10
DIGITAL
RESEARCH"

CP/M-86°

Operating System

Programmer’s Guide




COPYRIGHT

Copyright © 1981, 1982, and 1983 by Digital Research. All rights reserved. No part
of this publication may be reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any language or computer language, in any form or by any
means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise,
without the prior written permission of Digital Research, Post Office Box § 79, Pacific
Grove, California, 93950.

This manual is, however, tutorial in nature. Thus, the reader is granted permission
to include the example programs, either in whole or in part, in his own programs.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness
for any particular purpose. Further, Digital Research reserves the right to revise this
publication and to make changes from time to time in the content hereof without
obligation of Digital Research to notify any person of such revision or changes.

TRADEMARKS
CP/M and CP/M-86 are registered trademarks of Digital Research. ASM- 86, DDT-86,

and TEX-80 are trademarks of Digital Research. Intel is a registered trademark of Intel
Corporation. Z80 is a registered trademark of Zilog, Inc.

The CP/M-86 Operating System Programmer’s Guide was prepared using the Digital
Research TEX-80 text formatter and printed in the United States of America,

Third Edition: January 1983




Foreword

This manual assists the 8086 assembly language programmer working in a
CP/M-86® environment. It assumes you are familiar with the CP/M-86 implementa-
tion of CP/M and have read the following Digital Research publications:

8 CP/M 2 Documentation
8 CP/M-86 Operating System User’s Guide

The reader should also be familiar with the 8086 assembly language instruction
set, which is defined in Intel®'s 8086 Family User’s Manual.

The first section of this manual discusses ASM-86™ operation and the various
assembler options which may be enabled when invoking ASM-86. One of these
options controls the hexadecimal output format. ASM-86 can generate 8086 machine
code in either Intel or Digital Research format. These two hexadecimal formats are
described in Appendix A.

The second section discusses the elements of ASM-86 assembly language. It defines
ASM-86’s character set, constants, variables, identifiers, operators, expressions, and
statements.

The third section discusses the ASM-86 directives, which perform housekeeping
functions such as requesting conditional assembly, including multiple source files,
and controlling the format of the listing printout.

The fourth section is a concise summary of the 8086 instruction mnemonics accepted
by ASM-86. The mnemonics used by the Digital Research assembler are the same as
those used by the Intel assembler except for four instructions: the intra-segment short
jump, and inter-segment jump, return and call instructions. These differences are
summarized in Appendix B.

The fifth section of this manual discusses the code-macro facilities of ASM-86.
Code-macro definition, specifiers and modifiers as well as nine special code-macro
directives are discussed. This information is also summarized in Appendix H.

The sixth section discusses the DDT-86™ program, which allows the user to test
and debug programs interactively in the CP/M-86 enviornment. Section 6 includes a
DDT-86 sample debugging session.







Table of Contents

Introduction

1.1 Assembler Operation ........covvvvvnviiniiiniiniiinrrnrinneenns, 1
1.2 Optional Run-time Parameters ..........oovvvverneenernrnnrnenss 3
13 Aborting ASM-86 . .vvvvriiriieerineierierireneensrnrrnennens S

Elements of ASM-86 Assembly Language

2.1
2.2
2.3
2.4

2.5

2.6

27
2.8

ASM-86 Character Set .......ovvvrvirniieireenernennsenennnnnss 7
Tokens and Separators ..........ovvvvivnernreenrennreneennnenn, 7
Delimiters o\ttt e 7
00T 1 1 9
24.1  Numeric COnStants .........ovvvevreneerreneneenenesns 9
242 Character StTNES ...ovvvrnirnernerernnererneenrenannns 10
Identifiers ...vvvrrinin i e 11
251 Keywords .....ovvviviniivininiiiiiiiii i, 11
2.5.2  Symbols and Their Attributes ...........covvvvrirnnnnnns 13
0T 1o £ 14
2.6.1 Operator Examples ..........ccovvviiviiniiniinniinnnn. 18
2.6.2  Operator Precedence ..........ovvvvrniininnenninnennnn, 20
03 o 2 1o T 22
1 113 £ 23

Assembler Directives

31
3.2

3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

T oY 11Tt 4o « 25
Segment Start Directives .....ovvivviiiriniinr i, 25
321 The CSEG Difective ..vvvvinervrnerennensrnenenrenenns 26
322 The DSEG DireCtive vuvvvvnersrrenenereenereenennenens 26
3.2.3  The SSEG DIrective ..vvvvvvrvrvrrrnrnreenenenensnenens 27
3.24 The ESEG Directive ....vvvvvrinirinvrrrerernrernenenss 27
The ORG DIIECHIVE v\ vviveereirees e ersensenenreresnernennss 28
The IF and ENDIF Directives . ....vvvvevrerenreneerrnreneenenras 28
The INCLUDE DIr€CtiVe . vvvvvvvvreenernerneresnnsneenesnesnss 29
The END DIT€CtIVE v\ vvvvvnereresensrnennernenerneensenseneenss 29
The EQU DIreCtiVe .vvvvvvnvernnerrnesrnernnsennerenneeennnss 29
The DB DiIr€CtiVe .. vvveevstvneernesenesenesenneennesenesss 30
The DW DIreCtIVE « v vvvvtsetintnerereeneensrneeresneennenss 31
The DD DireCtiVe vvvvvevveereeessennerenersnnsernnsesnesss 31




Table of Contents (continued)

3,11 The RS DIIECEIVE & vvvvtrsrsenenetnensesenenssssneeeeeensensnss 32
3012 The RB DIreCtiVe v'vvvtvrterettnenenerernrnenesnenensasenseenes 32
3013 The RW DIreCtive v .vvvvrvvterernenerernrneneenensnsosesenenes 32
3.14 The TITLE Dir€CtiV€ . ..vvrvrvrvrvrenreeresesessensesnsnsnennes 33
3.15 The PAGESIZE Directive ..vvvvrvnenrvrineernrenensnsnsneesenes 33
316 The PAGEWIDTH Dir€CtiVe +vuvvvrvnrenreenensrorerncesenensns 33
3.17 The EJECT DiIrective . .vvvvvirererrenerernenrrernersensnsnnenss 33
3.18 The SIMFORM DireCtive . \vvvvvvnerernenensunonennensnsenensen 34
3.19 The NOLIST and LIST Dir€ctives ....vveveeenrnresnenrneeeeenns 34

4 The ASM-86 Instruction Set

L R U1 14 ¢ e 1 ot 4T F 35
4.2 Data Transfer InStrUCtIONS vvvvvrvrvrsrerenenseresrsrerarnsnenes 37
4.3  Arithmetic, Logical, and Shift Instructions ..........o0vvvivenenes 40
4.4 String INStIUCTIONS \\uvvrvsvrvinenrvnernennsnesnsneensoneneses 45
4.5  Control Transfer InStrUCTIONS ....v'vvververensrrinersenenensnnses 47
4.6  Processor Control INStructions v..'vvvrvsvnvnererernenerrenenenens 51

§ Code-Macro Facilities

5.1  Introduction to Code-macros ........eevvvenererernerernsnrnnsns 53
KT T 4T ¢ 5SS
5.3 MOdifIers vttt e et 56
5.4 Range SPecifiers .....viiiiiiiiiii i e 56
5.5 Code-macro DIreCtiVES . ..v'vvvvvrevnenserrneonsenesnensennenes 57
T T N X ) 2 1, G 57
5.5.2  NOSEGEIX ittt ittt ettt esennernesn 57
5.5.3  MODRM 1o e e e e 58
554 RELBand RELW oi0iitiiniiniineninnrrvnrnnneanenss 59
5.5.5 DB, DWand DD t.ivvviiiiiiiiiiiin e, 59
T TN - S D ) - ) 5 60
6 DDT-86
6.1  DDT-86 Operation ........cvvvviriiievnvninrinenrernenenenenns 63
6.1.1 Invoking DDT-86 ....oovvvviviiiiiiiiiiinenenennenen, 63
6.1.2 DDT-86 Command Conventions ............evevevennen. 63
6.1.3  Specifying a 20-Bit Address .........covviiiiiiniininnns 64
6.1.4 Terminating DDT-86 .....o0vvvviininiiiiinininrnennens 65

vi




Table of Contents (continued)

6.1.5 DDT-86 Operation with Interrupts ..........covoveninnns 65
6.2 DDT-86 Commands .....ovvvrernerrernerrorsonersensensseens 66
6.21 The A (Assemble) Command ..........covvvivinvinnnns 66
6.2.2 The D (Display) Command .........covvvivnviiineinnnn, 66
6.2.3 The E (Load for Execution) Command .................. 67
6.24 TheF (Fill) Command ........oovvvvivnniiiinieniinnnn, 68
6.25 The G (Go) Command .....covvvnvvrninnvenivinvianenns 68
6.2.6 The H (Hexidecimal Math) Command .................. 69
6.2.7 Thel (Input Command Tail) Command ................. 69
6.8 TheL (List) Command ........c.ovvvvnvivnnerenvennnss 70
6.29 The M (Move) Command ........ocvvvinvinnrinniennens 71
6.210 The R (Read) Command ........covvvvvniinnieniinnins 71
6.211 The S (Set) Command .......covvvvvininirniiniiinnnses 71
6.212 The T (Trace) Command .......cvvvvvvnnvnnrenninnrens 72
6.2.13 The U (Untrace) Command ........covvvnvinnennsennnes 73
6.214 The V (Value) Command .........ovvviveenvinieneinens 73
6.2.15 The W (Write) Command) ........ocvvvvenvinrinsinnes 74
6.2.16 The X (Examine CPU State) Command .................. 74
6.3 Default Segment Values ........ccovvvvrvininiinriiiniiinieinens, 76
6.4  Assembly Language Syntax for A and L Commands ............... 78
6.5 DDT-86 Sample Session .....ovvvvvivnreriiiriineriernniiiienns 80




L o ™

—

Table of Contents (continued)

Appendixes

ASM-86 INvocation ............ooeiviiiiiiii 93
Mnemonic Differences from the Intel Assembler ...................... 95
ASM-86 Hexadecimal Output Format ..............ccoovvevvunn . 97
Reserved Words ..........c.ccooviiiineeieni 101
ASM-86 Instruction Summary ..............coo0iiii 103
Sample Program ... 107
Code-Macro Definition Syntax ...............ooovvvinieeiinn 113
ASM-86 Error Messages ................uuuuurnrnnnnmnnnnnnn 115
DDT-86 Error Messages ..............ooveevuoeeuinnnnsnnnn 117

viii




n
0
N
=,
0
-

Section 1
Introduction

1.1 Assembler Operation

ASM-86 processes an 8086 assembly language source file in three passes and pro-
duces three output files, including an 8086 machine language file in hexadecimal
format. This object file may be in either Intel or Digital Research hex format, which
are described in Appendix C. ASM-86 is shipped in two forms: an 8086 cross-
assembler designed to run under CP/M® on an Intel 8080 or Zilog Z80® based
system, and a 8086 assembler designed to run under CP/M-86 on an Intel 8086 or
8088 based system. ASM-86 typically produces three output files from one input file
as shown in Figure 1-1, below.

LISTFILE

Y

Y

HEXFILE

SOURCE ASM-86

Y

— SYMBOLFILE

<file name>.A86 - contains source

<filename> .LST - contains listing

<file name> H86 - contains assembled programin
hexadecimal format

<file name>.SYM - contains all user-defined symbols

Figure 1-1, ASM-86 Source and Object Files

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 1




1.1 Assembler Operation CP/M-86 Programmer’s Guide

Figure 1-1 also lists ASM-86 filename extensions. ASM-86 accepts a source file
with any three letter extension, but if the extension is omitted from the invoking
command, it looks for the specified filename with the extension .A86 in the directory.
If the file has an extension other than .A86 or has no extension at all, ASM-86
returns an error message.

The other extensions listed in Figure 1-1 identify ASM-86 output files. The .LST
file contains the assembly language listing with any error messages. The .H86 file
contains the machine language program in either Digital Research or Intel hexadeci-
mal format. The .SYM file lists any user-defined symbols.

Invoke ASM-86 by entering a command of the following form:

ASMB6 <source filename> | $ <optional parameters> |

Section 1.2 explains the optional parameters, Specify the source file in the following
form:

[<optional drive>:)<filename>[.<optional extension>

where
<optional drive> is a valid drive letter specifying the source file’s
location. Not needed if source is on current drive.
<filename> is a valid CP/M filename of 1 to 8 characters.
<optional extension> is a valid file extension of 1 to 3 characters, usu-

ally .A86.

Some examples of valid ASM-86 commands are:

Once invoked, ASM-86 responds with the message:

CP/M 8086 ASSEMBLER VER x.x

2 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide 1.1 Assembler Operation

where x.x is the ASM-86 version number. ASM-86 then attempts to open the source
file. If the file does not exist on the designated drive, or does not have the correct
extension as described above, the assembler displays the message:

If an invalid parameter is given in the optional parameter list, ASM-86 displays the
message:

After opening the source, the assembler creates the output files. Usually these are
placed on the current disk drive, but they may be redirected by optional parameters,
or by a drive specification in the source file name. In the latter case, ASM-86 directs
the output files to the drive specified in the source file name.

During assembly, ASM-86 aborts if an error condition such as disk full or symbol
table overflow is detected, When ASM-86 detects an error in the source file, it places
an error message line in the listing file in front of the line containing the error. Each
error message has a number and gives a brief explanation of the error. Appendix H
lists ASM-86 error messages. When the assembly is complete, ASM-86 displays the
message:

END OF ASSEMBLY. NUMBER OF ERRORS: n

1.2 Optional Run-time Parameters

The dollar-sign character, $, flags an optional string of run-time parameters. A
parameter is a single letter followed by a single letter device name specification. The
parameters are shown in Table 1-1, below,

Table 1-1. Run-time Parameters

Parameter To Specify Valid Arguments
A source file device ABC, ..P
H hex output file device A.PXYZ
P list file device A.PXYZ
S symbol file device A.PLX Y Z
F format of hex output file LD

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 3




1.2 Optional Run-time Parameters CP/M-86 Programmer’s Guide

All parameters are optional, and can be entered in the command line in any order.
Enter the dollar sign only once at the beginning of the parameter string, Spaces may
separate parameters, but are not required. No space is permitted, however, between
a parameter and its device name.

A device name must follow parameters A, H, P and S. The devices are labeled:
ABC ...PorX Y, Z

Device names A through P respectively specify disk drives A through P. X specifies
the user console (CON:), Y specifies the line printer (LST:), and Z suppresses output
(NUL:).

If output is directed to the console, it may be temporarily stopped at any time by
typing a control-S. Restart the output by typing a second control-S or any other
character.

The F parameter requires either an I or a D argument. When 1 is specified, ASM-
86 produces an object file in Intel hex format. A D argument requests Digital Research
hex format. Appendix C discusses these formats in detail. If the F parameter is not
entered in the command line, ASM-86 produces Digital Research hex format.

Table 1-2. Run-time Parameter Examples

Command Line Result

ASMS86 10 Assemble file 10.A86, produce I0.HEX, I0.LST
and 10.SYM, all on the default drive.

ASM86 10.ASM §$ AD SZ Assemble file 10.ASM on device D, produce
10.LST and 10.HEX, no symbol file.

ASMS86 10 § PY SX Assemble file 10.A86, produce 10.HEX, route
listing directly to printer, output symbols on
console.

ASM86 10 § FD Produce Digital Research hex format.

ASMB86 10 § FI Produce Intel hex format,

4 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide 1.3 Aborting ASM-86

1.3 Aborting ASM-86

You may abort ASM-86 execution at any time by hitting any key on the console
keyboard. When a key is pressed, ASM-86 responds with the question:

USER BREAK., OK(Y/N)?

A'Y response aborts the assembly and returns to the operating system, An N response
continues the assembly.

End of Section 1

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 5




End of Section 1 CP/M-86 Programmer’s Guide

6 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




Section 2
Elements of ASM-86 Assembly
Language

7 UOnDag

2.1 ASM-86 Character Set

ASM-86 recognizes a subset of the ASCII character set. The valid characters are
the alphanumerics, special characters, and non-printing characters shown below:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789

t=-*r=0)[); . t,_:@8
space, tab, carriage-return, and line-feed

Lower-case letters are treated as upper-case except within strings. Only alphanu-
merics, special characters, and spaces may appear within a string,

2.2 Tokens and Separators

A token is the smallest meaningful unit of an ASM-86 source program, much as a
word is the smallest meaningful unit of an English composition. Adjacent tokens are
commonly separated by a blank character or space. Any sequence of spaces may
appear wherever a single space is allowed. ASM-86 recognizes horizontal tabs as
separators and interprets them as spaces. Tabs are expanded to spaces in the list file.
The tab stops are at each eighth column.

2.3 Delimiters

Delimiters mark the end of a token and add special meaning to the instruction, as
opposed to separators, which merely mark the end of a token, When a delimiter is
present, separators need not be used. However, separators after delimiters can make
your program easier to read.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 7




2.3 Delimiters

CP/M-86 Programmer’s Guide

Table 2-1 describes ASM-86 separators and delimiters. Some delimiters are also
operators and are explained in greater detail in Section 2.6.

Table 2-1. Separators and Delimiters

Character Name Use
20H space separator
09H tab legal in source files, expanded in list
files
CR carriage return terminate source lines
LF line feed legal after CR; if within source lines,
it is interpreted as a space
; semicolon start comment field
colon identifies a label, used in segment
override specification
period forms variables from numbers
$ dollar sign notation for ‘present value of location
pointer’
+ plus arithmetic operator for addition
~ minus arithmetic operator for subtraction
* asterisk arithmetic operator for multiplication
/ slash arithmetic operator for division
@ at-sign legal in identifiers
_ underscore legal in identifiers
! exclamation point logically terminates a statement, thus
allowing multiple statements on a sin-
gle source line
’ apostrophe delimits string constants

8 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide 2.4 Constants

2.4 Constants

A constant is a value known at assembly time that does not change while the
assembled program is executed. A constant may be either an integer or a character
string.

2.4.1 Numeric Constants

A numeric constant is a 16-bit value in one of several bases. The base, called the
radix of the constant, is denoted by a trailing radix indicator. The radix indicators
are shown in Table 2-2, below.

Table 2-2. Radix Indicators for Constants

Indicator Constant Type Base
B binary 2
0 octal 8
Q octal 8
D decimal 10
H hexadecimal 16

ASM-86 assumes that any numeric constant not terminated with a radix indicator
is a decimal constant. Radix indicators may be upper or lower case.

A constant is thus a sequence of digits followed by an optional radix indicator,
where the digits are in the range for the radix. Binary constants must be composed
of 0’s and 1’s. Octal digits range from 0 to 7; decimal digits range from 0 to 9.
Hexadecimal constants contain decimal digits as well as the hexadecimal digits A
(10D), B (11D), C (12D), D (13D), E (14D), and F (15D). Note that the leading
character of a hexadecimal constant must be either a decimal digit so that ASM-86
cannot confuse a hex constant with an identifier, or leading 0 to prevent this prob-
lem. The following are valid numeric constants:

1234 1234D 11008 11110000111100008B

1234H OFFEH 33770 137720
33770 OFE3H 12344 Offffh

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 9




2.4 Constants CP/M-86 Programmer’s Guide

2.4.2  Character Strings

ASM-86 treats an ASCII character string delimited by apostrophes as a string
constant. All instructions accept only one- or two-character constants as valid argu-
ments. Instructions treat a one-character string as an 8-bit number. A two-character
string is treated as a 16-bit number with the value of the second character in the
low-order byte, and the value of the first character in the high-order byte.

The numeric value of a character is its ASCII code. ASM-86 does not translate
case within character strings, so both upper- and lower-case letters can be used. Note
that only alphanumerics, special characters, and spaces are allowed within strings.

A DB assembler directive is the only ASM-86 statement that may contain strings
longer than two characters. The string may not exceed 255 bytes. Include any apos-
trophe to be printed within the string by entering it twice. ASM-86 interprets the
two keystrokes ” as a single apostrophe. Table 2-3 shows valid strings and how they
appear after processing:

Table 2-3. String Constant Examples

‘a’ ->a
"Ab’‘Cd’ -» Ab, 'Cd
‘I 1ike CP/M’ ->1 1iKke CP/M
P A A _.:p 7
"ONLY UPPER CASE’ -» ONLY UPPER CASE
‘only lower case’ ->only lower case

10 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide 2.5 Identifiers

2.5 Identifiers

Identifiers are character sequences which have a special, symbolic meaning to the
assembler. All identifiers in ASM-86 must obey the following rules:

The first character must be alphabetic (A,...Z, a,...z).

2. Any subsequent characters can be either alphabetical or a numeral (0,1,.....9).
ASM-86 ignores the special characters @ and _, but they are still legal. For
example, a_b becomes ab.

3. Identifiers may be of any length up to the limit of the physical line.

Identifiers are of two types. The first are keywords, which have predefined mean-
ings to the assembler. The second are symbols, which are defined by the user. The
following are all valid identifiers:

NOLIST

WORD

AH

Third _street

How_are_vou todavy
variable@number@1234567890

2.5.1 Keywords

A keyword is an identifier that has a predefined meaning to the assembler. Key-
words are reserved; the user cannot define an identifier identical to a keyword. For a
complete list of keywords, see Appendix D.

ASM-86 recognizes five types of keywords: instructions, directives, operators, reg-
isters and predefined numbers. 8086 instruction mnemonic keywords and the actions
they initiate are defined in Section 4. Directives are discussed in Section 3. Section
2.6 defines operators. Table 2-4 lists the ASM-86 keywords that identify 8086 registers,

Three keywords are predefined numbers: BYTE, WORD, and DWORD. The values
of these numbers are 1, 2 and 4, respectively. In addition, a Type attribute is associ-
ated with each of these numbers. The keyword’s Type attribute is equal to the
keyword’s numeric value. See Section 2.5.2 for a complete discussion of Type attributes.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 11




2.5 Identifiers

CP/M-86 Programmer’s Guide

Table 2-4. Register Keywords

Register Size Numeric Meaning

Symbol Value
AH 1 byte 100 B Accumulator-High-Byte
BH 1 111 B Base-Register-High-Byte
CH 1 101 B Count-Register-High-Byte
DH 1 110 B Data-Register-High-Byte
AL 1 000 B Accumulator-Low-Byte
BL 1 011 B Base-Register-Low-Byte
CL 1 001 B Count-Register-Low-Byte
DL 1 010 B Data-Register-Low-Byte
AX 2 bytes 000 B Accumulator (full word)
BX 2 011 B Base-Register '
CX 2 001 B Count-Register '
DX 2 010 B Data-Register '
BP 2 101 B Base Pointer
SP 2 100 B Stack Pointer
S 2 110 B Source Index
DI 2 111 B Destination Index
CS 2 01B Code-Segment-Register
DS 2 11B Data-Segment-Register
SS 2 10B Stack-Segment-Register
ES 2 00 B Extra-Segment-Register

12 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide 2.5 Identifiers

2.5.2 Symbols and Their Attributes

A symbol is a user-defined identifier that has attributes which specify what kind of
information the symbol represents. Symbols fall into three categories:

B variables
R Jabels
® numbers

Variables identify data stored at a particular location in memory. All variables
have the following three attributes:

® Segment—tells which segment was being assembled when the variable was
defined.

¥ Offset—tells how many bytes there are between the beginning of the segment
and the location of this variable.

® Type—tells how many bytes of data are manipulated when this variable is
referenced.

A Segment may be a code-segment, a data-segment, a stack-segment or an extra-
segment depending on its contents and the register that contains its starting address
(see Section 3.2). A segment may start at any address divisible by 16. ASM-86 uses
this boundary value as the Segment portion of the variable’s definition.

The Offset of a variable may be any number between 0 and OFFFFH or 65535D.
A variable must have one of the following Type attributes:

® BYTE
® WORD
B DWORD

BYTE specifies a one-byte variable, WORD a two-byte variable and DWORD a
four-byte variable. The DB, DW, and DD directives respectively define variables as
these three types (see Section 3). For example, a variable is defined when it appears
as the name for a storage directive:

VARIABLE DB 0

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 13




2.5 Identifiers CP/M-86 Programmer’s Guide

A variable may also be defined as the name for an EQU directive referencing another
label, as shown below:

VARIABLE EQU ANOTHER VARIABLE

Labels identify locations in memory that contain instruction statements. They are
referenced with jumps or calls. All labels have two attributes:

B Segment
m  Offset

Label segment and offset attributes are essentially the same as variable segment
and offset attributes. Generally, a label is defined when it precedes an instruction. A
colon, :, separates the label from instruction; for example:

LABEL: ADD  AX,BX

A label may also appear as the name for an EQU directive referencing another
label; for example:

LABEL EQU ANOTHER_LABEL

Numbers may also be defined as symbols. A number symbol is treated as if you
had explicitly coded the number it represents. For example:

Number five EQU )
MOy AL sNumber five

1s equivalent to:
Mov AL 35

Section 2.6 describes operators and their effects on numbers and number symbols.

2.6 Operators

ASM-86 operators fall into the following categories: arithmetic, logical, and rela-
tional operators, segment override, variable manipulators and creators. Table 2-§
defines ASM-86 operators. In this table, a and b represent two elements of the
expression. The validity column defines the type of operands the operator can manip-
ulate, using the or bar character, |, to separate alternatives.

14 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide

Table 2-5. ASM-86 Operators

2.6 Operators

Syntax Result Validity
-~ Logical Operators
a XOR b bit-by-bit  logical a, b = number
EXCLUSIVE OR of
aand b.
aORb bit-by-bit logical OR a, b = number
of a and b.
a AND b bit-by-bit  logical a, b = number
AND of a and b.
NOT a logical inverse of a: a = 16-bit number
all 0’s become 1’s,
1’s become 0s.
Relational Operators
aEQb returns OFFFFH if a a, b = unsigned number
= b, otherwise 0.
. alLTbhb returns OFFFFH if a a, b = unsigned number
< b, otherwise 0.
alLEDb returns OFFFFH if a a, b = unsigned number
<= b, otherwise 0.
aGTb returns OFFFFH if a a, b = unsigned number
> b, otherwise 0.
aGEb returns OFFFFH if a a, b = unsigned number
>= b, otherwise 0.
aNEb returns OFFFFH if a a, b = unsigned number
< > b, otherwise 0.
Arithmetic Operators
a+b arithmetic sum of a a = variable,
and b, label or number
b = number
— a—-b arithmetic difference a = variable,
of a and b. label or number
b = number

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 15




2.6 Operators

Table 2-5. (continued)

CP/M-86 Programmer’s Guide

Syntax

Result

Validity

a*b

alb

aMOD b

aSHL b

aSHR b

does unsigned mul-
tiplication of a and
b.

does unsigned divi-
sion of a and b.
returns remainder of
al/b.

returns the value
which results from
shifting a to left by
an amount b.
returns the value
which results from
shifting a to the right
by an amount b.
gives a.

gives 0 — a.

a, b = number

a, b = number
a, b = number

a, b = number

a, b = number

a = number

a = number

Segment Override

<seg reg>:
<addr exp>

overrides  assem-
bler’s choice of seg-
ment register,

<seg reg> = CS§, DS, SS or ES

Variable Manipulators, Creators

SEG a

OFFSET a

creates a number
whose value is the
segment value of the
variable or label a.

creates a number
whose value is the
offset value of the
variable or label a.

a = label | variable

a = label | variable

16 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide

Table 2-5. (continued)

2.6 Operators

Syntax

Result

Validity

TYPE a

LENGTH a

LAST a

aPTR b

creates a number, If
the variable a is of
type BYTE, WORD
or DWORD, the
value of the number
will be 1, 2 or 4,
respectively.

creates a number
whose value is the
LENGTH attribute
of the variable a.
The length attribute
is the number of
bytes associated with
the variable,

if LENGTH a > 0,
then LAST a =
LENGTH a — 1; if
LENGTH a = 0,
then LAST a = 0.
creates virtual vari-
able or label with
type of a and attri-
butes of b.

creates variable with
an offset attribute of
a. Segment attribute
1§ current segment.
creates label with
offset equal to cur-
rent value of loca-
tion counter; seg-
ment attribute s
current segment,

a = label | variable

a = label | variable

a = label | variable

a = BYTE |
WORD, | DWORD
b = <addr exp>

a = number

no argument

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

17




2.6 Operators CP/M-86 Programmer’s Guide

2.6.1 Operator Examples

Logical operators accept only numbers as operands. They perform the boolean
logic operations AND, OR, XOR, and NOT. For example:

QOFC MASK EQU OFCH

Q08B0 SIGNBIT EQU 80OH
0000 B18O MOV CL+MASK AND SIGNBIT
0002 BOO3 MOV AL YNOT MASK

Relational operators treat all operands as unsigned numbers. The relational opera-
tors are EQ (equal), LT (less than), LE (less than or equal), GT (greater than), GE
(greater than or equal), and NE (not equal). Each operator compares two operands
and returns all ones (OFFFFH) if the specified relation is true and all zeros if it is not.
For example:

QQO0A LIMIT! EQU 10

0019 LIMITZ EQU 29
0004 BBFFFF Moy AXSLIMITL LT LIMITZ
0007 BBOOOO MOV AXHPLIMITL GT LIMITZ

Addition and subtraction operators compute the arithmetic sum and difference of
two operands. The first operand may be a variable, label, or number, but the second
operand must be a number. When a number is added to a variable or label, the result
is a variable or label whose offset is the numeric value of the second operand plus
the offset of the first operand. Subtraction from a variable or label returns a variable
or label whose offset is that of first operand decremented by the number specified in
the second operand. For example:

0002 COUNT EQU 2
0003 DISP1 EQU 9
Q00A FF FLAG DB OFFH
000B ZEAOOBOO Moy AL sFLAG+1
000F ZEBAOEOFOO MoV CL+FLAG+DISPI
0014 B303 Moy BL,DISP1-COUNT

18 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide 2.6 Operators

The multiplication and division operators *, /, MOD, SHL, and SHR accept only
numbers as operands. * and / treat all operators as unsigned numbers. For example:

0016 BESS00 MOV SI4+256/3
0018 B310 MoV BL:G4/4
0030 BUFFERSIZE EQU 80
0018 BBAOOO MOV AX+BUFFERSIZE * 2

Unary operators accept both signed and unsigned operators as shown below:

001E B123 MOV CLs+35
0020 BOO7 Mov AL +2--5
0022 B2ZF4 MoV DLs-12

When manipulating variables, the assembler decides which segment register to use.
You may override the assembler’s choice by specifying a different register with the
segment override operator. The syntax for the override operator is <segment regis-
ter> : <address expression> where the <segment register> is CS, DS, SS, or ES.
For example:

0024 368B472D MOy AX +55:WORDBUFFERIBX]
0028 2G6BBOESBOO MOV CXIES:ARRAY

A variable manipulator creates a number equal to one attribute of its variable
operand. SEG extracts the variable’s segment value, OFFSET its offset value, TYPE
its type value (1, 2, or 4), and LENGTH the number of bytes associated with the
variable. LAST compares the variable’s LENGTH with 0 and if greater, then decre-
ments LENGTH by one. If LENGTH equals 0, LAST leaves it unchanged. Variable
manipulators accept only variables as operators. For example:

002D 000000000000 WORDBUFFER DuW 040,40

0033 0102030405 BUFFER DB 142434445
0038 BB0O500 mov AX+LENGTH BUFFER
003B BBO40O MOV AX+LAST BUFFER
003E BBO10O MOV AXTYPE BUFFER
0041 BB0200 MOy AX+TYPE WORDBUFFER

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 19




2.6 Operators CP/M-86 Programmer’s Guide

The PTR operator creates a virtual variable or label, one valid only during the
execution of the instruction. It makes no changes to either of its operands. The
temporary symbol has the same Type attribute as the left operator, and all other
attributes of the right operator as shown below.

0044 CBO705 MOV BYTE PTR [BX1, 5
0047 BAO7 MoV ALsBYTE PTR [BX1
0049 FFO4 INC WORD PTR [SI]

The Period operator, ., creates a variable in the current data segment. The new
variable has a segment attribute equal to the current data segment and an offset
attribute equal to its operand. Its operand must be a number. For example:

004B A10000 Moy AXy 40
004E ZB8B1E0OQ4O MOV BX+ ES: +AOQOH

The Dollar-sign operator, $, creates a label with an offset attribute equal to the
current value of the location counter. The label’s segment value is the same as the
current code segment. This operator takes no operand. For example:

0033 EYFDFF JMP $
0056 EBFE JMPS %
0038 EYFD2F JMP $+3000H

2.6.2 Operator Precedence

Expressions combine variables, labels or numbers with operators. ASM-86 allows
several kinds of expressions which are discussed in Section 2.7. This section defines
the order in which operations are executed should more than one operator appear in
an expression.

In general, ASM-86 evaluates expressions left to right, but operators with higher
precedence are evaluated before operators with lower precedence. When two opera-
tors have equal precedence, the left-most is evaluated first. Table 2-6 presents ASM-
86 operators in order of increasing precedence.

20 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide 2.6 Operators

Parentheses can override normal rules of precedence. The part of an expression
enclosed in parentheses is evaluated first. If parentheses are nested, the innermost
expressions are evaluated first. Only five levels of nested parentheses are legal. For
example:

15/3 + 18/9
15/7(3 + 18/8

~ H
1l

Table 2-6. Precedence of Operations in ASM-86

Order Operator Type Operators
1 Logical XOR, OR
2 Logical AND
3 Logical NOT
4 Relational EQ, LT, LE, GT, GE,
NE
) Addition/subtraction +, —
6 Multiplication/division * 1, MOD, SHL, SHR
7 Unary +, -
8 Segment override <segment override>:
9 Variable manipulators, SEG, OFFSET, PTR,
creators TYPE, LENGTH, LAST
10 Parentheses/brackets (), []
11 Period and Dollar o $

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 21




2.7 Expressions CP/M-86 Programmer’s Guide

2.7 Expressions

ASM-86 allows address, numeric, and bracketed expressions. An address expres-
sion evaluates to a memory address and has three components:

B A segment value
B An offset value
B Atype

Both variables and labels are address expressions. An address expression is not a
number, but its components are. Numbers may be combined with operators such as
PTR to make an address expression.

A numeric expression evaluates to a number. It does not contain any variables or
labels, only numbers and operands.

Bracketed expressions specify base- and index- addressing modes. The base regis-
ters are BX and BP, and the index registers are DI and SI. A bracketed expression
may consist of a base register, an index register, or a base register and an index
register.

Use the + operator between a base register and an index register to specify both
base- and index-register addressing. For example:

MOV wvariablelbx]:0

MOV  AX,[BX+DI1]
MOV  AX[8I11]

22 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide 2.8 Statements

2.8 Statements

Just as ‘tokens’ in this assembly language correspond to words in English, so are
statements analogous to sentences. A statement tells ASM-86 what action to perform.
Statements are of two types: instructions and directives. Instructions are translated
by the assembler into 8086 machine language instructions. Directives are not trans-
lated into machine code but instead direct the assembler to perform certain clerical
functions.

Terminate each assembly language statement with a carriage return (CR) and line
feed (LF), or with an exclamation point, !, which ASM-86 treats as an end-of-line.
Multiple assembly language statements can be written on the same physical line if
separated by exclamation points.

The ASM-86 instruction set is defined in Section 4. The syntax for an instruction
statement is:

[label:] [prefix] mnemonic [ operand(s)] [;comment]

where the fields are defined as:

label: A symbol followed by ‘’ defines a label at the current value
of the location counter in the current segment. This field is
optional.

prefix Certain machine instructions such as LOCK and REP may
prefix other instructions. This field is optional.

mnemonic A symbol defined as a machine instruction, either by the

assembler or by an EQU directive. This field is optional unless
preceded by a prefix instruction. If it is omitted, no operands
may be present, although the other fields may appear. ASM-
86 mnemonics are defined in Section 4.

operand(s) An instruction mnemonic may require other symbols to rep-
resent operands to the instruction. Instructions may have zero,
one or two operands,

comment Any semicolon (;) appearing outside a character string begins
a comment, which is ended by a carriage return. Comments
improve the readability of programs. This field is optional.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 23




2.8 Statements CP/M-86 Programmer’s Guide

ASM-86 directives are described in Section 3. The syntax for a directive state-
ment 1s:

[name] directive operand(s) [;comment]
where the fields are defined as:

name Unlike the label field of an instruction, the name field of a
directive is never terminated with a colon. Directive names
are legal for only DB, DW, DD, RS and EQU. For DB, DW,
DD and RS the name is optional; for EQU it is required.

directive One of the directive keywords defined in Section 3.

operand(s) Analogous to the operands to the instruction mnemonics. Some
directives, such as DB, DW, and DD, allow any operand while
others have special requirements.

comment Exactly as defined for instruction statements.

End of Section 2

24 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




Section 3
Assembler Directives

3.1 Introduction

Directive statements cause ASM-86 to perform housekeeping functions such as
assigning portions of code to logical segments, requesting conditional assembly, defining
data items, and specifying listing file format. General syntax for directive statements
appears in Section 2.8.

In the sections that follow, the specific syntax for each directive statement is given
under the heading and before the explanation. These syntax lines use special symbols
to represent possible arguments and other alternatives. Square brackets, [ ], enclose
optional arguments. Angle brackets, <>, enclose descriptions of user-supplied argu-
ments. Do not include these symbols when coding a directive,

3.2 Segment Start Directives

At run-time, every 8086 memory reference must have a 16-bit segment base value
and a 16-bit offset value. These are combined to produce the 20-bit effective address
needed by the CPU to physically address the location. The 16-bit segment base value
or boundary is contained in one of the segment registers CS, DS, SS, or ES. The
offset value gives the offset of the memory reference from the segment boundary. A
16-byte physical segment is the smallest relocatable unit of memory.

ASM-86 predefines four logical segments: the Code Segment, Data Segment, Stack
Segment, and Extra Segment, which are respectively addressed by the CS, DS, S,
and ES registers. Future versions of ASM-86 will support additional segments such
as multiple data or code segments. All ASM-86 statements must be assigned to one
of the four currently supported segments so that they can be referenced by the CPU.
A segment directive statement, CSEG, DSEG, SSEG, or ESEG, specifies that the
statements following it belong to a specific segment. The statements are then addressed
by the corresponding segment register. ASM-86 assigns statements to the specified
segment until it encounters another segment directive.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 25

wn
g
N
a
0
3
w




3.2 Segment Start Directives CP/M-86 Programmer’s Guide

Instruction statements must be assigned to the Code Segment. Directive statements
‘may be assigned to any segment. ASM-86 uses these assignments to change from one
segment register to another. For example, when an instruction accesses a memory
variable, ASM-86 must know which segment contains the variable so it can generate
a segment override prefix byte if necessary.

3.2.1 The CSEG Directive

CSEG <numeric expression>
CSEG
CSEG §

This directive tells the assembler that the following statements belong in the Code
Segment. All instruction statements must be assigned to the Code Segment. All direc-
tive statements are legal within the Code Segment.

Use the first form when the location of the segment is known at assembly time;
the code generated is not relocatable. Use the second form when the segment location
is not known at assembly time; the code generated is relocatable. Use the third form
to continue the Code Segment after it has been interrupted by a DSEG, SSEG, or
ESEG directive. The continuing Code Segment starts with the same attributes, such
as location and instruction pointer, as the previous Code Segment.

3.2.2 'The DSEG Directive

DSEG <numeric expression>
DSEG
DSEG §

This directive specifies that the following statements belong to the Data Segment.
The Data Segment primarily contains the data allocation directives DB, DW, DD and
RS, but all other directive statements are also legal. Instruction statements are illegal
in the Data Segment.

Use the first form when the location of the segment is known at assembly time;
the code generated is not relocatable. Use the second form when the segment location
is not known at assembly time; the code generated is relocatable. Use the third form
to continue the Data Segment after it has been interrupted by a CSEG, SSEG, or
ESEG directive. The continuing Data Segment starts with the same attributes as the
previous Data Segment.

26 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide 3.2 Segment Start Directives

3.2.3 The SSEG Directive

SSEG <numeric expression>
SSEG

SSEG $

The SSEG directive indicates the beginning of source lines for the Stack Segment.
Use the Stack Segment for all stack operations. All directive statements are legal in
the Stack Segment, but instruction statements are illegal.

Use the first form when the location of the segment is known at assembly time;
the code generated is not relocatable. Use the second form when the segment location
is not known at assembly time; the code generated is relocatable. Use the third form
to continue the Stack Segment after it has been interrupted by a CSEG, DSEG, or
ESEG directive. The continuing Stack Segment starts with the same attributes as the
previous Stack Segment.

3.2.4 The ESEG Directive

ESEG <numeric expression>
ESEG
ESEG §

This directive initiates the Extra Segment. Instruction statements are not legal in
this segment, but all directive statements are.

Use the first form when the location of the segment is known at assembly time;
the code generated is not relocatable. Use the second form when the segment location
is not known at assembly time; the code generated is relocatable. Use the third form
to continue the Extra Segment after it has been interrupted by a DSEG, SSEG, or
CSEG directive. The continuing Extra Segment starts with the same attributes as the
previous Extra Segment.

ALL INFORMATION PRESENTED HERE [S PROPRIETARY TO DIGITAL RESEARCH 27




3.3 The ORG Directive CP/M-86 Programmer’s Guide

3.3 The ORG Directive
ORG <numeric expression>

The ORG directive sets the offset of the location counter in the current segment to
the value specified in the numeric expression. Define all elements of the expression
before the ORG directive because forward references may be ambiguous.

In most segments, an ORG directive is unnecessary. If no ORG is included before
the first instruction or data byte in a segment, assembly begins at location zero
relative to the beginning of the segment. A segment can have any number of ORG
directives.

3.4 The IF and ENDIF Directives

IF <numeric expression>
<sowurce line 1 >
<source line 2 >

<sowurce line n >
ENDIF

The IF and ENDIF directives allow a group of source lines to be included or
excluded from the assembly. Use conditional directives to assemble several different
versions of a single source program.

When the assembler finds an IF directive, it evaluates the numeric expression fol-
lowing the IF keyword. If the expression evaluates to a non-zero value, then <source
line 1> through <source line n> are assembled. If the expression evaluates to zero,
then all lines are listed but not assembled. All elements in the numeric expression

must be defined before they appear in the IF directive. Nested IF directives are not
legal.

28 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide 3.5 The INCLUDE Directive

3.5 The INCLUDE Directive
INCLUDE <file name>
This directive includes another ASM-86 file in the source text. For example:
INCLUDE EQUALS.ABE

Use INCLUDE when the source program resides in several different files. INCLUDE
directives may not be nested; a source file called by an INCLUDE directive may not
contain another INCLUDE statement. If <file name> does not contain a file type,
the file type is assumed to be .A86. If no drive name is specified with <file name>,
ASM-86 assumes the drive containing the source file.

3.6 The END Directive
END

An END directive marks the end of a source file. Any subsequent lines are ignored
by the assembler. END is optional. If not present, ASM-86 processes the source until
it finds an End-Of-File character (1AH).

3.7 The EQU Directive

symbol EQU <numeric expression>
symbol EQU <address expression>
symbol EQU <register>

symbol EQU <instruction mnemonic>

The EQU (equate) directive assigns values and attributes to user-defined symbols.
The required symbol name may not be terminated with a colon. The symbol cannot
be redefined by a subsequent EQU or another directive. Any elements used in numeric
or address expressions must be defined before the EQU directive appears.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 29




3.7 The EQU Directive CP/M-86 Programmer’s Guide

The first form assigns a numeric value to the symbol, the second a memory address.
The third form assigns a new name to an 8086 register. The fourth form defines a
new instruction (sub)set. The following are examples of these four forms:

0005 FIVE EQU 2%2+1

0033 NEXT EQU BUFFER
0001 COUNTER EQU CX
MOVUY EQU MoV

005D BBC3 MOVYY AKX BX

3.8 The DB Directive

[symbol] DB <numeric expression>[,<numeric expression>..]
[symbol] DB <string constant>[,<string constant>...)

The DB directive defines initialized storage areas in byte format. Numeric expres-
sions are evaluated to 8-bit values and sequentially placed in the hex output file.
String constants are placed in the output file according to the rules defined in Section
2.4.2. A DB directive is the only ASM-86 statement that accepts a string constant
longer than two bytes. There is no translation from lower to upper case within
strings. Multiple expressions or constants, separated by commas, may be added to
the definition, but may not exceed the physical line length.

Use an optional symbol to reference the defined data area throughout the program.
The symbol has four attributes: the Segment and Offset attributes determine the
symbol’s memory reference, the Type attribute specifies single bytes, and Length tells
the number of bytes (allocation units) reserved.

The following statements show DB directives with symbols:

005F 43502F4D2073 TEXT DB "CP/M system’ 0
787374656D00

00BB E1 AA DB ‘a’ + BOH

006C 0102030405 X DB 142333445

0071 BOOCOO Moy CXsLENGTH TEXT

30 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide 3.9 The DW Directive

3.9 The DW Directive

[symbol] DW <numeric expression>[,<numeric expression>..]
[symbol] DW <string constant>[,<string constant>...]

The DW directive initializes two-byte words of storage. String constants longer
than two characters are illegal. Otherwise, DW uses the same procedure to initialize
storage as DB. The following are examples of DW statements:

0074 0000 CNTR DU 0

0076 63C166C169C1 JMPTAB DW SUBR1SUBRZ »SUBR3

007€ 010002000300 DuW 14243444546
040003000600

3.10 The DD Directive

[symbol] DD <numeric expression>{,<numeric expression>..]

The DD directive initializes four bytes of storage. The Offset attribute of the
address expression is stored in the two lower bytes, the Segment attribute in the two
upper bytes. Otherwise, DD follows the same procedure as DB. For example:

1234
0000 BCC134126FC1 LONG JMPTAB DD ROUT! :ROUTZ
3412
0008 72C1341275C1 DD ROUT3»ROUTA
3412

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 31




3.11 The RS Directive CP/M-86 Programmer’s Guide

3.11 The RS Directive
[symbol] RS <numeric expression>
The RS directive allocates storage in memory but does not initialize it. The numeric

expression gives the number of bytes to be reserved. An RS statement does not give
a byte attribute to the optional symbol. For example:

0010 BUF RS BO
00B0 RS 4000H
4060 RS 1

3.12 The RB Directive

[symbol] RB <numeric expression>

The RB directive allocates byte storage in memory without any initialization, This
directive is identical to the RS directive except that it does give the byte attribute.

3.13 The RW Directive
[symbol] RW <numeric expression>

The RW directive allocates two-byte word storage in memory but does not initial-
ize it. The numeric expression gives the number of words to be reserved. For example:

4061 BUFF RUW 128
4161 RUW 4000H
C161 RUW 1

32 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DICITAL RESEARCH




CP/M-86 Programmer’s Guide 3.14 The TITLE Directive

3.14 The TITLE Directive
TITLE <string constant>
ASM-86 prints the string constant defined by a TITLE directive statement at the

top of each printout page in the listing file. The title character string should not
exceed 30 characters. For example:

TITLE ‘CP/M monitor’

3.15 The PAGESIZE Directive
PAGESIZE <numeric expression>

The PAGESIZE directive defines the number of lines to be included on each print-
out page. The default pagesize is 66.

3.16 The PAGEWIDTH Directive
PAGEWIDTH <numeric expression>

The PAGEWIDTH directive defines the number of columns printed across the page
when the listing file is output. The default pagewidth is 120 unless the listing is
routed directly to the terminal; then the default pagewidth is 79.

3.17 The EJECT Directive
EJECT

The EJECT directive performs a page eject during printout. The EJECT directive
itself is printed on the first line of the next page.

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 33




| 3.18 The SIMFORM Directive CP/M-86 Programmer’s Guide

3.18 The SIMFORM Directive

SIMFORM

The SIMFORM directive replaces a form-feed (FF) character in the print file with
the correct number of line-feeds (LF). Use this directive when printing out on a
printer unable to interpret the form-feed character.

3.19 The NOLIST and LIST Directives

NOLIST
LIST

The NOLIST directive blocks the printout of the following lines. Restart the listing

with a LIST directive.

End of Section 3

34 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




Section 4
The ASM-86 Instruction Set

4.1 Introduction

The ASM-86 instruction set includes all 8086 machine instructions. The general
syntax for instruction statements is given in Section 2.7. The following sections define
the specific syntax and required operand types for each instruction, without reference
to labels or comments. The instruction definitions are presented in tables for easy
reference. For a more detailed description of each instruction, see Intel’s MCS-86
Assembly Language Reference Manual. For descriptions of the instruction bit pat-
terns and operations, see Intel’s MCS-86 User’s Manual.

The instruction-definition tables present ASM-86 instruction statements as combi-
nations of mnemonics and operands. A mnemonic is a symbolic representation for
an instruction, and its operands are its required parameters. Instructions can take
zero, one or two operands. When two operands are specified, the left operand is the
instruction’s destination operand, and the two operands are separated by a comma.

The instruction-definition tables organize ASM-86 instructions into functional groups.

Within each table, the instructions are listed alphabetically. Table 4-1 shows the
symbols used in the instruction-definition tables to define operand types.

ALL INFORMATION PRESENTED HERE {S PROPRIETARY TO DIGITAL RESEARCH 35

wn
M
N
=,
0
>
IN




4.1 Introduction CP/M-86 Programmer’s Guide

Table 4-1. Operand Type Symbols

Symbol Operand Type
numb any NUMERIC expression
numb8 any NUMERIC expression which evaluates to an

8-bit number

acc accumulator register, AX or AL
reg any general purpose register, not segment register
reglé a 16-bit general purpose register, not segment register
segreg any segment register: CS, DS, SS, or ES
mem any ADDRESS expression, with or without base- and/or index-

addressing modes, such as:

variable

variable + 3
variable[bx]
variable[SI]
variable[BX + SI]
[BX]

[BP+DI]

simpmem any ADDRESS expression WITHOUT base- and index-
addressing modes, such as:

variable
variable + 4

mem|reg any expression symbolized by ‘reg’ or ‘mem’
mem|reg16 any expression symbolized by ‘mem|reg’, but must be 16 bits
label any ADDRESS expression which evaluates to a label

lab8 any ‘label’ which is within = 128 bytes distance from the
instruction

36 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide 4.1 Introduction

The 8086 CPU has nine single-bit Flag registers which reflect the state of the CPU.
The user cannot access these registers directly, but can test them to determine the
effects of an executed instruction upon an operand or register. The effects of instruc-
tions on Flag registers are also described in the instruction-definition tables, using the
symbols shown in Table 4-2 to represent the nine Flag registers.

Table 4-2. Flag Register Symbols

AF Auxiliary-Carry-Flag
CF Carry-Flag

DF Direction-Flag

IF Interrupt-Enable-Flag
OF Overflow-Flag

PF Parity-Flag

SF Sign-Flag

TF Trap-Flag

ZF Zero-Flag

4.2 Data Transfer Instructions

There are four classes of data transfer operations: general purpose, accumulator
specific, address-object and flag. Only SAHF and POPF affect flag settings. Note in
Table 4-3 that if acc = AL, a byte is transferred, but if acc = AX, a word is
transferred.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 37




4.2 Data Transfer Instructions CP/M-86 Programmer’s Guide

Table 4-3. Data Transfer Instructions

Syntax Result
IN acc,numb8|numb16 transfer data from input port given by
numb8 or numb16 (0-255) to
accumulator
IN acc,DX transfer data from input port given by

DX register (0-OFFFFH) to accumulator
LAHF transfer flags to the AH register

LDS regl6,mem transfer the segment part of the mem-
ory address (DWORD variable) to the
DS segment register, transfer the offset
part to a general purpose 16-bit register

LEA reg16,mem transfer the offset’ of the memory
address to a (16-bit) register

LES regl6,mem transfer the segment part of the mem-
ory address to the ES segment register,
transfer the offset part to a 16-bit gen-
eral purpose register

MOV reg,mem|reg Mmove memory or register to register

MOV mem|reg,reg move register to memory or register

MOV mem|reg,numb move immediate data to memory or
register

MOV segreg,mem|regl6 move memory or register to segment
register

MOV mem|reg16,segreg move segment register to memory or
register

ouT numb8|numb16,acc transfer data from accumulator to out-
put port (0-255) given by numb8 or
numb16

38 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide 4.2 Data Transfer Instructions

Table 4-3. (continued)

Syntax Result
- ouT DXacc transfer data from accumulator to out-
put port (0-OFFFFH) given by DX
register
POP mem|regl6 move top stack element to memory or
register
POP segreg move top stack element to segment

register; note that CS segment register
not allowed

POPF transfer top stack element to flags

PUSH mem|reg16 move memory or register to top stack
element

—~ PUSH segreg move segment register to top stack

element

PUSHF transfer flags to top stack element

SAHF | transfer the AH register to flags

XCHG = reg,mem|reg exchange register and memory or
register

XCHG mem|reg,reg exchange memory or register and
register

XLAT mem|reg perform table lookup translation, table

given by ‘mem|reg’, which is always
BX. Replaces AL with AL offset from
— BX

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 39




4.3 Arithmetic, Logic, and Shift CP/M-86 Programmer’s Guide

4.3 Arithmetic, Logical, and Shift Instructions

The 8086 CPU performs the four basic mathematical operations in several differ-
ent ways. It supports both 8- and 16-bit operations and also signed and unsigned
arithmetic.

Six of the nine flag bits are set or cleared by most arithmetic operations to reflect
the result of the operation. Table 4-4 summarizes the effects of arithmetic instruc-
tions on flag bits. Table 4-5 defines arithmetic instructions and Table 4-6 logical and
shift instructions.

Table 4-4. Effects of Arithmetic Instructions on Flags

CF is set if the operation resulted in a carry out of (from addition) or a
borrow into (from subtraction) the high-order bit of the result; other-
wise CF is cleared.

AF is set if the operation resulted in a carry out of (from addition) or a
borrow into (from subtraction) the low-order four bits of the result;
otherwise AF is cleared.

ZF is set if the result of the operation is zero; otherwise ZF is cleared.
SF is set if the result is negative.
PF is set if the modulo 2 sum of the low-order eight bits of the result of

the operation is 0 (even parity); otherwise PF is cleared (odd parity).

OF is set if the operation resulted in an overflow; the size of the result
exceeded the capacity of its destination.

40 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide 4.3 Arithmetic, Logic, and Shift

Table 4-5. Arithmetic Instructions

Syntax Result

AAA adjust unpacked BCD (ASCII) for addition—
adjusts AL

AAD adjust unpacked BCD (ASCII) for division—
adjusts AL

AAM adjust unpacked BCD (ASCII) for multiplica-
tion—adjusts AX

AAS adjust unpacked BCD (ASCII) for subtrac-
tion—adjusts AL

ADC reg,mem|reg add (with carry) memory or register to register

ADC mem|reg,reg add (with carry) register to memory or register

ADC mem|reg,numb add (with carry) immediate data to memory

or register

ADD reg,mem|reg add memory or register to register

ADD mem|reg,reg add register to memory or register

ADD mem|reg,numb add immediate data to memory or register

CBW convert byte in AL to word in AH by sign
extension

CWD convert word in AX to double word in DX/
AX by sign extension

CMP reg,mem|reg compare register with memory or register

CMP mem|reg,reg compare memory or register with register

CMP mem|reg,numb compare data constant with memory or
register

DAA decimal adjust for addition, adjusts AL

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 41




4.3 Arithmetic, Logic, and Shift

CP/M-86 Programmer’s Guide

Table 4-5. (continued)

Result

Syntax
DAS
DEC mem|reg
INC mem|reg
DIV mem|reg
IDIV mem|reg
IMUL mem|reg
MUL mem|reg
NEG mem|reg
SBB reg,mem|reg
SBB mem|reg,reg
SBB mem|reg,numb
SUB reg,mem|reg
SUB mem|reg,reg
SUB mem|reg,numb

decimal adjust for subtraction, adjusts AL
subtract 1 from memory or register
add 1 to memory or register

divide (unsigned) accumulator (AX or AL) by
memory or register. If byte results, AL =
quotient, AH = remainder. If word results,
AX = quotient, DX = remainder

divide (signed) accumulator (AX or AL) by
memory or register—quotient and remainder
stored as in DIV

multiply (signed) memory or register by accu-
mulator (AX or AL)—if byte, results in AH,
AL. If word, results in DX, AX

multiply (unsigned) memory or register by
accumulator (AX or AL)—results stored as
in IMUL

two’s complement memory or register

subtract (with borrow) memory or register
from register

subtract (with borrow) register from memory
or register

subtract (with borrow) immediate data from
memory or register

subtract memory or register from register
subtract register from memory or register

subtract data constant from memory or
register

42 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide

4.3 Arithmetic, Logic, and Shift

Table 4-6. Logic Shift Instructions

Syntax Result
B AND reg,mem|reg perform bitwise logical ‘and’ of a register and

memory register

AND mem|reg,reg perform bitwise logical ‘and’ of memory reg-
ister and register

AND mem|reg,numb perform bitwise logical ‘and’ of memory reg-
ister and data constant

NOT mem|reg form ones complement of memory or register

OR reg,mem|reg perform bitwise logical ‘or’ of a register and
memory register

OR memi|reg,reg perform bitwise logical ‘or’ of memory regis-
ter and register

OR mem|reg,numb perform bitwise logical ‘or’ of memory regis-
ter and data constant

RCL mem|reg,1 rotate memory or register 1 bit left through
carry flag

RCL mem|reg,CL rotate memory or register left through carry
flag, number of bits given by CL register

RCR mem|reg, 1 rotate memory or register 1 bit right through
carry flag

RCR mem|reg,CL rotate memory or register right through carry
flag, number of bits given by CL register

—~ ROL mem|reg,1 rotate memory or register 1 bit left

ROL mem|reg,CL rotate memory or register left, number of bits
given by CL register

ROR mem|reg,1 rotate memory or register 1 bit right

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

43




4.3  Arithmetic, Logic, and Shift

CP/M-86 Programmer’s Guide

Table 4-6. (continued)

Result

Syntax
ROR mem|reg,CL
SAL mem|reg, 1
SAL mem|reg,CL
SAR mem|reg,1
SAR mem|reg,CL
SHL mem|reg,1
SHL mem|reg,CL
SHR mem|reg, 1
SHR mem|reg,CL
TEST reg,mem|reg

rotate memory or register right, number of
bits given by CL register

shift memory or register 1 bit left, shift in
low-order zero bits

shift memory or register left, number of bits
given by CL register, shift in low-order zero
bits

shift memory or register 1 bit right, shift in
high-order bits equal to the original high-order
bit

shift memory or register right, number of bits
given by CL register, shift in high-order bits
equal to the original high-order bit

shift memory or register 1 bit left, shift in
low-order zero bits—note that SHL is a dif-
ferent mnemonic for SAL

shift memory or register left, number of bits
given by CL register, shift in low-order zero
bits—note that SHL is a different mnemonic
for SAL

shift memory or register 1 bit right, shift in
high-order zero bits

shift memory or register right, number of bits
given by CL register, shift in high-order zero
bits

perform bitwise logical ‘and’ of a register and
memory or register—set condition flags but
do not change destination

44 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide 4.3 Arithmetic, Logic, and Shift

Table 4-6. (continued)
Syntax Result

- TEST mem|reg,reg perform bitwise logical ‘and’ of memory reg-
ister and register—set condition flags but do
not change destination

TEST mem|reg,numb perform bitwise logical ‘and’—test of mem-
ory register and data constant—set condition
flags but do not change destination

XOR reg,mem|reg perform bitwise logical ‘exclusive OR’ of a
register and memory or register

XOR mem|reg,reg perform bitwise logical ‘exclusive OR’ of
memory register and register

XOR mem|reg,numb perform bitwise logical ‘exclusive OR’ of
memory register and data constant

4.4 String Instructions

String instructions take one or two operands. The operands specify only the oper-
and type, determining whether operation is on bytes or words. If there are two
operands, the source operand is addressed by the SI register and the destination
operand is addressed by the DI register. The DI and SI registers are always used for
addressing. Note that for string operations, destination operands addressed by DI
must always reside in the Extra Segment (ES).

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 45




4.4 String Instructions CP/M-86 Programmer’s Guide

Table 4-7. String Instructions

Syntax Result

CMPS mem|reg,mem|reg subtract source from destination, affect
flags, but do not return result.

LODS mem|reg transfer a byte or word from the source
operand to the accumulator.

MOVS mem|reg,mem|reg move 1 byte (or word) from source to
destination.

SCAS mem|reg subtract destination operand from accu-
mulator (AX or AL), affect flags, but do
not return result.

STOS mem|reg transfer a byte or word from accumulator
to the destination operand.

Table 4-8 defines prefixes for string instructions. A prefix repeats its string instruc-
tion the number of times contained in the CX register, which is decremented by 1
for each iteration. Prefix mnemonics precede the string instruction mnemonic in the
statement line as shown in Section 2.8.

Table 4-8. Prefix Instructions

Syntax Result
REP repeat until CX register is zero
REPZ repeat until CX register is zero and zero flag (ZF) is not zero
REPE equal to ‘REPZ’
REPNZ repeat until CX register is zero and zero flag (ZF) is zero
REPNE equal to ‘REPNZ’

46 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide 4.5 Control Transfer Instructions

4.5 Control Transfer Instructions
There are four classes of control transfer instructions:

calls, jumps, and returns
conditional jumps
iterational control
interrupts

All control transfer instructions cause program execution to continue at some new
location in memory, possibly in a new code segment. The transfer may be absolute
or depend upon a certain condition. Table 4-9 defines control transfer instructions.
In the definitions of conditional jumps, ‘above’ and ‘below’ refer to the relationship
between unsigned values, and ‘greater than’ and ‘less than’ refer to the relationship
between signed values.

Table 4-9. Control Transfer Instructions

Syntax Result

CALL label push the offset address of the next instruc-
tion on the stack, jump to the target label

CALL mem|reg16 push the offset address of the next instruc-
tion on the stack, jump to location indicated
by contents of specified memory or register

CALLF label push CS segment register on the stack, push
the offset address of the next instruction on
the stack (after CS), jump to the target label

CALLF mem push CS register on the stack, push the offset
address of the next instruction on the stack,
jump to location indicated by contents of
specified double word in memory

INT numb8 push the flag registers (as in PUSHF), clear
TF and IF flags, transfer control with an
indirect call through any one of the 256
interrupt-vector elements - uses three levels
of stack

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 47




4.5 Control Transfer Instructions

CP/M-86 Programmer’s Guide

Table 4-9. (continued)

Syntax

Result

INTO

IRET

JA

JAE

JB

JBE

IC
JCXZ
JE

IG

JGE

JL

lab8

lab8

lab8

lab8

lab8
1ab8
lab8

lab8

lab8

lab8

if OF (the overflow flag) is set, push the flag
registers (as in PUSHF), clear TF and IF flags,
transfer control with an indirect call through
interrupt-vector element 4 (location 10H)—
if the OF flag is cleared, no operation takes
place

transfer control to the return address saved
by a previous interrupt operation, restore
saved flag registers, as well as CS and IP—
pops three levels of stack

jump if ‘not below or equal’ or ‘above’ ( (CF
or ZF)=0)

jump if ‘not below’ or ‘above or equal’
(CF=0)

jump if ‘below’ or ‘not above or equal’
(CF=1)

jump if ‘below or equal’ or ‘not above’ ((CF
or ZF)=1)

same as ‘|B’
jump to target label if CX register is zero
jump if ‘equal’ or ‘zero’ (ZF=1)

jump if ‘not less or equal’ or ‘greater’ (((SF
xor OF) or ZF)=0)

jump if ‘not less’ or ‘greater or equal’ ((SF
xor OF)=0)

jump if ‘less’ or ‘not greater or equal’ ((SF
xor OF)=1)

48 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESFARCH




CP/M-86 Programmer’s Guide 4.5 Control Transfer Instructions

Table 4-9. (continued)

Syntax Result
JLE lab8 jump if ‘less or equal’ or ‘not greater’ (((SF
xor OF) or ZF)=1)
JMP label jump to the target label
JMP mem|reg16 jump to location indicated by contents of

specified memory or register

JMPF label jump to the target label possibly in another
code segment

JMPS lab8 jump to the target label within = 128 bytes
from instruction

JNA lab8 same as ‘|BE’

JNAE lab8 same as ‘JB’

JNB lab8 same as ‘JAE’

JNBE lab8 same as ‘JA’

JNC lab8 same as ‘JNB’

JNE lab8 jump if ‘not equal’ or ‘not zero’ ( ZF=0)

JNG lab8 same as ‘JLE’

JNGE lab8 same as ‘JL’

JNL lab8 same as ‘JGE’

JNLE lab8 same as ‘|G’

JNO lab8 jump if ‘not overflow’ ( OF=0)

JNP lab8 jump if ‘not parity’ or ‘parity odd’

ALL INFORMATION PRESENTED HERE (5 PROPRIETARY TO DIGITAL RESEARCH 49




4.5 Control Transfer Instructions

CP/M-86 Programmer’s Guide

Table 4-9. (continued)

Syntax Result

JNS lab8 jump if ‘not sign’

JNZ lab8 same as ‘JNE’

JO lab8 jump if ‘overflow’ ( OF=1)

JP lab8 jump if ‘parity’ or ‘parity even’ ( PF=1)

JPE lab8 same as ‘JP’

JPO lab8 same as ‘JNP’

JS lab8 jump if ‘sign’ ( SF=1)

JZ lab8 same as ‘JE’

LOOP lab8 decrement CX register by one, jump to target
label if CX is not zero

LOOPE lab8 decrement CX register by one, jump to target
label if CX is not zero and the ZF flag is set
—*loop while zero’ or ‘loop while equal’

LOOPNE lab8 decrement CX register by one, jump to target
label if CX is not zero and ZF flag is cleared
—‘loop while not zero’ or ‘loop while not
equal’

LOOPNZ lab8 same as ‘LOOPNE’

LOOPZ lab8 same as ‘LOOPE’

RET return to the return address pushed by a pre-
vious CALL instruction, increment stack
pointer by 2

RET numb return to the address pushed by a previous
CALL, increment stack pointer by 2 +numb

50 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide 4.5 Control Transfer Instructions

Table 4-9. (continued)
Syntax Result

RETF return to the address pushed by a previous
CALLF instruction, increment stack pointer
by 4

RETF numb return to the address pushed by a previous
CALLF instruction, increment stack pointer
by 4+ numb

4.6 Processor Control Instructions

Processor control instructions manipulate the flag registers. Moreover, some of
these instructions can synchronize the 8086 CPU with external hardware.

Table 4-10. Processor Control Instructions

Syntax Results
CLC clear CF flag

CLD clear DF flag, causing string instructions to
auto-increment the operand pointers

CLI clear IF flag, disabling maskable external
interrupts

CMC complement CF flag

ESC numb8,mem|reg do no operation other than compute the

effective address and place it on the address
bus (ESC is used by the 8087 numeric co-
processor), ‘numb8’ must be in the range 0
to 63

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 51




4.6 Processor Control Instructions

CP/M-86 Programmer’s Guide

Table 4-10. (continued)

Syntax

Results

LOCK

HLT

STC

STD

STI

WAIT

PREFIX instruction, cause the 8086 pro-
cessor to assert the ‘bus-lock’ signal for the
duration of the operation caused by the
following instruction—the LOCK prefix
instruction may precede any other instruc-
tion—buslock prevents co-processors from
gaining the bus; this is useful for shared-
resource semaphores

cause 8086 processor to enter halt state until
an interrupt is recognized

set CF flag

set DF flag, causing string instructions to
auto-decrement the operand pointers

set IF flag, enabling maskable external
interrupts

cause the 8086 processor to enter a ‘wait’
state if the signal on its “TEST’ pin is not
asserted

End of Section 4

52 ALL INFORMATION PRESENTED HERE {5 PROPRIETARY TO DIGITAL RESEARCH




Section 5
Code-Macro Facilities

5.1 Introduction to Code-macros

ASM-86 does not support traditional assembly-language macros, but it does allow
the user to define his own instructions by using the code-macro directive. Like
traditional macros, code-macros are assembled wherever they appear in assembly
language code, but there the similarity ends. Traditional macros contain assembly
language instructions, but a code-macro contains only code-macro directives. Macros
are usually defined in the user’s symbol table; ASM-86 code-macros are defined in
the assembler’s symbol table. A macro simplifies using the same block of instructions
over and over again throughout a program, but a code-macro sends a bit stream to
the output file and in effect adds a new instruction to the assembler.

Because ASM-86 treats a code-macro as an instruction, you can invoke code-
macros by using them as instructions in your program. The example below shows
how MAC, an instruction defined by a code-macro, can be invoked.

+

+

KCHG BX:WORD3
MAC PAR1:PARZ
MUL AX,WORD4

+
+

+

Note that MAC accepts two operands. When MAC was defined, these two oper-
ands were also classified as to type, size, and so on by defining MAC’s formal
parameters. The names of formal parameters are not fixed. They are stand-ins which
are replaced by the names or values supplied as operands when the code-macro is
invoked. Thus formal parameters ‘hold the place’ and indicate where and how the
operands are to be used.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 53

n
0
N
=
0
3
92




5.1 Introduction to Code-macros CP/M-86 Programmer’s Guide

The definition of a code-macro starts with a line specifying its name and its formal
parameters, if any:

CodeMacro <name> [<formal parameter list>]
where the optional <formal parameter list> is defined:
<formal name>:<specifier letter>[<modifier letter>][range>]

As stated above, the formal name is not fixed, but a place holder. If formal param-
eter list is present, the specifier letter is required and the modifier letter is optional.
Possible specifiers are A, C, D, E, M, R, S, and X. Possible modifier letters are b, d,
w, and sb. The assembler ignores case except within strings, but for clarity, this
section shows specifiers in upper-case and modifiers in lower-case. Following sections
describe specifiers, modifiers, and the optional range in detail.

The body of the code-macro describes the bit pattern and formal parameters. Only
the following directives are legal within code-macros:

SEGFIX
NOSEGFIX
MODRM
RELB
RELW

DB

Dl

DD

DBIT

These directives are unique to code-mactos, and those which appear to duplicate
ASM-86 directives (DB, DW, and DD) have different meanings in code-macro con-
text. These directives are discussed in detail in later sections. The definition of a
code-macro ends with a line:

EndM

CodeMacro, EndM, and the code-macro directives are all reserved words. Code-
macro definition syntax is defined in Backus-Naur-like form in Appendix H. The
following examples are typical code-macro definitions.

54 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide 5.1 Introduction to Code-macros

CodeMacro AAA
DB 37H
EndM

CodeMacro DIV divisor:Eb
SEGFIX divisor

DB BFH
MODRM divisor
EndM

CodeMacro ESC opcode:Db(0:63)ssrc:Eb
SEGFIX src
DBIT S5(1BH)3(orcode(3))
MODRM orcodessre

EndM

5.2 Specifiers
Every formal parameter must have a specifier letter that indicates what type of

operand is needed to match the formal parameter. Table 5-1 defines the eight possi-
ble specifier letters.

Table 5-1. Code-macro Operand Specifiers

Letter Operand Type
A Accumulator register, AX or AL.
C Code, a label expression only.
D Data, a number to be used as an immediate value.
E Effective address, either an M (memory address) or an R (register).
M Memory address. This can be either a variable or a bracketed regis-

ter expression.

R A general register only.
S Segment register only.
X A direct memory reference.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 55




5.3 Modifiers

5.3 Modifiers

The optional modifier letter is a further requirement on the operand. The meaning
of the modifier letter depends on the type of the operand. For variables, the modifier
requires the operand to be of type: ‘b’ for byte, ‘w’ for word, ‘d’ for double-word
and ‘sb’ for signed byte. For numbers, the modifiers require the number to be of a
certain size: ‘b’ for —256 to 255 and ‘w’ for other numbers. Table 5-2 summarizes

code-macro modifiers.

CP/M-86 Programmer’s Guide

Table 5-2. Code-macro Operand Modifiers

Variables Numbers
Modifier Type Modifier Size
b byte b —256 to 255
w word w anything else
d dword
sb signed byte

5.4 Range Specifiers

The optional range is specified within parentheses by either one expression or two

expressions separated by a comma. The following are valid formats:

numberb)
register)

numberb,register)
register,numberb)
register,register)

Numberb is 8-bit number, not an address. The following example specifies that the

(
(
(numberb,numberb)
(
(
(

input port must be identified by the DX register:

CodeMacro IN dst:Awsport:Ruw(DX)

56 ALL INFORMATION PRESENTED HER

E 1S PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide 5.4 Range Specifiers

The next example specifies that the CL register is to contain the ‘count’ of rotation:

CodeMacro ROR dst:Ewscount:Rb(CL)

The last example specifies that the ‘opcode’ is to be immediate data, and may range
from 0 to 63 inclusive:

CodeMacro ESC opcode:Db(04+63)adds:Eb

5.5 Code-macro Directives

Code-macro directives define the bit pattern and make further requirements on
how the operand is to be treated. Directives are reserved words, and those that
appear to duplicate assembly language instructions have different meanings within a
code-macro definition. Only the nine directives defined here are legal within code-
macro definitions.

5.5.1 SEGFIX

If SEGFIX is present, it instructs the assembler to determine whether a segment-
override prefix byte is needed to access a given memory location. If so, it is output
as the first byte of the instruction. If not, no action is taken. SEGFIX takes the form:

SEGFIX <formal name>

where <formal name> is the name of a formal parameter which represents the
memory address. Because it represents a memory address, the formal parameter must
have one of the specifiers E, M or X.

5.5.2 NOSEGFIX

Use NOSEGFIX for operands in instructions that must use the ES register for that

operand. This applies only to the destination operand of these instructions: CMPS,
MOVS, SCAS, STOS. The form of NOSEGFIX is:

NOSEGFIX segreg,<formname>

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 57




5.5 Code-macro Directives CP/M-86 Programmer’s Guide

where segreg is one of the segment registers ES, CS, SS, or DS and <formname> is
the name of the memory-address formal parameter, which must have a specifier E,

M, or X. No code is generated from this directive, but an error check is performed.
The following is an example of NOSEGFIX use:

CodeMacro MOVS si_ptr:Ewidi_ Ptr:Ew
NOSEGFIX ES+di_rtr

SEGFIX s1_Ptr
DB OASH
EndM
5.5.3 MODRM

This directive intructs the assembler to generate the ModRM byte, which follows
the opcode byte in many of the 8086s instructions. The ModRM byte contains either
the indexing type or the register number to be used in the instruction. It also specifies
which register is to be used, or gives more information to specify an instruction.

The ModRM byte carries the information in three fields. The mod field occupies
the two most significant bits of the byte, and combines with the register memory
field to form 32 possible values: 8 registers and 24 indexing modes.

The reg field occupies the three next bits following the mod field. It specifies either
a register number or three more bits of opcode information, The meaning of the reg
field is determined by the opcode byte.

The register memory field occupies the last three bits of the byte. It specifies a
register as the location of an operand, or forms a part of the address-mode in com-
bination with the mod field described above.

For further information of the 8086’s instructions and their bit patterns, see Intel’s
8086 Assembly Language Programing Manual and the Intel 8086 Family User’s
Manual. The forms of MODRM are:

MODRM <form name>,<form name>
MODRM NUMBER7,<form name>

where NUMBER?7 is a value 0 to 7 inclusive and <form name> is the name of a
formal parameter. The following examples show MODRM use:

58 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide 5.5 Code-macro Directives

CodeMacro RCR dst:Ewscount:Rb(CL)

SEGFIX dst

DB 0D3H

MODRM Jrdst
EndM

CodeMacro OR dst:Rwssrc:Ew

SEGFIX sre

DB 0BH

MODRM dstssrc
EndM

5.5.4 RELB and RELW

These directives, used in IP-relative branch instructions, instruct the assembler to
generate displacement between the end of the instruction and the label which is
supplied as an operand. RELB generates one byte and RELW two bytes of displace-
ment. The directives the following forms:

RELB <form name>
RELW <form name>

where <form name> is the name of a formal parameter with a ‘C’ (code) specifier.
For example:

CodeMacro LOOP place:Ch

DB OEZH
RELB rlace
EndM

5.5.5 DB,DW and DD

These directives differ from those which occur outside of code-macros. The form
of the directives are:

DB  <form name> | NUMBERB
DW <form name> | NUMBERW
DD <form name>

where NUMBERSB is a single-byte number, NUMBERW is a two-byte number, and
<form name> is a name of a formal parameter. For example:

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 59




5.5 Code-macro Directives CP/M-86 Programmer’s Guide

CodeMacro XOR dst:Ewssrc:Dhk

SEGFIX dst
DB 81H
MODRM Bidst
DW 5TC
EndM
5.5.6 DBIT

This directive manipulates bits in combinations of a byte or less. The form is:
DBIT <field description>[,<field description>]
where a <field description>, has two forms:

<number><combination>
<number>(<form name>(<rshift>))

where <number> ranges from 1 to 16, and specifies the number of bits to be set.
<combination> specifies the desired bit combination. The total of all the <num-
ber>s listed in the field descriptions must not exceed 16. The second form shown
above contains <form name>, a formal parameter name that instructs the assembler
to put a certain number in the specified position. This number normally refers to the

register specified in the first line of the code-macro. The numbers used in this special
case for each register are:

Al :
CL:
DL :
BL:
AH:
CH:
DH:
BH:

Y]
-

CH:

v
e

SN O e W - D

LY Fd =

v,
N

60 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide 5.5 Code-macro Directives

SP:
BP:
Sl:
DI:
ES:
CS:
88:
DS:

WM~ O 00U e

<rshift>, which is contained in the innermost parentheses, specifies a number of
right shifts. For example, ‘0’ specifies no shift, ‘1’ shifts right one bit, ‘2’ shifts right
two bits, and so on. The definition below uses this form.

CodeMacro DEC dst:Rw
DBIT S(9H)3(dst(0))
EndM

The first five bits of the byte have the value 9H. If the remaining bits are zero, the
hex value of the byte will be 48H. If the instruction;

DEC DX

is assembled and DX has a value of 2H, then 48H + 2H = 4AH, which is the final
value of the byte for execution. If this sequence had been present in the definition:

DBIT S(9H) »3(dst (1))

then the register number would have been shifted right once and the result would
had been 48H + 1H = 49H, which is erroneous.

End of Section §

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 61




End of Section § CP/M-86 Programmer’s Guide

62 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




Section 6
DDT-86

6.1 DDT-86 Operation

The DDT-86™ program allows the user to test and debug programs interactively
in a2 CP/M-86 environment. The reader should be familiar with the 8086 processor,
ASM-86 and the CP/M-86 operating system as described in the CP/M-86 System
Guide.

6.1.1 Invoking DDT-86

Invoke DDT-86 by entering one of the following commands:

DDT86
DDT86 filename

The first command simply loads and executes DDT-86. After displaying its sign-on
message and prompt character, - , DDT-86 is ready to accept operator commands.
The second command is similar to the first, except that after DDT-86 is loaded it
loads the file specified by filename. If the file type is omitted from filename, .CMD is
assumed. Note that DDT-86 cannot load a file of type .H86. The second form of the
invoking command is equivalent to the sequence:

A>DDTS86
DDT86 x.x
-Efilename

At this point, the program that was loaded is ready for execution.

6.1.2 DDT-86 Command Conventions

When DDT-86 is ready to accept a command, it prompts the operator with a
hyphen, -. In response, the operator can type a command line or a CONTROL-C or
T C to end the debugging session (see Section 6.1.4). A command line may have up
to 64 characters, and must be terminated with a carriage return. While entering the
command, use standard CP/M line-editing functions ( 1X, 1H, 1R, etc.) to correct
typing errors. DDT-86 does not process the command line until a carriage return is
entered.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 63

O UOIDAg




6.1 DDT-86 Operation CP/M-86 Programmer’s Guide

The first character of each command line determines the command action. Table

6-1 summarizes DDT-86 commands. DDT-86 commands are defined individually in
Section 6.2.

Table 6-1. DDT-86 Command Summary

Command Action

enter assembly language statements
display memory in hexadecimal and ASCII
load program for execution

fill memory block with a constant

begin execution with optional breakpoints
hexadecimal arithmetic

set up file control block and command tail
list memory using 8086 mnemonics

move memory block

read disk file into memory

set memory to new values

trace program execution

untraced program monitoring

show memory layout of disk file read
write contents of memory block to disk
examine and modify CPU state

XE<cHuvmZIrr—~TO0OmmI >

The command character may be followed by one or more arguments, which may
be hexadecimal values, file names or other information, depending on the command.
Arguments are separated from each other by commas or spaces. No spaces are allowed
between the command character and the first argument.

6.1.3 Specifying a 20-Bit Address

Most DDT-86 commands require one or more addresses as operands. Because the

8086 can address up to 1 megabyte of memory, addresses must be 20-bit values.
Enter a 20-bit address as follows:

$855:0000

64 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide 6.1 DDT-86 Operation

where ssss represents an optional 16-bit segment number and oooo is a 16-bit offset.
DDT-86 combines these values to produce a 20-bit effective address as follows:

ssss0
+ 0000

€cecece

The optional value ssss may be a 16-bit hexadecimal value or the name of a
segment register. If a segment register name is specified, the value of ssss is the
contents of that register in the user’s CPU state, as indicated by the X command. If
omitted, a default value appropriate to the command being executed, as described in
Section 6.4.

6.1.4 Terminating DDT-86

Terminate DDT-86 by typing a 1 C in response to the hyphen prompt. This returns
control to the CCP. Note that CP/M-86 does not have the SAVE facility found in
CP/M for 8-bit machines. Thus if DDT-86 is used to patch a file, write the file to
disk using the W command before exiting DDT-86.

6.1.5 DDT-86 Operation with Interrupts

DDT-86 operates with interrupts enabled or disabled, and preserves the interrupt
state of the program being executed under DDT-86. When DDT-86 has control of
the CPU, either when it is initially invoked, or when it regains control from the
program being tested, the condition of the interrupt flag is the same as it was when
DDT-86 was invoked, except for a few critical regions where interrupts are disabled.
While the program being tested has control of the CPU, the user’s CPU state, which
can be displayed with the X command, determines the state of the interrupt flag.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 65




6.2 DDT-86 Commands CP/M-86 Programmer’s Guide

6.2 DDT-86 Commands

This section defines DDT-86 commands and their arguments. DDT-86 commands
give the user control of program execution and allow the user to display and modify
system memory and the CPU state.

6.2.1 The A (Assemble) Command

The A command assembles 8086 mnemonics directly into memory. The form is:
As

where s is the 20-bit address where assembly is to start. DDT-86 responds to the A
command by displaying the address of the memory location where assembly is to
begin. At this point the operator enters assembly language statements as described in
Section 4 on Assembly Language Syntax. When a statement is entered, DDT-86
converts it to binary, places the value(s) in memory, and displays the address of the
next available memory location. This process continues until the user enters a blank
line or a line containing only a period.

DDT-86 responds to invalid statements by displaying a question mark, ? , and
redisplaying the current assembly address.

6.2.2 The D (Display) Command

The D command displays the contents of memory as 8-bit or 16-bit hexadecimal
values and in ASCII. The forms are:

D

Ds
Ds,f
DW
DWs
DWs,f

where s is the 20-bit address where the display is to start, and f is the 16-bit offset
within the segment specified in s where the display is to finish.

Memory is displayed on one or more display lines. Each display line shows the

values of up to 16 memory locations. For the first three forms, the display line
appears as follows:

66 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide 6.2 DDT-86 Commands

ssss:0000 bbbb...bbcc...c

where ssss is the segment being displayed and 0000 is the offset within segment ssss.
The bb’s represent the contents of the memory locations in hexadecimal, and the c’s
represent the contents of memory in ASCIL Any non-graphic ASCII characters are
represented by periods.

In response to the first form shown above, DDT-86 displays memory from the
current display address for 12 display lines. The response to the second form is
similar to the first, except that the display address is first set to the 20-bit address s.
The third form displays the memory block between locations s and f. The next three
forms are analogous to the first three, except that the contents of memory are dis-
played as 16-bit values, rather than 8-bit values, as shown below:

§885:0000 WWWW WWWW ..., WWWW CCCC ... CC

During a long display, the D command may be aborted by typing any character at
the console.

6.2.3 The E (Load for Execution) Command

The E command loads a file into memory so that a subsequent G, T or U com-
mand can begin program execution. The E command takes the form:

E<filename>

where <filename> is the name of the file to be loaded. If no file type is specified,
.CMD is assumed. The contents of the user segment registers and IP register are
altered according to the information in the header of the file loaded.

An E command releases any blocks of memory allocated by any previous E or R
commands or by programs executed under DDT-86. Thus only one file at a time
may be loaded for execution.

When the load is complete, DDT-86 displays the start and end addresses of each
segment in the file loaded. Use the V command to redisplay this information at a
later time,

If the file does not exist or cannot be successfully loaded in the available memory,
DDT-86 issues an error message.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 67




6.2 DDT-86 Commands CP/M-86 Programmer’s Guide

6.2.4 The F (Fill) Command

The F command fills an area of memory with a byte or word constant. The forms
are:

Fs,f,b
FWs,f,w

where s is a 20-bit starting address of the block to be filled, and f is a 16-bit offset
of the final byte of the block within the segment specified in s.

In response to the first form, DDT-86 stores the 8-bit value b in locations s through
f. In the second form, the 16-bit value w is stored in locations s through f in standard
form, low 8 bits first followed by high 8 bits.

If s is greater than f or the value b is greater than 255, DDT-86 responds with a
question mark. DDT-86 issues an error message if the value stored in memory cannot
be read back successfully, indicating faulty or non-existent RAM at the location
indicated.

6.2.5 The G (Go) Command

The G command transfers control to the program being tested, and optionally sets
one or two breakpoints. The forms are:

G

G,b1
G,b1,b2
Gs

Gs,bl
Gs,b1,b2

where s is a 20-bit address where program execution is to start, and b1 and b2 are
20-bit addresses of breakpoints. If no segment value is supplied for any of these three
addresses, the segment value defaults to the contents of the CS register.

In the first three forms, no starting address is specified, so DDT-86 derives the 20-
bit address from the user’s CS and IP registers. The first form transfers control to the
user’s program without setting any breakpoints. The next two forms respectively set
one and two breakpoints before passing control to the user’s program. The next
three forms are analogous to the first three, except that the uset’s CS and IP registers
are first set to s.

68 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESFARCH




CP/M-86 Programmer’s Guide 6.2 DDT-86 Commands

Once control has been transferred to the program under test, it executes in real
time until a breakpoint is encountered. At this point, DDT-86 regains control, clears
all breakpoints, and indicates the address at which execution of the program under
test was interrupted as follows:

*$855:0000

where ssss corresponds to the CS and 0ooo corresponds to the IP where the break
occurred. When a breakpoint returns control to DDT-86, the instruction at the
breakpoint address has not yet been executed.

6.2.6 The H (Hexadecimal Math) Command

The H command computes the sum and difference of two 16-bit values. The form
is:

Ha,b

where a and b are the values whose sum and difference are to be computed. DDT-
86 displays the sum (ssss) and the difference (dddd) truncated to 16 bits on the next
line as shown below:

ssss dddd

6.2.7 The I (Input Command Tail) Command

The 1 command prepares a file control block and command tail buffer in DDT-
86’s base page, and copies this information into the base page of the last file loaded
with the E command. The form is:

I<command tail>

where <command tail> is a character string which usually contains one or more
filenames. The first filename is parsed into the default file control block at 005CH.
The optional second filename (if specified) is parsed into the second part of the
default file control block beginning at 006CH. The characters in <command tail>
are also copied into the default command buffer at 0080H. The length of <command

tail> is stored at 0080H, followed by the character string terminated with a binary
Z€ro.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 69




6.2 DDT-86 Commands CP/M-86 Programmer’s Guide

If a file has been loaded with the E command, DDT-86 copies the file control
block and command buffer from the base page of DDT-86 to the base page of the
program loaded. 46-bit value at location 0:6. The location of the base page of a
program loaded with the E command is the value displayed for DS upon completion
of the program load.

6.2.8 The L (List) Command

The L command lists the contents of memory in assembly language. The forms
are:

L
Ls
Ls,f

where s is a 20-bit address where the list is to start, and f is a 16-bit offset within
the segment specified in s where the list is to finish.

The first form lists twelve lines of disassembled machine code from the current list
address. The second form sets the list address to s and then lists twelve lines of code.
The last form lists disassembled code from s through f. In all three cases, the list
address is set to the next unlisted location in preparation for a subsequent L com-
mand. When DDT-86 regains control from a program being tested (see G, T and U
commands), the list address is set to the current value of the CS and IP registers.

Long displays may be aborted by typing any key during the list process. Or, enter
1S to halt the display temporarily.

The syntax of the assembly language statements produced by the L command is
described in Section 4.

70 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide 6.2 DDT-86 Commands

6.2.9 The M (Move) Command

The M command moves a block of data values from one area of memory to
another. The form is:

Ms,f,d

where s is the 20-bit starting address of the block to be moved, f is the offset of the
final byte to be moved within the segment described by s, and d is the 20-bit address
of the first byte of the area to receive the data. If the segment is not specified in d,
the same value is used that was used for s. Note that if d is between s and f, part of
the block being moved will be overwritten before it is moved, because data is trans-
ferred starting from location s.

6.2.10 The R (Read) Command

The R command reads a file into a contiguous block of memory. The form is:
R<filename>

where <filename> is the name and type of the file to be read.

DDT-86 reads the file into memory and displays the start and end addresses of the
block of memory occupied by the file. A V command can redisplay this information
at a later time. The default display pointer (for subsequent D commands) is set to
the start of the block occupied by the file.

The R command does not free any memory previously allocated by another R or
E command. Thus a number of files may be read into memory without overlapping.
The number of files which may be loaded is limited to seven, which is the number of
memory allocations allowed by the BDOS, minus one for DDT-86 itself.

If the file does not exist or there is not enough memory to load the file, DDT-86
issues an error message.

6.2.11 The S (Set) Command

The S command can change the contents of bytes or words of memory. The forms
are:

Ss
SWs

where s is the 20-bit address where the change is to occur.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 71




6.2 DDT-86 Commands CP/M-86 Programmer’s Guide

DDT-86 displays the memory address and its current contents on the following
line. In response to the first form, the display is:

$555:0000 bb
and in response to the second form
$585:0000 WWWW

where bb and wwww are the contents of memory in byte and word formats,
respectively.

In response to one of the above displays, the operator may choose to alter the
memory location or to leave it unchanged. If a valid hexadecimal value is entered,
the contents of the byte (or word) in memory is replaced with the value. If no value
is entered, the contents of memory are unaffected and the contents of the next
address are displayed. In either case, DDT-86 continues to display successive memory
addresses and values until either a period or an invalid value is entered.

DDT-86 issues an error message if the value stored in memory cannot be read
back successfully, indicating faulty or non-existent RAM at the location indicated.

6.2.12 The T (Trace) Command

The T command traces program execution for 1 to OFFFFH program steps. The
forms are:

T
Tn
TS
TSn

where n is the number of instructions to execute before returning control to the
console.

Before an instruction is executed, DDT-86 displays the current CPU state and the
disassembled instruction. In the first two forms, the segment registers are not dis-
played, which allows the entire CPU state to be displayed on one line. The next two
forms are analogous to the first two, except that all the registers are displayed, which

forces the disassembled instruction to be displayed on the next line as in the X
command.

72 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESFARCH




CP/M-86 Programmer’s Guide 6.2 DDT-86 Commands

In all of the forms, control transfers to the program under test at the address
indicated by the CS and IP registers. If n is not specified, one instruction is executed.
Otherwise DDT-86 executes n instructions, displaying the CPU state before each
step. A long trace may be aborted before n steps have been executed by typing any
character at the console.

After a T command, the list address used in the L command is set to the address
of the next instruction to be executed.

Note that DDT-86 does not trace through a BDOS interrupt instruction, since
DDT-86 itself makes BDOS calls and the BDOS is not reentrant. Instead, the entire
sequence of instructions from the BDOS interrupt through the return from BDOS is
treated as one traced instruction.

6.2.13 The U (Untrace) Command

The U command is identical to the T command except that the CPU state is
displayed only before the first instruction is executed, rather than before every step.
The forms are:

U
Un
US
USn

where n is the number of instructions to execute before returning control to the
console. The U command may be aborted before n steps have been executed by
striking any key at the console.

6.2.14 The V (Value) Command

The V command displays information about the last file loaded with the E or R
commands. The form is:

\'

If the last file was loaded with the E command, the V command displays the start
and end addresses of each of the segments contained in the file. If the last file was
read with the R command, the V command displays the start and end addresses of
the block of memory where the file was read. If neither the R nor E commands have
been used, DDT-86 responds to the V command with a question mark, ?.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 73




6.2 DDT-86 Commands CP/M-86 Programmer’s Guide

6.2.15 The W (Write) Command

The W command writes the contents of a contiguous block of memory to disk.
The forms are:

W<filename>
W< filename> s

where <filename> is the filename and file type of the disk file to receive the data,
and s and f are the 20-bit first and last addresses of the block to be written. If the
segment is not specified in f, DDT-86 uses the same value that was used for s.

If the first form is used, DDT-86 assumes the s and f values from the last file read
with an R command. If no file was read with an R command, DDT-86 responds
with a question mark, ?. This first form is useful for writing out files after patches
have been installed, assuming the overall length of the file is unchanged.

In the second form where s and f are specified as 20-bit addresses, the low four
bits of s are assumed to be 0. Thus the block being written must always start on a
paragraph boundary.

If a file by the name specified in the W command already exists, DDT-86 deletes it
before writing a new file.

6.2.16 The X (Examine CPU State) Command

The X command allows the operator to examine and alter the CPU state of the
program under test. The forms are:

X
Xr
Xf

where r is the name of one of the 8086 CPU registers and f is the abbreviation of
one of the CPU flags. The first form displays the CPU state in the format:

AX BX CX ... SS ES IP
--------- XXXX XXXX XXXX ... XXXX XXXX XXXX
<instruction>

74 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide 6.2 DDT-86 Commands

The nine hyphens at the beginning of the line indicate the state of the nine CPU flags.
Each position may be either a hyphen, indicating that the corresponding flag is not set
(0), or a 1-character abbreviation of the flag name, indicating that the flag is set (1). The
abbreviations of the flag names are shown in Table 6-2. <instruction> is the disas-
sembled instruction at the next location to be executed, which is indicated by the CS and
IP registers.

Table 6-2. Flag Name Abbreviations

Character Name
0 Overflow
D Direction
I Interrupt Enable
T Trap
S Sign
Z Zero
A Auxiliary Carry
P Parity
C Carry

The second form allows the operator to alter the registers in the CPU state of the
program being tested. The r following the X is the name of one of the 16-bit CPU
registers. DDT-86 responds by displaying the name of the register followed by its
current value. If a carriage return is typed, the value of the register is not changed. If
a valid value is typed, the contents of the register are changed to that value. In either
case, the next register is then displayed. This process continues until a period or an
invalid value is entered, or the last register is displayed.

The third form allows the operator to alter one of the flags in the CPU state of the
program being tested. DDT-86 responds by displaying the name of the flag followed
by its current state. If a carriage return is typed, the state of the flag is not changed.
If a valid value is typed, the state of the flag is changed to that value. Only one flag
may be examined or altered with each Xf command. Set or reset flags by entering a
value of 1 or 0.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 75




6.3 Default Segment Values CP/M-86 Programmer’s Guide

6.3 Default Segment Values

DDT-86 has an internal mechanism that keeps track of the current segment value,
making segment specification an optional part of a DDT-86 command. DDT-86
divides the command set into two types of commands, according to which segment a
command defaults if no segment value is specified in the command line.

The first type of command pertains to the code segment: A (Assemble), L (List
Mnemonics) and W (Write). These commands use the internal type-1 segment value
if no segment value is specified in the command.

When invoked, DDT-86 sets the type-1 segment value to 0, and changes it when
one of the following actions is taken:

® When a file is loaded by an E command, DDT-86 sets the type-1 segment
value to the value of the CS register.

® When a file is read by an R command, DDT-86 sets the type-1 segment value
to the base segment where the file was read.

B8 When an X command changes the value of the CS register, DDT-86 changes
the type-1 segment value to the new value of the CS register.

B When DDT-86 regains control from a user program after a G, T or U com-
mand, it sets the type-1 segment value to the value of the CS register.

B When a segment value is specified explicitly in an A or L command, DDT-
86 sets the type-1 segment value to the segment value specified.

The second type of command pertains to the data segment: D (Display), F (Fill),
M (Move) and S (Set). These commands use the internal type-2 segment value if no
segment value is specified in the command.

When invoked, DDT-86 sets the type-2 segment value to 0, and changes it when
one of the following actions is taken:

® When a file is loaded by an E command, DDT-86 sets the type-2 segment
value to the value of the DS register.

B When a file is read by an R command, DDT-86 sets the type-2 segment value
to the base segment where the file was read.

® When an X command changes the value of the DS register, DDT-86 changes
the type-2 segment value to the new value of the DS register.

76 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide 6.3 Default Segment Values

8 When DDT-86 regains control from a user program after a G, T or U com-
mand, it sets the type-2 segment value to the value of the DS register.

B When a segment value is specified explicitly in an D, F, M or S command,
DDT-86 sets the type-2 segment value to the segment value specified.

When evaluating programs that use identical values in the CS and DS registers, all
DDT-86 commands default to the same segment value unless explicitly overridden.

Note that the G (Go) command does not fall into either group, since it defaults to
the CS register.

Table 6-3 summarizes DDT-86’s default segment values.

Table 6-3. DDT-86 Default Segment Values

Command type-1 type-2

A X

D X
E c c
F X
G C C
H

|

L X
M X
R C C
S X
T C
U C
\Y
W X

X C C

x — use this segment default if none speci-
fied; change default if specified explicitly
¢ — change this segment default

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 77




6.4 Assembly Language Syntax CP/M-86 Programmer’s Guide

6.4 Assembly Language Syntax for A and L Commands

In general, the syntax of the assembly language statements used in the A and L
commands is standard 8086 assembly language. Several minor exceptions are listed
below.

® DDT-86 assumes that all numeric values entered are hexadecimal.

® Up to three prefixes (LOCK, repeat, segment override) may appear in one
statement, but they all must precede the opcode of the statement. Alternately,
a prefix may be entered on a line by itself.

B The distinction between byte and word string instructions is made as follows:

byte word

LODSB LODSW
STOSB STOSW
SCASB SCASW
MOVSB  MOVSW
CMPSB CMPSW

®  The mnemonics for near and far control transfer instructions are as follows:

short normal far
JMPS JMP JMPF
CALL CALLF

RET RETF

® If the operand of a CALLF or JMPF instruction is a 20-bit absolute address,
it is entered in the form:

§888:0000

where ssss is the segment and 0000 is the offset of the address.

78 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide 6.4 Assembly Language Syntax

B Operands that could refer to either a byte or word are ambiguous, and must
be preceded either by the prefix “BYTE” or “WORD”. These prefixes may
be abbreviated to “BY” and “WO”. For example:

INC BYTE [BP]
NOT WORD [1234]

Failure to supply a prefix when needed results in an error message.

® Operands which address memory directly are enclosed in square brackets to
distinguish them from immediate values. For example:

ADD AX,S ;add § to register AX
ADD AX,[5] sadd the contents of location § to AX

®  The forms of register indirect memory operands are:

[pointer register]
[index register]
[pointer register + index register]

where the pointer registers are BX and BP, and the index registers are SI and
DI. Any of these forms may be preceded by a numeric offset. For example:

ADD BX,[BP +SI]
ADD BX,3[BP +9I]
ADD BX,1D47[BP +SI]

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 79




6.5 DDT-86 Sample Session CP/M-86 Programmer’s Guide

6.5 DDT-86 Sample Session

In the following sample session, the user interactively debugs a simple sort pro-
gram. Comments in italic type explain the steps involved.

Source file of program to test.

A:tvpe sort,aBt6

H simple sort prodram
H
SOrte
mov 5140 iinitialize index
mow bxroffset nlist ibx = base of list
Moy suw 0 iclear switch flag
come:
mou al [bx+sil jdet brte from list

cne als1lbx+s1] icompare with next bvte
dna inci idon’t switch if in order
Kchy alsilbx+sil jdo first part of switch
mow [bx+silsal ido second Part
movy Suyl iset switch flad
inci:
inc 51 iincrement index
Cmp siscount iend of list?
Jnz comp inos» Keep doind
test sl idone - any switches?
Jnz s0rt ives, SO0rt some more
done:
Jmp done iget here when list ordered
H
dseg
ory 100h ileave space for base rpade
i
nlist db 3184446431416 +401
count esiu offset $ - offset nlist
SW dh 0
end

Assemble program.

A:asmBG sort

CP/M 80BE ASSEMBLER VER 1.1
END OF PASS 1
END OF PASS 2

END OF ASSEMBLY. NUMBER OF ERRORS: 0O

80

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide

6.5 DDT-86 Sample Session

Type listing file generated by ASM-86.

A*tvyre sort.lst

CP/M ASMBE 1.1

0000 BEOOOO
0003 BBOOOIL
0006 CE0B0BO100

CompP:

000B BAOO

000D 3A4001
0010 760A

0012 864001
0013 8800

0017 CB0B0BO1OY

001C 46

inci:

001D B3FECH
0020 75E9

0022 FB0B080101
0027 7507

done:

0029 ESFDFF

0100 030B040B1F0B nlist

0401
0008 count
0108 00 sW

END OF ASSEMBLY. NUMBER OF ERRORS:

SOURCE: SORT.ABG

Moy
mov
mov

mov
cmP
Jna
xchg
mav
moy

inc
cmP
dnz
test
dnz

JmP

dsed

PAGE 1
simple sort prodram

5140 yinitialize index
bxroffset nlist ibx = base of list
swil sclear switch flag
al +Ebx+sil idet byte from list
al11lbx+sil icomPare with next byte
inci tdon’t switch if in order
als1lbx+sil] ido first part of switch
[bx+silal ido second part
swil iset switch flayg
si iincrement index
siscount jend of list?
comp inos Keep do0ind
swil idone - any switches?
sort ivesy sort some more
done idet here when list ordered
100h ileave space for base Pade

org

db

equ

db
end

3184446431 464+441

offset $ -~ offset nlist
0

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 81




6.5 DDT-86 Sample Session CP/M-86 Programmer’s Guide

Type symbol table file generated by ASM-86.

A:tyPe sort.sym
0000 VYARIABLES
0100 NLIST 0108 SW

0000 NUMBERS
0008 COUNT

0000 LABELS
0008 COMP 0029 DONE 001C INCI 0000 S0RT

Type hex file generated by ASM-86.

AXtyre sort,h86

$0400000300000000F9
:IBDOODBIBEOOODBBOOOIEBOGOBOIOOBAOOEAHOO1760A86000188000608080lGC
:11001881014683FE0B7SE9FE0608010175D7E9FDFFEE
:090100820308040B1F0B04010035

:00000001FF

Generate CMD dile from .H86 file.

Axdencmd sort

BYTES READ 0038
RECORDS WRITTEN 04

Invoke DDT-86 and load SORT.CMD.

A:ddtBB6 sort

DDTBE 1.0

START END
CS 0470:0000 047D:002F
DS 04B0:0000 0480:010F

Display initial register values.

AR BX CX DX 8P BP SI DI C5 DS S5 ES IP

--------- 0000 0000 0000 0000 119E 0000 0000 0000 047D 0480 0491 0480 0000
MOV 51,0000

82 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide 6.5

Disassemble the beginning of the code segment.

-1

0470:0000 MOV 5140000
0470:0003 MOV BX:0100
047D:0006 MOV BYTE [010814+00
047030008 MOV AL [BX+811
047D:000D CMP AL +01[BX+5I1
0470:0010 JBE 001C

047D:0012 XKCHG AL ,01[BX+SI1]
047D:0013 MOV [BX+SI1 AL
047D:0017 MOV BYTE [01081.01
0470:001C INC 51

0470:001D CMP 510008
047D:0020 JNZ 0008

Display the start of the data segment.

-d4100,10f

DDT-86 Sample Session

04B80:0100 03 08 04 06 1F 068 04 01 00 00 00 00 00 00 00 00 vovwvvavwrvianss

Disassemble the rest of the code.

-1

047D:0022 TEST  BYTE [01081:01
047D:0027 JUNZ 0000
0470:0028 JMP 0029
047D:002C ADD [BX+511AL
047D:002E ADD [BX+SI1.AL
0470:0030 DAS

047D0:003t ADD [BX+SI11)AL
047D:0033 ?7= 6C
047D:0034 POP ES
0470:0035 ADD {BX1,CL
047D0:0037 ADD [BX+511+AX
0470:0039 77= BF

Execute program from IP (=0) setting breakpoint at 29H.

-9129

*047D:0029 Breakpoint encountered.
Display sorted list.

4100410t

0480:0100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 vevrvsuvvsrrrrss

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 83




6.5 DDT-86 Sample Session CP/M-86 Programmer’s Guide

Doesn’t look good; reload file.

-850t

START END
CS 047D0:0000 047D:002F
DS 0480:0000 04B0:010F

Trace 3 instructions.

-t3

AX x# CX DX SP BP SI DI IP
=== Z-P- 0000 0100 0000 0000 119E 0000 0008 0000 0000 MOV 8510000
--=--L-P- 0000 0100 0000 0000 119E Q000 0000 0000 0003 MOV BXy 0100
=--==Z-P- 0000 0100 0000 0000 119E 0000 0000 0000 000B MOV BYTE [01081400
*¥0470: 0008

Trace some more.

-t3

AR BX CX DX 8P BP SI DI IP
---==£-P- 0000 0100 0000 0000 119E 0000 0000 0000 000B MOV AL [BX+811
-----Z-P- 0003 0100 0000 0000 119E 0000 0000 0000 000D CMP AL +01[BX+S11
---=5-A-C 0003 0100 0000 0000 119E 0000 0000 0000 0010 JBE 001C
¥047D:001C

Display unsorted list.

-4100,10f
0480:0100 03 08 04 0B 1F 06 04 01 00 00 00 00 00 00 00 00 4vuvvrvrrrsrrerees

Display next instructions to be executed.

-1

047D:001C INC 51
047D:001D CMP 51,0008
0470: 0020 JUNZ 000B
047D:0022 TEST  BYTE [010B1,01
0470:0027 UNZ 0000
047030029 IMP 0028
047D0:002C ADD [BX+511,AL
047D:002E ADD [BX+S1]1.,AL
0470:0030 DAS

0470:0031 ADD [BX+S511,AL
047D:0033 7%= 6C
0470:0034 POP ES

84 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide 6.5 DDT-86 Sample Session

Trace some more.

-t3

AX BX CxX DX sp BP S8I DI IP
----5-A-C 0003 0100 0000 0000 118E 0000 0000 0000 COIC INC 51
-------- C 0003 0100 0000 OO0 119E 0000 0001 0000 001D CMP S§1,0008
----5-APC 0003 0100 0000 0000 119E 0000 0001 0000 0020 INZ 0008
*0470: 0008

Display instructions from current IP.

-1

0d47D:0008 MOV AL [BX+511
047D: 000D CMP AL01IBX+SI]
047D:0010 JBE 00tcC

047D:0012 XCHG AL sO1IBX+SI]
047D:0015 MOV [BX+5I] AL
047D:0017 MOV BYTE [01081.01
047D:001C INC 81

047D:001D CMP 5140008
047D0:0020 JNZ 000B

047D:002Z TEST  BYTE [01081:01
047D:0027 JUNZ 0000

047D0:0028 JMP 0029

-t3

AK  BX CX DX P BP SI DI IP
----8-APC 0003 0100 0000 0000 119E 0000 0001 0000 O00B MOV AL [BX+511
----§-APC 0008 0100 0000 0000 119E 0000 0001 0000 000D CMP AL O1LBX+511]
--------- 0008 0100 0000 0000 118E 0000 0001 0000 0010 JBE 001C
*0470:0012

-1

047D:0012 XCHG  AL/QI[BX+5I]
0470:0015 MOV [BX+5114+AL
047D:0017 MOV BYTE [01081,01
047D:001C INC 51

047D:001D CMP 51,0008
0470:0020 JNZ 000B

047D:0022 TEST  BYTE [01081,01
047D0:0027 JUNZ 0000

047D0:0029 JMP 0029

047D:002C ADD [BX+8114AL
047D:002E ADD (BX+5114AL
0470:0030 DAS

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 85




6.5 DDT-86 Sample Session CP/M-86 Programmer’s Guide

Go until switch has been performed.

-9420

047030020 -
Display list.

-4100,10f
0480:0100 03 04 08 068 1F 06 04 01 01 00 00 00 00 00 00 00 vevvevrsnrririsy

Looks like 4 and 8 were switched okay. (And toggle is true.)

-t

AX bt £ DX 8P BP SI DI Ip
----5-APC 0004 C100 0000 0000 119E 0000 000Z 0000 0020 JNZ 0008
*047D:0008B

Display next instructions.

-1

047D: 0008 MOY AL, [BX+51]
0470:000D0 CMP AL O1[BX+51]
0470:0010 JBE 001C

0470:0012 XCHG  AL,QLIL[BX+SI]
047D:0015 MOV [BX+SI1,AL
047D:0017 MOV BYTE [01081,01
0470:001C INC 51

0470:001D CMP 51,0008

0470: 0020 JNZ 000B
0470:0022 TEST BYTE (01081401
047D:0027 JNZ oy

0470: 0029 JMP 0029

Since switch worked, let’s reload and check boundary conditions.

-e50Tt

START END
CS 047D:0000 047D:002F
DS 04B0:0000 04B0:010F

Make it quicker by setting list length to 3. (Could also have used s47d=1le to -
patch.)

-ald

047D0:0010 cme si 43
0470:0020

86 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide 6.5 DDT-86 Sample Session

Display unsorted list.

-d4100

04B0:0100 03 08 04 06 1F 0B 04 01 00 00 00 00 00 00 00 00 veewsvsnvsnrvrns
0480:0110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 vuvuvuvvvvrrnros
04B0:0120 00 00 00 00 00 00 00 00 00 00 00 00 00 20 20 20 vevrvsenvrsrs

Set breakpoint when first 3 elements of list should be sorted.

-9,29
#0470:0029

See if list is sorted.

-d4100,10f
0480:0100 03 04 06 08 1F 06 04 01 00 00 00 00 00 00 00 00 vivuvssrnsvvrres

Interesting, the fourth element seems to have been sorted in.

-esort

START END
CS 047D:0000 047D:002F
D8 0480:0000 0480:010F

Let’s try again with some tracing.

-ald
0470:001D cmp 5143
0470:0020 ,

-t9

AX BX CX DX 8P BP SI DI IP
-----Z-P- 0006 0100 0000 0000 119E 0000 0003 0000 0000 MOV §1,0000
-----2-P- 0006 0100 0000 0000 119E 0000 0000 0000 0003 MOV BX+0100
---==Z-P- 0006 0100 0000 0000 119E 0000 0000 0000 0006 MOV BYTE £01081,00
-----2-P- 0006 0100 0000 0000 119E 0000 0000 0000 QOB MOV AL»[BX+SI]
~----¢-P- 0003 0100 0000 0000 118E 0000 0000 0000 000D CMP AL +Q1[BX+4511
----5-A-C 0003 0100 0000 0000 119E 0000 0000 0000 0010 JBE 001C
----5-A-C 0003 0100 0000 0000 119E 0000 0000 0000 QO01C INC 51
-------- C 0003 0100 0000 0000 119E 0000 0001 0000 001D CMP 8140003
----5-A-C 0003 0100 0000 0000 119E 0000 0001 0000 0020 JUNZ 000B
*047D0:0008

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 87




6.5 DDT-86 Sample Session CP/M-86 Programmer’s Guide

-1

047D: 0008 MOV AL [BX+S1]
0d470:000D CMP AL OIIBX+SI]
0470:0010 JBE 001C

0470:0012 KCHG  ALOL1CBX+SI1
0470:0015 MOV [BX+511/AL
0470:0017 MOU BYTE [01081,01
0470:001C INC 51

047D:001D CMP S1,0003
047050020 INZ QQo0B

0470:0022 TEST  BYTE [01081,01
0470:0027 JNZ 0000

0470:0029 JMP 0029

-13

AN X CX X 8P  BP 81 DI IP
----5-A-C 0003 0100 0000 0000 119E G000 0001 0000 000B MOV AL s [BX+SI1
----5-A-C 0008 0100 0000 0000 1189E 0000 0001 0000 000D CMP AL»O1[BX+811
————————— 0008 0100 0000 0000 118E 0000 0001 Q000 0010 JBE 001C
¥047D:0012

-1

0470:0012 XCHG  AL,OLIBX+SI]
0dA7D:0015 MOV [(BX+SIT14AL
047D:0017 MOV BYTE [0108]401
e47D:001C INC S1I

0470:001D CMP S1,40003
0470:0020 JUNZ 0008

047D:0022 TEST  BYTE (0108101

-13

Ko Bx CX DX 8P BP SI DI IP
————————— Q008 0100 0000 0000 119E 0000 0001 0000 0012 XCHG AL O1[BX+SI]
————————— 0004 0100 0000 0000 119E 0000 0001 0000 0015 MOV [BX+511+AL

————————— Q004 0100 0000 0000 119E 0000 0001 0000 0017 MOV BYTE [01081,0%
*047D:001C

-4100+10f
0480:0100 03 04 08 06 1F 06 04 01 01 00 00 00 00 00 00 00 uunvvevervnroos

So far, so good.

AR X CX DX SP  BP 81 DI IpP
————————— 0004 Q100 0000 0000 119E 0000 0001 0000 001C INC 51
————————— 0004 0100 0000 0000 119E 0000 0002 0000 001D CMP SI1,0003
----G-APC 0004 0100 0000 0000 119E 0000 0002 Q000 0020 JNZ 000B
*0d47D0:0008

88 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide 6.5 DDT-86 Sample Session

-1

0470:0008 MOV AL [BX+81]
0470:000D CMP AL01LBX+S1]
047D:0010 JBE 001C

0470:0012 XCHG  ALs01[BX+SI]
047D:0015 MOV (BX+5I1.AL
0470:0017 MOV BYTE [0108] 401
0470:001C INC 51

047D0:001D0 CMP 51,0003
047D:0020 JUNZ 0008

0470:0022 TEST BYTE [01081,01
047D:0027 JUNZ 0000

0470:0029 JMP 0029

-t3

AX BX CX DX SP BP SI DI IP
----5-APC 0004 0100 0000 0000 113E 0000 0002 0000 000B MOV AL [BX+511
----5-APC 0008 0100 0000 0000 119E 0000 0002 0000 000D CMP AL+01[BX+511
--------- 0008 0100 0000 0000 119E 0000 0002 0000 0010 JBE 001C
*047D:0012

Sure enough, it’s comparing the third and fourth elements of the list. Reload the
program.

-esort

START END
CS 047D:0000 047D:002F
DS 0480:0000 0480:010F

-1

0470:0000 MOV §1+0000
047D:0003 MOV BX:0100
047D:0006 MOV BYTE [01081.:00
047D:000B MOV AL +[BX+811
047D:000D CHP AL,01[BX+811
047D:0010 JBE 001C

047D:0012 XCHG  AL+O1[BX+5I1
047D0:0015 MOV [BX+SI14AL
0470:0017 MOV BYTE [01081.01
0470:001C INC 81

047D:001D CMP §1:0008
0470:0020 JUNZ 0008

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 89




6.5 DDT-86 Sample Session

Patch length.

-ald
0470:0010 cme si7
0470:0020

Try it out.

-9429
#0470:0029

See if list is sorted.

-4100,10f

CP/M-86 Programmer’s Guide

0480:0100 01 03 04 04 06 06 08 1F 00 00 00 00 00 00 00 00 veeuvvervivrneny

Looks better; let’s install patch in disk file. To do this, we must read CMB file

including header, so we use R command.

-rs0rt.cmd
START END
200020000 2000:01FF

First 80h bytes contain header, so code starts at 80h.

-180
2000:0080 MOV §1,0000
2000:0083 MOV BX+0100

2000:0085 MOV BYTE [01081,00

2000:0088 MOV AL »[BX+511

2000:008D CMP AL 01[BX+SI]

2000:0090 JBE 009C

2000:0092 XCHG  AL,OL1[BX+511

2000:0095 MOV (BX+511.AL

2000:0097 MoV BYTE [01081,01

2000:008C INC SI
2000:009D CMP SI:0008
2000:00A0 JUNZ 0088

Install patch.

-add
2000:009D cmp 5147
200010040

90 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide 6.5 DDT-86 Sample Session

Write file back to disk. (Length of file assumed to be unchanged since no length
specified.)

-wsort.cmd

Reload file.

-gsort

START END
CS 047D:0000 047D:002F
DS 0480:0000 0480:010F

Verify that patch was installed.

-1

0470:0000 MOV §1,0000
0470:0003 MOV BX10100
0470:0006 MOV BYTE [01081,00
047D:0008 MOV AL +[BX+811
047D:000D CMP AL+01[BX+5I]
047D:0010 JBE 001C

047D:0012 XCHG  AL,O1[BX+5I1
047D:0015 MOV [BX+SI1AL
047D:0017 MOV BYTE [01081:01
047D:001C INC 81

0470:001D CMP §1,0007
047D:0020 JUNZ 0008

Run it.

-9,25
*047D0:0029

Still looks good. Ship it!

-d4100,10f

0480:0100 01 03 04 04 0B 06 08 1F 00 00 00 00 00 00 00 00 vevwwvenvrvrnres
-*C

A>

End of Section 6

ALL INFORMATION PRESENTED HERE S PROPRIETARY TO DIGITAL RESEARCH 971




End of Section 6 CP/M-86 Programmer’s Guide

92 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




Appendix A
ASM-86 Invocation

Command: ASMS$6

Syntax: ASMB86 <filename> { § <parameters> }
where

<filename>  is the 8086 assembly source file. Drive and extension are
optional. The default file extension is .A86.

<parameters> are a one-letter type followed by a one-letter device from the
table below.

Vv Xipuaddy

Parameters:

form: $§ Td where T = type and d = device

Table A-1. Parameter Types and Devices

Devices Parameters
A H P S F

A-P X X X X
X X X X
Y X X X

N
>
>
»

x = valid, d = default

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 93




A ASM-86 Invocation CP/M-86 Programmer’s Guide

Valid Parameters

Except for the F type, the default device is the the current default drive.

Table A-2. Parameter Types

controls location of ASSEMBLER source file
controls location of HEX file

controls location of PRINT file

controls location of SYMBOL file

controls type of hex output FORMAT

T w»voo T

Table A-3. Device Types

P Drives A - P
console device
printer device
byte bucket
Intel hex format
Digital Research hex format

O — N~ X

Table A-4. Invocation Examples

ASMS86 10 Assemble file 10.A86, produce I10.HEX [0.LST
and 10.SYM.

ASM86 10.ASM § AD SZ Assemble file I0.ASM on device D, produce
IO.LST and I0.HEX, no symbol file.

ASM86 10 § PY SX Assemble file 10.A86, produce 10.HEX, route

listing directly to printer, output symbols on
console,

ASM86 10 $ FD Produce Digital Research hex format.

ASMS86 10 $ FI Produce Intel hex format.

End of Appendix A

94 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




Appendix B
Mnemonic Differences from the
Intel Assembler

The CP/M 8086 assembler uses the same instruction mnemonics as the INTEL
8086 assembler except for explicitly specifying far and short jumps, calls and returns.
The following table shows the four differences:

Table B-1. Mnemonic Differences

Mnemonic Function CPIM INTEL
Intra segment short jump: JMPS JMP
Inter segment jump: JMPF JMP §
Inter segment return: RETF RET gz
Inter segment call: CALLF CALL @
End of Appendix B

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 95




End of Appendix B CP/M-86 Programmer’s Guide

96 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




Appendix C
ASM-86 Hexadecimal
Output Format

At the user’s option, ASM-86 produces machine code in either Intel or Digital
Research hexadecimal format. The Intel format is identical to the format defined by
Intel for the 8086. The Digital Research format is nearly identical to the Intel format,
but adds segment information to hexadecimal records. Output of either format can
be input to GENCMD, but the Digital Research format automatically provides seg-
ment identification. A segment is the smallest unit of a program that can be relocated.

Table C-1 defines the sequence and contents of bytes in a hexadecimal record.
Each hexadecimal record has one of the four formats shown in Table C-2. An exam-
ple of a hexadecimal record is shown below.

Byte number=> 0123456789.............. n
>
Contents=> :llaaaattddd......... ccCRLF %
g
a
Table C-1. Hexadecimal Record Contents ;
Byte Contents Symbol
0 record mark :
1—2 record length 11
3—6 load address aaaa
7—8 record type tt
9—(n—1) data bytes dd..... d
n—(n+1) check sum cc
n+2 carriage return CR
n+3 line feed LF

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 97




C Hexadecimal Output Format CP/M-86 Programmer’s Guide

Table C-2. Hexadecimal Record Formats

Record type Content Format
00 Data record : Il aaaa DT <data...> cc
01 End-of-file : 00 0000 01 FF
02 Extended address mark : 02 0000 ST ssss cc
03 Start address : 04 0000 03 ssss iiii cc
Il => record length—number of data bytes
cc  => check sum—sum of all record bytes
aaaa => 16 bit address
ssss  => 16 bit segment value
i => offset value of start address
DT => data record type
ST => segment address record type

It is in the definition of record types 00 and 02 that Digital Research’s hexadecimal
format differs from Intel’s. Intel defines one value each for the data record type and
the segment address type. Digital Research identifies each record with the segment
that contains it, as shown in Table C-3.

98 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide C Hexadecimal Output Format

Table C-3. Segment Record Types

Symbol Intel’s Digital’s Meaning
Value Value

DT 00 for data belonging to all 8086 segments
81H for data belonging to the CODE segment
82H for data belonging to the DATA segment
83H for data belonging to the STACK segment
84H for data belonging to the EXTRA segment

ST 02 for all segment address records
8SH for a CODE absolute segment address
86H for a DATA segment address
87H for a STACK segment address
88H for a EXTRA segment address

End of Appendix C

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 99




End of Appendix C CP/M-86 Programmer’s Guide

100 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




Appendix D
Reserved Words

Table D-1. Reserved Words

Predefined Numbers

BYTE WORD DWORD
Operators

EQ GE GT LE LT
NE OR AND MOD NOT
PTR SEG SHL SHR XOR
LAST TYPE LENGTH OFFSET

Assembler Directives
DB DD DW IF RS
RB RW END ENDM EQU
ORG CSEG DSEG ESEG SSEG
EJECT ENDIF TITLE LIST NOLIST
INCLUDE SIMFORM PAGESIZE CODEMACRO PAGEWIDTH >

Code-macro directives %
DB DD DW DBIT RELB g
RELW MODRM SEGFIX NOSEGFIX 3

8086 Registers o

AH AL AX BH BL
BP BX CH CL CS
CX DH DI DL DS
DX ES SI SP SS

Instruction Mnemonics—See Appendix E.

End of Appendix D

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 101




End of Appendix D CP/M-86 Programmer’s Guide

102 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




Appendix E
ASM-86 Instruction Summary

Table E-1. ASM-86 Instruction Summary

Mnemonic Description Section
AAA ASCII adjust for Addition 4.3
AAD ASCII adjust for Division 4.3
AAM ASCII adjust for Multiplication 4.3
AAS ASCII adjust for Subtraction 43
ADC Add with Carry 4.3
ADD Add 4.3
AND And 4.3
CALL Call (intra segment) 4.5
CALLF Call (inter segment) 4.5
CBW Convert Byte to Word 4.3
CLC Clear Carry 4.6
CLD Clear Direction 4.6
CLI Clear Interrupt 4.6
CMC Complement Carry 4.6
CMP Compare 4.3
CMPS Compare Byte or Word (of string) 4.4
CWD Convert Word to Double Word 4.3 >
DAA Decimal Adjust for Addition 4.3 g
DAS Decimal Adjust for Subtraction 4.3 )
DEC Decrement 4.3 8_
DIV Divide 4.3 X
ESC Escape 4.6 m
HLT Halt 4.6
IDIV Integer Divide 4.3
IMUL Integer Multiply 43
IN Input Byte or Word 4.2
INC Increment 4.3
INT Interrupt 4.5
INTO Interrupt on Overflow 4.5

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 103




E Instruction Summary

CP/M-86 Programmer’s Guide

Table E-1. (continued)

Mnemonic Description Section

IRET Interrupt Return 4.5
JA Jump on Above 4.5
JAE Jump on Above or Equal 4.5
JB Jump on Below 4.5
JBE Jump on Below or Equal 4.5
JC Jump on Carry 4.5
JCXZ Jump on CX Zero 4.5
JE Jump on Equal 4.5
JG Jump on Greater 4.5
JGE Jump on Greater or Equal 4.5
JL Jump on Less 4.5
JLE Jump on Less or Equal 4.5
JMP Jump (intra segment) 4.5
JMPEF Jump (inter segment) 4.5
JMPS Jump (8 bit displacement) 4.5
JNA Jump on Not Above 4.5
JNAE Jump on Not Above or Equal 4.5
JNB Jump on Not Below 4.5
JNBE Jump on Not Below or Equal 4.5
JNC Jump on Not Carry 4.5
JNE Jump on Not Equal 4.5
JNG Jump on Not Greater 4.5
JNGE Jump on Not Greater or Equal 4.5
JNL Jump on Not Less 4.5
JNLE Jump on Not Less or Equal 4.5
JNO Jump on Not Overflow 4.5
JNP Jump on Not Parity 4.5
JNS Jump on Not Sign 4.5
JNZ Jump on Not Zero 4.5
JO Jump on Overflow 4.5
JP Jump on Parity 4.5
JPE Jump on Parity Even 4.5
JPO Jump on Parity Odd 4.5
JS Jump on Sign 4.5
JZ Jump on Zero 4.5
LAHF Load AH with Flags 4.2

104 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide

Table E-1. (continued)

E Instruction Summary

Mnemonic Description Section
LDS Load Pointer into DS 4.2
LEA Load Effective Address 4.2
LES Load Pointer into ES 4.2

LOCK Lock Bus 4.6
LODS Load Byte or Word (of string) 4.4
LOOP Loop 4.5
LOOPE Loop While Equal 4.5
LOOPNE Loop While Not Equal 4.5
LOOPNZ Loop While Not Zero 4.5
LOOPZ Loop While Zero 4.5
MOV Move 4.2
MOVS Move Byte or Word (of string) 4.4
MUL Multiply 4.3
NEG Negate 43
NOT Not 4.3
OR Or 4.3
OuUT Output Byte or Word 4.2
POP Pop 4.2
POPF Pop Flags 4.2
PUSH Push 4.2
PUSHF Push Flags 4.2
RCL Rotate through Carry Left 4.3
RCR Rotate through Carry Right 43
REP Repeat 4.4
RET Return (intra segment) 4.5
RETF Return (inter segment) 4.5
ROL Rotate Left 4.3
ROR Rotate Right 4.3
SAHF Store AH into Flags 4.2

. SAL Shift Arithmetic Left 4.3
SAR Shift Arithmetic Right 4.3
SBB Subtract with Borrow 4.3

SCAS Scan Byte or Word (of string) 4.4
SHL Shift Left 4.3
SHR Shift Right 4.3
STC Set Carry 4.6

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 105




E Instruction Summary CP/M-86 Programmer’s Guide

Table E-1. (continued)

Mnemonic Description Section
STD Set Direction 4.6
STI Set Interrupt 4.6

STOS Store Byte or Word (of string) 4.4
SUB Subtract 4.3
TEST Test 4.3
WAIT Wait 4.6
XCHG Exchange 4.2
XLAT Translate 4.2
XOR Exclusive Or 4.3
End of Appendix E

’

106 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




Appendix F
Sample Program

CP/M ASMBE 1.1 SOURCE: APPF.ABH Terminal Input/Outrut PAGE {

title "Terminal InPut/Output"
pagesize 50
Padewidth 79

simform

H

i*kxs¥*® Terminal I/0 subroutines ¥¥*¥%¥#

'

i The following subroutines

i are included:

¥

i CONSTAT - console status

H CONIN - console inPut

i CONOUT - console outpug

)

i Each routine resuires CONSOLE NUMBER

i in the BL - redister

i

i

' EREREEFRRRRERRERR

i * Jump table: /

H EREREEERAERNRRHH

i >

CSEG i start of code sedment %g

i 1

Jmp tab: éi
0000 E90600 JMP canstat %
0003 E91900 dmp conin -
00068 E92B0OO Jme conout

HREEREERELERERRREFRERHS

* I/0 port numbers /
FERRFERRERERERREFRRRRNS

=a au n ~an  ae

Listing F-1. Sample Program APPF.A86

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 107




F Sample Program

CP/M ASMBG 1.1

0010
0011
0011
0001
0002

0012
0013
0013
0004
0008

0009 53EB3F00
000D
000E
0010
0012
0013
0016
0018

32
BGOO
8A17
EC
224706
7402
BOFF

108

SOURCE: APPF.AB6

CP/M-86 Programmer’s Guide

Terminal Input/OutpPut

PAGE 2

H Terminal 1
i
instatl equ 10h i input status Port
indatal equ 11h i inPut pPort
outdatal equ 11h i outPut Port
readvinmaskl equ Olh i inPut ready mask
readvoutmaskl equy 02h i output ready mask
i
i Terminal Z:
H
instat2 equ iZh i inPut status pPort
indata2 eqy 13h i inPut Port
putdata?2 equy 13h i outPut Port
readyinmask2 equ 04h i input ready mask
readyoutmask2 esqu 08h i outPut ready mask
H
H
H FERERRRRERS
i * CONSTAT /
H EEERERRRERS
i
i Entry: BL - red = terminal no
i Exit: AL - redg = 0 if not ready
i Offh if ready
j
constat:
Push bx ! call oKkterminal
constatl:
Push dx
mov dh0Q i read status Port
mov dlsinstatustab [BX}
in aldx
and alsreadvinmasktab [bx]
Jz constatout
mov als0ffh

Listing F-1. (continued)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide

CP/M ASMBE 1.1

001A SASBOACOC3

001F
0023
0026
0028
0028
0028
002E
002F
0031

0034
0038
0039
003A
003C

003E

53E82800
EBE7FF
74FB

52

BE0O
8A5702
EC

247F
SA5BC3

S3EB1400
52

30

B60O
BA17

EC

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

SOURCE: APPF.AB6 Terminal Input/Output

constatout:

PoP dx ! pop bx | or alial | ret

ERREEEEER

¥ CONIN /
FRERREERS

BL - reg
AL - red

terminal no
read character

Entry:
Exite

(1]

e mm mE aw = e e we mw

push bx ! call okterminal !
call constatl i
Jz coninl

Push dx i
moy  dh,0

mov dlsindatatab [BX]

in al vdx

and al7fh H
rpoP dx ! Pop bx ! ret

conin:
conint:

ERREREERN

* CONDUT /
FREERRRERE

BL - reg =
AL - req =

Entry: terminal no

s mE e wme we e e am

[ BT

onout: Push bx ! call okterminal
Push dx

PUsh ax

mov dh,0

mov dlsinstatustab [BX1
conoutl:

in al vdx

Listing F-1. (continued)

F Sample Program

PAGE 3

test status

read character

strir Parity bit

character to Print

i test status

109




F  Sample Program

CP/M ASMBE 1.1

003F
0042
00ndq
00435
0048
0049

004C
00dE
0050
0053
0055
0057
0059

005A

110

224708
74FA
58
8AS704
EE
SASBC3

0ADB
J40A
BOFBO3
7305
FECB
B700
€3

5B5BL3

SOURCE: APPF.ABG

Terminal InpPut/Quterut

CP/M-86 Programmer’s Guide

PAGE 4

i write bvte

+ 1

and alsreadvoutmasktab [BX]
Jz  canoutl
POP  ax
mov dlsoutdatatab [BY]
out dxgal
PoP dx | Por bx ! ret
1
;
H N R LTy
j + OKTERMINAL +
H bbbttt 44
i
H Entry: BL - red = terminal no
i
okterminal:
or blsbl
Jz egrror
cmP blslendth instatustab
Jae error
dec bl
moyv  bh,0
ret

error: pPoP bx ! pop bx ! ret

REERRRRERXRARRESS

* Data sedment *
EERRRERFRHRER RS

- e we me we

-

dsed

HREEREERRERREERREERRF RN

# Data for each terminal *
FERRERNREFERERRERRRRRRNRER

Listing F-1. (continued)

i do nothing

khkkkekrkk%*%% end of code sedment EREEREEEARELER R

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




CP/M-86 Programmer’s Guide F Sample Program

CP/M ASMBE 1.1 SOURCE: APPF,ABB Terminal Input/Dutput PAGE 5
L]
0000 1012 instatustab db instatl,instat?2
0002 1113 indatatab db indatalsindata?2
0004 1113 putdatatab db outdatal,outdataZ
0006 0104 readvinmasktab db readvinmaskl readvinmask2
0008 0208 readvoutmasktab db readvoutmaskl»readvoutmask?

)
TRERREXRRERNRERE Bnd OF Tile HERERNERRREUFRHRERRNER

end

END OF ASSEMBLY. NUMBER OF ERRORS: ©

Listing F-1. (continued)

End of Appendix F

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 111




End of Appendix F CP/M-86 Programmer’s Guide

112 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




Appendix G
Code-Macro Definition Syntax

<codemacro> ::= CODEMACRO <name> [<formal$list>]
[<listSof$macro$directives>]
ENDM

<name> ::= IDENTIFIER

<formal§list> ::= <parameter$descr>[{,<parameter§descr>}]

<parameter$descr> ::= <form$name>:<specifier§letter>
<modifier$letter>[(<range>)]

<specifier$letter> ::

I

A|C|D|E|M|R|S|X
<modifier§letter> ::= b | w|d | sb

<range> ::= <single$range>|<double$range>
<single$range> ::= REGISTER | NUMBERB

<double$range> ::= NUMBERB,NUMBERB | NUMBERB,REGISTER |
REGISTER,NUMBERB | REGISTER,REGISTER

<list§of$macro$directives> :: = <macro$directive>
{<macro$directive>}

<macro$directive> ::= <db> | <dw> | <dd> | <segfix> |

<nosegfix> | <modrm> | <relb> |
<relw> | <dbit>

<db> ::= DB NUMBERB | DB <form$name>

>
o
3
0
2
A
X
O

<dw> ::= DW NUMBERW | DW <form$name>

<dd> ::= DD <form$name>

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 113




G Code-Macro Definition Syntax CP/M-86 Programmer’s Guide

<segfix> ::= SEGFIX <form$name>
<nosegfix> ::= NOSEGFIX <form$name>

<modrm> ::= MODRM NUMBER?7,<form$name> |
MODRM <form$name>,<form$name>

<relb> ::= RELB <form$name>
<relw> ::= RELW <form$name>
<dbit> ::= DBIT <field$descr>{,<field$descr>}

<field§descr> ::= NUMBER1S ( NUMBERB ) |
NUMBERIS ( <form$name> ( NUMBERB ) )

<form$name> ::= IDENTIFIER

NUMBERSB is 8-bits

NUMBERW is 16-bits

NUMBER? are the values 0, 1,.., 7
NUMBERT1S are the values 0, 1,.., 15

End of Appendix G

114 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




Appendix H
ASM-86 Error Messages

There are two types of error messages produced by ASM-86: fatal errors and
diagnostics. Fatal errors occur when ASM-86 is unable to continue assembling. Diag-
nostic messages report problems with the syntax and semantics of the program being
assembled. The following messages indicate fatal errors encountered by ASM-86
during assembly:

NO FILE

DISK FULL

DIRECTORY FULL

DISK KREAD ERROR
CANNOT CLOSE

SYMBOL TABLE OVERFLOMW
PARAMETER ERROR

ASM-86 reports semantic and syntax errors by placing a numbered ASCII message
in front of the erroneous source line. If there is more than one error in the line, only
the first one is reported. Table H-1 summarizes ASM-86 diagnostic error messages.

Table H-1. ASM-86 Diagnostic Error Messages

Number Meaning

0 ILLEGAL FIRST ITEM

1 MISSING PSEUDO INSTRUCTION

2 ILLEGAL PSEUDO INSTRUCTION

3 DOUBLE DEFINED VARIABLE

4 DOUBLE DEFINED LABEL

5 UNDEFINED INSTRUCTION

6 GARBAGE AT END OF LINE - IGNORED >

7 OPERAND(S) MISMATCH INSTRUCTION 3

8 ILLEGAL INSTRUCTION OPERANDS o

9 MISSING INSTRUCTION 2
10 UNDEFINED ELEMENT OF EXPRESSION 3
11 ILLEGAL PSEUDO OPERAND T
12 NESTED “IF” ILLEGAL - “IF” IGNORED

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 115




H ASM-86 Error Messages CP/M-86 Programmer’s Guide

Table H-1. (continued)

Number Meaning

13 ILLEGAL “IF” OPERAND - “IF”” IGNORED

14 NO MATCHING “IF” FOR “ENDIF”

15 SYMBOL ILLEGALLY FORWARD REFERENCED -
NEGLECTED

16 DOUBLE DEFINED SYMBOL - TREATED AS
UNDEFINED

17 INSTRUCTION NOT IN CODE SEGMENT

18 FILE NAME SYNTAX ERROR

19 NESTED INCLUDE NOT ALLOWED

20 ILLEGAL EXPRESSION ELEMENT

21 MISSING TYPE INFORMATION IN OPERAND(S)

22 LABEL OUT OF RANGE

23 MISSING SEGMENT INFORMATION IN OPERAND

24 ERROR IN CODEMACROBUILDING

End of Appendix H

116 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




Appendix I
DDT-86 Error Messages

Table I-1. DDT-86 Error Messages

Error Message Meaning

AMBIGUOUS OPERAND An attempt was made to assemble a com-
mand with an ambiguous operand. Pre-
cede the operand with the prefix “BYTE”
or “WORD”.

CANNOT CLOSE The disk file written by a W command
cannot be closed.

DISK READ ERROR The disk file specified in an R command
could not be read properly.

DISK WRITE ERROR A disk write operation could not be suc-

cessfully performed during a W com-
mand, probably due to a full disk.

INSUFFICIENT MEMORY There is not enough memory to load the
file specified in an R or E command.

MEMORY REQUEST DENIED A request for memory during an R com-
mand could not be fulfilled. Up to eight
blocks of memory may be allocated at a
given time.

NO FILE The file specified in an R or E command
could not be found on the disk.

NO SPACE There is no space in the directory for the
file being written by a W command.

>
o
I,

L

-

n
X

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 117




I DDT-86 Error Messages CP/M-86 Programmer’s Guide

Table I-1. (continued)
Error Message Meaning

VERIFY ERROR AT s:0 The value placed in memory by a Fill,

Set, Move, or Assemble command could
not be read back correctly, indicating bad
RAM or attempting to write to ROM or
non-existent memory at the indicated
location,

End of Appendix |

118 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




A

AAA, 41

AAD, 41

AAM, 41

AAS, 41

ADC, 41

ADD, 41

address conventions in
ASM-86, 25

address expression, 22

allocate storage, 32

AND, 43

arithmetic operators, 18-19

B

bracketed expression, 22

C

CALL, 47

CBW, 41

character string, 10
CLC, 51

CLD, 51

CLI, 51

CMC, 51

CMP, 41

CMPS, 46

code segment, 26
code-macro directives, 57
code-macros, 53
conditional assembly, 28
console output, 4

Index

constants, 9

control transfer
instructions, 47

creation of output files, 3

CSEG, 26

CWD, 41

D

DAA, 41

DAS, 42

data segment, 26

data transfer, 37

DB, 30

DD, 31

DEC, 42

defined data area, 30
delimiters, 7

directive statement, 24
DIV, 42

dollar-sign operator, 20
DSEG, 26

DW, 31

E

effective address, 25
EJECT, 33

END, 29
end-of-line, 23
ENDIF, 28

EQU, 29

ESC, 51

ESEG, 27
expressions, 22
extra segment, 27

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

119




F

filename extensions, 2
flag bits, 37, 40
flag registers, 37
formal parameters, 53

H

HLT, 52

I

identifiers, 11

IDIV, 42

IF, 28

IMUL, 42

IN, 38

INC, 42

INCLUDE, 29
initialized storage, 30
instruction statement, 23
INT, 47

INTO, 48

invoking ASM-86, 2
IRET, 48

J

JA, 48
JB, 48
JCXZ, 48
JE, 48
]G, 48
JL, 48
JLE, 49
JMP, 49
JNA, 49
JNB, 49

120 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

JNE, 49
ING, 49
INL, 49
INO, 49
JNP, 49
INS, 50
JNZ, 50
JO, 50
JP, 50
1S, 50
1Z, 50

K

keywords, 11

L

label, 23

labels, 13

LAHF, 38

LDS, 38

LEA, 38

LES, 38

LIST, 34

location counter, 28
LOCK, 52

LODS, 46

logical operators, 18
LOOP, 50

M

mnemonic, 23
modifiers, 56
MOV, 38
MOVS, 46
MUL, 42




N

name field, 24

NEG, 42

NOLIST, 34

NOT, 43

number symbols, 14
numeric constants, 9
numeric expression, 22

0)

offset, 13

offset value, 25

operator precedence, 20

operators, 14

optional run-time
parameters, 3

OR, 43

order of operations, 20

ORG, 28

OUT, 38

output files, 2, 3

P

PAGESIZE, 33
PAGEWIDTH, 33
period operator, 20
POP, 39

predefined numbers, 11
prefix, 23, 46

printer output, 4

PTR operator, 20
PUSH, 39

R

radix indicators, 9
RB, 32

RCL, 43

RCR, 43

registers, 11
relational operators, 18
REP, 46

RET, 50

ROL, 43

ROR, 43

RS, 32

run-time options, 3
RW, 32

S

SAHF, 39

SAL, 44

SAR, 44

SBB, 42

SCAS, 46

segment, 13

segment base values, 25
segment override operator, 19
segment start directives, 25
separators, 7

SHL, 44

SHR, 44

SIMFORM, 34

specifiers, 55

SSEG, 26

stack segment, 27

starting ASM-86, 2
statements, 23

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

121




STC, 52

STD, 52

STI, 52

STOS, 46

string constant, 10
string operations, 45
SUB, 42

symbols, 29

T

TEST, 44

TITLE, 33
type, 13

U

unary operators, 19

\'

variable manipulator, 19
variables, 13

W

WAIT, 52
X

XCHG, 39
XLAT, 39

122 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH




Reader Comment Form

We welcome your comments and suggestions. They help us provide you with better
product documentation.

Date ____ Manual Title Edition

1. What sections of this manual are especially helpful?

2. What suggestions do you have for improving this manual? What information
is missing or incomplete? Where are examples needed?

3. Did you find errors in this manual? (Specify section and page number.)

COMMENTS AND SUGGESTIONS BECOME THE PROPERTY OF DIGITAL RESEARCH.




NO POSTAGE
NECESSARY
IF MAILED IN THE

BUSINESS REPLY MAIL

FIRST CLASS / PERMITNO.182 / PACIFIC GROVE, CA

|
POSTAGE WILL BE PAID BY ADDRESSEE

0 DIGITAL RESEARCH™

P.O. Box 579
Pacific Grove, California
93950

-
4
-
m
O
w
=
>
4
m
2]

Attn: Publication Production




