Ui DIGITAL BESEARCH

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M ASSEMBLER (ASM)
USER'S- GUIDE

COPYRIGHT (c) 1976, 1978

DIGITAL RESEARCH

Copyright (c) 1976, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transecribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, electronic, mechanical, magnetie,
optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital- Research to notify any person of such revision or
changes.

Il DIGITAL BESEARCH

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M ASSEMBLER (ASM)
USER’S GUIDE

COPYRIGHT (c) 1976, 1978
DIGITAL RESEARCH

Copyright (¢) 1976, 1978 by Digital Research. All rights reserved.
No part of this publication may be reproduced, transmitted, transcribed,
stored in a retrieval system, or translated into any language or computer
language, in any form or by any means, electronic, mechanical, magnet-
ic optical, chemical, manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579, Pacific Grove,
California 93950.

Disclaimer

Digital Research makes no representations or warranties with respect to
the contents hereof and specifically disclaims any implied warranties of
merchantability or fitness for any particular purpose. Further, Digital
Research reserves the right to revise this publication and to make
changes from time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or changes.

Section

1.
2,
3.

4,

5.

7.

Table of Contents

ImIm 0000000000000 00600060600000000000000C00CTS
mmm 00 0000000000000 00000000COCRGBOARRSRSISISGOSIOEDYS
mmm mmn 000000800000 000000000000000000006

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.

Iamls 000000 00600000000000000000000000000000008
Numeric ConstantS .eeecceccccscesessccsccsccsss
mservw mrds (X E NN RN NN NN NN KN XN NN NN NN NN NN]
Strim ConStants 200 0000000000000 0060000000CBRRGNTS
Arithmetic and Logical OperatorsS cececescececse
Precedence Of OperatoOrS .cecececscecccscsscccccsccs

mmm Dlmm 006000000 CESOESOONOOISEOIOROONOBONONOOSOOESBTS

4.1.
4,2,
4.3.
4.4,
4.5,
4.6.
4.7.

mom mreCtiw 00 0O0OOGCOOOIONOOLONODTOOONIOEOTROOOOSOEOSOGS
mmmreCtiW 2000600000000 00000080800600008080
mem‘rectiW [A RN NN NN REXNNENXNNNENNXNXNNNNNNXNH}]
'HE Sm Directive [EA RN RN N NN NNNERENNNENNXNNRENNNJ
m IF am mDIF Directives 00000 OOOOSIOOOOLOEOOSS
me mDirectiw 0000006000060 000000000000008000
m mDirective [E N RN NN N ENNENNNENRNERNHNHNXNNENHNNN}NH}N]

(PERATIQ] mws 0000 00OO0000000000000000060000000GOGIDS

5.1.
5.2,
5.3.
5'4.
5. 5.
5.6'

J‘mm' CaJ-ls, am Mturns [F A N RN SN E NN ENENNENNLNTHNXHX]
Immediate Operand INsStructionS ceecsccccsssccce
Increment ard Decrement Instructions Xy
mm Melent Instructions [X XN E NN NN NNNNNNNNN]
Arithmetic Imic Unit Omrations esscccensssce
Control INStructionS ceececcccsccccccsceccccas

ERK)R mms [E A A RN ENNENENENNNNNNNNNNNENNNENNENEYNNN]
AMLE SESSIm 000 0000000000000 00000000O0CCCGKRIOOOONTSES

g

[
DWW IO U b b N

et
=

12
12
13
14
14
14
15
16
16
17

CP/M Assembler User ‘s Guide

1. INTRODUCTION.,

The CP/M assembler reads assembly language source files from the diskette,
and produces 8680 machine language in Intel hex format. The CP/M assembler is
initiated by typing

ASM filename
or
AM filename.parms

In both cases, the assembler assumes there is a file on the diskette with the
name
filename .ASM

which contains an 8080 assembly lanquage source file. The first and second
forms shown above differ only in that the second form allows parameters to be
passed to the assembler to control source file access and hex and print file
destinations.

In either case, the CP/M assembler loads, and prints the message
CP/M ASSEMBLER VER n.n

where n.n is the aurrent wversion mumber, In the case of the first command,
the assembler reads the source file with assumed file type “ASM" and creates
two output files

filename .HEX
and
filename .PRN

the “HEX"” file contains the machine code corresponding to the original program
in Intel hex format, and the "PRN" file contains an annotated listing showing
generated machine code, error flags, and source lines. If errors occur during
translation, they will be listed in the PRN file as well as at the console

The second cammand form can be used to redirect input and output files
from their defaults. In this case, the “parms" portion of the command is a
three letter group which specifies the origin of the source file, the
c}estination of the hex file, and the destination of the print file, The form
is

filename.plp2p3
where pl, p2, and p3 are single letters

pl: A,B, ..., ¥ designates the disk name which contains

the source file
p2: A,B, ..., Y designates the disk name which will re-
ceive the hex file
Z skips the generation of the hex file
p3: A,B, «.., ¥ designates the disk name which will re-
ceive the print file
X places the listing at the console
Z skips generation of the print file

Thus, the command

ASM X.AAA

indicates that the source file (X.ASM) is to be taken from disk A, and that
the hex (X.HEX) and print (X.PRN) files are to be created also on disk A,
This form of the command is implied if the assembler is run from disk A, That
is, given that the operator is currently addressing disk A, the above command
is equivalent to

ASM X
The command
AM X.,ABX
indicates that the source file is to be taken from disk A, the hex file is

placed on disk B, and the listing file is to be sent to the console. The
command

ASM X,BZZ

takes the source file from disk B, and skips the generation of the hex and
print files (this command is useful for fast execution of the assembler to
check program syntax).

The source program format is compatible with both the Intel 808# assembler
(macros are not currently implemented in the CP/M assembler, however), as well
as the Processor Technology Software Package #l1 assembler. That is, the CP/M
assembler accepts source programs written in either format. There are certain
extensions in the CP/M assembler which make it somewhat easier to use. These
extensions are described below.

2. PROGRAM FORMAT,

An assenbly language program acceptable as input to the assembler consists
of a sequence of statements of the form

line# label operation operand ;comment

where any or all of the fields may be present in a particular instance. Each

~embly language statement is terminated with a carriage return and line feed
(the line feed is inserted automatically by the ED program), or with the
character "!" which is a treated as an end-of-line by the assembler (thus,
multiple assembly language statements can be written on the same physical line
if separated by exclaim symbols).

The line# is an optional decimal integer value representing the source
program line number, which is allowed on any source line to maintain
compatibility with the Processor Technology format. In general, these line
nunbers will be inserted if a line-oriented editor is used to construct the
original program, and thus ASM ignores this field if present.

The label field takes the form

identifier
or
identifier:

and is optional, except where noted in particular statement types. The
identifier is a seguence of alphanumeric characters (alphabetics and numbers),
where the first character is alphabetic., Identifiers can be freely used by
the programmer to 1label elements such as program steps and assembler
directives, but cannot exceed 16 characters in length, All characters are
significant in an identifier, except for the embedded dollar symbol ($) which
can be used to improve readability of the name. Further, all lower case
alphabetics become are treated as if they were upper case. Note that the ":"
following the identifier in a label is optional (to maintain compatibility
between Intel and Processor Technology). Thus, the following are all valid
instances of labels

X Xy long$name
X: yx1l: longer $named$data:
X1Y2 X1x2 X234$567859812$3456:

The operation field contains either an assembler directive, or pseudo
operation, or an 8@88 machine operation code. The pseudo operations and
machine operation codes are described below.

The operand field of the statement, in general, contains an expression
formed out of constants and labels, along with arithmetic and logical

operations on these elements. Again, the complete details of properly formed
expressions are given below,

The camment field contains arbitrary characters following the *“;“ symbol
until the next real or logical end-of-line. These characters are read,
listed, and otherwise ignored by the assembler. In order to maintain
compatability with the Processor Technology assembler, the CP/M assembler also
treat statements which begin with a "*" in column one as comment statements,

which are listed and ignored in the assembly process., Note that the Processor

Technology assembler has the side effect in its operation of ignoring the
characters after the operand field has been scanned. This causes an ambiguous
situation when attempting to be compatible with Intel’s 1language, since
arbitrary expressions are allowed in this case. Hence, programs which use
this side effect to introduce comments, must be edited to place a ";" before
these fields in order to assemble correctly.

The assembly language program is formulated as a seqguence of statements of
the above form, terminated optionally by an END statement. All statements
following the END are ignored by the assembler.

3. FORMING THE OPERAND.

In order to completely describe the operation codes and pseudo operations,
it is necessary to first present the form of the operand field, since it is
used in nearly all statements. Expressions in the operand field consist of
simple operands (labels, constants, and reserved words), combined in properly
formed subexpressions by arithmetic and logical operators. The expression
computation is carried out by the assembler as the assembly proceeds. Each
expression must produce a 16-bit wvalue during the assembly, Further, the
number of significant digits in the result must not exceed the intended use.
That is, if an expression is to be used in a byte move immediate instruction,
then the most significant 8 bits of the expression must be zero. The
restrictions on the expression significance is given with the individual
instructions.

3.1. Labels.

As discussed above, a label is an identifier which occurs on a particular
statement, In general, the label is given a value determined by the type of
statement which it precedes. If the label occurs on a statement which
generates machine code or reserves memory space (e.g, a MOV instruction, or a
DS pseudo operation), then the label is given the value of the program address
which it labels, If the label precedes an EQU or SET, then the label is given
the value which results from evaluating the operand field. Except for the SET
statement, an identifier can label only one statement.

When a label appears in the operand field, its value is substituted by the
assembler, This value can then be combined with other operands and operators
to form the operand field for a particular instruction,

3.2. Numeric Constants.

A numeric constant is a 16-bit value in one of several bases. The base,

called the radix of the constant, is denoted by a trailing radix indicator.
The radix indicators are

B binary constant (base 2)
0] octal constant (base 8)

Q octal constant (base 8)
D decimal constant (base 1)
H hexadecimal constant (base 16)

Q is an alternate radix indicator for octal nunbers since the letter O is
easily confused with the digit @. Any numeric constant which does not
terminate with a radix indicator is assumed to be a decimal constant.

A constant is thus composed as a sequence of digits, followed by an
optional radix indicator, where the digits are in the appropriate range for
the radix. That is binary constants must be composed of @ and 1 digits, octal
constants can contain digits in the range & - 7, while decimal constants
contain decimal digits. Hexadecimal constants contain decimal digits as well
as hexadecimal digits A (16D), B (11lp), C (12D), D (13D), E (14D), and F
(15D) Note that the leading digit of a hexadecimal constant must be a
decimal digit in order to avoid confusing a hexadecimal constant with an
identifier (a leading @ will always suffice). A constant composed in this
manner must evaluate to a binary number which can be contained within a 1l6-bit
counter, otherwise it is truncated on the right by the assembler. Similar to
identifiers, imbedded "$" are allowed within constants to improve their
readability. Finally, the radix indicator is translated to upper case if a
lower case letter is encountered. The following are all valid instances of
numeric constants

1234 1234D 1100B 1111$0000$1111$0000B
1234H OFFEH 33770 338778220
33770 @fe3h 12348 @ffffh

3.3. Reserved Words.

There are several reserved character sequences which have predefined
mganings in the operand field of a statement. The names of 8080 registers are
given below, which, when encountered, produce the value shown to the right

EQZL":I:I:'JUOUJB’
oAU R WNFEN

PSW

(again, lower case names have the same values as their upper case
equivalents). Machine instructions can also be used in the operand field, and
evaluate to their internal codes. 1In the case of instructions which require
operands, where the specific operand becomes a part of the binary bit pattern

of +he instruction (e.g, MOV A,B), the value of the instruction (in this case
MOV) is the bit pattern of the instruction with zeroes in the optional fields
(e.g, MOV produces 40H) .

When the symbol "$" occurs in the operand field (not imbedded within
identifiers and numeric constants) its value becomes the address of the next
instruction to generate, not including the instruction contained withing the
current logical line,

3.4. String Constants.

String constants represent sequences of ASCII characters, and are
represented by enclosing the characters within apostrophe symbols (°). All
strings must be fully contained within the current physical line (thus
allowing "!" symbols within strings), and must not exceed 64 characters in
length. The apostrophe character itself can be included within a string by
representing it as a double apostrophe (the two keystrokes “°), which becomes
a single apostrophe when read by the assembler. In most cases, the string
length is restricted to either one or two characters (the DB pseudo operation
is an exception), in which case the string becomes an 8 or 16 bit value,
respectively. Two character strings become a 16-bit constant, with the second
character as the low order byte, and the first character as the high order
byte.

The value of a character is its corresponding ASCII code. There is no
case translation within strings, and thus both upper and lower case characters
can be represented, Note however, that only graphic (printing) ASCII
characters are allowed within strings, Valid strings are

n . - e -

A’ AB ‘ab’ _c
‘Walla Walla Wash.~

‘She said “‘Hello " to me.’
‘I said "Hello" to her.’

3.5, Arithmetic and Logical Operators.

_ The operands described above can be combined in normal algebraic notation
using any cambination of properly formed operands, operators, and
parenthesized expressions. The operators recognized in the operand field are

a unsigned arithmetic sum of a and b
unsigned arithmetic difference between a and b
unary plus (produces b)
unary minus (identical to @ - b)

V]

N*L o+ 1+
OO0 U0U0

a unsigned magnitude multiplication of a and b
a wmsigned magnitude division of a by b

a MODb remainder after a / b

NOT b logical inverse of b (all 6°s become 1°s, 17s

become @°s), where b is considered a 16-bit value

aBAND b bit-by-bit logical and of a and b

aORb bit-by-bit logical or of a and b

a XORb Dbit-by-bit logicl exclusive or of a and b

a SHL b the value which results from shifting a to the
left by an amount b, with zero fill

a SHR b the value which results from shifting a to the
right by an amount b, with zero fill

In each case, a and b represent simple operands (labels, numeric
constants, reserved words, and one or two character strings), or fully
enclosed parenthesized subexpressions such as

10+20 16h+370 Ll /3 (L2+4) SHR 3
(a” and 5fh) + “@° ('B"4+B) OR (PSW+M)
(1+(24c)) shr (A-(B+l))

Note that all camputations are performed at assembly time as 16-bit unsigned
operations. Thus, -1 is computed as @-1 which results in the value 0ffffh
(i.e., all 1°s). The resulting expression must fit the operation code in
which it is used. If, for example, the expression is used in a ADI (add
immediate) instruction, then the high order eight bits of the expression must
be zero. As a result, the operation “ADI -1" produces an error message (-1
becomes @ffffh which cannot be represented as an 8 bit value), while “ADI (-1)
AND @FFH" is accepted by the assembler since the "AND" operation zeroes the
high order bits of the expression.

3.6. Precedence of Operators.

As a convenience to the programmer, ASM assumes that operators have a
relative precedence of application which allows the programmer to write
expressions without nested levels of parentheses. The resulting expression
has assumed parentheses which are defined by the relative precedence. The
order of application of operators in unparenthesize expressions is listed
below, Operators listed first have highest precedence (they are applied first
in an unparenthesized expression), while operators listed last have lowest
precedence. Operators listed on the same line have equal precedence, and are
applied from left to right as they are encountered in an expression

* / MOD SHL SHR
-+
NOT
AND
OR XOR

Thus, the expressions shown to the left below are interpreted by the assembler
as the fully parenthesize expressions shown to the right below

aMDb * cSHL 4 ((a MOD b) * ¢) SHL 4

aORDb AND NOT ¢ + d SHL e a OR (b AND (NOT (c + (4 SHL e))))

Balanced parenthesized subexpressions can always be used to overr.ide the
assumed parentheses, and thus the last expression above could be rewritten to
force application of operators in a different order as

(a ORb) AND (NOT ¢) +d SHL e
resulting in the assumed parentheses
(a OR b) AND ((NOT c) + (d SHL e))

Note that an unparenthesized expression is well-formed only if the expression
which results from inserting the assumed parentheses is well-formed.

4, ASSEMBLER DIRECTIVES,

Assembler directives are used to set labels to specific values during the
assnbly, perform conditional assembly, define storage areas, and specify
starting addresses in the program. Each assembler directive is denoted by a
"pseudo operation” which appears in the operation field of the 1line, The
acceptable pseudo operations are

ORG set the program or data origin

END end program, optional start address
EQU numeric “eguate"

SET numeric “set"

IF begin conditional assembly

ENDIF end of conditional assembly

DB define data bytes

DW define data words

DS define data storage area

The individual pseudo operations are detailed below
4.,1. The ORG directive,
The ORG statement takes the form
label ORG expression

where "label"” is an optional program label, and expression is a 16-bit
expression, consisting of operands which are defined previous to the ORG
statement., The assembler begins machine code generation at the location
specified in the expression. There can be any number of ORG statements within
a particular program, and there are no checks to ensure that the programmer is
not defining overlapping memory areas. Note that most programs written for
the CP/M system begin with an ORG statement of the form

ORG 100H

which causes machine code generation to begin at the base of the CP/M
transient program area. If a label is specified in the ORG statement, then
the label is given the value of the expression (this label can then be used in
the operand field of other statements to represent this expression).

4,2, The END directive.

The END statement is optional in an assembly language program, but if it
is present it must be the last statement (all subseguent statements are
ignored in the assembly). The two forms of the END directive are

label END
label END expression

where the label is again optional, If the first form is used, the assembly
process stops, and the default starting address of the program is taken as
2000, Otherwise, the expression is evaluated, and becomes the program
starting address (this starting address is included in the last record of the
Intel formatted machine code "hex" file which results from the assembly).
Thus, most CP/M assembly language programs end with the statement

END 100H

resulting in the default starting address of 100H (beginning of the transient
program area) .

4,3, The EQU directive.

The EQU (egquate) statement is used to set up synonyms for particular
numeric values. the form is

label BEQU expression

where the label must be present, and must not label any other statement. The
assenbler evaluates the expression, and assigns this value to the identifier
given in the label field. The identifier is usually a name which describes
the value in a more human-oriented manner. Further, this name is used
throughout the program to “parameterize" certain functions, Suppose for
example, that data received from a Teletype appears on a particular input
port, and data is sent to the Teletype through the next output port in
seqguence. The series of eguate statements could be used to define these ports
for a particular hardware environment

TTYBASE EQU 10H BASE PORT NUMBER FOR TTY
TTYIN EQU TTYBASE ;TTY DATA IN
TTYOUT EQU TTYBASE+1;TTY DATA OUT

o we

At a later point in the program, the statements which access the Teletype
could appear as

IN TTYIN ;READ TTY DATA TO REG-A

our TTYOUT sWRITE DATA TO TTY FROM REG-A

making the program more readable than if the absolute i/o ports had been
used. Further, if the hardware environment is redefined to start the Teletype
communications ports at 7FH instead of 10H, the first statement need only be
changed to

TTYBASE EQU 7FH :BASE PORT NUMBER FOR TTY
and the program can be reassembled without changing any other statements.
4,4, The SET Directive.
The SET statement is similar to the EQU, taking the form
label SET expression

except that the label can occur on other SET statements within the program,
The expression is evaluated and becomes the current value associated with the
label. Thus, the EQU statement defines a label with a single value, while the
SET statement defines a value which is valid from the current SET statement to
the point where the label occurs on the next SET statement. The use of the
SET is similar to the EQU statement, but is used most often in controlling
conditional assembly.

4,5, The IF and ENDIF directives,

The IF and ENDIF statements define a range of assembly language statements
which are to be included or excluded during the assembly process. The form is

IF expression
statement#l
statement#?2
statement#n
ENDIF

Upon encountering the IF statement, the assembler evaluates the expression
following the IF (all operands in the expression must be defined ahead of the
IF statement). If the expression evaluates to a non-zero value, then
statement#l through statement#n are assembled; if the expression evaluates to
zero, then the statements are listed but not assembled. Conditional assembly
is often used to write a single “generic" program which includes a rnumber of
possible run-time environments, with only a few specific portions of the
program selected for any particular assembly. The following program segments
for example, might be part of a pogram which communicates with either a
Teletype or a CRT console (but not both) by selecting a particular value for
TTY before the assembly begins

10

TRUE EQU OFFFFH :DEFINE VALUE OF TRUE
FALSE EQU NOT TRUE :DEFINE VALUE OF FALSE
'i'IY EQU TRUE +TRUE IF TTY, FALSE IF CRT
‘i'TYBASE EQU 10H ;BASE OF TTY I/0O PORTS
CRTBASE EQU 20H sBASE OF CRT I/0 PORTS

IF TTY :ASSEMBLE RELATIVE TO TTYBASE
CONIN BQU TTYBASE ;CONSOLE INPUT
QONOUT EQU TTYBASE+1 ;CONSOLE OUTPUT

ENDIF
’ IF NOT TTY ;ASSEMBLE RELATIVE TO CRTBASE
CONIN BEQU CRIBASE +CONSOLE INPUT
CONOUT EQU CRIBASE+1 ;CONSOLE OUTPUT

ENDIF

IN CONIN ¢sREAD CONSOLE DATA

6UI‘ QoNOuT sWRITE OONSOLE DATA

In this case, the program would assemble for an environment where a Teletype
is connected, based at port 16H. The statement defining TTY could be changed
to

TTY

EQU FALSE

and, in this case, the program would assemble for a CRT based at port 20H.

4,6. The DB Directive.

The DB directive allows the programmer to define initialize storage areas
in single precision (byte) format. The statement form is

label DB e#l, e#2, seey e#n

where e#l through e#n are either expressions which evaluate to 8-bit values
(the high order eight bits must be zero), or are ASCII strings of length no
greater than 64 characters. There is no practical restriction on the number
of expressions included on a single source line. The expressions are
evaluated and placed sequentially into the machine code file following the
last program address generated by the assembler, String characters are
similarly placed into memory starting with the first character and ending with
the last character. Strings of length greater than two characters cannot be
used as operands in more complicated expressions (i.e., they must stand alone
between the commas). Note that ASCII characters are always placed in memory
with the parity bit reset (#). Further, recall that there is no translation
from lower to upper case within strings. The optional label can be used to
reference the data area throughout the remainder of the program. Examples of

valid DB statements are

data: B 0,1,2,3,4,5
data and ﬂffh,5,3770,l-£-2+3+4
‘please type your name ,cr,lf£,0

signon: UL _nam
‘AB” SHR 8, 'C°, 'DE” AND 7FH

B8%

4,7. The DW Directive.

The DW statement is similar to the DB statement except double precision
(two byte) words of storage are initialized. The form is

label DW e#l, e#2, ..., €#n

where e$l through e#n are expressions which evaluate to 16-bit results. Note
that ASCII strings of length one or two characters are allowed, but strings
longer than two characters disallowed. In all cases, the data storage is
consistent with the 8080 processor: the least significant byte of the
expression is stored forst in memory, followed by the most significant byte.
Examples are

doub: DW pffefh,doub+4,signon~$,255+255
DW ‘a’, 5, ‘ab”, ‘CD”, 6 shl 8 or 11b

4,8, The DS Directive,

The DS statement is used to reserve an area of uninitialized memory, and
takes the form

label DS expression

where the label is optional. The assembler begins subsequent code generation
after the area reserved by the DS, Thus, the DS statement given above has
exactly the same effect as the statement

label: EQU S :LABEL VALUE IS CURRENT CODE LOCATION
OR; S$+expression ¢:MOVE PAST RESERVED AREA

5. OPERATION QODES,

Assembly language operation codes form the principal part of assembly
language programs, and form the operation field of the instruction. In
general, ASM accepts all the standard mnemonics for the 1Intel 8080
microcomputer, which are given in detail in the Intel manual “8680 Assembly
Language Programming Manual.” Labels are optional on each input line and, if
included, take the value of the instruction address immediately before the
instruction is issued. The individual operators are listed breifly in the

12

following sections for completeness, although it is understood that the Intel
manuals should be referenced for exact operator details. In each case,

e3 represents a 3-bit value in the range 8-7
which can be one of the predefined registers
A, B, C, D, E, H, L, M, SP, or PSW.

e8 represents an 8-bit value in the range @-255
elé6 represents a 16-bit value in the range #-65535

which can themselves be formed from an arbitrary combination of operands and
operators. In some cases, the operands are restricted to particular values
within the allowable range, such as the PUSH instruction, These cases will be
noted as they are encountered.

In the sections which follow, each operation codes is listed in its most
general form, along with a specific example, with a short explanation and
special restrictions,

5.1, Jumps, Calls, and Returns,

The Jump, Call, and Return instructions allow several different forms
which test the condition flags set in the 8080 microcomputer CPU, The forms
are

JMP el6 JMP L1 Jump unconditionally to label
JNZ el6 JMP 1.2 Jump on non zero condition to label
JZ elé6 JMP 10@0H Jump on zero condition to label
JNC el6 JINC L1+4 Jump no carry to label

JC elé6 JC L3 Jump on carry to label

JPO el6 JPO $+8 Jump on parity odd to label

JPE el6 JPE L4 Jump on even parity to label

JP elé6 JP GAMMA Jump on positive result to label
JM elé6 JM al Jump on minus to label

CALL el6 CALL sl Call subroutine unconditionally
NZ el6 Nz S2 Call subroutine if non zero flag
CZ el6 Cz 1090H Call subroutine on zero flag
NC el6 QNC S1+4 Call subroutine if no carry set
CC el6 CcC s3 Call subroutine if carry set
CPO elé6 CRO $48 Call subroutine if parity odd
CPE el6 CPE 54 Call subroutine if parity even

CP el6 CP AMMA Call subroutine if positive result
CM el6 CM bl$c2 Call subroutine if minus flag

RST e3 RST @ Programmed "restart", eguivalent to
CALL 8*e3, except one byte call

13

5.2.

RNZ

28

RC

5553

Return from subroutine
Return if non zero flag set
Return if zero flag set
Return if no carry

Return if carry flag set
Return if parity is odd
Return if parity is even
Return if positive result
Return if minus flag is set

Immediate Operand Instructions.

Several instructions are available which load single or double precision
registers, or single precision memory cells, with constant values, along with
instructions which perform immediate arithmetic or logical operations on the
accumulator (register A),

5.3,

Instructions are provided

MVI

ADI
ACI
SUI
SBI
ANI
XRI
ORI
CPI

LXT

e3,e8

e8
e8
e8
e8
e8
e8
e8
e8

e3,el6

MVI B,255

_ADI 1

ACI QFFH

SUI L+ 3

SBI L AND 11B

ANI $ AND 7FH

XRI 1111S0000B
ORI L AND 1+1

CPI ‘a’

IXT B,100H

Move immediate data to register A, B,
C, D, E, H, L, or M (memory)

Add immediate operand to A without carry
Add immediate operand to A with carry
Subtract from A without borrow (carry)
Subtract from A with borrow (carry)
Logical "and” A with immediate data
"Exclusive or" A with immediate data
Iogical “or" A with immediate data
Compare A with immediate data (same
as SUI except register A not changed)

Load extended immediate to register pair
(e3 must be eguivalent to B,D,H, or SP)

Increment and Decrement Instructions,

in the 8080 repetoire for incrementing or

decrementing single and double precision registers. The instructions are

5.4.

INR e3

ICR e3

INX

DCX

e3

e3

INR E

DCR A

INX SP

DCX B

Single precision increment register (e3
produces one of A, B, C, D, E, H, L, M)
Single precision decrement register (e3
rroduces one of A, B, C, D, E, H, L, M)
Double precision increment register pair
(e3 must be equivalent to B,D,H, or SP)
Double precision decrement register pair
(e3 must be equivalent to B,D,H, or SP)

Data Movement Instructions,

14

Instructions which move data from memory to the CPU and from CPU to
memory are given below

MOV e3,e3

LDAX
STAX
LHLD
SHLD

LDA
STA
POP

PUSH

IN
our
XTHL
PCHL
SPHL
XCHG

e3
e3
elé6
el6
el6
ele
e3
e3

e8
e8

MOV A,B

LDAX B
STAX D
LHLD L1
SHLD L5+x
LDA Gamma
STA X3-5
POP PSW
PUSH B

IN @
our 255

Move data to leftmost element from right-
most element (e3 produces one of A,B,C
D,E,H,L, or M), MOV M,M is disallowed
Load register A from computed address
(e3 must produce either B or D)

Store register A to computed address

(e3 must produce either B or D)

Load HL direct from location elé (double
precision load to H and L)

Store HL direct to location elé (double
precision store from H and L to memory)
Load register A from address elé

Store register A into memory at elé
Load register pair from stack, set SP
(e3 must produce one of B, D, H, or PSW)
Store register pair into stack, set SP
(e3 must produce one of B, D, H, or PSW)
Load register A with data from port e8
Send data from register A to port e8
Exchange data from top of stack with HL
Fill program counter with data from HL
Fill stack pointer with data from HL
Exchange DE pair with HL pair

5.5. Arithmetic Logic Unit Operations,

Instructions which act upon the single precision accumulator to perform

arithmetic and logic operations are

ADD
ADC
SUB
SBB
ANA
ORA
CMP

cMA
STC

el

e3
e3

e3

e3
e3
e3
e3

ADD B
AaDC L
SUB H
SBB 2
ANA 1+1

ORA B

Add register given by e3 to accumulator
without carry (e3 must produce one of A,
B, C, D, E, H, or L)

Add register to A with carry, e3 as above
Subtract reg e3 from A without carry,

e3 is defined as above

Subtract register e3 from A with carry,
e3 defined as above

Logical "and" reg with A, e3 as above
"Exclusive or” with A, e3 as above
Logical "or" with A, e3 defined as above
Compare register with A, e3 as above
Decimal adjust register A based upon last
arithmetic logic unit operation
Complement the bits in register A

Set the carry flag to 1

15

cMC

DAD e3 DAD B

5.6. Control Instructions.

The four remaining instructions
and are listed below

HLT
DI
EI
NCP

6. ERROR MESSAGES.

Complement the carry flag

Rotate bits left, (re)set carry as a side
effect (high order A bit becomes carry)
Rotate bits right, (re)set carry as side
effect (low order A bit becomes carry)
Rotate carry/A register to left (carry is
involved in the rotate)

Rotate carry/A register to right (carry
is involved in the rotate)

Double precision add register pair e3 to
HL (e3 must produce B, D, H, or SP)

are categorized as control instructions,

Halt the 8880 processor
Disable the interrupt system
Enable the interrupt system
No operation

When errors occur within the assembly language program, they are listed as
single character flags in the leftmost position of the source listing. The
line in error is also echoed at the console so that the source listing need
not be examined to determine if errors are present., The error codes are

D Data error: element in data statement cannot be
placed in the specified data area

E Expression error: expression is ill-formed and
cannot be computed at assenbly time

L Label error: 1label cannot appear in this context
(may be duplicate label)

N Not implemented: features which will appear in
future ASM versions (e.g., macros) are recognized,
but flagged in this version)

0 Overflow: expression is too complicated (i.e., too
many pending operators) to computed, simplify it

P Phase error: label does not have the same value on
two subsequent passes through the program

16

R Register error: the value specified as a register
is not compatible with the operation code

\' Value error: operand encountered in expression is
improperly formed

Several error message are printed which are due to terminal error
conditions

NO SQURCE FILE PRESENT The file specified in the ASM command does
not exist on disk

NO DIRECTORY SPACE The disk directory is full, erase files
which are not needed, and retry

SOURCE FILE NAME ERROR Improperly formed ASM file name (e.g., it
is specified with "?" fields)

SOURCE FILE READ ERROR Source file cannot be read properly by the
assembler, execute a TYPE to determine the
point of error

OUTPUT FILE WRITE ERROR Output files cannot be written properly, most
likely cause is a full disk, erase and retry

CANNOT CLOSE FILE Output file cannot be closed, check to see
if disk is write protected

7. A SAMPLE SESSION.

The following session shows interaction with the assembler and debugger in
the development of a simple assembly language program,

(7

assewble SoeT.RsM

CPs/M ASSEMBLER -

ASA SORT,
VER 1.0
815¢C Vuxt4%ee¢udw55

003H USE FACTOR o4 of
END OF ASSEMBLY

—tzlle used 00 FF C&!xa&ec«u'd)

DIR SORT. %,
SORT ASH soure file e o

SORT BAK loackug ast ed

SORT PRN 'pnwk-f#l; (c,,mw-!nl- chavacitrs)
SORT HEX wackee code

A>TYPE SORT.PR%Z
Source (e

SORT PROGKRANM
START AT THE

wacluwe Code \ocahan ;

IN CP/M ASSEMBLY LANGUAGE
BEGINNING OF TYHE TRANSIENT PROGRANM AR

G6lpe & ORG 16 6H
wnkdwachmpwie
6160 2x4eexf3 SORT: LRI H, SU ;ADDRESS SWITCH TOGGLE
0163 3661 MYy I M, 1 JSET T0O { FOR FIRST ITERATION
86165 2147061 LKI H, 1 ;ADDRESS INDEX
6168 36006 M 1 M, 0 i1 = 8
i
; COMPARE I WITH ARRAY SIZ2E
@18a 7E COMP. MOV A M ;A REGISTER = 1I
818B FEBS CPr1l N-1 ;CY SET IF I ¢ (N-1)
616D D219081 JNC CONTY GCONTINUE IF 1 (= {(N-2)
; END OF ONE PASS THROUGH DATA
9110 214601 L¥1 H, S ;CHECK FOR ZERO SUWITCHES
6113 7EB7C20001 MOV A, M! ORA A! JUNZ2 SORT END OF SORT IF Su=0
P
@118 FF RST 7 ;60 TO THE DEBUGGER INSTERD NF RE#
; ““‘“kdcourxnue THIS PASS
; ADDRESSING I, SO LOAD AVC(Y)Y INTO REGISTERS
8119 SF16882148CONT: MOV E,A!) MVY]I D,0! LXI H,A¥t DAD D! DAD D
8121 4E?792346 MOV C,Mt! MOV f,C! INX H! MOV B.H
; LOW ORDER BYTE IN A AHD C., HIGH ORDER BYTE IN B8
i
; MOY H AND L TQ ADBRESS AY(I+1)
8125 23 WY H
}
; COMPARE VALUE WITH REGS CONTAINING AYCI)
0126 965778239¢ SUB M! MOV D, A! MOV A, B! INX Ht SEB # iSUBTRACT
; BORROW SET IF AVC(I+1) > AVCI)
@128 DA3FA1 JC INCI ;SKIP IF IN PROFER ORDER
i
; CHECK FOR EQUAL VALUES
Bi2E B2CA3FB1 ORA DIV gZ INCI iSKIP IF AVC(I) = AV(I+1) lg

8132 567@82BSE MOV D,M! MOY M,B! DCX H! MOV E.H

8136 7128722873 MOY M.C! LCK H! MOV M, D) DCX H! MOV M, E
i
; INCREMENT SWITCH COUNT
G138 21460134 LXT H,SW! INR M
; INCREMENT I |
B13F 21470134C3INCI. LK1 H, 1! INR M! JMP COMP
; DATA DEFINITION SECTION
0146 00 SU; DB @ RESEKRVE SPACE FOR SWITCH COUNT
8147 1. DS) iSPACE FOR INDEX
6146 BS5BA640BIEAY. DU S, 160,30, 56, 26, 7, 1068, 360,198, ~32767
BB0A = EQU ($-aY)/2 ,COMPUTE N INSTEAD OF PRE
015¢ ‘-——qun{e w&u& END
AYTYPE SORT. HEX

:106100002146061360121470136007EFEB3D21906140 i
1 1061160662146017EB7C20001FFS5F160662148011933 1.

. 108120006194E79234623965778239EDA3FB1IB2CAAY W‘EM cacle 1n
: 190 1306003F0156702B5E712B722B732146013421C7 HEX Farviat
:070140606470134C306AB1006E

1 100148000500664801E086320014000700E6832CB1BB

: 0461586664000 18B6BE

: 080606DB0B0D

AXDDT SORT. HEX, sttt ddoug man

16K DDT VER 1.0

NEXT PC . it addvess (maddvmwa’bg‘“W)

15C PEOD
-XP)
P=600e 180, Change TC o L00
: ? {5535 Steps bort Lot
w
urpry b o 655 derts

COZGMBPEQOI® A=09 B=(0OBG D=B000 H=-0000 S=0106 P=8100 LXI H,B146+0100
"T18) vace (0, steps

CoZ6MPEGIO A=D1 B=06D0O D=B00O H=0146 S=0100 P=0188 LX]I H,08146
CoZoMBEGlIO A=D1 B=0000 D=0008 H=06146 S$=0160 P=06183 HV] H.,81
CoZeMPEOGI® A=01 B=0000 D=p0OO H=0146 S=0109 P=81085 LXI H,0147
COZoMBEOIO® A=061 B=p0BO D=B000 H=06147? S=0100 P=0163 Mvl M,00
CoZ6MPEOIO A=0) B=p0BOG D=0G0BB H=0147 S=6108 P=816Aa MOV A, N
C6Z0MPEO]1B A=00 B=00006 D=06068 H=0147 S=0166 F=016B CPI 99
C120M1EQG]B A=060 B=00B06 D=0008 H=0147 S=0160 P=016D JUNC 0113
C1286M1EG]1B R=060 B=0000 D=00606 H=0147 S=0106 P=0110 LXI H.,08146
C1Z6M1EOGIO® A=B0 B=B000O D=D00GB H=6G146 S=01086 P=0113 MOY A.,M
Cl1ZeMiEQGIO® A=61 B=00BG D=000b6 H=0146 S5=01606 P=08114 ORA A
Co0ZOMPEGIO® A=01 B=00B6G D=B00B H=0G146 S=01060 P=B115 JUNZ 6100
C626MBEQGI® A=61 B=0080 D=B008 H=0146 S=0108 P=8100 LX]1 H,0146
CoZ6GMBEGI® A=D1 B=BOPG D=BBOB H=0146 S=0180 P=0103 MVI M,61
CoZBMOEGIO® A=B! B=P0GPO D=BGOB H=0146 S5=0180 P=81@5 LXI H,8147
C6Z6MBEBIB A=061 B=BOBO D=DOOB H=0147 S=0100 P=01868 MYI M,00
COZOMBEGIB A=B61 B=DODE D=BOOH H=0147 S=0108 P=010A4 MOV A,M*B1YB
-~A16D

se 119, chameto o juug on cary s"PP“‘*J 19

810
o1 1984

D
® »

-XP
7

P=01088 180, Yeset Progam cowter back b 'odrp'm;\mj c(:?msmm

¥

-T16. trace
»
CoZeMBEOGI O
CoZOMODEG]G
COZOMAED] O
CoZ20MBEOG]O
CeZaMBES] O
CoZ6MBEQI O
C126MI1EQID
C120M1EBIO
CilZeMiEQl@
C12eMiE0lo@
C1ZBMIEQ] G
£O2BMIEGI D
CozeMiER]IQ
CezZemMiERl @
COZOMIERI Q@
COZBMIEQ]®
Llegg

81006
B193
81865
8108
610n
ptlob
81ap
a11e
8113
8114
B115

—L;
eits
8119

BilA
811c

LX1
MVI
LX1
Myl
MoV
CP1
JC

LXI
MOV
ORA
JNZ

RST
MOV
HYI
LXI

- Ghovt st Lt rubacdt
'G'II%J ﬁ&u*‘?m?uwugaM~

executon +or (04 stps

B=80bO
B=660o0o
B=06086
B=000606
B=0b0B06
B=p06B0
B=60B0
B=0080
B=6co6B0
B=0000
B=¢0B80
B=0000
B=teoa
e=@605
B=600S5
B=6085

b=B86009
D=8008
D=B0 06
D=p660
D=06000
b=B0006
D=66080
I=Boow
b=0600
D=00086
D=B0600
D=8000
h=Beew
D=6089
D=8000
D=8008

A=00
A=080
R=009
A=00
A=09
R=00
A=00
R=00
A=R0
R=00
A=00
A=09
A=@o
R=00
A=085
A=8S5

H,B146
M,81
H.8147
M,60
A, M

09
8119
H,8146
A, N

fA

810

7

E.A
D.,o@
H.,8148

l&t more

H=0147
H=8146
H=@146
H=0147
H=0147
H=@147
H=8147
H=0147
H=0147
H=@147
H=8148
H=9148
H=@1438
H=98148
H=@148
H=8149

loF some code

Lrom 100K

P=01668 LXI H,08146
Pzg183 MVI M,01
P=0165 LXI M, 8147 4
P=6168 MVI M, @0 P
P=G16A MOV A, M
P=@16E CP1 @9 ’/)
P=@18D JC 0119
P=8119 MOV E.,A
Pz@11a MYI D, 60
P=011C LX1 H,0148
P=811F DAD D

P=@1z@ DAD D

P=e12t MOV C.i
P=2122 MOV R, C
P=G123 INX H

P=@124 MOV B, M»0123
Actomatic

bny¢?omf

curvesd PC (012 and v r veal +me o 118H

*0127 &bwed UV\'H'\ aw ZX-‘OVM(\wkvvup'l‘ 7 -(mw _‘Frmvtfaud ('pr%mw. wos

-T4} \ook ot (oo?l;b Pvg:)yam w “tvoce mode 1

D=8086 H=0156
D=3806 H=0156
D=3806 H=@156
D=3806 H=@157

o dota (s sorted, but program doesat 5“@ .

2C @1 EB @3 B1 86 0O 08 @6 BO 2.D.D...
PO 6O 6O 0B 86 B8O

Co2eMBEOl O
CoZoMBEQI®

CB8Z6MBED] D
Co6ZaMbEBI O

~-D148

6148 85 060
pi56 32 060
8166 B0 09

=38 B=8064
A=38 B=0064
A=B0O B=BB64
A=B0G B=00664

67 00 14 BO
64 068 64 BO
86 00 00 po

1E 09

60 66 08 uv

\oopm_;) { (m'lz(g
€=0100 P=0127 MOV D.A
$=01006 P=06128 MOV A, B
S=0100 P=8129 IN¥ H
S=@g1a@ P=@12n 3BB M=%012B

20

-&f, return er/d
DDT SORT.HEX , reload Hhe memmy 1mage
16K DDT VER 1.0

NEXT PC
815C BGOB
-XP

P=0808 160 set PC o \’%‘;"""""fj "(?mﬂm
~L18D, ot bad cpeode

818D JNC 0119’/
Bi1d LXI H,B146

- abort ek unka rubooud
-a1eD) assewlole new gpeode

610D JC 119
° A

Bllq}
—LlBG; \\"a“ 5"‘&?{'\)'3 5’60{1.0-“ OF ?VOJV&W\'

gt LXI H,B8146
163 MVI M.el
B1o3 LXI H.8147
8188 MYl HN,.00

- doovt List with Nb.dtif L .
-Ata3 2 cl:o.w)e “sw;-l-c,b\" \m{-\dtw{uﬁ L (] 4

61833 MVI "'9)

8195y

SAVE 1 SORT.COM, save 1 poqe (256 loghes, from 100K 0 1K) on disk v Case

we have Yo veload [ater
A>DDT SORT. COM, vestart DOT weth

Saved memovy wmon) e
féK DDT VER 1.0

NEXT PC - -
6200 p100 "com’ file alwags stwrts wetl address |00H
=Gy Tun-the Proyaws Lrom PC=100H
«0118 progrowwmed sop (2577) enesuntered
~D148

¢>/ bewafevb sorted

8148 85 06 067 08 14 BO IE

B156 32 80 64 6B €4 PG 2C 01 EB 03 Bl 80 86 90 v6 66 2.D.D.,.

B1566 B0 60O 09 0P 0B BG VO Db 6D 0O DO 09 0O 06O VO B
8170 B8 6O 06 VD 00 PO 6O 08 Bd VO V0O bV 0OV 0B 00 00O

- Gd; return 4o CP/M

ED SORT.ASH, moke clanags o Cw\ju;\p\‘ prograve

-2 .
«N. 6l~20TT, foad wed 50"
v M. 8 i1 = @
*.— .
7 g one (Tex‘i“w‘r M1 ;ADDRESS I1MDEX
*')u(»am-l-ker lm&
Myl ", 1 ;SET TO 1 FOR FIRST ITERATION
KT, KW e Gnd fype wexd line
Xl H, 1 ;ADDRESS INDEX
B ¥) weerk vt lme
Myl M, @ ;ZERD SU
D
LX1 H, 1 ;ADDRESS INDEX
eNaNCC Do,
JNC*TR
CONT ;CONTINUE IF 1 <= (N-2)
«-2p1cCpLT
e $}CONT GCONTINUE IF I <= (H-2)
*E wree from dish A
4 [& ko disk A

ASM SORT. M\Z}’\Sk\() prm ‘F“e

CP/H ASSEMBLER - VER 1.0

g15C wat aldvas 1o assanlde
B6IH USE FACTOR
END OF ASSEMBLY

BDT SORT.HER, dest projuame cliowges

16K DDY VER 1.8
NEZT PC

8150 boeo
—G’lﬁii‘?

*B118
—Dl48)

e dyta sorted

6148 b5 80 067 08 14 PO 1E 0O

8156 32 66 64 BB 64 86 2C B1 EB 03 01 860 b9 88 88 B 2.D.D.,........ .

Bl166 0@ 6O 06 00 0O PO WO GO 0D OB Lo BO @Y GV OO WO

- abovt with rubnt

-ce, retorn v cf/m-'qumm Cheds Ok.

2

e

‘F?a::'—:

S
o, s

e

‘F?a::'—:

S
o, s

