return. The Menory
Descriptor data structure is described in Section 3.4.

Function 128 returns a "bool ean" indicating whether or not the
al I ocation was successful. A returned val ue of FFH indicates
failure to allocate the requested nenory, and a value of 0 indicates
success. |If the Absolute Menory Request is a success, the nenory
segnent index of the calling process is set to reflect that of the
all ocated nmenory. Thus, it is extrenely inportant that this
function only be invoked froma process residing in conmon nmenory.
Not e t hat base and size specify base page address and page size
where a page is 256 bytes.

126

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 3.8 XDOS Cal l's: Function 129

FUNCTI ON 129: RELOCATABLE MEMORY
REQUEST

Entry Paraneters:
Regi st er C 81H
DE: MD Addr ess

Ret ur ned Val ue:
Regi st er A Return code
MD filled in

The Rel ocatable Menory Request function allocates the requested
contiguous nmenory to the calling process. The calling process
passes the address of a Menory Descriptor in register pair DE
setting the size byte; the XDOS sets the other bytes upon return

Function 129 returns a "boolean" in register A indicating
whet her or not the allocation was successful. A returned val ue of
FFH i ndicates failure to satisfy the request, and a value of 0
i ndi cates success. |If the Rel ocatable Menory Request is a success,
the menory segnent index of the calling process is set to reflect
that of the allocated nenory. Thus, it is extrenely inportant that
this function only be invoked froma process residing in conmon
nenory.

Not e t hat base and size specify base page address and page size
where a page is 256 bytes.

FUNCTI ON 130: MEMORY FREE

Entry Paraneters:
Regi st er C 82H
DE: MD Address

The Menory Free function returns the specified nenory segment
owned by the calling process back to the operating system The
calling process passes the address of a Menory Descriptor in
regi ster pair DE. Function 130 does not return a value in register

127

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 3.8 XDOS Cal l's: Function 131

FUNCTI ON 131: POLL

Entry Paraneters:
Regi st er C 83H
E: Devi ce Number

The Poll function polls the specified device until a ready
condition is received. The calling process relinquishes the CPU
until the poll is satisfied, allow ng other processes to execute.

Function 131 is intended for use in the custom Xl CS because the
XI OGS associ ates the device nunber with the actual code executed for
the poll operation. This does not exclude other uses of the Pol
function, but it does nean that an application program maki ng a pol
call must be matched to a specific Xl CS.

FUNCTI ON 132: FLAG WAI T

Entry Paraneters:
Regi st er C 84H
E: Fl ag Nunber

Ret ur ned Val ue:
Regi st er A Ret urn code

The Flag Wait function causes a process to relinquish the CPU
until the flag specified in the call is set. The flag wait
operation is used in an interrupt-driven systemto cause the calling
process to "wait" until a specific interrupt condition occurs.

Function 132 returns a "boolean" in register A indicating
whet her or not a successful flag wait was perforned. A returned
val ue of FFH indicates that no flag wait occurred because anot her
process was already waiting on the specified flag. A returned val ue
of 0 indicates success.

Note that flags are non-queued, which nmeans that access to

flags nust be carefully managed. Typically, the physical interrupt
handl ers set flags while a single process waits on each flag.

128

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 3.8 XDOS Call's: Function 133

FUNCTI ON 133: FLAG SET

Entry Paraneters:
Regi st er C 85H
E: Fl ag Nunber

Ret ur ned Val ue:
Regi st er A Return code

The Flag Set function "wakes up" a waiting process. The Flag
Set function is usually called by an interrupt service routine after
servicing an interrupt and determining which flag is to be set.

Function 133 returns a "boolean" in register A indicating
whet her or not a successful flag set was perforned. A returned
val ue of FFH indicates that a flag over-run has occurred; that is,
the flag was al ready set when a flag set function was called. A
returned val ue of 0 indicates success.

FUNCTI ON 134: NAKE QUEUE

Entry Paraneters:
Regi st er C 86H
DE: QCB Address

The Make Queue function sets up a Queue Control Bl ock. A queue
is configured as either circular or |inked dependi ng upon the
nessage size. Message sizes of 0 to 2 bytes use circular queues
whi | e message sizes of 3 or nore bytes use |inked queues.

The calling process passes the address of the Queue Control
Block (QCB) in register pair DE. The QCB nust contain the queue
nane, mnessage |ength, nunber of nessages, sufficient space to
accommodat e the nmessages, and links if the queue is |inked.

The QCB data structures for both circular and |inked queues are
described in Section 3. 3.

Queues can only be created either in conmon nmenory or by user
progranms i n non-banked systens because queues are all rmaintained on
a linked list that nust be accessible at all times. That is, a
gueue cannot reside in a nenory segnent that is bank-sw tched.
However, a queue created in comopn nmenory can be accessed by al
system and user prograns.

129

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 3.8 XDOS Call's: Function 135

FUNCTI ON 135: OPEN QUEUE

Entry Paraneters:
Regi st er C 87H
DE: UQCB Addr ess

Ret ur ned Val ue:
Regi st er A Ret urn code

The Open Queue function places the actual QCB address into the
User Queue Control Block (UQCB) . Function 135 allows a user program
to access queues by specifying only the queue nane. The process
obtains the actual address of the itself by calling Function 135,
and then reads fromor wites to the queue using the XDOS queue read
and wite functions.

Function 135 returns a "boolean" in register A indicating
whet her or not the open queue operation was successful. A returned
val ue of OFFH indicates failure, while a 0 indicates success.

The user Queue Control Block data structure is described in
Section 3.3.

FUNCTI ON 136: DELETE QUEUE

Entry Paraneters:
Regi st er C 88H
DE: QCB Address

Ret ur ned Val ue:
Regi st er A Ret urn Code

The Del ete Queue function renoves the specified queue fromthe
gueue list. The calling process passes the address of QCB for the
speci fied queue in register pair DE

Function 136 returns a "boolean" in register A indicating
whet her or not the queue was del eted. A returned val ue of OFFH

i ndicates failure, usually because sone process is DQ ng fromthe
gqueue. A returned value of 0 indicates success.

130

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 3.8 XDOS Cal l's: Function 137

FUNCTI ON 137: READ QUEUE

Entry Paraneters:
Regi st er C 89H
DE: UQCB Addr ess

Ret ur ned Val ue:
Message read

The Read Queue function reads a nessage fromthe queue
specified by the UQXB. |If no nessage is available at the queue, the
cal ling process relinquishes the CPU until another process wites a
nessage at the queue. The calling process passes the address of the
UQXCB in register pair DE, and when a nessage becones avail abl e at
t he queue, Function 137 copies it into the buffer addressed by the
MBGADR field of the UQCB

FUNCTI ON 138: CONDI TI ONAL READ
QUEUE

Entry Paraneters:
Regi st er C 8AH
DE: UQCB Addr ess

Ret ur ned Val ue:
Regi st er A Return code
Message read if avail able

The Conditional Read Queue function reads a nessage froma
gueue specified by the UQCB only when the queue contains a nessage.
This function can be used to prevent the calling process from being
suspended from execution if no messages exist. The calling process
passes the address of the UQCB in register pair DE, and if a message
is available at the queue, Function 138 copies it into the buffer
addressed by the MSGADR field of the UQCB

Function 138 returns a "boolean" in register A indicating
whet her or not a nessage was avail able at the queue. A returned

val ue of OFFH indi cates no nessage, while a zero indicates that a
nessage was avail able and was copied into the user buffer

131

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 3.8 XDOS Cal l's: Function 139

FUNCTI ON 139: WRI TE QUEUE

Entry Paraneters:

Regi st er C 8BH
DE: UQCB Addr ess

Message to be sent

The Wite Queue function wites a nessage to a queue specified
by the UQCB. If no buffers are available at the queue, the calling
process relinquishes the CPU until one becones avail able. The
calling process passes the address of the UQCB in register pair DE
and when a buffer is available at the queue, the function copies the
buf f er addressed by the MSGADR field of the UQCB into the queue.
Function 139 does not return a value in register A

FUNCTI ON 140: CONDI TI ONAL WRI TE
QUEUE

Entry Paraneters:
Regi st er C 8CH

DE: UQCB Addr ess
Message to be sent

Ret ur ned Val ue:
Regi ster A: Return code

The Conditional Wite Queue function wites a nessage to queue
specified by the UQXB only when a buffer is available. This
function can prevent the calling process from being suspended from
execution if the queue buffers are full. The calling process passes
the address of the UQCB in register pair DE, and if a buffer is
avai |l abl e at the queue, the function copies the buffer addressed by
the MSGADR field of the UQCB into the actual queue.

Function 140 returns a "boolean" in register A indicating
whet her or not a buffer was available at the queue. A returned

val ue of OFFH indicates no buffer, while a zero indicates that a
buffer was available and that the user buffer was copied into it.

132

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide 3.8 XDOS Call's: Function 141

FUNCTI ON 141: DELAY

Entry Paraneters:
Regi st er C 8DH
DE: Nunber of Ticks

The Del ay function del ays execution of the calling process for
t he specified nunber of systemtinme units, thus allow ng other
processes to use the CPU while the specified period of tine el apses.
Use of Function 141 avoids the typical programred del ay | oop, which
shoul d be avoi ded under MP/M I 1 because it consunmes the CPU

The systemtine unit is typically 60 Hz (16.67 nilliseconds),
but can vary according to application. For exanple, it is likely
that in Europe it would be 50 Hz (20 mi|liseconds).

The calling process passes a 16-bit integer in register pair DE
whi ch specifies the nunber of ticks the process is to be del ayed.
Since calling the delay procedure is usually asynchronous to the
actual tinme base itself, there is up to one tick of uncertainty in
t he exact amount of tine delayed. Thus, a delay of 10 ticks
guarantees a delay of at least 10 ticks, but it may be nearly 11
ticks.

FUNCTI ON 142: DI SPATCH

Entry Paraneters:
Regi st er C 8EH

The Di spatch function causes MP/M 11 to determ ne the highest
priority ready process, and then give that process the CPU
Function 142 is intended for non-interrupt driven systens in which
it is desirable to enable a conpute-bound process to periodically
relinquish the CPU. Since all user processes usually run at the
same priority, invoking Dispatch at various points in a program
al | ows other processes access to the CPU in a round-robin fashion.
Di spatch can al so safely enable interrupts follow ng the execution
of a disable interrupt instruction (DI).

There are no paraneters passed in register pair DE, and no
values returned in register A The process calls Function 142 by

passing the function nunber 8EH in register C. Note: Calling
Di spatch does not renove the calling process fromthe Ready List.

133

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 3.8 XDOS Call's: Function 143

FUNCTI ON 143: TERM NATE PROCESS

Entry Paraneters:

Regi st er C 8FH
D Condi ti ona
Menory Free
E: Term nat e Code

The Termi nate Process function term nates the calling process,
whi ch passes paraneters in registers D and E, indicating whether or
not the process should be termnated if it is a system process, and
if the nenory segnment owned by the calling process is to be
released. A OFFH in the E register indicates that the process
shoul d be unconditionally term nated; a zero indicates that only a
user process is to be deleted. If the calling process is a user
process and register D contains a OFFH, the nenory segnent owned by
the process is not released. Thus, a process that is a child of a
parent process, both of which are executing in the same nenory
segment, can terminate without freeing the nmenory segnent that is
al so occupi ed by the parent.

Function 143 does not return any value in register A The
calling process sinply ceases to exist as far as MP/ M 11l is
concer ned.

FUNCTI ON 144: CREATE PROCESS

Entry Paraneters:
Regi st er C 90H
DE: PD Addr ess

Ret ur ned Val ue:
PD filled in

The Create Process function creates one or nore processes by
pl aci ng the passed Process Descriptors on the MP/ MI|l Ready List.

The cal ling process passes the address of a Process Descriptor

in register pair DE. The first field of the Process Descriptor is a
link field that can point to another Process Descriptor

134

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide 3.8 XDOS Call's: Function 144

Processes can only be created either in comon nenory or by
user programs in non-banked systens because Process Descriptors are
all maintained on linked lists that nmust be accessible at all tinmes.

The Process Descriptor data structure is described in Section
3.2.

FUNCTI ON 145: SET PRRORITY

Entry Paraneters:
Regi st er C. 91H
E. Priority

The Set Priority function sets or changes the priority of the
calling process to that of the passed paraneter. The calling
process passes the priority in register E. Function 145 does not
return a value in register A

This function is useful when a process needs to have a high
priority during an initialization phase, but after that is to run at
a lower priority.

FUNCTI ON 146: ATTACH CONSCLE

Entry Paraneters:
Regi st er C 92H

The Attach Consol e function attaches the console specified in
the CONSCLE field of the Process Descriptor to the calling process.
If the console is already attached to sonme other process, the
calling process relinquishes the CPU until the other process
detaches fromthe console. Wen the consol e beconmes free and the
calling process is the highest priority process waiting for the

consol e, the attach operation takes place.

There are no paraneters passed in registers D and E, and no

val ues returned in register A The process calls Function 146 by
passi ng the function nunber 92H in regi ster C

135

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide 3.8 XDOS Call's: Function 147

FUNCTI ON 147: DETACH CONSCLE

Entry Paraneters:
Regi st er C 93H

The Detach Consol e function detaches fromthe calling process
the consol e specified in the CONSOLE field of the Process
Descriptor. If the console is not currently attached, no action
t akes pl ace.

There are no paraneters passed in registers D and E, and no
values returned in register A The process calls Function 147 by
passi ng the function nunber 93H in register C

FUNCTI ON 148: SET CONSCLE

Entry Paraneters:
Regi st er C. 94H
E: Consol e

The Set Consol e function detaches the currently attached
consol e and then attaches the specified console. If the console to
be attached is already attached to another process, the calling
process relinquishes the CPU until the other process detaches from
the consol e. Wen the consol e becones available and the calling
process is the highest priority process waiting for the console, the
attach operation takes place.

The cal ling process passes the nunber of the console to be
attached in register E. The function does not return a value in
regi ster A

136

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 3.8 XDOS Cal I's: Function 149

FUNCTI ON 149: ASS|I GN CONSCLE

Entry Paraneters:
Regi st er C 95H
DE: APB Addr ess

Ret ur ned Val ue:
Regi st er A Ret urn code

The Assign Consol e function unconditionally assigns a console
to a specified process. That is, the assignnment is nmade regardl ess
of whether or not any other process is currently waiting to attach
the console. The calling process passes the address of a data
structure called the Assignnent Paraneter Block (APB). This data
structure contains the consol e nunber for the assignment, an 8
character ASCI|I process nane, and a "bool ean" indicating whether or
not a match with the CONSOLE field of the Process Descriptor is
required (true or OFFH indicates it is required).

It is extrenely inportant to note that the calling process mnust
own the console or the console nmust be currently unattached for this
function to perform properly.

Function 149 returns a "boolean" in register A indicating
whet her or not the assignnment was nade. A returned val ue of OFFH
indicates failure to assign the console, either because a Process
Descriptor with the specified name could not be found, or because a
match was required, and the CONSOLE field of the Process Descriptor
did not match the specified console. A returned value of zero
i ndi cates a successful assignnent.

137

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 3.8 XDOS Cal l's: Function 150

FUNCTI ON 150: SEND CLI COMVAND

Entry Paraneters:
Regi st er C 96H
DE: CLI CMD Addr ess

The Send CLI Command function permits running processes to send
command lines to the Conmand Line Interpreter (see Section 1.5).
The cal ling process passes the address of a data structure called
CLI Command (CLICVD) in register pair DE. This data structure
contains: the default disk/user code, the console and the comrand
l[ine. Initialization of the CLICVD data structure is shown below in
both PL/M and assenbly | anguage.

PL/ M

Decl are CLI $comand structure (
di sk$user byte

consol e hyte

command$l i ne (129) byte);

Assenbl y Language:

CLI CVD
DS 1 ;default disk / user code
DS 1 ; consol e nunber
DS 129 :command |ine

The default disk/user code is the first byte of the data structure.
The high-order four bits contain the default disk drive and the | ow
order four bits contain the user code. The second byte of the data
structure contains the consol e nunber for the process being
executed. The ASCI|I conmand |ine begins with the third byte and is
termnated with a null byte.

It is extrenely inportant to note that the CLI nust own the

consol e specified in the paraneter of the Send CLI Conmmand function
Thi s assignnent of the console to the CLI can be done with the
Function 149, Assign Consol e.

Function 150 does not return a value in register A

138

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 3.8 XDOS Cal l's: Function 151

FUNCTI ON 151: CALL RESI DENT
SYSTEM PROCEDURE

Entry Paraneters:
Regi st er C 97H
DE: CPB Address

Ret ur ned Val ue:
Regi sters HL: Return code

The Call Resident System Procedure function permits a process
to call the optional Resident System Procedures (RSPs) . The calling
process passes the address of a data structure called the Cal
Parameter Bl ock, (CPB) in register pair DE. The CPB data contains
t he address of an 8-character ASCI|I RSP nane foll owed by a two-byte
paranmeter that the calling process passes to the RSP
Initialization of the CPB data structure is shown below in both PL/M
and assenbly | anguage.

PL/ M

Decl are CALL$PB structure (
Nanme$adr address,

Param address) initial (

. hane, O ;

Decl are nane (8) byte initial (
" Procl),

Assenbl y Language:

CALLPB

DwW NANE

DwW 0 ; par amet er
NAME

DB " Procl ‘

Function 151 returns a O001H in register pair HL if the RSP
called is not present. therwise, it returns the code passed back
fromthe RSP. Typically, a returned value of FFH indicates failure
while a zero indicates success.

139

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 3.8 XDOS Cal I's: Function 152

FUNCTI ON 152: PARSE FI LENAME

Entry Paraneters:
Regi st er C 98H
DE: PFCB Addr ess

Ret ur ned Val ue:
Regi sters HL: Return code
Parsed file control bl ock

The Parse Filenanme function parses an ASCI| file specification
(FILENAME) and prepares a File Control Block (FCB). The calling
process passes the address of a data structure called the Parse
Fil ename Control Block, (PFCB) in register pair DE. The PFCB
contains the address of the ASCII filenanme string followed by the
address of the target FCB. Initialization of the PFCB data
structure is shown below in both PL/M and assenbly | anguage.

PL/ M

Decl are ParseFNCB structurem (
Fi | e$nane$adr address,

FCB$adr address) initial (
.file$nane,.fch);

Decl are file$nane (128) byte;
Declare fcb (36) byte

Assenbl y Language:

PFNCB

DW FLNAME

DW FCB
FLNAME

DS 128
FCB:

DS 36

Function 152 assumes the file specification to be in the follow ng
form

{D: }{FI LENAMEH} { . TYP} {; PASSWORD}
where those itens enclosed in curly brackets are optional

The Parse Filenanme function parses the first file specification
it finds in the input string. The function first elininates |eading
bl anks and tabs. The function then assunes that the file

specification ends on the first delimter it hits that is out of
context with the specific field it is parsing. For instance, if it

140

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 3.8 XDOS Calls: Function 152

finds a colon (:) and it is not the second character of the file
specification, the colon delinmts the whole file specification. The
function recogni zes the foll owi ng characters as delinmiters:

space
tab

(semicol on) - except before password field
(equal)

(1 ess than)

(greater than)

(dot) - except after filenanme and before type
(colon) - except before filename and after drive
(comm)

(left square bracket)

(right square bracket)

(

(

vV Al

sl ant)

[
]
/
$ (dollar)

If the function reaches a non-graphic character (in the range 1
t hrough 31), not listed above, it treats it as an error

The Parse Filenane function initializes the specified FCB as

fol |l ows:

byte 0 The drive field is set to the specified
drive. If the drive is not specified, the
default value is used. O=default, |=A,
2=B, etc

byte 1-8 The nane is set to the specified fil enane.

Al letters are converted to upper-case.
If the nane is not eight characters |ong,
the remaining bytes in the filenanme field
are padded with blanks. |If the filenane
has an asterisk (*), all remaining bytes
inthe filenane field are filled in with
guestion marks (?). An error occurs if
the filenane is nore than eight bytes

| ong.

byte 9-11 The type is set to the specified filetype
If no type is specified, the type field is
initialized to blanks. Al letters are
converted to upper-case. If the type is
not three characters |ong, the remaining
bytes in the file type field are padded
with blanks. If an asterisk (*) occurs,
all remaining bytes are filled in with
qguestion marks (?). An error occurs if
the type field is nore than 3 bytes |ong.

141

All Information Presented here is Proprietary to Digital Research

MP/MI1Il Programer's Guide 3.8 XDOS Cal I's: Function 152
byte 12-15 Filled in with zeroes.

byte 16-23 The password field is set to the specified
password. If no password is specified, it
is initialized to blanks. If the password
is not eight characters long, renaining
bytes are padded with blanks. Al letters
are converted to upper-case. |If the
password field is nore than eight bytes
[ong, an error occurs.

byte 24-25 The offset of the beginning of the
password in the FILENAME string is placed
here. If no password is specified, this
field is set to zero. It should be noted
that the password indicated by this field
is in the FILENAME string, which is not
nodi fied by the Parse Fil enane function.
If there are any | ower-case characters in
the password, they will have to be
converted to upper-case to nmake it the
same as the password field of the FCB

byte 26 The nunber of characters in the specified
password is placed here. If no password
is specified, this field is set to zero.

If an error occurs, all fields that have not been parsed are
set to their default values, and the function returns a OFFFFh in
regi ster pair HL indicating the error.

On a successful parse, the Parse Filenanme function checks the
next itemin the FILENAME string. It skips over trailing blanks and
tabs and | ooks at the next character. If the character is a null or
carriage return, it returns a O indicating the end of the FILENAME
string. If the next character is a delimter, it returns the
address of the delinmter. If the next character is not a delimter
it returns the address of the deliniting blank or tab

If the first non-blank or non-tab character in the FI LENAVE
string is a null (0) or carriage return, the Parse Fil enane
function returns a zero indicating the end of string, and the FCB is
initialized to its default val ues.

If the Parse Filenanme function is to be used to parse a

subsequent filenane in the FILENAME string, the returned address
shoul d be advanced over the delinmiter before placing it in the PFCB

142

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 3.8 XDOS Cal l's: Function 153

FUNCTI ON 153: CGET CONSCLE NUMBER

Entry Paraneters:
Regi st er C 99H

Ret ur ned Val ue:
Regi st er A Consol e Nunber

The CGet Consol e Nunber function obtains the value of the
CONSOLE field fromthe Process Descriptor of the calling process.
The cal ling process passes the function nunber 99H in register C
and the function returns the consol e nunber in register A

FUNCTI ON 154: SYSTEM DATA ADDRESS

Entry Paraneters:
Regi st er C 9AH

Ret ur ned Val ue:
Regi sters HL: System Data
Page Address

The System Data Address function returns the base address of
the system data page. The system data page resides in the top 256
bytes of the MM/ M1l QOperating System It contains configuration
information entered by the MP/M I CGENSYS programas well as run
time data including the subnmit flags. The contents of the system
data page are described in Section 3.5.

The cal ling process passes the function nunber 9AH in register
C, and the function returns the base address of the system data page
in register pair HL.

143

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 3.8 XDOS Cal l's: Function 155

FUNCTI ON 155: CGET DATE AND TI ME

Entry Paraneters:
Regi st er C 9BH
DE: TOD Addr ess

Ret ur ned Val ue:
Ti re and date

The Get Date and Time function returns the current encoded date
and time. The calling process passes the address of a data
structure called the TOD in register pair DE. The TOD data
structure represents the date as a 16-bit integer, with day 1
corresponding to January 1, 1978. It represents the tine as three
bytes: hours, minutes, and seconds, stored as two BCD digits.

Initialization of the TOD data structure is shown below in both
PL/ M and assenbly | anguage.
PL/ M

Decl are TOD structure (
dat e address,

hour byte,

mn byte,

sec byte);

Assenbl y Language:

TOD:
DS 2 ; Dat e
DS 1 ; Hour
DS 1 ; M nute
DS 1 ; Second

144

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide XDOS Cal l's: Function 156

FUNCTI ON 156: RETURN PROCESS
DESCRI PTOR ADDRESS

Entry Paraneters:
Regi st er C 9CH

Ret ur ned Val ue:
Regi st er HL: PD Addr ess

The Return Process Descriptor Address function obtains the
address of the calling processes process descriptor. By
definition, this is the head of the ready list.

FUNCTI ON 157: ABORT SPECI FI ED
PROCESS

Entry Paraneters:
Regi st er C 9DH
Regi st er DE: APB Addr ess

Ret ur ned Val ue:
Regi st er A Ret urn Code

The Abort Specified Process function pernits a process to
term nate anot her specified process. The calling process passes the
address of a data structure called an Abort Parameter Bl ock (ABTPB)
in register pair DE. Initialization of the ABTPB is shown below in
both PL/M and assenbly | anguage.

PL/ M

Decl are Abort $par ant er $bl ock structure (
pdadr address,

t erm nati on$code address,

nane (8) byte,

consol e byte);

Assenbl y Language:
APB:
DS 2 ; process descriptor address
DS 2 ;term nation code
DS 8 ; process nane
DS 1 ;consol e used by process

145

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 3.8 XDOS Cal l's: Function 157

If the Process Descriptor address is known, it can be filled in
and the process nanme and console can be onmitted. Ot herw se, the
Process Descriptor address field should be a 0, and the process nane
and consol e nust be specified. In either case, the termnination
code, which is the paranmeter passed to Function 143, Terninate
Process, must be supplied.

FUNCTI ON 158: ATTACH LI ST

Entry Paraneters:
Regi st er C 9EH

The Attach List function attaches the Iist device specified in
the CONSCLE/ LI ST field of the Process Descriptor to the calling
process. If the list device is already attached to sone ot her
process, the calling process relinquishes the CPU until the other
process detaches fromthe list device. Wen the |ist device becones
free and the calling process is the highest priority process waiting
for the list device, the attach operation takes place.

The process calls Function 158 by passing the function nunber
9EH in register C. The function does not return a value in register
A

FUNCTI ON 159: DETACH LI ST

Entry Paraneters:
Regi st er C 9FH

The Detach List function detaches the Iist device specified in
the CONSCLE/ LI ST field of the Process Descriptor fromthe calling
process. |If the list device is not currently attached, no action
t akes pl ace.

The process calls Function 159 by passing the function nunber

9FH in register C. The function does not return a value in register
A

146

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 3.8 XDOS Cal l's: Function 160

FUNCTI ON 160: SET LI ST

Entry Paraneters:
Regi st er C ACH
E: Li st Device

The Set List function detaches the list device currently
attached to the calling process and then attaches the specified |ist
device. If the Iist device to be attached is already attached to
anot her process, the calling process relinquishes the CPU until the
ot her process detaches fromthe |ist device. Wen the |ist device
beconmes free and the calling process is the highest priority process
waiting for the device, the attach operation takes pl ace.

The cal ling process passes the nunber of the list device to be
attached in register E. The function does not return a value in
regi ster A

FUNCTI ON 161: CONDI TI ONAL ATTACH
LI ST

Entry Paraneters:
Regi st er C A H

Ret ur ned Val ue:
Regi st er A Ret urn Code

The Conditional Attach List function attaches the Iist device
specified in the CONSOLE/ LI ST field of the Process Descriptor to the
calling process only if the list device is currently unattached.

If the list device is currently attached to another process,
the function returns a value of OFFH in register A indicating that
the Iist device could not be attached. The function returns a val ue
of zero to indicate that either the list device is already attached
to the process, or that it was unattached and a successful attach
operation was made.

147

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 3.8 XDOS Cal l's: Function 162

FUNCTI ON 162: CONDI TI ONAL ATTACH
CONSCLE

Entry Paraneters:
Regi st er C A2H

Ret ur ned Val ue:
Regi st er A Ret urn Code

The Conditional Attach Console function attaches the consol e
specified in the CONSOLE/ LI ST field of the Process Descriptor to the
calling process only if the console is currently unattached.

If the console is currently attached to another process, the
function returns a value of OFFH in register A indicating that the
consol e could not be attached. The function returns a value of zero
to indicate that either the console is already attached to the
process or that it was unattached and a successful attach operation
was nade.

148

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 3.8 XDOS Call's: Function 163

FUNCTI ON 163: RETURN MP/ M VERSI ON
NUMBER

Entry Paraneters:
Regi st er C A3H

Ret ur ned Val ue:
Regi st er HL: Ver si on Nunber

The Return MP/ M Version Nunber function provides infornmation
that all ows version independent progranm ng. The function returns a
two- byte value, with H=01 for MPMIIl and L the MP/ M I revision
| evel .

FUNCTI ON 164: CET LI ST NUMBER

Entry Paraneters:
Regi st er C A4H

Ret ur ned Val ue:
Regi st er A Li st Nunber

The CGet List Nunmber function returns the value of the Iist
device fromthe Process Descriptor of the calling process. The
process calls Function 164 by passing the function nunber A4H in
register C. The function returns the |ist device nunber in register
A

149

All Information Presented here is Proprietary to Digital Research

150

All Information Presented here is Proprietary to Digital Research

Section 4
ASM, An 8080 Assembler

4.1 Overvi ew

ASM reads an assenbly | anguage source file fromthe di sk and
produces 8080 machi ne |l anguage in Intel hex format. |nvoke ASM by
entering an ASM conmand in either of the follow ng forns:

ASM fil enane
ASM fi | enane. par ns

In both cases, the assenbler assunes there is a file on the disk
w th the nane:

filenane. ASM

that contains an 8080 assenbly | anguage source file. The first and
second forns shown above differ only in that the second form passes
paranmeters to the assenbler to control source file access and hex
and print file destinations.

In either case, MP/MI1l |oads ASM which prints the nessage
MP/ M ASSEMBLER VER 2.0

where n.n is the current version nunber. In response to the
conmand, the assenbler reads the source file with assuned fil etype
"ASM' and creates two output files:

fil enane. HEX
filenane. PRN

The HEX file contains the machi ne code corresponding to the origina
programin Intel hex format, and the PRN file contains an annot at ed
listing showi ng generated machi ne code, error flags, and source
lines. If errors occur during translation, they are listed in the
PRN file as well as at the console.

The second conmand formcan redirect input and output files
fromtheir defaults. The "parns"” portion of the command is a three
letter group that specifies the origin of the source file, the
destination of the hex file, and the destination of the print file.
The formis

fil enane. pl p2p3

where pl, p2, and p3 are replaced by single |letters whose neani ngs
are defined in Table 4-1.

151

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide 4.1 overvi ew

Tabl e 4-1. ASM Par anet ers

Synbol [Valid Letters | Meani ng
P1 AB. . ,P desi gnates the drive that
contains the source file
p2 AB. . P desi gnates the drive that
receives the hex file.
z ski ps the generation of the hex
file
p3 AB. . P desi gnates the drive that
receives the print file
X pl aces the listing at the consol e
z ski ps generation of the print file

Thus, the conmmand:
ASM PROG. AAA

i ndi cates that the assenbler takes the source file (PROG ASM from
drive A and al so creates the hex (PROG HEX) and print (PROG PRN)
files on drive A. This conmand is the default if the assenbler is
run fromdrive A without the optional paraneters, as shown bel ow

OA>ASM PROG
The conmand:

OA>ASM PRCG. ABX

i ndicates that the assenbler takes the source file fromdrive A
pl ace the hex file on drive B and sends the listing file to the
consol e. The command:

OA>ASM PROG BZZ
takes the source file fromdrive B and skips the generation of the
hex and print files. Use this conmand for a fast execution of the
assenbl er to check program synt ax.

The source programfornmat is conpatible with the Intel 8080
assenbl er, although nacros are not supported. However, certain

extensions in the MP/MII| assenbler make it easier to use. These
ext ensi ons are descri bed bel ow.

152

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 4.2 Pr ogr am For mat
4.2 Pr ogr am For mat

An assenbly | anguage program acceptable as input to the ASM
assenbl er consists of a sequence of statenents of the form

i ne# | abel operation oper and ; comment
where any or all the fields can be present in a particular instance.

Each assenbly | anguage statenent nust be terninated with a carriage
return and line feed (ED automatically inserts a line feed) or with

an exclamation mark, !, which is treated as an end-of-line by the
assenbl er. Thus, nultiple assenbly |anguage statenents can be
witten on the sanme physical line if separated by exclanmation marks.

The line# is an optional deciml integer value representing the
source program line nunber, which is allowed on any source |ine.
Because these line nunbers are inserted automatically by line
oriented editors, ASMignores this field if present. The | abe
field takes either of the forns bel ow

identifier
identifier:

Label s are optional, except where noted in particul ar statenent
types. An identifier is a sequence of any al phanuneric characters,
but the first character nmust be al phabetic. You can use identifiers
freely to |l abel elenents such as program steps and assenbl er
directives. only the first 16 characters are significant in an
identifier, except for an enbedded dollar synbol, $, which can be
used to inprove readability of the name. Al |ower-case al phabetics
are treated as if they were upper-case. optionally, a colon can
follow the identifier. Thus, the following are all valid |abels:

X Xy | ong$nane
X yxl : | onger $naned$dat a:
Xl Y2 Xl x2 x234%$5678%$9012$3456:

The operation field contains either an assenbler directive, a
pseudo operation, or an 8080 machi ne operation code. The pseudo
operations and nmachi ne operation codes are described in Section 4.5.
Section 4.4 describes the assenbler directives.

The operand field of the statenment generally contains an
expression forned out of constants and labels, along with arithnetic
and | ogi cal operations on these elenents. The conplete details of
properly fornmed expressions are given in Section 4.3.

The conment field can contain any characters follow ng the
sem colon, ;, until the next real or |ogical end-of-line. These
characters are read and |listed, but are otherw se ignored by the
assenbl er. The MP/ M assenbler also treats statenents that begin
with an asterisk, *, in colum one as conmment statenents. These are
listed and ignored in the assenbly process.

153

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 4.2 Pr ogr am For mat

The assenbly | anguage source programis a sequence of
statenments as defined above, optionally term nated by an END
statenent. ASMignores statenments fol |l owi ng END.

4.3 Form ng the Operand

To conpl etely describe the operati on codes and pseudo
operations, it is necessary to first present the formof the operand
field, because it appears in nearly all statenents. Expressions in
the operand field consist of sinple operands (Il abels, constants, and
reserved words), conbined in properly forned subexpressions by
arithnmetic and | ogi cal operators. ASM eval uates each expression as
the assenbly proceeds. Each expression nust evaluate to a 16-bit
val ue. Further, the nunber of significant digits in the result nust
not exceed the intended use. That is, if an expression is to be
used in a byte nove i mediate instruction, then the nost significant
8 bits of the expression nust be zero. The restrictions on the
expression significance are given with the individual instructions.

4.3.1 Label s

As di scussed above, a label is an identifier that appears as
part of a particular statenent. In general, the label is given a
val ue deternined by the type of statenent that it precedes. If the
| abel appears in a statenment that generates nachi ne code or reserves
nmenory space (for exanple, a MOV instruction or a DS pseudo
operation) , then the label is given the value of the program address
that it labels. If the |abel precedes an EQU or SET, then ASM gi ves
the |l abel the value that results fromeval uating the operand field.
Except for the SET statenent, an identifier can [abel only one
st at enent .

When a | abel appears in the operand field, ASM substitutes its
val ue during assenbly. This value can then be conbined with other
operands and operators to formthe operand field for a particular
i nstruction.

4.3.2 Nureri c Constants
A nuneric constant is a 16-bit value in one of several bases.
The base, called the radix of the constant, is denoted by a trailing

radi x i ndicator. The radi x indicators recogni zed by ASM are defi ned
in Table 4-2, bel ow

154

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide 4.3 Form ng the Operand

Tabl e 4-2. ASM Radi x | ndi cators

| ndi cat or Base

bi nary constant (base 2)

octal constant (base 8)

octal constant (base 8)

deci mal constant (base 10)
hexadeci mal constant (base 16)

ITOOOCW

Qis accepted as an alternate radix indicator for octal nunmbers to
m ni m ze confusion between the letter 0 and the digit 0. Any
nuneric constant that does not ternminate with a radix indicator is
assuned to be a deci nal constant.

A constant is thus conposed as a sequence of digits, foll owed
by an optional radix indicator, where the digits are in the
appropriate range for the radix. That is, binary constants nust be
conposed of the digits 0 and 1 octal constants can contain digits in
the range 0-7, while decinmal constants contain decimal digits.
Hexadeci mal constants contain decinmal digits as well as hexadeci ma
digits A (10D), B (11D), C (12D), D(13D), E (14D), and F(15D).

Note that the leading digit of a hexadeci nal constant nust be a
decinmal digit so that ASM cannot confuse a hexadeci nal constant with
an identifier (aleading O will always suffice) . A constant
conposed in this nmanner nust evaluate to a binary nunber that can be
contained within a 16-bit counter; otherwise, it is truncated to
the least significant 16-bits. Simlar to identifiers, inbedded $'s
are allowed within constants to inprove their readability. Finally,
ASM transl ates the radi x indicator to upper-case if a | ower-case
letter is encountered. The following are all valid numneric
const ants:

1234 1234D 1100B 1111$0000%$1111$0000B
1234H OFFEH 33770 33%$77%$22Q
33770 Of e3h 1234d Offfh

4.3.3 Reserved Words

Several reserved character sequences have predefined nmeani ngs
in the operand field of a statenent. The nanes of 8080 registers,
when encountered by the assenbler, are translated to the val ues
shown in Table 4-3.

155

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 4.3 Form ng t he operand

Tabl e 4-3. 8080 Registers

Regi st er Val ue

Letter
A 7
B 0
C 1
D 2
E 3
H 4
L 5
M 6
SP 6
PSW 6

Agai n, | ower-case nanmes have the same val ues as their upper-case
equi val ents. Machine instructions can al so appear in the operand
field; if so, they evaluate to their internal codes. For
instructions that require operands in which the specific operand
becomes a part of the binary bit pattern of the instruction (for
exanple, MOV A B), the value of the instruction (in this case MWV)
is the bit pattern of the instruction with zeroes in the optiona
fields (e.g., MO produces 40H)

Wien the $ synbol occurs in the operand field but not inbedded
within an identifier or numeric constant, its val ue becones the
address of the next instruction to generate, not including the
instruction contained within the current |ogical |ine.

4.3. 4 String Constants

String constants represent sequences of ASCI| characters, and
are represented by encl osing the characters wthin apostrophe
synbols, '. Al strings nust be fully contained within the current
physical line, thus allowing ! synbols within strings, and nust not
exceed 64 characters in length. The apostrophe character can be
included within a string by entering it as a doubl e apostrophe, ',
whi ch becones a single apostrophe when read by the assenbl er
Except for the DB pseudo operation, the string length is restricted
to either one or two characters, which becone an 8-bit or 16-bit
val ue, respectively. Two-character strings becone a 16-bit
constant, with the second character as the | ow order byte, and the
first character as the high-order byte.

156

All Information Presented here is Proprietary to Digital Research

MP/ M 1l Programer4s Qui de 4.3 Form ng the Operand

The val ue of a character is its correspondi ng ASCI

Appendi x 1).
bot h upper -

however, that only graphic (printing) ASC

There is no case translation within strings,
and | ower-case characters can be represented.

within strings. Some exanples of valid strings are

A ‘ AB' "ab’ ‘c’
Ca Cq G v ma
"Wal |l a wal |l a Wash.'

"She said ""Hello'' to ne.'

'l said '"Hello'' to her.'

4.3.5 Arithnetic and Logi cal Operators

code (see
and so
Not e,

characters are all owed

The operands descri bed above can be conbined in norna
al gebrai c notation using any conbi nati on of properly fornmed
operands, operators, and parenthesized expressions. The operators
recogni zed in the operand field are sumari zed in Table 4-4.

Table 4-4. Arithnetic and Logi cal Operators

Oper ati on Resul t
A+ Db unsigned arithmetic sumof a and b
A-Db unsigned arithnetic difference between a and b
+ b unary plus (produces b)
- b unary minus (identical to 0 - b)
a*b unsigned multiplication of a and b
al b unsi gned division of a by b
a MDD b remai nder after a/ b
a NOT b | ogi cal inverse of b: all Os becone I's, |I's
becore Os - b is a 16-bit value
a AND b bit-by-bit logical and of a and b
aORb bit-by-bit logical or of a and b
a XOR b bit-by-bit |ogical exclusive or of a and b
a SHL b the value that results fromshifting a to the
left by an amount b, with zero fil
a SHR b the value that results fromshifting a to the
right by an anount b, with zero fil

157

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide 4.3 Form ng the Operand

In Table 4-4, a and b represent sinple operands such as | abels,
nuneric constants, reserved words, one- or-two character strings, or
fully encl osed parent hesi zed subexpressi ons such as the exanpl es
bel ow.

10+20 10h+37Q LI /3 (L2+4) SHR 3
("a'" and 5fh) + 0O ("B +B) OR (PSWM
(1+(2+c)) shr (A-(B+l))

Note that all conmputations performed at assenbly tinme are 16
bit unsigned operations. Thus, -1 is conputed as 0-1, which results
inthe value Offfh (i.e. , all 1 's) . The resulting expression nust
fit the operation code in which it is used. If, for exanple, the
expression is used in a ADI (add i mmedi ate) instruction, then the
hi gh-order eight bits of the expression nust be zero. For exanple,
the operation "ADl -1" produces an error nmessage because -1 becones
Offfh, which cannot be represented as an 8-bit value. "AD (-1)

AND OFFH' is acceptabl e because the "AND' operation zeroes the high
order bits of the expression.

4.3.6 Precedence of Operators

As a convenience to the programer, ASM assunes that operators
have a rel ative precedence of application. This allows you to wite
expressions w thout nested | evel s of parentheses. Expressions have
assuned parentheses defined by relative precedence. The order of
application of operators in unparenthesized expressions is |isted
bel ow. operators listed first have highest precedence; they are
applied first in an unparenthesi zed expression. operators listed
| ast have | owest precedence. Qperators listed on the sanme |ine have
equal precedence, and are applied fromleft to right as they are
encountered in an expression

1) / MOD SHL SHR
2) - +

3) NOT

4) AND

5) OR XOR

Due to this hierarchy, the expressions shown to the |eft below are
interpreted by the assenbler as the fully parenthesized expressions
shown to the right:

a*b+c (a* b)) +c

a+b*c a+ (b * ¢

aMDb®*cSH d ((a MDb) *c) SHL d

a ORb ANDNOT ¢c + d SHL e a OR (b AND (NOT (c + (d SHL €))))

158

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide 4.3 Form ng the Operand

Bal anced parent hesi zed subexpressi ons can al ways override the
assuned parentheses, and so the | ast expressi on above could be
rewitten to force application of operators in a different order
such as:

(a OR'b) AND (NOT c) + d SHL e
This expression has the assuned parent heses:
(a OR'b) AND HNOT c) + (d SHL e))

Not e that an unparent hesized expression is well-forned only if the
expression which results frominserting the assuned parentheses is
wel | - f or ned.

4.4 Assenbl er Directives

Assenbl er directives set labels to specific values during the
assenbly, performconditional assenbly, define storage areas, and
specify starting addresses in the program Each assenbler directive
is denoted by a "pseudo operation" that appears in the operation
field of the line. The acceptabl e pseudo operations are sunmmari zed
in Table 4-5, and described individually in the follow ng sections.

Table 4-5. ASM Directives

Synbol Functi on
ORG set the programor data origin
END end program optional start address
EQU nuneric "equate"
SET nunmeric "set"
I F begi n conditional assenbly
ENDI F end of conditional assenbly
DB define data bytes
DwW define data words
DS define data storage area
159

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 4.4 Assenbl er Directives
4.4.1 The ORG Directive

The ORG statenent takes the form

| abel ORG expression

where "label" is an optional program|label, and "expression"” is a
16-bit expression, consisting of operands that are defined ahead of
the ORG statenent. The assenbl er begi ns nmachi ne code generation at
the I ocation specified in the expression. There can be any nunber
of ORG statements within a particular program however, there are
no checks to ensure that the programmer is not defining overlapping
nmenory areas. Note that nost programs witten for the MP/ M I
system begin with the foll owi ng ORG st at enent

ORG 100H

This starts machi ne code generation at the base of an MP/ M 1|

transi ent program area. To prepare a page-rel ocatabl e program for
execution under MP/M 11, assenble the source programtw ce, adding
100H to each ORG statenent during the second assenbly. Concatenate
the two hex files generated by the assenblies using PIP, then submt
the concatenated file to the GENMOD utility which produces a file of
type PRL

If a label is specified in the ORG statenent, then the |abel is
gi ven the value of the expression. This |label can then be used in
the operand field of other statenents to represent this expression

4.4 2 The END Directive

The END statenment is optional in an assenbly | anguage program
but if it is present it should be the |ast statenment because al
subsequent statenents are ignored. The two forns of the END
directive are:

| abel END
| abel END expression
where the label is optional. If the first formis used, the

assenbly process stops and the default starting address of the
programis taken as 0000. Qtherw se, the expression is eval uated
and becones the programstarting address. This starting address is
included in the last record of the Intel-fornmatted machi ne code
"hex" file which results fromthe assenbly. Thus, nost CP/ M
assenbly | anguage progranms end with the statenent:

END 100H

which results in the default starting address of 100H

160

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 4.4 Assenbl er Directives
4.4.3 The EQU Directive

The EQU (equate) statenent sets up synonyns for particul ar
nuneric values. The formis

| abel EQU expression

where the | abel nust be present, and nust not |abel any other
statenent. The assenbl er evaluates the expression and assigns this
value to the identifier given in the | abel field. The identifier is
usual ly a nanme that describes the value in a nore hunan-oriented
manner. Then this nane can be used throughout the programto
llparaneterize" certain functions. Suppose for exanple, that data
received froma tel etype appears on a particular input port, and
data is sent to the teletype through the next output port in
sequence. The series of equate statenents coul d define these ports
for a particular hardware environnment, as shown bel ow

TTYBASE EQU 10H ; BASE PORT NUMBER FCOR TTY
TTYI'N EQU TTYBASE ; TTY DATA I N
TTYOUT EQU TTYBASE+1 ; TTY DATA QUT

At a later point in the program the statenents that access the
tel etype coul d appear as shown bel ow

IN TTYI N - READ TTY DATA TO REG A
ouT TTYOUT “\\RI TE DATA TO TTY FROM REG A

Thi s nakes the program nore readable than if the absolute 1/0 ports
had been used. Further, if you redefine the hardware environnent to
start the tel etype comuni cations ports at 7FH i nstead of 10H, you

need only change the first statenent to:

TTYBASE EQU 7FH ; BASE PORT NUMBER FOR TTY

and the program can be reassenbl ed w thout changi ng any ot her
st at enent s.

4.4.4 The SET Directive

The SET statenent is simlar to the EQU, taking the form
| abel SET expression

It differs fromSET in that the | abel can occur on other SET

statements within the program The expression is eval uated and

becomes the current val ue associated with the |abel. Thus, the EQU

statenent defines a label with a single value, while the SET

statement defines a value that is valid fromthe current SET

statenent to the next SET statement where the |abel occurs. SET is
nost often used to control conditional assenbly.

161

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 4.4 Assenbl er Directives
4.4.5 The I F and ENDI F Directives

The I'F and ENDI F statenents define a range of assenbly | anguage
statenents to be included or excluded during the assenbly process.
The formis

I F expressi on
st at enent #1
st at enent #2

st at ement #n
ENDI F

Upon encountering the I F statenment, the assenbl er eval uates the
expression following the IF. Al operands in the expression nust be
defined ahead of the IF statenent. If the |east significant bit of
the eval uated expression is a 1, then statement#1 through
statenent#n are assenbled; if the least significant bit of the

eval uated expression is zero, then the statements are listed but not
assenbl ed. Conditional assenbly is often used to wite a single
llgeneric" program which includes a nunber of possible run-tinme
environnents, with only a few specific portions of the program
selected for any particular assenbly. The fol |l owi ng program
segnents for exanple, night be part of a programthat communi cates
with either a teletype or a CRT console (but not both) by selecting
a particular value for TTY before the assenbly begins.

TRUE EQU OFFFFH - DEFI NE VALUE OF TRUE
FALSE EQU NOT TRUE . DEFINE VALUE OF FALSE
TTY EQU TRUE “TRUE | E TTY, FALSE |F CRT
TTYBASE EQU 10H BASE OF TTY |/0O PORTS
CRTBASE EQU 20H "' BASE OF CRT |/0O PORTS

'E TTY " ASSEMBLE RELATI VE TO TTYBASE
CONI N EQU TTYBASE * CONSOLE | NPUT
CONOUT EQU TTYBASE+ : CONSOLE OUTPUT

ENDI F

lE NOT TTY - ASSEMBLE RELTI VE TO CRTBASE
CONI N EQU CRTBASE * CONSOLE | NPUT
CONOUT EQU CRTBASE+ . CONSOLE OUTPUT

ENDI F

IN CONIN - READ CONSOLE DATA

QUT CONOUT “\\RI TE CONSOLE DATA

In this case, the program assenbles for an environment where a
Tel etype is connected, based at port 10H The statenent defining
TTY coul d be changed to:

TTY EQU FALSE

and, in this case, the program assenbles for a CRT based at port
20H.

162

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 4.4 Assenbl er Directives
4.4.6 The DB Directive

The DB directive allows the progranmer to define initialized
storage areas in single precision (byte) format. The statenent form
is:

| abel DB e#l, e#2, ..., e#n

where e#l through e#n are either expressions that evaluate to 8-bit
val ues (the high-order eight bits nmust be zero) , or are ASC
strings of length no greater than 64 characters. There is no
practical restriction on the nunber of expressions included on a
single source line. The expressions are eval uated and pl aced
sequentially into the nachine code file starting at the current
program address generated by the assenbler. String characters are
simlarly placed into nenory starting with the first character and
ending with the last character. Strings of length greater than two
characters cannot be used as operands in nore conplicated
expressions; that is, they nust stand al one between the conmas.
Note that ASCI| characters are always placed in nmenory with the
parity bit reset (0), and that there is no translation from | ower
to upper-case within strings. The optional |abel can reference the
data area throughout the renainder of the program Exanples of
valid DB statenments are:

dat a: DB 0,1,2,3,4,5
DB data and Ofh,5,377Q 1+2+3+4
si ghon: DB ‘pl ease type your nane',cr,lf,O
DB "AB' SHR 8, 'C, 'DE' AND 7FH
4.4.7 The DWDirective

The DWstatenent is simlar to the DB statement except that it
initializes two byte words of storage instead of single bytes. The
formis:

| abel DW e#l, e#2, . . ., e#n

e#l through e#n are expressions that evaluate to 16-bit results.
Note that ASCI| strings of one or two characters are all owed, but
strings longer than two characters are not acceptable. In al

cases, the data storage is consistent with the 8080 processor: the
| east significant byte of the expression is stored first in nenory,
foll owed by the nost significant byte. Here are sone exanples:

doub: DwW O f ef h, doub+4, si gnon- $, 255+255
DwW ‘a’,5,'ab',"CD ,6 shl 8 or Ilb

163

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 4.4 Assenbl er Directives
4.4.8 The DS Directive

The DS statenent reserves an area of uninitialized nmenory, and
takes the form

| abel DS expr essi on

where the |label is optional. The assenbl er begi ns subsequent code
generation after the area reserved by the DS. Thus, the DS
statenment given above has exactly the sane effect as the foll ow ng
statenents:

| abel : EQU $; LABEL VALUE | S CURRENT CODE LOCATI ON
ORG $+expressi on ; MOVE PAST RESERVED AREA
4.5 Oper ati on Codes

Assenbl y | anguage operation codes are the principal part of
assenbly | anguage progranms, and formthe operation field of the
instruction. In general, ASM accepts all the standard menonics for
the Intel 8080 mcroconputer, which are given in detail in the Inte
manual "8080 Assenbly Language Progranm ng Manual ." Labels are
optional on each input Iine and, if included, take the value of the
instruction address inmedi ately before the instruction is issued.
Table 4-7 lists the individual operators briefly, but you should
reference the Intel manual for detailed descriptions.

Table 4-7 lists each operation code in its nost general form
with a specific exanple, then gives a short explanation with any
special restrictions. In the Formcolumm, "en" synbolizes an
expression. Table 4-6, below, defines the "en" synbols.

Tabl e 4-6. Expression Synbols

Synbol Repr esent s

e3 a 3-bit value in the range 0-7 that
can be one of the predefined registers
A B C D E H L M SP, or PSW

e8 an 8-bit value in the range 0-255.

el6 a 16-bit value in the range 0-65535

The expressions can be forned froman arbitrary conbi nati on of
operands and operators. |In sonme cases, the operands are restricted
to particular values within the allowable range, such as the PUSH
instruction. Table 4-7 notes such cases as they are encountered.

The operation codes sunmarized in Table 4-7 fall into six

categories. Junp, Call and Return instructions can test the
condition flags set in the CPU and transfer control to another

164

All Information Presented here is Proprietary to Digital Research

MP/ M I T Programer's Guide 4.5 Oper ati on Codes

| ocation. Inmmediate Operand instructions |oad single- or double
precision registers or single-precision nenory cells w th constant
val ues. These al so include instructions that perform i mediate
arithmetic or |ogical operations on the accunul ator (register A).

I ncrenent and Decrenent instructions are provided for both
singl e- and doubl e-precision registers. Data Mvenent instructions
transfer data fromnenory to the CPU and fromthe CPU to nenory.
Arithnetic Logic Unit instructions performarithnetic and | ogical
operations on the single-precision accunul ator. Control
i nstructions enable and disable interrupts, halt program execution,
and perform a no-operation function.

Table 4-7. ASM Qperati on Codes

Form Exanpl e Expl anati on

Junps, Calls and Returns

JW el6 JMP LI Junp unconditionally to | abel
JNZ el6 IJNZ L2 Junp on non zero condition to
Label

Jz el6 JZ 100H Junp on zero condition to |abel

JNC el6 JINC L1+4 Junp on no carry to | abel

ic el6 JC L3 Junmp on carry to | abel
JPO el6 JPO $+8 Junp on odd parity to | abel
JPE el6 JPE L4 Junp on even parity to |abel

JP el6 JP GAWMMA Junp on positive result to |abel

jmp el6 JM al Junmp on minus to | abel
CALL el6 CALL S Cal I subroutine unconditionally
CNZ el6 OCNZz S2 Call subroutine if non zero flag

074 elé6 CZ 100H Call subroutine on zero flag

CNC elé6 CNC Sl +4 Call subroutine if no carry set

cc el6 CC Ss3 Call subroutine if carry set

CPO elb6 CPO S+8 Call subroutine if parity odd

CPE el6 CPE A Call subroutine if parity even
165

All Information Presented here is Proprietary to Digital Research

MP/ M [|

Programer's Gui de

4.5 Oper ati on Codes

Table 4-7. (continued)

Form Exanpl e Expl anati on
Junps, Calls and Returns
cP elé CP GAMVA Call subroutine if positive
Resul t
CcM el6 CM bl $c2 Call subroutine if mnus flag
RST e3 RST O Programmed "restart", equival ent
to CALL 8*e3, except one byte
i nstruction
RET Return from subroutine
RNz Return if non zero flag set
Rz Return if zero flag set
RNC Return if no carry
RC Return if carry flag set
RPO Return if parity is odd
RPE Return if parity is even
RP Return if positive result
RM Return if mnus flag is set
| mredi ate Operand I nstructions
MWI e3, e8 Wil B, 255 Move i nmmedi ate data to register
A B C D E H L, or M
(rmenory)
ADI eS8 ADI 1 Add i nmedi ate operand to A
wi thout carry
ACl eS8 ACl OFFH Add i medi ate operand to A with
Carry
SUl e8 SUL + 3 Subtract fromA w thout borrow
(carry)
SBl e8 SBI L AND 11B Subtract fromA with borrow
(carry)
ANl eS8 ANl $ AND 7FH Logical "and" A with i mediate
dat a

166

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide

Tabl e 4-7.

4.5

Oper ati on Codes

(conti nued)

Form Exanpl e

Expl anati on

XRl e8 XRl 1111$0000B

e8 ORI

dat a

L AND 1+1

e8 CPl '"a

LXl e3,el6 LXI B,100H

| ncrenent and

INR e3 INR E

e3 DCR A

e3 I NX SP

DCX e3 DCX B

Dat a Mbvenent

e3, e3 MOV A B

LDAX e3 LDAX B

STAX e3 STAX D

| mredi ate Operand I nstructions

"Exclusive or" Awth imedi ate

Dat a

Logical "or" Awith imediate

Conpare A with i medi ate data
(same as SU except register A
not changed)

Load extended i medi ate to
regi ster pair (e3 nust be
equivalent to B, D, H or SP)
Decrenent Instructions

Si ngl e precision increnent

regi ster(e3 produces one of A
B! Cy D! E! H! L! M

Si ngl e precision decrenent
Regi ster (e3 produces one of A,
B! Cy D! E! H! L! M

Doubl e preci sion increnent
regi ster pair (e3 nust be
equivalent to B, D, H or SP)
Doubl e preci si on decrenent
regi ster pair (e3 nust be
equivalent to B, D, H or SP)
I nstructions

Move data to | eftnost el ement
fromrightnost el ement (e3 produces one of
A B C D E H

L, or M. MV MMis

Di sal | owed

Load register A from conputed
address (e3 nust produce either
B or D)

Store register Ato conputed
address (e3 nust produce either
B or D)

167

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide

4.5 Oper ati on Codes

Table 4-7. (continued)

Form Exanpl e Expl anati on
Data Movenment |nstructions

LHLD el6 LHLD LI Load HL direct fromlocation
el6 (double precision load to
H and L)

SHLD el6 SHLD L5+x Store HL direct to location el6
(doubl e precision store fromH
and L to nmenory)

LDA el6 LDA Gamma Load register A from address el6

STA elé6 STA X3-5 Store register Ainto nenory at
el6

POP e3 POP PSW Load register pair from stack,
set SP (e3 nust produce one of
B, D, 11, or PSW

PUSH e3 PUSH B Store register pair into stack,
set SP (e3 nust produce one of
B, Db H or PSW

I'N e8 I'N 0 Load register Awith data from
port e8

QUT e8 aQUr 255 Send data fromregister Ato
port e8

XTHL Exchange data fromtop of stack
with HL

PCHL Fill programcounter with data
fromHL

SPHL Fill stack pointer with data
fromHL

XCHG Exchange DE pair with HL pair

Arithnetic Logic Unit Operations

ADD e3 ADD B Add register given by e3 to
accunul ator without carry (e3
nmust produce one of A B, C D
E, H or L)

ADC e3 ADC L Add register given by e3 to A
with carry, (e3 nust produce one
of AA B C D E H or L)

168

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide

4.5 QOperation Codes

Table 4-7. (continued)
Form Exanpl e Expl anati on
Arithnetic Logic Unit Operations

SUB e3 SUB H Subtract register given by e3
fromA wthout carry, (e3 rmnust
produce one of A B, C, D, E,

H or L)

SBB e3 SBB 2 Subtract register given by e3
fromA with carry, (e3 nust
produce one of A B, C D, E,

H or L)

ANA e3 ANA 1+1 Logi cal "and" of Register given
by e3 with A (e3 nust produce
one of A B C D E H or L)

XRA e3 XRA A "Exclusive or" of register given
by e3 with A (e3 nust produce one
of A B C D E H or L)

ORA e3 ORA B Logi cal "or" of register given
by e3 with A (e3 nust produce
one of A B C D E H or L)

CWP e3 CwP Conpare register given by e3 with
A, (e3 must produce one of A,

B, C D E H or L)

DAA Deci mal adjust register A
based upon last arithnetic
logic unit operation

CVA Conpl ement bits in register A

STC Set carry flag to 1

ave Conpl enent carry flag

RLC Rotate bits left, (re)set carry
as a side effect (high-order A
bit becones carry)

RRC Rotate bits right, (re)set
carry as side effect (low
order A bit becones carry)

RAL Rotate carry/ A register to |left
(carry is involved in the
rotate)

169

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide

4.5 Oper ati on Codes

Table 4-7. (continued)
Exanpl e Expl anat i on
Form
Arithnetic Logic Unit Operations

RAR Rotate carry/ A register to
right (carry is involved in the
rotate)

DAD e3 DAD B Doubl e precision add register
pair e3 to HL (e3 nust produce
B, Db H or SP)
Control Instructions

HLT Halt the 8080 processor

Di Di sable the interrupt system

El Enabl e the interrupt system

NOP No operation

170

All Information Presented here is Proprietary to Digital Research

MP/M Il Programer’s Guide 4.6 Error Messages
4.6 Error Messages

VWhen ASM finds errors within the assenbly | anguage program it
lists them as single-character codes in the | eftnost position of the
source listing. The line in error is also echoed at the console so
that the source listing need not be examined to deternine if errors
are present. Table 4-8 defines the error codes.

Tabl e 4-8. Assenbly Error Codes

Code Meani ng

D Data error: elenent in data statenent cannot be
placed in the specified data area

E Expression error: expression is ill-formed and
cannot be eval uated

L Label error: |abel cannot appear in this context
may be duplicate | abe

N Not inplemented: features that will appear in
future ASM versions (e.g., Macros) are recognized
and flagged, but are unsupported in this version

0 Overfl ow. expression is too conplicated, has too
many pendi ng operators to be conputed, simplify it
P Phase error: |abel does not have the sane val ue on

two subsequent passes through the program

R Regi ster error: the value specified as a register
is not conmpatible with the operation code

S Syntax error: the fields of this statenent are ill
Formed and cannot be processed properly; may be due
to invalid characters or nisplaced delinmters

U Undefined synbol : |abel operand in this statenment
has not appeared el sewhere on the left side of a
statenment that generates nmachi ne code or reserves
nmenory space, as in a MOV instruction, a DS pseudo
operation, or an EQU or SET directive

V Val ue error: operand encountered in expression is
i mproperly formed

171

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 4.6 Error Messages

Several error

nessage can be printed at the terminal if a disk

error condition occurs. Table 4-9 sunmarizes these error nessages.

Tabl e 4-9. ASM Term nal Messages

Message

Meani ng

QUTPUT FI LE WRI TE

CANNOT CLCSE FI LE

NO SOURCE FI LE PRESENT The file specified in the ASM

conmand does not exist on disk.

NO DI RECTORY SPACE The disk directory is full;

erase files that are not
needed, then retry.

SCOURCE FI LE NAME ERROR I nproperly forned ASM fi |l ename

wi |l dcard ? and * characters
are not all owed.

SOURCE FI LE READ ERROR Source file cannot be read

properly by the assenbler;
type file at console to determ ne
the point of error.

ERROR out put files cannot be witten
properly; nost likely cause is
a full disk; erase and retry.

Qutput file cannot be cl osed,;
check to see if disk is wite
pr ot ect ed.

172

All Information Presented here is Proprietary to Digital Research

Section 5
RDT

51 RDT Overvi ew

The Rel ocat abl e Debuggi ng Tool (RDT) allows the user to test
and debug progranms in the M/ M1l environnent. Miltiple RDTs can be
rel ocated for execution in a non-banked system or assigned absol ute
nmenory | ocations for execution in a bank-switched system RDT
conmands are a superset of the CP/ M debugger, DDT (see the comand
summary in Table 5-1.) The additional conmands all ow RDT to debug
rel ocatabl e code and save patched prograns. However, there is one
i mportant difference between RDT and DDT. RDT is a PRL file and DDT
is a COMfile. Thus RDT can debug both COM and PRL files, while DDT
can only debug COMfiles. Note: RDT cannot read a file that is
password protected.

5.2 I nvoki ng RDT
I nvoke RDT by entering one of the follow ng comrands:

RDT
RDT fil espec

The first command sinply | oads and executes RDT. After
di splaying its sign-on nessage and pronpt character, RDT is ready to
accept operator commands. The second command is simlar to the
first, except that after RDT is |loaded, it loads the file specified
by fil espec.

The second conmand is equivalent to first invoking RDT and then
using the | (lnput) command to insert a filenane into the default
FCB at Base+005CH, as shown in the follow ng sequence.

QA>RDT

00: 22: 55 A: RDT .PRL (USER n)
[MP/M DDT VERS 2.0

NEXT PC

0100 0100

-1 fil espec

-R

At this point, the programnaned by filespec is |oaded and ready for
debuggi ng.

173

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 5.3 RDT Command Conventi ons

53 RDT Conmmand Conventi ons

When RDT is ready to accept a conmand, it pronpts the user with
a hyphen, -. In response, the user can type a command |line or a
CONTROL-C (represented as ~“C) to end the debuggi ng session (see

Section 5.4) . A conmand |ine can have up to 32 characters,

and nust

be termnated with a carriage return. Wiile entering conmands, use
the standard MP/M Il line-editing functions ("X, “H, etc.) to
correct typing errors. RDT does not process the command |ine unti

a carriage return is entered.

The first character of each command |ine determ nes the command

action. Table 5-1 sunmari zes RDT commands. RDT conmands are
defined individually in Section 5.5.

Tabl e 5-1. RDT Conmand Sunmary

Conmand Acti on
A enter assenbly | anguage statenents
*B set or reset bitmap bits
D di spl ay nmenory in hexadeci mal and ASCl
F fill nmenmory block with a constant
G begi n execution with optional breakpoints
I set up file control block and commuand t ai
L [ist nenory using assenbl er nmenoni cs
M nove nenory bl ock
*N normal i ze and rel ocate programto RDI's nmenory
segnent
R read disk file into nenory
S set nenory to new val ues
T trace program execution
U untraced program nonitoring
*V conput e paraneter value for Wcomand
*W wite contents of nenory block to disk
X exam ne and nodify CPU state
*RDT only

The conmand character can followed by one or nore argunents,
whi ch may be hexadeci nmal val ues, filenanes or other information
dependi ng on the comand. RDT assunes all values the user enters
are hexadecimal. If the user enters nore than four digits, RDT
truncates themon the left; that is, RDT only uses the |last four
Argurnents shoul d be separated from each other by commas or spaces.
Not e: no spaces are allowed between the conmmand character and the
first argument.

174

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 5.4 Term nati ng RDT
5.4 Term nati ng RDT

The user terminates RDT by typing a TC in response to the
hyphen pronpt. RDT responds with the query:

Abort (Y/IN ?

Note: MP/MII does not have the SAVE facility found in CP/Mso if
RDT is used to patch a file, the user nmust wite the file to disk
usi ng the Wconmmand before terninati ng RDT.

5.5 RDT Commands

This section defines RDT commrands and their arguments. RDT
conmands give the user control of program execution and allow the
user to display and nodify system nenory and the CPU state.

5.5.1 The A (Assenbl e) Conmmand

The A command assenbl es 8080 mmenonics directly into nenory.
The formis

Aa

where a is the hexadeci mal address where assenbly is to start. RDT
responds to the A command by displaying the address of the nmenory

| ocation where assenbly is to begin. At this point, the user enters
assenbly | anguage statenments. Wen a statenent is entered, RDT
converts it to machine code, places the value(s) in nmenory, and

di spl ays the address of the next available nenory location. This
process continues until the user enters a blank line or a line
contai ning only a period.

RDT responds to invalid statenents by displaying a question
mar k, ?, and redisplaying the current assenbly address.

5.5.2 The B (Bitmap Bit Set/Reset) Comand

The B comand enabl es the user to update the bitnap of a page
rel ocatable file. The user reads the file in, makes changes to the
code, and then determi nes the bytes that need relocation (i.e. the
hi gh- order address bytes of junp instructions). The user then
updates the bitnmap with the B command. There are two paraneters
specified: the address to be nodified, followed by a O to reset a
byte previously marked for relocation or a 1 to mark a byte for
rel ocation. The formis:

Ba, n

where a is the hexadeci nal address, and nis either a 0 or 1.

175

All Information Presented here is Proprietary to Digital Research

MP/M i Programer's Guide 5.5 RDT Conmmands
5.5.3 The D (D splay) Comand

The D comand di spl ays the contents of nmenory as 8-bit
hexadeci mal values and in ASCII. The forns are:

D
Ds
Ds, f

where s is the hexadeci mal address where the display is to start,
and f is the address where the display is to finish. In response to
the first formshown above, RDT displays nenory fromthe current

di spl ay address for 16 display lines. The response to the second
formis simlar to the first, except that the display address is

f first set to the address s. The third form di spl ays the nenory

bl ock between locations s and f.

Menory is displayed on one or nore display |lines. Each display
line shows the values of up to 16 nenory |ocations. For the first
three forns, the display |ine appears as follows:

aaaa bb bb . . . bbcc. . . c

where aaaa is the display address in hexadeci nal: bbs represents
the contents of the nmenory locations in hexadecimal, and cs
represents the contents of nmenory in ASCII. Any non-di spl ayabl e
ASCI | characters are represented by peri ods.

During a |l ong display, type any character at the console to
abort the D conmand.

5.5.4 The F (Fill) Command

The F command fills an area of nmenory with a byte constant.
The formis

Fs,f,Db

where s is a hexadecinmal starting address of the block to be filled,
f is the ending address, and b is the hexadeci mal byte constant.

RDT stores the 8-bit value b in locations s through f by first

storing b at address s, then increnmenting the value of s and testing
it against f. The process repeats until s exceeds f.

176

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 5.5 RDT Conmmands
5.5.5 The G (Go) Comand

The G comand transfers control to the program bei ng tested,
and optionally sets one or two breakpoints. The forns are:

G

G bl

G bl, b2
Gs

Gs, bl
Gs, bl , b2

where s is a hexadeci nal address where program execution is to
start, and bl and b2 are hexadeci nal addresses of breakpoints.

In the first three fornms, no starting address is specified, so
RDT starts execution of the program under test at the current val ue
of the programcounter. (Use an X comrand to determ ne the current
val ue of the counter). The first formtransfers control to the
user’s programwi thout setting any breakpoints. The next two forms
respectively set one and two breakpoints before passing control to
the user's program The next three forns are anal ogous to the first
three, except that the user's programcounter is first set to s.

Once control is transferred to the programunder test, it
executes in real tinme until a breakpoint is encountered. At this
poi nt, RDT regains control, clears all breakpoints, and indicates
t he address at which execution of the program under test was
interrupted as foll ows:

*aaaa

where aaaa is the hexadeci mal address where the break occurred.
When a breakpoint returns control to RDT, the instruction at the
br eakpoi nt address has not yet been executed.
5.5.6 The | (I nput Command Tail) Comand

The | comand inserts a filenane into the default FCB at
Base+005CH, relative to the base of the segnent in which RDT is
| oaded. The formis

| <conmand tail >
where <command tail> is a character string that usually contai ns one
or nore filenanes. The first filenane is parsed into the default
FCB at Base+005CH. The optional second filename (if specified) is

parsed into the second part of the default FCB begi nning at
Base+006CH

177

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 5.5 RDT Conmmands
5.5.7 The L (List) Command

The L comand |ists the contents of nmenory in assenbly
| anguage. The forns are:

L
Ls
Ls, f

where s is the hexadeci mal address where the list is to start, and f
is the hexadeci mal address where the list is to finish.

The first formlists 11 |lines of disassenbl ed nmachi ne code from
the current |list address. The second formsets the |ist address to
s and then lists 11 lines of code. The last formlists disassenbl ed
code froms through f. In all three cases, the list address is set
to the next unlisted location in preparation for a subsequent L
conmand. When RDT regains control from a program being tested (see
G T and U commands) , the list address is set to the current val ue
of the program counter

Abort | ong displays by typing any key during the list process.
O, enter "Sto halt the display tenmporarily.

5.5.8 The M (Move) Commrand

The M conmmand noves a bl ock of data values from one area of
nenory to another. The formis

Ms, f,d

where s is the hexadeci mal starting address of the block to be
noved; if is the address of the final byte to be noved, and d is

the destination address of the f first byte to receive the data.
Note: if d is between s and f, part of the block being noved is
overwitten before it is noved, because data is transferred starting
fromlocation s.

5.5.9 The N (Norrmalize) Command

The N comand adj usts the rel ocatabl e addresses of the page
relocatable file that RDT reads into nmenory. The user reads the
file into nenory with the R conmand, and then uses the N command to
prepare the file for execution within the nmenory segnent where RDT
is executing. The formis:

N

178

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 5.5 RDT Conmmands
5.5.10 The R (Read) Command

The R comand is used in conjunction with the | conmmand to read
files fromdisk into the TPA in preparation for debuggi ng. The
forns are:

R
Rb

where b is an optional bias address that is added to each program or
data address as it is |oaded. The | oad operation nust not overwite
any of the system paraneters from OOOH t hrough OFFH (i.e., the base
page of the TPA where RDT is loaded) . If b is omtted, RDT assumnes
b=0000H. The R command requires a previous | conmand, specifying a
valid filenane. The | oad address for each record froma HEX file is
obtai ned from each individual HEX record. RDT assunes any file
specified as type COM contains nmachine code in the Intel hex fornat.
QO her files are assuned to be in pure binary formt.

The user can issue any nunber of R conmands followi ng an I
conmand to re-read the program bei ng debugged, if the program does
not destroy the default FCB at Base+005CH

Recal | that the sequence:

QA>RDT
-1fil espec
-R

is equivalent to:
QA>RDT fil espec

When the user issues the R conmand, RDT responds with a | oad
nmessage in the form

NEXT PC
nnnn pppp

where nnnn is the next address followi ng the | oaded program and
pppp i s the assuned program counter taken fromthe last record if a
HEX file is specified; for other files, it is assumed to be the
base of the TPA.

5.5.11 The S (Set) Conmand

The S conmand can exam ne or alter the contents of an
i ndi vi dual byte in nmenmory. The formis:

Sa

where a is the hexadeci mal address to be exam ned or altered.

179

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 5.5 RDT Conmmands

RDT di spl ays the nmenory address and its current contents on the
following Iine in the following form

aaaa bb

where aaaa is the hexadeci mal address, and bb is the byte contents
of menory in hexadecimal. The user can then choose to alter the
nmenory | ocation or to leave it unchanged. If the user enters a
val i d hexadeci mal val ue, RDT replaces the contents of the byte in
menory with the new value. If no value is entered, the contents of
nmenory are unaffected and the contents of the next address are

di spl ayed. In either case, RDT continues to display successive
nmenory addresses and values until either a period or an invalid
value is entered.

5.5.12 The T (Trace) Comand

The T command traces program execution for 1 to OFFFFH program
steps. The forns are:

T
Tn

where n is the nunber of instructions to execute before returning
control to the console.

In response to the first form RDT displays the CPU state and
executes the next program step. The programtermi nates inmediately,
with the termination address displayed in the form

*hhhh

where hhhh is the next address to execute. The user sets the

di spl ay address (used in the D conmand) to the value of registers H
and L, and sets the list address (used in the L comand) to the

val ue hhhh. The user can then examine the CPU state at program
term nation by using the X conmand.

The second formis simlar to the first, except that RDT traces
program execution for n steps before a breakpoint occurs. The user
can force a breakpoint in the trace node by typing a rubout
character. RDT again displays the CPU state before each program
step in the sane format as described in the X conmand.

In either case, RDT transfers control to the program under test
at the address indicated by the programcounter. If the user does
not specify n, RDT executes only one instruction. The user can
abort a long trace before n steps are executed by typing any
character at the console.

Note: Programtracing stops at the interface to MP/MII, and
resumes after return fromM/ M1l to the program under test. Thus,

MP/M 11 functions that access |/ 0O devices such as disk drives, run
inreal time and avoid I/Otimng problens. Prograns running in

180

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 5.5 RDT Conmmands

trace node execute approximately 500 times slower than real tine
since RDT gets control after each instruction is executed.

5.5.13 The U (Untrace) Conmand

The U comand is identical to the T conmand except that the CPU
state is displayed only before the first instruction is executed,
rather than before every step. The fornms are:

U
un

where n is the nunber of instructions to execute before returning
control to the console. Abort U conmand by striking any key at the
consol e.

5.5.14 The V (Val ue) Comand

The V comand facilitates use of the Wcommand by conputing the
paraneter to followthe "W. A single paraneter inmmediately follows
the "V' which is the NEXT location following the last byte to be
witten to disk.

Normal Iy, the user reads in the file, edits it, and then wites
it back to disk. The read conmand, R, produces -a value for NEXT
This value can be entered as a paraneter follow ng the V command,
and RDT conputes and di spl ays the nunber of sectors to be witten
out using the Wcommand. The formis

\Y
5.5.15 The W(Wite) Comand

The Wcomand wites the contents of a contiguous bl ock of
nmenory to disk. The formis

Wh
where n is the value of the paraneter obtained fromthe V conmand,

and is the nunber of sectors to be witten to disk. The user enters
the value for n in hexadeci nal

181

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 5.5 RDT Conmmands
5.5.16 The X (Exami ne CPU State) Command

The X command al l ows the user to examine and alter the CPU
state of the programunder test. The forns are:

X
Xr
Xf

where r is the nane of one of the 8080 CPU registers and f is the
abbrevi ation of one of the CPU flags. The first formdisplays the
CPU state in the format:

Ctzt MEfIf A=bb B=dddd D=dddd H=dddd S=dddd P=dddd i nst

where f is the flag value, 0 or 1; bb is the byte value, and dddd
is the double byte quantity corresponding to the register pair. The
"inst" field contains the disassenbled instruction that occurs at
the | ocation addressed by the CPU state's program counter

The second form di splays and allows the user to alter the
regi ster values, where r is one of the registers listed in Table 5
2.

The third formdisplays and allows the user to alter the val ues
of the flags listed in Table 5-2.

Tabl e 5-2. 8080 CPU Fl ags and Regi sters

Fl ag Definition Val ues

C Carry Flag (0/1)
Z Zero Fl ag (0/1)
M M nus Fl ag (0/1)
E Even Parity Fl ag (0/1)
I Interdigit Carry (0/1)

Regi st er Definition Val ues
A Accurul at or (0-FF)
B BC register pair (0- FFFF)
D DE register pair (0- FFFF)
H HL register pair (0- FFFF)
S St ack Poi nter (0- FFFF)
P Program Count er (0- FFFF)

In each case, RDT first displays the flag or register val ue,
and then accepts input at the console. |If the user enters a val ue
in the proper range, RDT alters the flag or register. Entering a
carriage return does not alter the value. Note: RDT displays the
BC, DE, and HL registers as register pairs. Thus, typing B alters
the BC register pair; Dalters the DE register pair, etc.

182

All Information Presented here is Proprietary to Digital Research

Section 6
Other Programming Utilities

6.1 GENHEX

Synt ax:
genhex{d: }fil ename{.typ}xxx

GENHEX accepts a COMfile as input and changes it to a HEX
file. This utility is useful for generating HEX files as input for
the GENMOD utility.

If no filetype is specified, GENHEX assunes a type of COM In
the syntax |ine above, xxx is the offset specified for the HEX file.
GENHEX is non-destructive. That is, it does not alter the original
COMfile. The following is an exanple of a GENHEX conmmand

OA>GENHEX B: PROGRAM COM 100

6.2 CENMOD
Synt ax:

gennmod {d:}filenane. hex{d:}filenane. prl $nnnn

GENMOD produces a PRL file froma HEX file. The user first
concatenates two HEX files generated fromthe sane source file.
The HEX files are offset fromeach other by 100H bytes. GENMOD
accepts the concatenated file as input, and then prepares a PRL
file by generating a header record, a code and data segnment, and a
bit map.

In the syntax |ine above, nnnn is an optional paraneter that
can be used to specify an additional anount of nenory required by
t he program beyond the code space. The form of paraneter is 11$11
followed by four HEX digits. For exanple, if a programis witten
to use all of available nmenory for buffers, specifying the optiona
paranmeter ensures a mnimum buffer allocation. GENMOD i s non
destructive. That is, it does not alter the original HEX file. The
following is an exanple of a GENMOD conmand:

OA>GENMOD B: PROGRAM HEX A: PROGRAM PRL. $1000

183

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 6.3 PRLCOM

6.3 PRLCOM
Synt ax:

prlcom{d:}filenanme.prl{d:}fil ename.com

PRLCOM accepts a source PRL file, and produces a COMfile by
renmovi ng the header record and the bit nap. PRLCOM i s non
destructive. That is, it does not alter the original PRL file.

The destination file can be on the sane or a different drive, but if
it already exists, PRLCOM queries the user:

Destination File Exists, delete (Y/N)?

Responding with N aborts PRLCOM The following is an exanple of a
PRLCOM conmand:

OA>PRLCOM B: PROGRAM PRL A: PROGRAM C

6.4 DUMP

Synt ax:
dunp {d:}filenane.typ

DUMP di spl ays the contents of a disk file in hexadeci nal
format. The following is an exanple of a DUMP conmmand:

OA>DUMP PROGRAM COM

The fil enanme nmust be unanbi guous (i.e. no wildcard characters)
Not e: DUMP does not display the contents of a password protected
file. DUV displays the file's contents at the console, 16 bytes at
atine, with the absolute byte address listed to the left of each
line as shown in the exanple bel ow

0000 CD 8A 02 1F D2 10 02 CD 58 02 32 64 03 CD D3 02 0010

CD 71 02 43 66 D9 01 57 OE 01 2D F5 05 3A 2E 04 0020 FE CA
A2 E5 B3 32 02 E6 45 00 00 00 00 00 OO OO 0030 00O 00 00 00
00 00 00 00 0O 00 00 OO0 00 00 00 00

The user can send the output to the printer by typing CONTROL-P
before entering the DUMP command, and start and stop the output at
the console with CONTROL-S/ CONTROL-Q Type any key to abort the
DUMP pr ogram

184

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 6.5 LOAD
6.5 LOAD
Synt ax:

load {d:}fil enane{.typ}

LOAD accepts as input a HEX file and produces as output a COM
file, which can then be executed. LOAD i s non-destructive. That
is, it does not alter the original HEX file. If no filetype is
specified in the comrmand |ine, LOAD | ooks for a file of type HEX on
the disk. The following is an exanple of a LOAD conmand:

OA>LOAD B: PROGRAM HEX

185

All Information Presented here is Proprietary to Digital Research

186

All Information Presented here is Proprietary to Digital Research

Section 7
PRL File Generation

7.1 PRL For mat

A Page Rel ocatable Programis stored on disk as a file of type
.PRL. The format is shown in Table 7-1

Table 7-1. PRL Fil e Fornmat

Addr ess Contents

0001- 0002H Program si ze

0004- 0005H M ni mum buffer requirenments (additiona
nmenory)

0006- OOFFH Currently unused, reserved for future

al | ocation
0100H + Program size = Start of bit map

The bit map is a string of bits identifying those bytes in the
source code that require relocation. There is one byte in the bit
map for every 8 bytes of source code. The npbst significant bit (bit
7) of the f first byte of the bit nap indicates whether or not the
first byte of the source code requires relocation. If the bit is
lion", it indicates that relocation is required. The next bit, (bit
6), of the first byte corresponds to the second byte of the source
code, and so forth

7.2 CGenerating a PRL

The preferred technique for the generation of a . PRL file is to
use the Digital Research Link-80 which is capable of generating a
.PRL file froma REL relocatable object file. This technique is
described in detail in the Link-80 Manual. A sanple link conmand is
shown bel ow

QA>l i nk dunp[op]

An alternate nethod of generating a PRL file is to use the
Di gital Research assenbler, ASM This technique is described bel ow

A Page Rel ocatabl e Program can be generated by assenbling the

source code twice; during the second assenbly, 100H is added to
each ORG statenent. The two HEX files generated by assenbling the

187

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 7.2 Generating a PRL

source code twice are concatenated with PIP, and the resulting file
is then provided as input to GENMOD, which produces an output file
of type PRL. The GENMOD utility is described in Section 6.2.

Appendi x G contains a sanpl e Page Rel ocatabl e Program The
code in the exanple programillustrates the required use of ORG
statenents to access the BDOS and the default FCB. The foll ow ng

poi nts shoul d be not ed:

O The initial ORGis at OOOOH This establishes the equate
for the synbol BASE, the base of the rel ocatable segnent.

O The ORG 100H statement establishes the actual beginning of
code for the program During the second assenbly, these
two ORG statenents are changed to 100H and 200H,
respectively.

O The first assenbly generates a file that can be changed
into an executable COMfile with the LOAD utility. In
fact, it is desirable to first debug the programas a COM
file and then nake it a PRL file.

Olt is vital to use BASE to offset all nmenory segnent base
page references. The program cannot nake BDOS calls to
absolute 0005H. In this exanple, BASE is used to offset
the BDOS, FCB, and BUFF equates. If a program needs to
determine the top of its nmenory segnent, the follow ng
equat e and code sequence can be used:

MVEMSI ZE EQU BASE+6
LHLD MEMSI ZE ; HL = TOP OF MEMORY SEGVENT

The foll owi ng steps show how to generate a Page
Rel ocatable File for this exanple using the Digital
Research Assenbl er, ASM

1. Prepare the program DUMP.ASMin the exanple, wth proper
ORG statenents as descri bed above.

2. Assuning a systemdisk is on drive A and the DUMP. ASM
file is on drive B, enter the conmands:

1A>ASM B: DUWP

;assenbl e the DUMP. ASMfil e
1A>ERA B: DUWVP. HXO
1A>REN B: DUVP. HX0=B: DUMP. HEX
1A>PI P LST: =B: DUVP. PRN T8]
1A>ERA B: DUVP. PRN

188

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 7.2 Generating a PRL

3. Edit the DUMP. ASM fil e, adding 100H to each ORG
statenent. This can be done by concatenating a preanbl e
to the programthat contains the two initial ORG
statements. A subnit file to performthis function,
naned ASMPRL. SUB is provided on the distribution
di skette.

1A>ASM B: DUf 4P. BBZ
;assenble the DUVMP. ASM file a second tine
1A>PI P B: DUMP. HEX=B: DUMP. HXO, B: DUMP. HEX
;concatenate the HEX files
1A>GENMOD B: DUMP. HEX B: DUMP. PRL
;generate the relocatable DUWP. PRL file

189

All Information Presented here is Proprietary to Digital Research

190

All Information Presented here is Proprietary to Digital Research

Section 8
RSP Generation

8.1 RSPs and Resi dent System Procedures

Resi dent System Processes are included with MP/ M 11 during
system generati on. GENSYS searches the directory for all files with
the type RSP, displays the filenanes, and then pronpts the user as
to whether it should be included in the generated systemfile,

MPM SYS.

MP/M 11 also supports a special type of RSP called the Resident
System Procedure. A Resident System Procedure provides a nethod of
serially utilizing a block of code as a systemresource. A Resident
System Procedure is created by an RSP. The RSP creates a queue with
the nane of the Resident System Procedure and sends it a single two
byt e nessage containing the address of the procedure to be accessed
serially. The RSP then terminates itself.

8.2 Cenerating an RSP

The net hod of generating an' RSP is anal ogous to that of
generating a Page Rel ocatabl e Program (as described in Section 7)
with the foll owi ng exceptions:

OIf LINK-80 is used, the output file type of RSP is
specified with the [or] option.

O The GENMOD output file is designated RSP rather than PRL
O The code in the RSP is ORGed at OOCH rat her than 100H.
8.3 RSP Code

Appendi x F contains a sanpl e Resident System Process. The code
in the exanple programillustrates the required structure of an RSP
as well as the BDOS/ XDOS access mechanism This exanpl e shoul d be
studi ed carefully and the foll ow ng points noted:

o The first two bytes of an RSP are set to the address of the
BDOS/ XDOS entry point. The address is filled in by the
| oader; an RSP can sinply access the BDOS/ XDOS by | oadi ng
HL fromthe base of the program area and then executing a
PCHL instruction.

O The Process Descriptor for the RSP nust inmediately follow
the first two bytes that contain the address of the

BDOS/ XDOS entry point. It is inmportant to note the nanner
in which the Process Descriptor is initialized. DS

191

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide 8.3 RSP Code

instructions are used where storage is sinply allocated,
while DB and DWinstructions are used where data in the
Process Descriptor nmust be initialized. Note: the stack
pointer field of the Process Descriptor points to the
address imedi ately followi ng the stack allocation. This
is the return address and is the actual process entry
poi nt .

O The HEX file generated by assenbling the RSP nust span the
entire programand data area. To ensure this, use a DW
instruction to define the first two bytes of the RSP that
contain the address of the BDOS/ XDOS entry point. Using a
DS i nstruction does not generate any HEX file code for
those two bytes. The end of the program and data area mnust
be defined in a sinmilar nmanner. If the RSP has DS
i nstructions preceding the END statenent, it is necessary
to place a DB statenent after the DS statenents and before
the END statenent.

8.4 Banked RSPs

MP/ M 11 supports a formof an RSP call ed a banked RSP which
consists of two parts: a resident portion and a banked portion
The resident portion has the Process Descriptor for the RSP, and any
other data structures such as queues, which nmust be in common
nmenory. The banked portion of filetype BRS contains the remai nder
of the RSP, usually including the actual code, stack and other data
structures. The resident portion of a banked RSP rnust followthe
rules given in the previous section for RSPs. The presence of a
banked portion of an RSP is specified by setting the Process
Descri ptor nmenory segnent index to zero rather than FFH. The nane
provided in the Process Descriptor is used to obt6in the banked
portion of the RSP that has a file type of BRS. The follow ng
poi nts shoul d be noted about a BRS

0 Bytes 0000-0001H of the banked RSP are reserved for the
address of the resident portion of the RSP. Thus, a banked
RSP nust access the BDOS/ XDOS functions by indirectly
|l oading fromthe two bytes at relative 0000-0001H which
point to the base of the resident portion of the RSP which
in turn contain the BDOS/ XDOS entry poi nt address.

O Byt es 0002-0003H of the banked RSP rmust contain the initial
stack pointer value for the process. Thus the stack for
the banked RSP is in the banked portion of the RSP and
should be initialized such that the return address on top
of the stack is the banked RSP entry point address.

O Byt es 0004- OOOBH of the banked RSP rust contain an ASCI

nane for the process. This is used for display purposes
during GENSYS and MPMLDR executi on.

192

All Information Presented here is Proprietary to Digital Research

Section 9
SPR Generation

9.1 System Page Rel ocatable Files

System Page Rel ocatable Files are placed in the MPM SYS file
during system generation. A nunber of SPR files are provided as
part of the standard MP/MII: the resident and banked portions of
t he BDOS, nanmed RESBDOS. SPR and BNKBDOS. SPR; the resident and
banked portions of the XDOS, naned XDOS. SPR and BNKXDCS. SPR; and
t he banked TMP, naned TMP. SPR.

Anot her SPR fil e named the RESXI OS. SPR or BNKXI CS. SPR cont ai ns
a user custonized XIOCS that is unique to the hardware on which MP/ M
Il is executing. This section gives an overview of the generation
technique for this custom SPR. A detail ed discussion of the
generation of RESXIOS.SPR or BNKXICS. SPR is provided in Section 1.3
of the MP/ M 11 System CGui de.
9.2 Generating an SPR

The net hod of generating an SPR is anal ogous to that of
generating a Page Rel ocatabl e Program (as described in Section 7)
with the foll owi ng exceptions:

oif LINK-80 is used, the output file of type SPRis
specified with the [os] option.

O the GENMOD output file is designated SPR rather than PRL.

Othe code in the SPRis ORGed at OOCH rat her than 100H.

193

All Information Presented here is Proprietary to Digital Research

194

All Information Presented here is Proprietary to Digital Research

Appendix A
Flag Assignments

R R +
0 : Reserved
R R +
1 : Systemtime unit tick
R R +
2 : One second i nterval
R R +
3 : One minute interval
R R +
4 : Undef i ned
R R +
31
R R +

Figure A-1. Flag Assignnents

195

All Information Presented here is Proprietary to Digital Research

196

All Information Presented here is Proprietary to Digital Research

Appendix B
Process Priority Assignments

0 - 31 Interrupt handl ers

32 - 63 Syst em processes

64 - 197 Undef i ned
198 Term nal Message Processes
199 Command Line Interpreter
200 Default user priority

201 - 254 User processes

255 I dl e process

197

All Information Presented here is Proprietary to Digital Research

198

All Information Presented here is Proprietary to Digital Research

Appendix C
BDOS Function Summary

Tabl e G- 1. BDOS Function Sunmary

Nunber Function Name | nput Paraneters | Returned val ues

0 Syst em Reset none none

1 Consol e | nput none A = char

2 Consol e Qut put E = char none

3 Raw Consol e | nput none A = char

4 Raw Consol e Qut put E = char none

5 Li st Qut put E = chér none

6 Direct Console I/0O see def see def

7 Get I/0O Byte Not supported under MP/M I

8 Set I/0O Byte Not supported under MP/M I

9 Print String DE = .Buffer none

10 Read Consol e Buffer DE = .Buffer see def

11 CGet Consol e Status none = 00/ 01

12 Return Versi on Number none HL= Ver si on#

13 Reset Di sk System none see def

14 Sel ect Di sk E = D sk Number see def

15 open File DE = .FCB A = Dir Code

11 Close File DE = .FCB A = Dir Code

17 Search for First DE = .FCB A = Dir Code

18 Search for Next none A = Dir Code

19 Delete File DE = .FCB A = Dir Code

20 Read Sequenti al DE = .FCB A = Err Code

21 Wite Sequenti al DE = .FCB A = Err Code

22 Make File DE = .FCB A = Dir Code

213 Renane Fil e DE = .FCB A = Dir Code

24 Return Logi n Vector none HL= Logi n Vect*

25 Return Current Di sk none A = Cur D sk#

26 Set DMVA Addr ess DE = .DVA none

27 Get Addr (Al I oc) none HL= All oc

28 Wite Protect D sk none see def

29 CGet R/ O Vector none HL= R/ O Vect *

30 Set File Attributes DE = FCB see def

3l CGet Addr (di sk parns) none HL= DPB

32 Set/ Get User Code see def see def

33 Read Random DE = FCB = Err Code

34 Wite Random DE = FCB = Err Code

35 Conpute File Size DE = FCB ro, rl, r2

36 Set Random Record DE = FCB ro 11, L2

37 Reset Drive DE = drive Vect A = Err Code

38 Access Drive DE = drive Vect none

19 Free Drive DE = drive Vect none

40 Random w O-fiil DE = FCB A = Err Code

41 Test and Wite Record DE = .FCB HL = Err Code

42 Lock Rtcord DE = .FCB HL = Err Code
(Current DVA Addr -> File I D)

199

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide Appendi x C BDOS Functi on Sunmary

Table C- 1. (continued)

Nunber Function Name | nput Paraneters | Returned val ues

43 Unl ock Record DE = . FCB HL = Err Code
(Current DVA ADDR -> File I D)

44 Set Multi-Sector Count E = #of Sectors A = Rtn Code

45 Set BDOS Error Mbde see def none

46 Get Disk FrLe Spece E = Disk # see def

47 Chain To Program see def none

48 Fl ush Buffers none see def

100 Set Directory Label DE = .FCB HL = Dir Code

101 Return Directory Label E = Disk # A = Label Data

102 Read Fil e XFCB DE = . XFCB HL = Dir Code

103 Wite File XFCB DE = . XFCB HL = Dir Code

104 Set Date and Ti me DE = . TOD none

105 Cet Date and Tinme DE = . TOD none

106 Set Default Password DE = . Password none

107 Return Serial Nunber DE = .serialnnb serialnnb set

The foll owi ng abbreviations are used in the table.

char = ASCI| character
Dr Directory

Err Error

Vect = Vector

Note: DE refers to register pair DE; HL refers to register pair
HL, and that A =1L, and B = H upon return.

200

All Information Presented here is Proprietary to Digital Research

Appendix D

XDOS Function Summary

Tabl e D-1. XDOS Function Sunmary

Nurber Function Nane | nput Paraneters | Returned val ues
128 Absol ute Menory Rgst DE = . MD A = Err Code
129 Rel ocat abl e Mem Rgst DE = .MD A = Err Code
130 Menory Free DE = . MD none

131 Pol | E = Device none

132 Fl ag Wit E = Flag A = Err Code
133 Fl ag Set E = Flag A = Err Code
134 Make Queue DE= .(QCB none

135 Open Queue DE= . UQCB A = Err Code
136 Del ete Queue DE = . (CB A = Err Code
137 Read Queue DE = . UQCB none

138 Condi tional Read Queue DE = . UQCB A = Err Code
139 Wite Queue DE = . UQCB none

140 Conditional Wite Queue DE = . UQCB A = Err Code
141 Del ay DE = #ticks none

142 Di spat ch none none

143 Term nate Process E = Term Code none

144 Create Process DE = .PD none

145 Set Priority E =Priority none

146 Attach Consol e none none

147 Det ach Consol e none none

148 Set Consol e E = Consol e none

149 Assi gn Consol e DE = .APB A= Err Code
150 Send CLI Conmand DE = .CLICVMD none

151 Call Resident Sys Proc DE = .CPB HL= result
152 Parse Fil enanme DE = . PFCB see def

153 Cet Consol e Nunber none A= console #
154 System DE~ta Address none HL = Sys Data Addr
155 Cet Date and Tinme DE = . TOD none

156 Ret urn PD Addr none HL = PD Addr
157 Abort Spec. Process DE = . ABTPB A = Err Code
158 Attach Li st none none

159 Det ach Li st none none

160 Set Li st E = List # none

161 Cond. Attach List none A = Err Code
162 Cond. Attach Consol e none A = Err Code
163 NI PM Ver si on Nunber none HL = Versi on#
164 Get List Nunber none A=1list #

The foll owi ng abbreviations are used in the table.

Addr = Address
Cond. = Conditional
Proc = Process
Rgst = Request
Spec. = Specified
term = Terninate

All Information Presented here is Proprietary to Digital Research

201

202

All Information Presented here is Proprietary to Digital Research

0000
0000
0100

0005
0001
0002
0009
000b
000f
0014

005c
0080

000d
000a

005c
005d
0065
0068
006b
007c

Appendix E

Sample Page Relocatable Program

khkkkhkkhkhkhkhkhkhhkhkhhkhkhkhhkhkhhhkhhkhkhkhkhkhkkhkkhkrkk**x*%

*
*
*
*
*
*
*

Not e: *
This program listing has been *
i ncluded only as a sanple and may not *
refl ect changes required by later MM/ M *
rel eases. For this reason the reader *
shoul d assenble and |ist the program *
as provided on the distribution disk. *
khkhkhkkhhkhkhkkhkhkhhhdhdhkhkhhkhhhhddhkhkhkhkhhhdhddkikhkhkrdkdd%*%
page O
org 0000h
base equ $
org 0100h

;note: either based OO asm or base0200 asm rust be ap
;to the beginning of this file before assenbling.

; title 'file dunp progran

; file dunmp program reads an input file and

; prints in hex

- copyright (c) 1975, 1976, 1977,.1978, 1979, 19

;digital research
; box 579, pacific grove
;california, 93950

bdos equ base+5 ;dos entry point
cons equ 1 ; read consol e

typef equ 2 ;type function

printf equ 9 ;buffer print entry
br kf equ 11 ; break key function

openf equ 15 ;file open
readf equ 20 ;read function

fcb equ base+5ch ;file control

bl ock address

buf f equ base+80h ;input disk buffer address

;non graphic characters
cr equ Qdh
| f equ Gah ;1ine feed

;file control block definitions
fcbdn equ fcb+0O ; di sk nane
fcbfn equ fcb+l ;pfile nanme

;carriage return

fcbft equ fcb+9 ;disk file type (3 characters)

fcbrl equ fcb+12
fcbrc equ fcb+15
fcber equ fch+32 ;current (next)

;file' s current

203

All Information Presented here is Proprietary to Digital Research

;file's record count
record nunber

number
(0 to 128

MP/ M [|

007d

0100
0103

0104
0107

010a
ad
010f

0112
0115
0118

alb
ald

0120

0123
0124
0127
0128
012b

012c
012d
012f

0132
0135

0138
0139
013c
013d
0140
0141

0144
0145
0147
014a
014b

= fcbln
210000
39

221 f 2
316102
cdc601

feff
c2l bd

Il fdd
cdal A
c35601

openok:

3e80
321 dOX2

210000

gl oop:
e5
cda701

7d
e60f
c24401

cd7701
cd5ed

o
dasl d
7c
cd9o401
7d
cd9o401
nonum

23
3e20
cd6ad
78
cd9o401

Programer's Gui de

Appendi x E Sanpl e PRL
equ fch+33 ;fcb length
set up stack
| xi h, O
dad sp
entry stack pointer in hl fromthe ccp
shid ol dsp
set sp to local stack area (restored at finis)
| xi sp, st kt op
read and print successive buffers
call setup ;set up input file
cpi 255 ;255 if file not present
jnz openok ;skip if open is ok
file not there, give error nmessage and return
I xi d, opnisg
call err
jmp finis ;to return
;open operation ok, set buffer index to end
nvi a, 80h
sta i bp ;set buffer pointer to 80h
hl contai ns next address to print
I xi h, O ;start with 0000
push h ;save line position
call gnb
POP h ;recall line position
jc finis ;carry set by gnb if end file
nov b, a
print hex val ues
check for line fold
nov a, |
ani Oh ;check low 4 bits
jnz nonum
print |ine nunber
call crlf
check for break key
call break
accumlsb = 1 if character ready
rrc ;into carry
jc purge ;don't print any nore
nov a, h
call phex
nov a, |
call phex
i nx h ;to next |ine nunber
nvi a,’' '
call pchar
nov a, b
call phex

204

All Information Presented here is Proprietary to Digital Research

MP/ M [|

014e

0151
0153

32301

pur ge:
0:10
cd0500

finis:

0156
0159

cd7701
2al f2

015C 9

015d

c9

suDrouti nes

015e
0161
0163
0166
0169

016a
016d
016f

0170
0173
0176

crilf:

0177
0179
017c
017e
0181

0182
0184
0186

0189
018b

018e
0190
0193

br eak:
e5d5sch
0:10]
cd0500
cldl el
c9
pchar :

cd0500
cl dl el
c9

3ed
cd6ad
3eCa
cd6ad
c9

pni b:
e60f
fela
d28ed

€630
c39001
c637
cdéad prn:
c9

Programer's Gui de

; print

Appendi x E Sanpl e PRL
jmp gl oop
nvi c, cons
call bdos
end of dunp, return to cap
(note that a jnp to 0000h reboots)
call crlf
I hld oldsp
sphl

stack pointer contains cap's stack | ocation
ret ;to the ccp

; check break key (actually any key will do)

push h! push d! push b; environnent saved
nvi c, brkf

call bdos

pop b! pop d! pop h; environnent restored
ret

;print a character

push h! push d! push b; saved
nvi c, typef

nov e, a
call bdos

pop b! pop d! pop h; restored
ret

nmvi a, cr
call pchar

nmvi a,lf
call pchar

ret

nibble in reg a
ani O h ;low 4 bits
cpi 10
jnc pl o

| ess than or equal to 9
adi ‘o
Jjm prn
greater or equal to 10
pl 0: adi ‘a’ - 10
call pchar
ret

205

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide Appendi x E Sanpl e PRL

phex: hex char in reg a
0194 f5 push psw
0195 O rrc
0196 O rrc
0197 O rrc
0198 O rrc
0199 c¢d8201 call pnib ;print nibble
019C flI POP psw
019d cd8201 call pnib
aa0o c9 ret

Err: ;print error nessage

; d, e addresses nessage ending with
Aal GO nvi c,printf ;print buffer function
ad a3 cd0500 call bdos
a a6 c9 ret

gnb: ;get next byte
a a7 3ald® | da i bp
A aa fe80 cpi 80h
A ac c2b801 jnz go

; read anot her buffer

a af cdd30l call diskr
a b2 b7 ora a ;zero value if read ok
A b3 cab. 801 jz go ; for another byte

; end of data, return with carry set for eof
a b6 37 stc
a b7 c9 ret

go: ;read the byte at buff+reg a
a b8 5f nov e, a ;1s byte of buffer index
a b9 1600 nvi d, O ; doubl e precision index to de
A bb 3c i nr a ; 1ond ex=1i nd ex+l
A bc 321dX sta ibp ; back to nenory

; poi nt er is increnented

; save the current file address
a bf 218000 | xi h, buf f
Olc2 19 dad d

; absol ute character address is in hl
A c3 7e nov a, m

; byte is in the accumnul at or
Adc4 b7 ora a ;reset carry bit
ac5 c9 ret

set up: ;set up file

; open the file for input
Ac6 af Xra a ;zero to accum
Ac7 327c0O sta fcher ;clear current record
Oca 115c00 I xi d, fcb
Acd GO nvi c, openf
a cf call bdos

cd0500
; 255 in accumif open error

206

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide Appendi x E Sanpl e PRL

ad2 c9 ret
di skr: ;read disk file record

A d3 ebdsch push hl push d! push b

A d6 115c00 | xi d, fcb

ado Ce14 nvi c, r eadf

A db cd0500 call bdos

A de cldl el pop b! pop d! pop h

Ael c9 ret
; fi xed nessage area
si ghon:

A e2 46696¢c6520 db "file dunmp np/ mversion 1.0%
opnnsg:

A fd OdCadebf 20 db cr,lf,"no input file present on di sk$
: vari abl e area

021d i bp: ds 2 ;i nput buffer pointer

021f ol dsp: ds 2 ;entry sp value fromccp
; stack area

0221 ds 64 reserve 32 |level stack
st kt op:

0261 end

207

All Information Presented here is Proprietary to Digital Research

This page was intentionally left blank

208

All Information Presented here is Proprietary to Digital Research

Appendix F
Sample Resident System Process

khkhkkhkhkkhkhkhhkhkhhkhkhhkhkhhkhkhkhkhkhkhhkhkhkhkhkhkhkkhkrkk kr**x*

*
*
*
*
*
*
*
*

;copyright (c) 1979, 1980
;digital research
; p. 0. box 579
;pacific grove, ca 9
0000 org 0000h
001la = ctlz equ I ah
0002 = conout equ 2
0009 = printf equ 9
0014 = readf equ 20
000f = openf equ 15
0098 = par sefn equ 152
0086 = nkque equ 134 ;
0089 = rdque equ 137 ;
0091 = st prior equ 145
0093 = det ach equ 147
; bdos entry point address
bdosadr :
0000 0000 dw
; type process descriptor
t ypepd:
0002 0000 dw 0
0004 00 db 0
0005 Ca db 10
0006 1001 dw stack+38
0008 5459504520 db "type ‘
pdconsol e:
209

All Information Presented here is Proprietary to Digital Research

Not e:

This program listing has been
i ncluded only as a sanple and may not
refl ect changes required by |ater
rel eases. For this reason the reader
shoul d assenbl e and |ist the program
as provided on the distribution disk.

page

0

MP/ M

KRRk b R S b S S O R I S R

*
*
*
*
*
*
*
*

title "type file on consol e’
;file type program
;it on the consol e

$-3 [dr will

reads an input file and pri

3950

;standard rsp start

; control-z used for e
; bdos conout function
; print buffer

read next record

open fcb

parse file nane

make queue
read queue

set priority
det ach consol e

fill this i

21ink

; status

ypriority (initial)
; stack pointer

;nane in upper case

MP/ M 11 Programer's Quide Appendi x F Sanpl e RSP

0010 ds 1 ;consol e

0011 ff db Ofh ; menseg

0012 ds 2 :

0014 ds 2 ;thread

0016 3601 dw buf f ;di sk set dna address
0018 ds 1 ;user code & disk se
0019 ds 2 ; dent

001b ds 1 ; sear chl

0oi1C ds 2 ; searcha

00l e ds 2 ;active drives

0020 ds 20 ;regi ster save area
0034 ds 2 ;scratch

; type linked queue control block

typel qchb:
0036 0000 dw 0 ; Link
0038 5459504520 db "type ‘ ;name in upper case
0040 4800 dw 7 ; megl en
0042 0100 dw I ; nmbnsgs
0044 ds 2 ; dgph
0046 ds 2 ; ngph
0048 ds 2 ; M
004a ds 2 ; nt
004c ds 2 ; bh
004e ds 74 ybuf (72 + 2 byte Iin

; type user queue control bl ock
t ypeuser qch:
0098 3600 dw typel qcb ; pointer
009a 9cCO dw field ; nmsgadr

;field for nessage read fromtype |inked qcb

field:
009C ds 1 ;di sk sel ect

consol e:
009d ds 1 ;consol e

fil enane:
009e ds 72 ; message body

; parse file name control bl ock

pch:
06 9e00O dw :fil enane file nanme
addr ess
OCe8 1201 dw fcb ;file control block a

;type stack & other local data structures

st ack:

210

All Information Presented here is Proprietary to Digital Research

MP/ M [|

OOea
0110
0112
0136

a b9

d ba
d bc
a bf
dc2
dc4
dc7

d ca
dcc
d cf
ad2
a d4
a d7
d da
a db
d dc
ad dd
d eO
de3
d eb6
d e8
deb
d ee

af2
afs

200000
R0 coo

MP/ M [

0205

0207
0208
0209
020b

Programer's Quide Appendi x F
ds 38
baO: dw type
fch: ds 36
buff: ds 128
; bdos cal |l prdeedure
bdos:
2a0000 I hld bdosadr
e9 pchl
;type main program
t ype:
Ce86 nvi ¢, nkque
113600 I xi d, typel qcb
cdb60l call bdos
Qe9l nvi c,stprior
1 c800 | xi d, 200
cdb601 call bdos
forever:
=89 nvi c, rdque
119800 | xi d, t ypeuserqchb
cdb60l call bdos
0698 nvi c, parsefn
1 e600 | xi d, pcb
cdb601 call bdos
23 i nXx h
7c nmov a, h
b5 ora 1
cal f02 jz error
3a9d00 | da consol e
321000 sta pdconsol e
0:]0] nvi c, openf
111201 I xi d, fcb
cdb601 call bdos
3c i nr a
cal f02 jz error ;
af Xra a
323201 sta fcb+32
new$sect or:
Cel4 nvi c, r eadf
111201 I Xi d, fcb
cdb60l call bdos
b7 ora a
€c22702 jnz done
213601 I xi h, buf f
Programer' s Qui de Appendi x F
Ce80 nvi c, 128 ;
next $byt e:
Te nmov a, m
5f nmov e, a
fela cpi ctlz
ca2702 jz
211

Sanpl e RSP

;20 |l evel stack
; process entry point

;file control bl ock
;file buffer
;hl = bdos address

; make typel gcb

; set priority to 200

; read fromtype queue

; parse the file nane

; test for OFfffh

; typepd.console = con

; open file

;test return code
if it was Ofh, no f

el se,

;set next record to

;read next record

;exit if eof or error
;point to data sector

Sanpl e RSP
get byte count

;get the byte
;save in e

:done exit if eof

All Information Presented here is Proprietary to Digital Research

020e
020f

0210
0212
0215
0216
0217
0218
0219
021c

021f
0222
0224

0227
0229
022c
022f

0251

c5

eb5
0104
cdb60l
e

c

23

d
c207C2
c3f 601

error:

112t 2
0°10¢)
cdb60I

Ce93
cdb60l
c3ca0ll

err$nsg:

0dCa46696¢C

; save byte counter
; save address registe

;wite console

;restore pointer

;and counter

; bunp pointer

;dcr byte counter

; nmore in this sector
;else, we need a new

;point to error nessa
; get function code to

;detach the consol e

Odh, Gah, 'file not found or bad file na

push b

push h

nvi c, conout
call bdos

POP h

POP b

i nx h

dcr c

jnz next$byte
j mp new$sect or
| xi d, err $nsg
nvi c,printf
call bdos

nvi c, detach
call bdos

jmp forever
db

end

212

All Information Presented here is Proprietary to Digital Research

Appendix G
Acronyms and Conventions

Thr oughout this manual, the follow ng conventions are used in
descri bi ng the physical nodules of MP/MII, its functional parts,
and data structures:

I PHYSI CAL MODULES

BDOS - Basic Disk Qperating System
XDOS - Extended Di sk Operating System
Xl s - Extended 1/0O System

Il FUNCTI ONAL PARTS

CLI - Conmand Line Interpreter
TVP - Term nal Message Processor

11 DATA STRUCTURES

FCB - File Control Bl ock
VD - Menory Descri ptor
PD - Process Descri potr
B - Queue Control Bl ock
uQCB - User Queue Control Bl ock
XFCB - Ext ended File Control Bl ock
IV NAM NG CONVENTI ONS
Fi | enanes:
PRL - Page Rel ocatable File
SPR - Syst em Page Rel ocat abl e
RSP - Resi dent System Process (or Procedure)
BRS - Banked RSP
Systementry point - First letter(s) are capitals and function

nunbers are in parentheses

213

All Information Presented here is Proprietary to Digital Research

214

All Information Presented here is Proprietary to Digital Research

Appendix H
Glossary

BCD: See binary coded deci nmal

bi nary coded deci mal: Representati on of deci nal nunbers using
binary digits. See Appendix | for binary representations of ASCI
codes.

bl ock: Basic unit of disk space allocation under MP/ M I1. Each

di sk drive has a fixed block size defined in its D sk Paraneter
Block in the XIGS. The bl ock size can be | K, 2K, 4K, 8K or 16K
consecutive bytes. Blocks are nunbered relative to zero so that
each block in a file is unique and has a byte displacenent of the
Bl ock Number tines the Bl ock Size.

bool ean: Variable that can only have two val ues; usual l'y
interpreted as true/false, or on/off.

Checksum Vector: Contiguous data area in the XIOS with one byte for
each directory sector to be checked. A Checksum Vector is
initialized and mai ntai ned for each |ogged-in drive. Each directory
access by the systemresults in a checksum cal cul ation which is
conpared with that in the Checksum Vector. If there is a

di screpancy, the drive is set to read-only status. This prevents
the user frominadvertently switching disks without |ogging-in the
new di sk. If not |ogged-in, the newdisk is treated the sanme as the
old one and data on it may be destroyed by witing to it.

COM Filetype for MM M1l conmand files. These are nachi ne

| anguage obj ect nodul es ready to be | oaded and executed. Any file
with this type may be executed by sinply typing the filenane after
the drive pronpt (e.g.0OA>) . For exanple, the program Pl P. COM can be
executed by sinply typing PIP

conmand: Set of instructions that are executed when the comand
nane is typed after the system pronpt. These instructions can be
"built-in" to the MM/ M1l systemor can reside on disk as a file of
type COM or PRL. In general, MP/MIIl conmrands consist of three
parts: the comrand nanme, the conmand tail, and a carriage return
CSV: See checksum vector.

default buffer: 128-byte buffer maintained at 0080H i n Page Zero.
VWhen the CLI loads a COMfile,the CLI initializes this buffer to the

conmand tail, i.e. any characters typed after the COMfil enane. The
first byte at 0080H contains the Iength of the command tail while
the conmand tail itself begins at 0081H A binary zero termninates
the conmand tail. The | command under DDT initializes this buffer

in the same way as the CLI does.

215

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide Appendi x H d ossary

default FCB: One of two FCBs nmmi ntai ned at 005CH and 006CH
respectively, in Page Zero. The CLI initializes the first default
FCB fromthe first delimted field in the command tail and
initializes the second default FCB fromthe next field in the
conmand tail .

delimters: ASCI| characters that separate constituent parts of a
file specification. The CLI recognizes certain delimter characters
as ..=;<>, blank and carriage return. Several MP/M Il conmands
also treat []()$ as delimter characters. It is advisable to

avoid the use of delimter characters and | ower-case characters in
fil enanes.

directory: Portion of a disk containing entries for each file on
the disk and | ocations of the blocks allocated to the files. Each
file directory element is in the formof a 32-byte FCB, although one
file can have several elenents depending on its size. The naxi num
nunber of directory elenents supported is specified in the drive's
Di sk Paranet er Bl ock.

directory elenment: 32-byte el enent associated with each disk file.

A file can have nore than one directory el enment associated with it.
There are four directory elenents per directory sector. Directory

el enents can al so be refereed to as directory FCBs.

directory entry: File entry displayed when using the D R conmand.
This termalso refers to a physical directory el enent (FCB).

Di sk Paraneter Bl ock: Table residing in the XIOS that defines the
characteristics of a drive in the disk subsystemused with MP/M11.
The address of the DPB is in the D sk Paraneter Header at DPbase +
OAH. Drives with the sane characteristics can use the sane D sk
Par anet er Header, and thus the sane DPB. However, drives with
different characteristics nust each have their own Di sk Paraneter
Header and DPB. The address of the drive's D sk Paraneter Header
nmust be returned in registers HL when the BDOS calls the SELDSK
entry point in the BIOS. BDOS Function 31 returns the DPB address.

Di sk Paraneter Header: 16-byte area in the XIOS that contains

i nfornmati on about the disk drive and a scratchpad area for certain
BDOS operations. Gven n disk drives, the D sk Paraneter Headers
are arranged in a table with the first row of 16 bytes correspondi ng
to drive 0, and the last row corresponding to drive n-1I.

DPB: See Di sk Paraneter Bl ock.

DPH See Di sk Paraneter Header.
EX: See extent.

extent: 16K consecutive bytes in a file. Extents are nunbered from
0 to 31. One extent can contain 1, 2, 4, 8 or 16 blocks. EXis the
extent nunber field of an FCB and is a one byte field at FCB + 12,
where FCB | abels the first byte in the FCB. Dependi ng on the Bl ock
Si ze and the maxi num data Bl ock Nunber, an FCB can contain 1, 2, 4,

216

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide Appendi x H d ossary

8 or 16 extents. The EX field is normally set to O by the user but
contains the current extent nunber during file I/QO The term'FCB
Fol di ng' descri bes FCBs containing nore than one extent. In CP/M
version 1.4, each FCB contains only one extent. Users attenpting to
perf orm Random Record |/O and maintain CP/M 1.4 conpatibility should
be aware of the inplications of this difference.

FCB: See File Control Bl ock.

file: Collection of data containing fromzero to 242,144 records.
Each record contains 128 bytes and can contain either binary or
ASCI| data. ASCI| data files consist of lines of data delineated by
carriage return line feed sequences, nmeaning that one 128-byte
record might contain one or nore lines of text. Files consist of
one or nore extents, with 128 records per extent. Each file has one
or nore directory elenments yet shows as only one directory entry
when using the DI R conmand.

File Control Block: Thirty-six consecutive bytes designated by the
user for file I/O functions. The FCB fields are explained in
Section 2.2.3. The term FCB also refers to a directory elenent in
the directory portion of the allocated disk space. These contain
the sane first 32 bytes of the FCB explained in Section 2.1 | acking
only the Current Record and Random Record Number bytes.

HEX file format: Absolute output of ASM and MAC for the Intel 8080.
A HEX file contains a sequence of absolute records which gives a

| oad address and byte values to be stored starting at the | oad
address. (see Section 4).

I/0: See I|nput/CQutput.

| nput/ Qut put: Operations or routines that handle the input and
out put of data in the conmputer system

| ogi cal drive: Logically distinct region of a physical drive. A
physi cal drive can be divided into one or nore |ogical drives, and
designated with specific drive references (i.e., d:a or d:f , etc.)
Thus at the user interface, it appears that there are several disks
in the system

Page Zero: Menory regi on between OOOOH and 0100H that hol ds
critical system paraneters and functions primarily as an interface
regi on between user prograns and the BDOS nodul e.

parse: Separate a command line into its constituent parts.

physi cal drive: Peripheral hardware device used for nass storage of
data within the conputer system

read-only: Condition in which a drive can be read but not witten
to. Adrive can be set to read-only status by using the SET or STAT
utilities or the SET File Attributes function (BDOS Function 30) . A
drive can also be set to read-only status if the checksum conputed
on a directory access does not match that stored in CSV when the

217

All Information Presented here is Proprietary to Digital Research

MP/m 11l Programer's Quide Appendi x H d ossary

drive is logged-in. This protects the user fromsw tching disks
wi t hout executing a disk reset.

record: Smallest unit of data in a disk file that can be read or
witten. A record consists of 128 consecutive bytes whose byte

di spl acement in a file is the product of the Record Nunber tines
128. A 128-byte record in a file occupi es one 128-byte sector on
the disk. If the blocking and debl ocking algorithmis used, severa
records can occupy each di sk sector

reentrant code: Code that one process can use while another is
al ready executing it. The data for reentrant code is typically kept
on the stack.

RO See read-only.

sector: Basic unit of data read and witten on the disk by the

XICS. A sector can be one 128-byte record in a file or a sector of
the directory. In sonme di sk subsystens, the disk sector size is

| arger than 128 bytes, usually a power of two such as 256, 512, 1024
or 2048 bytes. These disk sectors are referred to as Host Sectors.
VWhen the Host Sector size is larger than 128 bytes, Host Sectors
nmust be buffered in nenory, and the 128-byte sectors nust be bl ocked
and debl ocked fromthem

spooling: Printing a file fromdisk. The SPOOL program which is
detached froma console, can print a file froma disk. This |eaves
your console free for other tasks while your file is being printed.

stack: Reserved area of nenory where the processor saves the return
address when it receives a Call instruction. Wen the processor
encounters a Return instruction, it restores the current address on
the stack to the Program Counter. Data such as the contents of the
regi sters can al so be saved on the stack. The Push instruction

pl aces data on the stack and the Pop instruction renoves it. 8080
stacks are 16 bits wide; instructions operating on the stack add
and renove stack itens one word at a tine. An itemis pushed onto
the stack by decrenenting the stack pointer (SP) by two and witing
the itemat the SP address. In other words, the stack grows
downward in menory.

track: Concentric ring on the disk; the standard IBM single
density di skettes have 77 tracks. Each track consists of a fixed
nunber of nunbered sectors. Tracks are nunbered fromO to one | ess
than the nunber of tracks on the disk. Data on the disk nedia is
accessed by conbi nations of track and sector nunbers.

user: Logi cally distinct subdivision of the directory. Each
directory can be divided into 16 user areas.

vector: Menory location; an entry point into the operating system
used for making systemcalls or interrupt handling.

wi | dcard character: Either ? or * characters. The BDCS directory

search functions match ? with any single character and * with
nmul ti ple characters.

218

All Information Presented here is Proprietary to Digital Research

Appendix |
ASCIl and Hexadecimal Conversions

Thi s appendi x contains tables of the ASC
deci mal , and hexadeci mal conversi ons.

t heir binary,

synbol s, including

Table 1-1. ASCI| Synbols
Synbol Meani ng Synbol Meani ng
ACK acknow edge FS file separator
BEL bel | GS group separator
BS backspace HT hori zontal tab
CAN cancel LF line feed
CR carriage return NAK negative acknow edge
DC devi ce control NUL nul
DEL del ete RS record separator
DLE data |ink escape Sl shift in
EM end of nedium SO shift out
ENQ enqui ry SCH start of heading
ECT end of transm ssion SP space
ESC escape STX start of text
ETB end of transm ssion SUB substitute
ETX end of text SYN synchronous idle
FF formfeed us unit separator
VT vertical tabulation

219

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide Appendi x |

ASCl | / Hex Conver si ons

Table 1-2. ASCI| Conversion Table

Bi nary Deci mal Hexadeci mal ASCl |

0000000 000 00 NUL

0000001 001 01 SOH (CTRL-A)
0000010 002 02 STX (CTRL-B)
0000011 003 03 ETX (CTRL-Q)
0000100 004 04 EOT (CTRL-D)
0000101 005 05 ENQ (CTRL-E)
0000110 006 06 ACK (CTRL-F)
0000111 007 07 BEL (CTRL-Q
0001000 008 08 BS (CTRL-H)
0001001 009 09 HT (CTRL- 1)
0001010 010 A LF (CTRL-J)
0001011 Gl oB VT (CTRL- K)
0001100 012 oC FF (CTRL-L)
0001101 013 oD CR (CTRL-M
0001110 014 CE SO (CTRL-N)
0001111 015 oF S| (CTRL- 0)
0010000 016 10 DLE (CTRL-P)
0010001 017 11 DCl (CTRL-Q
0010010 018 12 DC2 (CTRL-R)
0010011 019 13 DC3 (CTRL-9)
0010100 020 14 DC4 (CTRL-T)
0010101 021 15 NAK (CTRL-U)
0010110 022 16 SYN (CTRL-V)
0010111 023 17 ETB (CTRL-W
0011000 024 18 CAN (CTRL- X)
0011001 025 19 EM (CTRL-Y)
0011010 026 I A SUB (CTRL-2)
0011011 027 1B ESC (CTRL-[)
0011100 028 IC FS (CTRL-\)
0011101 029 1D GS (CTRL-])
0011110 030 1E RS (CTRL- 1)
0011111 031 I F us (CTRL-)
0100000 032 20 (SPACE)

0i 00001 033 21 !

0100010 034 22 “

0100011 035 23 #

0100100 036 24 $

0100101 037 25 %

0100110 038 26 &

0100111 039 27 ‘

0101000 040 28 (

0101001 041 29)

0101010 042 2A *

0101011 043 2B +

0101100 044 2C

0i0il1d 045 2D -

0101110 046 2E .

0101111 047 2F /

0110000 048 30 0

0110001 049 31 1

0110010 050 32 2

220

All Information Presented here is Proprietary to Digital Research

MP/ M 11 Programer's Quide

Appendi x |

ASCl | / Hex Conver si ons

Table 1-2. (continued)
Bi nary Deci mal Hexadeci mal ASCl
0110011 051 33 3
0110100 052 34 4
0110101 053 35 5
0110110 054 36 6
0110111 055 37 7
0111000 056 38 8
0111001 057 39 9
0111010 058 3A :
0111011 059 3B ;
0111100 060 3C <
0111101 061 3D =
0111110 062 3E >
0111111 063 3F ?
1000000 064 40 @
1000001 065 41 A
1000010 066 42 B
1000011 067 43 C
1000100 068 44 D
1000101 069 45 E
1000110 070 46 F
1000111 071 47 G
1001000 072 48 H
1001001 073 49 1
1001010 074 4A i
1001011 075 4B K
1001100 076 4C L
1001101 077 4D M
1001110 078 4E N
1001111 079 4F 0
1010000 080 50 P
1010001 081 51 Q
1010010 082 52 R
1010011 083 53 S
1010100 084 54 T
1010101 085 55 U
1010110 086 56 \Y
1010111 087 57 W
1011000 088 58 X
1011001 089 59 y
1011010 090 5A z
1011011 091 5B [
1011100 092 5C
1011101 093 5D]
1011110 094 5E A
1011111 095 5F <
1100000 096 60 ‘
1100001 097 61 a
1100010 098 62 b
1100011 099 63 c
1100100 100 64 d

221

All Information Presented here is Proprietary to Digital Research

MP/M 11 Programer's Guide Appendi x | ASCl I/ Hex Conver si ons
Bi nary Deci mal Hexadeci mal ASCl
1100101 101 65 e
1100110 102 66 f
1100111 103 67 g
1101000 104 68 h
1101001 105 69 i
1101010 106 6A i
1101011 107 6B k
1101100 108 6C I
lioila 109 6D m
1101110 110 6E n
1101111 111 6F 0
1110000 112 70 p
1110001 113 71 q
1110010 114 72 r
1110011 115 73 s
1110100 116 74 t
1110101 117 75 u
1110110 118 76 %
1110111 119 77 W
1111000 120 78 X
1111001 121 79 y
1111010 122 TA z
1111011 123 7B {
1111100 124 7C
1111101 125 7D }
1111110 126 7E ~
1111111 127 7F DEL

222

All Information Presented here is Proprietary to Digital Research

A

Abort Specified Process, 145

Absol ute Menory Request, 126

Access date and tine stanp, 67

Access Drive, 45, 93

al l ocation vector, 83

anbi guous file reference, 33,
70

Archive Attribute, 32

ASM 151, 187

Assenbl er Directives, 159

assenbl er paraneters, 151

assenbly | anguage statenents,
153

Attach Console, 23, 58, 135

Attach List, 23, 146

attribute bits, 32

B

Bad Sector error, 48

bank-sw tched nmenory, 2, 9, 11

banked RSP, 13, 19, 192

BASE, 188

Base Page Areas, 53

base page fields, 56

base page initialization, 17

Basi ¢ Di sk Qperating System
24

BDCS file system 26, 28

bi tmap, 18, 175, 187

bit vector, 84

bl ocki ng and debl ocki ng, 44

breakpoi nt, 177

BRS, 192

burst node, 43

C

Call Resident System
Procedure, 139

case translation, 153

Chain To Program 104

checksum verification, 40

circul ar queue, 116

CLI, 34

Close File, 31, 37, 68

conmand |ine characters, 56

conmand |ine format, 15, 55

Index

conmand Line Interpreter CLI

3, 15, 101, 104

Conpute File Size, 91

conput e- bound process, 5, 8

Conditional Attach Consol e,

148

Conditional Attach List, 147

Condi ti onal Read Queue, 131

Conditional Wite Queue, 132

console, 12, 13, 23

Consol e | nput, 57

consol e managenent, 8

Consol e Qut put, 58

constants, 154

control characters, 24

CP/ M prograns, 1, 12, 18

Create Process, 134

Creation date and tine stanp,
79

current user nunber, 15, 24

D

data area, 24

data bl ock size, 28

date and tinme, 109

date stanp, 37

debl ocki ng, 44

default drive, 14

default FCB, 55

default node, 102

Del ay, 133

del ay execution, 10

Delete File, 72

Del et e node, 36

Del ete Queue, 130

delimters, 27

Dequeue list, 6

Det ach Consol e, 136

Detach List, 146

direct console 1/O 60

Direct Menory Address, 82

directory area, 24

Directory Codes, 49, 50, 51

directory functions, 25

Directory Label, 25, 34, 35,
37, 70, 105, 106

di sk directory area, 28

di sk paraneter block, 45, 86

Di sk System Reset, 44

Di spatch, 4, 8, 133

223

All Information Presented here is Proprietary to Digital Research

180
28

di spl ay address,
drive capacity,

drive related functions, 25
drive reset operation, 45
drive sel ect code, 26, 27
drive-rel ated functions, 25
DUMP, 184

E

edit control characters, 63

Enqueue list, 6

Error Codes, 49, 50, 51, 69

Error Flag, 49, 51

error handling XDOS, 125

error nessages, 48

error node, 25, 47

Expr essi ons, 154

ext ended error codes, 51, 52,
68

extended errors, 47, 48, 114

extended file, 43

F

FCB, 107

FCB checksum 40

FCB format, 33

FCB | ength, 29

File Access, 42

file access functions, 25

file attributes, 32

File Control Block FCB, 29

File directory el enents, 31

file format, 29

File ID, 31, 38, 42, 67, 79,
97

file nam ng conventions, 28

File RROerror, 48

file references, 24

File Security, 40

file size, 28, 91

file specification, 26

file system 26, 40, 42

file type field, 24, 26

file types, 28

filenane field, 24, 26

flag over-run, 7

Flag Set, 7, 129

flag under-run, 7

Flag Wit, 7, 128

Flush Buffers, 44, 104

Free Drive, 45, 94

Free Drive call, 41

Function 6 Entry Paraneters,
60

G

generation process, 40
GENHEX, 183

GENSYS, 191

GET ADDR(ALLOC), 83

GET ADDR(DI SK PARVS), 86
Cet Consol e Nunber, 143
Cet Console Status, 64

Cet Date and Tine, 109, 144
CGet Di sk Free Space, 103
Get List Nunber, 149

GET READ/ ONLY VECTOR, 84
I

initializing an FCB, 31

Intel hex format, 151

I nt er-process comuni cati on,
2

Interface Attributes,
66, 67

I nt er nal

i nternal

33, 39,

Data Segnent, 124
date and tine, 109

K

key fields, 92

L

Li nk-80, 187
Li nked Queues,
list address, 178

list device, 23

Li st Devi ce Managenent, 8
Li st Qutput, 59

| oad address, 179

lock list, 13, 31, 40, 42
Lock Record, 97

| ocked npde, 38

118

| og-in operation, 44

| ogi cal drive, 24, 28

| ogical interrupt system 7
M

macros, 152

Make File, 32, 36, 37, 39, 78
Make Queue, 129

Menory Descriptor, 121
Menory Free, 127

menory segnent, 9, 17, 19
nmenory segnent index, 121

224

All Information Presented here is Proprietary to Digital Research

menory structure, 11

m scel | aneous functions, 25

Q

MP/ M 11 system processes, 1 qualified reset, 45
MPMLDR, 44 Queue Nami ng Conventions, 121
mul ti-sector count, 25, 43, 73Queues, 6, 16, 20, 116
Mul ti-Sector 1/Q 43
Mut ual excl usi on queues, 6, R
121
R'Oerror, 48
N radi x, 154
random record nunber, 29
ni bbl e, 51 Raw Consol e | nput, 58
nucl eus, 4 Raw Consol e Qutput, 59
Nureri ¢ Constants, 154 RDT argunents, 174
RDT commands, 174, 175
0 Read Consol e Buffer, 62
Read File, 37
open File, 32, 39, 66 Read File XFCB, 107
open file item 67 Read node, 36
open node, 39 Read Queue, 131
open Queue, 130 Read Random 87
operation codes, 164 Read Sequential, 73
operators, 157 Read/only attribute, 32
ORG statenents, 188 read/ only node, 38, 42, 67
Ready List, 4, 124
P record, 29
record buffer, 44
Page Rel ocatable Prograns, 18,record |ocking, 40, 42

187
Parse Fil enane, 27, 140
password, 24, 110
password field, 26, 56

regi ster A 49

regi ster passing conventions,
21

regi ster storage allocation,

Password protection, 36 115
passwords, 36, 37 rel ocat abl e addresses, 178
performance, 3 Rel ocat abl e Debuggi ng Too
per manent drives, 45, 46 RDT, 173
physi cal error codes, 52, 66, Relocatable Menory Request,
68, 71 127
physical errors, 47 renoveabl e drive, 45, 46
physical file size, 91 Renane File, 80
Pol |, 128 Reserved Words, 155
polling, 8 Reset Di sk System 65
Print String, 62 Reset Drive, 44, 93
PRL File Format, 187 Resi dent System Procedure,
PRLCOM 184 20, 191
process, 23, 40, 41, 42 Resi dent System Processes, 2
process anni ng conventions, 13, 191
116 Return and Di splay node, 102
Process Descriptor, 4, 23, return codes, 49
111, 192 Return Current Disk, 81
Process Descriptor address, 23Return Directory Label Data,

process priority,
process states, 4
program | oad, 18

5, 113

106
Return Login Vector,
return nodes, 102
return MP/ M Versi on Nunber

81

225

All Information Presented here is Proprietary to Digital Research

Return Process Descriptor, 145 ti me stanping, 25

Return Serial Number, 110 time stanps, 37
Return Version Nunber, 64 TOD, 37
RSP Code, 191 trace node, 181
S]
schedul e execution, 10 Unl ock Record, 42, 99
Search For First, 70 unl ocked node, 38, 42
Search For Next, 70, 71 Update date and tine stanp, 69
Sel ect Di sk, 65 User 0, 34
Sel ect error, 48 user directories, 33
Send CLI Conmmand, 138 user nunber, 33, 34
sequential I/0O processing, 43
SET BDOS Error Mde, 102 \Y
Set Console, 136
Set Date and Tine, 109 virtual file size, 91
Set Default Password, 110
Set Directory Label, 35, 105 W
SET DVA Address, 82
Set Error Mode, 47 wait |oop, 3, 8, 10
Set File Attributes, 32, 85 Wite File, 36
Set List, 147 Wite File XFCB, 108
Set Multi-Sector Count, 43, Wite npde, 36
51, 101 Wite Protect Disk, 46, 83
Set Priority, 135 Wite Queue, 132
Set Random Record, 92 Wite Random function, 89
SET/ GET USER CODE, 86 Wite Random Wth Zero Fill,
shared access npde, 42 95
Source files, 29 Wite Sequential, 76
Sparse files, 29
SPR files, 193 X
SUBM T, 14
System Attribute, 32 XFCB, 34, 108
systemcall user stacks, 12 Xl Cs, 44
system console, 2, 14
System Dat a Address, 143 8080 CPU Fl ags, 182
System Dat a Page, 122 8080 CPU Registers, 182

systemdrive, 17

system generation, 2, 19

Syst em Page Rel ocat abl e
Files, 193

System Reset, 57

system stacks, 114

Systemtinming, 2, 10

T

Term nal Message Process TMP,
3, 14

Term nate Process, 134

Test and Wite, 42

Test and Wite Record, 95

the default FCB, 55

time of day, 10

226

All Information Presented here is Proprietary to Digital Research

MP/ M QOperating System
Rel ease 2.1

Rel ease Not es

Copyri ght © 1982

Di gital Research
P. O. Box 579
160 Central Avenue
Paci fic G ove, CA 93950
(408) 649- 3896
TWK 910 360 5001

Al Rights Reserved

227

All Information Presented here is Proprietary to Digital Research

228

All Information Presented here is Proprietary to Digital Research

Dear MPIM |1 User:

Di gital Research has devel oped the MP/MJIT.M operating system
in response to numerous customer requests to add file sharing
capability to MP/ M Rel ease 1.1. The design of MP/MII is a
reflection of our goal to provide you with a state of the art
operating systemthat can be configured for a wide variety of
conput er har dwar e.

Thi s shi pnent contains the version 2.1 release of our MP/MII
operating system W have been pleased with the response to MP/M I
Rel ease 2.0 and hope to see conparabl e response to MP/MII| Rel ease
2.1 regardi ng design, possible extensions, and errors in
i mpl erent ati on. W& hope to naintain the sanme |evel of confidence
that the conputer industry has had in our CP/MO operating system

On the basis of our experience and the experience of MP/MII
users, we estimate it requires less than a week to inplenent a
sinple polled VP MI1 on a conputer that has a running version of
CP/M Rel ease 2.2. Inplenenting a highly optimzed MP/ M1l system
with full interrupts and bank switched nenory can require several
weeks. O course, the tine to performsuch a reconfiguration will
vary w dely dependi ng on the experience of the programmer and the
conpl exity of the hardware.

Not e: Make sure you use the SET or STAT conmand to rmake the
USER PRL file into a systemfile.

Contact the Digital Research Technical Support staff (408) 375
6262 if you experience difficulties reconfiguring MM MI11. By
sending in your registration card you can insure that we will nmail
MP/M 11 application notes and patches that correct inplenmentation
errors.
Si ncerely,

TECHNI CAL SUPPORT

229

All Information Presented here is Proprietary to Digital Research

230

All Information Presented here is Proprietary to Digital Research

MP/MII T.M Operating System
Rel ease 2.1
Extended File Locking

Addendumto the MP/ M 11 Qperating SZstem Progranmer's Qui de
Copyright © 1982 by Digital Research
M/ M1l is a tradenark of Digital Research
Conpi |l ed January 1982

Extended file locking is a new facility inplenmented in rel ease
2.1 of MPMMII T.M . Extended file | ocking enables a process to
maintain a lock on a file even after the file is closed. This
facility allows a process to renane, set the attributes, or delete a
file without having to contend with the possibility of interference
from ot her processes after the file is closed. Al so, a process can
reopen a file with an extended | ock and continue nornal file
processi ng. For exanple, a process can open a file, performfile
operations on the file, close the file, renane the file, reopen the
file under its new nane, and proceed with file operations, w thout
ever losing the file's lock list itemand control over the file.

Extended file locking is only available to files that are
opened in the default open node (|l ocked node). To extend a file's
lock, set interface attribute FV when closing the file. This
attribute is only interrogated by the C ose function when it is
closing a file permanently. Thus, interface attribute F51 nust be
reset when the close call is nmade. Also, if a file has been opened
N tinmes (nmore than once), this attribute is only interrogated when
the file is closed for the Nth tine.

To maintain an extended file lock through a Renane File call or
a Set File Attributes call, set interface attribute F5' of the
referenced FCB when naking the call. This attribute is only honored
for extended file locks, not normal |ocks. Setting attribute F5'
al so mai ntains an extended file lock for the Delete File function
but setting this attribute al so changes the nature of the Delete
function to an XFCB-Only delete. If successful, all three of these
functions delete a file's extended lock itemwhen with attribute F51
reset. On the other hand, if they return with an error code, the
extended lock itemis not del eted.

A standard open call can be nade to resune file operations on a
file with an extended | ock. The open node, however, is restricted
to the default | ocked node. The following list illustrates uses of
extended | ocks.

1

231

All Information Presented here is Proprietary to Digital Research

MPM 11 Release 2.1 Extended File Locking
-Open file EXLOCK. TST in | ocked node.

-Performfile operations on the file EXLOCK. TST using the open
FCB.

-Close file EXLOCK. TST with interface attribute F6' set to
retain the file's lock item

-Use the Renane File function to change the nane of the file to
EXLOCK. NEWw th interface attribute F5 set to retain the
file's extended |l ock item

-Open the file EXLOCK. NEWin | ocked node.

-Performfile operations on the file EXLOCK. NEW using the opened
FCB.

-Close file EXLOCK. NEWwith interface attribute F6' set to
retain the file's lock item

-Set the Read-Only attribute and release the file's lock item by
using the Set File Attributes function with interface attribute

F51 reset. At this point, the file EXLOCK. NEW becones
avai |l abl e for access by another process.

232

All Information Presented here is Proprietary to Digital Research

MP/MII T.M Operating System
Rel ease 2.1
Conpatibility Attributes

Addendumto the MP/ M Il Qperating System Progranmer's Quide
Copyright © 1982 by Digital Research
CP/Mis a registered trademark of Digital Research.
MP/ M and MP/M 11| are trademarks of Digital Research.
Conpi |l ed February 1982

The MP/MI1 T.M file systemintroduced sonme new restrictions
relating to file operations that were not present in MM MT.M 1. 1 or
CP/MO . For exanple, if a process opens a file in the default node
(1 ocked), MP/MI1 does not allow other processes on the systemto
open, delete, or renane the file until the process opening the file
either closes the file or termnates. In addition, MP/ M1l does not
allow a process to performfile operations with an FCB that has not
been activated by a successful open or nake operation, or with an
FCB that has been deactivated by a cl ose operation. These
restrictions protect an MP/ M1l user frominterference from other
users on his open files. To illustrate, it is this protection that
enables an MP/M 1| user to edit a file with the assurance that
anot her user cannot delete or nodify his file during his edit
sessi on.

The new restrictions added to MP/ M1l provide file security
when nultiple users are running the system The precedi ng exanpl e
describes restrictions required to prevent collisions on file
activity between independent processes. Another new M/ M I
restriction sets limts on how a process can nodi fy open FCBs.
These Iinmits are enforced by checksumverification of open FCBs and
protect the integrity of the M M1l file systemfrom corrupted
FCBs. Note that the new MP/MII| restrictions are not intended to
protect a user fromhis own actions. Instead, they ensure that the
activity of one user does not adversely affect other users on the
system

Generally, the new MM/ M1l file systemrestrictions create
little difficulty for new application devel opment. In fact, they
enforce good programing practice. However, because of these new
restrictions, sone CP/Mand MP/ M software witten before M/ MII"'s
rel ease does not run on MP/MI1Il. In addition, nmultiple copies of
some software do not run because the default open node for M/ M I
is a locked node in which only one process can open a file.

To address these problens, Digital Research has added
conpatibility attributes to M/ M11l, Release 2.1. The conpatibility
attributes are defined as attributes FI' through F4' of program
files. A new GENSYS option determnines whether the attributes are to
be activated. If activated, the Command Line Interpreter (CLI)
interrogates these attributes during program | oadi ng and nodifies
the M/ M 11 ground rules for the | oaded program as descri bed bel ow.

1

233

All Information Presented here is Proprietary to Digital Research

M/ M1l Release 2.1 Conpatibility Attributes

Note that the conmpatibility attributes should not be used with new
software. They are intended for use with working software devel oped
for CP/Mand MP/M1.1. This especially applies to conpatibility
attribute F4' , which disables FCB checksum verification on read and
wite operations. Use this attribute sparingly and only with
prograns that are known to work.

COVPATI BI LI TY ATTRI BUTE DEFI NI TI ONS

F1’ MP/M 1.1 Default Open. Processes running with this attribute
have all files opened in | ocked node marked as Read-Only in
the System Lock List. This allows all processes with this
attribute set to read and wite to comon files with no
restrictions. There is, however, no record | ocking provided.
In addition, this attribute also allows a process to wite to
a file opened by another process in Read-Only node. To be
safe, all static files such as program and help files should
be made Read-Only when this conpatibility attribute is used.

F2’ Partial C ose default. Processes running with this attribute
have their default close node changed from pernanent close to
partial close. This attribute is for programs that close a
file to update the directory but continue to use the file.
Note that MP/MI1 assunmes a process has finished with a file
when the nunber of closes issued to the file equals the
nunmber of opens. A side effect of this attribute is that
files opened by a process are not released until the process
termnates. It might be necessary to set the System Lock
Li st parameters to high values when using this attribute.

F3’ I gnore O ose Checksum Errors. This attribute changes the way
G ose Checksumerrors are handled for a process. Usually, a
nessage is printed on the console, and the process is
term nated. When this attribute is set and a checksum error
is detected during a close operation, the file is closed if a
lock list itemexists for the file. Qtherw se, an
unsuccessful close error code is returned to the calling
process.

F4’ Di sabl e FCB Checksum verification for read and wite
operations. Setting this attribute also sets attributes F2'
and F3'. This attribute should be used carefully because it
effectively disables MP/MI1's file security. Use this
attribute only with software that is known to work.

234

All Information Presented here is Proprietary to Digital Research

M/ M1l Release 2.1 Conpatibility Attributes
PROCEDURE FOR USI NG THE COWPATI BI LI TY ATTRI BUTES

1) Answer yes to the GENSYS question "Enable Conpatibility
Attributes (N ?".

2) Use the MP/MII Utility SET to set the desired conbi nation
of conputability attributes in the program nane.

EXAMPLES:

OA>SET fil espec [Fl =on]
QA>SET fil espec [Fl =on, F3=0n]
OA>SET fil espec [F4=on]

If you have a programthat runs under CP/Mor MM 1.1 but does
not run properly under MP/M 11, use the follow ng guidelines to
sel ect the conpatibility attributes to set for the program

1) If the programends with the nessage, "File Currently
Opened"” when mnultiple copies of the programare run, set
conpatibility attribute F1'. As an alternative, you m ght
consi der placing all conmmon static files under User O with
the SYS and RFO attributes set.

2) If the programterminates with the nmessage, "C ose Checksum
Error", set conpatibility attribute F3'.

3) If the programtermnates with an I/O error, try running the
programwith attribute F2' set. If the problemstill
occurs, try attributes F2' and F3'. If the problemstill

persists, then try attribute F4'. Use attribute FV only
as a |last resort.

It might be necessary to increase the GENSYS paraneters that
set the maxi mum nunber of files a process can open and the size of
the System Lock List when using conpatibility attributes F2' and
F4' . This might be required because both default to partial closes.
As a result, systemlock list entries consunmed by opening files are
not released until the process ends. Generally, if a process ends
with the nmessage "No Roomin System Lock List" or "Qpen File Limt
Exceeded", it usually indicates that the above GENSYS paraneters
need to be increased. Another option is to patch in a BDOS Free
Drive call at a point in the programwhere no files are active.
Note that a Free Drive call specifying all drives, purges all file
system | ock entries belonging to the calling process.

3

235

All Information Presented here is Proprietary to Digital Research

M/ M1l Release 2.1 Conpatibility Attributes

When GENSYS activates conpatibility attributes, the Comand
Line Interpreter copies the settings for attributes FI' through F4’
of the filenanme of the | oaded programinto byte | DH of the process
descriptor as shown bel ow

PROCESS DESCRI PTOR BYTE | DH

(Bits defined 7-0 high-order to | ow order)

Bit 7 set = Fl
Bit 6 set = F2
Bit 5 set = F3
Bit 4 set = F4

236

All Information Presented here is Proprietary to Digital Research

MP/MII T.M Operating System
Rel ease 2.1
Progranmm ng Cui del i nes

Addendumto the MP/M - |1 Operating System Programer's Quide
Copyright © 1982 by Digital Research
CP/Mis a registered trademark of Digital Research.
MP/ M and MP/M 11| are trademarks of Digital Research.
Conpi |l ed January 1982

Thi s gui deline provides additional discussion on the
i nfornmati on presented in the MP M1l TM Operating System Programer’s
Quide. In particular, this (5-ocunent enphasizes those areas of MP/ M
Il where restrictions exist that did not exist in versions 1 and 2
of CP/M(Cand version 1 of MM MT.M The intent is to enable the MP/M
Il application progranmer to avoid potential problenms with new
software. As a prerequisite, the reader should be famliar with the
material presented in the M/ M1l Operating System Progranmner's
Qui de .

1) Always use the follow ng sequence when perforning file operations
that require an open file. Under MP/M 11, these operations are
the BDOS read, wite, lock, and unlock record conmands.

Activate a file's FCB with a BDOS Open or Make function call
before using the FCB in a file operation. Verify that the Qpen
or Make operation was successful. MP/MI11 only accepts FCBs
activated by a successful Qpen or Make call for open file
operations. If an FCB that has not been activated is used,
MP/M 11l returns a checksumerror.

Performall file operations using activated FCBs. Note that
MP/ M 11 does not deactivate an activated FCB when it returns
error codes for file operations. Cenerally, only the current
record and randomrecord fields of an activated FCB shoul d be
nodified. In addition, all file operations with an activated
FCB nmust be made under the user nunber that was in effect when
the FCB was activated. A simlar restriction applies to
activated FCBs that specify the default drive. Al file
operations specifying such an FCB nust be made under the
current drive that was in effect when the FCB was acti vat ed.
Iltem3 in this list covers the conplete rules regarding
activated FCB nodification.

237

All Information Presented here is Proprietary to Digital Research

M/ M1l Release 2.1 Programm ng Cui del i nes

(o]

2)

3)

If a process has conpleted file operations on a file but stil
has a significant anmount of processing left to do, the file
shoul d be closed. This applies even if the file was not

nodi fied. Wth some exceptions, the lock list entry associated
with a file in the systemlock list is not released until a
file is permanently closed (MP/ M1l QOperating System
Programer's Quide see Section 2.2.9.) MP/MII restricts
access to a file by other processes while a lock list itemfor
the file resides in the systemlock list. It is not necessary
to close input files if a process is about to end. At
termnation, all lock itens belonging to a process are

rel eased. Qutput files, however, nust always be closed or data
m ght be lost. Note that a successful permanent close
operation deactivates the FCB and renpves the file's itemfrom
the systemlock list. If the deactivated FCB is used in a
subsequent open file operation, MP/MIIl returns a checksum
error.

If a process opens the sane file nore than once, a matching
nunmber of cl ose commands nust be issued to the file to remove the
file's lock list itemfromthe systemlock list. Thus, if a file
has been opened N tines, the first NN1 close operations issued to
the file default to partial close operations. Only the |ast

close, close operation N, is interpreted as a pernmanent cl ose.

By definition, a permanent close is a close operation that
renoves the referenced file's itemfromthe systemlock Iist.
Note that only one lock list itemis allocated in the system | ock
list for a file regardl ess of the nunber of FCBs a process has
opened for the file.

The following Iist specifies how an activated FCB can be changed
wi thout affecting the FCB checksum MP/ M 11 returns a checksum
error code and does not performthe requested operation if an FCB
with an invalid checksumis used in an open file operation

FCB(O cannot specify a new drive.

Wth the exception of interface attributes FV and F6' for the
BDOS C ose function, FCB(l) through FCB(11l) cannot be changed.

The high-order 3 bits of FCB(12) cannot be changed. The | ow
order 5 bits can be changed. Note that when a file is opened
in the default open node (|l ocked node), the high-order 3 bits
of this FCB field are set to zeros.

FCB(13) cannot be changed.

FCB(14) and FCB(15) can be changed.

FCB(16) through FCB(31) cannot be changed.

FCB(32) through FCB(35) can be changed.

238

All Information Presented here is Proprietary to Digital Research

M/ M1l Release 2.1 Programm ng Cui del i nes

4)

5)

6)

7)

If conpatibilty with future rel eases of MM Mand CP/Mis a

requi renent, prograns should restrict open FCB nodification to
the FCB fields 32 through 35. In particular, Digital Research
does not support techniques that involve nodifying fields 12, 14,
and 15 of open FCBs.

Processes that access a printer nmust issue a Detach List device
to free the printer before another process can use the printer

If the Detach List call is not nade, a process that accesses a

printer continues to own the printer until it ends.

CP/ M prograns that create submt files for chaining nust be
nodified to work under MP/MI11. MP/MII requires a different
filenane for submt files, that includes the originating console
nunber, and requires that a subnit flag be set in the System Data
Page. The technique for creating and executing subnmit files is
described in MMM 1| Application Note 07. Note that MP/ M1l al so
has a Program Chain (Function 47) conmmand that provides an
efficient nechani smfor program chaini ng.

CP/ M prograns that make direct BIOS calls for disk I/0O do not
work under MP/MII1. MP/MIIl does support direct XIOS calls for
the console and printer, but not to the disk. If progranms nust
make direct Xl OS disk calls, a technique strongly discouraged in
a nulti-user environment, two |levels of indirection nust be used
to obtain the real XIOS junp table address. The second | evel of
indirection is required because an intercept table handl es the
consol e and printer.

The following two steps should be perforned in a program before
making direct XICS calls to a disk. The f first step is to nake a
BDOS Wite Protect Disk (Function 28) call to the disk to ensure
that no ot her process has open files on the disk. Secondly, the
MXDi sk nutual excl usion queue nmessage should be read to prevent

ot her prograns from maki ng BDOS di sk function calls while your
programis nmaking direct XICS calls. After conpleting your

direct XIOCS calls, wite back the MXDi sk nessage and then reset
the drives you have set to Read-Only.

The following procedure is a protocol that nultiple processes can
use to coordinate record update and addition operations to a
shared file. Each process nust open the shared file in unl ocked
node. This procedure al so assunmes that records containing binary
zeros are null records.

239

All Information Presented here is Proprietary to Digital Research

M/ M1l Release 2.1 Programm ng Cui del i nes
O Attenpt to |l ock the record.

OIf the lock attenpt fails because another process has | ocked
the record, delay and repeat the procedure.

o] If the lock attenpt fails because the record does not exist in
the file, add a record initialized to binary zeros to the file
with the BDOS Wite Randomwith Zero Fill comand and repeat
the procedure. Note that files opened in unlocked node are
extended in block units and not in record units as is the case
for files opened in the default | ocked node.

0 If the lock attenpt succeeds, read the record, update it, and
then unlock it.

8) Multiple FCB 1/Ois a technique that involves opening each extent
for a file independently and maintaining themin a table in
nmenory. Then random |/ O is handled by selecting the proper FCB
fromthe table, setting the current record field to the proper
record nunber within the extent, and making a sequential Read or
Wite conmand. When processing is conpleted, each FCB is cl osed.
The maxi mum file size that can be accessed with this technique is
512K bytes. This linmts the maximumtable size to 32 FCBs. Note
that this techni que provides a nmethod of performng randoml1/O
that is conpatible with CP/M 1. 4.

Multiple FCB I/ O has to be performed carefully under MP/ M
Il because of the restrictions MP/MII places on file operations
to provide file security. Cenerally, an FCB should not be used
infilel/Ounless it has been activated and it should not be
nodified while it is activated (see itens 1 and 3). In addition
t he nunber of opens and closes issued to a file is inportant (see
item2). Note that all 32 bytes of each extent's FCB shoul d be
mai ntained in the open FCB table. Al so, verify that interface
attribute F8 is set to 1 in all FCBs if the first FCB has F8
set to 1. F8 set to 1 indicates the file was opened under user
0 although the current user nunber is nonzero (see Function 15 in
the M/ M 11 Qperating System Progranmer's Cuide).

4

240

All Information Presented here is Proprietary to Digital Research

M/ M1l T.M Qperating System Rel ease 2.0
Application Note 01, 9/14/81

Copyright © 1981 by Digital Research
MP/ M and MP/M 11| are trademarks of Digital Research.
Conpi | ed Sept enber 1981
SUPPRESSI NG THE MP/ M T. M LOADER DI SPLAY
Appl i cabl e products and version nunbers: MP/MII Release 2.0
Pr ogram MPMLDR. COM

VWhen the MP/M 11l |oader reads the MPM SYS file, it displays a
| oad nap on console #0. In sonme applications you mght want to
suppress this display.

To suppress the |load map di splay on consol e #0, type the
following RET instruction into the LDRBI CS. ASMfil e using any
standard editor. The RET instruction replaces the consol e out put
code.

; Loader BI OS junp vector:

j rrp " conout
conout :
ret

Assenbl e LDRBIOS. ASMto create LDRBICS. HEX. Integrate the new
LDRBI Cs. HEX file into the MPMLDR COM file according to instructions
provided in the MP/ M1l Operating System Gui de. Then,
update the systemtracks of the boot disk with the new | oader.

Li censed users are granted the right to include these
enhancenents in MP/ M 1| Rel ease 2.0 software.

1

241

All Information Presented here is Proprietary to Digital Research

242

All Information Presented here is Proprietary to Digital Research

M/MIlI T.M Qperating System Rel ease 2.0
Application Note 02, 9/14/81

Copyright © 1981 by Digital Research
M/ M1l is a tradenmark of Digital Research.

SETTI NG AND RESETTI NG THE RAW CONSOLE |/ O MODE

Appl i cabl e products and version nunbers: MP/MI1I1". Release 2.0
Sone application prograns require raw i nput fromthe consol e.

Raw i nput inplies that the operating systemtakes no action on

speci al characters, such as CTRL-C.

Execute the followi ng code to place an application programinto
a raw consol e i nput node.

Wi C, 9CH

CALL XDOS ; get process descriptor address

LXI D, 6

DAD D

MOV AM

R 80H ; turn 'on' the high-order bit of first
MoV M A ; character in the process nane

Execute the following code to exit the raw consol e i nput node.

wWI C, 9CH

CALL XDOS ; get process descriptor address

LXI D, 6

DAD D

MOV AM

ANI 7FH ; turn 'off' the high-order bit of first
MoV M A ; character in the process nane

Functions 3, 4, and 6 place the systeminto raw consol e i nput
node. Al other console I/0O functions reset the systemto normnal
consol e i nput node.

Raw consol e i nput node can cause probl ens. You cannot abort a
process running in raw node because the systemignores all control
characters. To abort a process, use Function 11 before using any

disk 1/0O functions. Function 11 returns the systemto nornal
consol e node.

Li censed users are granted the right to include these
enhancenents in MP/ M1l Rel ease 2.0 software.

1

243

All Information Presented here is Proprietary to Digital Research

244

All Information Presented here is Proprietary to Digital Research

M/ M1l T.M Qperating System Rel ease 2.0
Application Note 03, 9/14/81

Copyright © 1981 by Digital Research
M/ M1l is a tradenmark of Digital Research.

CHANG NG PRL FILE M NI MUM BUFFER SI ZE REQUI REMENTS

Appl i cabl e products and version nunbers: MP/PMT.M Release 2.0

You might want to allocate a |larger default buffer for a
program such as the editor. You can change the ninimum buffer size
requirenents for PRL files. The follow ng procedure denobnstrates

how t o change the mini mum buffer size requirenments for ED from4k to

8k byt es.

OA>ddt ed. prl
[M/M DDT VERS 1.1
NEXT PC

2300 0100
-sl 04

0104 00 00
0105 10 20
0106 .
-v2300

0044

-ied. prl

- w44

-go

Bytes 4 and 5 of the PRL header record (relative to the base)
contain the low and high-order bytes for the nininmm buffer size

speci fication.

Li censed users are granted the right to include these

enhancenents in MP M|l Release 2.0 software.

245

All Information Presented here is Proprietary to Digital Research

246

All Information Presented here is Proprietary to Digital Research

MM Il T.M Qperating System Rel ease 2.0
Application Note 04, 9/14/81

Copyright © 1981 by Digital Research
MP/ M and MP/M 11| are trademarks of Digital Research.

ACCESSI NG THE | NTERNAL MP/ M TM TOD
Appl i cabl e products and version nunbers: MP/MII Release 2.0

Sone application prograns mght require access to the internal
M/ M1l tine and date fields to set initial values. Execute the
foll owi ng code sequence at the end of your MP/MI.M Xl OGS system
initialization procedure. Place the code at the end because the
XDOS call to obtain the system data page address ni ght cause
i nterruptions.

Wi C, 9AH

CALL XDGCs ;obtain the system data page address
;*** war ni ng * k%
;the XDOS call enables interrupts

LXI D, OOFCH

DAD D ; hl pointer -> TOD
MOV EM

INX H

MV DM ; de TOD

The assenbly | anguage subrouti ne TODCNV. ASM di stri buted on the
MP/ M 11 release disk converts fromASCI| string representation of
the tine and date to MP/MII internal tine and date format.

Li censed users are granted the right to include these
enhancenents in MP/MI1I| Rel ease 2.0 software.

1

247

All Information Presented here is Proprietary to Digital Research

248

All Information Presented here is Proprietary to Digital Research

M/ M1l T.M Qperating System Rel ease 2.0
Application Note 05, 9/14/81

Copyright © 1981 by Digital Research
M/ M1l is a tradenmark of Digital Research.

DVA DI SK CONTROLLERS W TH BANKED MEMORY SYSTEMS
Appl i cabl e products and Version Nunbers: MP/MII Release 2.0

Be extra careful with bank swi tched nenory systens that have
Direct Menmory Access disk controllers. Bank switching is not
all owed during a transfer of data fromthe disk controller to a
target bank.

DVA fromthe disk controller is obtained through comon nmenory
t hen copied from conmmon nenory into the user buffer that you wanted.
Sectors larger than 128 bytes are placed in a comon nenory buffer
The specified sector is then transferred to the target buffer. This
is a reasonabl e technique in systens where debl ocking is required

Use the followi ng procedure if DMA is to occur directly into
t he user buffer bypassing common nmenory. Set a DVA active flag to
true before each DVA operation. Reset the flag foll ow ng each
operation.

Y A, FFH
STA DNMACTVE

; initiate DVA operation
; performflag wait or poll for operation conplete

XRA A
STA DVACTVE

Pl ace the foll owi ng code sequence in the Xl OS sel ect nmenory
procedure to ensure that the bank cannot be sw tched during a DVA
operation:

SELMVEMORY:
LDA DVACTVE
ORA A

jz OKTOSWTCH ;junp if not in DVA operation
; Next, the bank to be switched can be
; conmpared with the current bank. If
; it matches, the DVA operation will not be affected.

jz OKTOSW TCH ; no bank change required

249

All Information Presented here is Proprietary to Digital Research

M/ M1l Release 2.0, Application Note 05, 9/14/81 (cont'd)

Pl ace

; A new bank is specified and a DVA operation is in
; progress. A busy wait nust now be performed to wait
; until the DVA operation is conplete.

* k% V\arni ng * k%
; The selnenory call is made frominside the dispatcher

;therefore interrupts are disabled and not hi ng nust
; be done that could force a dispatch.

BUSYWAI T:

I'N DVASTATUSPORT ; This is a "BUSY-WAI T"

ANl DMADONE

jz BUSYWAI T ;1 oop until the DVMA is conplete
the following code into the remaining select nenory procedure.
OKTCOSW TCH:

RET

Li censed users are granted the right to include these

enhancenents in MP M|l Rel ease 2.0 software.

250

All Information Presented here is Proprietary to Digital Research

M/ M1l T.M Qperating System Rel ease 2.0
Application Note 06, 9/14/81

Copyright © 1981 by Digital Research
M/ M1l is a tradenark of Digital Research

USI NG THE SEND CLI COWVAND XDOS FUNCTI ON
Appl i cabl e products and versi on nunbers: M/ M1l Release 2.0
Use of the Send CLI Command XDOS Function can effectively

i mpl enent a nenu driven application program The follow ng steps
outline use of the SEND CLI XDOS Function

1) Change the priority of the calling process so that it is
hi gher (actually a | ower value) than the TMP

2) ot ain the consol e nunber of the calling process.

3) Assign the console to the Cormand Line Interpreter

4) | ssue the send CLI conmand function call

5) | ssue an ATTACH consol e function to get the consol e back

after the initiated process has term nated.

6) Restore the priority of the calling process to its origina
val ue (usually 200).

Segrments of a nenu driven program nanmed MENU appear in the
fol |l owi ng exanpl e.

; XDOS Function Equate Table

setpriority equ 145
attachconsol e equ 146
assi gnconsol e equ 149
sendCLI conmand equ 150
get consol e equ 153
MENU:
nvi e, 190
nvi c,setpriority
call BDCS ;set priority to 190
nvi c, getconsol e
call BDOS ;get console #in Areg
sta AssignPB ;fill in
sta CLI command+l ;consol e fields
I xi d, Assi gnPB
nvi c, assi gnconsol e

251

All Information Presented here is Proprietary to Digital Research

NP/ M 11 Rel ease 2.0, Application Note 06, 9/14/81 (cont'd)

call BDOCS ;assign console to CLI
i nr a
jz cannot assi gn ;assign failed
| xi d, CLI conmrand
nvi ¢, sendCLI command
call BDCS ;send CLI comand
nvi c, attachconsol e
call BDOCS ;attach consol e
nvi e, 200
nvi c,setpriority
call BDOCS ;set priority back to 200
Assi gnPB
db $-$; consol e number
db lcli |1 ;nane (cli is | ower case)
db 0
CLI command:
db 0 ;default disk / user code
db $-$; consol e number
db this is an ASCII string terminated with
a
;null that is exactly as you would run
t he

;program fromthe console. e.g.

"PI P LST: =MYPROG. LST[PT8] ', O

Li censed users are granted the right to include these
enhancenents in MP/ M 1| Release 2.0 software

2

252

All Information Presented here is Proprietary to Digital Research

M/ M1l T.M Qperating System Rel ease 2.0
Application Note 07, 9/14/81

Copyright © 1981 by Digital Research
M/ M1l is a tradenark of Digital Research

CREATING A SUBM T FI LE FROM AN APPLI CATI ONS PROGRAM

Appl i cabl e products and version nunbers: MP/MII T.M Release 2.0

The foll owi ng procedure shows you howto create a subnit file
froman applications programand force its execution. The procedure
to termnate a submit file job is included.

1) otain the tenporary file drive fromthe system data page

2) ot ai n the consol e nunber at which the programis executing.

3) Create the n.SUB file. Use
nunber.

4) Set the appropriate submt fl

n to specify the consol e

ag in the array to on. The

array is contained in the system data page.

; BDOS / XDOS Function Equate Tabl e

closefile equ 16
searchfirst equ 17
deletefile equ 19
makefile equ 22
get consol e equ 153
get sysdat adr equ 154
subf I gof st equ 128
nvi c, get sysdat adr
cal | BDCS
| xi d, 196 ;tenp file drive of fset
dad d
nov a, m
sta FCB
nvi c, getconsol e
cal | BDCS
sta consol e
adi | ot
sta FCB+2 ; put console # in fnane
| xi d, FCB
nvi c, searchfirst
cal l BDOS ;see if file there

253

All Information Presented here is Proprietary to Digital Research

M/ M1l Release 2.0, Application Note 07, 9/14/81 (cont'd)

i nr a

jz nofile

| xi d, FCB

nmvi c,deletefile

call BDGCS ; delete old version first
nofil e:

| xi d, FCB

nvi c, rekefile

call BDCS ; make the n.SUB file

Now, wite the records into the n.SUB file as
foll ows:
-one line of the subnit file per record

-last record first (i.e. in reverse order
that they are to be executed

-each record in the followi ng form

[CNTI[ASCI | command |ine] [NULL]

wher e: CNT = # chrs in cmd In, 1 byte
ASCI | conmand |ine <= 125 chrs
NULL zero, 1 byte

d, FCB
I x1
nvi c,closefile
call BDCs ;close the n. SUB; file
nvi c, get sysdat adr
call BDOCS ;get system data page adr
| da consol e ;retrieve the saved con #
adi subfl gofst ;add offset to base of
nov e, a ;submit flag array
nvi d, O
dad d ; DE = subnmitfl ag(consol e);
nvi m O fh ;set 'on' submt flag
; term nate the program
FCB:
DB ;disk drive, usually A
DB ‘$ng’ ;filename
DB ' SUB' ;filetype
DB 0 ;file extent
DS 20 ; remai nder of FCB
consol e:
ds 1 ;tenp loc for console #

254

All Information Presented here is Proprietary to Digital Research

MP/H Il Release 2.0, Application Note 07, 9/14/81 (cont'd)

Term nate the operation of a submt job by zeroing a subnit
flag located in the SYSTEM DATA PACE region of nenory. To |ocate
and zero the subnmit flag for a console use the foll ow ng code
procedur e.

XDOS Function Equate Table

get consol e equ 153
get sysdat adr equ 154
subf I gof st equ 128
nvi c, getconsol e
cal | BDOS ; get console #
push psw ; save console #
nvi c, get sysdat adr
call BDOS ; get system data page adr
POP psw ; restore console #
adi subf I gof st
nov I, a ; hl = address of sub. flag
nvi m O ; zero submt flag

Li censed users are granted the right to include these
enhancenents in MP/M 1| Release 2.0 software

3

255

All Information Presented here is Proprietary to Digital Research

256

All Information Presented here is Proprietary to Digital Research

M/ M1l T.M Qperating System Rel ease 2.0
Application Note 08, 9/14/81

Copyright © 1981 by Digital Research
MP/ M and MP/M 11| are trademarks of Digital Research.
CP/Mis a registered trademark of Digital Research.
Wrdstar is a registered trademark of
M croPro I nternational Corporation.

FI LE SHARI NG
Appl i cabl e products and version nunbers: MP/MII T.M Release 2.0

Mul tiple users can share files using the MPPMII file system
An applications programsuch as Wrdstar requires that files be
open while the programis running. Miltiple users of the
application will need to share the open files. Usually under MP/M
I'l, sharing of files causes problens if the applications programis
not structured to open files in Read-Only node. The default node
for the open function is | ocked node which prevents the sharing of
files. Files are opened in | ocked node for earlier versions of both
CP/MO and MWMT. M as well.

To enable file sharing, place all files to be shared under USER
0 on the default disk. Using the SET utility, assign the attributes
SYS (Systen) and RO (Read-Only) to the files. The BDOS opens the
file in Read-Only node regardl ess of which node the open function
specified. An exanple is shown bel ow.

QA>set wsnsgs. com [SYS, RO]

Li censed users are granted the right to include these
enhancenents in MP/MI1I| Rel ease 2.0 software.

1

257

All Information Presented here is Proprietary to Digital Research

258

All Information Presented here is Proprietary to Digital Research

M/ M1l T.M Qperating System Rel ease 2.0
Application Mdte 09, 9/14/81

Copyright © 1981 by Digital Research
M/ M1l is a tradenmark of Digital Research.

PROGRAM CONTROL OF THE CONTROL- P SW TCH
Appl i cabl e products and version nunbers: MP/MII T.M Release 2.0
An applications program nm ght need to echo console I/0 to the
printer while under programcontrol. Use the follow ng procedures
to set and clear the CTRL-P flags. The array of flags is |located at
t he SYSTEM DATA PAGE address + 126.

Setting CTRL-P Fl ag

nvi ¢, 9ah ; CGet System Data Page address
cal | BDOS

| xi d, 126

dad d ; add 126 to Sys. Data Page addr.
nov e, m

i nXx h

nov dm ; DE addr. of CTRL-P array
push d

nvi ¢, Gadh ; Get List Nunber

cal | BDOS

nov e, a

nvi d, O

POP h

dad d

nmvi m O fh ; set CTRL-P flag

: cons. |I/Ois echoed from now on

G earing CIRL-P Fl ag

nvi ¢, 9ah ; CGet System Data Page address
cal | BDOS

| xi d, 126

dad d ; add 126 to Sys. Data Page addr.
nov e, m

i nx h

nov d m ; DE addr. of CTRL-P array
push d

nvi ¢, Gadh ; Get List Nunber

cal | BDOS

nov e, a

nvi d, O

POP h

dad d

nmvi m O ; reset CTRL-P flag

: console I/O echo is now of f

Li censed users are granted the right to include these
enhancenents in MP/ M1l Rel ease 2.0 software.

1

259

All Information Presented here is Proprietary to Digital Research

260

All Information Presented here is Proprietary to Digital Research

M/ M1l T.M Qperating System Rel ease 2.0
Application Mte 10, 9/14/81

Copyright © 1981 by Digital Research
M/ M1l is a tradenmark of Digital Research.

COLD BOOT STARTUP
Appl i cabl e products and version nunbers: MP/MII T.M Release 2.0

MP/M1i can execute one conmand upon cold boot. However, the
system can execute any nunber of conmands upon cold boot if the
initial conmand is SUBMT.

To execute the Startup command place the Startup comrand
singularly into a file using standard command format. Nanme this
file n. SUP where n is the consol e nunber that executes the
command. The n. SUP file resides on the systemdrive at the
desired USER nunber or at USER O with a SYS (SYSTEM attribute.
Exanpl es are shown bel ow.

Startup file: 0. SUP

Conmand in the
Startup file: SUBM T START$OSH

Li censed users are granted the right to include these
enhancenents in MP/MI1I| Rel ease 2.0 software.

261

All Information Presented here is Proprietary to Digital Research

262

All Information Presented here is Proprietary to Digital Research

M/ M1l T.M Qperating System Rel ease 2.0
Application Note 11, 9/14/81

Copyright © 1981 by Digital Research
M/ M1l is a tradenmark of Digital Research.

SUBM T ENHANCEMENTS
Appl i cabl e products and version nunbers: MP/MII T.M Release 2.0

Enhancenents to SUBM T include the follow ng new features and
facilities.

| NCREASED n.SUB FILE SIZE: SUBMT file size is now unlimted.
The n.SUB file originally was limted to one extent, 128 |ines.

CHANG NG THE USER NUMBER: To change the current USER nunber in
SUBM T, include the USER conmand in the SUBMT file.

I NCLUDE FILES: An include file is a standard SUBMT file subject to
all SUBMT rules and features. Format for the | NCLUDE conmand is
denonstrated bel ow.

$I NCLUDE fil ename parml parnR parn8 ...

The filenanme in the | NCLUDE command rust have the filetype SUB to
indicate a SUBMT file and paraneters are standard SUBM T
paranmeters. An INCLUDE file can nest up to four SUBMTs in a SUBMT
conmand.

EVMBEDDED CONTROL CHARACTERS:. Control characters can be enbedded in
a SUBMT file by preceding the capitalized character with an ASCI |
up arrow *. For exanple, type ~X to enbed a CTRL-X. Enbedded

control characters are not interpreted by MM M1, but can be of use
to prograns that SUBM T executes.

Li censed users are granted the right to include these
enhancenents in MP/ M1l Rel ease 2.0 software.

263

All Information Presented here is Proprietary to Digital Research

264

All Information Presented here is Proprietary to Digital Research

M/MIlI T.M Qperating System Release 2.0
Application Note 12, 9/14/81

Copyright © 1981 by Digital Research
M/ M1l is a tradenmark of Digital Research.

SPOOL UTI LI TY MODI Fl CATI ONS
Appl i cabl e products and version nunbers: MP/MII Release 2.0

SPOOL can return an error nessage if the file to be spooled is
not found. To utilize this nodification, SPOOL is divided into a
transient portion (SPOOL. PRL) and a resident portion. The transient
portion parses the command tail, opens the file, passes the file to
t he spool queue (naned SPOOLQ , and displays an error nessage if the
open sequence on the file fails. Then, the transient portion ends
itself.

| ssue a SPOCLQ conmand if you do not want to use a nmenory
segnent to spool a file. Error nessages are not returned, however.
Sanpl e conmmands to spool a file are shown bel ow.

SPOOL filel.typ,file2.typ .,.

The SPOOL process passes the command tail, checks for errors,
and sends the file to the spool queue (SPOOLQ .

SPOOLQ filel.typ,file2.typ ...

The conmand tail is sent to the spool queue (SPOOLQ bypassing
error checking or error reporting.

The SPOOL utility sets its priority to 201. Most processes
execute ahead of the SPOOLER To change the SPOOLER priority, the
SPOOL.BRS file is nodified. Make sure you have a back-up copy of
SPOOL. BRS before using RDT to nake the foll ow ng changes.

A>rdt spool.brs

-s3b5

03B5 C9 c8
03B6 00
-ispool . brs
-wi4

-go
A>gensys

Li censed users are granted the right to include these
enhancenents in MP/ M1l Rel ease 2.0 software.

1

265

All Information Presented here is Proprietary to Digital Research

266

All Information Presented here is Proprietary to Digital Research

M/ M1l T.M Qperating System Rel ease 2.0
Application Note 13, 9/14/81

Copyright © 1981 by Digital Research
M/ M1l is a tradenark of Digital Research

RECORD LOCKI NG UNLOCKI NG
Appl i cabl e products and version nunbers: MP/MII Release 2.0

Record | ocki ng/ unl ocking allows nultiple processes to share
access of one file. Files are opened in the UNLOCKED node. A
record | ocked by one process can only be read by a different
process, however, a locked record can be nodified by the initial
process. Avoid reading | ocked records to prevent readi ng data that
is being updated. To avoid reading | ocked records let the process
try to lock the record. If the attenpt fails, do not read the
record. The followi ng code segnment denonstrates how to | ock
records.

nmvi c,2ch ;set nulti-sector cnt.
nvi e, # # = num of sectors
cal | bdos ;1<= # <=16

nvi c, 2ah ;lock record

| Xi d,fcb ;record to be | ocked
cal | bdos

The foll owi ng code segnent denonstrates how to unl ock records.

nvi c,2ch ;set nulti-sector cnt.
nvi e, # # = num of sectors
cal bdos ;1<= # <=16
nvi c, 2bh ; unl ock record
| Xi d,fcb ;record to be unl ocked
cal bdos
fch:
db O, ' DATA' , ACH, 20H, 20H, 20H, ' DAT' , O
ds 20
db 10,0,0 ; begi nning at record 10

Li censed users are granted the right to include these
enhancenents in MP/MII Release 2.0 software

1

267

All Information Presented here is Proprietary to Digital Research

268

All Information Presented here is Proprietary to Digital Research

M/ M1l T.M Qperating System Rel ease 2.0
Application Note 14, 9/14/81

Copyright © 1981 by Digital Research
M/ M1l is a tradenmark of Digital Research.

GENSYS ENHANCEKKNTS
Appl i cabl e products and version nunbers: MP/MII T.M Release 2.0

Enhancenents to GENSYS include the foll ow ng new features and
facilities.

AUTOVATI C RESI DENT SYSTEM PROCESS | NCLUSI ON FACI LI TY: The GENSYS
autonmatic system generation facility can be nodified to include all
default disk RSP files. Type CGENSYS $AR to include the RSP files
automatically. The R option nust be used in conjunction with the A
option. Change the filetypes for files that you want to excl ude
from GENSYS.

ERROR RECOVERY: If an error is encountered running in automatic
node ($A option), CENSYS restarts in manual node.

Li censed users are granted the right to include these
enhancenents in MP/ M1l Rel ease 2.0 software.

1

269

All Information Presented here is Proprietary to Digital Research

270

All Information Presented here is Proprietary to Digital Research

M/ M1l T.M Qperating System Rel ease 2.0
Application Note 15, 12/1/81

Copyright © 1981 by Digital Research
M/ M1l is a tradenmark of Digital Research.

CHANG NG THE PRIORI TY OF SPOOL. PRL
Appl i cabl e products and version nunbers: MP/MII Release 2.0

The SPOOL utility sets its priority to 201, therefore, nost
ot her processes execute ahead of the SPOOLER Mbddify the SPOOL. PRL
file to change the SPOOLER priority. If your product serial nunber
i s between 4-000-00001 and 4-000-00464, install MP/MII Patch 11
bef ore changing the SPOOL. PRL default priority.

Make sure you have a back-up copy of SPOOL. PRL before using DDT
to make the foll owi ng changes.

A>ren spool . sav=spool . prl
A>ddt spool . sav
[M/MI1] DDT VERS 2.0
NEXT PC

0980 0100

-5269

0269 C9 c8

026A CD .

-ispool . prl

-Wi

- go

A>

Li censed users are granted the right to include these
enhancenents in MP/ M1l Rel ease 2.0 software.

1

271

All Information Presented here is Proprietary to Digital Research

272

All Information Presented here is Proprietary to Digital Research

M/ M1l T.M Qperating System Rel ease 2.0
Application Note 16, 12/1/81

Copyright © 1981 by Digital Research
M/ M1l is a tradenmark of Digital Research.

CHANG NG THE BACKSPACE AND RUBOUT KEY FUNCTI ONS
Appl i cabl e products and version nunbers: Mp/MII T.M Release 2.0
Program RESBDOS

Under MP/M 11, the BACKSPACE key or CTRL-H (ASCI|I 08H) does a
destructive backspace deleting the |ast character in the conmand
buffer. The RUBQUT key (ASCI| 7FH) or DELETE key del etes the | ast
character in the command buffer and echoes it to the screen.

Procedure to reverse the BACKSPACE and RUBCUT key functions:

A>ren resbdos. sav=resbdos. spr
A>ddt reshbdos. sav
[MP/MI1I] DDT VERS 2.0
NEXT PC

80 0100

-scCa

OCQA 08 7f

ocoB 2

-sc22

0oCc22 7F 08

oc23 2 .

-iresbdos. spr

-wid

-go

QA>gensys
Procedure to nake RUBQUT identical to BACKSPACE:

A>ren resbdos. sav=resbdos. spr
A>ddt reshbdos. sav
[MP/MI1I] DDT VERS 2.0
NEXT PC

80 0100

-1c26

oc26 MOV A B

027 ORA A

0C28 Jz 09F6

-ac26

oC26 jmp ale

0oCc29

-bb28, 1

-iresbdos. spr

-wid

- go

QA>gensys

273

All Information Presented here is Proprietary to Digital Research

MP/ M1l Release 2.0, Application Note 16
RESBDCS, 12/1/81 (cont'd)

Procedure to nake BACKSPACE identical to RUBQOUT:

A>ren resbdos. sav=resbdos. spr
A>ddt reshbdos. sav
[MP/MI1I] DDT VERS 2.0
NEXT PC

80 0100

-1cCe

OCCE MOV A B

OCOF CRA A

oclo iz 09F6

-acCe

OCCE jmp, a26

oci |

-bbl O |

-iresbdos. spr

-wid

-go

QA>gensys

Li censed users are granted the right to include these
enhancenents in MP/ M1l Rel ease 2.0 software.

274

All Information Presented here is Proprietary to Digital Research

