MP/M-86""
Operating System

SYSTEM GUIDE

Copyright © 1981

Digital Research
P.0O. Box 579
167 Central
Pacific Grove, CA 93950
(408) 649-3896
TWX 910 360 5001

All Rights Reserved

COPYRIGHT

Copyright © 1981 by Digital Research. All rights
reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

DISCLAIMER

Digital Research makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantability or fitness for any particular
purpose. Further, Digital Research reserves the
right to revise this publication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.
MP/M, CP/M-86, and MP/M-86 are trademarks of Digital
Research.

The "MP/M-86 SYSTEM GUIDE" was prepared using the
Digital Research TEX Text Formatter.

khkhkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkkhkhkkhkkhkhkhkkkk

* First Printing: September 1981 *
hkhkhkhkkkhkhkhkkhkhkhkhkkkhkhkkkhkhkhkkkkkkkkkkkkkk

FOREWORD

MP/M-86"Mis a multi-user general purpose operating system. It
is designed for use with any disk-based microcomputer using an Intel
8086, 8088 or compatible microprocessor with a real-time clock.
MP/M-86 is modular in design, and can be modified to suit the needs
of a particular installation. The hardware interface for a
particular hardware environment is supported by the OEM or MP/M-86
distributer. Digital Research supports the user interface to MP/M-
86 as documented in the MP/M-86 User”s Guide. Digital Research does
not support any additions or modifications made to MP/M-86 by the
OEM or distributer.

The MP/M-86 System Guide is intended for use by system
designers who wish to modify either the user or hardware interface
to MP/M-86. It therefore assumes the reader is familiar with the
material covered in the Digital Research manuals that are
distributed with MP/M-86. These are the MP/M-86 User”s Guide, and
the MP/M-86 Programmer”s Guide. This document also assumes that the
reader has already implemented a CP/M-86 1.0 Basic Input/Output
System (BIOS), preferrably on the target MP/M-86 machine.

iii

TABLE OF CONTENTS

System Overview

1.1 MP/M-86 Organization
1.2 Memory Layout + « .« .
1.3 Supervisor . . ¢ ¢ ¢ « 4 o o
1.4 Real Time Monitor
1.5 Memory Module
1.6 Character I/0 Manager . . .

1.7 Basic Disk Operating System . .
1.8 Extended I/0 System
1.9 System Data Area . ¢« ¢ ¢ « o .

1.10 Resident System Processes . .

System Generation
2.1 GENSYS Operation . . . « . .+ .

2.2 System Generation Parameters .

XI0S Functions

3.1 INIT & 4@ ¢ ¢ o o o o o o o o
3.2 Entry .« 4 ¢ 4 i e e b e e e e .
3.3 Character 1/0 Functions
3.4 Disk I/0 Function« .

3.5 Real-Time Monitor Functions . .

3.7 IDLE .« ¢ ¢ ¢ o ¢ o o o o o o &

Building the XIOS
4.1 Converting the CP/M-86 BIOS . .

4.2 Polled Devices . v o ¢ o o o =

10
11

15

17

19

25
26
28
36
47

51

53

54

TABLE OF CONTENTS

(continued)

4,3 Interrupt DevicCesS . v « ¢« o + o« o o o.0 = o o o o o « 55

4.4 Suggested Interrupt Handling . . ¢« « ¢« « o « « o« « o« 55

4.4.1 TICK Clock e o s & & s e 4 e s s « s & s« e« « 56
4,4.,2 Uninitialized Interrupts e e« o o o o s+ o s &« 56

4.5 Disk Definition Tables . . « ¢ ¢« ¢ ¢ ¢ o« o o« o« « o« o« 57
4,5.1 DPH Format . . « ¢ o o « o o« o o o o o o o o & 57
4,5.2 Table Generation Using GENDEF 62
4.5.3 GENDEF OQUtpUt +« . ¢ ¢ ¢ o o o o « s« o o &« « o+ 066

4,6 Calling MP/M-86 Functions . . « « ¢« ¢ o o « o o « o« o 171

4.7 Blocking/Deblocking Algorithms ¢« ¢« « . « 71

4.8 Memory Disk Application « . + ¢« ¢ ¢« ¢ « « + o 13

Debugging the XIOS
5.1 Running under CP/M=86 . . &+ « ¢ ¢ o o« o « o« o« « o« « « 15

5.2 Running under MP/M=86 &« + o s o o o« o o » o o+ 16

Bootstrap and Adaptation Procedures
6.1 The Cold Start Load Operation . « « o « o o o o « o o 17

6.2 Organization of MPM.SYS « &« ¢« o « « « « « « » 80

APPENDICES

BOOT ROM Listing ® * * L] L] * * L] L] * L] L] * * * * . L] L] * 85
LDBIOS Listing . L] * * * ® * * L] L] * . * L] L] L] * * L] - * 95
Example XIOS Listing . . . ¢ & ¢ ¢ ¢ o ¢ o o « o o« « o« o 109

Blocking and Deblocking . . . ¢ ¢ v ¢ & ¢ o o o o o o 143

vi

SECTION 1

SYSTEM OVERVIEW

MP/M-86 is a multi-user, real-time, general purpose Operating
System. It is designed for implementation in a large variety of
hardware environments and as such, can be easily customized to fit a
particular hardware and/or user”s needs.

MP/M-86 consists of three levels of interface. They are the
user interface, the logically invariant interface, and the actual
hardware interface. The distributed form of the user interface is
the Resident System Process called the TERMINAL MESSAGE PROCESS
(TMP) . It accepts commands from the user and either initiates
transient processes, or sends messages to resident processes.

The 1logically invariant interface to the Operating System
consists of the system function calls as described in the MP/M-86
Programmer”s Guide. This portion also interfaces transient and
resident processes with the physical interface.

The physical interface communicates directly with the
particular hardware environment. It is composed of a set of
functions that are called by a process needing physical I/O. The
relationship of the three interfaces is shown in Figure 1-1.

Digital Research distributes MP/M-86 with machine-readable
source code for both the user and hardware interfaces. The system
designer can write a new user and/or hardware interface, and quickly
incorporate them by using the system generation utility, GENSYS.

This section describes the modules that comprise a typical
MP/M-86 Operating System. It is important to understand the
material covered in this section before attempting to customize the
operating system for a particular application.

MP/M-86 System Guide 1 System Overview

(TMP)
gy M +
[

\/'
g +
Invariant
Interface

(SUP RTM MEM CIO)

{BDOS)
g +
]

\/
g +
Hardware
Interface

(XI0S)

g g +
[
\/

HARDWARE ENVIRONMENT

Pigure 1-1. MP/M-86 Interface

1.1 MP/M-86 Organization

The logically invariant interface of MP/M-86 is composed of
four basic code modules. The Real-Time Monitor (RTM) handles
process related functions including dispatching, creation and
termination, as well as the logical Input/Output system. The Memory
module (MEM) manages memory, and handles the memory allocation and
free functions. The Character I/0 module (CIO) handles all console
and list device functions. The Basic Disk Operating System (BDOS)
manages the file system. These four modules communicate with the
Supervisor (SUP) and the Extended Input/Output System (XIOS).

The SUP module manages the user interface, as well as
handling all inter-module communication. It also contains system
functions that essentially call other system functions. The
interface to Resident Procedure Libraries, the PROGRAM LOAD
function, the COMMAND LINE INTERPRETER and the PARSE FILENAME
functions are examples of the last category.

The XIOS module handles the physical interface to a
particular environment. All of the logical code modules can call
the XIOS to perform specific hardware dependent functions.

I —

MP/M-86 System Guide 1.1 MP/M-86 Organization

All code modules, including the SUP and XIOS, share a common
data region called the System Data Area (SYSDAT). The beginning of
the SYSDAT module has a well defined structure and is used by all

‘ code modules. Following this fixed portion are the data areas used
exclusively by specific code modules. The XIOS Data Area follows
all of the other code module data areas. Following the XIOS Data
Area is the table area of the SYSDAT module. These tables vary in
size depending on options chosen during system generation.

Resident System Processes (RSPs) are placed in memory
immediately following the SYSDAT module. RSPs are selected at
system generation time and are considered part of the MP/M-86
Operating System. All system data structures, like Process
Descriptors (PDs), User Data Areas (UDAs) and System Queue
Structures, are within their own data areas. MP/M-86 will use these
structures directly if they fall within 64K of the beginning of the
SYSDAT module. This guarantees space for these modules without
having to consume table areas. The system manager who generates a
new system does not have to be aware of the needs of RSPs that use
these structures. MP/M-86 copies those system structures that fall
outside of the 64K SYSDAT region into the internal system tables.
This allows RSPs to occupy more area than remains in the SYSDAT
region.

MP/M-86 loads all transient programs into the Transient
Program Area (TPA). The TPA of a given MP/M-86 system is determined
at system generation time.

. 1.2 Memory Layout

The MP/M-86 Operating System Area can be placed anywhere in
memory except over the Interrupt Vector Area. The location of MP/M-
86 is defined during system generation. The memory locations of the
system modules that make up MP/M-86 are determined by GENSYS based
on system generation options and the size of the modules. GENSYS
places the paragraph address of each module in the System Data Area
so it can be examined by using a debugger.

The XIOS Data Area must be within the System Data Area. If
the XIOS is created as an 8080 Model, the code portion is combined
with the data portion. The Code and Data Segments of the XIOS are
set to the SYSDAT segment. If the XIOS is created as a Small Model
with separate code and data, the Code Segment is placed outside of
the System Data Area to allow for more table area within the 64K
limit, The Data Segment always resides in the SYSDAT segment.

e

MP/M-86 System Guide 1.2 Memory Layout

o e + top of memory '
l | :

ININININININ/N/NININININ/N/NS
INININININININI/NNN/NIN/N/NS

TPA
et + = End of 0.S. {
area
RSPs
e T T +
| Table Area | \
e + | within
| X10S | > 64k
i S +
| SYSDAT | /
i ettt +
| (XIOS Code) | = if small
o e + model
| BDOS Code |
e it L T +
| CIO Code |
et it +
] MEM Code |
e ittt +
| RTM Code |
et it +
| SUP Code |
et et P e + = beginning
of 0.S. area
TPA

IN/N/N/N/NININININININININ/NS

{\/\/\/\/\/\/\/\/\/\/\/\/\/\{
T + 00400H

A + 00000H

Figure 1-2. MP/M-86 Memory Layout

1.3 Supervisor

The MP/M-86 Supervisor (SUP) manages the interaction between
user programs, other system modules, the XIOS and future networking
interfaces. All system function®calls, whether they originate from
a user program or internally from another system module, go through
a common table-driven function interface. If a network module
exists, it filters those functions that will be accomplished over &
the network. Those functions that are not intercepted are

MP/M-86 System Guide 1.3 Supervisor

translated into local system module functions.

The SUP module also handles system functions that use other
system function calls. Functions like the PROGRAM LOAD and COMMAND
LINE INTERPRETER (CLI) functions could be written as regular user
programs. They accomplish no special task that a normal user
program couldn”t perform. These types of functions are included in
the function set of MP/M-86 because the tasks are non-trivial and
commonly used. Placing them in the SUP module accomplishes two
goals. First, they are independent of the internal structures of
the system modules, and need no modification if a different version
of a system module is used. Secondly, they are outside the network
interface which is designed into the SUP module. A network module
need only support the more primitive functions of MP/M-86. For
instance, PROGRAM LOAD would not be supported over the network as a
function itself. Instead PROGRAM LOAD would make system calls for
allocating memory and for reading a disk file. The network
interface could intercept all access to a disk file residing in a
network file system, while the memory functions would be done
locally. The PROGRAM LOAD function need not be aware that its file
is coming from another machine.

Table 1-1. Supervisor Functions

Function 12: BDOS VERSION NUMBER
Function 47: PROGRAM CHAIN
Function b50: CALL BIOS FUNCTION
Function 59: PROGRAM LOAD
Function 107: RETURN SERIAL NUMBER
Function 150: CLI

Function 151: CALL RPL

Function 152: PARSE FILENAME
Function 154: GET SYSDAT ADDRESS
Function 155: TIME OF DAY
Function 163: MPM VERSION NUMBER

1.4 Real Time Monitor

The Real-Time Monitor (RTM) handles process communications,
as well as process creation, termination, and dispatching. It also
handles the 1logical interrupt system and the device polling
functions of MP/M-86. Each time a process attempts to access a
resource that is not immediately available, the RTM Dispatcher
takes the process out of the ready state and places it into one of
the resource wait states. When another process releases the
resource, the RTM Dispatcher places the waiting process back into
the ready state. The STATUS byte of the Process Descriptor
indicates the current state of a process. Usually, there is a
System List that is associated with a given process status. When
the RTM places a process on a System List, it inserts it in priority
order, and after other processes with equivalent priorities. This
results in priority-driven scheduling of processes on the Ready

MP/M-86 System Guide 1.4 Real-Time Monitor

List. Processes with equivalent priority are round-robin scheduled.
At every tick of the system clock (or other interrupts that affect
resources), the RTM Dispatcher takes the current process off the
Ready List and reschedules it. This allows MP/M-86 to affect time-
slicing.

Device Polling takes place within the RTM Dispatcher. At
every dispatch, the Dispatcher polls all devices that have processes
waiting. 1In the worst case, the Dispatcher polls each device at
every system tick, although this typically happens much more often.

When a process needs to wait for an interrupt to occur, it
issues a FLAG WAIT call on a logical interrupt device. When the
appropriate interrupt actually occurs, the process calls the FLAG
SET function which "wakes up" the waiting process. The interrupt
routine then jumps to the RTM Dispatcher which reschedules the
interrupted process as well as all other ready processes that have
not been placed on the Ready List. At this point, the Dispatcher
pPlaces the process with the highest priority into context.
Typically, processes that are handling interrupts run at a high
priority and therefore can react immediately.

Other functions of the Real-Time Monitor as covered in the
MP/M-86 Programmer”s Guide under their individual descriptions.

Table 1-2. Real-Time Monitor Functions

Function 0: SYSTEM RESET

Function 131: POLL DEVICE

Function 132: FLAG WAIT

Function 133: FLAG SET

Function 134: MAKE QUEUE

Function 135: OPEN QUEUE

Function 136: DELETE QUEUE

Function 137: READ QUEUE

Function 138: CONDITIONAL READ QUEUE

Function 139: WRITE QUEUE

Function 140: CONDITIONAL WRITE QUEUE
Function 141: DELAY

Function 142: DISPATCH

Function 143: TERMINATE

Function 144: CREATE PROCESS

Function 145: SET PRIORITY

Function 156: GET PD ADDRESS

Function 157: ABORT SPECIFIED PROCESS

1.5 Memory Module

The Memory Management module (MEM) handles all memory
functions. MP/M-86 2.0 supports an extended fixed-paritition model
of memory management. Future versions of MP/M-86 may support
different versions of the Memory module depending on classes of

MP/M-86 System Guide 1.5 Memory Module

memory management hardware that become available.

During system generation, the GENSYS program prompts the user
for a list of memory partitions. The system guarantees that a
single partition is never divided among unrelated programs. If any
given memory request requires a memory segment that is larger than
available partitions, the system joins partitions that lay next to
each other to form a single contiguous area of memory. The
algorithm that determines the best fit for a given allocation
request takes into account the number of partitions that will be
used and the amount of unused space that will be left in the memory
region. This allow a system implementor or manager to decide
between the tradeoffs of "internal" versus "“external" memory
fragmentation as described below.

"External" memory fragmentation occurs when memory is
allocated in small amounts. This can lead to a situation where
there is plenty of memory but there is not a contiguous area large
enough to load a large program. "Internal" fragmentation occurs
when memory is divided into large partitions and loading a small
program leaves large amounts of unused memory in the partition. 1In
this case a large program will always be able to load if a partition
is available, but the unused areas can not be used to load a small
program when all partitions are allocated.

With the MP/M-86 2.0 memory management the system implementor
can specify a few large partitions, many small partitions or a
combination of the two. If a particular environment requires
frequently running many small programs and occasionally running
large programs, memory should be divided into small partitions.
This simulates dynamic memory management as the partitions become
smaller. Large programs are able to load as long as memory has not
become too fragmented. If the environment consists of running
mostly large programs or if the programs are run serially, the large
partition model should be used. The choice is not trivial and may
require some experimentation before a satisfactory compromise is
attained.

Memory partitions are described internally by Memory
Descriptors (MDs). MP/M-86 initially places all available
partitions on the Memory Free List (MFL). Once a partition (or set
of contiguous partitions) is allocated, it is taken off the MFL and
placed on the Memory Allocation List (MAL). The Memory Allocation
List contains descriptions of contiguous areas of memory known as
Memory Allocation Units (MAUs). MAUs are composed of one or more
partitions. The MEM module manages the space within an MAU so that
if a process requests extra memory, the module determines if the MAU
has enough unused space. If it does, the extra memory requested
comes from the MAU first. A process cannot allocate memory from an
MAU that it is not associated with. If a process shares memory with
another process, both can allocate memory from the MAU that contains
the shared memory segment. The MEM module keeps a count of how many
processes own a particular memory segment to ensure that it is freed
within the MAU only when no processes own it. When all of the
memory within a MAU is free, the MEM module frees the MAU and

MP/M-86 System Guide 1.5 Memory Module

returns the memory partitions that it was composed of to the MFL.
The management of unused areas within a MAU allows shared code
programs to run efficiently, even when the large, fixed partition
model is used.

Table 1-3. Memory Management Functions

Function 53: GET MAXIMUM MEMORY
Function b54: GET ABSOLUTE MAX MEMORY
Function 55: ALLOCATE MEMORY

Function 56: ALLOCATE ABSOLUTE MEMORY
Function 57: FREE MEMORY

Function 58: FREE ALL MEMORY
Function 128: MEMORY ALLOCATION
Function 129: MEMORY ALLOCATION
Function 130: MEMORY FREE

Note: Functions 53 through 58 internally call Function 128 or 130.
They are supported for compatibility with the CP/M-86 Operating
System. Function 128 and 129 are equivalent.

1.6 Character I/O Manager

The Character Input/Output (CIO) module of MP/M-86 handles
all console and list I/0. Every character I/0 device is associated
with a Character Control Block (CCB). The CCB of a device contains
the current owner, the root of a linked list of PDs that are waiting
for access, line editing variables and status information. CCBs
reside in the CCB Table of the System Data Area. Each PD contains
the CCB Index of its default console and default list device.
Consoles are mapped such that CCB Index zero is associated with
console zero. List Device CCBs start after the console CCBs. The
number of console CCBs is taken from the XIOS MAXCONSOLE function
while the number of list devices is taken from the XIOS MAXLIST
function. The number of CCBs in the CCB Table is set at system
generation time by GENSYS. The number of CCBs set during GENSYS
must be large enough to include all 1list and console devices
supported by the XIOS.

MP/M-86 System Guide

Table 1-

Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function

1.6 Character I/0 Module

4. Character I/0 Functions

W AU WN -
e o0 0 o

10:

11:
146:
147:
148:
149:
153:
158:
159:
160:
161:
162:
164:

CONSOLE INPUT
CONSOLE OUTPUT

RAW CONSOLE INPUT
RAW CONSOLE OUTPUT
LIST OUTPUT

DIRECT CONSOLE I/O
PRINT STRING

READ CONSOLE BUFFER
CONSOLE STATUS
ATTACH CONSOLE
DETACH CONSOLE

SET DEFAULT CONSOLE
ASSIGN CONSOLE

GET DEFAULT CONSOLE
ATTACH LIST
DETACH LIST
SET DEFAULT
CONDITIONAL
CONDITIONAL
GET DEFAULT

LIST
ATTACH LIST
DETACH LIST
LIST

1.7 Basic Disk Operating System

The Basic Disk Operating System (BDOS) handles all file system

functions.
Guide,

Table 1-5.

Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

It is described in detail in the MP/M-86 Programmer”’s

Basic Disk Operating System Functions

DISK RESET

DISK SELECT

OPEN FILE

CLOSE FILE

SEARCH FOR FIRST
SEARCH FOR NEXT
DELETE FILE

READ SEQUENTIAL

WRITE SEQUENTIAL

MAKE FILE

RENAME FILE

GET LOGIN VECTOR

GET DEFAULT DISK

SET DMA OFFSET

GET ALLOCATION VECTOR
WRITE PROTECT DISK
GET READ ONLY VECTOR
SET FILE ATTRIBUTES
GET DISK PARAMETER BLOCK
GET/SET USER CODE

MP/N-86 System Guide 1.7 Basic Disk Operating System

Function 33: RANDOM READ

Function 34: RANDOM WRITE

Function 35: GET FILE SIZE
Function 36: SET RANDOM RECORD
Function 37: RESET DRIVE

Function 38: ACCESS DRIVE

Function 39: FREE DRIVE

Function 40: WRITE RANDOM WITH ZERO FILL
Function 41: TEST AND WRITE RECORD
Function 42: LOCK RECORD

Function 43: UNLOCK RECORD
Function 44: SET MULTI-SECTOR COUNT
Function 45: SET BDOS ERROR MODE
Function 46: GET DISK FREE SPACE
Function 48: FLUSH BUFFERS
Function 51: SET DMA BASE

Function 52: GET DMA

Function 100: SET DIRECTORY LABEL
Function 10l1: GET DIRECTORY LABEL
Function 102: READ FILE XFCB
Function 103: WRITE FILE XFCB
Function 104: SET DATE AND TIME
Function 105: GET DATE AND TIME
Function 106: SET DEFAULT PASSWORD
Function 107: RETURN SERIAL NUMBER

1.8 Extended 1/0 System

The Extended Input/Output System (XIOS) handles the physical
interface to MP/M-86. By modifying the XIO0S, MP/M-86 can be run in
a large variety of physical environments. MP/M-86 recognizes two
basic types of I/0O devices: character devices and disk drives.
Character devices are treated as serial devices that handle one
character at a time, while disk devices handle random blocked I/0
with a 128-byte logical sector size. Use of devices that vary from
these two models must be implemented within the XIOS. In this way
they appear to be standard through the XIOS interface to the other
modules in MP/M-86. Sections 3 and 4 contain detailed descriptions
of the XIOS functions, as well as a sample implementation.

MP.M-86 allows multiple processes to use the XIOS functions
simultaneously. While the system guarantees that only one process
uses a particular physical device at any given time, some XIOS
functions handle more than one device and as such their interfaces
must be reentrant.

An example of this is the CONSOLE INPUT function. The
parameter passed to this function is the console number. There can
be many processes using this function, each waiting for a character
from a different console. The routines that handle the individual
consoles need not be reentrant, but the common code that interfaces
to these routines must be.

10

¢

¢

MP/M-86 System Guide 1.9 System Data Area

1.9 System Data Area

The System Data Area (SYSDAT) is the common data area for all
modules of MP/M-86. The SYSDAT module is composed of three main
areas. The first part is the fixed portion, containing data that is
common to all modules. The second portion contains data that
belongs to the individual modules. The XIOS Data Area is at the end
of the second portion. The third portion of the SYSDAT module is
the System Table Area which is generated and initialized at system
generation by the GENSYS program.

The fixed portion of the SYSDAT module contains system-wide
variables including values set by GENSYS and pointers to the
individual system tables.

The format of the System Data Area is shown in Figure 1-3. The
fields within the System Data Area are discussed below.

11

MP/M-86 System Guide 1.9 System Data Area

D e D e te——— $m——— t———— - e +=———- +
00H | SUP ENTRY | RESERVED |
+-———- Fm———- tm——— = fom———— S it - - +
08H | RESERVED |
+-———- Fmm—— t———— R e +-———- tmm——— t———— +
10H | RESERVED |
+-———— t-——— tomm——— Y e D +-———- +-———- +
18H | RESERVED |
+-———= +-——— D D R S +-———- R s +
20H | RESERVED , |
+-——— R po———- e R S $--—— +-———- +
28H | XI0S ENTRY | XIOS INIT |
+-———- S tm——— t-——— D il $-m——= - +
30H | RESERVED |
te———— $mmm—— e N e +————- +-——— S +
38H | DISPATCHER | PDISP |
tem tmm——— +-——— e +-——— +-——— = +-———— +
40H MPMSEG RSPSEG ENDSEG RESERINCNS
VED
+————- tmm—— tmm—— S e +=———— tm——— $mm—— +————- +
48H |NLST |NCCB N_ | sys_ MMP N_ | DAY
FLAGS| DISK SLAVE| FILE
S $m——— tmm—— +-m—— +-——— - e pm———— +
SOH | TEMP|TICKS LUL CCB FLAGS
DISK| /SEC
te——— tm——— tom—— +———— +-——— - +-——— - +
58H | MDUL | MFL | PUL | QUL
+-———- o +o——— i Y R +-———— D e +
60H | QMAU |
+e-———- R R +-———— - S R - +
68H | RLR | DLR | DRL | PLR |
+————- N $mm——— e e Y $m———— +————- +
70H | RESERVED | THRDRT | QLR | MAL l
+=———- +—m—— +m——— R o $mm—— Fm——— = +
784 | VERSION | VERNUM | MPMVERNUM | TOD DAY |
+———— R D S e +————= +————= Fem—— +
80H | TOD | TOD | TOD |NCON |NLST |NCIO RESERVED
I HR l _MINI _SEC‘ DEV { DEV ’ DEV ‘
+-———- tmm—— +=m—— $mmm—— +————- $-———- S D +
Figure 1-3. System Data Area
SUP ENTRY Double-word address of the Supervisor entry point for

intermodule communication. All internal system calls
go through this entry point.

XIOS ENTRY Double-word address of the Extended I/0 System entry
point for intermodule communication. All XIOS
function calls go through this entry point.

XIOS INIT Double-word address of the Extended I/0 System
Initialization entry point. System hardware
initialization takes place by a calls go through this

12

MP/M-BG System Guide 1.9 System Data Area

DISPATCHER

PDISP

MPMSEG

RSPSEG

ENDSEG

NCNS
NLST

NCCB

NFLAGS

SYSDISK

MMP
NSLAVE

DAY FILE

TEMP DISK

entry point.

Double-word address of the Dispatcher entry point that
handles interrupt returns. Executing a Far Jump to
the this address is equivalent to executing an
Interrupt Return instruction. The DISPATCHER routine
will cause a dispatch to occur and then execute an
Interrupt Return. All registers are preserved and
one level of stack is used. This function should be
used as a exit point by all interrupt routines that
use the FLAG SET function.

Double-word address of the Dispatcher entry point that
causes a dispatch to occur with all registers
preserved. Once the dispatch 1is done, a RETF
instruction is executed. Executing a JMPF PDISP is
equivalent to executing a RETF instruction. This
function should be executed whenever a resource is
released that may be wanted by a waiting process.

Starting Paragraph of the Operating System Area. This
is also the Code Segment of the Supervisor Module.

Paragraph Address of the First RSP in a linked list of
RSP Data Segments. The first word of the Data

Segment points to the next RSP in the list. Once the
system has been initialized, this field is zero.

First paragraph beyond the end of the Operating System
area.

Number of System Consoles as specified at GENSYS
Number of List Devices as specified at GENSYS

Number of Character Control Blocks as specified at
GENSYS

Number of System Flags as specified at GENSYS

Default System Disk. The CLI will look on this disk
if it cannot open the command file on the user”s
current default disk.

Maximum Memory allowed per Process
Number of Network requestors

Day File Option. If this value is O0OFFH, Log
information is displayed on system consoles at each

- command. This option is chosen at GENSYS.

Default Temporary Disk. Programs that create
temporary files should use this disk. This value is
specified at GENSYS.

13

MP/M-86 System Guide 1.9 System Data Area

TICKS/SEC

LOCKSEG
CCB
FLAGS
MDUL
MFL
PUL

QUL
QMAU

RLR

DLR

DRL

PLR

THRDRT

QLR

MAL

VERSION

VERNUM

MPMVERNUM
TOD_DAY
TOD_HR
TOD_MIN

TOD_SEC

The number of system ticks per second. This value is
specified at GENSYS.

Segment Address of -the BDOS Lock List

Address of the Character Control Block Table

Address of the Flag Table

Link list root of unused Memory Descriptors
Link list root of Free Memory Partitions
Link list root of unused Process Descriptors
Link list root of unused Queue Descriptors
Queue Buffer Memory Allocation Unit

Ready List Root. Linked list of PD”s that are ready
to run.

Delay List Root. Link list of PD”s that are delaying
for a specified number of System Ticks

Dispatcher Ready List. Temporary holding place for
PD”s that have just been made ready to run.

Poll List Root. Linked list of PD”s that are polling
on devices.

Thread List Root. Linked list of all current PD”s on
the system. The list is threaded though the THREAD
field of the PD instead of the LINK field.

Queue List Root. Linked list of all System QD’s.

Link list of Active Memory Allocation Units. A MAU
is created from one or more memory partitions.

Address relative to MPMSEG of Version String
MP/M-86 Version number (Function 12)

MP/M-86 Version number (Function 163)

Time of Day. Number of days since 1 Jan, 1978
Time of Day. Hour of the day

Time of Day. Minute of the hour

Time of Day. Second of the minute

14

MP/M-86 System Guide 1.9 System Data Area

NCONDEV Number of XIOS consoles.
NLSTDEV Number of XIOS list devices.
NCIODEV NCONDEV + NLSTDEV

RESERVED Reserved for Internal Use.

1.10 Resident System Processes

All Resident System Processes (RSPs) are considered part of the
Operating System Area. At system generation, GENSYS prompts the
user to select which RSPs are to be included within the Operating
System. All RSPs selected are placed next to each other beginning
at the end of the SYSDAT region. The advantages of an RSP are that
it is permanently resident and within the Operating System Area. If
the RSP creates gqueues or processes, the PD, QD and Queue Buffer
areas are used directly by MP/M-86 instead of copying the areas into
system tables. The only time these areas are copied is when the
data structure is actually outside the 64K address space of the
SYSDAT module. This is because, all pointers to these structures
are relative to the SYSDAT segment address. Details on creating
RSPs and further notes on their use are discussed in the MP/M-86
Programmer”s Guide.

15

SECTION 2

SYSTEM GENERATION

2.1 GENSYS Operation

MP/M-86 2.0 is generated by running the GENSYS program under an
existing CP/M-86 or MP/M-86 system. GENSYS builds the MPM.SYS file
which is an image of the MP/M-86 Operating System. MPMLDR or DDT-86
places this file in memory when debugging under CP/M-86.

GENSYS allows the user to define the hardware environment, the

amount of memory to reserve for system data structures, and the
selection and inclusion of Resident System Processes in the

Operating System file.

A sample GENSYS session is shown in Figure 2-1.

17

MP/M-86 System Guide 2.1 GENSYS Operation

MP/M-86 2.0 System Generation

All Values In HEX, Defaults In Parentheses

Delete 01d MPM.SYS File (N) ? y

Reading MPM Modules

Starting Paragraph of Operating System (1008) =
Number Of System Consoles (2) =

Number Of System Printers (1) =

Total Character Control Blocks (5) =

Number of Ticks Per Second (3C) =

System Drive (A) =

Temporary File Drive (A) =

Maximum Locked Records per Process (10) =

Total Locked Records in System (20)
Maximum Open Files per Process (10)
Total Open Files in System (20)
Day File Logging at Console (N)
Number Of Flags (20) =

Number Of Extra Process Descriptors (20) =
Maximum Paragraphs Per Process (FFFF) =
Number Of Queue Control Blocks (20) =

Size Of Queue Buffer Area in Bytes (200) =
Number Of Extra Memory Descriptors (30) =

Memory Partitions, End List With “FFFF~

Starting Paragraph = 2e0
Length = 1b0

Starting Paragraph = 1800
Length = 800

Starting Paragraph = ffff

Include Resident System Processes

CLOCK (Y) ?
MPMSTAT (Y) ?
ECHO (Y) ?
TMP (Y) ?

Reading RSPs

Operating System Begins At Paragraph 1008 Ends At 19BB

**** Memory Partition Overlaps Operating System - Trimming **#*%*
Starting Paragraph Was 1800 With Length 800
New Starting Paragraph 19BC With Length 644

** GENSYS DONE **

Figure 2-1. Sample GENSYS Session

18

MP/M-86 System Guide 2.2 System Generation Parameters

2.2 System Generation Parameters

This section contains information relating to each of the
GENSYS prompts shown in the sample session above. All the files
GENSYS reads are assumed to be on the current default disk. The
names of these files are shown below.

SUP.MPM Supervisor Code Module

RTM.MPM Real Time Monitor Code Module

MEM.MPM Memory Manager Code Module

CIO.MPM Character Input/Output Code Module

BDOS.MPM Basic Disk Operating System Code Module
XI0S.MPM Extended Input/Output System Module
SYSDAT.MPM Fixed System Data Module

* RSP Resident System Process files. These files

are optional. Those listed below are distributed
with Mp/M-86 2.0

TMP .RSP TERMINAL MESSAGE PROCESS
CLOCK.RSP CLOCK Process

ECHO.RSP ECHO Process

MPMSTAT.RSP System Status Process

All of the GENSYS prompts have default values except for the
definitions of memory partitions. When responding with a carriage
return or line feed to a question with a default value, GENSYS
assumes the value in parentheses. The default values are taken from
the beginning of the Data Group in the file RTM.MPM.

Delete 0ld MPM.SYS File (N) ? vy

The question to delete the MPM.SYS file is always asked whether
or not the file MPM.SYS exists on the current default disk. This is
done to make system generation eventually possible from a submit
job.

Reading MPM Modules

This response is given if the old MPM.SYS file was deleted.
The new MPM.SYS file will be created using the * . MPM modules on the
default disk.

Starting Paragraph of Operating System (1008) =

The starting paragraph is where the MPMLDR is to put the
Operating System. Code execution starts here, with the CS register
set to this value and the IP register set to 0. The Data Segment
Register is set to the beginning of the System Data Area. When
first bringing up and debugging MP/M-86 under CP/M-86, the answer to
this question should be 8 plus where DDT running under CP/M-86 will
read (the “R” command) in a file. The following example illustrates
this for the system generated by the GENSYS shown above.

19

MP/M-86 System Guide 2.2 System Generation Parameters

A>DDT86
DDT86 1.0

rmpm.sys

START LENGTH

1000:0000 1000:9BFF
-do

1000:0000 01 E2 04 08 10 E2 04 00 00 02 D2 04 EA 14 D2 04
-Xxcs = m=——— emmeme
CS 0000 1008 <=-====== | |
DS 0000 14EA <-————— ==~ -
SS 1C91 .
-d0

The CMD Header Record created by GENSYS is at location
1000:0000 in this example. Note the ABS (absolute) field in the
Code Group Descriptor (the first one) is 1008, the value given to
GENSYS for the start of the Operating System. Specifically the
bytes 1000:0003 and 1000:0004 which are stored low byte, high byte.
The segment address of the System Data Area is the ABS field of the
Data Group Descriptor, bytes 1000:12 and 1000:13. The CS and DS
registers are then set to these values. The Data Segment may be
verified by using the “D” command of DDT86, the last command shown
in the above DDT session. The values displayed should correspond
with the System Data Area. The XIOS segment address is at bytes 6
and 7 relative in the System Data Area, again, low byte, high byte.
Break points can now be set in various XIOS routines. See the
section on bringing up an XIOS for more details.

Number Of System Consoles (2) = Number Of System Printers (1) =

The number of consoles and list devices reserve a Console
Control Block and a List Control Block respectively for each console
and list device specified. The number of consoles is also used to
compute how many TERMINAL MESSAGE PROCESS RSPs to create, one per
console.

Total Character Control Blocks (5) =

The total number of CCBs reserved for physical console and list
devices. This number must be greater than or equal to the maximum
number of console and list devices supported in the XIOS.
Number of Ticks Per Second (3C) =

This entry value can be used by applications programs to
determine the number of ticks per second. This value should reflect

the number of ticks per second generated in the XIOS and may vary
among MP/M-86 systems.

20

MP/M-86 System Guide 2.2 System Generation Parameters

System Drive (A) =

The system drive where MP/M-86 looks for a transient program
when it is not found on the current default drive All the commonly
used transients can be placed in one place and are not needed on
every drive and user number.

Temporary File Drive (A) =

The drive entered here is used as the drive for temporary disk
files. This entry can be accessed in the System Data Segment by
application programs as the drive on which to create temporary
files. The temporary drive should be the fastest drive in the
system.

Maximum Locked Records per Process (10) =

This entry specifies the maximum number of records that a
single process (usually one program) can lock at any given time.
This number can range from 0 to 255 and must be less than or equal
to the total locked records for the system.

Total Locked Records in System (20) =

This entry specifies the total number of locked records for all
the processes executing under MP/M-86 at any given time. This
number can range from 0 to 255 and should be greater than or equal
to the maximum locked records per process.

It is possible to allow each process to either use up the total
system lock record space, or to allow each process to lock only a
fraction of the system total. The first technique implies a dynamic
storage region in which one process can force other processes to
block because it has consumed all available resources.

Maximum Open Files per Process (10) =

This entry specifies the maximum number of files that a single
process (usually one program) can open at any given time. This
number can range from 0 to 255 and must be less than or equal to the
total open files for the system.

Total Open Files in System (20) =
This entry specifies the total number of open files for all the
processes executing under MP/M-86 at any given time. This number

can range from 0 to 255 and should be greater than or equal to the
maximum open files per process.

21

MP/M-86 System Guide 2.2 System Generation Parameters

It is possible either to allow each process to use up the total
system open file space, or to allow each process to only open a
fraction of the system total. The first technique implies a dynamic
storage region in which one process can force other processes to
block because it has consumed all available resources.

Day File Logging at Console (N) =

An affirmative response causes the generated MP/M-86 system to
display the current time, file name and type, and user number of
each executed command file.

Number Of Flags (20) =

Flags are mostly used for interrupt control as in MP/M-80. In
MP/M-86 at least 3 flags must be specified, but more must be
specified if the XIOS uses interrupt-driven devices.

Number Of Extra Process Descriptors (20) =

GENSYS creates a Process Descriptor for each memory partition
specified. Thus for each memory partition, at least one transient
program can be loaded and run. If transient programs create "child"
processes or if RSPs extend past 64K from the beginning of the
System Data Area, extra Process Descriptors are needed. When first
bringing up and debugging MP/M~-86 the defaults for these questions
will suffice.

Maximum Paragraphs Per Process (FFFF) =

A process may make MP/M-86 memory allocations. See functions
128 through 130. This question puts an upper limit on how much
memory any one program can obtain. The default shown here is one
mega-byte, the entire amount of memory addressable by the 8086
microprocessor.

Number Of Queue Control Blocks (20) = Size Of Queue Buffer Area in
Bytes (200) =

The number of Queue Control Blocks should be the maximum number
of queues that may be created by transient programs (or RSPs outside
of 64k from the System Data Area). The Queue Buffer Area is space
reserved for Queue Buffers. The size of the buffer area required
for a particular queue is the message length times the number of
messages. The Queue Buffer Area should be the anticipated maximum
that transient programs will need. Again, the default values will
suffice during initial system debugging.

22

MP/M-86 System Guide 2.2 System Generation Parameters

Number of Extra Memory Descriptors (30) =

This represents the number of extra Memory Descriptors
allocated for system use. GENSYS automatically generates enough MDs
for normal use. More may be needed if application programs make
many memory allocations, or if many shared code programs are used.

Memory Partitions, End List With “FFFF~

Starting Paragraph = 2e0
Length = 1b0

Starting Paragraph = 1800
Length = 800

Starting Paragraph = ffff "

Memory partitions are highly dependent on the particular
hardware environment and no defaults are given. The start and
length values are paragraph values, multiply them by 16 to obtain
absolute values. The memory partitions can not overlap, nor can
they overlap the Operating System. GENSYS checks and trims memory
partitions that overlap the Operating System but does not check for
memory partitons that overlap with other memory partitions. In the
example GENSYS, the second partition is trimmed and the resultant
partition is displayed at the end of the GENSYS session.

Include Resident System Processes

CLOCK (Y) ?
ECHO (Y) 2
TMP (Y) ? Reading RSPs

GENSYS searches the current default disk and user for files
with names ending in “RSP”. These are then displayed under the
"Include Resident System Processes" header. During initial system
debugging the TMP must be included. The CLOCK RSP should be
included when the user is ready to debug the real-time clock.

23

SECTION 3

XIOS FUNCTIONS

As distributed by Digital Research, MP/M-86 2.0 is configured
for operation with the Intel SBC 86/12 microcomputer, an Intel 204
diskette controller, and an Intel SBC 534 Communication Expansion
Board. All hardware dependencies are concentrated in subroutines
that are collectively referred to as the Extended Input/Output
System, or XIOS. An MP/M-86 system implementor can modify these
subroutines to tailor the system to fit almost all 8086 or 8088
disk-based operating environments. This section describes each XIOS
function, and defines variables and tables referenced within the
XIOS. The discussion of Disk Definition Tables is treated
separately in the next section of this manual.

The explanations given in this section, assumes that the reader
is familiar with the CP/M-86 BIOS. Explanations should be used in
conjunction with the example XIOS listed in Appendix C.

The XIOS contains two entry points, INIT and ENTRY, at offset
OH and 3H respectively from the beginning of the XIOS code module.
These entry points are described below.

3.1 INIT

The Initialization routine is called by the INIT process during
system initialization. The sequence of events from the time the
MPM.SYS is loaded into memory until the RSPs are created is
important for understanding and debugging the XIOS Initialization.

The MPMLDR (or DDT86) loads MPM.SYS in memory at the absolute
Code Segment location as indicated by the MPM.SYS file Header. The
CS and DS registers are initialized to the value indicated by the
Header of the MPM.SYS file (this must be done by hand if loading
under CP/M-86 with DDT86). At this point, the MPMLDR jumps to
location 0 and begins the Initialization code of the MP/M-86 SUP
module as described below.

1) The first step of Initialization in the SUP is to setup the INIT
and IDLE processes. The rest of system initialization is done
under the INIT process at a priority equal to 1.

2) The INIT process calls the Initialization routines of each of the
other modules with the Far Call instruction. The first
instruction of each code module is assumed to be a JMP
instruction to its Initialization routine. The XIOS
Initialization routine is called last of these modules. Once

25

MP/M-86 System Guide 3.1 INIT

this call is made, the Initialization code is never used again.
It may be placed in a directory buffer or other uninitialized
data area.

3) The Initialization routine initializes all hardware, as shown in
the example, as well as all Interrupt Vectors. Interrupt 224
is saved by the SUP module and restored upon return from the
XIOS. Interrupts 1,3 and 225 are used by DDT86 and should not
be initialzed when debugging the XIOS with DDT86 running under
CP/M-86.

4) The Initialization routine can optionally print a message to
Console 0 before it executes a Far Return instruction upon
completion.

5) Upon return from the XIOS, the SUP Initialization routine
(running under the INIT process) creates some queues, calls the
MAXCONSOLE and MAXLIST routines, and starts up the RSPs. Once
this is done, the INIT process terminates.

3.2 ENTRY

All access to the XIOS (after initialization) is done through
the ENTRY routine. The ENTRY routine is accessed with a Far Call to
a location 3 byte from the beginning of the XIOS Code module. When
the XIOS function is complete, the ENTRY routine returns with a Far
Return instruction. On entry, the AL register is the function
number of the routine that is to be accessed. Registers CX and DX
are arguments passed to that routine. All segment registers must be
maintained through the call. The example XIOS shows the DS register
being placed on the stack and set to the CS register. It assumes
the ES and Stack registers will be maintained by the functions being
called.

Table 3-1 XIOS Register Usage

Entry Parameters:

AL = function number

CX = first parameter

DX = second parameter

DS = System Data Area

ES = User Data Area
Return Codes:

AX = return

BX = AX

DS = System Data Area

ES = User Data Area

26

MP/M-86 System Guide

3.2 ENTRY

The segment registers (DS and ES) must be preserved though the

ENTRY routine.

ES register must be the same.
The following code sequence

register locally.

When calling the SUP from within the XIOS, only the

only change the ES
illustrates the

Therefore,

preservation of the ES register in a block move.

push es

mov es,segment_address

rep movsw

pop es

In the example XIOS,
accessed through a Function Table with the function number being the

actual table entry.

the actual functions of the XIOS are

The actual function numbers and the routines

they correspond to are listed below.

Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function

Table 3-2

VOJAUNPWNNHO

H e
B WO

el
OV ®-JO WU,

NNNDMNDN
> W NhHFHO

XIOS Function Numbers

CONSOLE STATUS
CONSOLE INPUT
CONSOLE OUTPUT
LIST OUTPUT
PUNCH OUTPUT
READER INPUT

HOME

SELECT DISK
SET TRACK

SET SECTOR

SET DMA OFFSET
READ

WRITE

LIST STATUS
SECTOR TRANSLATE
SET DMA BASE

GET SEGMENT TABLE
POLL DEVICE

START CLOCK

STOP CLOCK
MAXIMUM CONSOLES
MAXIMUM LIST DEVICES
SELECT MEMORY
IDLE

FLUSH BUFFER

27

MP/M-86 System Guide 3.3 Character I/0 Functions

3.3 Character I/O Functions

d d Je & e g J do g g do g Kk Kk gk d d K Kk K koK d d o Kk Kk d ok Kk g ok gk ok ok ok gk ok koK ok ok okkdkk

* *
* XIOS Function 0: CONSOLE STATUS *
* *

* *
* Return Input Status of Specified Console *
* *

o g ke de g ok ok K de K K g g ok Kk ok gk de ok K ko gk k ko kkk Kk ok kkkdkkkkkkikkkkkkk
* Entry Parameters:

*

* Register CL: Console to check *
* *
* Returned Value: *
* Register AL: OffH if ready *
* 0 if not ready *
* BL: Same as AL *
khhhkhkhkhhhhkhhkhkhkhkhhkhkhkhhhhhhhhhhhkhkhkhkhkhkhhkkhhhhkkkkkkx

The CONSOLE STATUS routine returns the input status of the
specified console. In the example XIOS, the BX register is used to
pass information to routines that call this routine internally. BX
is overwritten to be the same as the AX register by the ENTRY
routine on an external call.

28

MP/M-86 System Guide 3.3 Character I1/0 Functions

khkkkhkhkhkhkhkhkhhkhkhkkkhkkkhkhkhkkkkhkkkhkkkkkkkkkhkhkkkkkkkkkkk

* *
* XIOS Function 1l: CONSOLE INPUT *
* *
khkhkhkhkkhkhkkkhkkkhkhkkkhkhkhkhkkhkhkhkkhkkhkhkhkhkhkhkhkhkhkkhkhkhkhkkkhkkkik
* *
* Return Character from Specified Console *
* *

Yhkkhkhkhkhkhkhkkhkkkhkkkkhkkkkhkhkhkhkhkhkkkkkkhkhkkkkhkkkhkhkkkkkkkk

Entry Parameters: *
Register CL: Console number

*

Returned Value:
Register AL: Character

BL: Same as AL

*
*
*
*
*
khkkhkhkhkkhkhkhkkhkhkhkhkhkhkkhkkkkkkkhhkhkhkhkkhkhkhkkhkkhkhkkkhkkkkkkk

*
*
*
*
*
*

The CONSOLE INPUT function reads a character from the specified
console and returns it in register AL. The parity bit may be masked
off if necessary to run application programs that expect only seven-
bit ASCII. If a character is not ready, Function 1 suspends the
calling process until a character is typed before returning.

There is a major difference between MP/M-86 and CP/M-86 in how
they wait for an event to occur. In CP/M-86, the routine typically
goes into a hard loop to wait for a status to change. In MP/M-86
this is NOT recommended except during the very early stages of
debugging the XIOS. There are basically two ways to wait for a
hardware event to occur in MP/M-86. For non-interrupt driven
devices, the POLL DEVICE method is used. For interrupt-driven
devices, the FLAGSET/FLAGWAIT method is used. These are both ways
for a process to give up the CPU while waiting for an external
event. This way other processes can run concurrently with I/O
operations. These methods are described in the MP/M-86 Programmer”s
Guide under Functions 131 through 133. The console input routines
in the XIOS use the POLL DEVICE method.

29

MP/M~-86 System Guide 3.3 Character I/0 Functions

khkkkkhkkhkhkhkhkhkkhkhkhhkkkhkhhhkhkhkhhhkkkkhhhhkkkhkhhhkhkhkhhkk

* *
* XIOS Function 2: CONSOLE OUTPUT *
* *
K de g g de de deode deodeode deodeode Kok ok de ok ke ke ok kg kok ko ded ok ok gk ok gk ok ok ok ok ok ok k ko kkkk
* *
* Output Character to Specified Console *
* *

khkhkhkhkkhkhkhkkkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhkkhkkkkhkhkhhkkhkkkhkkkkkk

* Entry Parameters: *
Register CL: Character
DL: Console Number

Returned Value: None

*
*
*
*
khkhkhkkkkkkkkkhhkhkhkhkkkkkkkkkkkkhkkkkhkkkkkkhkhkkkkhkkkhkkk

*
*
*
*
*

The CONSOLE OUTPUT function sends the specified character to
the specified console. The character is in ASCII, with the high-
order parity bit set to zero.

On certain consoles, it may be necessary to ensure a delay
between a carriage return line feed, or form feed and the next
character. If this is the case (such as on a TI Silent 700
terminal), a variable should be set with the number of ticks that
must occur before the next character can be sent. The TICK
Interrupt routine can decrement this count if it is non-zero. On
the next CONSOLE OUTPUT call to this console, if the count is non-
zero, the DELAY function should be called with the number of ticks
set to the count. Upon return, the character can be sent. Another
mechanism which is more common but may induce more overhead is to
use a null count. In this case, a specified number of null
characters are sent to the console before the next character is
sent.

30

MP/M-86 System Guide 3.3 Character I/0 Functions

kkkhkhkhhkkhkhkkkkkkkhkkhkkhkhhkhkhkhkhkkkkkhkkhkhkhkhkhkhkkkkkkhkkhkkk

* *
* XIOS Function 3: LIST OUTPUT *
* *

khkkkhkhkkkhkhkhkkhkhkhhkkhkhkhkkhkhkkhkhkhhkhkhkhkkkkkkhkkkkkkkkk
* *
* Output Character to Specified List Device *
* *
khkkkkhkhkhkkhkhkhkhkkkhkkhkhkkhhkkhkhkhkhhkkkkhkhhkkkkkkkkkkk
* Entry Parameters:
Register CL: Character

DL: List Device number

*

Returned Value: None

*
*
*
*
khkkkhkkhkhhkhkhkhkkhkhkkkkhkhdkhkkhkhhhkkkkhhhkhkkkhkhkhkhkkkkkk

*
*
*
*
*

The LIST OUTPUT function sends the specified character to the
specified List Device. List device numbers start at 0. The LIST
OUTPUT function must support the number of List devices returned by
the MAXLIST function. The specified character is in ASCII with zero
parity.

31

MP/M~-86 System Guide 3.3 Character I/0 Functions

Fekdde g dehokdeded gk ded ddedded ok ok odokdodkdddkdddhdkdhhhdhkkdkdkdkkkkk

* *
* XIOS Function 4: PUNCH OUTPUT *
* XIOS Function 5: READER INPUT *
* *
khkhhkhkkhkhkhkhkhkhkhkhkhhkhkhkhkhhkhdhkhkhkhkhkhkhhkhkhkhkhkhkhkkhkhkhkkkkkkhkk
* *
* The Punch and Reader functions are not *
* Supported under MP/M-86 *
* *

de de K de g d dede g dede g de g de g g de g de de e dede K de ke Kk de kg de ke ke ok ok ok ok kkokkkkkkkk

* Entry Parameters: *
Register CL: Character

* *
* *
* Returned Value: *
* *
* *

Register AL: Character
khkhkkhkhkhkhkhkkkhkhkhkhkhkkhkhkhkhkkhkhkhkkkkhkhkkkhkhkkhkhkkkkkkkhkkkk

The PUNCH OUTPUT and READER INPUT functions are not supported
under MP/M-86. They are included in the XIOS for compatibility with
CP/M-86 programs that call the DIRECT BIOS function. The PUNCH
OUTPUT routine should simply return, therby allowing programs to use
the function as if the PUNCH device did not exist. The READER INPUT
function should return a character 26 ({2) which indicates the end
of file.

32

MP/M-86 System Guide 3.3 Character I/0 Functions

Ak A Ak A Ak hkhhkhkdkhhkhhhhhhhhhhhhkhkhhihkhhhkhhkhhkhhkkk

* *
* XIOS Function 13: LIST STATUS *
* *
khkkhkhhkhkhhhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhhhkhhhkhkhhkhkhkhhhkhhkkhkkdkkk
* *
* Return List Output Status *
* *

(2SR A2 RS2 28R 2222 22X 22 R X2 R Rttt
* Entry Parameters: *

* Register CL: List Device Number :
*

* Returned Value: *
* Register AL: OffH if Device Ready *
* 0 if Device Not Ready *
* BL: Same as AL *
hkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkkkhhkkkkk

The LIST STATUS function returns the output status of the
specified 1list device. This function is only accessed through the
CALL BIOS function.

33

MP/M-86 System Guide 3.3 Character I/0 Functions

khkhkhhhkhhhhhhkhkhhhhhhhhkhhkhkhhhhhkhkhkhhhhkhhhhhhhkhkhkhdhikk

* *
* XIOS Function 20: MAXIMUM CONSOLES *
* *
khhkhhhkhhkhkhhkhkhkhhkhkhkhkhkhkhhkhkhkhkhkhkhkhhkhkhkhkkhkhkhkhhkkhkkkh
* *
* Return the Maximum number of consoles *
* Supported under this XIOS *
* *
khkhkhkhhhhkhkhkhhhhhhhhkhhkhhkhhkhhkhhhhhkhkhkhhhhhhkhhhhkhhkhhhk*®
* Entry Parameters: None *
* *
* Returned Value: *
* Register AL: Number of Consoles *

khkkhkhkhkhkhhkhkhkhhhkkhhkhhhkhkhhhhhhkhkhhhkhhhdhhhdhhhhhikkkkk

The MAXIMUM CONSOLE function returns the number of consoles
that this XIOS will support. This function may return less than the
actually supported consoles but never more. The number of Character
Control Blocks that will be used for consoles is determined by the
return value of this routine.

34

MP/M-86 System Guide 3.3 Character I/0 Functions

do he e e K ke ok de de ok ok g g g ke ke g Kk ke g ke ke ke ke ok ke ke g K de K de ke e ke K ke ke ke ke ke ke K Kk ok k ok

* *
* XIOS Function 21: MAXIMUM LIST DEVICES *
* *
de de Kk K de ko g K de do d K do de ok ke de K K de K gk ke ok k ko k ok ko Kok dkk ok kkkhkkkhkkkkkk
* *
* Return the Maximum number of List *
* Devices Supported under this XIOS *
* *

J¢ Je ke de ok de de de ke Je g de K de K de ke do d g K de dc de g K ke K de K de ok de ok K ke k de ok ok ok k ok ok kkkkk
* Entry Parameters: None *

* *
* Returned Value: *
* Register AL: Number of Consoles *

hhkhhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhkhkhhkhkkkhkkhkkhkhkkhkhhkhkkhkkkkhkk

The MAXIMUM LIST DEVICE function returns the number of list
devices that this XIOS will support. This function may return less
than the actually supported list devices but never more. The number
of Character Control Blocks that will be used for list devices is
determined by the value returned from this routine.

35

MP/M-86 System Guide ' 3.4 I/0 Functions

3.4 Disk I/0 Functions

Disk I/0 is always performed by a sequence of calls to the
various disk I/0O functions. These initialize the disk number to
access, the track and sector on a particular disk, and the DMA
offset and segment addresses involved in the I/O operation. After
all these parameters are initialized, a call is made to the READ or
WRITE function to perform the actual I/0 operation. Note that there
is often a single call to the SELECT DISK function to select a disk
drive, followed by a number of read or write operations to the
selected disk before selecting another drive for subsequent
operations. Similarly, there may be a call to set the DMA segment
base and a call to set the DMA offset followed by several calls
which read or write from the selected DMA address before it is
changed. The track and sector functions are always called before
the READ or WRITE operations are performed.

The READ and WRITE functions should perform several retries (10
is standard) before returning error conditions. The HOME function
may or may not actually perform the track 00 seek, depending upon
the disk controller characteristics; the important point is that
track 00 has been selected for the next operation, and is often
treated in exactly the same manner as SETTRK with a parameter of 00.

The Disk I/0 routine interfaces are the same in MP/M-86 as in
CP/M-86 with the exception of the SECTRAN return register. Also,
hard loops within the disk routines must be changed to either POLL
DEVICE or FLAG WAITS. For initial debugging, MP/M-86 will run with
the CP/M-86 BIOS disk routines with the exception of the SECTRAN
register difference. Once the system runs well, all hard loops
should be changed to either POLL DEVICE or FLAG WAITS. See the
Discussion on the CONSOLE INPUT function.

36

MP/M-86 System Guide ' 3.4 I/0 Functions

kkkhkhkhkhhkhhhkhkhkhkhhkkkkhkkkkkkhkhkkhkhkkkkhkkkkhkkkkkkkkkkk

* *
* XIOS Function 6: HOME *
* *
khkhkhkhkkhkhkkhkhkhkhkhkkhkhkkhkhhkhkhkhkhkhkkhkkhkhkkhkkhkhkhkhkhkhkkhkkkikkk
* %*
* Select Track 0 of the current Disk *
* *

khkkhkhhkhkhkhkhkhkhhkkhkhkkhkhkhkhkhkhkhkhhkhkhkhkkhkhkkkhkkkhkhkhkhhhhhkhkhkk

* Entry Parameters: None *
* *

* Returned Value: None *
IR 2 E A EEEEESFEREEETEREEEEEREREEESER R 2SS R R R RS R 2 2 8]

The HOME function returns the disk head of the currently
selected disk to the track 00 position. If a disk controller does
not have a special feature for finding track 00, the HOME call can
be translated into a call to SETTRK with a parameter of 0.

37

MP/M-86 System Guide 3.4 I/0 Functions

khkhkhkhkhkhkhhkhhkhkhkhkkhkkhkhkhkhkhkhkhkhkhkkkkkhkhkhkhhkkhkkhhkkkkhhhkkkk

* *
* XIOS Function 7: SELECT DISK *
* *
khkhkhkhhkhkhhkhkhhhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkkhkhkkhkhkkhkhkkkhkkhkkk
* *
* Select the specified Disk Drive *
* *

khkkhkhkhkhkhkhhkhhhkhkhhhkhkhhkhkhkhhkhkhhkhkhhkhkhkhkhkhkkhkhkhkhkhkkhkhkkhkik
Entry Parameters:

Register CL: Disk Drive Number
DL: (bit 0):0 if first select

*
*

Register AX: Offset of DPH

BX: Same as AX

%* *
%* *
* *
* Returned Value: Offset of DPH *
* *
* *
Ahkkhkhkhkhkhkhkhkhkhkhhkkhkkkhkkhkhkhkkkkkkk

The SELECT DISK (SELDSK) function sets the current disk drive
for further operations. The Specified Disk Drive Number is 0 for
drive A, 1 for drive B, and so on up to 15 for drive P. The sample
XI0S supports two drives. On each disk select, SELECT DISK function
must return the offset of the selected drive”s Disk Parameter Header
relative to the SYSDAT segment address. For standard floppy disk
drives, the content of the Header and associated Tables does not
change.

If there is an attempt to select a non-existent drive, SELDSK
returns 0000H as an error indicator. Although SELDSK must return
the Header address on each call, it is advisable to postpone the
actual physical disk select operation until an I/0 function (seek,
read or write) is performed. This is due to the fact that disk
select operations may take place without a subsequent disk operation
and thus disk access may be substantially slower using some disk
controllers.

On entry to SELDSK it is possible to determine whether it is
the first time the specified disk has been selected. Register DL,
bit 0 (least significant bit) is a zero if the drive has not been
previously selected. This information is of interest in systems
that read configuration information from the disk in order to set up
a dynamic Disk Definition Table.

38

MP/M-86 System Guide 3.4 I/0 Functions

khkkhkhkhhkhkhkhkhkhkhkkhkhhkhkkhkhhhkhkhhkhkhhkhkrkkhhkhhkkkkhkhkhkkhkkkhk

* *
* XIOS Function 8: SET TRACK *
* *
khkkhkhkkkhkhkkkkhkhkkkhhkhkkkkhkhkkkhkkhkkkkkhkkhkkhkkhkhkhkkkkkkhkkkxk
* *
* Set Specified Track Number *
* *

khkkhkhhkhhkhhkhhhkkhhhhkhkhhhkhdhkhhkhhrhkhkhkhkhkhhhkhkkhkhhkhhhkkk

* Entry Parameters: *
* Register CX: Track Number *
* *

* Returned Value: None *
AEKAEAAAKRARARRAAAAARAARAAR A A ARk ARk hkhkhkhkAhkrhkhkhhhkhkkk

The SET TRACK (SETTRK) function sets the specified track number
for subsequent disk accesses on the currently selected drive. The
selected track may be stored in memory delaying the seek until the
next READ or WRITE operation actually occurs. Register CX can take
on values in the range 0-76 corresponding to valid track numbers for
standard floppy disk drives, and 0-65535 for non-standard disk
subsystems.

39

MP/M-86 System Guide 3.4 I/0 Functions

% e gk kg ok de ok ke de ok ok d ok ko koK ok ok d g K Kk ok d kK d Kk ke k ok ok ok ok ok ok ok ok kkkk

* *
* XIOS Function 9: SET SECTOR *
* *
de ko kok gk ok ek ok ok gk ok dkdkhkhodkdhkdkkdhkhkkkkkhkkdhkhkkdhkdhkdhkkhkikkikkk
* *
* Set Specified Sector Number *
* *

khkhkhkhkhkhkkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkkhkhkhkhkhkhkhkhkhkhkkhkkkkkkkk

* Entry Parameters: *
* Register CX: Sector Number *
* *

* Returned Value: None *
khkhkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkhkhhhkhkkikkkkkk

The SET SECTOR (SETSEC) function sets the specified sector
number for subsequent disk accesses on the currently selected drive
(see SECTRAN, below). This information may be sent to the disk
controller at this point, or delayed until a READ or WRITE operation
occurs.

40

MP/M-86 System Guide 3.4 I/O Functions

khkkhkhkhhkhkhkhhhhkhkhkhkhkhhkhkhkhkhhhkkhhhkkhhhkhkhkhhktthkhkhkkttkk

* *
* XIOS Function 10: SET DMA OFFSET *
* *
khkhhhhkhkhhkhhkhkhkhhkhhkhkhhhhkkhhhhhhkkhkhkhhkhkkhkkhhhkkkhkh
* *
* Set Disk Memory Access Offset *
* *
khkkhhhkhhkhkhhkhkhkkhkkhkhkhkhkhkhkhkhhhkkhkkhkhkkkkhhkkkkhkkkkkkkk
* Entry Parameters: *
* Register CX: DMA offset *
* *
* Returned Value: None *

khkhkhkkkhkkhkhkhkhkhkkkkhkhkhkhkhkhkhkhkkkkkkkkkhkhhhkkkkhkkkkhkhkhkhkhkk

The SET DMA OFFSET function sets the DMA offset for subsequent
READ or WRITE operations. For example, if CX = 80H when SETDMA is
called, then all subsequent READ operations read their data into 80H
through OFFH offset from the current DMA segment base, and all
subsequent WRITE operations get their data from that address, until
the next calls to the SET DMA OFFSET and SET DMA BASE functions
occur. Note that the disk controller need not actually support
direct memory access. If, for example, all data is received and
sent through I/0 ports, the XIOS which the user constructs will use
the 128-byte area starting at the selected DMA offset and base for
the memory buffer during the following read or write operations.
Many disk controllers only support actual DMA operations to selected
portions of memory. 1In this case, the data should be copied to the
selected DMA address after the restricted physical DMA is complete.

41

MP/M-86 System Guide 3.4 1I/0 Functions

de e de de de g de de ke de g de g g de ke K g de ke ke ke de g g de ke ok de ke ok g d de gk ke g ke ke ke Kok ke ok ok ok ok ok

* *
* XIOS Function 11l: READ *
* *
khkkkdkhkhkhkhkhhkdkhhhkhkhhkhkhkhhkhkhkhkhkdkhkhdkhkhkhkhkhkhdkdkhddhkhddhkhkkikkk
* *
* Read a Sector from Current Drive *
* *
kkhhkkhkkhhkhhkhkhkhkhhhhhhhhkhkhhhhkhhkhhhhhkhhhhhkhkhkhhhhhkkk
* Entry Parameters: None *
* *
* Returned Value: *
* Register AL: 0 if No Error *
* 1 if Physical Error *
* BL: Same as AL *
% de de de g d de do de de de g e g de e de de g e de g de de dede ke g de e ok g de K de ke ke de de ke e ke ke ke ke ke ke ke K

Assuming the drive has been selected, the track has been set,
the sector has been set, and the DMA offset and segment base have
been specified, the READ subroutine attempts to read one sector
based upon these parameters, and returns one of the following Error

Codes.

0 no-errors occurred
1 non-recoverable error condition occured

Currently, MP/M-86 responds only to a zero or non-zero value as the
Error Code. That is, if Error Code 0 then MP/M-86 assumes that the
disk operation completed properly. If an error occurs, however, the
XIOS should attempt several retries to see if the error is
recoverable. Recovering from an error depends on the calling
processes Error Mode. See the MP/M-86 system function, SET BDOS
ERROR, in the MP/M-86 Programmer”s Guide for more details.

42

MP/M-86 System Guide 3.4 I/0 Functions

khkkkkkkkkhkhkhkhkkhkhkhkkhkhkkkkkhkkkhkhkhkkkkhkkkkkkkkkkkkkkk
* *
* XIOS Function 12: WRITE *
* *
khkkkkkkhkkkkhkkhkkkkhkkkkhkkkhkkhkhkkhkkkkkkkhkkkhkkkkkkhkkkkkkk
* *
* Write a Sector to the Specified Disk *
* *
khkhkkkhkhkkhkkkhkhkkhkkhkhkkkhkkkkkkhkkkkhkkhkkkkhkkkkkkkkkkkkkkkkk

* Entry Parameters: *
Register CL: - See Error

- Codes

described

- below

WO

Register AL: 0 if No Error
1l if Physical Error

BL: same as AL

*
*
*
*
*
*
*
*
*
khkkkhkhkkhkhkkkhkkkhkkhkhkhkkhkkkhkhkkhhkhkhkkhkkhkkkkhkhkkkhkkkkk

*
*
*
*
*
* Returned Value:
*
*
*
*

The WRITE function writes the data from the currently selected
DMA buffer to the currently selected drive, track, and sector. The
data should be marked as "non-deleted data" to maintain
compatibility with other CP/M and MP/M systems that use standard
soft-sectored floppy drives. The Error Codes given in the WRITE
command are returned in register AL, with error recovery attempts as
described in the READ function. On entry to the Write function the
CL register contains information to allow effective sector
blocking/deblocking. The Entry Codes are listed below.

deferred write

Non-deferred write

deferred write: 1st Sector, unallocated Block
Non-deferred write: 1st Sector, unallocated Block

WO
I |

For additional information on the use of these Entry Codes see
Sectior. 4.7, Blocking/Deblocking Algorithms.

43

MP/M-86 System Guide 3.4 I/O Functions

khkkhkhkhkhhkhkhkhkhkhkhkhkkkkkkkhkhhkhhkhkhkkkkkkkhkkkkkkkkkkkkkk

* . *
* XIOS Function 14: SECTOR TRANSLATE *
* *
khkkkhkhkkhkhhhkkkkhhkkhhhhkhkkhkhhkkkhkkhhkkkhkhhkhhhhkkkk*
* *
* Translate Sector Number given Translate Table *
* *

khkhkhkhkkhkhhkkkkhkhkkhkhkhkkhkhkkhkkhkkhkkhkhkhhkkkhkhhkhkkhhhkkkkhkhkk
* Entry Parameters: *

* Register CS: Logical Sector Number *
* DX: Offset of Translate Table *
* *
* Returned Value: *
* Register AX: Physical Sector Number *
* BX: Same as BX *

*

12222 A R R R RS S R SRR SRRR R RRRRRRRRRRRRERERER,

The SECTOR TRANSLATE (SECTRAN) function performs logical to
physical sector translation to improve the overall response of MP/M-
86 systems using standard floppy drives. MP/M-86 is shipped on
standard IBM 3740 8-inch floppy drives with a "skew factor" of 6,
where five physical sectors are skipped between sequential read or
write operations. This skew factor allows enough time between
sectors for most programs to load their buffers without missing the
next sector. 1In computer systems that use fast processors, memory
and disk subsystems, the skew factor may be changed to improve
overall response. Note, however, that the user should maintain a
single density IBM-compatible version of CP/M-86 for information
transfer into and out of the computer system, using a skew factor of
6.

In general, SECTRAN recelves a Logical 8ector uumLer. MLe
Logical Sector Number may range from 0 to the number of sectors -1.
SECTRAN also receives a Translate Table offset relative to the
SYSDAT segment. The Logical Sector Number is used as a index into
the Translate Table. The number found in the table is the Physical
Sector Number that is to be returned. 1If DX = 0000H no translation
takes place, and the Logical Sector Number is simply returned.
Otherwise, SECTRAN computes and returns the translated Sector
Number. SECTRAN is called even when no translation is specified in
the Disk Parameter Header.

A A

MP/M-86 System Guide 3.4 1I/0 Functions

khkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkhkhkhkkkkkkkhkhkhkkkkkkkkhkhkkkkkk

* *
* XIOS Function 15: SET DMA BASE *
* *
A SRS SRS SRR RSS RS RR R RRRE R REE R R
* *
* Set the Direct Memory Access Segment Address *
* *
khkkkhkhkhkhkhkhkkhkkhkhkkhkkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkkkhkkkkkkkkk
* Entry Parameters: *
* Register CX: DMA Segment Address *
* *

* Returned Value: None *

khkkhkkkhkhkhkhkhkhkhkkhkkhkkhkhkhkhkhkhkkhkkkkkhkhkkkkkhkkkkkkkkkxkkkk

The SET DMA BASE function sets the segment base for subsequent
DMA read or write operations. The XIOS will use the 128-byte buffer
indicated by the DMA BASE and the DMA OFFSET during READ and WRITE
operations.

45

MP/M-86 System Guide 3.4 1I/0 Functions

2RSSR SRR RS ERRSRRSRARS R RE SR]

* *
* XIOS Function 24: FLUSH BUFFERS *
* *
khkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhhkhkhkhkhkhhkkhkhkhkhkhkkkkkkh
* *
* Write all pending write buffers to disk *
* *
khkhkhkkhkhkhkhkhkhkhkhkhkhhkhkhkhhhkhkhkhhkhkhkhkhkhhkhkhkhhhkhkhkhkhkhkhkkhkhkkkii
* Entry Parameters: None *
* *
* Returned Value: *
* Register AL: 0 if No Error *
* 1 if Physical Error *
khkkkhkkhkhkhkhkkhhkhkhkhkhkhhkhkhkhkhhkkkkhkhkkk

The FLUSH BUFFERS function indicates that all
Blocking/Deblocking Buffers should be flushed. This mechanism is
used whenever a process terminates, a file is closed or a disk is
reset. The Error Codes given in the Flush Buffers command are
returned in register AL, with recovery attempts as described in the
READ function.

46

MP/M-86 System Guide 3.5 Real-Time Monitor Functions

3.5 Real-Time Monitor Functions

kkkkkhkhhkhkhkhkhkhkhkkhhkkhkhkhkkhkhkkhhhhkhkkhkhhhkhkhkkkkhkhkhkhkhkkk

* *
* XIOS Function 17: POLL DEVICE *
* *
kkhkhkhkhkkhhkhkhhkhkhkhhkhkhkhhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkkhhkkhkhkkhhhkk
* *
* Poll Specified Device and Return Status *
* *

hhkkhkhkhkhkhkkhkhkhkhhkhkhkhkrkhkhhkhkhkhkhkhhkhhkhkhkkhhhkhkhhkkhkkkkhkkkkkk
* Entry Parameters:

*

* Register CL: Poll Device Number :
*

* Returned Value: *
* Register AL: OffH if ready *
* 0 if not ready *
* BL: Same as AL *
AAKkAAkKKKAk KA A A Ak AAhA kA hkhhhhkrhkhkhkhkhkhkhkhkrhkhhkhhhkthhhk

The POLL DEVICE function polls a device indicated by the Poll
Device Number and returns its current status. It is called at every
dispatch, for each device that is being polled.

A process will poll a device only if the MP/M-86 system
function 131 (POLL DEVICE) is called. The Poll Device Number used
as a argument for that function is the same number that the XIOS
POLL DEVICE function receives as a parameter. Typically only the
XIOS will call the MP/M-86 function. The mapping of Poll Device
Numbers to actual physical devices is maintained totally by the
XIOS. Each polling routine must have a unigue Poll Device Number.
For instance, if console output and input are being polled, the
console output poll routine would be associated with a different
Poll Device Number than the console input poll routine.

The sample XIOS shows the POLL DEVICE function taking the Poll
Device Number as an index to a table of poll functions. Once the
address of the poll routine is determined, it is called and the
return values are used directly for the return of the POLL DEVICE

function.

47

MP/M-86 System Guide 3.5 Real-Time Monitor Functions

khdhkkkhkhkhkhkhkhkkkkhkkkkhkhkhkhkkhkhhhhhhhhhkhkhkhkhkhkhkhhhhhhkkkkk

* *
* XIOS Function 18: START CLOCK *
* *
khkhkhkkkhhkhkhkkhkhkhkhkkhkhhkhkhhhhkhkhkhhkhkhkhhhkhkhkhkhhkhkhkkhkhhkkkhkik
* *
* Turn on Tick Flag Setting *
* *

hkhkhkhkhkhkkhkkhkkhkkkhkkhkhkhhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkkhkhkkkkkkkkk

* Entry Parameters: None *
* *

* Returned Value: None *
khkkhkkhkhhhkhkkhkhkhkhhhkhkkhhkkhhkkhkhhkkhkkhhkkhkhkhkkhkikkkikkkkki

The START CLOCK function enables the FLAG SET function calls on
TICK interrupts. When the Operating System receives a Tick
interrupt, its Interrupt Handler calls the FLAG SET function and
passes it an argument of 1 (Tick Flag), while the enable condition
is true. (See the use of the clockon Flag in the example XIOS).
The system calls START CLOCK whenever a process is delaying for a
specified number of clock ticks. The system calls STOP CLOCK
whenever a process is delaying for a specified number of clock
ticks. The system calls STOP CLOCK when there are no processes
delaying. This eliminates unnecessary processing by the TICK
Process.

48

MP/M-86 System Guide 3.5 Real-Time Monitor Functions

khhkhkhhhhhkhkhkhkhkhkhhrhddddhkhrhhhhhhrhkhhhhhhkhkhkhkhkhkkkkkkkk

* *
* XIOS Function 19: STOP CLOCK *
* *
khkkkkkhkkkkkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkhkkhkkhkkhkkkhkkkkkkkkxkx
* *
* Disable Tick Flag Setting *
* *
Ahkkhkhkhkkhkhkhkkkkhhkhhkhkhkkhkkdhhkkhkkhkhkhkkkkhkkkhkkkkhkkkkkkkxk
* Entry Parameters: None *
* *

*

* Returned Value: None
khkkkhkhkhkhkhkhkhkhkkkkkkkhkhkhkhkhkhkhkkhkhkkkkkkkhhkrxhkhkhkkkkkkkkk

The STOP CLOCK function disables the setting of the Tick Flag
by the Tick interrupt routine. See Function 18.

49

MP/M-86 System Guide 3.6 Memory Functions

3.6 Memory Functions

khhkhkhkhkhhhhkhkhkhkhkhkhkhhkhhkhkhkhhkhkhkhhhkhkdhhhdhhhhdhkdhkdhkiihkhkhkkkkk

* *
* XIOS Function 16: GET SEGMENT TABLE *
* *
kdhkhkhhdhhhkddhhddhhddkhdhkdddddhddkdhhddkhkihdkhhdhhdkhkihkkhkkx
* *
* Not supported under MP/M-86 *
* *
khkhkhkhkhkhkhkkkhkhkhkhhkhkhkhkkkkhkkhhkhkhkhkhkhkkkkhkhkkkkkhhkkkkkkkk
* Entry Parameters: None *
* *
* Returned Value: None *

khkkkhhkhhhhkhhhkkhkkkkkkhkkkhkhkhkhkkhhhkhkhkhkhkkkkkkkkkkkkkk

% de K K de g de g K g ke ke ook ke g ke ke gk K e de e de K de de de gk gk de ek ke ok K g ke ke Kk ok ok ok ok ok

* *
* XIOS Function 22: SELECT MEMORY *
* *
khkhkkhkhkhkhkhkhkhhhkhkhkhkhkhkhkhkhkkkkkhkhkkhkhkhkhkhkhkhkkkkhkhkhkhkkkkhkkkk
* *
* Not supported by MP/M-86 2.0 *
* *
khkhkhkhkhkhkhkhkhkkhkhkkkkhkdhkkhdhkhkhkhkdkkhhdkkkhkhikhkdkikkkkkkkk
* Entry Parameters: None *
* *
* Returned Value: None *

Je do K d de Kk ke ke ke koK K Kk de ok ok ke de K ke de K ok ke de K ke ke ke ke ko ke Kk ke Kok ok ok Kok dke koK ok ok kkk

The SELECT MEMORY function is not currently used by MP/M-86.
In future versions of MP/M-86, this function will be used in
conjunction with memory management hardware.

50

MP/M-86 System Guide 3.7 IDLE

3.7 IDLE

khhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkhkkkhkhkhkkhkhkkhkhkhkhkhhhhkhkhkkhkkhhhkkkk

* *
* XIOS Function 23: IDLE *
* *
khkkkhkhkhkhkhkhkkhhkhkhkhhkhkhkhkhkhkhbhkhhkhkhkhhkhhkhhhkhhkhhkhkkhkhhkhhhik
* *
* Perform 1dling function *
* while no processes are running *
* *

kkkhhdhhkhkhkhhhhhkhkhhdhhkhkhkhhhhkkhhhhhhhkhkhkhhhhhhkhrhhhkhkk

* Entry Parameters: None *
* *

* Returned Value: None *
I EAZEEEEEXEEEEETEETE XTI EEE R R EEEEEEX SRR E L8 K

Upon system initialization, the IDLE process will jump to the
IDLE function of the XIOS. The IDLE function must never return. It
must stay in a loop and use no resources that may allow it to
relinquish the CPU resource. The suggested IDLE function as
implemented in the sample XIOS simply calls the MP/M-86 DISPATCH
function and loops. This allows polled devices to be polled by the
Dispatcher if any processes are waiting for such a device. If all
devices are interrupt-driven, then the loop could simply halt
instead of calling the Dispatcher. In this case, the first
interrupt that sets a System Flag will call the Dispatcher to allow
a process to continue executing.

The IDLE routine has the lowest priority (255) available in the

system. This guarantees that it will always run only when no other
process is ready to run.

51

SECTION 4

BUILDING THE XIOS

Appendix C contains an example XIOS for MP/M-86 2.0. The XIOS
is assembled and then the command file is generated as an 8080 Model
program with GENCMD. 1In the 8080 Model XIOS, the common code and
data is “ORG”d at location 1000H. The XIOS may also be assembled
and the command file generated as a Small Model program. For the
Small Model XIOS, the Code Segment is “ORG”“d at OH and the Data
Segment is “ORG”°d at 1000H.

MP/M-86 accesses the XIOS through two entry points, INIT and
ENTRY, at location 0 and location 3 relative to the XIOS code module
(offset 1000H and 1003H for the 8080 Model, and offset OH and 3H for
the Small Model). The INIT routine is for all system hardware
initialization and the ENTRY routine is for all other XIOS
functions. All access to the XIOS is done through the two entry
points in the XIOS with the Far Call instruction and therefore must
return with a Far Return instruction. The example 8080 Model XIOS
must fit within the 64K System Data Segment along with the System
Data Area and Table Area. Once the source of the XIOS has been
modified for a particular configuration, the following commands will
generate an XIOS.MPM file for use with GENSYS:

(1) ASM86 XIOS
(2) GENCMD XIOS 8080

(3) REN XIOS.MPM=XIOS.CMD

4.1 Converting the CP/M-86 BIOS

The implementation of MP/M-86 for a given hardware environment
assumes that a fully debugged CP/M-86 BIOS has already been
implemented preferably on the target MP/M-86 machine. The
implementation of CP/M-86 on the target MP/M-68 machine will also
simplify debugging the XIOS using DDT86. A CP/M-86 or a running
MP/M-86 system is also required for the initial generation of the
MP/M-86 system when using GENSYS. The CP/M-86 BIOS may also be used
as a basis for construction of the target XIOS. To transform the
CP/M-86 BIOS to the MP/M-86 XIOS the following changes and additions
must be made.

1. The BIOS Jump Table must be changed to use the two XIOS
entry points, INIT and ENTRY. These entry points are
assumed to be Jump instuctions to the corresponding
routines. The INIT routine takes the place of the CP/M-

53

MP/M-86 System Guide 4.1 Converting the CP/M-86 BIOS

86 cold start entry point and is only called during the
initialization of the system following the system boot.
The ENTRY routine is used as a single entry point to
index into all of the XIOS functions and replaces the
BIOS Jump Table. The ENTRY routine is entered with the
XIOS function number in register AL. The example XIOS
uses the value in the AL register as an index into a
function table to obtain the address of a corresponding
function.

2. A Supervisor interface must be added for execution of the
MP/M-86 system functions from within the XIOS. The XIOS
is considered within the Operating System and is already
using the User Data Area stack. Therefore the XIOS
cannot make function calls in the conventional manner.
(See Section 4.6).

3. A real-time interrupt clock must be added for system
resource timing, to maintain the system DELAY function
and a time-of-day clock. (See Section 4.4.2).

4, The additional XIOS functions 17 through 24, listed below,
must be added.

Function 17 POLL DEVICE

Function 18 START CLOCK

Function 19 STOP CLOCK

Function 20 MAXIMUM CONSOLES
Function 21 MAXIMUM LIST DEVICES
Function 22 SELECT MEMORY
Function 23 1IDLE

Function 24 FLUSH BUFFER

Each of these additional XIOS functions are described in
detail in Section 3.

5. All polled devices must be changed to make use of the
MP/M-86 POLL DEVICE system function. (See Sections 3.5
and 4.2, and the MP/M-86 Programmer”s Guide).

6. All interrupt-driven devices must be changed to use the
MP/M-86 FLAG WAIT and FLAG SET functions, (See Section
4.3 and the MP/M-86 Programmer”s Guide).

4.2 Polled Devices

Polled 1I/0 devices under the CP/M-86 BIOS will typically
execute a small compute-bound instruction loop waiting for a ready
status from the I/0 device. 1If this is done in the MP/M-86 XIOS a
large amount of the CPU execution time is spent in this loop. To
eliminate this wasteful use of the CPU resource, the XIOS must use a
system function, POLL DEVICE, to place this polling process on a
Poll List. The system then polls the specified I/0 device at every
dispatch and returns to the polling process only when a ready status
has been received. By using the POLL DEVICE function the polling
process does not remain in a ready state and releases the CPU
resource to other processes until a it receives a ready condition.

54

MP/M~86 System Guide 4.2 Polled Devices

To do polling, a process calls the MP/M~86 POLL DEVICE function
with a Poll Device Number. The system will then call the XIOS POLL
DEVICE function with the same Poll Device Number at every dispatch
until the device is ready. The example XIOS uses the Poll Device
Number to index into a table of poll functions, calls the
appropriate function and returns the I/0 device status to the
system.

4.3 Interrupt Devices

As is the case with handling a polled I/0 device, a process
handling an interrupt-driven I/0 device should not execute a wait
loop or a halt instruction while the process is waiting for an
interrupt to occur.

Interrupt-driven devices are handled under MP/M-86 using FLAG
WAIT and FLAG SET system function calls. A process that needs to
wait for an interrupt to occur should make a FLAG WAIT function call
with a flag number. This process will not execute until the desired
Interrupt Handler makes a FLAG SET function call with the same flag
number. The waiting process will then continue execution. The
Interrupt Handler should follow the steps outlined below, executing
a Jump Far to the Dispatcher entry point for quick interrupt
response.

4.4 Suggested Interrupt Handling

Interrupt Handlers under MP/M-86 are different from those in an
8080 environment due to machine architecture differences. The
example TICK Interrupt Handler should be carefully studied. During
initial debugging, it is recommended that interrupts not be
implemented until after the system works in a polled environment.
An Interrupt Handler must perform the following basic steps:

1. Do a stack switch to a local stack. The process that was
interrupted may not have enough stack space for a context
save.

2. Save the register environment of the process that was
interrupted.

3. Satisfy the interrupting condition. This may include
resetting a hardware condition and doing a FLAGSET to
notify a process that the interrupt it was waiting for
has occurred.

4, Restore the register environment of the interrupted
process.

5. Switch back to the original stack.

6. If a FLAGSET function call has been made, a Jump Far to
the Dispatcher entry point for Interrupt routines should
be done for quicker interrupt response. This routine
will call the dispatcher and then execute an IRET
instruction to return from the interrupt. Otherwise if
no FLAGSET call has been made, an IRET instruction should
be executed to return from the interrupt.

55

MP/M-86 System Guide 4.4 Suggested Interrupt Handling

NOTE: FLAGSET is the only system function that an interrupt
routine can call.

4.4.1 TICK Clock

The XIOS must provide two time bases: a system tick for
managing the Delay List and forcing dispatches, and a "one second"
Flag for time-of-day computation. The system TICK operation and the
"one second" Flag (#2) operation are logically separate even though
they may physically share the same clock/timer interrupt source.

The system TICK procedure, when enabled by STARTCLOCK, must set
flag #1 at system time unit intervals. The recommended time unit is
a period of 16.67 milliseconds, corresponding to a tick frequency of
60 Hz. When operating with 50 Hz, use a 20 millisecond period.
MP/M-86 uses the TICK procedure to manage the Delay List until the
Delay List is empty, at which time the procedure is disabled by
STOPCLOCK.

The system tick frequency determines the dispatch frequency for
compute-bound processes. If the frequency is too high, a
significant amount of system overhead is incurred by an excessive
number of dispatches. 1If the frequency is too low, compute-bound
processes will keep the CPU resource for accordingly longer periods.

The "one second"” Flag procedure must set Flag #2 at each second
of real-time. MP/M-86 uses Flag #2 to maintain the system time and
day.

4.4.2 Uninitialized Interrupts

All unused interrupts should be initialized to vector to an
interrupt trap routine that prevents erroneous interrupts from
vectoring to an unknown location. The example XIOS handles
uninitialized interrupts by printing the Process Descriptor name
that caused the interrupt followed by an uninitialized interrupt
message. Then the interupting process is unconditionally
terminated.

Interrupt Vector 224 is saved prior to system initialization
and restored following execution of the XIOS INIT routine. The
example XIOS initializes all of the Interrupt Vectors to the
uninitialized interrupt trap, then any specifically used interrupts
are initialized. Interrupt 224 is left for restoration by the
Operating System.

When debugging the XIOS with DDT86 running under CP/M-86,
Interrupt Vectors 1,3 and 225 should not be initialized.

56

MP/M-86 System Guide 4.5 Disk Definition Tables

4.5 Disk Definition Tables

The purpose of this section is to present the organization and
construction of tables within the XIOS that define the
characteristics of a particular disk system used with MP/M-86.
These tables can be either hand-coded or automatically generated
using the GENDEF utility provided with MP/M-86. The elements of
these tables are presented below.

4.5.1 DPH Format

In general, each disk drive has an associated (16-byte) Disk
Parameter Header (DPH) which both contains information about the
disk drive and provides a scratchpad area for certain BDOS
operations. The format of the Disk Parameter Header for each drive
is shown below.

Figure 4-1. Disk Parameter Header

where each element is a word (16-bit) value. The meaning of each
Disk Parameter Header (DPH) element is given in Table 4-1.

Table 4-1. Disk Parameter Header Elements

Element Description

XLT Offset of the logical-to-physical Translation Vector,
if used for this particular drive, or the value 0000H
if no sector translation takes place (i.e, the
Physical and Logical Sector Numbers are the same).
Disk drives with identical Sector Skew Factors share
the same Tranlation Vector.

0000 Scratchpad values for use within the BDOS (initial
value is unimportant).

DIRBUF Of fset of a 128-byte scratchpad area for directory
operations within BDOS. All DPHs address the same
scratchpad area.

DPB Offset of a Disk Parameter Block for this drive.
Drives with identical disk characteristics address the
same Disk Parameter Block.

Csv Offset of a scratchpad area used for software check for
changed disks. This offset is different for each DPH.

57

MP/M-86 System Guide 4.5.1 DPH Format

ALV Offset of a scratchpad area used by the BDOS to keep
disk storage allocation information. This offset is
different for each DPH.

Given n disk drives, the DPHs are arranged in a table whose first
row of 16 bytes corresponds to drive 0, with the 1last row
corresponding to drive n-1. The DPH Table has the following format:

DPBASE
e e to——m - tm————- tomm—— e to————- pmm———— +
00 |XLT 00| 0000 | 0000 | 0000 |DIRBUF|DBP 00|CSV 00|ALV 00]
tom teomm——- e tm———— to————- tmm———— tm————- b +
01 |XLT 01] 0000 | 0000 + 0000 |DIRBUF|DBP 01|CSV 01l|ALV 01|
Fom——— t-————- to— - e pmm——— t—— - f————— tmm——— +
(and so-forth through)
Fom——— te————- e pm————- tmm——— tmm——— tmm———— tmm———— +
n-1|XLTn-1| 0000 | 0000 | 0000 |DIRBUF|DBPn-1{CSVn-1|ALVn-1]
pmm———— p—m———— t—m———— t=—————- f————— tom———- to—m— pommm—- +

Figure 4-2. DPH Table

where the label DPBASE defines the offset of the DPH Table relative
to the beginning of the Operating System.

The SELDSK subroutine, defined in Section 3.4, returns the
offset of the DPH from the beginning of the Operating System for the
selected drive. The following sequence of operations returns the
table offset, with a 0000H returned if the selected drive does not
exist,

NDISKS EQU 4 ;NUMBER OF DISK DRIVES
SELDSK:

;SELECT DISK N GIVEN BY CL

MOV BX,0000H ;READY FOR ERR

CMP CL,NDISKS ;N BEYOND MAX DISKS?

JNB RETURN ; RETURN IF SO

;0 <= N < NDISKS

MOV CH,O ;DOUBLE (N)

MOV BX,CX ;BX = N

MOV CL,4 ; READY FOR * 16

SHL BX,CL ;N = N * 16

MOV CX,OFFSET DPBASE

ADD BX,CX ;DPBASE + N * 16
RETURN: RET ;BX - .DPH (N)

The Translation Vectors (XLT 00 through XLTn-1) are located
elsewhere in the XIOS, and correspond one-for-one with the Logical
Sector Numbers zero through the sector count-l.

58

MP/M-86 System Guide 4.5.1 DPH Format

The Disk Parameter Block (DPB) for each drive is more complex.
Each DPB, which is addressed by one or more DPHs, has the format
shown in Figure 4-3.

| SPT - |BSH|BLM|EXM| DSM | DRM |ALO|AL1l| CKS | OFF |
$m—————- e e e $-————— R et St P P $mm———— +

16b

8b 8b 8b 16b 16b 8b 8b 16b 16b

Figure 4-3., Disk Parameter Block

where each field is a byte or word value, as shown by the "8b" or
"16b" indicator below the field. The fields are defined in Table 4-~

2,

Field
SPT

BSH

BLM

EXM

DSM

DRM

ALO,ALl

CKS

OFF

Table 4-2., Disk Parameter Block Fields
Definition
is the total number of sectors per track

is the data allocation Block Shift Factor, -determined
by the data block allocation size (BLS).

is the Block Mask which is also determined by the data
block allocation size (BLS).

is the Extent Mask, determined by the data blocck
allocation size and the number of disk blocks.

determines the total storage capacity of the disk
drive.

determines the total number of directory entries that
can be stored on this drive.

determine reserved directory blocks.

is the size of the directory checksum vector. If the
high-order bit of CKS is on (i.e. > 8000H), then that
drive is considered to be a non-removable media and
the rules for resetting that drive are modified. See
the MP/M-86 Programmer”’s Guide.

is the number of reserved tracks at the beginning of
the (logical) disk.

Although these table values are produced automatically by GENDEF, it
is worthwhile reviewing the derivation of each field so that the
values may be cross-checked when necessary. The values of BSH and
BLM determine (implicitly) the data block allocation size BLS, which

59

MP/M-86 System Guide 4.5.1 DPH Format

is not an entry in the Disk Parameter Block. The values of BSH and
BLM are shown in Table 4-3 below, where all values are in decimal.

Table 4-3. BSH and BLM Values for Selected BLS

BLS BSH BLM
1,024 3 7
2,048 4 15
4,096 5 31
8,192 6 63

16,384 7 127

The value of EXM depends upon both the BLS and whether the DSM value
is less than 256 or greater than 255, as shown in the following
table.

Table 4-4, Maximum EXM Values

BLS DSM < 256 DSM > 255
1,024 0 N/A
2,048 1 0
4,096 3 1
8,192 7 3

16,384 15 7

The value of DSM is the maximum data block number supported by
this particular drive, measured in BLS units. The product BLS times
(DSM+1) is the total number of bytes held by the drive and must be
within the capacity of the physical disk, not counting the reserved
Operating System tracks.

The DRM entry is one less than the total number of directory
entries, which can take on a 16-bit value. The values of ALO and
ALl, however, are determined by DRM. The two values ALO and ALl
together can be considered a string of 16-bits, as shown below.

| ALO | ALl l
+-—t——t——mtp—mtm—tpm—t bt et m b —— b ——F——F——+
T (A R N A I
s e S e A s s A s i sttt TTE TS bt
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

where position 00 corresponds to the high-order bit of the byte
labeled ALO, and 15 corresponds to the low-order bit of the byte
labeled ALl. Each bit position reserves a data block for a number
of directory entries, thus allowing a total of 16 data blocks to be
assigned for directory entries (bits are assigned starting at 00 and

60

MP/M-86 System Guide 4,5.1 DPH Format

filled to the right until position 15). Each directory entry
occupies 32 bytes, as shown in Table 4-5.

Table 4-5. BLS and Number of Directory Entries

BLS Directory Entries
1,024 32 times # bits
2,048 64 times # Dbits
4,096 128 times # bits
8,192 256 times # Dbits

16,384 512 times # bits

Thus, if DRM = 127 (128 directory entries), and BLS = 1024, then
there are 32 directory entries per block, requiring 4 reserved
blocks. In this case, the 4 high-order bits of ALO are set,
resulting in the values ALO = OF0H and ALl = 0O0H.

The CKS value is determined as follows: if the disk drive
media is removable, then CKS = (DRM+l)/4, where DRM is the last
directory entry number. If the media is fixed, then set CKS = 0 (no
directory records are checked in this case).

Finally, the OFF field determines the number of tracks which
are skipped at the beginning of the physical disk. This value is
automatically added whenever SETTRK is called, and can be used as a
mechanism for skipping reserved Operating System tracks, or for
partitioning a large disk into smaller segmented sections.

To complete the discussion of the DPB, recall that several DPHs
can address the same DPB if their drive characteristics are
identical. Further, the DPB can be dynamically changed when a new
drive is addressed by simply changing the pointer in the DPH since
the BDOS copies the DPB values to a local area whenever the SELDSK
function is called.

Returning to the DPH for a particular drive, note that the two
address values CSV and ALV remain. Both addresses reference an area
of uninitialized memory following the XIOS. The areas must be
unique for each drive, and the size of each area is determined by
the values in the DPB.

The size of the area addressed by CSV is CKS bytes, which is
sufficient to hold the directory checksum information for this
particular drive. If CKS = (DRM+l)/4, then (DRM+1l)/4 bytes must be
reserved for directory checksum use. If CKS = 0, then no storage is
reserved.

The size of the area addressed by ALV is determined by the
maximum number of data blocks allowed for this particular disk, and
is computed as (DSM/8)+1.

61

MP/M-86 System Guide 4.5.1 DPH Format

The example XIOS shown in Appendix C illustrates these tables
for standard 8" single-density drives. It may be useful to examine
this program, and compare the tabular values with the definitions
given above.

4.5.2 Table Generation Using GENDEF

The GENDEF utility supplied with MP/M~86 greatly simplifies the
table construction process. GENDEF reads a file

X .DEF

cbntaining the disk definition statements, and produces an output
file

X.LIB
containing assembly language statements which define the tables
necessary to support a particular drive configuration. The form of
the GENDEF command is:

GENDEF x parameter list
where x has an assumed (and unspecified) filetype of DEF. The

parameter list may contain zero or more of the symbols defined in
Table 4-6.

Table 4-6. GENDEF Optional Parameters

Parameter Effect
$C Generate Disk Parameter Comments
$O Generate DPBASE OFFSET $
$2z 280, 8080, 8085 Override
$CO2 (Any of the Above)

The C parameter causes GENDEF to produce an accompanying
comment line, similar to the output from the "STAT DSK:" utility
which describes the characteristics of each defined disk. Normally,
the DPBASE is defined as

DPBASE EQU $

which requires a MOV CX,OFFSET DPBASE in the SELDSK subroutine. For
convenience, the $0 parameter produces the definition

DPBASE EQU OFFSET $

allowing a MOV CX,DPBASE in SELDSK, in order to match particular
programming practices. The $Z parameter is included to override the
standard 8086/8088 mode in order to generate tables acceptable for
operation with 280, 8080, and 8085 assemblers.

62

MP/M-86 System Guide 4.5.2 Table Generation Using GENDEF

The Disk Definition Table contained within x.DEF may be
constructed with the CP/M-80 text editor, and consists of disk
definition statements identical to those accepted by the DISKDEF
utility supplied with CP/M-80 Version 2. A BIOS and XIOS disk
definition consists of the following seguence of statements:

DISKS n
DISKDEF O, ...
DISKDEF 1,...
DISKDEF n-1

ENDEF

Each statement is placed on a single line, with optional embedded
comments between the keywords, numbers, and delimiters.

The DISKS statement defines the number of drives to be
configured with the system, where n is an integer in the range 1
through 16. A series of DISKDEF statements then follow which define
the characteristics of each logical disk, 0 through n-1,
corresponding to logical drives A through P, Note that the DISKS
and DISKDEF statements generate the in-line, fixed-data tables
described in the previous section, and thus must be placed in a non-
executable portion of the XIOS (typically at the end), before the
start of uninitialized RAM.

The ENDEF (End of Diskdef) statement generates the necessary
uninitialized RAM areas that are located beyond initialized RAM in
the XIO0S.

The form of the DISKDEF statement is

DISKDEF dn,fsc,lsc, [skf],bls,dks,dir,cks,ofs, [0]

where
dn is the logical disk number, 0 to n-1
fsc is the first Physical Sector Number (0 or 1)
1lsc is the last Physical Sector Number
skf is the optional Sector Skew Factor
bls is the data allocation block size
dks is the disk size in bls units
dir is the number of directory entries
cks is the number of "checked" directory entries
ofs is the track offset to logical track 00
[0] is an optional 1.4 compatibility flag

The value "dn" is the drive number being defined with this DISKDEF
statement. The "fsc" parameter accounts for differing sector
numbering systems, and is usually 0 or 1. The "lsc" is the last
numbered sector on a track. When present, the "skf" parameter
defines the Sector Skew Factor that is used to create a sector
Translation Table according to the skew. If the number of sectors
is less than 256, a single~byte table is created, otherwise each

63

MP/M-86 System Guide 4.5.2 Table Generation Using GENDEF

Translation Table element occupies two bytes. No Translation Table
is created if the skf parameter is omitted or equal to 0.

The "bls" parameter specifies the number of bytes allocated to
each data block, and takes on the values 1024, 2048, 4096, 8192, or
16384. Generally, performance increases with larger data block
sizes because there are fewer directory references. Also, logically
connected data records are physically close on the disk. Further,
each directory entry addresses more data and the amount of BIOS work
space is reduced. The "dks" specifies the total disk size in "bls"
units. That is, if the bls = 2048 and dks = 1000, then the total
disk capacity is 2,048,000 bytes. 1If "dks" is greater than 255,
then the block size parameter "bls" must be greater than 1024. The
value of "dir" is the total number of directory entries which may

exceed 255, if desired.

The "cks" parameter determines the number of directory items to
check on each directory scan, and is used internally to detect
changed disks during system operation, where an intervening disk
reset or system reset has not occurred (when this situation is
detected, MP/M-86 automatically marks the disk read/only so that
data is not subsequently destroyed). As stated in the previous
section, the value of "cks" = "dir" when the media is easily
changed, as is the case with a floppy disk subsystem. If the drive
media is non-removable, then the value of "cks" is typically 8000H,
since the probability of changing disks without a restart is quite
low.

The "ofs" value determines the number of tracks to skip when
this particular drive is addressed, which can be used to reserve
additional operating system space or to simulate several logical
drives on a single large capacity physical drive. Finally, the
"[0]" parameter is included when file compatibility is required with
versions of CP/M-80, Version 1.4 that have been modified for higher
density disks (typically double density). This parameter ensures
that no directory compression takes place, which would cause
incompatibilities with these non-standard CP/M 1.4 versions.
Normally, this parameter is not included.

For convenience and economy of table space, the special form

DISKDEF i,3

gives disk i the same characteristics as a previously defined drive
j. A standard four-drive single density system, which is compatible
with CP/M-80 Version 1.4, and upward-compatible with CP/M-80 Version
2.0 implementations, is defined using the following statements:

DISKS 4
DISKDEF 0,1,26,6,1024,243,64,64,2
DISKDEF 1

DISKDEF 2
DISKDEF 3

ENDEF

64

MP/M-86 System Guide 4.5.2 Table Generation Using GENDEF

with all disks having the same parameter values of 26 sectors per
track (numbered 1 through 26), with a skew of 6 between sequential
accesses, 1024 bytes per data block, 243 data blocks for a total of
243K byte disk capacity, 64 checked directory entries, and two
Operating System tracks.

The DISKS statement generates n Disk Parameter Headers (DPHs),
starting at the DPH Table address DPBASE generated by the statement.
Edch disk Header block contains sixteen bytes, as described above,
and corresponds one-for-one to each of the defined drives. In the
four-drive standard system, for example, the DISKS statement
generates a table of the form:

DPBASE EQU §$

DPEOQ DW XLTO,0000H,0000H,0000H, DIRBUF,DPB0O,CSV0,ALV0
DPE1 DW XLTO0,0000H,0000H,0000H,DIRBUF,DPB0,CSV1,ALV1
DPE2 DW XLTO,0000H,0000H,0000H,DIRBUF,DPB0,CSV2,ALV2
DPE3 DW XLTO,0000H,0000H,0000H,DIRBUF,DPB0,CSV3,ALV3

where the DPH labels are included for reference purposes to show the
beginning table addresses for each drive 0 through 3. The values
contained within the Disk Parameter Header are described above. The
checksum and allocation vector addresses are generated by the ENDEF
statement for inclusion in the RAM area following the XIOS code and
tables.

Note that if the "skf" (skew factor) parameter is omitted (or
equal to 0), the Translation Table is omitted, and a 0000H value is
inserted in the XLT position of the Disk Parameter Header for the
disk. In a subsequent call to perform the logical-to-physical
translation, SECTRAN receives a Translation Table address of DX =
0000H, and simply returns the original Logical Sector Number from CX
in the BX register. A Translation Table is constructed when the
"skf" parameter is present, and the (non-zero) table address is
placed into the corresponding DPHs. The table shown below, for
example, is constructed when the standard skew factor "skf" = 6 is
specified in the DISKDEF statement call:

XLTO EQU OFFSET $
DB 1,7,13,19,25,5,11,17,23,3,9,15,21
DB 2,8,14,20,26,6,12,18,24,4,10,16,22

Following the ENDEF statement, a number of uninitialized data
areas are defined. These data areas need not be a part of the XIOS
which is loaded upon cold start, but must be available in the
Operating System data segment memory. The size of the uninitialized
RAM area is determined by EQU statements generated by the ENDEF
statement., For a standard four-drive system, the ENDEF statement
might produce

1C72 = BEGDAT EQU OFFSET $
(data areas)
1DB0O = ENDDAT EQU OFFSET $
= DATSIZ EQU OFFSET $-BEGDAT

013C

65

MP/M-86 System Guide 4,5.2 Table Generation Using GENDEF

which indicates that uninitialized RAM begins at offset 1C72H, ends
at 1DBOH-1, and occupies 013CH bytes. Note that these addresses
must be free for use after the system is loaded.

After modification, the STAT program can be used to check the
drive characteristics, since STAT uses the Disk Parameter Block to
decode the drive information. The comment included in the LIB file
by the $C parameter to GENCMD will match the output from STAT. The

STAT command form
STAT d:DSK:

decodes the Disk Parameter Block for drive 4 (d=A,...,P) and
displays the values shown below:

128-Byte Record Capacity
Kilobyte Drive Capacity
32-Byte Directory Entries
Checked Directory Entries
Records/ Extent

Records/ Block

Sectors/ Track

Reserved Tracks

T O0OOQQxRR

4.5.3 GENDEF Output

GENDEF produces a listing of the statements included in the DEF
file at the user console (TP can be used to obtain a printed
listing, if desired). Each source line is numbered, and any errors
are shown below the line in error, with a "?" beneath the item which
caused the condition. The source errors produced by GENDEF are
listed in Table 4-7, followed by errors that can occur when
producing input and output files in Table 4-8.

66

MP/M-86 System Guide

Message
Bad val

Convert

Delimit
Duplic
Extra
Length
Missing
No Disk
No Stmt
Numeric
Range
Too Few

Quote

Table 4-7. GENDEF Source Error Messages

Meaning
More than 16 disks defined in DISKS statement.
Number cannot be converted, must be constant
in binary, octal, decimal, or hexadecimal as
in ASM-86.
Missing delimiter between parameters.
Duplicate definition for a disk drive.
Extra parameters occur at the end of line.
Keyword or data item is too long.
Parameter required in this position.
Referenced disk not previously defined.
Statement keyword not recognized.
Number required in this position
Number in this position is out of range.

Not enough parameters provided.

Missing end quote on current line.

Table 4-8. GENDEF Input and Output Error Messages

Cannot Close

"LIB" Disk Full

No Input File Present

No ".LIB" Directory Space

Premature End-of-File

Message

Meaning

LIB file close operation
unsuccessful, usually due
to hardware write protect.

".LIB" File

No space for LIB file.

Specified DEF file not
found.

Cannot create LIB file due
to too many files on LIB
disk.

End of DEF file encountered
unexpectedly.

67

4.5.3 GENDEF Output

MP/M-86 System Guide 4.5.3 GENDEF Output

Given the file TWO.DEF containing the following statements
disks 2
diskdef 0,1,26,6,2048,256,128,128,2
diskdef 1,1,58,,2048,1024,300,0,2
endef
the command
gencmd two S$c

produces the console output

DISKDEF Table Generator, Vers 1.0

1 DISKS 2

2 DISKDEF 0,1,58,,2048,256,128,128,2
3 DISKDEF 1,1,58,,2048,1024,300,0,2
4 ENDEF

No Error(s)

The resulting TWO.LIB file is brought into the following skeletal
assembly language program, using the ASM-86 INCLUDE directive. The
ASM-86 output listing is truncated on the right, but can be easily
reproduced using GENDEF and ASM-86.

68

MP/M-86 System Guide

w~o [Nwe ~o

4.5.3 GENDEF Output

Sample Program Including TWO.LI

Disk 1 is CP/M 1.4 Single Densi
16384:

ELDSK:

0000 B9 03 00 MOV CX,OFFSET DPBASE
= INCLUDE TWO.LIB
= ; DISKS 2
= 0003 dpbase equ $:Base o
= 0003 32 00 00 00 dpe0 dw x1t0,0000h ;Transl
= 0007 00 00 00 0O dw 0000h,0000h ;Scratc
= 000B 5B 00 23 00 dw dirbuf,dpb0 ;Dir Bu
= Q00F FB 00 DB 00 dw csv0,alv0 ;Check,
= 0013 00 00 00 00 dpel dw x1t1l,0000h ;Transl
= 0017 00 00 00 0O dw 0000h,0000h ;Scratc
= 001B 5B 00 4C 00 dw dirbuf ,dpbl ;Dir Bu
= 001F 9B 01 1B 01 dw csvl,alvl ;Check,
= H DISKDEF 0,1,26,6,2048,2
= : Disk 0 is CP/M 1.4 Single Densi
= : 4096: 128 Byte Record Capacit
= ; 512: Kilobyte Drive Capacit
= H 128: 32 Byte Directory Entri
= : 128: Checked Directory Entri
= ; 256: Records / Extent
= ; 16: Records / Block
= : 26: Sectors / Track
= : 2: Reserved Tracks
= : 6: Sector Skew Factor
= 0023 dpb0 equ of fset $;Disk P
= 0023 1A 00 dw 26 ;Sector
= 0025 04 db 4 :Block
= 0026 OF db 15 ;Block
= 0027 01 db 1 ;Extnt
= 0028 FF 00 dw 255 ;Disk S
= 002A 7F 00 dw 127 ;Direct
= 002C CO db 192 ;AllocO
= 002D 00 db 0 ;Allocl
= 002E 20 00 dw 32 ;Check
= 0030 02 00 dw 2 ;O0ffset
= 0032 x1t0 equ of fset $;Transl
= 0032 01 07 ODp 13 db 1,7,13,19
= 0036 19 05 0B 11 db 25,5,11,17
= 003A 17 03 09 OF db 23,3,9,15
= 003E 15 02 08 OE db 21,2,8,14
= 0042 14 1A 06 OC db 20,26,6,12
= 0046 12 18 04 oA db 18,24,4,10
= 004A 10 16 db 16,22
= 0020 also equ 32 :Alloca
= 0020 css0 equ 32 ;Check
= ; DISKDEF 1,1,58,,2048,10

~e wme we ~

128-Byte Record Capacit

69

MP/M-86 System Guide 4.5.3 GENDEF Output

2048: Kilobyte Drive Capacit
300: 32-Byte Directory Entri
0: Checked Directory Entri
128: Records / Extent
16: Records / Block
58: Sectors / Track
2: Reserved Tracks

Diwe o we we ws we wo we

= 004cC pbl equ offset $;Disk P
= 004C 3A 00 dw 58 ;Sector
= 004E 04 db 4 ;Block
= 004F OF db 15 ;Block
= 0050 00 db 0 ;Extnt
= 0051 FF 03 dw 1023 ;Disk S
= 0053 2B 01 dw 299 ;Direct
= 0055 F8 db 248 ;AllocO
= 0056 00 db 0 :Allocl
= 0057 00 00 dw 0 ;Check
= 0059 02 00 dw 2 ;0ffset
= 0000 x1tl equ 0 ;No Tra
= 0080 alsl equ 128 ;Alloca
= 0000 cssl equ 0 ;Check
= ; ENDEF

= ; Uninitialized Scratch Memory Fo
= 005B begdat equ offset $;Start
= 005B dirbuf rs 128 ;Direct
= 00DB alv0 rs alsO ;Alloc
= Q0OFB csv0 rs css0 ;Check
= 011B alvl rs alsl :Alloc
= 019B csvl rs cssl ;Check
= 019B enddat equ offset § ;End of
= 0140 datsiz equ offset $-begdat ;Size o
= 019B 00 db 0 ;Marks

END

70

MP/M-86 System Guide 4.6 Calling MP/M-86 Functions

4.6 Calling MP/M-86 Functions

Routines in the XIOS cannot make system calls in the
conventional manner of executing a INT 224 instruction. The
conventional entry point to the RTM does a stack switch to the User
Data Area (UDA) of the current process. The XIOS is considered
within the Operating System and a process entering the XIOS is
already using the UDA stack. Therefore, a separate entry point is
used for internal system calls.

Location 3 of the SUP Code Segment is the entry point for
internal system calls. Register usage for system calls though this
entry point is the similar to the conventional entry point. They
are as follows:

Entry: CX = Function number
DX = Parameter
DS = Segment address if DX is an offset to a
structure
ES = User Data Area
Return: AX = BX = Return
CX = Error Code for RTM functions
(BDOS functions do not use CX)
ES = Segment address if AX is an offset

The only differences between the internal and user entry points
are the CX and ES registers on entry. CH must always be 0. ES must
always point to the User Data Area of the current process. The UDA
segment address can be obtained through the following code:

mov si,ready_list root
mov es,lOh([si]

Note: On entry to the XIOS, ES is equal to the UDA segment address.

4.7 Blocking/Deblocking Algorithms

Upon each call to the XIOS WRITE function, the MP/M-86 BDOS
includes information that allows effective sector blocking and
deblocking where the host disk subsystem has a sector size which is
a multiple of the basic 128-byte unit. This section presents a
general-purpose algorithm that can be included within the XIOS and
that uses the BDOS information to perform the operations
automatically.

Upon each call to WRITE, the BDOS provides the following
information in register CL:

71

MP/M-86 System”s Guide 4.7 Blocking/Deblocking Algorithms

0 = deferred write sector (normal write)
1l = non-deferred write sector (directory write)
2 = deferred write to the first sector
of a previously unallocated data block
3 = non-deferred write to the first sector

of a previously unallocated data block

Condition 0 occurs whenever the next write operation is into a
previously written area, such as a random mode record update, when
the write is to other than the first sector of an unallocated block,
or when the write is not into the directory area.

Condition 1 occurs when a write into the directory area is
performed. Condition 2 occurs when the first record (only) of a
newly~allocated data block is written. In most cases, application
programs read or write multiple 128-byte sectors in sequence, and
thus there is little overhead involved in either operation when
blocking and deblocking records since pre-read operations can be
avoided when writing records.

Appendix D lists the blocking/deblocking algorithm in skeletal
form (the file is included on the MP/M-86 disk). Generally, the
algorithms map all MP/M-86 sector read operations onto the host disk
through an intermediate buffer that is the size of the host disk
sector. Throughout the program, values and variables that relate to
the MP/M-86 sector involved in a seek operation are prefixed by
"sek," while those related to the host disk system are prefixed by
"hst." The equate statements beginning on line 25 of Appendix D
define the mapping between MP/M-86 and the host system, and must be
changed if other than the sample host system is involved.

The SELDSK function clears the host buffer Flag whenever a new
disk is logged-in. Note that although the SELDSK function computes
and returns the Disk Parameter Header address, it does not
physically select the host disk at this point (it is selected later
at READHST or WRITEHST) . Further, SETTRK, SETSEC, and SETDMA simply
store the values, but do not take any other action at this point.
SECTRAN performs a trivial function of returning the physical sector
number.

The principal XIOS functions are READ and WRITE. These
subroutines take the place of the previous READ and WRITE
operations.

The actual physical read or write takes place at either
WRITEHST or READHST, where all values have been prepared: hstdsk is
the host disk number, hsttrk is the host track number, and hstsec is
the host sector number (which may require translation to a physical
sector number). Note: Code must be inserted at this point that
performs the full host sector read or write into, or out of, the
buf fer at hstbuf of length hstsiz. All other mapping functions are
performed by the algorithms.

72

MP/M-86 System Guide 4.8 Memory Disk Application

4.8 Memory Disk Application

The Memory Disk is a prime example of the ability of the Basic
Disk Operating System to interface to a wide variety of disk drives.
A 128K-byte area of memory is used to simulate a small capacity disk
drive, making a very fast temporary disk. The Memory Disk 1is
usually called the “M” drive and under GENSYS may be specified as
the temporary drive, if implemented.

The example XIOS in Appendix C contains a conditional assembly
switch for the necesary code needed to implement the Memory Disk.
The additional Disk Parameter Blocks have been generated by adding
the following command to the singles.def file used with the GENDEF
utility.

diskdef 2,1,26,,1024,127,64,0,0

73

SECTION 5

DEBUGGING THE XIOS

The MP/M-86 XIOS can be debugged in many different ways. This
section presents two methods that require no special hardware. The
first and most useful method is to load MP/M-86 as a transient
program with DDT86 running under CP/M-86 or with a firmware
debugger. The second method is to run DDT86 under MP/M-86. This
method however, requires the majority of the system to be running
and therefore is not as useful as the first.

For initial debugging, the customized XIOS should be
implemented using all polled I/0O devices. Also, all interrupts
should be disabled including the system TICK interrupt, and
Interrupt Vectors 1,3 and 225 should not be initialized. The
initial system can run without a clock interrupt and this interrupt
should be implemented only after the XIOS is fully developed and
tested. After the XIOS has been debugged interrupt-driven I/O
devices should be implemented and tested one at a time.

Because the DDT86 debugger operates with interrupts left
enabled, it is a somewhat difficult task to debug an interrupt-
driven console handler. The recommended method is to leave console
#0 in a polled mode while debugging the other consoles in an
interrupt driven mode. Once this is done, very little, if any,
debugging should be required to adapt the interrupt-driven code from
another console to console #0. It is further recommended that you
maintain a debugged version of your XIOS that has polled I/O for
console #0. Otherwise it may not be possible to run the MP/M-86
system underneath the CP/M~-86 debugger because the CP/M-86 debugger
cannot get any console I/0.

5.1 Running under CP/M-86

The technique for debugging an XIOS with DDT86 running under
CP/M~86 is outlined in the following steps:

1. Determine the starting paragraph where a program will be
loaded when using the R command in DDT86.

2. Run GENSYS using the starting paragraph determined above
plus 8 for the starting paragraph of the Operating System.
This allows for the 080H-byte header in the MPM.SYS file.

3. Load the MPM.SYS file under DDT86 using the R command and
setup the CS and DS registers with the BASE values found in
the CMD file Header Record. See the MP/M-86 Programmer”’s
Guide description on the CMD file Header.

4. The addresses for the XIOS ENTRY and INIT routines can be
found in the system Data Segment at offsets 28H for ENTRY

All Information Presented Here is Proprietary to Digital Research

75

MP/M~-86 System Guide 5.1 Running under CP/M-86

and 2CH for INIT. If an 8080 Model, is used these
functions will be at offset 1003H and 1000H in the System
Data Segment. If a Small model is used, the Code Segment
must be determined from the function addresses, and the
XIOS Data Segment will be the same as the System Data
Segment,

Begin execution of the MPM.SYS file at offset OH in the Code
Segment. Break points can then be set within the XIOS for
debugging.

5.2 Running under MP/M-86

Debugging in this mode can be accomplished after minimal
console and disk I/0 handlers are running. The Code and Data
Segments for the XIOS are found in the same manner as described

above,

It may be required to disable interrupts in this mode in

order to simplify debugging.

SECTION 6

BOOTSTRAP AND ADAPTATION PROCEDURES

This section describes the components of the standard MP/M-86
distribution disk, the operation of each component, and the
procedures for adapting MP/M-86 to non-standard hardware.

MP/M-86 is distributed on a single-density IBM-compatible 8"
diskette using a file format that is compatible with all previous
CP/M Operating Systems. In particular, the first two tracks are
reserved for Operating System and Bootstrap programs, while the
remainder of the diskette contains directory information that leads
to program and data files. MP/M-86 is distributed for operation
with the Intel SBC 86/12 single-board computer connected to floppy
disks through an Intel 204 Controller. Three additional consoles
and a list device are supported using an Intel SBC 534 communication
expansion board. The operation of MP/M-86 on this configuration
serves as a model for other 8086 and 8088 environments, and is
presented below.

The principal components of the distribution system are listed
below:

o The 86/12 Bootstrap ROM (BOOT ROM)
0 The Cold Start Loader (MPMLDR)
o0 The MP/M-86 System (MPM.SYS)

When installed in the SBC 86/12, the BOOT ROM becomes a part of
the memory address space, beginning at byte location 0f££f000H, and
receives control when the system reset button is depressed. 1In a
non-standard environment, the BOOT ROM is replaced by an equivalent
initial loader and, therefore, the ROM itself is not included with
MP/M-86. The BOOT ROM (which is the same as the CP/M-86 BOOT ROM)
can be obtained from Digital Research. Alternatively, it can be
programmed from the listing given in Appendix A or directly from the
source file that is included on the distribution disk as BOOT.A86.
The BOOT ROM reads the MPMLDR into memory from the first two system
tracks and then passes program control to the MPMLDR for execution.

6.1 The Cold Start Load Operation

The MPMLDR program is a simple version of CP/M-86 that contains
sufficient file processing capability to read MPM.SYS from the
system disk to memory. When MPMLDR completes its operation, the
MPM.SYS program receives control and proceeds to process user input
commands.

77

MP/M-86 System Guide 6.1 The Cold Start Load Operation

Both the MPMLDR and MPM.SYS programs are preceded by the
standard CMD Header Record. The 128-byte MPMLDR Header Record
contains the following single Group Descriptor.

Fom s e o Fmm—————— o +

|G-Form| G-Length | A-Base | G-Min | G-Max |

tmmm——— pmm e e o Fmmm— +

| 1 | xxxxxxxx | 400 | XXXXXXX | XXXXXXX |

R R Tt fmm——————— R tmm—————— +
8b 16b 16b 16b 16b

Figure 6-1. Group Descriptor - MPMLDR Header Record

where G-Form = 1 denotes a Code Group, "x" fields are ignored, and
A-Base defines the paragraph address where the BOOT ROM begins
filling memory. (A-Base is the word value that is offset three
bytes from the beginning of the Header). Note that since only a
Code Group is present, an 8080 Model is assumed. Further, although
the A-Base defines the base paragraph address for MPMLDR (byte
address 04000H), the MPMLDR can, in fact be loaded and executed at
any paragraph boundary that does not overlap MP/M-86 or the BOOT
ROM.

The MPMLDR itself consists of three parts: the Load MPM
program (LDMPM), the Loader Basic Disk System (LDBDOS), and the
Loader Basic I/0 System (LDBIOS). Although the MPMLDR is setup to
initialize MP/M-86 using the Intel 86/12 configuration, the LDBIOS
can be field-altered to account for non-standard hardware using the
same functions defined in the CP/M-86 BIOS. The organization of
MPMLDR is shown in Figure 6-2 below:

78

MP/M-86 System Guide 6.1 The Cold Start Load Operation

e et (et R P PP
IGD#1|0I/////////////|
A Ty ¥ S
CS DS ES SS 0000H: | JMP 1200H |
it T +
(LDMPM)
e ———— +
| JMPF MPM |
Y i e +
0400H:
(LDBDOS)
o ————————— e +
1200H: | JMP INIT
JMP SETIOB
INIT: .. JMP 0003H
(LDBIOS)
e +

1700H:

Figure 6-2. MPMLDR Organization

Byte offsets from the base registers are shown at the left of the
diagram. GD#1 is the Group Descriptor for the MPMLDR Code Group
described above, followed immediately by a "0" group terminator.
The entire MPMLDR program is read by the BOOT ROM, excluding the
Header Record, starting at byte location 04000H as given by the A-
Field. Upon completion of the read, the BOOT ROM passes control to
byte location 04000H where the MPMLDR program commences execution.
The JMP 1200H instruction at the base of LDMPM transfers control to
the beginning of the LDBIOS where control then transfers to the INIT
subroutine. The subroutine starting at INIT performs device
initialization, prints a sign-on message, and transfers back to the
LDMPM program at byte offset 0003H. The LDMPM module opens the
MPM.SYS file, loads the MP/M-86 system into memory and transfers
control to MP/M-86 through the JMPF MPM instruction at the end of
LDMPM execution, thus completing the cold start sequence.

The files LDMPM.H86 and LDBDOS.H86 are included with MP/M-86 so
that the user can append a modified LDBIOS in the construction of a
customized loader. The example LDBIOS is listed in Appendix B for
reference purposes. To construct a custom LDBIOS, modify the
standard CP/M-86 BIOS to start the code at offset 1200H, and change
the initialization subroutine beginning at INIT to perform disk and
device initialization. 1Include a JMP to offset 0003H at the end of
the INIT subroutine. Use ASM-86 to assemble the LDBIOS.A86 program:

79

MP/M~-86 System Guide 6.1 The Cold Start Load Operation

ASM86 LDBIOS

to produce the LDBIOS.H86 machine code file. Concatenate the three
MPMLDR modules using PIP:

PIP MPMLDR,.H86=LDMPM.H86 ,LDBDOS.H86 ,LDBIOS.H86

to produce the machine code file for the MPMLDR program. Although
the standard MPMLDR program ends at offset 1700H, the modified
LDBIOS may differ from this last address with the restriction that
the LOADER must fit within the first two tracks and not overlap
MP/M-86 areas. Generate the command (CMD) file for MPMLDR using the
GENCMD utility:

GENCMD MPMLDR 8080 CODE[A040]

resulting in the file MPMLDR.CMD with a Header Record defining the
8080 Model with an absolute paragraph address of 040H, or byte
address 0400H. The MPMLDR.CMD is copied to the first two tracks of a
(scratch) disk under CP/M-86 using the LDCOPY utility using the
following command.

LDCOPY MPMLDR

Alternately a CP/M-80 system could be used with the SYSGEN utility
using the following command.

SYSGEN MPMLDR.CMD

The diskette now contains an MPMLDR program that incorporates
the custom LDBIOS capable of reading the MPM.SYS file into memory.
For standardization, Digital research assumes MPMLDR executes at
byte location 0400H. MPMLDR is statically relocatable, however, and
its operating address is determined only by the value of A-Base in
the Header Record.

The user must of course, perform the same function as the BOOT
ROM to get MPMLDR into memory. The boot operation is usually
accomplished in one of two ways. First, the user can program a ROM
(or PROM) to perform a function similar to the BOOT ROM when the
computer“s reset button is pushed. As an alternative, most disk
controllers provide a power-on "boot" operation that reads the first
disk sector into memory. This one-sector program, in turn, reads
the MPMLDR from the remaining sectors and transfers to MPMLDR upon
completion, thereby performing the same actions as the BOOT ROM.
Either of these alternatives is hardware-specific, so the user needs
to be familiar with the operating environment.

6.2 Organization of MPM.SYS
The MPM.SYS file, read by the MPMLDR program, consists of the

seven * MPM files and included *.RSP files in CMD file format, with
a 128-byte Header Record similar to the MPMLDR program:

80

MP/M-86 System Guide 6.2 Organization of MPM.SYS

Fmm———— o O T o m e +

|G-Form| G-Length | A-Base | G-Min | G-Max |

R e o T Fommmmmm +

| lor2 | xxxxxxxx | 1008 | xXxXXXX | XXXXXXX |

S R Fmmm————— Fom e N +
8b 1l6b 16b 16b 16b

Figure 6-3. Group Descriptor - MPM.SYS Header Record

where, instead of a single Code Group both Code and Data Group
Descriptors are used. The Code Group Descriptor has an A-Base load
address at paragraph 01008H, or byte address 10080H. The Data Group
Descriptor has an A-Base immediately following the end of the code
group which will vary with the modules included in that group. The
entire MPM.SYS file appears on disk as shown in Figure 6-4.

B T T TP,
|GD#1|GD#2|0|////////I
b

CS:0000H SUP code
' RTM code
MEM code
CIO code
BDOS code
(XIOS code)

Beginning of 0.S.

if Small Model

[t}

DS:0000H SYSDAT
XI0S
Table area

End of O.S.

+
1
1
|
I
|
I
)
]
|
I
I
i
I
I
|
I
i
)
I
i

+
1}

Figure 6-2. MPM.SYS File Organization

where GD#1 is the Code Group Descriptor containing the A-Base value
and GD#2 is the Data Group Descriptor followed by a "0" terminator.

The distributed 86/12 XIOS is listed in Appendix C, with an
"include" statement that reads the SINGLES.LIB file containing the
Disk Definition Tables. The SINGLES.LIB file is created by GENDEF
using the SINGLES.DEF statements shown below:

disks 2

diskdef 0,1,26,6,1024,243,64,64,2
diskdef 1,0

endef

81

MP/M-86 System Guide 6.2 Organization of MPM.SYS

The MPM.SYS file is read by the MPMLDR program beginning at the
address given by A-Base (byte address 10080H), and control is passed
to the Supervisor INIT function at offset address 0000H. The actual
load address of MPM.SYS is determined entirely by the addresses
given in the A-Base fields which can be changed if when executing
MP/M-86 in another region of memory. Note that the region occupied
by the Operating System must be excluded from the memory segments
defined during GENSYS. The user is recomended to regenerate the
system using GENSYS to avoid any errors in the A-base address
calculations.

Similar to the MPMLDR program, the user can modify the XIOS by
altering the example XIOS.A86 assembly languadge files that are
included on the source disk. The user must create a customized XIOS
that includes the specialized I/0 drivers, and assemble it using
ASM-86:

ASM86 BIOS

to produce the file XIOS.H86 containing the XIOS machine code. The
resulting XIOS HEX file is then converted to a CMD file (8080 Model)
by executing

GENCMD XIOS 8080

If a Small Model is used, having separate code and data areas, the
HEX file is converted to a CMD file by executing.

GENCMD X10S
Finally the CMD file is renamed to an MPM file using the command
REN XIOS.MPM = XIOS.CMD

The resulting XIOS.MPM file may be place on the 8086 system disk
with the other *_.MPM system file ready for GENSYS.

These steps essentially complete the tailoring process. The
original BOOT ROM is replaced by either the customized BOOT ROM, or
a one-sector cold start loader that brings the LOADER program, with
the custom LDBIOS, into memory at byte location 04000H. The MPMLDR
program, in turn, reads the MPM.SYS file created by GENSYS, with the
custom XIOS, into memory at the 1location specified in GENSYS.
Control transfers to MP/M-86, and the system begins operation.
MP/M-86 remains in memory until the next system reset operation
takes place.

The user can avoid the two-~step boot operation by constructing
a non-standard disk with sufficient space to hold the entire MPM.SYS
file on the system tracks. In this case, the cold start loader
brings the MP/M-86 memory image into memory at the location given by
A-Base, and control transfers directly to the Supervisor INIT
function at offset 0000H. Thus, the intermediate MPMLDR program is
eliminated entirely, although any initialization found in the LDBIOS
must, of course, take place instead within the XIOS.

82

MP/M-86 System Guide 6.2 Organization of MPM.SYS

Since ASM-86, GENCMD and GENDEF are provided in both COM and

CMD formats, either CP/M-80 or CP/M-86 can be used to aid the
customizing process.

83

APPENDIX A

BOOT ROM Listing

222222 RR SRR ERRRRRRRRR R 222X R R

*
*
*
*
*
*
*
*
*
*
*

MP/M-86 uses the same BOOT ROM as CP/M~86. Therefore®*

this is the original BOOT ROM listing distributed
with CP/M-86 for the SBC 86,12 and 204 Controller.
The listing is truncated on the right, but can be
reproduced by sssembling ROM.A86 from the
distribution disk. Note that the distributed source
file should zclways be referenced for the latest
version,

A2 2RSSR RRR R RS RRRRRRRRERRRRRRRRRR2R22RR2RRZ2XR 2R Y2

85

*

*

*
*
*
*
*
*
*
*

MP/M-86 System Guide Appendix A BOOT ROM Listing

ROM bootstrap for CP/M-86 on an iSBC86/12
with the

Intel SBC 204 Floppy Disk Controller

Copyright (C) 1980,1981
Digital Resecrch, Inc.

Box 579, Pacific Grove

Californis, 93950

chkkhkhkkhkhkhkhhkhhkkhkhkkhkkkhkhkhkhkkhkhkhkkhkhkhkkhkkhkkhkhkhkkkhkkhkkkkx

* This is the BOOT ROM which is initiated *
* by a system reset. First, the ROM moves *
* a copy of its data asrea to RAM ¢t loca- *
* tion 00000H, then initializes the segment¥*
* registers and the stack pointer. The *
* various peripheral interface chips on the*
* SBC 86,12 are initialized. The 8251 *
* serial interface is configured for a 9600*%*
* baud asynchronous terminal, and the in- *
* terrupt controller is setup for inter-

* rupts 10H-17H (vectors at 00040H-00O0S5FH)
* and edge-triggered auto-EOI (end of in-

* terrupt) mode with &ll interrupt levels

* masked-off. Next, the SBC 204 Diskette

* controller is initialized, and track 0

* sector 1 is read to determine the target
* peragraph address for LOADER. Finally,

* the LOADER on track 0 sectors 2-26 and

* track 1 sectors 1-26 is read into the

* target address. Control then transfers

* to LOADER. This program resides in two

* 2716 EPROM's (2K each) at location

* OFF0OOH on the SBC 86/12 CPU board. ROM
* 0 contains the even memory locations, and
* ROM 1 contains the odd addresses. BOOT

* ROM uses RAM between 00000H and 00OFFH

*
*
*

{(absolute) for a scratch ares, along with*
*

S % ok % O oF ok oF % % F * * F F ¥ *

the sector 1 buffer.
KA RAAR AR AR KA AT A ARA AR AN A AR AN AR A AR AN AR A A AR A

86

MP/M-86 System Guide Appendix A BOOT ROM Listing

OOFF true equ 0ffh
FFO0O false equ not true
FFOO debug equ false
;debug = true indicates bootstrap is in seme roms

;with SBC 957 "Execution Vehicle" monitor
;aot FE0OO0:0 instead of FF00:0

000D cr equ 13

ooo0A 1f equ 10

disk ports and commands

.
’

00A0 base204 equ 0aOh
00AO0 fdccom equ base204+0
00A0 fdcstat equ base204+0
00al fdcperm equ base204+1
00Al fdcrslt equ base204+1
00A2 fdcrst equ b&ase204+2
00A4 dmacadr equ base204+4
00A5 dmzccont equ base204+5
00A6 dmacscan equ base204+6
ooa7 dmzcsadr equ bese204+7
00AS8 dmacmode equ base204+8
00A8 dmacstat equ bese204+8
00A9 fdcsel equ base204+9
00AA fdcsegment equ base204+10
00AF reset204 equ base204+15

;actual console baud rate
2580 baud rate equ 9600

;value for 8253 baud counter
0008 baud equ 768/ (baud _rate/100)
00DA csts equ 0DAh ;18251 status port
00D8 cdata equ 0D8h ;" data port
00DO tcho equ 0DOh ;8253 PIC channel 0 por
00D2 tchl equ tchO+2 ;ch 1 port
00D4 tch2 equ tch0+4 ;ch 2 port
00D6 tcmd equ tch0+6 ;8253 command port
00CO icpl equ 0COh ;8259%9a port O
00cC2 icp2 equ 0C2h ;8259& port 1

[
.
1

IF NOT DEBUG

FFO0O ROMSEG EQU OFFOOH ;normal
ENDIF
IF DEBUG ;share prom with SBC 95
ROMSEG EQU OFEOOH
ENDIF

87

MP/M-86 System Guide

FFOO

0000
0002
0004
0007
000A
000D
000F
0012

0014
0017
0019
001B
001E

001lF
0021
0023
0025

0037
0029
002B
002D
002F
0031
0033
0036
00:8
003A

003C

8CC8
8EDS8
BE5CO1
BF00G2
B8000O
8ECO
BY9E60O
F3A4

B&0000
8ED8
8EDO
BC2A03
FC

BOOE
E6DA
B040
E6DA

BO4E
EGDA
BO37
E6DA
BOB6
E6D6
B80800
E6D4
8AC4
E6D4

BO13

We we Wy Wy we Wy W

-y

’
;Now, initialize the console USART and baud rate

-
[

;Setup the 8259 Programmable Interrupt Controller

.
[

Appendix A BOOT ROM Listing

This long jump prom'd in by hand

cseg Offffh
JMPF BOTTOM
EA 00 00 00 FF

EVEN PROM

7F8 - EA

7F9 - 00

7FA - FF

cseg romseg

move our data area into RAM at 0000:0200

mov ax,cs
mov ds,ax

mov SI,drombegin
mov DI,offset ram start ;offset of destination

mov ax,0
mov es,ax

mov CX,data length

rep movs al,al

mov ax,0
mov ds,ax
mov ss,ax

mov sp,stack’offset

cld

YT RREYS

mov al,OEh
out csts,al
mov al,40h
out csts,al

mev al,4kh

out csts,al
mov al,37h
out csts,al
mov al,0B6h
out tcmd,al
mov ax,baud
out tch2,al
mov &l,eh

out tch2,al

ENDIF

mov al,l3h

;reset goes to here (ff
;boot is at bottom of P
;s = bottom of prom (f

ip=20
ODD PROM
7F8 - 00
7F9 - 00

;this is not done if sp

;point DS to CS for source
;start of data

;destination segment is 0000
;how much to move in by
;move out of eprom a by

;data segment now in RAM

;Initialize stack segme
;clear the direction f1l

;give 8251 dummy mode

;reset 8251 to accept mode

;normal 8 bit asynch mode, * 16
;enable Tx & Rx

;8253 ch.2 square wave mode
1low of the baud rate

;high of the baud rate

MP/M-86 System Guide Appendix A BOOT ROM Listing

003E E6CO out icpl,al :8259a ICW 1 8086 mode

0040 BO1O mov al,1l0h

0042 E6C2 out icp2,eal :8259s ICW 2 vector @ 40-5F
0044 BO1F mov al,lFh

0046 E6C2 out icp2,al :8259a ICW 4 auto EOI master
0048 BOFF mov &l,0FFh

004A E6C2 out icp2,al ;8259a OCW 1 mask all levels o

’

;Reset and initialize the iSBC 204 Diskette Interface

’

restart: ;also come back here on fatal errors
004C EGAF out reset204,AL ;reset iSBC 204 logic and
004E B0O1l mov AL,1l
0050 E6A2 out fdcrst,AL ;give 8271 FDC
0052 B0O0OO mov al,0
0054 E6A2 out fdcrst,AL ; & teset command
0056 BB1502 mov BX,offset specsl
0059 ES8E100 CALL sendcom ;program
005C BB1BO2 mov BX,offset specs2
005F E8DBOO CALL sendcom ; Shugart SA-800 drive
0062 BB2102 mov BX,offset specs3
0065 E8D500 call sendcom ; characteristics
0068 BB1002 homer: mov BX,offset home
006B E85800 CALL execute ;home drive 0
006E BB2A03 mov bx,sectorl ;offset for first sector DMA
0071 B8000O mov ax,0
0074 8ECO mov es,ax ; segment " " " "
0076 E8A700 call setup_dma
0079 BB0202 mov bx,offset readl
007C E84700 call execute ;get TO Sl
007F B8E062D03 mov es,ABS
0083 BB000O mov bx,0 ;get loader load address
0086 E89700 call setup_dma ;setup DMA to read loader
0089 BB0602 mov bx,offset readl
008C E83700 call execute ;read track 0
008F BBOBO2 mov bx,offset read2
0092 E83100 call execute ;read track 1
0095 8C06E802 mov leap segment,ES
; setup far jump vector
0099 C706E6020000 mov leap offset,0
; enter LOADER
009F FF2EE602 jmpf dword ptr leap offset
pmsg:
00A3 8AQF mov cl, [BX]
00AS5 84C9 test cl,cl
00A7 7476 jz return
00A9 E80400 call conout

89

MP/M-86 System Guide

00AC
00AD

00BO
00B2
0oB4
00B6
00B8
0ooBA

00BB
00BD
00BF
00Cl1
00C3
00C5

00C6

ooca

00CD
00D1
00Db4
00D6
00D9
00DB
00DD
00EO
00E2
00E4
00E®6

00ES8
00EA
00EC

00FO
COF2
O0F4

OO0F6

43
E9F3FF

E4DA
A801
74FA
8ACl
E6D8
C3

E4DA
A802
74FA
E4D8
247F
C3

891E0002

E87000

8B1E00O0O2
8A4701
243F
B90008
3c2cC
720B
B98080O
240F
3CocC
B0OO
7737

E4A0
22C5
32C174F8

E4Al
241E
7429

3C10

.
’

conout:

conin:

H
H
H
execute:

.
7

retry:

Appendix A BOOT ROM Listing

inc BX
jmp pmsg

in al,csts
test al,l

jz conout
mov al,cl
out cdate,al
ret

in al,csts
test al,2
jz conin

in al,cdata
end al,7Fh
ret

;execute command siring @ [BX]
; <BX> points to length,
;followed by Command byte
;followed by length-1 parameter bytes

mov lastcom,BX ;remember what it was
;retiy if not ready dr

call sendcom ;execute the command
;now, let's see what t
;0f status poll was n
;for thet command type

mov BX,lastcom ;point to command stri

mov AL,1[BX] ;get command op code

and AL,3fh ;drop drive code bits

mov CX,0800h ;mask if it will be "i

cmp AL,2ch ;see 1f interrupt type

jb execpoll

mov CX,8080h ;else we use "not co

and AL,O0fh ;unless . .

cmp AL,Och ;there isn't

mov AL,O

ja return ;any result at all

14
execpoll:
in AL,FDCSTAT

and AL,CH

xor AL,CL ! JZ execpoll

in AL, fdcrslt ;get result register
and AL, leh ;look only at result
jz return ;Zero means it was a
cmp al,l0h

;poll for bit in b,

90

teggled with c

M

I P/M-86 System Guide

00F8

O0OFA
00FD

0100
0102
0104
0106
010A

010D
010F
0111

0115
0118
011B
011C

0l1lF

0120
0122
0124
0126
0128
012A
012C
012E
0130
0132
" 0134

0136

0138
2 013A

013C

013D
013F
0141
0143
0145
0146
0148

014A
014cC

7513 jne fatal
’
BB1302 mov bx,offset rdstat
E83DO0O0 call sendcom
rd poll:
E4A0Q o in al,fdc_stat
A880 test al,80h
75FA jnz rd poll
8B1EO0OO2 mov bx,last com
E9BDFF jmp retry
fatal:
B400 mov &h,0
8BD8 mov bx,ax
8B9F2702 mov bx,errtbl{BX]
; print appropriate error
E88BFF cell pmsg
E8BAQFF call conin
58 pop ax
E92DFF jmp restart
’
return:
C3 RET
setupdma:
B004 mov AL,04h
E6AS8 out dmacmode,AL
BOOO mov &l,0
E6AS out dmaccont,AL
B040 mov AL,40h
E6AS out dmaccont,AL
8CCO mov AX,ES
E6AA out fdcsegment, AL
8AC4 mov AL,AH
E6AA out fdcsegment ,AL
8BC3 mov AX,BX
E6A4 out dmacadr,AL
8AC4 mov AL,AH
E6A4 out dmacadr,AL
C3 RET
i
i
i
sendcom:
E4AQ in AL, fdcstat
2480 and AL,80h
75FA jnz sendcom
8AQF mov CL, [BX]
43 inc BX
8A07 mov al, [BX]
EG6AQD out fdccom,AL
parmloop:
FEC9 dec CL
74D1 jz return

Appendix A

;routine to send a command string

91

;see 1f any (more)

BOOT ROM Listing

;i1f other than “Not Re¢

;perform read status co

;walt for command not b

;jrecover last attempted
;jand try it over again

; fatal error

;make 16 bits
message

;wait for key strike

;discard unused item
;then start all over

;return from EXECUTE

;enable dmac

;set first (dummy) byte

;force read data mode

Y
9]

(V2]
!

;insure command not busy
;get count

;point to and fetch command byt
; send command

parameters

MP/M-86 System Guide Appendix A BOOT ROM Listing

014E 43 inc BX ;point to next parameter
parmpoll:

014F E4A0 in AL, fdcstat

0151 2420 and AL,20h

0153 75FA jnz parmpoll ;loop until parm not full

0155 8A07 mov AL, [BX]

0157 EOA1 out fdcparm,AL ;output next parameter

0159 EQEEFF jmp parmloop ;9o see about another

Image of data to be moved to RAM

" we e we

015C drombegin equ offset $
015C 0000 clastcom dw 0000h ;last command
015E 03 creadstring db 3 ; length
015F 52 db 52h ;read function code f
0160 00 db 0 ;track #
0161 01 db 1 ;sector #
0162 04 creadtrk0 db 4
0163 53 db 53h ;read multiple
0164 00 db 0 ;track 0O
0165 02 db 2 ;sectors 2
0166 19 db 25 ; through 26 L
0167 04 creadtrkl db 4
0168 53 db 53h e
0169 01 db 1 ;track 1
016A 01 db 1 ;sectors 1
016B 1A db 26 ; through 26 0
0l16C 026900 chome(db 2,6%9h,0
016F 016C crdstat0 db 1,6ch
0171 05350D cspecsl db 5,35h,0dh 02
0174 0808E9 db 08h,08h,0e9h
0177 053510 cspecs? db 5,35h,10h
017A FFFFFF db 255,255,255
017D 053518 cspecs3 db 5,35h,18h |
0180 FFFFFF db 255,255,255 :
0183 4702 cerrtbl dw offset er0
0185 4702 dw offset erl (
0187 4702 dw offset er2
0189 4702 dw offset er3 C
018B 5702 dw offset erd
018D 6502 dw offset erb
018F 7002 dw offset er6
0191 7F02 dw offset er7
0193 9002 dw offset er8 0
0195 A202 aw offset er9
0197 B202 dw offset erA
0199 C502 dw offset erB

92

MP/M-86 System Guide Appendix A BOOT ROM Listing

019B D302 dw offset erC
019D 4702 dw offset erD
019F 4702 dw offset cerkE
01A1 4702 dw offset erF
’
01A3 ODOA4E756C6C Cer0 db cr,1£,'Null Error 22',0
204572726F72
203F3F00
01A3 Cerl equ cerQ
01A3 Cer2 equ cerQ
01A3 Cer3 equ cer(
01B3 ODOA436C6F63 Cerd db cr,1£,'Clock Error',0
6B204572726F
7200
01C1 ODOA4C617465 Cer5 db cr,l1f,'Late DMA',0
20444D4100
01CC 0DOA49442043 Ceré6 db cr,1£,'ID CRC Error',0
524320457272
6F7200
01DB 0D0A44617461 Cer? db cr,1f,'Data CRC Error',0
204352432045
72726F7200
O0lEC 0D0A44726976 Cer8 db cr,1f£f,'Drive Not Ready',0
65204E6F7420
526561647900
01FE ODOAS57726974 Cer9 db cr,1f,'"Write Protect',0
652050726F74
65637400
020E 0DOAS54726B20 CerA db cr,1£,'Trk 00 Not Found',O
3030204E6F74
20466F756E64
00
0221 0DOAS57726974 CerB db cr,1£f,'"Write Fault',0
65204661756C
7400
022F 0DOA53656374 CercC db cr,1£f,'Sector Not Found',0
6F72204E6F74
20466F756E64
00
01A3 CerD equ cerQ
01lA3 CerE equ cer0
01A3 CerF equ cer0
0242 dromend equ offset $
00E6 data length equ dromend-drombegin

reserve space in RAM for data area
{no hex records generated here)

wr we Ny W

0000 dseg 0
org 0200h
0200 ram start equ $

93

MP/M-86 System Guide Appendix A BOOT ROM Listing

0200 lastcom rw 1 ;last command
0202 read0 rb 4 ;read track 0 sector 1
0206 readl rb 5 ;read TO S2-26
020B read2 rb 5 ;read T1 S1-26
0210 home rb 3 ;home drive 0
0213 rdstat rb 2 ;read status
0215 specsl rb 6
021B specs?2 rb 6
0221 specs3 rb 6
0227 errtbl rw 16
0247 er0 rb length cer0 ;16
0247 arl equ er0
0247 er2 equ er0
0247 er3 equ er0
0257 erd rb length cer4 ;14
0265 erS rb length cer5 ;11
0270 er6 rb length cerb ;15
027F er7 rb length cer?7 ;17
0290 er8 rb length cer8 ;18
02A2 er9 rb length cer9 ;16
02B2 erA b length cerA ;19
02C5 erB rb length cerB ;14
02D3 erC rb length cercC ;19
0247 erD equ er0
0247 erE equ er0
0247 erF equ er0
02E6 leap offset rw 1
02ES8 leap segment rw 1
02EA rw 32 ;local stack
032A stack offset equ offset $;stack from here down
; TO S1 read in here
032A sectorl equ offset $
032A Ty rb 1
032B Len rw 1
032D Abs rw 1 ;ABS is all we care abo
032F Min rw 1
0331 Max rw 1
end

94

APPENDIX B

LDBIOS Listing

X2 22222 RS R RS R R AR X R Rt s R SR 2

* *
* This is the LOADER BIOS, derived from the *
* CP/M-86 BIOS program,., This listing is *
* truncated on the right, but can be reproduced *
* by assembling the BI0S.A86 file provided with *
* CP/M-86. Note that the distributed source file *
* *
* *
* *
* *

should always be referenced for the latest
version.

S22 222 S22 X228 R R 2R R X222t i at st sl Rl

;***

Loader Basic Input/Output System (LDBIOS)
for LDMPM Configured for iSBC 86/12 with
the iSBC 204 Floppy Disk Controller

*

*

*

*

*

* The only modificetions of the CP/M-86

* LLDBIOS for this MP/M-86 LDBIOS are the

* CCP offset and the contents of the signon
* message, which is printed by LDMPM.A86
*
*
*
*
*
*
*
*

* F % F o * F ¥ * ¥ *

in place of the INIT routine,

(Note: this file contains both embedded *
tabs and blanks to minimize the list file *
width for printing purposes. You may wish*
to expand the blanks before performing *

major editing.) *
2 EZEXEEESSTISSLESSSSE RS SR AR SRR R R RS R R RE RS

we Wwe ws we wp wo w,

Copyright (C) 1980,1981
Digital Research, Inc.

Box 579, Pacific Grove

California, 93950

(Permission is hereby granted to use
or abstract the following program in
the implementation of CP/M, MP/M or
CP/NET for the 8086 or 8088 Micro-

We We e %o W Ny %5 we we W

processor)
true equ -1
false equ not true

;***

95

MP/M-86 System Guide Appendix B LDBIOS Listing

*

;* Bdos_int is interrupt used for earlier

;¥ versions.,
*

ehkkhkhkhkhkhkhkhkhkkkkhkkkkhkkhkkhkkkhkkkkkkkkkkkkkkkkkkkk

“e we

*
*
*
*
*

“e =

-

00EO bdos int equ 224 ;reserved BDOS Interrupt
1200 bios code equ 1200h ;start of LDBIOS
0103 ccp offset equ 0103h ;base of MPMLOADER
0406 bdos ofst equ 0406h ;stripped BDOS entry
00DA csts equ O0DAh ;i8251 status port
00D8 cdata equ 0D8h ; " data port
;***
« %k *
;¥ Intel iSBC 204 Disk Controller Ports *
. % *

ekkhkhkhkkhkhkhkhkhkkkkkkkhkkkhkhkhkkkkkkkkhkkhkkkkkkkkhkkkkk

-

00A0Q base204 equ 0alh ;SBC204 assigned ad
00AOQ fdc_com equ base204+0 ;8271 FDC out comma
00AQ fdc_stat equ base204+0 ;8271 in status
00Al fdc_parm equ base204+1 ;8271 out parameter
00Al fdc rslt equ base204+1 ;8271 in result
00A2 fdc_ rst equ base204+2 ;8271 out reset
00A4 dmac_adr equ base204+4 ;8257 DMA base addr
00AS dmac cont equ base204+5 ;8257 out control
00A6 dmac:scan equ base204+6 ;8257 out scan cont
00A7 dmac_sadr equ base204+7 ;8257 out scan addr
00A8 dmac_mode equ base204+8 : 8257 out mode
00A8 dmac stat equ base204+8 ;8257 in status
00A9 fdc_sel equ base204+9 ;FDC select port (n
00AA fdc_segment equ base204+10 ;segment address re
00AF reset 204 equ base204+15 ;reset entire inter
000A max retries equ 10 ;max retries on dis
;before perm error
000D cr equ 0dh ;carriage return
oooa 1f equ 0Oah ;line feed
cseg
org ccpoffset
ccp:
org bios_code
;***
.k *
;* BIOS Jump Vector for Individual Routines :

* ¥ *

khkhkhkkkkhkhhkkhkhkkkkkkkkkkhkhhkkkhkkhkkkhkhkkkkkkkkkk

1200 E93C00 jmp INIT ;Enter from BOOT ROM or LOADER

96

MP/M-86 System Guide Appendix B LDBIOS Listing

1203 E95B00 jmp WBOOT ;Arrive here from BDOS call 0
1206 E95BO0O jmp CONST ;return console keyboard status
1209 ES6100 jmp CONIN ;jreturn console keyboard char
120C E96800 jmp CONOUT ;write char to console device
120F E97000 jmp LISTOUT ;write character to list device
1212 E96E00 jmp PUNCH ;write character to punch device
1215 E96B0O jmp READER ;return char from reader device
1218 E9B60O - jmp HOME ;move to trk 00 on cur sel drive
121B E99200 Jmp SELDSK ;select disk for next rd/write
121E ESC500 jmp SETTRK ;set track for next rd/write
1221 E9C700 jmp SETSEC ;set sector for next rd/write
1224 E°ODOO0O jmp SETDMA ;set offset for user buff (DMA)
1227 E9DBO0O jmp READ ;read a 128 byte sector

122A E9DCOO jmp WRITE ;write a 128 byte sector

122D E95200 jmp LISTST ;return list status

1230 E9BDOO jmp SECTRAN ;Xxlate logical->physical sector
1223 E9C600 jmp SETDMAB ;set seq base for buff (DMA)
1236 E9C800 jmp GETSEGT ;return offset of Mem Desc Table
1239 E94A00 jmp GETIOBF ;return I/0 map byte (IOBYTE)
123C E94A00 jmp SETIOBF ;set I/0 map byte (IOBYTE)

khkkkkkhkhkhkhkhkkhkhhkhkhkhkhkhkhkkkhkdhkhkkhkhkkkhkkkkkkkkkkkkkk
* *
;* INIT Entry Point, Differs for LDBIOS and *
; * BIOS, according to "Loader Bios" value *
* *
chkkkhkkhkkhkkhkkhkkhkhkhbhbhbhhbhbhbdhhhhhhhkhkhkhkhkhkhkhkhkhkhkhkhkkkk

s N W W we

-

INIT: ;initialize hardware

123F 8CC8 mov ax,Cs ;we entered with a JMPF so
1241 8EDO mov ss,ax ; CS: as the initial value
1243 8EDS8 mov ds,ax ; DS:,
1245 8ECO mov es,ax : and ES:

;use local stack during initialization
1247 BC8A1l6 mov sp,offset stkbase
124Aa FC cld ;set forward direction
124B 1E push ds ;save data segment
124C B8000CO mov ax,0
124F 8EDS8 mov ds,ax ;point to segment zero

;BDOS interrupt offset
1251 C70680030604 mov bdos offset,bdos_ofst
1257 8COE8203 mov bdos segment,CS ;bdos interrupt segment
125B 1F pop ds ;restore data segment
125C B100O mov cl1,0 ;default to dr A: on coldst
125E ESA2EE jmp ccp ;Jump to cold start entry o
1261 ESYASEE WBOOT: Jjmp ccp+6 ;direct entry to CCP at com

;***
. *
I’

i * CP/M Character I/0 Interface Routines *
P Console is Usart (i825la) on iSBC 86/12 *
i * at ports D8/DA *

97

MP/M-86 SYstem Guide Appendix B LDBIOS Listing

.k *
1
;***

CONST: ;console status

1264 E4DA in al,csts

1266 2402 and al,2

1268 7402 Jz const _ret

126A OCFF or al,255 ;return non-zero if RDA
const ret:

126C C3 T ret ;Receiver Data Available
CONIN: ;jconsole input

126D E8FA4FF call const

1270 74FB jz CONIN ;wait for RDA

1272 E4DS8 in al,cdata

1274 247F and al,7fh ;read data and remove parit

1276 C3 ret
CONOQUT: ;console output

1277 E4DA in al,csts

1279 2401 and al,l ;get console status

127B 74FA jz CONOUT ;wait for TBE

127D 8ACl mov al,cl

127F E6DS8 out cdata,al ;Transmitter Buffer Empty

1281 C3 ret ;then return data
LISTOUT: ;list device output
LISTST: ;poll list status

1282 C3 ret
PUNCH: ;not implemented in this configuration
READER:

1283 BO1lA mov al,lah

1285 C3 ret ;return EOF for now
GETIOBF:

1286 BOOO mov al,0 ;TTY: for consistency

1288 C3 ret ; IOBYTE not implemented
SETIOBF:

1289 C3 ret ;iobyte not implemented
Zero ret:

128A 2400 ~ and 21,0

128C C3 ret ;return zero in AL and flag

; Routine to get and echo a console character
; and shift it to upper case

uconecho:

128D E8DDFF call CONIN ;get a console character
1290 50 push ax

1291 8ACS mov cl,al ;save and

1293 EBELFF call CONOUT

98

MP/M-86 System Guide Appendix B LDBIOS Listing

1296
1297
1299
129B
129D
129F

12A1

12Aa2
12A4
12A6
12A8
12AA
12AD
12AE

12B0O
12B3
12B6
12B8
12BA
12BD
12BF
12C1

12C4
12Ce6
12¢C8
12CA

l12cC

12D0

12D1
12D6
12D9
12DpC
12DE
12E1
12E4

58

3C61
7206
3C7A
7702
2C20

C3

8A07
84C0
7428
8ACS
EBCAFF
43
EBF2

BB0O0OQO
80F902
7318
B080
80F900
7502
B040
A21315

B500
8BD9
B104
D3E3

81C32215

C3

606161500
BB1815
E83500
74F2
BB1414
ESBEFF
EBEB

pop ax ;echo to console
cmp al,'a’
jb uret ;less than 'a' is ok
cmp al,'z!
ja uret ;greater than 'z' is ok
sub al,'a'-'A' ;else shift to caps
uret:
ret
; utility subroutine to print messages
pmsqg:
mov al,[BX] ;get next char from message
test al,al
jz return ;1f zero return
mov CL,AL
call CONOUT ;print it
inc BX
jmps pmsg ;next character and loop
’.***
P * *
i * Disk Input/Output Routines *
. %k *
:-***
SELDSK: ;select disk given by register CL
mov bx,0000h
cmp cl1,2 ;this BIOS only supports 2
jnb return ;return w/ 0000 in BX if ba
mov al, 80h
cmp c¢l1,0
jne sell ;drive 1 if not zero
mov al, 40h ;else drive is 0
sell: mov sel mask,al ;save drive select mask
- ;now, we need disk paramete
mov ch,0
mov bx,cx ;BX = word(CL)
mov cl,4
shl bx,cl ;multiply drive code * 16

;create offset from Disk Parameter Base
add bx,offset dp base

return:
ret

HOME : ;move selected disk to home position (Track
mov trk,O0 ;set disk i/o0 to track zero

mov bx,offset hom com
call execute

jz return ;home drive and return if O
mov bx,offset bad hom ;else print

call pmsg ; "Home Error"

jmps home ;and retry

SETTRK: ;set track address given by CX

99

MP/M-86 System Guide

12E6
12EA

12EB
12EF

12F0
12F2
12F4
12F6

12F7
12FB

12FC
1300

1301
1304

1305
1307

1309

130B
130E

1311

1315

880E1615
C3

880E1715
C3

8BD9
03DA
8AlF
C3

890EOF15
C3

890E1115
C3

BB1D15
C3

B012
EBO2

BOOA

BB1415
884701

891E0D15

C6060C150A

Appendix B LDBIOS Listing

mov trk,cl ;we only use 8 bits of trac

ret
SETSEC: ;set sector number given by cx
mov sect,cl ijwe only use 8 bits of sect
ret
SECTRAN: ;translate sector CX using table at [DX]
mov bx,cx
add bx,dx ;add sector to tran table a
mov bl, [bx] ;get logical sector
ret
SETDMA: ;set DMA offset given by CX
mov dma_adr,CX
ret
SETDMAB: ;set DMA segment given by CX
mov dma_seg,CX
ret
H
GETSEGT: ;return address of physical memory table

mov bx,offset seg table
ret

khkhhkhkkhkhkhkhhhkkhhkkhkhhkhhkhhkhkhhkhhkhkhkhhkhkhhkhkhkhkhkhkhkkkk

*

*

* All disk I/0 parameters are setup: the
* Read and Write entry points transfer one
*
*
*
*

*
*
*
sector of 128 bytes to/from the current *
DMA address using the current disk drive *

*

*

khkhkhkhkhkkkkkhkhkhkhkkhkhkkhkkkhkkkkhhkkkhkhkkkkkkkkkkk

mov al,1l2h ;basic read sector command

jmps r_w_common

WRITE:

mov al,0ah ;basic write sector command

r_w_common:
- mov bx,offset io com ;point to command stri
mov byte ptr 1([BX],al ;put command into str
; fall into execute and return
execute: ;execute command string.
[BX] points to length,
followed by Command byte,

followed by length-1 parameter byte

~e wo we

mov last com,BX ;save command address for r

outer retry:
;allow some retrying
mov rtry cnt,max_retries

100

MP/M-86 System Guide

131Aa
131E

1321
1325
1328
132B
132D
132F
1332
1334
1336
1338

133Aa
133C
133E
1340

1342
1344
1346

1348
134A

134cC
1350

1352
1354
1356
135A
135D
135F
1362
1364
1366
1368
136A
136C
136E

1370

Appendix B

LDBIOS Listing

;transmit command to 18271

;get command op code

;mask if it will be "int re

;ok if it is an interrupt t
;else we use "not command b

;unless there isn't

; any result
;poll for bits in CH,
; toggled with bits in CL

;read status

; 1solate what we want to
;and loop until it is done

;Operation complete,
see iIf result code indica

.
[

;no error, then exit
; some type of error occurre

;was it a not ready drive ?
i NOo,
retry read or write
up to 10 times

-
[

recover from the

;make error code 16 bits
;print appropriate message
;flush usart receiver buffe
;read upper case console ch
;cancel

;retry 10 more times

;ignore error
;set code for permanent err

retry:
8B1lEOD15 mov BX,last com
E88900 call send com
; check status poll
8B1EOD15 mov BX,last com
8A4701 mov al,l[bx]
B90008 mov ¢x,0800h
3c2c cmp al,2ch
720B jb exec poll
B98080 mov ¢x,8080h
240F and al,0fh
3coc cmp &l,0ch
B0O0O mov al,0
7736 Ja exec_exit
exec_poll:
E4A0 in al,fdc_stat
22C5 and al,ch
32C1 xor al,cl
74F8 jz exec_poll
E4Al in al,fdc_rslt
241E and al,leh
7428 jz exec_exit
3Cl0 cmp al,l0h
7425 je dr_nrdy
dr rdy: ; then we just
FEOEQC15 dec rtry cnt
75C8 jnz retry
H retries do not
; hard error
B400 mov ah,0
8BD8 mov bx,ax
8B9F3B14 mov bx,errtbl[BX]
E845FF call pmsg
E4DS8 in al,cdata
E82BFF call uconecho
3C43 cmp al,'cC!
7425 je wboot 1
3C52 cmp al,'R'
74AB je outer retry
3C49 cmp al,'T"’
741A je z ret
OCFF or al,255
exec_exit:
C3 ret
dr_nrdy:

;here to wait for drive ready

101

MP/M-86 System Guide Appendix B LDBIOS Listing

1371
1374
1376
1379
137B
137E

1381
1384
1386

1388
138A

138B

138E
1390
1395
1397

1399
139cC

139F
13a1
13A3
13A5
13Aa7
13A9

E81A00
7574
E81500
759F
BBAC14
E821FF

E80AQ0
74FB
EB92

2400
C3

E9D3FE

B640
F606131580
7502
B604

BB1B15
E80BOO

E4A0
A880
75FA
E4Al
84C6
C3

13AA E4AO
13AC A880
13AE 75FA

call test ready

jnz retry ;if it's ready now we are d
call test ready
jnz retry ;1f not ready twice in row,

mov bx,offset nrdymsg
call pmsg ;"Drive Not Ready"

nrdy0l:

call test ready

jz nrdy0l ;jnow loop until drive ready

jmps retry ;then go retry without decr
zret:

and al,o0

ret ;return with no error code
wboot 1: ;can't make it w/ a short 1

~ jmp WBOOT

e R KA KRR RAA AR RARRAAAARARRAAARAA AR AR AR A AR AR A AR

*

*
* The 18271 requires a read status command *
to reset a drive-not-ready after the *
*
*
*

*

drive becomes ready

We we We Wme we W

*
*
khkhkkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhddhhhkdhhd ki

-

test ready:

mov dh, 40h ;proper mask if dr 1

test sel mask,80h

jnz nrdy2

mov dh, 04h ;mask for dr 0 status bit

nrdy2:
mov bx,offset rds com
call send_com
dr_poll:
in al,fdc_stat ;get status word
test al,80h

jnz dr_poll ;walit for not command busy
in al,fdc rslt ;get "speciel result"

test al,dh ;look at bit for this drive
ret ;return status of ready

ekhkhkhkhkhhkhkhhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhhhkhhhhhhhkhhhhkk

*
Send com sends a command and parameters *
to the i8271: BX addresses parameters., ¥
The DMA controller is also initialized *
if this is a read or write *

*

*

* Ok A % X % *

222X R R X R R RZERERR RS SRR R R R R R R R R R

WE Me M wma W W we w

send_com:
in al,fdc_stat

test al,80h ;insure command not busy
jnz send_com ;loop until ready

102

MP/M-86 System Guide Appendix B LDBIOS Listing

13BO
13B3
13B5
13B7
1389

13BB
13BD
13BF

13C1
13C3
13C5
13C7
13C9
13CB
13CD
13D0
13D2
13D4
13D6
13D9
13DB
13DD

13DF
13E1
13E2
13E4
13E8

13EA
13EC
13EE

13EF
13F1
13F3
13F5
13F7
13F9

8A4701
3Cl12
7504
B140
EBO6

3C0A
7520
B180

BO0O4
E6A8
B0O0O
E6AS
8AC1
E6AS
AlQOF15
E6A4
8AC4
E6A4
Allll5
E6AA
8AC4
E6AA

8AOQOF

43

8A07
O0A061315
E6AQ

FEC9
7482
43

E4A0
A820
75FA
8A07
E6Al
EBEF

13FB

;See if we have to initialize for a DMA ope

mov al,l([bx] ;get command byte

cmp al,l2h

jne write maybe ;if not a read it could be

mov cl,40h

jmps init dma ;is a read command, go set
write maybe:

cmp al,0ah

Jne dma_exit ;leave DMA alone if not rea

mov ¢l1,80h ;we have write, not read

init dma:
;we have a read or write operation, setup DMA contr

; (CL contains proper direction bit)
mov al,04h
out dmac_mode,al ;enable dmac
mov al,00
out dmac_cont,al ;send first byte to con
mov al,cl
out dmac_cont,al ;load direction register
mov ax,dme adr
out dmac_adr,al ;send low byte of DMA
mov al,ah
out dmac adr,al ;send high byte

mov ax,dma_seg

out fdc segment,al ;send low byte of segmen
mov al,ah

out fdc segment,al ;then high segment addre

dma exit:

mov cl,[BX] ;get count
inc BX
mov al, [BX] ;get command

or al,sel mask ;merge command and drive co
out fdc com,al ;send command byte
parm_ loop:

dec cl

jz exec_exit ;ho (more) parameters, retu

inc BX ;point to (next) parameter
parm poll:

in al,fdc_stat

test al,20h ;test "parameter register f£

jnz parm poll ;1dle until parm reg not fu

mov al,[BX]
out fdc parm,al ;send next parameter
jmps parm_loop ;go see if there are more p

B ESEEEEREEREEEERRRR SRR RREEEREREEEEEEEEREREEEEERR;

’
;* *
P * Data Areas *
’.* *
’.***
data offset equ offset $
dseg
org data offset ;contiguous with co

103

MP/M-86 System Guide Appendix B LDBIOS Listing

13FB 0DOAODOA signon db cr,lf,cr,1f

13FF 4D502F4D2D38 db *MP/M-86 Loader 2.0',cr,1f,0
36204C6F6164
657220322E30
0DOAQO

1414 0ODOA486F6D65 bad hom db cr,l1f,'Home Error',cr,1£,0
204572726F72
0D0OAOO

1423 ODOA496E7465 int_trp db cr,l1f,'Interrupt Trap Halt',cr,1lf,0
727275707420
547261702048
616C740D0A00

143B 5B145B145B14 errtbl dw er0,erl,er2,er3
5B14

1443 6B147B148814 dw erd,er5,er6,er?
9914

144B AC14C014D214 dw er8,er9,erA,erB
E714

1453 F7145B145B14 dw erC,erD,erE,erF
5814

145B ODOA4E756C6C er0 db cr,1f,'Null Error 2?2',0
204572726F72
203F3F00
145B erl equ er0
145B er2 equ er0
145B er3 equ er0
146B 0DOA436C6F63 erd db c¢r,1f,'Clock Error :',0

6B204572726F
72203A00

147B (0D0OA4C617465 er5 db cr,lf,'Late DMA :',0
20444D41203A
0o

1488 0D0A49442043 er6 db c¢r,lf,'ID CRC Error :',0
524320457272
6F72203A00

1499 0D0OA44617461 er? db c¢r,l1f,'Data CRC Error :',O0
204352432045
72726F72203A
00

14AC 0DOA44726976 er8 db cr,lf,'Drive Not Ready :',0
65204E6F7420
526561647920
3A00

14C0 0D0OA57726974 er9 db c¢r,lf,'Write Protect :',0
652050726F74
656374203A00

14D2 0DOAS54726B20 erA db cr,l1f,'Trk 00 Not Found :',0
3030204E6F74
20466F756E64
203A00

14E7 ODOAS7726974 erB db c¢r,l1f,'Write Fault :',0

104

MP/M-86 System Guide

14F7

65204661756C
74203700
0DOA53656374
6F72204E6F74
20466F756E64
203A00

1458
145B
145B
14AC

150C
150D
150F
1511
1513

1514
1515
1516
1517

1518
1518

151D
151E
1520

00
0000
0000
0000
40

03
00
00
00

022900
012C

01
A901
571E

1522

1522
1526
152A
152E
1532
1536
153A
153E

51150000
00000000
6B154215
0Al16EB15
51150000
00000000
6B154215
39161A1l16

erC

erD
erkE
erF
nrdymsg

rtry cnt db
last com dw

dma_ adr
dma seg

sel mask db

.
’

io com
rd wr
trk
sect

hom com
rds_com

.
’

Appendix B LDBIOS Listing

db c¢r,l1f,'Sector Not Found :',0
equ er0
equ er0
equ er0
equ er8
0 ;disk error retry counter
0 ;address of last command string
dw 0 ;dma offset stored here
dw 0 ;dma segment stored here
40h ;select mask, 40h or 80h
Various command strings for 18271
db 3 ; length
db 0 ;read/write function code
db 0 strack
db 0 ;sector #
db 2,29h,0 ;home drive command
db 1,2ch ;read status command

System Memory Segment Table

segtable db 1

dpbase
dpe0

dpel

W M W M NE We We ME NE N W W

;1 segment

dw tpa_seg ;seqg starts after BIOS
dw tpa len ;and extends to 20000
DISKS 2
equ $;Base of Disk Param
dw x1t0,0000h ;Translate Table
dw 0000h,0000h ;Scratch Area
dw dirbuf,dpb0 ;Dir Buff, Parm Blo
dw csv0,alv0 ;Check, Alloc Vecto
dw x1t1l,0000h ;Translate Table
dw 0000h,0000h ;Scratch Area
dw dirbuf,dpbl ;Dir Buff, Parm Blo
dw csvl,alvl ;Check, Alloc Vecto
DISKDEF 0,1,26,6,1024,243,64,64,2
1944: 128 Byte Record Capacity
243: Kilobyte Drive Capacity
64: 32 Byte Directory Entries
64: Checked Directory Entries
128: Records / Extent
8: Records / Block
26: Sectors / Track
2: Reserved Tracks
6: Sector Skew Factor

AY

105

MP/M~86 System Guide Appendix B LDBIOS Listing
1542 dpb0 equ offset $;Disk Parameter Blo
1542 1A00 dw 26 :Sectors Per Track
1544 03 db 3 ;Block Shift
1545 07 db 7 ;Block Mask
1546 00 db 0 ;Extnt Mask
1547 F200 dw 242 ;Disk Size - 1
1549 3F00 dw 63 ;Directory Max
154B CO db 192 ;AllocO
154C 00 db 0 ;Allocl
154D 1000 dw 16 ;Check Size
154F 0200 dw 2 ;O0ffset
1551 x1t0 equ offset $; Translate Table
1551 01070D13 db 1,7,13,19
1555 19050B11 db 25,5,11,17
1559 1703090F db 23,3,9,15
155D 1502080E db 21,2,8,14
1561 141A060C db 20,26,6,12
1565 1218040A db 18,24,4,10
1569 1016 db 16,22
001F also equ 31 ;Allocation Vector
0010 css0 equ 16 ;Check Vector Size
; DISKDEF 1,0 '
; Disk 1 is the same as Disk 0
1542 dpbl equ dpb0 ;Equivalent Paramet
001F alsl equ als0 ;Same Allocation Ve
0010 cssl equ css0 ;Same Checksum Vect
1551 x1ltl equ x1t0 ; Same Translate Tab
; ENDEF
H Uninitialized Scratch Memory Follows:
156B begdat equ offset $;Start of Scratch A
156B dirbuf rs 128 ;Directory Buffer
15EB alvo rs als0 ;Alloc Vector
l160A csv0 rs css0 ;Check Vector
161A alvl rs alsl ;Alloc Vector
1639 csvl rs cssl ;Check Vector
1649 enddat equ offset $;End of Scratch Are
00DE datsiz equ offset $-begdat ;Size of Scratch Ar
1649 00 db 0 ;Marks End of Modul
164A loc stk rw 32 ;local stack for initialization
168A stkbase equ offset $
168A lastoff equ offset §$
01A9 tpa seqg equ (lastoff+0400h+15) / 16
1E57 tpa_len equ 2000h - tpa_seg
168A 00 db 0 ;£i1]1 last address for GENCMD
’.***
. K *
}: Dummy Data Section :

106

MP/M-86 System Guide Appendix B LDBIOS Listing

;**********************************ttttttttttt

0000 dseg 0 ;absolute low memory
org 0 ; (interrupt vectors)
0000 int0_offset rw 1
0002 int0_segment rw 1
; pad to system call vector
0004 rw 2* (bdos_int-1)
0380 bdos offset rw 1
0382 bdos__segment rw 1
END

107

APPENDIX C

EXAMPLE XIOS LISTING

I E AR AR ERER SRR SRR RS R R s XA RS RS RS X R X

*

* This is the example MP/M-86 XIOS listing.

* This listing has been truncated on the right,
but can be reproduced by assembling the
X105.A86 file provided with CP/M-86. This BIOS
allows MP/M~-86 operation with the Intel SBC
86/12, with the SBC 204 controller and with the
SBC 534 expansion interface. Use this XIO0OS as
the basis for a customized implementation of

MP/M~-86.

(Note: this file contains both embedded
tabs and blanks to minimize the list file
width for printing purposes. You may wish
to expand the blanks before performing

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

major editing.) *
*

*

*
*

*

*

*

*

*

*
Ahkkhkkkhhkhdkhkhhkdhhhhhhhhhhkhkhhxdhdhdhkhkhhhhhhhhkhdhhhhk
*

*

*

*

*

*

*

*

IEE A SRR R R AR ER SRR R R R SRR R R RR R RREESRRRRR R XS,

109

MP/M-86 System Guide Appendix C Example XIOS Listing

title '8086 Hardware Interface'

;**tl

'.*

i * X I 0 s - 8 6

;* -5

;*

2 * MP/M-86 eXtended I/0 System

i * for

P * Intel SBC 204 Floppy Diskette Interface
. %

Hae Copyright (C) 1980, 1981

: ¥ Digital Research, Inc.

i * Box 579, Pacific Grove

;¥ California, 93950

=

P * The XIOS can be assembled in two forms

. ¥ that are acceptable to GENSYS in building
P * an MP/M-86 II system.

. %

i * 8080 model:

e X e e ———

P * Mixed code and data. The Code and Data
P segments are the same. The code segment
P * is ORG'd at 1000h relative to the System
; ¥ Data Area

;*

;¥ high e ety +\

i * | System Tables | |

: * e + |

i | XIOS (C and D) | > System Data
i Lttt t |

P * | Sysdat |1

i ¥ D et et +X

i * | System Code | > System Code
P * low tmmmm e +/

;*

: ¥ Separate Code and Data:

e K

.

i The Code segment is separate from the

; ¥ Data. The Code is ORG'd at 0000h and the
i * Data i1s ORG'd at 1000h.

. %

P * high Fomm e +\

He | System Tables | |

i * o + |

0¥ | XIOS Data | > System DAta
P * tom e e + | Area

P % | Sysdat |

i * e +X

H | XIOS Code |

P * tommmm + > System Code
Hisl | System Code b Modules
i * low e e e L L L +/

110

MP/M-86 System Guide Appendix C Example XIOS Listing

-e

This XIOS is presented as an example
hardware interface to an MP/M-86 system.
In many places in the code, more efficient
methods can be used.

-
* * ¥ * ¥ ¥ %

we wme we wme W

(Permission is hereby granted to use or
abstract the following progrcm in the
implementation of CP/M, MP/M or CP/NET
for the 8086 or 8088 Micro-processor,)

Ahkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkkhhkhkhkhkkhkhkhkhkhkkhhkhkhkkhkhhkhrkhhhkhkhkhkdhkhhkkk

REGISTER USAGE FOR XIOS INTERFACE ROUTINES:

We N W W W Wy W we W

input: AL = function # (in entry)
; CX = parameter
DX = second parameter
; DS = sysdat (in entry &nd init)

= CS elsewhere
ES = User's Data Area

output: AX = return
BX = AX (in exit)
ES,DS must be preserved though call

NOTE: Some changes have been made in the
argument/return register usage from

the CP/M-86 BIOS.

We WE N WMe We Wy we N W

(22X EEXE2ESX2 2SR R RRRRRRRRRER2RRERRRRERRRRERRRRXEE

. %
.
. %
.
. %k
.k
. %
. %
. %k
. %
*
*
. %
. %
.k
« %
. %
. %
. %
. %
%
.k
. %
. %
%
;¥ SYSTEM EQUATES
%

. %

XL RS XSS XSRS XS 2222222222222 R X X1

H
H
H
H
H
H
i
’
i

nclude system.def

MEIZEXIEIIIEEEZZEZEEESES R AR RS RSt s sttt S
*

* SYSTEM DEFINITIONS
*
ek KA KRR ARR AR R AR AR R AR R AR AR AR h ok ko k ko khkkhkhhkh ko

oW

we wr Wi we we

= FFFF true equ O0ffffh ; value of TRUE

= 0000 false equ O ; value of FALSE

= 0000 unknown equ O ; value to be filled in
= 0080 dskrecl equ 128 ; log. disk record len
= 0020 fcblen equ 32 ; size of file control block
= 0008 pnamsiz equ 8 ; size of process name
= 0008 gnamsiz equ pnamsiz ; size of queue name

= 0008 fnamsiz equ pnamsiz ; size of file name

= 0003 ftypsiz equ 3 ; size of file type

= 00EO mpmint equ 224 ; int vec for mpm ent.
= QO0El debugint equ mpmint+l ; int vec for debuggers

111

MP/M-86 System Guide

0100
0030
0005
0d01
0002
0003
00AA

0000

FFFF

000D
0o0o0aA

0040

0004
0001

004F

004E

004cC

004D

0043
0047
0036
0076
00B6
0036

ulen equ
pdlen equ
todlen equ

flag tick equ
flag sec equ
flag min equ
ldtabsiz equ

.
’

.
’

debug

equ

Appendix C Example XIOS Listing
0100h ; size of uda
030h ; size of Process Descriptor
5 ; size of Time of Day struct
1 ; flag 0 = tick flag
2 ; flag 1 = second flag
3 ; flag 2 = minute flag
Oaah ; ldtablen=11, 10 entries

conditional assembly switches

false

; ¥****kMDISK SUPPORT*****

memdisk

equ

true

;***********************

cr
1f

equ
equ

0dh ;carriage return
0Oah ;line feed

B EEX S22 SRR RS2SR R RS2 X222 22X XXX RS

*

e wme we W

*

* CHARACTER I/0 EQUATES

222222222223 X 222222222222 222222 2222 2222222t R R SRR R 2

e we =

:base address of serial board

serbase equ

’
nconsoles
nlists

|
’

using Intel

we we

;por#
sereset

’

;port
setestmode
H

;port
ctcenable
H

;port
uartenable

’

040h

equ

equ

SBC 534

addres#
equ

address
equ

address
equ

address
equ

serial board

t# rese# entir$ board
serbase+0fh

to set test mode
serbase+0eh

to enable counter/timer
serbase+0ch

to enable uarts
serbase+0dh

;counter/timer mode addresses

ctcOto2md
ctc3to5md
ctcOmode
ctclmode
ctc2mode
ctc3mode

.
’

equ
equ
equ
equ
equ
equ

serbase+03h
serbase+07h
036h
076h
0bGh
036h

MP/M-86 System Guide Appendix C Example XIOS Listing

;counter/timer load addresses
; and count values

0040 ctc01d equ serbase+00h
0041 ctclld equ serbase+01lh
0042 ctc2ld equ serbase+02h
0044 ctc3ld equ serbase+04h
0008 cntOvall equ 008h
0000 cntOvalh equ 000h
0008 cntlvall equ 008h
0000 cntlvalh equ 000h
0008 cnt2vall equ 008h
0000 cnt2valh equ 000h
0008 cnt3vall equ 008h
0000 cnt3valh equ 000h

H
;uart mode and command

’

004E uOmode equ O04deh
004E ulmode equ O4eh
004E u2mode equ 04eh
004E u3mode equ O04eh
0037 ufcmd equ 037h
0037 ulcmd equ 037h
0037 u2cmd equ 037h
0037 u3cmd equ 037h

console i/o and status ports
in and out status masks

e ws we W

console 0

we W

00DS8 cOioport equ 0d8h
oobDa cOstport equ 0dah
0002 c0inmsk equ 02h
0001 cOoutmsk equ 01lh

console 1

- we we

0042 clioport equ serbase+02h
0043 clstport equ serbase+03h
0002 clinmsk equ 002h
0001 cloutmsk equ 001h

; console 2
0044 c2ioport equ serbase+04h
0045 c2stport equ serbase+05h
0002 c2inmsk equ 002h
0001 c2outmsk equ 001h

; console 3
0046 c3ioport equ serbase+06h
0047 c3stport equ serbase+07h

113

MP/M-86 System Guide Appendix C Example XIOS Listing

0002
0001

0040
0041
0002
0081

00AOQ

00AOQ
00A0
00Al
00Al
00A2
00A4
00AS
00Ab6
00A7
00AS8
OOAS8
00A9
00AA
0OAF

000A

2000

0100

008E
008F
0083
0085

c3inmsk equ 002h
c3outmsk equ 001h

; list O
l0ioport equ serbase+00h
l0stport eqgu serbase+01lh
10inmsk equ 002h
10outmsk equ 081h

.
’

-, we

B E2E22 2222222222222 RRRRR SRR 22 22 X2 2 da x i R 2 o2 R d X B X

. %

i * DISK I/0 EQUATES

. ¥

i * Intel iSBC 204 Disk Controller Ports

.
;***
base204 equ 0alh ;SBC204 assigned addr
fdc_com equ base204+0 ;8271 FDC out command
fdc_stat equ base204+0 ;8271 in status
fdc_parm equ base204+1 18271 out parameter
fdc_rslt equ base204+1 ;8271 in result
fdc_rst equ base204+2 ;8271 out reset
dmac_adr equ base204+4 ;8257 DMA base adr out
dmac_cont equ base204+5 ;8257 out control
dmac_scan equ base204+6 18257 out scan control
dmac_sadr equ base204+7 ;8257 out scan address
dmac_mode equ base204+8 ;8257 out mode
dmac_stat equ base204+8 18257 in status
fdc_sel equ base204+9 ;FDC select port
fdc_segment equ base204+10 ;segment addr register
reset 204 equ base204+15 ;reset interface
max_retries equ 10 ;retries on disk i/o

;before perm error

;**3*F*MDISK SUPPORT*****
mdiskbase equ 2000h ;base address of mdisk
;***********************

R 2222222222222 R R RRRRRRRR SRR RRRRRRRRRRRSRRRRREREX R
*

* SUP/RTM EQUATES
*
R I I R X Y R Y

s W we 0w

-

tracebit equ 0100H

MPM dispatch func #
MPM terminate func #
MPM polldevice func #
MPM flagset func #

f dispatch equ 142
f terminate equ 143
f polldev equ 131
f flagset equ 133

we we Ny W

114

MP/M-86 System Guide Appendix C Example XIOS Listing

0006
0008
0020
0002

0001
0002

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009

0000

0038

0040

0044

0068

0072
0074

p flag equ word ptr 06H ; PD flag field
p_name equ byte ptr 08H ; PD Name field
p_cns equ byte ptr 020H ; PD console field
pf keep equ 02H ; KEEP bit in p flag

;flag assignments

tick flag equ 1
sec_flag equ 2

;device # assignments for POLL DEV

cOindev equ 00h ;console 0 input device
clindev equ Olh ;console 1 input device
c2indev equ 02h ;console 2 input device
c3indev equ 03h ;console 3 input device
cOoutdev equ 04h ;console 0 output device
cloutdev equ 05h ;console 1 output device
c2outdev equ 06h ;console 2 output device
c3outdev equ 07h ;console 3 output device
10outdev equ 08h ;1list 0 output device

flpy poll dev equ 09h ;floppy disk poll device

H
; system data area must preceed code

; area for 8080 model of the XIOS

H

include sysdat.lib

22 EZ2EZZ2 2222222222222 222222222222 22222 222 R R &2
*

* System Data Area
%*

B EEIEXEZEEEZIE2R 2222222222222 22222222222 22222ttt R

e we we 0w

-

org 00h
supmod rw 2
org 038h
dispatcher equ (offset $)
org 040h
mpmseg rw 1
org 044h
endseg rw 1
org 068h
rlr rw 1 ;Ready List Root
org 072h
thrdrt rw 1 ;Process Thread Root
qlr rw 1 ;Queue List Root

115

MP/M-86 System Guide Appendix C Example XIOS Listing

= org 078h
=0078 version rw 1 ;addr. version in SUP
=007A vernum rw 1 ;MPM-86 w/BDOS v3.0
=007C mpmvernum rw 1 ;MPM~-86 Version 1.0
=007E tod rb 5 ;Time of Day Structure
= org 01000h
1000 endsysdat equ ((offset $)+0fh) AND OfffOh
CSEG
org offset endsysdat
;***
. %
’
: * SYSTEM CODE AREA
. %
’
i ¥ XI0S JUMP TABLE
. %
:.***
1000 E9DAOO jmp init ;system initialization
1003 E9E101 jmp entry ;xios entry point
1006 0000 sysdat dw 0 ;Sysdat Segment
1008 supervisor equ offset $
1008 rw 2
;***
« %
’
; * UTILITY SUBROUTINES
. %
’

; print message on current console until null (char 0)
; input: BX = &ddress of message

;Put running processes console
;number in DL

100C SCFA pushf ! cli
100E FF362E18 push stoppoll
1012 C7062E18FFFF mov stoppoll,true
1018 1E2E8EL1E0610 push ds ! mov ds,sysdat ;DS = system data area
101E 2E8B366800 mov si,rlr ;SI -> current pd
1023 8A5420 mov dl,p cns[si] ;DL = def console #
1026 1F pop ds

ploop:
1027 8A07 mov al, [bx] ; get next char
1029 3C00740C cmp al,0 ! jz pmsg ret ; return if zero
102D 8ACS8 mov cl,al ; CL = character

116

MP/M-86 System Guide Appendix C Example XIOS Listing

102F
1031
1034
1036

1039
103D

103F
1041
1043
1045

1047
104D
1052
1057
105B
105D
105F
1062
1067
106A
106E

1070
1076
107B
107E

1083

108A
108D

5253 push dx ! push bx save console,posit.

ESFCO1 call conout ; print it

5B5A pop bx ! pop dx ; restore posit.,cons.

43EBEE inc bx ! jmps ploop ; inc and loop
pmsg_ret:

8F062E18 pop stoppoll

9DC3 popf ! ret ; end of message

o Je ke do ok de od K ok de g de ke ook de ok de dede g de ke gk d ke ok Kk % g gk kg ke ke ok Kk ok sk ok ke ke ke ke ke ke

*

* INTERRUPT ROUTINES

*
chkhkhkhkhkhhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhk

Ne we we oW

-

;these variables must be in code segment

0000 tickint_ss dw 0

0000 tickint sp dw 0

0000 ax_save dw 0

0000 zero dw 0
tickint:

Interrupt handler for tick interrupts

;save context

1E2E8E1E0610 push ds ! mov ds,sysdat
2E8C163F10 mov tickint ss,ss
2E89264110 mov tickint sp,sp

2EA34310 mov ax_save,ax

8CC8 mov ax,cs

8EDO mov SS,ax

BC6715 mov sp,offset tickint tos
2EFF364310 push ax save

535152 push bx ! push cx ! push dx
55565706 push bp ! push si ! push di ! push es
8EDS8 mov ds,ax

; check to set second flag

FEOE3118750D dec tick count ! jnz do_tick flag
C60631183C mov tick_count,60

BA0200 mov dx,sec flag

B185E87601 mov cl,f flagset ! call supif

do_tick_flag:
; check to set tick flag

803E3018FF75 cmp clockon,true ! jne tick_done

08

BA0100 mov dx,tick_flag

B185E86701 mov cl,f flagset ! call supif
tick_done: ;restore context

117

MP/M-86 System Guide Appendix C Example XIOS Listing

1092 075F5ESD pop es ! pop di ! pop si ! pop bp
1096 5A595B58 pop dx ! pop cx ! pop bx ! pop ax
109A 2E8E163F10 mov ss,tickint ss
109F 2E8B264110 mov sp,tickint sp

; force dispatch

10A4 1F pop ds
; Jmp intdisp

10A5 2EFF2E3800 jmpf cs:dword ptr .dispatcher

14
int trap: ;unknown interrupts go here ...

; We will terminate the process that caused this

; after writing a message to the process's default
; console. If the process is in KEEP mode, we will
; force it to terminate anyway...
[

14

14

We don't need to save any registers since we are
not going to return to the process.

10AA 8CCS8 mov ax,cs
10AC 2E8E1E0610 mov ds,sysdat
; print first 6 chars of PD Name
10B1 2E8BlE6800 mov bx,rlr
10B6 83C308 add bx,p name
10B9 C647063A mov byte ptr 6[bx],':"'
10BD C6470700 mov byte ptr 7({bx],0
10C1 E848FF call pmsg
; print Illegal Interrupt message
10C4 BBOC15 mov bx,offset int_trp
10C7 EB842FF call pmsg
; terminate process
10CA 2E8B1E6800 mov bx,rlr
10CF 816706FDFF and p flag([bx],not pf_ keep
10D4 B98F0O0 mov cX,f terminate
10D7 BAFFFF mov dx,0ffffh
10DA CDEO int 224
10DC F4 hlt ;hard stop

;the terminate returned !!!!

ckkkkhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhkhkhhkhhhhs
*
INITIALIZATION CODE AREA

Inter-Module Interface Routines

we W2 we we W 0w
* F % *

118

MP/M-86 System Guide Appendix C Example XIO0S Listing

;***

XIO0S system initialization routine.

=
3
[
-+

.
’

-

The INIT routine initializes all necessary
hardware

~e

-e

-called from SUP init. routine with CALLF

-Interrupt 224 is reinitialized by SUP later
-It is okay to turn on interrupts at any time
a STI is performed immediately after RETF

-Current Stack has about 10 levels here. Must do a
local stack switch if more is needed.

™e ™Me Me Wy W We Wms We W

-If assembled (GENCMD'd) with 8080 model,
CS=DS=Sysdat

-I1f assembled with separate Code and Data,
CS=Code (ORGed at 0) DS=Sysdat

e ™e We wme we W W

; -This example shows 8080 model

’

: input: DS = sysdat segment address
’

O o o - — T — A ——— S —— ——— - — — - ——— — i —— S " Y —— — ——— —————

;Save sysdat seg addr in case we need
;to see system data area. Set DS=CS

10DD 1E push ds ;save DS on stack for
;exit

;initialize segment registers

10DE 2EB8C1E0610 mov sysdat,ds ; save sysdat for
; sysdat access

;place copy of SUPMOD in data segment
;into Code Segment (supervisor)

10E3 BB00O0O mov bx,offset supmod

10E6 BE0810 mov si,supervisor

10E9 8B072E898400 mov ax,[bx] ! mov cs:[si],ax
00

10F0 8B47022E8984 mov ax,2[bx] ! mov cs:2[si],ax
0200

;Make copy of Interrupt Routines
;access point to dispatcher in

;Code Segment

10F8 OE1F push cs ! pop ds ; DS = CS

119

MP/M-86 System Guide

10FA

10FB
10FF
1103
1107

110A
110B
l110C
110F
1111

1113
1119
111D
1120
1123
1126

1128
1129

112A
l12C
112E
1130

FC

8C166715
89266915
8CC88EDO
BCAB15

1E

06
B8000O
8EDS8
8ECO

C7060000AA10
8COE0200
BF0400
BE00OO
BO9FEO1

F3A5

07
1F

B0OOO
EG4F
E64E
E64C

-,

Appendix C Example XIOS Listing

cld ;set forward direction

;stack switch since we are doing
i/o with polled devices when
printing login message
interrupts are known to be off
here so no need to save flags,
disable, and restore flags

we WMo we wms W,

mov initss,ss

mov initsp,sp

mov ax,cs ! mov Ss,ax
mov sp,offset initstack

; Setup all interrupt vectors in low
; memory to address trap

if not debug

push ds

push es ;ES must be saved

mov ax,0

mov ds,ax

mov es,ax ;set ES and DS to zero

;setup interrupt 0 to trap routine

mov .0,offset int_trap

mov .2,CS

mov di,4

mov si,0 ;then propagate
mov cx,510 ;trap vector to
rep MoOvsw ;int 255

pop es

pop ds ;restore DS,ES
endif

- — ———— —— ——————— —————— ——— ————— 7 — — o ——————— — o, ——

2222222222222 2222222222822 R R 22X 22
*

’

;

P * sbc 534 serial board initialization

.

’
;***
mov al,0

out sereset,al ;jreset serial board
out setestmode,al ;set test mode to off
out ctcenable,al ;enable ctc addressing

19N

MP/M-86 System Guide Appendix C Example XIOS Listing

;start clock for port O

1132 B036E643 mov al,ctcOmode ! out ctcOto2md,al
1136 BOO8E640 mov al,cntOvall ! out ctc01ld,al
113A BOOOE640 mov al,cntOvalh ! out ctc01ld,al

!

;start clock for port 1
113E BO076E643 mov al,ctclmode ! out ctcOto2md,al
1142 BO0O8E641 mov al,cntlvall ! out ctclld,al
1146 BOOOE641 mov al,cntlvalh ! out ctclld,al

;start clock for port 2

114A BOB6E643 mov al,ctc2mode ! out ctcOto2md,al
114E BO08EG642 mov al,cnt2vall ! out ctc2ld,al
1152 BOOOE642 mov al,cnt2valh ! out ctc2ld,al
;start clock for port 3
1156 B036E647 mov al,ctc3mode ! out ctc3tobmd,al
115A BOO8E644 mov al,cnt3vall ! out ctc3ld,al
115E BOOOE644 mov al,cnt3valh ! out ctc3ld,al
1162 E64D out uartenable,al ;enable uart addressing
H
;initialize port 0
1164 BO4EE641 mov al,uOmode ! out 1l0stport,al
1168 B037E641 mov al,u0cmd ! out 1l0stport,al
;initialize port 1
116C BO4EE643 mov al,ulmode ! out clstport,al
1170 B037E643 mov al,ulcmd ! out clstport,al
H
;initialize port 2
1174 BO4EE645 mov al,u2mode ! out c2stport,al
1178 BO37E645 mov al,u2cmd ! out c2stport,al
;initialize port 3
117C BO4EE®647 mov al,u3mode ! out c3stport,al
1180 BO37E647 mov al,u3cmd ! out c3stport,al
H
; DISK 1I/0 INITIALIZATION

;¥*%*% MDISK SUPPORT *****
if memdisk
;initialize MDISK

1184 B90020 mov cx,mdiskbase
1187 068EC1 push es ! mov es,cx
118A BFOOOOB8ESES mov di,0 ! mov ax,0e5e5h
1190 2639057405 cmp es:[di],ax ! je mdisk_end
1195 B90020 mov ¢x,2000h
1198 F3AB rep stos ax
mdisk end:
119A 07 pop es

121

MP/M-86 System Guide

119B
11A0
11A6
11AA

11AB
11BO

11B4
11B8

11BC
11C0O

11C4

11C8

11CC

11D2
11D5

11D8
11DA
11DB
11DF

2BCO1lES8EDS
C70688004710
8COEBA00

1F

C60631183C
BO34E6D6

BOOOE6DO
BO50E6DO

BO13E6CO
B0O20E6C2

BOOFE6C2

BOFBE6C2

C7062E180000

BBEE14
E834FE

9C58

FA
8E166715
8B266915

‘Appendix C Example XIOS Listing

H
endif
JRARE I kKR Kk kkok ok k ok ok ko kK ko

;Initialize Clock Tick

if not debug

sub
mov
mov

pop

mov
mov

mov
mov

mov
mov

mov

;set up tick interrupt vector
;tick causes interrupt 22
ax,ax ! push ds ! mov ds,ax
word ptr .088h,offset tick int
word ptr .08ah,cs

ds
;setup ticks to occur every
; 1/60th of a second

tick count,60

al,034h ! out 0d6h,al ;PIT ch.0O=mode 2
;set # of 1/1.2288e6 seconds
;20480=5000h=1/60th second

al,000h ! out 0dOh,al ;low count

al,050h ! out 0dOh,al ;high count
;set up interrupt controller
al,013h ! out 0cOh,al ;ICWl

al,020h ! out Oc2h,al ;ICW2

; = base interrupt
al,00fh ! out Oc2h,al ;ICW4,

; auto EOI,

; 8086 mode

mov al,0fbh ! out 0Oc2h,al ;OCW2,
; interrupt mask,
; only 2
endif
g P L O
; INITIALIZATION EXIT
e T TS
;jallow poll device mechanism to work
mov stoppoll,false

mov

;print optional message on Console 0

bx,offset signon

call pmsgqg

;restore stack
; all stack switches must be in
i

critical areas (interrupts off).

pushf ! pop ax

cli
mov
mov

ss,initss
sp,initsp

122

MP/M-86 System Guide Appendix C Example XIOS Listing

11E3 50 push ax
11E4 9D popf
;return back to BDOS

11E5 1F pop ds

11E6 CB retf
;***
. %
; * ENTRY POINT CODE AREA

[

.k
’
;***

All cells to the XIOS routines enter through here
with a CALLF. Must return with a RETF
; input: AL function number
CX parameter
DX = 2nd parameter
output: AX BX = return

11E7 FC cld ;clear D flag
11E8 8CCBS8EDB mov bx,cs ! mov ds,bx ; (only 8080 model)
11EC B40O0OD1EO mov ah,0 ! shl ax,1l ;call routine
11FO 8BD8FFS7Aa814 mov bx,ax ! call functab[bx]
11F6 8BDS8 mov bx,ax ;BX=aX
11F8 CB retf ;All Done
supif ; Supervisor Interface

input: C€X = function #

= parameter

DS = parameter segment if address

= user data area

output: BX = AX = return

CX = error code for RTM functions
= return segment if address

WO Me M Me Me We Wy W W

11F9 B500 mov ch,0
11FB 2EFF1E0810C3 callf cs:dword ptr .supervisor ! ret

REEXEEIEEZEEEE2E 2SR R R 22 R RRRRRR R R RRERE LR RS

*

* MP/M XIOS functions
*
M EIXZEZEIEXIEELEEEEREEEEEEEEEEE SRS S S ES S22 S22 2SR R 2R 222 R 8 8 &4

we ™o we 0w

~

i EZEZE2 SRRttt R 2R RRRRRRRREREE

*

* CHARACTER I/0 CODE AREA
*

we we we W

123

MP/M-86 System Guide Appendix C Example XIOS Listing

MEIEEIEIEIEEESESESES SRR RS RS R SRR R R R RRRRRRRRREREE R R
’

const: ;

Function 0: Console Status
input: CL = console device number
output: AL = 0ffh if ready

000h if not ready

1201 B50O0D1El mov ch,0 ! shl cx,1
1205 8BD9Y mov bx,cx
1207 8B97AC15 mov dx,consttbl{bx]
120B 8ADE mov bl,dh :BL = status mask
120D B600 mov dh,0 ;DX = status port address
; find input status for console device
120F EC in al,dx
1210 22C3 and al,bl
1212 BOOGO mov al,O0
1214 7402 jz badstatus
1216 BOFF mov al,0ffh
badstatus:
1218 C3 ret
conin: ; Function 1: Console Input
; input: CL = console device number
; output: AL = character
1219 B500D1El mov ch,0 ! shl cx,1
121D 8BD9 mov bx,cx
121F 8B97BC1l5 mov dx,conintbl[bx]
1223 8ADE mov bl,dh ;BL = poll device no.
1225 B600 mov dh,0 ;DX = i/o port address
; input routine for console device
1227 B70052 mov bh,0 ! push dx
122A E81C025A call rtm poll ! pop dx
122E EC in al,dx
;and al,07fh ;CP/NET uses parity bit
122F C3 ret
conout: ; Function 2: Console Cutput
; input: CL = character
; DL = console device #
; output: None
1230 B600OD1E2 mov dh,0 ! shl dx,1
1234 8BDA mov bx,dx
1236 8B97C415 mov dx,conouttbl[bx]

124

MP/M-86 System Guide Appendix C Example XIOS Listing

123A 8ADE mov bl,dh ;BL = poll device no,
123C B600 mov dh,0 ; DX i/o port address

; output routine for console device

123E 5152 push cx ! push dx
1240 B700E80402 mov bh,0 ! call rtm poll
1245 5A58 pop dx ! pop ax
1247 EEC3 out dx,al ! ret
plist: ; Function 3: List OQutput
; input: CL = character
; DL = console device §
; output: None
1249 B600D1E2 mov dh,0 ! shl dx,1l
124D 8BDA mov bx,dx
124F 8B97CE1S mov dx,louttbl[bx]
1253 8ADE mov bl,dh ;BL = poll device no.
1255 B600 mov dh,0 ;DX = list port address

; output routine for list device

1287 5152 push ¢x ! push dx

1259 B700E8EBO1 mov bh,0 ! call rtm poll

125E 5A58 pop dx ! pop ax

1260 EEC3 out dx,al ! ret
punch: ; Function 4: Punch Output
reader: ; Function 5: Reader Output

PUNCH and READER devices are not supported
under MP/M-86

input: CL = character

output: AL = character (control Z)

1262 BO1AC3 mov al,lah ! ret ; return EOF
iistst: ; Function 13: List Status
; input: CL = list device number
; output: AL = 0ffh if ready
; = 000h if not ready
1265 BS500D1E1l mov ch,0 ! shl cx,1
1269 8BD9 mov bx,cx
1268 8B97CC15 mov dx,loutsttbl[bx]
126F 8ADE mov bl,dh ;BL = status mask
1271 B60O mov dh,0 ;DX = output port address

find output status of List device

~e

125

MP/M-86 System Guide Appendix C Example XIOS Listing

1273
1274
1276
1278
127A
127C
127E

127F

1283

1287
128C
128E
1292
1294

1298
129B

129E

EC

22C3
3AC3
BOFF
7402
B0OOO

C3

B80400C3

B80100C3

C606AB1600
33DB
8A1EB416
D1E3
FFA7C516

BBAD16
E8A800

Cc3

in al,dx
and al,bl
cmp al,bl
mov al,0ffh
jz gstat
mov al,0
gstat: ret

’
maxconsole: ; Function 20: Maximum Consoles

; input: None
output: AL = number of consoles

mov ax,nconsoles ! ret

!

maxlist: ; Function 21: Maximum List Devices
; =sSS=S====

: input: None

; output: AL = number of consoles

mov ax,nlists ! ret

shkkkkkhkhkkhhkhhhhhhhhhhhhhhhhhhhhhhkhhkhhhhhhhhkhhhhkhhk
;¥

i % DISK I/0 CODE AREA

;¥

sRIRRAh IR Ahhhhhhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhkk

HOME : ; Function 6: Home

move selected disk to home position (Track 0)
If there is Hardware home function, it should
be done here otherwise, do a settrk to 0
input: None
output: None

we We Ws we W 0w

mov trk,0 ;set disk i/o to track zero
Xor bx,bx

mov bl,disk ;index into disk home routine
shl bx,1

jmp dskhomtbl [bx]

flpy home:
mov bx,offset hom com

call execute ;home drive
hom ret:

ret ; and return
SELDSK: ; Function 7: Select Disk

126

MP/M-86 System Guide

e e we we

Appendix C Example XI(0S Listing

input:
output:

disk to be selected

0 if illegal disk

offset of DPH relative from
XIOS Data Segment

CL
AX

129F 33CO XOor ax,ax ;2ero registers ax and bx
12A1 8BDS mov bx,ax
12A3 B500 mov ch,0 ;jtranslate logical disk
12A5 8BF1 mov si,cx ;to physical disk device
12A7 8A84B516 mov al,dtrntbl[si]
12AB 3CFF cmp al,0ffh ;valid disk select?
12AD 740C jz sel ret ;1f not valid return
;else compute the
; disk parameter address
12AF A2B416 mov disk,al ;save physical drive no.
12B2 B104 mov cl,4
12B4 D2EO shl al,cl ;multiply by 16
12B6 05D716 add ax,offset dp_base
12B9 8BD8 mov bx,ax
sel ret:
12BB 8BC3 mov ax,bx
12BD C3 ret
; Function 8: Set Track
input: CX = Track Number
output: None
12BE 880EAB16 mov trk,cl ;we only use 8 bits of
; track address
12C2 C3 ret
; Function 9: Set Sector
input: CX = Sector Number
output: None
12C3 880EACl6 mov sect,cl ;we only use 8 bits of
; sector address
12C7 C3 ret
; Function 10: Set DMA Offset
input: CX = Offset of DMA buffer
output: None
12C8 890EA41l6 mov dma_adr,CX
12C¢C C3 ret

;***

.® *
*
’

i* All disk I1/0 parameters are setup: the

127

MP/M-86 System Guide Appendix C Example XIOS Listing

;* Read and Write entry points transfer one *
;* sector of 128 bytes to/from the current *
;* DMA address using the current disk drive *
« % *
;***
READ: ; Function 11: Read
: input: None
: output: AL = 00h if no error occured
H = 0lh if error occured
12CD 33DB xor bx,bx
12CF 8A1EB416 mov bl,disk ;index into disk read routi
12D3 DI1E3 shl bx,1
12D5 FFA7CBl6 jmp dskrdtbl[bx]
s *¥**%% MDISK SUPPORT *#*#**%
if memdisk
mdsk_read:
12D9 E81E00 call mdisk_calc
12DC 8B3EA416BEOO mov di,dma_adr ! mov si,0
00
12E3 068EO06A616 push es ! mov es,dma_seg
12E8 1E8EDS8 push ds ! mov ds,ax
12EB B94000F3AS5 mov cx,64 ! rep movs ax,ax
12F0 1F07 pop ds ! pop es
12F2 B80000C3 mov ax,0 ! ret
i
endif
;*************************
flpy read:
12F6 B0O12 mov al,l2h ;basic read sector command

12F8 EB46 jmps r_w_common

;¥** %% MDISK SUPPORT **#*%%
if memdisk

4
mdisk_calc:

12FA B7008A1EAB16 mov bh,0 ! mov bl,trk
1300 B81AOOF7E3 mov ax,26 ! mul bx
1305 B7008A1EACL6 mov bh,0 ! mov bl,sect
130B 03C3B103 add ax,bx ! mov cl1,3
130F D3E0050120 shl ax,cl ! add ax,mdiskbase+l
1314 C3 ret
endif

;*************************

WRITE: ; Function 12: Write

128

MP/M-86 System Guide

1315
1317
131B
131D

1321
1324

132B
132E
1333
1338
133A

133E

1340
1343

1346
1348
134D
134F
1351
1354

1358

135D
1361

33DB
8A1EB416
D1E3
FFA7D116

E8D6GFF
BFOOO0O8B36A4
16

068ECO
1E8E1EA616
B94000F3A5
1F07
B8000O0OC3

BOOA

BBAO16
884701

B080
F606B41601
7502

B040
A2A81l6
891EA216

C606A1160A

8B1lEA216
E86700

N ms wme Wi we W,

Appendix C Example XIOS Listing

- deferred write
non-deferred write

- def wrt 1lst sect unalloc blk
- non-def lst sect unalloc blk

00h if no error occured
0lh if error occured

WK~ O
!

input: CL

output: AL

xor bx,bx

mov bl,disk ;index into disk write routine
shl bx,1

jmp dskwrttbl{bx]

;¥**%% MDISK SUPPORT ****%*
if memdisk

14
mdsk_write:

flpy wri

call mdisk calc
mov di,0 ! mov si,dma_adr

push es ! mov es,ax

push ds ! mov ds,dma seg
mov ¢x,64 ! rep movs ax,ax
pop ds ! pop es

mov ax,0 ! ret

H
endif
;*************************

te:
mov al,0ah ;basic write sector command

r w_common:

execute:

execl:

mov bx,offset io com ;point to command string
mov byte ptr 1[BX],al ;put command into string

fall into execute and return

;execute command string.
; [BX] points to length,
followed by Command byte,
followed by length-1 parameter bytes

.
14

‘

mov al,80h

test disk,l1 ;A drive is even phys. drive

jnz execl ;B drive is odd phys. drive
mov al,40h

mov sel mask,al
mov last com,BX ;save command address
;for retries

outer retry:

retry:

;allow some retrying
mov rtry cnt,max_retries

mov BX,last com
call send com ;transmit command to i8271

129

MP/M-86 System Guide Appendix C Example XIOS Listing

; check status poll
1364 8BlEA216 mov BX,last com
1368 8A4701 mov al,l[bxT ;get command op code
136B B90008 mov cx,0800h ;mask if it will be "int re
136E 3C2C cmp al,2ch
1370 720B jb flpy poll ;ok if it is an interrupt ti
1372 B98080 mov c¢x,8080h ;else use "not command bu
1375 240F and al,0fh
1377 3cCo0cC cmp al,0ch ; unless there isn't
1379 B0O0OO mov al,o0
137B 7731 ja exec_exit ; any result
;poll for bits in CH,
flpy poll: ; toggled with bits in CL
137D 890EB216 mov status mask,cx
1381 BBO9Y0OE8C200 mov bx,flpy poll dev ! call rtm_poll
;Operation complete,
1387 E4Aal in al,fdc rslt ; see if result indicates
1389 241E and al,leh ; an error
138B 7421 Jz exec exit ;no error, then exit
;some type of error occurred
138D 3C10 cmp al,l0h
138F 7508 jne dr_rdy ;was it a not ready drive ?

;yes, here to wait for drive ready

1391 E81BO0O
1394 7503
1396 E81600

dr_rdy: ; then we just retry read or write
1399 FEOEAll6 dec rtry cnt
139D 75BE jnz retry ; up to 10 times
; retries do not recover from the
; hard error
139F 241E and al,leh ;Ssetup error table index
13A1 B400 mov ah,0
13A3 8BDS8 mov bx,ax ;make error code 16 bits
13A5 8B9FDO15 mov bx,errtbl[BX]
13A9 E860FC call pmsg ;print appropriate message
13AC OCFF or al,255 ;set code for permanent error
exec_exit:
13AE C3 ret
;***
. K *
’
;* The 18271 requires a read status command *
;* to reset a drive-not-ready after the *
;* drive becomes ready *
. K *
:.***
test ready:
13AF B640 mov dh, 40h ;proper mask if dr 1

13B1 F606A81680

call test ready

jnz dr_rdy ;if ready try again
call test ready
;if not ready twice in row,

test sel mask,80h

130

MP/M~-86 System Guide Appendix C Example XIOS Listing

13B6 7502 jnz nrdy?2
13B8 B604 mov dh, 04h ;mask for dr 0 status bit
nrdy2:
13BA BBBQ16 mov bx,offset rds com
13BD E80BOO call send com
dr_poll: -
13C0 E4A0 in al,fdc_stat ;get status word
13C2 A880 test al,80h
13C4 75FA jnz dr poll ;wait for not command busy
13C6 E4Al in al,fdc _rslt ;get "special result"
13C8 84Ce6 test al,dh ;1look at bit for this drive
13CA C3 ret ;return status of ready

BREASEEERERER SRS R RRRRRRRRRRRRRRRRR R XXX R X

. * *
;* Send com sends a command and parameters *
;¥ to the i8271: BX addresses parameters. ¥
;* The DMA controller is also initialized *
;* 1f this is a read or write *
. % *
. * *

e “e Wy we Wy e W

khkkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkkhkhkkhkhhkhkhkkkkkkk

-

send com:

13CB E4A0 in al,fdc_stat
13CD A880 test al,80h ;insure command not busy
13CF 75FA jnz send_com ;loop until ready

;check to initialize for a DMA operation

13D1 8A4701 mov al,1[bx] ;get commend byte
13D4 3C12 cmp al,l2h
13D6 7504 jne write maybe ;if not read it maybe write
13D8 B140 mov c¢l,40h ;is a read command, go set DMA
13DA EBO6 jmps init dma

write maybe:
13DC 3CO0A cmp al,0ah
13DE 7520 jne dma exit ;leave DMA if not read/write
13E0 B180 mov cl,80h ;we have write, not read

init_dma:
; read or write operation, setup DMA controller
: (CL contains proper direction bit)

13E2 B004 mov al,04h

13E4 E6AS8 out dmac_mode,al ;enable dmac

13E6 B0O0OO mov al,00

13E8 EG6AS out dmac_cont,al ;1st byte to ctrl port
13EA 8AC1 mov al,cl

13EC EG6AS out dmac_cont,al ;1load direction register
13EE AlA416 mov ax,dma adr

13F1 E6A4 out dmac_adr,al ;send low byte of DMA

13F3 8AC4 mov al,ah

13F5 E6A4 out dmac adr,al ;send high byte

13F7 AlA616 mov ax,dma_seg

13FA E6AA out fdc_segment,al ;send low byte of seg addr
13FC 8ACY4 mov al,ah

13FE E6AA out fdc _segment,al ;then high segment address

131

MP/M-86 System Guide Appendix C Example XIOS Listing

1400
1402
1403
1405
1409

140B
140D
140F

1410
1412
1414
1416
1418
141A

141C
1421
1423
1425
1427
1429
142B

142D

142E
1433

1436
1438
143A
143C
143E
1440

8AQOF

43

8A07
0AO06A816
E6AQ

FECS
749F
43

E4A0
A820
75FA
8A07
E6Al
EBEF

2E8BOEB216
E4A0
22C5
32C1
B0OO
7402
BOFF

Cc3

83FA007503
8BC1C3

8BD9
03DA
8AlF
32FF
8BC3
C3

dma exit:

mov cl, [BX] ijget count
inc BX
mov al, [BX] ;get command

or al,sel mask ;merge command and drive code
out fdc_com,al ;send command byte
parm_loop:

dec cl

jz exec_exit ;jno (more) parameters, return

inc BX ipoint to (next) parameter
parm_poll:

in al,fdc_stat
test al,20h ;"parameter register full"
jnz parm poll ;idle until parm reg not fu
mov al,[BX]
out fdc parm,al ;send next parameter
jmps parm loop ;see if more parameters

flpy poll stat:

; See 1f current operation complete

mov cx,cs:status_mask
in al,fdc stat ;read status
and al,ch
xor al,cl ;isolate what we want to poll
mov al,o0
jz flpy poll nrdy
mov al,0ffh
flpy poll nrdy:
ret

SECTRAN ; Function 14: Sector Translate

Translate sector number given a translate table
If the translate table address is 0, don't translate
input: CX Sector Number
DX Offset of Translate Table
output: AX Translated Sector Number

mnon

N W e we we N

cmp dx,0 ! Jjne sectranl
mov ax,cx ! ret
sectranl:
mov bx,cx

add bx,dx ;add sector to tran table addr
mov bl, [bx] ;iget logical sector
xor bh,bh
mov ax,bx
ret
SETDMAB: ; Function 15: Set DMA Base

; set DMA segment

132

MP/M-86 System Guide Appendix C Example XIOS Listing

1441
1445

1446
1448

1449
144cC
1450
1454

145B
145F
1462

1463
1467
1469

890EA616
C3

32C0
C3

538BCB
E814005B
3CFF740E
833E2E18FF74
EE

8BD3B183
E997FD
C3

B7008AD9
D1E3
FFA7DAl4

: input: CX = Segment of DMA buffer
; output: None

mov dma_seg,CX
ret

flushbuf: ; Function 24: Flush Buffer

input: None
output: AL = 00h if no error occurs
= 01lh if error occurs

we W™ we ™

xor al,al ;no need to flush buffer
ret ;with no blocking/deblocking

Ri2 2222222222222 2222 R2RRRERRRRRRRR R R R X &

* SUP/RTM CODE AREA

rtm poll: ;check dev, if not ready, do rtm poll
Check poll condition.
If not ready,Call MPM Poll Device Routine

input: BX = device #

push bx ! mov cx,bx
call polldev ! pop bx
cmp al,0ffh ! je pllret
cmp stoppoll,true ! je rtm poll

rtm_polll: ; do poll dev with no pretest
mov dx,bx ! mov cl,f polldev

jmp supif

pllret: ret

’
polldev: ; Function 17: Poll Device

device number
000h if not ready
0ffh if ready

input: CL
output: AL

-y W

mov bh,0 ! mov bl,cl
shl bx,1
jmp polltbl [bx]

’
strtclk: ; Function 18: Start Clock

1
; Enable Flagsets on Tick Interrupts

133

MP/M-86 System Guide

C6063018FF
C3

146D
1472

€606301800
C3

1473
1478

1479 B8FFFFC3

147D C3

WO Me Ne me WMe W wE W we ™

147E B18E
1480 E876FD
1483 E9FS8FF

we We %o we we

Appendix C Example XIOS Listing

None
None

input:
output:

mov clockon,true
ret

topclk ; Function 19: Stop Clock
Disable Flagsets on Tick Interrupts
input: None
output: None
mov clockon,false
ret
etsegt: ; Function 16: Get Segment Table
Not supported by MP/M-86
input: None
output: AX = 0ffffh
mov ax,0ffffh ! ret
elmemory: ; Function 22: Select Memory
input: None
output: None
ret

; Function 23: 1Idle

None
None

input:
output:

The Idle routine is called by the Idle Process.
Since the Idle routine has the worst priority (255)
in the system, It will run only when nothing else
can run. This routine cannot use any resources that
may take it off the Ready List. This includes any
kind of I/0O that uses Poll Device or System Flags.

mov cl,f dispatch
call supif
jmp idle

If all devices are Interrupt Driven then the Idle
Routine can be the following instead:

halt ! jmp idle
This cannot be used if any I/0 uses POLL DEVICE
since polling is only done during dispatches.

134

MP/M-86 System Guide Appendix C Example XIOS Listing

patch
1486 909090909090 nop ! nop ! nop ! nop ! nop ! nop
148C 909090209090 nop ! nop ! nop ! nop ! nop ! nop
1492 909090909090 nop ! nop ! nop ! nop ! nop ! nop
1498 909090909090 nop ! nop ! nop ! nop ! nop ! nop
149E 909090909090 nop ! nop ! nop ! nop ! nop ! nop
14A4 9090 nop ! nop
;***
. x
i* SYSTEM DATA AREA
*
:***
14A6 endcode rw 0
DSEG
org (offset endcode + 1) and Offfeh

;org to an even word offset
;current UDA for MPM calls
14A6 udaseg rw 1

® o - — i —_————— —— —— — ————— ——— . = = v —— ———— . ————————

O e . - e - — —— —— — = - —— ——— WY R D S R A S L WP M - — — — — — — —— — —————— —

1428 0112 functab dw const ; 0O-console status
14AA 1912 dw conin ; l-console input
14AC 3012 dw conout ; 2-console output
14AE 4912 dw plist ; 3-list output

14B0 6212 dw punch ; 4-punch output
14B2 6212 dw reader ; S5-reader input
14B4 8712 dw HOME ; 6-home

14B6 9F12 dw SELDSK ; 7-select disk

14B8 BEl2 dw SETTRK ; 8-set track

14BA C312 dw SETSEC ; 9-set sector

14BC C812 dw SETDMA ;10-set DMA offset
14BE CD1l2 dw READ ;1l-read

14C0 1513 dw WRITE ;12-write

14C2 6512 dw listst ;13-1ist status

14C4 2E14 dw sectran ;1l4-sector translate
14C6 4114 dw setdmab ;15-set DMA base
14C8 7914 dw getsegt ;16-get segment table
l14cA 6314 dw polldev :17-poll device

14CC 6D14 dw strtclk ;18-start clock

14CE 7314 dw stopclk ;19-stop clock

14D0 7F12 dw maxconsole ;20-maximum consoles
14D2 8312 dw maxlist ;21l-max list devices
14D4 7D14 dw selmemory ;22-select memory
14D6 7E14 dw idle ;23-idle

14D8 4614 dw flushbuf ;24-flush buffer

135

MP/M-86 System Guide Appendix C Example XI0S Listing

O e e o e . - — v — o — —— —— — —— i — — Y — T — " —— . — " —————

routines to find device status
on poll device calls

14DA 0112 pelltbl dw const ;00-con 0 in
14DC 0112 dw const ;0l-con 1 in
14DE 0112 dw const :02~con 2 in
14E0 0112 dw const ;03-con 3 in
14E2 0112 dw const :04-con 0 out
14E4 0112 dw const ;05-con 1 out
14E6 0112 dw const ;06-con 2 out
14E8 0112 dw const ;07-con 3 out
14EA 6512 dw listst ;08-1ist 0 out
14EC 1C14 dw flpy poll stat ;09-dsk status
14EE 0ODOA signon db cr,lf
14F0 4D502F4D2D38 db 'MP/M-86 V2.0 for SBC 8612',cr,1f,0
362056322E3020666F
722053424320
383631320D0A
00
150C 20556E696E69 int trp db ' Uninitialized Interrupt',cr,1£,0
7469616C697A
656420496E74
657272757074
0DOAOO
1527 loc-stk rw 32 ;local stack for initialization
1567 stkbase equ offset $
1567 tickint_tos rw 0
1567 initss rw 1
1569 initsp rw 1
156B rw 32
15AB initstack rw 0

I s R R R e T 2 L Y Y
*
* CHARACTER I/0 DATA AREA

*
e Rhkhkhkhkhkhkhkhhkhhkhhkhkhkhkhkkhkhkhhkhkhkhkhkhkhkhkhkkhkhkhhkhhkhhkhhhrhhhhrhdhdn

™o ws Wme W

-

.
’

rg ((offset $) + 1) and O0fffeh

console i/o table for
status mask and port address

o
.
’
.
’
.
7

15AC DAO2 consttbl dw (cOinmsk shl 8) or cOstport
15AE 4302 dw (clinmsk shl 8) or clstport
15B0 4502 dw (c2inmsk shl 8) or c2stport
15B2 4702 dw (c3inmsk shl 8) or c3stport
15B4 DAOl dw (cOoutmsk shl 8) or cOstport

136

MP/M-86 System Guide Appendix C Example XIOS Listing

15B6 4301 dw (cloutmsk shl 8) or clstport
15B8 4501 dw (c2outmsk shl 8) or c2stport

15BA 4701 dw {(c3outmsk shl 8) or c3stport

;i console input table for
;i poll device no. and port address

15BC D800 conintbl dw (c0indev shl 8) or cOioport
15BE 4201 dw (clindev shl 8) or clioport
15C0 4402 dw (c2indev shl 8) or c2ioport

15C2 4603 dw {c3indev shl 8) or c3lioport

; console output table for
; Poll device no. and port address

15C4 D804 conouttbl dw (cOoutdev shl 8) or cOioport
15C6 4205 dw (cloutdev shl 8) or clioport
15C8 4406 dw (c2outdev shl 8) or clioport
15CA 4607 dw (c3outdev shl 8) or c3ioport
; list i/o table for
; Status mask and port address
15CC 4181 loutsttbl dw {l0outmsk shl 8) or 10stport

; list output for
; poll device no. and port address

15CE 4008 louttbl dw (l0outdev shl 8) or 1l0ioport

R EE2E AL AR SRR LRSS R AR RRRRERRRRRERRR SRR RS RREE S
*

* DISK DATA AREA
*

REZE AR R R R R AR SRR AR R R R EREREEEEEEREE S

e we Ne w

-

15D0 FO15F015F015 errtbl dw er0O,erl,er2,er3

FO15
15D8 001610161D16 dw erd,er5,er6,er?
2E16
15E0 411655166716 dw er8,er9,eraA,erB
7C16
15E8 8C16F015F015 dw erC,erD,erE,erF
F015
15F0 ODOA4E756C6C er0 db c¢r,1f,'Null Error 22',0
204572726F72
203F3F00
15F0 erl equ er0
15F0 er2 equ er0
15F0 er3 equ er0
1600 ODOA436C6F63 erd db c¢r,l1f,'Clock Error :',0
6B204572726F
72203A00
1610 ODOA4C617465 er5 db c¢r,lf,'Late DMA :',O0

137

MP/M-86 System Guide Appendix C Example XIOS Listing

20444D41203A
00
161D 0D0A49442043 er6 db c¢r,1£,'ID CRC Error :',0
524320457272
6F72203A00
162E 0D0A44617461 er? db c¢r,1£f,'Data CRC Error :',0
204352432045
72726F72203A
00
1641 0D0OA44726976 er8 db cr,l£,'Drive Not Ready :',0
65204E6F7420
526561647920
3A00
1655 0DOA57726974 er9 db cr,lf,'Write Protect :',0
652050726F74
656374203A00
1667 0D0A54726B20 erA db c¢r,1f,'Trk 00 Not Found :',0
3030204E6F74
20466F756E64
203A00
167C 0ODOAS57726974 erB db cr,lf,'Write Fault :',0
65204661756C
74203A00
168C 0D0OA53656374 erC db c¢r,l1f,'Sector Not Found :',0
6F72204E6F74
20466F756E64
203A00
15F0 erD equ er0
15F0 erk equ er0
15F0 erF equ er0
1641 nrdymsg equ er8
16A1 00 rtry cnt db 0 ;disk error retry counter
16A2 0000 last com dw 0 ;address of last command string
16A4 0000 dma adr dw O ;dma offset stored here
l6A6 0000 dma _seg dw 0 ;dma segment stored here
16A8 40 sel mask db 40h ;select mask, 40h or 80h
; Various command strings for i8271
16A9 03 io com db 3 ; length
16AA 00 rd wr db 0 ;read/write function code
16AB 00 trk db 0 ;track #
16AC 00 sect db 0 ;sector #
16AD 022900 hom com db 2,29h,0 ;home drive command
16B0 012C rds_com db 1,2ch ;read status command
16B2 0000 status mask dw 0 ;jmask for flpy poll
16B4 00 disk db 0 ;physical disk selected
; logical to physical disk

translation table

e

138

MP/M-86 System Guide Appendix C Example XIOS Listing

; A B C D
16B5 0001FFFF dtrntbl db 000h,001h,0ffh,0ffh
; E F G H
16B9 FFFFFFFF db Offh,0ffh,0£ffh,0£f£fh
; I J K L
16BD FFFFFFFF db 0ffh,0ffh,0£ffh,0ffh
; M N 0 P

; ¥*¥***MDISK SUPPORT***%%*
if memdisk
16C1 O2FFFFFF db 002h,0£ffh,0£fh,0f£fh

endif
;***********************

if not memdisk

db 0ffh,0£ffh,0£f£fh,0££fh
endif
; disk home routine table
16C5 9812 dskhomtbl dw flpy home ;A drive
16C7 9812 dw flpy home ;B drive
s ¥*¥***MDISK SUPPORT****%*
if memdisk
16C9 9E12 dw hom ret ;M drive
endif
;***********************
; disk read routine table
16CB F612 dskrdtbl dw flpy read ;A drive
16CD FG612 dw flpy read ;B drive
; ¥*¥*¥**MDISK SUPPORT****%*
if memdisk
16CF D912 dw mdsk_read iM drive
endif
;***********************
; disk write routine table
16Dl 3E13 dskwrttbl dw flpy write ;A drive
16D3 3E13 dw flpy write ;B drive
s ¥*¥**k*MDISK SUPPORT*****
if memdisk
16D5 2113 dw mdsk write ;M drive

endif
jREKK R KAk kkkkkkkkhokkkkk

include singles.lib ;read in disk definitions

= ; DISKS 3

= 16D7 dpbase equ $;Base of Disk Parameter
=16D7 16170000 dpe0 dw x1t0,0000h ;Translate Table
=16DB 00000000 dw 0000h,0000h ;Scratch Area

=16DF 3F170717 dw dirbuf ,dpb0 ;Dir Buff, Parm Block
=16E3 DE17BF17 dw csv0,alv0 ;Check, Alloc Vectors
=16E7 16170000 dpel dw x1tl,0000h ;Translate Table
=16EB 00000000 dw 0000h,0000h ; Scratch Area

=16EF 3F170717 dw dirbuf ,dpbl ;Dir Buff, Parm Block
=16F3 OD18EEl7 dw csvl]l,alvl ;Check, Alloc Vectors
=16F7 00000000 dpe?2 dw x1t2,0000h ;Translate Table

139

MP/M-86 System Guide Appendix C Example XIOS Listing

=16FB 00000000 dw 0000h,0000h ;Scratch Area
=16FF 3F173017 dw dirbuf,dpb2 ;Dir Buff, Parm Block
=1703 2D181D18 dw csv2,alv2 ;Check, Alloc Vectors

DISKDEF 0,1,26,6,1024,243,64,64,2

1944: 128 Byte Record Capacity
243: Kilobyte Drive Capacity
64: 32 Byte Directory Entries
64: Checked Directory Entries
128: Records / Extent
8: Records / Block
26: Sectors / Track
2: Reserved Tracks
6: Sector Skew Factor

O, %s me %o %e e e W we W we we we

1707 pb0 equ offset § ;Disk Parameter Block
1707 1A00 dw 26 ;Sectors Per Track
=1709 03 db 3 ;Block Shift
=170A 07 db 7 ;Block Mask
=170B 00 db 0 ;Extnt Mask
=170C F200 dw 242 ;Disk Size -1
=170E 3F00 dw 63 ;Directory Max
=1710 CO db 192 ;AllocO
=1711 00 db 0 ;Allocl
=1712 1000 dw 16 ;Check Size
=1714 0200 dw 2 ;Offset
= 1716 x1t0 equ offset $;Translate Table
=1716 01070D13 db 1,7,13,19
=171A 19050B11 db 25,5,11,17
=171E 1703090F db 23,3,9,15
=1722 1502080E db 21,2,8,14
=1726 141A060C db 20,26,6,12
=172A 1218040A db 18,24,4,10
=172E 1016 db 16,22
001lF also equ 31 ;Allocation Vector Size
0010 css0 equ 16 ;Check Vector Size
; DISKDEF 1,0
; Disk 1 is the same as Disk 0
1707 dpbl equ dpb0 ;Equivalent Parameters
001F alsl equ also ;Same Allocation Vector
0010 cssl equ css0 ;Same Checksum Vector S
1716 xltl equ x1t0 ; Same Translate Table

DISKDEF 2,1,26,,1024,127,64,0,0

1016: 128 Byte Record Capacity
127: Kilobyte Drive Capacity
64: 32 Byte Directory Entries
0: Checked Directory Entries
128: Records / Extent
8: Records / Block
26: Sectors / Track
0: Reserved Tracks

L L L | (I L O (O | T O | T T O T { I 1

WE WE M WM WM My We we W W W

140

MP/M-86 System Guide Appendix C Example XIOS Listing

182E

1830

1831

1832
1838
183E
1844
184A
1850
1856

0000

00

3C

ccceceeceecececce
ccceceecececce
ceeecececeeccecece
cceeceececececce
cceecececeeececce
cceeceeceececce
cccceececeeccece

dpb2 equ offset $;Disk Parameter Block

dw 26 ;Sectors Per Track

db 3 :Block shift

db 7 ;Block Mask

db 0 ;Extnt Mask

dw 126 ;Disk Size - 1

dw 63 ;Directory Max

db 192 ;AllocO

db 0 ;Allocl

dw 0 ;Check Size

dw 0 ;Offset
x1t2 equ 0 ;No Translate Table
als2 equ 16 ;Allocation Vector Size
css2 equ 0 ;Check Vector Size

ENDEF

Uninitialized Scratch Memory Follows:

ws we we

14

begdat equ offset $;Start of Scratch Area

dirbuf rs 128 ;Directory Buffer

alvo rs alsoO ;Alloc Vector

csv0 rs css0 ; Check Vector

alvl rs alsl ;Alloc Vector

csvl rs cssl ; Check Vector

alv2 rs als?2 ;Alloc Vector

csv2 rs css?2 ;Check Vector

enddat equ offset $;End of Scratch Area

datsiz equ offset $-begdat ;Size of Scratch Area
db 0 ;Marks End of Module

22X E22 2222 RZ R AR 22 R R R R R R R R R R R R R ERREE SR EEEEERERE]

14

.k

!

i* SUP/RTM DATA AREA

.*

;***

stoppoll dw false ;disallows poll device
;for internal printing
;0f strings when true

clockon db false :1f true, Tick flag is
;set on Tick interrupts

tick_count db 60

scratch area

we we we

dw Occcch,0ccecch,0ccech
dw Occcch,0ccecch,0ccech
dw Occech,0cccch,0ccech
dw Occcch,0cccch,0ccech
dw Occcch,0ccecch,0ccech
dw Occcch,0ccecch,0cccech
dw Occcch,0ccech,0ccech

141

MP/M-86 System Guide Appendix C Example XIOS Listing

185C 00 db 0 ;£ill last address for GENCMD

142

WooJoaau »wiN +—

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42
43:
44
45
46:
47
48:
49:
50:

APPENDIX D

Blocking/Deblocking Algorithms

B EEEEEE R R RS R RRRRRRRERRRR2RRRRX2RRX2RRZE2EZ2 X222 R

Sector Blocking / Deblocking

* *
. % *
. % *
;* This algorithm is a direct translation of the *
;¥ CP/M-80 Version, and is included here for refer- *
; * ence purposes only. The file DEBLOCK.LIB is in- *
;* cluded on your MP/M-86 disk, and should be used *
;* for actual applications. You may wish to contact *
;* Digital Research for notices of updates. *
« % *
« % *

I
I
I
I
I
I
I
I
I
I

IR R X RS R RS R R R RRERRRRRRRRRRRRRRRRRRXERRRXRRRRRRZ 22

S ELEEE SR ERR SRR RXAR 2]
o % *
;¥ CP/M to host disk constants *
. % *
* (This example is setup for MP/M block size of 16K *
;* with a host sector size of 512 bytes, and 12 sec- *
;* tors per track. Blksiz, hstsiz, hstspt, hstblk *

*

*

; * and secshf may change for different hardware.)

H
H
’
H
’
H
’
H
H
H
:**
u

na equ byte ptr [BX] ;name for byte at BX

H
blksiz equ 16384 ;CP/M allocation size
hstsiz equ 512 ;host disk sector size
hstspt equ 12 ;host disk sectors/trk
hstblk equ hstsiz/128 ;CP/M sects/host buff
:***
. % . *
’

;* secshf is log2(hstblk), and is listed below for *
;* values of hstsiz up to 2048. *
o % *
’

i * hstsiz hstblk secshf *
; * 256 2 1 *
P ¥ 512 4 2 *
i * 1024 8 3 *
i * 2048 16 4 *
;* *

secshf equ 2 :log2 (hstblk)
cpmspt equ hstblk * hstspt ;CP/M sectors/track
secmsk equ hstblk-1 ;sector mask
:***
. % *
!

i * BDOS constants on entry to write *
P *
;***

143

MP/M-86

51:
52:
53:
54;
55:
56:
57:
58:
59:
60:
6l:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:

System's Guide Appendix D Blocking and Deblocking

wrall equ 0 ;write to allocated
wrdir equ 1 ;jwrite to directory
wrual equ 2 ;write to unallocated
;***
. % *
’

i The BIOS entry points given below show the *
;¥ code which is relevant to deblocking only. *

’
’
;*
S 2222222222222 RS RRRR 22222222 2R R R ARya 2ttt 2 a2 2 R 2R R

seldsk:

*

;select disk
;1s this the
test DL,1
jnz selset
;this is the
mov hstact,0
mov unacnt,0

first activation of the drive?
;1sb = 07?

first activation, clear host buff

selset:

;put in AX

;Seek disk number
;times 16

al,cl ! cbw
sekdsk,al

cl,4 ! shl al,cl
ax,offset dpbase
bx,ax

mov
mov
mov
add
mov
ret

home:
;home the selected disk
mov al,hstwrt
test al,al
jnz homed
mov hstact,0

;check for pending write

;clear host active flag

homed:

mov c¢Xx,0 ;now, set track zero
(continue HOME routine)

ret

.
’

’

settrk:
;set track given by registers CX
mov sektrk,CX ;track to seek
ret

’
setsec:
;set sector given by register cl
mov seksec,cl ;sector to seek

ret

setdma:
;set dma address given by CX
mov dma off,CX
ret
setdmab:
;set segment address given by CX

mov dma_seg,CX

144

MP/M-86 System's Guide Appendix D Blocking and Deblocking

106: ret
107: ;
. 108: sectran:
109: ;translate sector number CX with table at [DX]
110: test DX,DX ;test for hard skewed
111: jz notran ; (blocked must be hard skewed)
112: mov BX,CX
113: add BX,DX
114: mov BL, [BX]
115: ret
116: no tran:
117: - ;hard skewed disk, physical = logical sector
118: mov BX,CX
119: ret
120: ;
121: read:
122: ;read the selected CP/M sector
123: mov unacnt,0 ;clear unallocated counter
124: mov readop,l ;read operation
125: mov rsflag,l ;must read data
126: mov wrtype,wrual ;treat as unalloc
127: jmp rwoper ;to perform the read
128: ;
129: write:
130: ;Wwrite the selected CP/M sector
131: mov readop,0 ;write operation
132: mov wrtype,cl
133: cmp cl,wrual ;write unallocated?
134: jnz chkuna ;check for unalloc
135: ;
136: ; write to unallocated, set parameters
137: ; |
138: mov unacnt,(blksiz/128) ;next unalloc recs i
139: mov al,sekdsk ;disk to seek 1
140: mov unadsk,al ;unadsk = sekdsk |
141: mov ax,sektrk :
142: mov unatrk,ax ;unatrk = sektrk
143: mov al,seksec
144: mov unasec,al ;unasec = seksec
145: ;
146: chkuna:
147: ;check for write to unallocated sector
148: ;
149: mov bx,offset unacnt ;point "UNA" at UNACNT
150: mov al,una ! test al,al ;any unalloc remain?
151: jz alloc ;skip if not
152: ;
153: ; more unallocated records remain
154: dec al ;unacnt = unacnt-1
155: mov una,al
156: mov al,sekdsk ;same disk?
157: mov BX,offset unadsk
158: cmp al,una ;sekdsk = unadsk?
159: jnz alloc ;skip 1f not
160: ;

145

MP/M-86

161:
162
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:

System's Guide

1
noovf:

alloc:

.
1

disks are the same
mov AX, unatrk

cmp AX, sektrk

jnz alloc

tracks are the same
mov al,seksec

mov BX,offset unasec

cmp al,una
jnz alloc

match,
inc una
mov al,una
cmp al,cpmspt
jb noovf

overflow to next track
mov una,0
inc unatrk

Appendix D

Blocking and Deblocking

;skip if not

;jsame sector?
;point una at unasec

; Sseksec = unasec?
;skip if not

move to next sector for future ref

;unasec = unhasec+l

;end of track?
;count CP/M sectors
;skip if below

;unasec = 0
;unatrk=unatrk+l

;jmatch found, mark as unnecessary read

mov rsflag,0
jmps rwoper

;not an unallocated record,

mov unacnt,0
mov rsflag,l

;rsflag = 0
;to perform the write

requires pre-read
junacnt = 0

;rsflag =1

;drop through to rwoper

2 EZEEEEREE SRR R RRRRERERRREREXERRRRRERERESSES]

’
. %
’
ok
’
’

« %

*

Common code for READ and WRITE follows *

*

chkhkhkhkhk kAR kA hkhkhhkhkhkhkhkhkhkhkkhkhkhkhkhhhhkhhhhhhhhkhkhkhkkkkk

1
rwoper:

;enter here to perform the read/write

mov
mov
mov
shr
mov

erflaq,0
al, seksec
cl, secshf
al,cl
sekhst,al

active host sector?
mov al,l

xchg al,hstact

test al,al

jz filhst

host buffer active,
mov al,sekdsk

146

;no errors (yet)
;jcompute host sector

;host sector to seek

;always becomes 1
;was it already?
;£ill host if not

same as seek buffer?

- MP/M-86

216:
217:
218:
219:
220:
221:
222:
223:
224:
225:;
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244:
245:
246
247
248:
249:
250:
251:
252:
253:
254:
255:
256
257:
258:
259:
260:
261:
262:
263:
264:
265:
266:
267:
268:
269:
270:

System's Guide

-,

nomatch:

filhst:

-e

ilhstl:

e e

match:

“-s we we

cmp al,hstdsk
jnz nomatch

same disk,
mov ax,hsttrk
cmp ax,sektrk
jnz nomatch

same disk, sam
mov al,sekhst
cmp al,hstsec
jz match

;proper disk,

mov al, hstwrt
test al,al

jz filhst

call writehst

(check errors

;may have to f
mov al,sekdsk

mov ax,sektrk

mov al,sekhst

mov al,rsflag

test al,al

jz filhstl

call readhst
(check errors

mov hstwrt,O

;copy data to
mov al,seksec
and ax,secmsk
mov cl, 7 ! sh

ax has relativ

add ax,offset
mov si,ax
mov di,dma_off

push DS ! push

mov ES,dma_seg

mov cx,128/2
mov al,readop
test al,al

Appendix D Blocking and Deblocking

;sekdsk = hstdsk?

same track?

;host track same as seek

e track, same buffer?

; sekhst = hstsec?
;skip if match

but not correct sector

;"dirty" buffer ?
;no, don't need to write
;yes, clear host buff

here)

ill the host buffer
! mov hstdsk,al
! mov hsttrk,ax
! mov hstsec,al

;:need to read?

;yes, if 1
here)

;no pending write

or from buffer depending on "readop"
;mask buffer number
;least signif bits are masked
1l ax,cl ;shift left 7 (* 128 = 2%%*7)
e host buffer offset

;ax has buffer address
;put in source index register

;user buffer is dest if readop

hstbuf

ES ;save segment registers
;Set destseg to the users seg
;SI/DI and DS/ES is swapped
;1f write op
;length of move in words

;which way?

147

b et b e

MP/M-86

271:
272:
273:
274:
275:
276:
277:
278:
279:
280:
281:
282:
283:
284:
285:
286:
287:
288:
289:
290:
291:
292:
293:
294:
295:
296:
297:
298:
299:
300:
301:
302:
303:
304:
305:
306:
307:
308:
309:
310:
311:
312:
313:
314:
315:
316:
317:
318:
319:
320:
321:
322:
323:
324:
325:

System's Guide Appendix D Blocking and Deblocking

- ™

.
I

rwmove:

~e we

return_rw:

ret
;*** .
« % *
’
;* WRITEHST performs the physical write to the host *
;*¥ disk, while READHST reads the physical disk. *
*

o %
I

;***

writehst:

’

readhst:

e we wo

’

H

H

dpbase equ offset $

: disk parameter tables go here
;***
;* *
;* Uninitialized RAM areas follow, including the *
;* areas created by the GENDEF utility listed above. *
o % *
r
;***
sek_dsk rb 1 ; seek disk number
sek_trk rw 1 ;seek track number

hkhhkhhkhkhkhkhkhhkhkhkhkhkhkhkhhhkhkhhkhkhkhkhkhkhkhhkhkhkhkhhkhkkhkhkhkkhkhkhkkkkhkkkk

*

*

;* Use the GENDEF utility to create disk def tables *
*
hhkhhkhkhkhkhkhhkhhkhhkhhkhhhhkhhkhhkhhkhhkhhkhkhkhkhkhhkhkkhkkhkhkhkkkkkkkkk

jnz rwmove ;skip if read

write operation, mark and switch direction ‘
mov hstwrt,l shstwrt = 1 (dirty buffer now)

xchg si,di ;source/dest index swap

mov ax,DS
mov ES,ax

mov DS,dma_seg ;setup DS,ES for write

cld ! rep movs AX,AX ;move as 16 bit words

pop ES ! pop DS ;restore segment registers
data has been moved to/from host buffer

cmp wrtype,wrdir ;write type to directory?
mov al,erflag ;in case of errors

jnz return rw ;jno further processing

clear host buffer for directory write

test al,al ;errors?
jnz return rw ;skip if so
mov hstwrt,0 ;buffer written

call writehst
mov al,erflag

ret

ret

*

*

148

MP/M-86 System's Guide Appendix D Blocking and Deblocking

326: sek_sec rb 1 ;seek sector number
327: ;

‘ 328: hst_dsk rb 1 ;host disk number
329: hst_trk rw 1 ;host track number
330: hst_sec rb 1 ;host sector number
331: ;

332: sek_hst rb 1 ; seek shr secshf
333: hst_act rb 1 ;host active flag
334: hst_wrt rb 1 ;host written flag
335: ;

336: una_cnt rb
337: una_dsk rb
338: una_trk rw
339: una_sec rb
340: ;

341: erflag rb

;unalloc rec cnt
;last unalloc disk
;last unalloc track
;last unalloc sector

1 ;error reporting

342: rsflag rb 1 ;read sector flag
343: readop rb 1 ;1 if read operation
344: wrtype rb 1 ;write operation type
345: dma_seg rw 1 ;last dma segment
346: dma off rw 1 ;last dma offset

347: hstbuf rb hstsiz ;host buffer

348: end

149

INDEX

B

Basic Disk Operating System, 2

BDOS, 2, 9

BIOS Jump Table, 54

blocking/deblocking algorithm,
71

Blocking/Deblocking Buffers,
46

Bootstrap ROM, 77

breakpoints, 76

C

CCB Tabkle, 8

Character Control Block, 8
Character I/0 Module, 2
checksum byte, 61

c1o, 2, 8

CMD file Header, 75

CMD Header Record, 20
Cold Start Loader, 77
CONSOLE INPUT, 10, 29
CONSOLE ouTPUT, 30
CONSOLE STATUS, 28

D

data allocation block size,
60

data block, 61, 64

Device Polling, 6

directory entries, 61

Disk Definition Tables, 57

Disk I/0 Function, 36

Disk Parameter Block, 59

Disk Parameter Header, 38, 44,
57, 65

disk reset, 64

DISKDEF, 63

Dispatcher, 6, 51

E

ENTRY, 26, 53, 76

Extended Input/Output System,
2

external fragmentation, 7

151

F

Far Call, 26, 53

Far Return, 26, 53
fixed partition, 7
FLUSH BUFFERS, 46

G

GENDEF, 60

GENDEF Error Messages, 68

GENDEF parameters, 62

GENSYs, 1, 7, 8, 11, 15, 17,
20, 22, 23, 75

H

hardware interface, 1
HOME, 37

host disk, 72

host system, 72

I

IDLE, 51

INIT, 25, 53, 76, 79
internal fragmentation, 7
internal system calls, 71
Interrupt 224, 56
interrupt devices, 55
Interrupt Handler, 55
interrupt-driven 1/0, 75

L

LDBDOS, 78

LDBIOS, 78

LDMPM, 78 i

LIST OUTPUT, 31 i

LIST STATUS, 33

locked records, 21

Logical Sector Number, 44

logically invariant interface, |
1 i

H
M |

MAXIMUM CONSOLES, 34
MAXIMUM LIST DEVICE, 35

MEM, 2, 7

Memory Allocation List, 8
Memory Allocation Unit, 8
Memory Descriptor, 8
memory disk, 73

Memory Free List, 8
Memory Module, 2

memory partitions, 7, 23
MPM.SYS, 17, 19, 25, 76, 77
MPM.SYS Header Record, 81
MPMLDR, 17, 19, 25, 77
MPMLDR Header Record, 78

0
open files, 21
P

parity bit, 29

Physiceal Sector Number, 44
POLL DEVICE, 47

Poll Device Number, 47
polled devices, 55

polled 1/0, 75

Process Descriptor, 3, 6
PUNCH oOUTPUT, 32

Q
Queue Control Block, 22

R

READ, 42
READER INPUT, 32

Real-Time Monitor, 2, 47

reentrant code, 10

register usage, 26

Resident Procedure Libraries,
2

Resident System Process, 3,

15, 17
RSP, 3
RTM, 2, 6

S

SECTOR TRANSLATE, 44
SELECT DISK, 38

shared code, 8

Sector Skew Factor, 44
STOP CLOCK, 49

sup, S

sysbaTt, 3, 11, 15, 38

152

System Data Area, 3, 8, 19

system reset, 64 .

T

Transient Program Area, 3 -
Translation Vectors, 59

u

ubA, 3

unintialized interrupt, 56
User Data Area, 3

user interface, 1

XI0S, 2, 10

XI0S Data Area, 3, 11

XI0S debugging, 75

MP/M-86™ Operating System

‘ SYSTEM GUIDE

Corrections to the First Printing - September 1981

Compiled October 5, 1981

PAGE 43

XIOS Function 12: WRITE

Returned Value:
Register AL: O 1if No Error

1 if Physical Error

2

Read/Only Disk

ADD=--->

PAGE 46

XIOS Function 24: FLUSH BUFFERS

Returned Value:
Register AL: 0 if No Error
1 1if Physical Error
ADD---> 2 Read/Only Disk

PAGE 80
The example generation of MPMLDR, although
correct in itself, does not generate an MPMLDR
loading at paragragh 400H as it is distributed
with MP/M-86 2.0

change:

GENCMD MPMLDR 8080 CODE[A040]
to:

GENCMD MPMLDR 8080 CODE[A0400])

in the following paragraph:

change:
... paragraph address of 040H, or byte
address 0400H. ...

to:
... paragraph address of 0400H, or byte

address 04000H. ...

MP/M-86 System Guide Corrections October 5, 1981

1

two paragraphs further down:
change:
byte location 0400H. ...

to:
byte location 04000H. ...

PAGE 83

.COM files are not distributed with MP/M-86.
strike the paragraph on this page.

APPENDIX C - EXAMPLE XIOS LISTING

change: . '

... XIOS.A86 file provided with CP/M-86. ...

to: ' ‘
... XIOS.A86 file provided with MP/M-86. ...

NOTE:

<

This listing is not correct. Using ASM-86,
reassemble the file XIOS.A86 and print the
XIOS.LST file produced for a accurate listing.

PAGE 143

APPENDIX D - Blocking/Deblocking Algorithms

This listing is not correct. Print

the file. DEBLOCK.LIB that comes with the
distribution diskettes of MP/M-86 for a

corrected version of this file. Use the
command:

PIP PRN:=DEBLOCK.LIB

MP/M-86 System Guide Corrections October 5, 1981

2

