

The CP/M® Z-8O® Microcomputer

ZSID™
SYMBOLIC INSTRUCTION DEBUGGER

COMMAND SUMMARY

Z-80 VERSION

DIGITAL RESEARCH

COPYRIGHT

Copyright © 1979, 1981 by Digital Research. All rights reserved. No
part of this publication may be reproduced, transmitted, transcribed,
stored in a retrieval system, or translated into any language or
computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, without
the prior written permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

TRADEMARKS

CP/M is a registered trademark of Digital Research. Z-80 is a
registered trademark of Zilog. ZSID is a trademark of Digital
Research.

All information contained herein is proprietary to Digital Research.

ABOUT THIS MANUAL

The starting point for this PDF file was the plain text contained in
the file zsid.txt (OCR’d from a CP/M manual) zipped in the file
zsid-m.zip, that was downloaded from www.cpm.z80.de, The Unoficial
CP/M Web Site.

Please, enter in this site to know how you can help to the CP/M
community working on CP/M manuals.

Miguel I. García López, 24 May 2007.

1

ZSID COMMAND SUMMARYZSID COMMAND SUMMARYZSID COMMAND SUMMARYZSID COMMAND SUMMARY

1.1 Startup
1.2 Response
1.3 Letter commands
1.4 Command line
1.5 Literal numbers
1.6 Decimal numbers
1.7 Characters
1.8 Symbol references
1.9 Qualified symbols
1.10 Symbolic expressions
1.11 Unary plus/minus

2.1 Assemble
2.2 Call
2.3 Display memory
2.4 Fill memory
2.5 Go to program
2.6 Hex values
2.7 Input line
2.8 List code
2.9 Move memory
2.10 Pass counter
2.11 Read code/symbols
2.12 Set memory
2.13 Trace mode
2.14 Untrace mode
2.15 Examine cpu state

3.1 ZSID utilities
3.2 The hist utility
3.3 The trace utility

4.1 Implementation notes

5.1 Z80 mnemonics
5.2 Z80-cpu instruction set

2

1.1 / 1.1 / 1.1 / 1.1 / STARTUPSTARTUPSTARTUPSTARTUP

 (1) ZSID
 (2) ZSID x.y
 (3) ZSID x.HEX
 (4) ZSID x.UTL
 (5) ZSID x.y u.v

Form (1) starts ZSID without a test program, (2) loads the test
program x.y (y is normally COM), (3) loads x.HEX in Intel "hex"
format, (4) loads and executes utility x, (5) loads x.y with the
symbol table u.v (normally x.SYM).

Example:

ZSID SORT.COM SORT.SYM

1.2 / RESPONSE1.2 / RESPONSE1.2 / RESPONSE1.2 / RESPONSE

 (1) #
 (2) SYMBOLS
 (3) NEXT PC END
 nnnn pppp eeee

Form (1) indicates ZSID is ready to accept commands, (2) indicates
machine code loaded, commencing symbol table load, (3) shows
successful machine code and/or symbol load where nnnn, pppp, and eeee
are hexadecimal values giving the next unfilled machine code location,
the initial program counter, and the last free memory location,
respectively.

1.3 / LETTER COMMANDS1.3 / LETTER COMMANDS1.3 / LETTER COMMANDS1.3 / LETTER COMMANDS

A Assemble M Move
C Call P Pass Point
D Display R Read
F Fill Memory S Set Memory
G Go T Trace
H Hex U Untrace
I Input Line X Examine
L List Mnemonics

1.4 / COMMAND LINE1.4 / COMMAND LINE1.4 / COMMAND LINE1.4 / COMMAND LINE

ZSID reads commands from the system console following the # prompt.
Each command line is based upon the command letter and optional
symbolic expressions. All CP/M line editing is available on 64
character lines terminated by carriage returns. A space serves as a
comma delimiter.

ZSID terminates whenever control-C is typed.

1.5 / LITERAL NUMBERS1.5 / LITERAL NUMBERS1.5 / LITERAL NUMBERS1.5 / LITERAL NUMBERS

ZSID uses the hexadecimal number base, consisting of the decimal
digits 0-9 along with the hex digits A-F. Numbers exceeding four
digits are truncated to the right.

Examples are:

30 3F 3f FF3E F3

1.6 / DECIMAL NUMBERS1.6 / DECIMAL NUMBERS1.6 / DECIMAL NUMBERS1.6 / DECIMAL NUMBERS

Decimal numbers are preceded by a #, and consist of decimal digits
0-9. Numbers exceeding 65535 are truncated to the rightmost 16 bits.

Examples are:

#48 #9999 #65535 #0

3

1.7 / CHARACTERS1.7 / CHARACTERS1.7 / CHARACTERS1.7 / CHARACTERS

ZSID accepts graphic ASCII characters within paired string apostrophes
('). Strings of length greater than two are truncated to the right.
The rightmost character of a two character string becomes the least
significant byte. A one character string has a high order 00 byte,
zero length strings are disallowed, and a pair of apostrophes within a
string reduces to a single apostrophe. Lower case letters are not
translated in strings.

Examples are:

'a' 'A' 'xy' '#' ''

1.8 / SYMBOL REFERENCES1.8 / SYMBOL REFERENCES1.8 / SYMBOL REFERENCES1.8 / SYMBOL REFERENCES

ZSID symbolic expressions may involve symbol references when a symbol
table is present:

 (1) .s
 (2) @s
 (3) =s

Form (1) denotes the address of symbol s, (2) denotes the 16-bit value
at .s, (3) denotes the 8-bit value at .s, where s is a sequence of
characters matching a symbol table element.

1.9 / QUALIFIED SYMBOLS1.9 / QUALIFIED SYMBOLS1.9 / QUALIFIED SYMBOLS1.9 / QUALIFIED SYMBOLS

ZSID searches for a symbol match starting at the first symbol loaded
until the first symbol matches. When duplicate symbols exist, a
qualified reference of the form

s1/s2/.../sn

matches symbols from left to right as the search proceeds sequentially
through the symbol table.

An example is:

ALPHA/GAMMA/I

1.10 / SYMBOLIC 1.10 / SYMBOLIC 1.10 / SYMBOLIC 1.10 / SYMBOLIC EXPRESSIONSEXPRESSIONSEXPRESSIONSEXPRESSIONS

Expressions consist of a left to right sequence of literal numbers,
decimal numbers, character strings, and symbol references, separated
by plus ("+") and minus ("-") operators. Values are added or
subtracted, accordingly, with no overflow checks, to produce the final
16-bit result.

A leading minus, as in -x, is computed as 0-x. A leading plus, as in
+x, is computed as x'+x, where x' is the value of the last expression
typed. A sequence of n ^'s produces the n'th stacked value in the
program under test (see the G command). Blanks are not allowed within
expressions.

Examples are given with individual commands.

1.11 / UNARY PLUS/MINUS1.11 / UNARY PLUS/MINUS1.11 / UNARY PLUS/MINUS1.11 / UNARY PLUS/MINUS

For convenience, symbolic expressions may be preceded by
either a plus or minus sign taking the forms

 (1) +x
 (2) -x

where x is a symbolic expression. Form (1) is computed as x'+x, where
x' is the value of the last symbolic expression typed by the operator,
or zero if no expression has been entered.

4

For example

 D.GAMMA+5,+#10

is equivalent to

 D.GAMMA+5,.GAMMA+5+#10

Form (2) is computed as 0-X and thus

 R-100

is equivalent to

 RFFOO

2.1 / ASSEMBLE2.1 / ASSEMBLE2.1 / ASSEMBLE2.1 / ASSEMBLE

 (1) As
 (2) A
 (3) -A

Form (1) begins in-line assembly at location s, where each successive
address is displayed until a null line or "." is entered by the
operator. Form (2) is equivalent to (1) with assumed starting address
derived from last assembled, listed, or traced address. Form (3)
removes the assembler/ disassembler module, discards existing symbol
information, and disables subsequent A or L commands. In this case,
machine hex code is displayed in subsequent traces.

Examples:

 A1OO
 A#100
 A.CRLF+5
 A@GAMMA+@X-=I
 A+30

2.2 / CALL2.2 / CALL2.2 / CALL2.2 / CALL

 (1) Cs
 (2) Cs,b
 (3) Cs,b,d

Form (1) performs a direct call from ZSID to location s in memory,
without disturbing the CPU state of the program under test, and is
most often used with ZSID Utilities. In this case, registers BC=0000,
DE=0000. Form (2) calls s with data BC=b, DE=0000, while form (3) also
fills DE=d.

Examples:

 C1OO
 C#4096
 C.DISPLAY
 C@JMPVEC+=X
 C.CRLF,#34
 C.CRLF,@X,+=X

5

2.3 / 2.3 / 2.3 / 2.3 / DISPLAY MEMORYDISPLAY MEMORYDISPLAY MEMORYDISPLAY MEMORY

 (1) Ds
 (2) Ds,f
 (3) D
 (4) D,f
 (5) DWs
 (6) DWs,f
 (7) DW
 (8) DW,f

Form (1) types memory contents in 8-bit format starting at location s
for 1/2 screen with graphic ASCII to the right of each line, (2) is
similar, but ends at location f. Form (3) continues the display from
the last displayed location, or the value of the HL register pair
following CPU state display, for 1/2 screen, (4) is similar, but
terminates at location f. Forms (5) through (8) are equivalent to (1)
through (4), but display in word format (16-bits).

Examples:

 DF3F
 D#100,#200
 D.gamma,.DELTA+#30
 d,.GAMMA
 DW@ALPHA,+#100

2.4 / FILL MEMORY2.4 / FILL MEMORY2.4 / FILL MEMORY2.4 / FILL MEMORY

 Fs,f,d

Fills memory with 8-bit data d starting at location s, continuing
through location f.

Examples:

 F1OO,3FF,ff
 f.gamma,+#100,#23
 F@ALPHA,+=I,=X

2.5 / GO TO PROGRAM2.5 / GO TO PROGRAM2.5 / GO TO PROGRAM2.5 / GO TO PROGRAM

 (1) G
 (2) Gp
 (3) G,a
 (4) Gp,a
 (5) G,a,b
 (6) Gp,a,b
 (7) -G...

Form (1) starts the program under test from the current PC without
breakpoints. Execution is in real time. Form (2) is equivalent, but
sets PC=p before execution, (3) starts from the current PC with a
breakpoint at location a, (4) is similar to (3) but sets the PC to p.
Form (5) is equivalent to (3) but sets breakpoints at a and b, while
(6) presets the PC to p before execution. Upon encountering a
breakpoint (or an externally provided RST 7), the break address is
printed in the form:

 *nnnn

and the optional breakpoints are cleared. Forms given by (7) parallel
(1) through (6), except "pass points" are not traced until the
corresponding pass count becomes zero (see P command). The symbol "^"
in an expression produces the topmost stacked value, which is used to
set a break following a subroutine call. Given that a breakpoint has
occurred at a subroutine, the command

 G,^

6

continues execution with a return breakpoint set.

Examples:

 G1OO
 G100,103
 G.CRLF,.PRINT,#1024
 G@JMPVEC+=I,.ENDC,.ERRC
 G,.errsub
 G,.ERRSUB,+30
 -G1OO,+10,+10

2.6 / HEX VALUES2.6 / HEX VALUES2.6 / HEX VALUES2.6 / HEX VALUES

 (1) Ha,b
 (2) Ha
 (3) H

Form (1) produces the hexadecimal sum (a+b) and difference (a-b) of
operands. Form (2) performs number conversion by typing the value of a
in the format:

 hhhh #ddddd 'c' .ssss

where hhhh is a's hex value, dddd is the decimal value, c is the ASCII
value, if it exists, and ssss is the symbolic value, if it exists.
Form (3) prints the hex values for each symbol table element (abort
with rubout).

Examples:

 H1OO,200
 H#1000,#965
 H.GAMMA+=I,@ALPHA-#10
 H#53
 H@X+=Y-5

2.7 / INPUT LINE2.7 / INPUT LINE2.7 / INPUT LINE2.7 / INPUT LINE

 Ic1c2...cn

Initializes default low memory areas for the R command or the program
under test, as if the characters c1 through cn had been read and setup
at the console command processor level. Default FCB's are initialized,
and the default buffer is set to the initial input line.

Examples:

 I x.dat
 ix.inp y.out
 I a:x.inp b:y.out $-p
 ITEST.COM
 I TEST.HEX TEST.SYM

2.8 / LIST CODE2.8 / LIST CODE2.8 / LIST CODE2.8 / LIST CODE

 (1) Ls
 (2) Ls,f
 (3) L
 (4) -L...

Form (1) lists disassembled machine code starting at location s for
1/2 screen, (2) lists mnemonics from location s through f (abort
typeouts with rubout). Form (3) lists mnemonics from the last listed,
assembled, or traced location for 1/2 screen. Form (4) parallels (1)
through (3), but labels and symbolic operands are not printed. Labels
are printed in the form

 ssss:

7

ahead of the lines to which they correspond.

Non-Z80 mnemonics are printed as

 ??= hh

where hh is the hex value at that location.

Examples:

 L100
 L#1024,#1034
 L.CRLF
 L@ICALL,+30
 -L.PRBUFF+=I,+'A'

2.9 / MOVE MEMORY2.9 / MOVE MEMORY2.9 / MOVE MEMORY2.9 / MOVE MEMORY

 Ms,h,d

Move data values from start address s through h address h to
destination address d. Data areas may overlap during the move process.

Examples:

 M1OO,1FF,300
 M.X,.Y,.Z
 M.GAMMA,+FF,.DELTA
 M@alpha+=x,+#50,+1OO

2.10 / PASS COUNTER2.10 / PASS COUNTER2.10 / PASS COUNTER2.10 / PASS COUNTER

 (1) Pp
 (2) Pp,c
 (3) P
 (4) -Pp
 (5) -P

A "pass point" is a program counter location to monitor during
execution of a test program. A pass point has an associated "pass
counter" in the range 1-FF (0-#255) which is decremented each time the
test program executes the pass point address. When a pass count
reaches 1, the pass point becomes a permanent breakpoint and the pass
count remains at 1. Unlike a temporary breakpoint (see G), pass points
with pass count 1 stop execution following execution of the
instruction at the break address. Form (1) sets a pass point at
address p with pass count 1, (2) sets pass point p with pass count c,
(3) displays active pass points and counts, (4) clears the pass point
at p (equivalent to Pp,0), and (5) clears all pass points. Up to 8
pass points can be active at any time. CPU registers are displayed
when executing a pass point, with the header

 nn PASS hhhh .ssss

showing the pass count nn and address hhhh with optional symbol ssss.
Registers are not displayed if -G or -U is in effect until the pass
count reaches 1. Execution can be aborted during the pass trace with
rubout.

Examples:

 P100,ff
 P.BDOS
 P@ICALL+30,#20
 -P .CRLF

8

2.11 / READ CODE/SYMBOLS2.11 / READ CODE/SYMBOLS2.11 / READ CODE/SYMBOLS2.11 / READ CODE/SYMBOLS

 (1) R
 (2) Rd

The I command sets up code and symbol files for subsequent loading
with the R command. Form (1) reads optional code and optional symbols
in preparation for program test, (2) is similar, but loads code and/or
symbols with the bias valued. The sequence:

 I x.y
 R

Sets up machine code file x.y (y is usually COM), and reads machine
code to the transient area. If y is HEX, the file must be in Intel
"hex" format. The sequence:

 I x.y u.v
 R

also reads the symbol file u.v (u is usually the same as x, and v is
normally SYM). The form:

 I * u.v
 R

skips the machine code load, and reads only the symbol file.

When a symbol file is specified, the response

 SYMBOLS

shows the start of the symbol file read operation. Thus, a "?" error
before the SYMBOL message indicates a machine code read error, while
"?" following the SYMBOL message shows a symbol file read error.

Examples:

 I COPY.COM
 R
 I SORT.HEX SORT.SYM
 R
 I merge.com merge.sym
 R1OOO
 I * test.sym
 R-#256

2.12 / SET MEMORY2.12 / SET MEMORY2.12 / SET MEMORY2.12 / SET MEMORY

 (1) Ss
 (2) SWs

Form (1) sets memory locations in 8-bit format, (2) sets memory in 16-
bit "word" format. In either case, each address is displayed, along
with the current content. If a null line is entered, no change is
made, and the next address is prompted. If a value is typed, then the
data is changed and the next address is prompted. Input terminates
with either invalid input, or a single "." from the console. Long
ASCII input is entered with form (1) by typing a leading quote (")
followed by graphic characters, terminated by a carriage return.

9

The examples show underlined console input:

 S1OO
 0100 C3 34
 0101 24 #254
 0102 CF
 0103 4B "Ascii
 0108 6E =X+5
 0109 D4 .
 SW.X+#30
 2300 006D 44F
 2302 4F32 @GAMMA
 2304 33E2
 2306 FF11 0+.X+=I-#20
 2308 348F .

2.13 / TRACE MODE2.13 / TRACE MODE2.13 / TRACE MODE2.13 / TRACE MODE

 (1) Tn
 (2) T
 (3) Tn,c
 (4) T,c
 (5) -T ...
 (6) TW ...
 (7) -TW ...

Form (1) traces n program steps, showing the CPU state at each step,
while (2) traces one step. Form (3) is used with ZSID utilities, and
"calls" the utility function c at each trace step. Form (4) is similar
to (3), but traces only one step. Form (5) parallels (1) to (4), but
disables symbols.
Form (6) parallels (1) to (4), but performs "trace without call"
showing only local execution. Form (7) is similar to (6) with symbols
disabled.

Examples:

 T1OO
 T#30,.COLLECT
 -TW=I,3E03

2.14 / UNTRACE MODE2.14 / UNTRACE MODE2.14 / UNTRACE MODE2.14 / UNTRACE MODE

 (1) U ...
 (2) -U
 (3) UW ...
 (4) -UW ...

U performs the same function as T, except the register state is not
displayed. Forms (2) and (4), however, disable intermediate pass point
trace (see P). U and T both run fully monitored, with automatic breaks
at each instruction.

Execution can be aborted with rubout.

Examples:

 Uffff
 U#10000,.COLLECT
 UW=GAMMA,.COLLECT

10

2.15 / EXAMINE CPU STATE2.15 / EXAMINE CPU STATE2.15 / EXAMINE CPU STATE2.15 / EXAMINE CPU STATE

 (1) X
 (2) Xf
 (3) Xr

Form (1) displays the CPU state in the format:

 f A=a B=b D=d H=h S=s P=p i s

where f is the "flag state," a is the Z80 accumulator content, b is
the 16-bit BC register pair value, d is the DE value, h is the HL
value, s is the SP value, p is the PC value, i is the decoded
instruction at p, and s is symbolic information. The flag are
represented by dashes ("-") when false, and their letters when true:

 Carry Zero Minus Even parity Interdigit carry

Form (2) allows flag state change, where f is one of C,Z,M,E, or I.
The current state is displayed (either "-" or the letter). Enter the
value 1 for true, 0 for false, or null for no change. Form (3) allows
register state change, where r is one of A, B, D, H, S, or P. Symbol
information is given at s when i references an address, including LDAX
and STAX. The form "=mm" is printed for memory referencing
instructions (e.g., INR M, ADD M), where mm is the memory value before
execution.

Examples with operator input underlined:

 XM
 M O
 XB
 3E04 3EFF
 XP
 446E .CRLF+10

3.1 / 3.1 / 3.1 / 3.1 / ZSID UTILITIESZSID UTILITIESZSID UTILITIESZSID UTILITIES

Utilities execute with ZSID to provide additional debugging
facilities.

A utility is loaded initially by typing:

 ZSID x.UTL

where x is the utility name. Upon loading, the utility is setup for
execution with ZSID, and responds with:

 .INITIAL = iiii
 .COLLECT = cccc
 .DISPLAY = dddd

where iiii, cccc, and dddd are three absolute address entries to the
utility for (re)initializing, collecting debug data, and displaying
collected information, respectively. The ZSID symbol table contains
these three entry names. A utility is reinitialized by typing:

 Ciiii or C.INITIAL

The display information is obtained by typing:

 Cdddd or C.DISPLAY

while data collection occurs during monitored execution using the T or
U commands, where the second argument gives the collection address.

11

Examples are:

 Uffff,.collect
 U#1000,3403
 TW1OOO,.COLLECT
 UW@GAMMA,.COLLECT

Pass points may be set during data collection to stop the monitoring
at the end of program areas under test. The actual initialization,
collection, and display functions depend upon the particular ZSID
utility.

3.2 3.2 3.2 3.2 / THE HIST UTILITY/ THE HIST UTILITY/ THE HIST UTILITY/ THE HIST UTILITY

The HIST utility creates a histogram of program execution between two
locations given during initialization. Program addresses are monitored
during U or T mode execution, with summary data displayed at any time.
Upon startup or reinitialization, HIST prompts with:

 TYPE HISTOGRAM BOUNDS:

Respond with:

 aaaa,bbbb

for a histogram between locations aaaa and bbbb, inclusive. Collect
data in U or T mode, then display results. Output is scaled to the
maximum collected value, accumulating until reinitialization.

An example:

ZSID HIST.UTL
TYPE HISTOGRAM BOUNDS 100,AOO
.INITIAL = 3E03
.COLLECT = 3E06
.DISPLAY = 3E09
#I SORT.COM SORT.SYM
#R
SYMBOLS
#UFF,.COLLECT
(register display and break)
#C.DISPLAY
(histogram display)
U1OOO,.COLLECT
(display and eventual break)
C.DISPLAY
(updated histogram display)
#C.INITIAL
(histogram bounds reset)

3.3 / THE TRACE UTILITY3.3 / THE TRACE UTILITY3.3 / THE TRACE UTILITY3.3 / THE TRACE UTILITY

The TRACE utility provides a dynamic backtrace of up to 256
instructions which ended at the current break address.
Instruction address collection occurs only in U or T mode.
Pass points can be active, however, during the data collection, and
will halt execution when the pass count becomes 1.
Initialization clears the accumulated instructions, collection records
the instruction address in a wraparound buffer, and display prints the
backtrace in decoded mnemonic form with symbol references and labels
when they occur. If "-A" Is in effect, only instruction addresses are
given. In this case, TRACE is loaded by typing:

 ZSID
 #-A
 #I TRACE.UTL
 #R
 ADDRESSES ONLY
 ...

12

An example of normal operation:

ZSID TRACE.UTL
READY FOR SYMBOLIC BACKTRACE
#I MERGE.COM MERGE.SYM
#R
#UFFF,.COLLECT
(register display, wait, break)
#C.DISPLAY
(symbolic backtrace appears)
...

4.1 / IM4.1 / IM4.1 / IM4.1 / IMPLEMENTATION NOTESPLEMENTATION NOTESPLEMENTATION NOTESPLEMENTATION NOTES

The ZSID program operates in about 10K bytes, and self-relocates
directly below the BDOS (overlaying the CCP area). The ZSID symbol
table fills downward from the base of ZSID. As the table fills, the
BDOS jump address is altered to reflect the reduced free space.
Programs which "size" memory using the BDOS jump address should not be
started until all symbols are loaded.

The "-A" command increases the free space by about 4K bytes.
Any existing symbol information must be reloaded after issuing the
command.

Programs will trace up to the BDOS where tracing is discontinued until
control returns to the calling program.
ROM subroutine tracing is discontinued when ROM is entered through a
call or jump and resumed upon return to the calling program in RAM.

Use rubout to abort programs running fully monitored in T or U mode,
and an externally provided restart (RST 7) when running unmonitored
with G.

5.1 / Z80 MNEMONICS5.1 / Z80 MNEMONICS5.1 / Z80 MNEMONICS5.1 / Z80 MNEMONICS

The Z80 mnemonics which follow (reproduced with permission from Zilog
Corporation), can be entered directly in assembly mode (see A), and
are produced by ZSID in list mode (see L).
Data fields can consist of symbolic expressions. Given that "A100" has
been typed, and that the symbols X, Y, and Z exist, the following is
valid input:

 LD A,B
 LD A,0FF
 LD B,#255
 LD (HL),'x'
 LD HL,'ab'
 JP 100
 CALL .X
 JP Z,@Y
 LD HL,@X+=Z
 JP .X/Y+5

Notable differences between MAC and the ZSID "A" command are that no
pseudo operations are allowed, operands are ZSID symbolic
expressions*, labels cannot be inserted, and register references must
be names, not numbers.

*In particular, note that

 LD HL,'ab'

fills H with 'a' and L with 'b' due to the nature of ZSID expressions,
which is counter to the MAC convention.

The Z80 is a Federally registered trademark of Zilog Corporation.

13

5.2 / Z805.2 / Z805.2 / Z805.2 / Z80----CPU INSTRUCTION SETCPU INSTRUCTION SETCPU INSTRUCTION SETCPU INSTRUCTION SET

 OBJ SOURCE OPERATION
 CODE STATEMENT

 8E ADC A,(HL) Add with Carry Operand to Acc.
 DD8E05 ADC A,(IX+d)
 FD8E05 ADC A,(IY+d)
 8F ADC A,A
 88 ADC A,B
 89 ADC A,C
 8A ADC A,D
 8B ADC A,E
 8C ADC A,H
 8D ADC A,L
 CE20 ADC A,n

 ED4A ADC HL,BC Add with Carry Reg Pair to HL
 ED5A ADC HL,DE
 ED6A ADC HL,HL
 ED7A ADC HL,SP

 86 ADD A,(HL) Add Operand to Acc.
 DD8605 ADD A,(IX+d)
 FD8605 ADD A,(IY+d)
 87 ADD A,A
 80 ADD A,B
 81 ADD A,C
 82 ADD A,D
 83 ADD A,E
 84 ADD A,H
 85 ADD A,L
 C620 ADD A,n

 09 ADD HL,BC Add Reg. Pair to HL
 19 ADD HL,DE
 29 ADD HL,HL
 39 ADD HL,SP

 DD09 ADD IX,BC Add Reg. Pair to IX
 DD19 ADD IX,DE
 DD29 ADD IX,IX
 DD39 ADD IX,SP

 FD09 ADD IY,BC Add Reg. Pair to Iy
 FD19 ADD IY,DE
 FD29 ADD IY,IY
 FD39 ADD IY,SP

 A6 AND (HL) Logical 'AND' of Operand and Acc.
 DDA605 AND (IX+d)
 FDA605 AND (IY+d)
 A7 AND A
 A0 AND B
 A1 AND C
 A2 AND D
 A3 AND E
 A4 AND H
 A5 AND L
 E620 AND n

 CB46 BIT 0,(HL) Test Bit b of Location or Reg.
 DDCB0546 BIT 0,(IX+d)
 FDCB0546 BIT 0,(IY+d)
 CB47 BIT 0,A
 CB40 BIT 0,B
 CB41 BIT 0,C
 CB42 BIT 0,D
 CB43 BIT 0,E
 CB44 BIT 0,H

14

 CB45 BIT 0,L
 CB4E BIT 1,(HL)
 DDCB054E BIT 1,(IX+d)
 FDCB054E BIT 1,(IY+d)
 CB4F BIT 1,A
 CB48 BIT 1,B
 CB49 BIT 1,C
 CB4A BIT 1,D
 CB4B BIT 1,E
 CB4C BIT 1,H
 CB4D BIT 1,L
 CB56 BIT 2,(HL)
 DDCB0556 BIT 2,(IX+d)
 FDCB0556 BIT 2,(IY+d)
 CB57 BIT 2,A
 CB50 BIT 2,B
 CB51 BIT 2,C
 CB52 BIT 2,D
 CB53 BIT 2,E
 CB54 BIT 2,H
 CB55 BIT 2,L
 CB5E BIT 3,(HL)
 DDCB055E BIT 3,(IX+d)
 FDCB055E BIT 3,(IY+d)
 CB5F BIT 3,A
 CB58 BIT 3,B
 CB59 BIT 3,C
 CB5A BIT 3,D
 CB5B BIT 3,E
 CB5C BIT 3,H
 CB5D BIT 3,L
 CB66 BIT 4,(HL)
 DDCB0566 BIT 4,(IX+d)
 FDCB0566 BIT 4,(IY+d)
 CB67 BIT 4,A
 CB60 BIT 4,B
 CB61 BIT 4,C
 CB62 BIT 4,D
 CB63 BIT 4,E
 CB64 BIT 4,H
 CB65 BIT 4,L
 CB6E BIT 5,(HL)
 DDCB056E BIT 5,(IX+d)
 FDCB056E BIT 5,(IY+d)
 CB6F BIT 5,A
 CB68 BIT 5,B
 CB69 BIT 5,C
 CB6A BIT 5,D
 CB6B BIT 5,E
 CB6C BIT 5,H
 CB6D BIT 5,L
 CB76 BIT 6,(HL)
 DDCB0576 BIT 6,(IX+d)
 FDCB0576 BIT 6,(IY+d)
 CB77 BIT 6,A
 CB70 BIT 6,B
 CB71 BIT 6,C
 CB72 BIT 6,D
 CB73 BIT 6,E
 CB74 BIT 6,H
 CB75 BIT 6,L
 CB7E BIT 7,(HL)
 DDCB057E BIT 7,(IX+d)
 FDCB057E BIT 7,(IY+d)
 CB7F BIT 7,A
 CB78 BIT 7,B
 CB79 BIT 7,C
 CB7A BIT 7,D
 CB7B BIT 7,E
 CB7C BIT 7,H

15

 CB7D BIT 7,L

 DC8405 CALL C,nn Call Subroutine at
 FC8405 CALL M,nn Location nn if Condition True
 D48405 CALL NC,nn
 C48405 CALL NZ,nn
 F48405 CALL P,nn
 EC8405 CALL PE,nn
 E48405 CALL PO,nn
 CC8405 CALL Z,nn

 CD8405 CALL nn Unconditional Call to
 Subroutine at nn

 3F CCF Complement Carry Flag

 BE CP (HL) Compare Operand with Acc.
 DDBE05 CP (IX+d)
 FDBE05 CP (IY+d)
 BF CP A
 B8 CP B
 B9 CP C
 BA CP D
 BB CP E
 BC CP H
 BD CP L
 FE20 CP n

 EDA9 CPD Compare Location (HL) and Acc.
 Decrement HL and BC

 EDB9 CPDR Compare Location (HL) and Acc.
 Decrement HL and BC.
 Repeat until BC = 0

 EDA1 CPI Compare Location (HL) and Acc.
 Increment HL and Decrement BC

 EDB1 CPIR Compare Location (HL) and Acc.
 Increment HL, Decrement BC
 Repeat until BC = 0

 2F CPL Complement Acc. (1's Comp).

 27 DAA Decimal Adjust Acc

 35 DEC (HL) Decrement Operand
 DD3505 DEC (IX+d)
 FD3505 DEC (IY+d)
 3D DEC A
 05 DEC B
 0B DEC BC
 0D DEC C
 15 DEC D
 1B DEC DE
 1D DEC E
 25 DEC H
 2B DEC HL
 DD2B DEC IX
 FD2B DEC IY
 2D DEC L
 3B DEC SP

 F3 DI Disable Interrupts

 102E DJNZ e Decrement B and Jump Relative if B=0

 FB EI Enable Interrupts

16

 E3 EX (SP),HL Exchange Location and (SP)
 DDE3 EX (SP),IX
 FDE3 EX (SP),IY

 08 EX AF,AF' Exchange the Contents of AF and AF’

 EB EX DE,HL Exchange the Contents of DE and HL

 D9 EXX Exchange the Contents of BC, DE, HL
 with Contents of BC', DE', HL'
 Respectively

 76 HALT HALT (Wait for Interrupt or Reset)

 ED46 IM 0 Set Interrupt Mode
 ED56 IM 1
 ED5E IM 2

 ED78 IN A,(C) Load Reg. with Input from Device (C)
 ED40 IN B,(C)
 ED48 IN C,(C)
 ED50 IN D,(C)
 ED58 IN E,(C)
 ED60 IN H,(C)
 ED68 IN L,(C)

 34 INC (HL) Increment Operand
 DD3405 INC (IX+d)
 FD3405 INC (IY+d)
 3C INC A
 04 INC B
 03 INC BC
 0C INC C
 14 INC D
 13 INC DE
 1C INC E
 24 INC H
 23 INC HL
 DD23 INC IX
 FD23 INC IY
 2C INC L
 33 INC SP

 DB20 IN A,(n) Load Acc. with Input from Device n

 EDAA IND Load Location (HL)
 with Input from Port
 (C), Decrement HL and B

 EDBA INDR Load Location (HL) with Input
 from Port (C), Decrement HL
 and Decrement B, Repeat until B=0

 EDA2 INI Load Locatron (HL) with Input
 from Port (C), Increment HL
 and Decrement B

 EDB2 INIR Load Location (HL) with Input
 from Port (C), Increment HL
 and Decrement B, Repeat until B=0

 C38405 JP nn Unconditional Jump to Location
 E9 JP (HL)
 DDE9 JP (IX)
 FDE9 JP (IY)

 DA8405 JP C,nn Jump to Location if Condition True
 FA8405 JP M,nn
 D28405 JP NC,nn
 C28405 JP NZ,nn

17

 F28405 JP P,nn
 EA8405 JP PE,nn
 E28405 JP PO,nn
 CA8405 JP Z,nn

 382E JR C,e Jump Relative to PC+e if
 302E JR NC,e Condition True
 202E JR NZ,e
 282E JR Z,e

 182E JR e Unconditional Jump Relative to PC+e

 02 LD (BC),A Load Source to Destination
 12 LD (DE),A
 77 LD (HL),A
 70 LD (HL),B
 71 LD (HL),C
 72 LD (HL),D
 73 LD (HL),E
 74 LD (HL),H
 75 LD (HL),L
 3620 LD (HL),n
 DD7705 LD (IX+d),A
 DD7005 LD (IX+d),B
 DD7105 LD (IX+d),C
 DD7205 LD (IX+d),D
 DD7305 LD (IX+d),E
 DD7405 LD (IX+d),H
 DD7505 LD (IX+d),L
 DD360520 LD (IX+d),n
 FD7705 LD (IY+d),A
 FD7005 LD (IY+d),B
 FD7105 LD (IY+d),C
 FD7205 LD (IY+d),D
 FD7305 LD (IY+d),E
 FD7405 LD (IY+d),H
 FD7505 LD (IY+d),L
 FD360520 LD (IY+d),n
 328405 LD (nn),A
 ED438405 LD (nn),BC
 ED538405 LD (nn),DE
 228405 LD (nn),HL
 DD228405 LD (nn),IX
 FD228405 LD (nn),IY
 ED738405 LD (nn),SP
 0A LD A,(BC)
 1A LD A,(DE)
 7E LD A,(HL)
 DD7E05 LD A,(IX+d)
 FD7E05 LD A,(IY+d)
 3A8405 LD A,(nn)
 7F LD A,A
 78 LD A,B
 79 LD A,C
 7A LD A,D
 7B LD A,E
 7C LD A,H
 ED57 LD A,I
 7D LD A,L
 3E20 LD A,n
 ED5F LD A,R
 46 LD B,(HL)
 DD4605 LD B,(IX+d)
 FD4605 LD B,(IY+d)
 47 LD B,A
 40 LD B,B
 41 LD B,C
 42 LD B,D
 43 LD B,E
 44 LD B,H

18

 45 LD B,L
 0620 LD B,n
 ED4B8405 LD BC,(nn)
 018405 LD BC,nn
 4E LD C,(HL)
 DD4E05 LD C,(IX+d)
 FD4E05 LD C,(IY+d)
 4F LD C,A
 48 LD C,B
 49 LD C,C
 4A LD C,D
 4B LD C,E
 4C LD C,H
 4D LD C,L
 0E20 LD C,n
 56 LD D,(HL)
 DD5605 LD D,(IX+d)
 FD5605 LD D,(IY+d)
 57 LD D,A
 50 LD D,B
 51 LD D,C
 52 LD D,D
 53 LD D,E
 54 LD D,H
 55 LD D,L
 1620 LD D,n
 ED5B8405 LD DE,(nn)
 118405 LD DE,nn
 5E LD E,(HL)
 DD5E05 LD E,(IX+d)
 FD5E05 LD E,(IY+d)
 5F LD E,A
 58 LD E,B
 59 LD E,C
 5A LD E,D
 5B LD E,E
 5C LD E,H
 5D LD E,L
 1E20 LD E,n
 66 LD H,(HL)
 DD6605 LD H,(IX+d)
 FD6605 LD H,(IY+d)
 67 LD H,A
 60 LD H,B
 61 LD H,C
 62 LD H,D
 63 LD H,E
 64 LD H,H
 65 LD H,L
 2620 LD H,n
 2A8405 LD HL,(nn)
 218405 LD HL,nn
 ED47 LD I,A
 DD2A8405 LD IX,(nn)
 DD218405 LD IX,nn
 FD2A8405 LD IY,(nn)
 FD218405 LD IY,nn
 6E LD L,(HL)
 DD6E05 LD L,(IX+d)
 FD6E05 LD L,(IY+d)
 6F LD L,A
 68 LD L,B
 69 LD L,C
 6A LD L,D
 6B LD L,E
 6C LD L,H
 6D LD L,L
 2E20 LD L,n
 ED4F LD R,A
 ED7B8405 LD SP,(nn)

19

 F9 LD SP,HL
 DDF9 LD SP,IX
 FDF9 LD SP,IY
 318405 LD SP,nn

 EDA8 LDD Load Location (DE) with Location (HL)
 Decrement DE, HL and BC

 EDB8 LDDR Load Location (DE) with Location (HL)
 Repeat until BC = 0

 EDA0 LDI Load Location (DE) with Location (HL)
 Increment DE, HL, Decrement BC

 EDB0 LDIR Load Location (DE) with Location (HL)
 Increment DE, HL, Decrement BC and
 Repeat until BC = 0

 ED44 NEG Negate Acc. (2's Complement)

 00 NOP No Operation

 B6 OR (HL) Logical "OR" of Operand and Acc.
 DDB605 OR (IX+d)
 FDB605 OR (IY+d)
 B7 OR A
 B0 OR B
 B1 OR C
 B2 OR D
 B3 OR E
 B4 OR H
 B5 OR L
 F620 OR n

 EDBB OTDR Load Output Port (C)
 with Location (HL)
 Decrement HL and B,
 Repeat until B=0

 EDB3 OTIR Load Output Port (C)
 with Location (HL),
 Increment HL, Decrement B,
 Repeat until B=0

 ED79 OUT (C),A Load Output Port (C) with Reg.
 ED41 OUT (C),B
 ED49 OUT (C),C
 ED51 OUT (C),D
 ED59 OUT (C),E
 ED61 OUT (C),H
 ED69 OUT (C),L

 D320 OUT (n),A Load Output Port (n) with Acc.

 EDAB OUTD Load Output Port (C)
 with Location (HL).
 Decrement HL and B

 EDA3 OUTI Load Output Port (C)
 with Location (HL).
 Increment HL and
 Decrement B

 F1 POP AF Load Destination
 C1 POP BC with Top of Stack
 D1 POP DE
 E1 POP HL
 DDE1 POP IX
 FDE1 POP IY

20

 F5 PUSH AF Load Source to Stack
 C5 PUSH BC
 D5 PUSH DE
 E5 PUSH HL
 DDE5 PUSH IX
 FDE5 PUSH IY

 CB86 RES 0,(HL) Reset Bit b of Operand
 DDCB0586 RES 0,(IX+d)
 FDCB0586 RES 0,(IY+d)
 CB87 RES 0,A
 CB80 RES 0,B
 CB81 RES 0,C
 CB82 RES 0,D
 CB83 RES 0,E
 CB84 RES 0,H
 CB85 RES 0,L
 CB8E RES 1,(HL)
 DDCB058E RES 1,(IX+d)
 FDCB058E RES 1,(IY+d)
 CB8F RES 1,A
 CB88 RES 1,B
 CB89 RES 1,C
 CB8A RES 1,D
 CB8B RES 1,E
 CB8C RES 1,H
 CB8D RES 1,L
 CB96 RES 2,(HL)
 DDCB0596 RES 2,(Ix+d)
 FDCB0596 RES 2,(IY+d)
 CB97 RES 2,A
 CB90 RES 2,B
 CB91 RES 2,C
 CB92 RES 2,D
 CB93 RES 2,E
 CB94 RES 2,H
 CB95 RES 2,L
 CB9E RES 3,(HL)
 DDCB059E RES 3,(Ix+d)
 FDCB059E RES 3,(IY+d)
 CB9F RES 3,A
 CB98 RES 3,B
 CB99 RES 3,C
 CB9A RES 3,D
 CB9B RES 3,E
 CB9C RES 3,H
 CB9D RES 3,L
 CBA6 RES 4,(HL)
 DDCB05A6 RES 4,(IX+d)
 FDCB05A6 RES 4,(IY+d)
 CBA7 RES 4,A
 CBA0 RES 4,B
 CBA1 RES 4,C
 CBA2 RES 4,D
 CBA3 RES 4,E
 CBA4 RES 4,H
 CBA5 RES 4,L
 CBAE RES 5,(HL)
 DDCB05AE RES 5,(IX+d)
 FDCB05AE RES 5,(IY+d)
 CBAF RES 5,A
 CBA8 RES 5,B
 CBA9 RES 5,C
 CBAA RES 5,D
 CBAB RES 5,E
 CBAC RES 5,H
 CBAD RES 5,L
 CBB6 RES 6,(HL)
 DDCB05B6 RES 6,(IX+d)
 FDCB05B6 RES 6,(IY+d)

21

 CBB7 RES 6,A
 CBB0 RES 6,B
 CBB1 RES 6,C
 CBB2 RES 6,D
 CBB3 RES 6,E
 CBB4 RES 6,H
 CBB5 RES 6,L
 CBBE RES 7,(HL)
 DDCB05BE RES 7,(IX+d)
 FDCB05BE RES 7,(IY+d)
 CBBF RES 7,A
 CBB8 RES 7,B
 CBB9 RES 7,C
 CBBA RES 7,D
 CBBB RES 7,E
 CBBC RES 7,H
 CBBD RES 7,L

 C9 RET Return from Subroutine

 D8 RET C Return from Subroutine
 F8 RET M if Condition True
 D0 RET NC
 C0 RET NZ
 F0 RET P
 E8 RET PE
 E0 RET PO
 C8 RET Z

 ED4D RETI Return from Interrupt

 ED45 RETN Return from Non
 Maskable Interrupt

 CB16 RL (HL) Rotate Left Through Carry
 DDCB0516 RL (IX+d)
 FDCB0516 RL (IY+d)
 CB17 RL A
 CB10 RL B
 CB11 RL C
 CB12 RL D
 CB13 RL E
 CB14 RL H
 CB15 RL L

 17 RLA Rotate Left Acc. Through Carry

 CB06 RLC (HL) Rotate Left Circular
 DDCB0506 RLC (IX+d)
 FDCB0506 RLC (IY+d)
 CB07 RLC A
 CB00 RLC B
 CB01 RLC C
 CB02 RLC D
 CB03 RLC E
 CB04 RLC H
 CB05 RLC L

 07 RLCA Rotate Left Circular Acc.

 ED6F RLD Rotate Digit Left and Right
 between Acc. and Location (HL)

 CB1E RR (HL) Rotate Right Through Carry
 DDCB051E RR (IX+d)
 FDCB051E RR (IY+d)
 CB1F RR A
 CB18 RR B
 CB19 RR C
 CB1A RR D

22

 CB1B RR E
 CB1C RR H
 CB1D RR L

 1F RRA Rotate Right Acc. Through Carry

 CB0E RRC (HL) Rotate Right Circular
 DDCB050E RRC (IX+d)
 FDCB050E RRC (IY+d)
 CB0F RRC A
 CB08 RRC B
 CB09 RRC C
 CB0A RRC D
 CB0B RRC E
 CB0C RRC H
 CB0D RRC L

 0F RRCA Rotate Right Circular Acc.

 ED67 RRD Rotate Digit Right and Left
 Between Acc. and Location (HL)

 C7 RST 00H Restart to Location
 CF RST 08H
 D7 RST 10H
 DF RST 18H
 E7 RST 20H
 EF RST 28H
 F7 RST 30H
 FF RST 38H

 DE20 SBC A,n Subtract Operand
 9E SBC A,(HL) from Acc. with Carry
 DD9E05 SBC A,(IX+d)
 FD9E05 SBC A,(IY+d)
 9F SBC A,A
 98 SBC A,B
 99 SBC A,C
 9A SBC A,D
 9B SBC A,E
 9C SBC A,H
 9D SBC A,L
 ED42 SBC HL,BC
 ED52 SBC HL,DE
 ED62 SBC HL,HL
 ED72 SBC HL,SP

 37 SCF Set Carry Flag (C=1)

 CBC6 SET 0,(HL) Set Bit b of Location
 DDCB05C6 SET 0,(IX+d)
 FDCB05C6 SET 0,(IY+d)
 CBC7 SET 0,A
 CBC0 SET 0,B
 CBC1 SET 0,C
 CBC2 SET 0,D
 CBC3 SET 0,E
 CBC4 SET 0,H
 CBC5 SET 0,L
 CBCE SET 1,(HL)
 DDCB05CE SET 1,(IX+d)
 FDCB05CE SET 1,(IY+d)
 CBCF SET 1,A
 CBC8 SET 1,B
 CBC9 SET 1,C
 CBCA SET 1,D
 CBCB SET 1,E
 CBCC SET 1,H
 CBCD SET 1,L
 CBD6 SET 2,(HL)

23

 DDCB05D6 SET 2,(Ix+d)
 FDCB05D6 SET 2,(IY+d)
 CBD7 SET 2,A
 CBD0 SET 2,B
 CBD1 SET 2,C
 CBD2 SET 2,D
 CBD3 SET 2,E
 CBD4 SET 2,H
 CBD5 SET 2,L
 CBD8 SET 3,B
 CBDE SET 3,(HL)
 DDCB05DE SET 3,(IX+d)
 FDCB05DE SET 3,(IY+d)
 CBDF SET 3,A
 CBD9 SET 3,C
 CBDA SET 3,D
 CBDB SET 3,E
 CBDC SET 3,H
 CBDD SET 3,L
 CBE6 SET 4,(HL)
 DDCB05E6 SET 4,(IX+d)
 FDCB05E6 SET 4,(IY+d)
 CBE7 SET 4,A
 CBE0 SET 4,B
 CBE1 SET 4,C
 CBE2 SET 4,D
 CBE3 SET 4,E
 CBE4 SET 4,H
 CBE5 SET 4,L
 CBEE SET 5,(HL)
 DDCB05EE SET 5,(IX+d)
 FDCB05EE SET 5,(IY+d)
 CBEF SET 5,A
 CBE8 SET 5,B
 CBE9 SET 5,C
 CBEA SET 5,D
 CBEB SET 5,E
 CBEC SET 5,H
 CBED SET 5,L
 CBF6 SET 6,(HL)
 DDCB05F6 SET 6,(IX+d)
 FDCB05F6 SET 6,(IY+d)
 CBF7 SET 6,A
 CBF0 SET 6,B
 CBF1 SET 6,C
 CBF2 SET 6,D
 CBF3 SET 6,E
 CBF4 SET 6,H
 CBF5 SET 6,L
 CBFE SET 7,(HL)
 DDCB05FE SET 7,(IX+d)
 FDCB05FE SET 7,(IY+d)
 CBFF SET 7,A
 CBF8 SET 7,B
 CBF9 SET 7,C
 CBFA SET 7,D
 CBFB SET 7,E
 CBFC SET 7,H
 CBFD SET 7,L

 CB26 SLA (HL) Shift Operand Left Arithmetic
 DDCB0526 SLA (IX+d
 FDCB0526 SLA (IY+d)
 CB27 SLA A
 CB20 SLA B
 CB21 SLA C
 CB22 SLA D
 CB23 SLA E
 CB24 SLA H
 CB25 SLA L

24

 CB2E SRA (HL)
 DDCB052E SRA (IX+d)
 FDCB052E SRA (IY+d)
 CB2F SRA A
 CB28 SRA B
 CB29 SRA C
 CB2A SRA D
 CB2B SRA E
 CB2C SRA H
 CB2D SRA L

 CB3E SRL (HL) Shift Operand Right Logical
 DDCB053E SRL (IX+d)
 FDCB053E SRL (IY+d)
 CB3F SRL A
 CB38 SRL B
 CB39 SRL C
 CB3A SRL D
 CB3B SRL E
 CB3C SRL H
 CB3D SRL L

 96 SUB (HL) Subtract Operand from Acc.
 DD9605 SUB (IX+d)
 FD9605 SUB (IY+d)
 97 SUB A
 90 SUB B
 91 SUB C
 92 SUB D
 93 SUB E
 94 SUB H
 95 SUB L
 D620 SUB n

 AE XOR (HL) Exclusive "OR" Operand and Acc.
 DDAE05 XOR (IX+d)
 FDAE05 XOR (IY+d)
 AF XOR A
 A8 XOR B
 A9 XOR C
 AA XOR D
 AB XOR E
 AC XOR H
 AD XOR L
 EE20 XOR n

Example Values

nn EQU 584H
d EQU 5
n EQU 20H
e 30H

Note that ZSID accepts an address instead of a byte value in the jmp
relative commands.

