CP/M-8000"

Operating System

Programmer’s Guide

COPYRIGHT

Copyright() 1984 Digital Research Inc. All rights reserved. No
part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into any
language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or
otherwise, without the prior written permission of Digital Research
Inc., 60 Garden Court, Box DRI, Monterey, California 93942.

stcLAIMER

DIGITAL RESEARCH INC. MAKRES NO REPRESENTATIONS OR WARRANTIES WITH
RESPECT TO THE CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR
PURPOSE. Further, Digital Research Inc. reserves the right to
revise this publication and to make changes from time to time in the
content hereof without obligatxon of Digital Research Inc. to notify :
any person of such revision or changes.

NOTICE TO USER

From time to time changes are made in the filenames and in the files
actually included on the distribution disk. This manual should not
be construed as a representation or warranty that such files or
facilities exist on the distribution disk or as part of the
materials and programs distributed. Most distribution disks include

a "README.DOC" file. This file explains variations from the manual
whlch do constitute modification of the manual and the items
included therewith. Be sure to read this file before using the
software.

TRADEMARKS

cp/M, CP/M-86, CP/NET, and Digital Research and i:s logo are
registered trademarks of Digital Research, Inc. Concurrent, CP/M-
68K, CpP/M-8000, DDT, MP/M, and MP/M-86 are trademarks of Digital
Research, 1Inc. IBM. is a registered trademark of International
Business Machines. Olivetti is a registered trademark of the
Olivetti Corporation. 2ilog is a registered trademark of Zilog,
Inc.. AR8K, AS28K, LD8R, 2CC, and 28000 are trademarks of 2ilog,
Inc.

The CP/M-8000 Operating System Programmer's Guide was printed in
the United States of America.

ehdkhdkkkkbhhhkhhhhdkhhhkhhkhhdhkhkknx

* First Edition: October 1984 *
22222222 RARERRARERAXXTXEE SRR EE X

Foreword

CP/M-8000™ is a single-user operating system designed for the
Zilog® Z28000™ microprocessors. CP/M-8000 requires a minimum of 128K
bytes of random access memory (RAM) to run its base-level system,
which contains the following CP/M® commands and utilities:

e CP/M Built-in Commands:

DIR
DIRS
ERA
REN
SUBMIT
TYPE
USER

e Standard CP/M Utilities:

ED
PIP
STAT

e Programming Utilities:

Archive (AR8SK™)
DUMP

SIZEZ8K

XDUMP

e Programming Tools

Assembler (ASZ8RK™)

ppT™

Linker/Loader (LD8K™)

Symbol Table Print Utility (NMZ8K)

C Compiler (2CC™, Z8K™, ZCCl, 2CC2, and ZCC3)*

* Described in the C Language Proqgrammer's Guide for CP/M—BOOOQ

The CP/M-8000 file system is based on and upwardly compatible with
the CP/M Release 2.2, CP/M-86® Release 1.1, and CP/M-68K™ Release
1.2 file systems. However, CP/M-8000 supports a much larger file
size with a maximum of 32 megabytes per file.

iii

CP/M-8000 supports a maximum of 16 disk drives, with 512 megabytes
per drive. CP/M-8000 supports other peripheral devices that the
Basic I/O System (BIOS) assigns to one of the four logical devices:
LIST, CONSOLE, AUXILIARY INPUT, or AUXILIARY OUTPUT.

Organization Of This Guide

This guide is organized into the following sections:

Section 1 contains an overview of the operating system's
architecture, including descriptions of file
system access, programming tools, file
gspecifications, and the terminology used in
this guide. ’

Section 2 describes the Console Command Processor (CCP),
: the mechanisms CP/M-8000 uses for loading and
exiting transient programs, and a program

execution model.

Section 3 presents the CP/M-8000 command file format.

‘Section 4 = documents the Basic Disk Operating System (BDOS)
‘functions. e |

Section 5 describes the operation and commands of the

ASZ8K Assembler.

Section 6' describes the operation and commands of the
: ' CP/M-8000 Linker, LDBK.

Secticn«7ﬁ describes the command lines that invoke and
: - output from the AR8K, DUMP, XDUMP, SIZEZ8K, and
XCON utilities.

Section 8 * describes the operation and commands of DDT.

Before You Use This Manual

The presentation of information in this guide assumes you are an
experienced programmer familiar with the basic programming concepts
of assembly language. If you are not familiar with Zilog 28000

assembly language, refer to the following manuals:

e 28000 CPU User's Reference Manual, Prentice-Hall, 1982
e 78000 CPU Programmer's -Guide, Zilog (611-1790-0006), 1981
e Mateosial, Richard. Programming the 28000, Sybex, 1980

iv

Before you can use the facilities in this guide, your CP/M-8000
system must be configured for your particular hardware environment.
Normally, your system is configured for you by the manufacturer of
your computer or the software distributor. If you have an unusual
hardware environment, however, this may not be the case. Refer to
the CP/M-8000 Operating System System Guide (cited as CP/M-8000
System Guide for details on how to cgonfigure your system for a
custom hardware environment.

Command Conventions Used In This Guide

The following list describes the command conventions‘used in this
guide.

(1 Square brackets in a command line enclose optional
parameters.

nH. .) The capital letter H follows numeric values that

SRR SOUY S A are represented in hexadecimal notation.

numeric values - Numeric values are represented in decimal notation
ST unless stated otherwise.

(n), o owe o BDOS function numbers are enclosed in parentheses

- when they appear in text.

D T Unless noted otherwise, a vertical or

« OF . . horizontal ellipsis indicates missing elements

. o : in a series.

RETﬂRN?‘ Mf'M . The word RETURN refers to the Return or Enter key

on the keyboard of your console. Unless
otherwise noted, you must press Return to invoke
a command line entered from your console.

CTRL-X CTRL-X indicates that you must hold down the
' Control key while simultaneously pressing the key
indicated by the variable X.

New Functions and Implementation Ch&nges‘

CP/M-8000 has six new Basic Disk Operating System (BDOS) functions
and additional implementation changes in the BDOS functions and data
structures that differ from other CP/M systems. The new BDOS
functions and implementation changes are listed in Appendix F.

Table F-4 in Appendix F contains the functions and commands
supported by other CP/M systems that are not supported by CP/M-8000.

Table of Contents

1 Introduction to CP/M-8000

1.1
1.2
1.3
1.4
1.5
1.6
1.7

2 The

2.1
2.2

2.3

2.4

CP/M-8000 System Architecture . . . o« o o « « &
Transient Programs ¢ . & ¢ o« o o o o .
File SysStem ACCESS . « & &4 &« o ¢ 4 o o o o o
Prcgrﬁmming Tools and Commands . .- ¢ ¢« « o« o @
CP/M-8000 File Specification

Wildcatds L] L] - L3 L] L] - L] - [] L] . . - - .] L] .

CpP/M~8000 Terminology -« « « ¢« ¢ ¢ ¢ 4 o« o o .

CCP and Transient Programs

CCP Built-In and Transient Commands

Loading a Prog.ram - L] . L] - L4 - - - - L] L] - - - -«
2.2.1 Base Page Initlalization By The CCP . .
2.2.2 Loading Multiple Programs
2.2.3 Base Page Initialization by a Transient

Program . * e e e e s e e s e e e e s
Exiting Transient Programs o « « « .

Transient Program Execution Model

3i=Command File Format

3.1

3.2
3.3
3.4

The Command File Header . . : . «v v « v « « o &
Segment INfOrMAtion « « o o & o o o o o « o « &
Relocation Section ¢« & . ¢ . . .

SymbOl Table . - - . . - . » . . . - - [[L] .

305 "Printiﬂg the SymbOl Table . . * o o * o e . . -

vii

1-1
1-2
1-2
1-2
1-5

1-7

2-1
2-2
2-2

2-3
2-4
2-5

Table of Contents
(continued)

4 Basic Disk Operating System Functions
4.1 BDOS Functions and Parameters . . « « « o o « o o & 4-2

4.1.1 inVoking BDOS FUNCEIONS « &« o o o o o o » & 4-3
4.1.2 Organization Of BDOS Functions . . « . « . . 4-3

4.2 File Access Functions « ¢ o ¢ ¢ o « « 4-4

4.2.1 A File Control Block (FCB) . & ¢ o o o o« o & 4-4
4.2.2 File Processing ELrOrS . « o « o o o o o o o 4-6
OPEN FILE a 8 e & @ e 5 e e ¢ & € 2 e e e 8B e e e 4-10
CLOSE FILE =« « & « o o o o s s o o s o s o s » o« « 4=-11
SEARCH FOR. FIRST * & - - . ¢« = v « o e * @ . . - 4"'1.2
SEARCH FOR NEXT . 4 ¢ ¢ o 4 o o o o o s o o o o« o« o+ 4-13
DELETE FILE ¢ ¢ « « « o o o s o o o o s o o « « o« » 4=14
READ SEQUENTIAL + « « « « o « o « o e s o = « o« « « &=15
WRITE SEQUENTIAL s e & = s s e e @ 8 e e 6 o & 4"].6
MAKE FILE « « + o o o o o « o o o o « « o o o « o o 4=-18
RENAME FILE « « = = = o « o o o o « o o o o« o« « « . 4-19
SET DIRECT MEMORY ADDRESS . « + + o o o o v o « o o 4-20
SET FILE ATTRIBUTES . . ¢ ¢ o o o o o o s a2 « o o« » 4-21
READ RANDOM .« . & « o e e & o o s o s o o o « s « o« 4-23
WRITE RANDOM . 4 ¢ ¢ o o o o o s o s o o o s o o « 4=25
COMPUTE FILE SIZE « ¢ o « « o » o o o o o o o o o o« 4-27
SET RANDOM ® ® e e ® o o e & s e » o e % e w e o s 4-28
WRITE RANDOM WITH ZERO FILL . « « o o o« o ¢ o o o« « 4-30

4-3 Drive FunCtions - .] » - - - . - - 4"31

RESET DISK SYSTEM « « « + « o o = o o = o o o o o« o« 4-32
SELECT DISK &« « « « o o o o o s o o o o' « o« o« « « « 4-33
RETURN LOGIN VECTOR « « « « o « « o o o o o o « « « 4-34
RETURN CURRENT DISK + « .« + o o o o o o o o« o « « . 4-35
WRITE PROTECT DISK « « o o « s o o o o « o o o« + o .4-36
GET READ~ONLY VECTOR « « o o o o o o o o « « o « o 4=37
GET DISK PARAMETERS « &+ « « « « o o o « o o« « « « o 4-38
RESET DRIVE . + « « = « « < o o o« « o o o o o « « . 4=40
GET DISK FREE SPACE « « « « ¢ « o « o « o « o o o . 4-41

4.4 Character I/O Functions . . ¢« « « & « &« ¢ & & « « . 4-42

CONSOLE INPUT . &« « o o o o o o o o o o o o o o« « o« 4-43
CONSOLE QUTPUT . ¢ « « ¢ o o o o o o o o o o o o« o 4-44
DIRECT CONSOLE I/O « o« « « « o« o o o o o« o « o« o« « 4=-45
PRINT STRING .+ o o o o « o o o o o o o o o o o« o « 4-47
READ CONSOLE-BUFFER « « « « + « o « o o o o o« « « « 4-48
GET CONSOLE STATUS .« ¢ ¢ « o « ¢ ¢ ¢ o o o « « « o« 4-50

viii

5

4.5

'40 6

Table of Contents
(continued)

AUXILIARY INPUT FUNCTION
AUXILIARY OUTPUT
LIST QUTPUT . . « « « .« «
GET I/O BYTE . « « « « &
SET I/O BYTE . « « « « &

L] . . L]]
o e o o o
[] » . .
[] L] L[] . L]

System/Program Control Functions

SYSTEM RESET . . .
RETURN VERSION NUMBER
GET/SET USER CODE . .
CHAIN TO PROGRAM .
FLUSH BUFFERS . . .
DIRECT BIOS CALL .
PROGRAM LOAD . . .

L[] [. ’ * L] . .
] [» L] [] L] .
* ® e © 2 o @
[L] L) L] [[]
L] L * L] . L L]
. L] . . L] . .

* L . L]

Exception Functions « . .

SET EXCEPTION VECTOR« .« .
SET SUPERVISOR STATE . . « « « .«
GET/SET TPA LIMITS . . « « « o &

ASZS8K Assembler

fs.l‘.
‘5.2
5.3

5.4
5.5
5.6

Assembler Operation
Invoking the Assembler (ASZ8K) .
Assembly Language Directives . .
Sample ASZ8K Commands « .
Assembly Language Description . .
Macro Descriptions« . .
Macro Definition

Macro Expansion
Macro Argument Substitution

Nesting Macro Calls . .

2
3
4
5 Nesting Macro Definitions
6
7 Macro Redefinition

ix

L] L] L] L] L]

» 3 L L] - & .

(] . . @ .

e * » o @ [

-

Referencing Extra Macro Arguments

. L] . L] L]

o e o * o

P & 6 o 0 o o

] . [) [] .

* . . . » . .

* * » . L)

[[. . L 2 . .

s & 2 8 0 ¢ 2

g .
s s & € o & o

L e ® a o a o &

4-51
4-52
4-53
4-54
4-56

4-57

- 4-58

4-59
4-60
4-61

- 4=62
. 4=63

4-65
- 4~67

- 4-68

4-71

4~-72

Table of Contents

(continued

6 LD8K Linker

6.1
6.2
6.3

Linker Operation
Invoking the Linker (LD8K) .

Sample Commands Invoking LD8K

7 Programming ﬁtilities

7.1

7.2

7.5

Archive Utility « . .
7.1.1 ARSK Syntax

7.1.2 AR8K Operation

7.1.3 Errors L - - L4 » L] . *

DUMP btility - c.n . g f:

7 L] 2 L] l InVOk ing DUMP A A] . : ‘(;* - o 3 v
702.2 D‘mp OUtput . o. s 8 ;

XDUMP Utility . « & & o « & o

7.3.1 Invoking XDUMP fl,;”“;‘

7-3.2 XDUMP Output - » » .

)

SIZEZBK ULLility « « o v « o v i e

7.4.1 Invoking SIZEZ8K
7:4.2 SIZEZSK Output . - . b

XCON Utility . + o o« & « o &

7.5.1 Invoking XCON
7.5.2 SENDZ8K Command Line Ex

- - L]

- L] L)

ample

U !

~ ~ ~J 4~ ~ NN ~
[}
O ® [+] ~ o N AN+ -

7-11
7-11
7-12
7-13
7-14

7-14
7-15

8 DDT-Z8K

Table of Contents
(continued)

801 DDT-ZSK operation e ® @& o e e o ® @ & ® e o

8.1.1 Invoking DDT-Z8K . . . « « =«
.2 DDT-Z8K Command Conventions
.3 Specifying Addresses
.4
.5

8-2 DDT-ZsK ccmaﬂds . 3 .« a . s e e @ 0‘ . .

8.2.1 The
The
The
The
The
The
The

The
The
The
The

The
The
The
The
The
The
The
The
The

MNNNNBRORNRDRMNNDNDNN N BN
[} - [] [Y . [] , . L3 [1] [] . . L] [] []] [] L] L]

NONHEHEHERHEPERPROONO0AWLN

MHEOWVLONAMPLWNEO

L L[] L] L] . L] - L] L] a2 L L) L]

A Summary of BIOS

Terminating DDT-Z28K
DDT-Z8K Operation with Interru

The -

The-

pts

.
.

A (Assemble) Command . .

B (Breakpoint) Command .

C (Clear) Command . . .

b (Display) Command . .

E (Load for Execution) Co

P (Fill) Command

G (Go) Command . . « « -«

H (Hexadecimal Math) Command
I (Input Command Tail) Comman
L (List) Command . . « . . =«
M (Move) Command
P (Port Read/Write) Command
R
S
T
41
v
W
X
Y
$
$

L)
a

. e go . e e
=}
he = o e o o o

(Read) Command . . « .« .
. (Set) Command . . .
(Trace) Command . .
(Untrace) Command .

[
-
.
.

(Value) Command .
(Write) Command .
(Examine CPU State) Command
(Set/Clear FCW Bits) Command
(Calculate) Command
$ (Assign Symbol Value) Comman

s e & o 2.0 e & 0

[) » L L] L]

L]

.

L 4

L]

L}

.

.

.

.

L

.

-

L4

.

.

-

-

. 3
.
.
.
d

Appendixes

Functions . . ¢ 4 o o o o o o

B Transient Program Load Examples

xi

® 6 o e 8 2 * ® e & ¢ & a o2 o o & & & s &

¢ 8 o & 9 6 & ¢ o o8 8 8 8.5 e e & & o s o

e 8 & € @ 6 8 @ 8. 8 @ e 8 @79 4 € s o 2 @

. . . L[] L[]

L] L] L] []

. . o ¢ & & 5 2 & 2 8 B &6 N & & F 2 e & 2 0

[}
VORISRV LW w [RVIN SN o o [ol

8-10

™ @ ®
i
=
Xy

8-12

® oo
-
> w

8-15
8-16

Table of Contents
(continued)

C Base Page Format . . . o + o s o o o o o o » o

D Instruction Set Summary ¢ « ¢ o o o o

B Error Messages
E.l1 AR8K Error Messages e o s o s s o s e o o
E.2 ASZ8K Error Messages . . « o o o s o o &

E.2.1 ASZ8K Diagnostic Error Codex . . .
E.2.2 ASZ8K Fatal Error Messages . . . =

E.3 BDOS Error Messages . . « ¢ s o » o a &

E.4 BIOS Error Messages ; e e e e e

E.5 CCP ErrOr“MassageS- « b e e e e mimlw e e

E.5.1 Diagnostic Error Messages . o e e
E.5.2 CCP Internal Logic Error Messages

E.6 DDT-Z8K Error MesSages . « « « « o o o o

o

E.7 DUMP Error MesSSages . « « « o« « o + o o o
E.8 LD8K Error Messages . . . c e .‘. . .
E.9 NMZ8K Error Messages e e v e
E.10 SIZEZS8K Error Messages . . « « « « s o «

E.12 XDUMP Error MesSSages .« « o« « « « o « o« «

F New Functions and Implementation Changes
F.l1 BDOS Function and Data Structure Changes

F.2 BDOS Functions Not Supported By CP/M-8000

G Dec i.mal—ASCI I-Eex Table e e o - . ¢« e . s e e

“dex L3 e ® - - . . L] . - L] . * L] - [L)

xii

. D-l
. E-l
. E"’s
- E-G
. E"'B
. E-11
. E-12
. E—ls
. E-16
. B=22
. E=23
. E‘Zg
. E."30
. F-l
. F‘z
. G_l
Index-1

Tables
1-1.
1-2.

. 1-3.
1-4.
1-5.

4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.
4-9.
4-10.
4-11.
4-12
4-13.

4_’14)

Tables, Figures, and Listings

Program Modules in the CPM.SYS File
CP/M-8000 Programmer's Guide Commands . . .
CP/M-8000 User's Guide Commands . . « « . .
Cc Langﬁage Progfammet's Guide Cpmmands .« e
Delimitér Characters . . « « « o o o o o &
CP/M-8000 Terminology . « « « « « + o o + »
Magic Number Values ; « e e o a
Segment Type Values . « ¢« « ¢ « o+ o« ; .« . ;

Relocation Type Values L] - - 0w .

Symbol Type Values . . . ¢ « « o o s s o o

CP/M~8000 BDOS Functions . « ¢ ¢ ¢« o « « «

BDOS Parameter Summary . . e eieie e

Filé Access Punctionsﬂ.>.‘. . ; ; ; ... :'.

File Cdntrol Block (FCB) Fields . ;‘.'. « o

Read/Write Error Message Response Optidns .

Disk File Error Response Options
Unsuccessful Write Operations Return Codes
File Attributes . . « o o o o « o o « o o
Read Random Function Return Codeé ..
Write Random Function Return Codes
Current Position Definitions
Drive Functions . . ¢ « ¢ ¢ ¢ ¢ o o o o o @
Pields in the DPB and CDPB° . . « ¢ « « .« .

Character I/O Functions . . « ¢ ¢ o « « =« «

xiii

1-1

1-4

1-5

1-6
1-7
3-2

3-3
3-4
3-6
4-1
4~2
4~4
4-5
4-7
4-9

4-17

4-22

4-24

4-26

4-28

4-31

4-39

4-42

4-15.
4-16.
4-17.
4-18.
4-19.
4-20.
4-21.
4-22,

5-1.
5-2.
6-1.
7-1.
7-2.
7-3.
7-4.
7-5.
7-6.
7-7.
7-8.

A-1l.

Tables, Figures, and Listings

(continued)

Direct Console I/0 Function Values
Line Editing'Controls e v s e o &
I/0 Byte Fie;d Definitions
System and Program Control Functions
Program Loﬁd Function Return Codes
Load Parameter Biock Options R
Valid Vectors and Exceptions . . .

Values for Bits 0 and 1 in the TPAB
Field - - - L] L] L] - L] - .’ - - » - L]

Assembler Options« . .« . -“;
Assembly Language Directives . . .

Linker Command Options

ARBK Command Line Components . . .'H

AR8K Commands and Options
DUMP Command Line Components . . .
DUMP Output Components« .
XDUMP Command Line Components . . .
XDUMP Segment Contents Qutput Compon
SIZEZ8K Command Line Components . .
SIZEZ8K Output Components . . .« . s
XCON Command Line Components . . .
DDT-Z8K Command SUmmary . « « « « .
Z8000 Port Assignments for the Olive
Status Flag and Cpntrol Bits . . .

Summary of BIOS Functions

xiv

. - . [. o
4 L] L] - L L]

[2 . . - . [

Parameters

. - . - - o

ents . . .
tti M20 . .

4-45
4-49
4-55
4-57
4-65
4-66
4-69

4-73
5-2
5-3
6-2
7-1
7-2
7-6

7-8
7f10
7-11
7-12

7-14

" Tables, Figures, and Listings
(continued)

C~1l. Base Page Format: Offsets and Cbntents e s+ e« s o « C-1
D-1. Instruction Set Summary « « . ¢« + o+ ¢ o o » o o« o o D-1
E-1. ARSBK Error MessagesS . . « « o« s 2 o o o s o o« o o « BE=1
E~-2. ASZ8K Diagnostic Error Codes . . +. « « « « « o« » « BE=5
E-3. ASZ8K Fatal Error MesSSageS . « s « « s o o o o o & E=7
E-4. BDOS Error MessagesS . . « « o« o » o o o o o o « o o E=9

E-5. BIOS Error Messages 6t e s e e e e e e e . «E=11

E-6. CCP Diagnostic Error Messages . . . « « « + + » o » B=12 -

E-7. DDT-Z8K Error MesSSages . . « + « s + « « « o « « o E-16
E~8. DUMP BError MeSSAgeS . « « « =« « + s o o o « o « o » BE=22
E-9. LD#K Error MessagesS . . « + + « o o o o o« s « « » « E=23
E-140. NMZBK.Efror ME@SSAG@S .+ « ¢« + o s o o o o o o o .‘.fE—ZS
E-11l.. SIZEZS& Error MesSSages . « « « o o o« + o« o « o « « E=30
E-12. XDUMé Error Messéqes c e s s s s e v s e s = . .‘.‘E-3l;l
F-1. New BDCS Functions . . . ¢« « « ¢« ¢ ¢« & ¢« &« ¢« &« o o« F=1
F-2. BDOS Function Implementation Changes‘ © + « o o » o« PF-1
" F-3. BDOS Daia Structure Implementation Changes F=-2

F-4. BDOS Functions Not Supported by CP/M-8000 F-Zc

XV

Figures

2-1.

4-5.
4“60 .

4'-9 .
4-10 .
8-1.

Listings
B-1l.

Tables, Figures, and Listings

(continued)

Format of the Command Tail in the DMA

 CP/M~-8000 Default Memory Model

CP/M78000 Command Fi;e Layout
CP/M~8000 Command File Header Fields

Symbol Table Entry . . . « « . o « &

File Control Block (FCB) Format . . .

FCB Format for Rename Function . . .

DPC and CDBP « o & e e e 8 le & % e e

I/O Byte . o » e ; o 9 e 7,‘ e s e . a‘)

Command Llne Format in the DMA Buﬁfer

'BIOS Parameter Block (BPB) R

Exception Parameter Block (EPB) . . .

Transient Program Parameter Block . .
Parameters Field in TPAB ; c e e e .

Flag and Control Word . . . « . « . .

CrP/M-8000 BDOS Program Loader

xvi

Buffer

Format of the -Load Parameter Block (LPB) .

‘. % e

2-3
2-5
3-1
3-2

3-5 =

4-19
4-39
4-54
4-61

4-64

4-66
4-68
4-72
4-73
8-14

Section 1
Introduction to CP/M-8000

CP/M-8000 has many of the facilities of other CP/M systems. It also
contains features which allow it to address up to sixteen megabytes
of main memory available on the 28000 microprocessor. The CP/M-8000
file system is upwardly compatible with CP/M Release 2.2, CP/M-86
Release 1.1, and CP/M-68K Release l1.2. The CP/M-8000 file structure
supports up to sixteen 512 megabyte disk drives and a maximum file
size of 32 megabytes.

-

1.1 CP/M-8000 Architecture

The CP/M-8000 operating system is contained in the CPM.SYS file on
the system disk. CPM.SYS is loaded into memory during a cold start
by a cold start loader module that resides on the first three tracks
of the system disk. Table 1-1 lists the three program modules
contained in CPM.SYS. ‘

Table 1-1. Program Modules in the CPM.SYS File

Module Mnemonic Description
Console Command Processor . CCP - . = parses user command
: o 3 lines ' :
Basic Disk Operating $ys£em :HJBDde”" provides file system

. acecegs functions

Basgic I/0 System v BIOS -. . provides the device-
driving routines for
peripheral 1/0

.The sizes of the CCP and BDOS modules are fixed for a given release
. of CP/M~8000. The size of the BIOS custom module, normally supplied
by- the computer manufacturer or software distributor, depends upon
the system configuration, which varies with the implementation.

1-1

CP/M-8000 Programmer's Guide 1.2 Transient Programs

The specific implementation of CP/M~8000 dictates which memory
segment is loaded with the operating system. In some
implementations, for example, the system kernel may use nonsegmented
system address space (to avoid the extra memory required for
code/data separation). The configuration of physical memory within
specific 28000-based computer systems also affects which memory
segment the operating system can be loaded into for execution. All
CP/M-8000 modules remain resident in memory. The CCP cannot be used
as a data area subsequent to transient program load. =

1.2 Transient Programs

The Transient Program Area (TPA) is made up of the remaining
- segments of address space that are not occupied by the operating
system after CP/M-8000 is loaded into memory. CP/M-8000 loads-
executable files, called command files, from disk into the TPA.
Because they are temporarily, rather than permanently, resident in _
memory (and hence not confiqured within CP/M-8000), these command
files are also called transient commands or transient programs. The
CP/M~-8000 command file format is described in Section 3.

Nonsegmented transient programs can run in a single TPA sejment or
in two segments: one for instructions and one for data (called split
I and D spaces). Segmented programs can use any segment of the TPA
specified in their object files. o '

1.3 File SYSten‘Access'

Programs do not specify absolute locations or default variables when
accessing CP/M-8000. 1Instead, programs invoke BDOS and BIOS
functions. Section 4 describes the BDOS functions in detail.
Appendix A lists the BIOS calls. Refer to the CP/M-B8000 Operating
System System Guide for detailed descriptions of the BIOS functions.

In addition to these functions, CP/M-8000 decreases dependence on
absolute addresses by maintaining a base page in the TPA for each
transient program in memory.. The base page contains initial values
for the File Control Block (FCB) and the Direct Memory Access (DMA)
buffer. (See Section 2.2 for details on the base page and methods
for loading transient programs.)

l.4 Programming Tools and Commands

CP/M-8000 programming tools and utilities include an Assembler
(ASZ8K), Linker/Loader with relocation capability (LD8K), Archive
utility (AR8K), Hex/ASCII DUMP utility, and Object File Dump utility
(XDUMP). Table 1-2 lists the commands that invoke each of these
tools and the section of this guide in which the programming tool is
described. Tables 1-2, 1-3, and 1-4 list other commands supported
by CP/M-8000 and the manuals in which they are documented.

CP/M-8000 Programmer's Guide 1.4 -Prog:amming Tools and Cbmmands

Table 1-2. CP/M-8000 Programmer's Guide Commands

Command Description

AR8K Invokes the Archive Utility (AR8BK). ARBK creates a
library and/or deletes, adds, or extracts object
modules from an existing library, such as the C Run-
time Library. AR8K is described in Section 7.

ASZ8K Invokes the CP/M-8000 Assembler (ASZ8K). ASZ8K is
described in Section 5.

DDT Invokes the CP/M-8000 version of DDT, the Dynamic
Debugging Tool. Section 8 describes DDT.

DUMP Invokes the DUMP utility that prints the contents of |
a file in hexadecimal and ASCII notation. DUMP is
described in Section 7.2.

LD8K Invokes the Linker/loader that combines several
' assembled (object) programs into one executable.
command file and creates absolute files from
relocatable command files. This .utility is

described in Section 6. .

NMZ 38K Invokes the NMZ8R utility that prints the symbol
table of an object or command file. The use of
NMZ8K is described in Section 3.5, "Printing the
Symbol Table.” L : ¥)

SIZEZ8K Invokes the SIZEZ8K uytility that displays the total
size of a command file and the size of each of its.
program segments. SIZEZ8K is described in Section

XCON Invokes the XCON uéility that converts ASZGK;dbject'
output into the x.out format. The x.out format is
described in Section 3; Section 7.5 describes XCON.

XDUMP Invokes the XDUMP utility that prints the header,
_ contents, and symbol table of an object or command
file. Section 7.3 describes this utility.

CP/M-8000 Programmer's Guide 1.4 Programming Tools and Commands
1

Table 1-3 briefly describes the commands documented in the C/PM-8000
Opeggtingrgystem User's Guide (cited as CP/M~-8000 User's Guide) .

Table 1-3. CP/M-8000 User's Guide Commands

Command Description

corY copies disks (including the boot tracks) =

DIR* ' displays the dnrectory of files on a

- specified disk

DIRS* displays the directory of system files on a
: specified disk

ED invokes the CP/M-8000 text editor

ERA* erases one or more specified files

FORMAT prepares floppy dlsks for ‘use with CP/M-

8000
PIP copies, combines, and transfers specified

files between peripheral devices

REN* renames an existing file to the new name
8pec1f1ed in the command line

STAf ' shows disk.and file access status, free
space on disks, file size, or the logical-
to-physical device assignments, according
to command line options

SUBMIT* executes a file of CP/M commands

TYPE* . displays the contents of an ASCII file on
the console

USER* ' displays or changes the current user number

* CP/M—BOOO'built—in commands

CP/M-8000 Programmer's Guide 1.4 Proéramming Tools and Commands

Table 1~-4 briefly describes the commands documented in the C
Language Programmer's Guide for CP/M-8000 (cited as C _Language

Programmer's Guidel:

Table 1-4. C Language Programmer's Guide Commands

Command Description
ZCC invokes a command line interpreter that loads the
compiler for the compilation of CP/M-8000 C source
files
ZCCl invokes the preprocessor for processing macros when

you compile C source files

2CC2 invokes the C parser when you compile CP/M-8000 C
source files ‘

Zcc3 invokes the code generator optimizer for the CP/M-
8000 C compiler when you compile C source files

1.5 CP/M-8000 FPile Specification

The CP/M-8000 file specification is compatible with other CP/M
systems. The format contains three fields: a one-character drive
select code (d), a one- to eight-character filename (f£...f), and a
one- ta three-character filetype (ttt) field, as shown in the
following example: . L S

Format A: EFEEEEFE. LLE

Example B:GINA.DAT

The drive select code and filetype fields are optional. A colon (:)
delimits the drive select field. A period (.) delimits the filetype
field. These delimiters are required only when the fields they
delimit are specified. .

Values for the drive select code range from A through P when the
BIOS implementation supports 16 drives, the maximum number allowed.
The range for the drive code depends on the BIOS implementation.
Drives are labeled A through P to correspond to the 1 through 16
drives supported by CP/M-8000. However, not all BIOCS
img}ementations support the full range.

CP/M~-8000 Ptograhmer's Guide 1.5 Pile Specification

The characters in the filename and filetype fields cannot contain
delimiters (the colon and period) and must be uppercase for the CCP
to parse the file specification. The CCP cannot access a file that
contains delimiters or lowercase characters. When entered at the
CCP level, a command line and its file specifications, if any, are
internally translated--to uppercase before the CCP parses them.

Not all commands and file specifications are entered at the«CCP
level. CP/M-8000 allows you to include delimiters or lowercase
characters in file specifications that are created or referenced by
functions that bypass thé CCP. For exazmple, the BDOS Make File
Function (22) allows you to create a file specification that
includes delimiters and lowercase characters, although the CCP
cannot parse and access such a file.

Table 1-5 lists some additional delimiter characters you should
avoid using in your file specifications. These characters are
reserved because several CP/M-8000 built-in commands and utllities
have special uses for them. ‘

Table 1-5. Delimiter Characters

Character Description

(1 square brackets
() parentheses
<> 7 angle brackets’
- aguals gign
asterisk
ampersand
comma '
exclamation point
bar -
question mark
slash
dollar sign
period
colon
semicolon
plus sign
minus sign

DN N—~ & % 0

| 4e~e o5 0

1.6 Wildcards

CP/M-8000 supports two wildcards, the question mark (?) and the
asterisk (*). Several utilities and BDOS functions allow you to
specify wildcards in a file specification to perform the operation
or function on one or more files. However, BDOS functions support
only the ? wildcard.

CP/M-8000 Programmer's Guide 1.6 wildcards

The ? wildcard matches any one character in the character position
occupied by this wildcard. For example, the file specification
G?NA.DAT indicates the second letter of the filename can be any
alphanumeric character if the remainder of file specification
matches. Thus, the ? wildcard matches exactly one character
position.

The * wildcard matches one or more characters in the field or
remainder of a field that this wildcard occupies. CP/M~-8000
internally pads the field or remaining portion of the field occupied
by the * wildcard with ? wildcards before searching for a match.
For example, CP/M-8000 converts the file specification B*.DAT to
B??2?2?222? .DAT before searching for a matching file specification.
Thus, any file that starts with the letter B and has a filetype of
DAT matches this file specification.

For details on wildcard support by a specific BDOS function, refer
to the description of the function in Section 4 of this quide. For
additional details on these wildcards and support by CP/M-8000
utilities, refer to the CP/M-8000 User's Guide.

1.7 CP/M-8000 Terminology -

‘Table 1-6 lists the terminology used throughout this guide to
describe CP/M-8000 values and program components.

Table 1-6; :cP/n-§QO0 Terminology '

Term o Meaning
Nibble 4-bit value
Byte o 8§-bit value
Word l6-bit value
Longword 32-bit value
Address 32-bit value that specifies a

location in storage

Offset fixed displacement that references
a location in storage, other data
source, or destination

Text Segment program section that contains
. instructions

CP/M~-8000 Programmer's Guide Lot wagis cenn

-~ e

Table 1-6. (continued)

Term

Meaning

Data Segment

Block Storage
Segment (bss)

Segment (Z28001)
Segmented Mode

Nonsegmented Mode

p‘roéram section that contains
initialized data

program section that contains

uninitialized data

set of adjacent memory addresses
(up to 64K) with the same segment
number '

running-state of the segmented CPU
in which addresses can have
different segment members

running-state of the 28000 CPU --

- addresses generated by segmented
CPUs in this mode have the same

segment number

Bnd of Section 1

Section 2
The CCP and Transient Programs

This section discusses the Console Command Processor (CCP), built-in

and transient commands, transient program loading and exiting, and
CP/M-8000 memory models.

2.1 CCP Built-in and Transient Commands

. After an initial cold start, CP/M-8000 displays a sign-on message at

the console. Drive A, containing the system disk, is logged in
automatically. The standard prompt (>), preceded by the letter A
designating the drive, is displayed on the console screen. This
prompt informs the user that CP/M-8000 is ready to receive a command
line from the console.

In response to the prompt, a user types the filename of a command
file and a command tail, if required. CP/M-8000 supports two types
of command files, built-in commands and transient commands. Builtg~
in commands are configured and reside in memory with CP/M-8000.
Transient commands are loaded in the TPA and do not reside in memory
allocated to CP/M-8000.

CP/M-8000 supports these seven built-in commands:

DIR
DIRS
ERA
REN
TYPE
USER
SUBMIT

A transient command is a machine-readable, executable program file
loaded from disk to memory. Section 3 describes the format of
transient command files. :

When the user enters a command line, the CCP parses it and tries to
load the specified file. The CCP assumes a file is a command file
when any filetype other than SUB is specified. When the user
specifies only the filename but not the filetype, the CCP searches
for and tries to load a file with a matching filename and a filetype
of either Z8K or three blanks. The CCP searches the current user
number and then user number 0 for a matching file. If this search
does not yield a command file, but the CCP finds a matching file
with a filetype of SUB, the CCP executes it as a submit file.

2-1

CP/M-8000 Programmer's GuJ S ? Loading a Program

2.2 Loading a Program I —

Either the CCP or a transient program can load a program in memory
with the BDOS Program Load Function (59) described in Section 4.5.7.
After the program is loaded, the TPA contains the program segments
(text, data, and bss), a user stack, and a base page. A base page
exists for each loaded program. .

The base page is a 256-byte data structure that defines a program's
operating environment. The base page in CP/M-8000 does not reside
at a fixed absolute address prior to being loaded. The BDOS Program
Load Function (59) determines the absolute address of the base page
when the program is loaded. The Program Load Function and the CCP
or the transient program initialize the contents of the base page
and the program's stack as described below. ’

2.2.1 Base Page Initialization By The CCP

The CCP parses up to two filenames following the command in the
command line. The CCP places the properly formatted FCB's in the
base page. The default DMA address is initialized at an offset of
0080H in the base page. The default DMA buffer occupies the second
half of the base page. The CCP initializes the default DMA buffer
to contain the- command tail. The format of the command tail is
described in Section 2.2,3. The CCP invokes the BDOS Program Load
Function (59) to load the transient program before it parses the
command line. Coae L

Program Load, Function 59, allocates space for the base page and
initializes base page values at offsgsets 0000H through 0024H from the
beginning of the base page (see Appendix C). Values at offsets
0025H through 0037H are not initialized, but the space is reserved.
The CCP parses the command line and initializes values at offsets
0038H through O0OFFH. Before the CCP gives control to the loaded
program, it pushes the address of the transient program's base page
and a return address, within the CCP, on the user stack. When the
program is invoked, the top of the stack contains a return address
within the CCP, which is pointed to by the stack pointer, register
R15 for nonsegmented programs or RR1l4 for segmented. The address of
the program's base page is located at a 4-byte offset from the stack
pointer. .

2.2.2 Loading Multiple Programs

Multiple programs can reside in memory, but the CCP can load only
one program at a time. However, a transient program, loaded by the
CCP, can load one or more additional programs in memory. A program
loads another program in memory by invoking the BDOS Program Load
Function (59). The CCP supplies FCB's and the command tail to this
function. When the CCP is not present the transient program must
provide this information, if required, for any additional programs
it loads.

2-2

Ccp/M-8000 Programmerfs Guide 2.2 Loading a Program

2.2.3 Base Page Initialization by a Transient Program

A transient program invokes the BDOS Program Load Function (59) to
load an additional program. The BDOS Program Load Function
allocates space and initializes base page values at offsets 0000H
through 0024B for the program as described in Section 2.2.1. The
transient program must initialize the base page values that the CCP
normally supplies, such as FCB's, the DMA address, and the command
tail, if the program being loaded requires these values. The
command tail contains the command parameters but not the command.
The format of the command tail in the base page consists of a one-
byte character count, followed by the characters in the command
tail, and terminated by a null byte as shown in Figure 2-1. The
command tail cannot contain more than 126 bytes plus the character
count and the termlnatlng null character.

Count Characters in the Command Tail a

1 byte N bytes < 126 bytes ,

Figure 2-1. Format of the Command Tail in the DMA Buffer

Unlike the CCP, a t:ansient program does not necessarily push the,
address of its base page and a return address on the user stack
before giving control to the program that it loads with the Program
Load Function. The transient program can be designed to push these
addresses on the user stack of the program it loads (if the loaded.
program uses the base page).

The address of’the base page for the loaded program is not pushed on
the user stack by the Program Load Function (59). Instead, it is
returned in the Load Parameter Block (LPB), which is used by the
BDOS Program Load Function. Appendix B contains an example of a C.
:language program, PGMLD.C. PGMLD.C illustrates how a transient
program loads. another program without the CCP, using the BDOS
Program Load Function (59). Appendix C summarizes the offsets and
contents of a CP/M-8000 base- page.

CP/M~-8000 Programmer's Guide 2.3 Exiting Transient rrograms

2.3 EBxiting Transient Programs

CP/M-8000 supports two ways of exiting a transient program and
returning control to the CCP:

) Intetactively, by typing CTRL-C at the console, the default I/0
device

® A programmed return to the CCP using either of the follo&ing:

1 a Return From Subroutine (RET) Instruction
2 the BDOS System Reset Function (0)

The CCP wiil regain control when a user types CTRL-C from the
console only if the program uses one of these BDOS functions:

e Console Qutput (2)
e Print String (9)
® Read Console Buffer (10)

On input, CTRL~C must be the first character that the user types on
the line. CTRL~C terminates execution of the main program and any
additional programs loaded beyond the CCP level. For example,
typing CTRL~C while debugging a program terminatesg execution of the
program being debugged and DDT before the CCP regains control.
Typing CTRL-C in response to the system prompt resets the status of
all disks to read/write.

To program a return to the CCP, specify the BDOS System Reset
Function (0) or a Return From Subroutine (RET) Instruction. 1In
programs written in C, a subroutine return from the main program to
the run-time package will cause this function to be executed.
Invoking the BDOS System Reset Function (0) is equivalent to
programming a return to the CCP. This function performs a warm
boot, which terminates the execution of a program before it returns
program control to the CCP, The BDOS System Reset Function is
described in Section 4.5.1.

The RET instruction must be the last one executed in the program and
the top of the stack must contain the system-supplied return address
for control to return to the CCP. When a transient program begins
execution, the top of the user stack contains this system-supplied
return address within the CCP. If the program modifies the stack,
the top of the stack must contain this system-supplied return
address before the RET instruction is executed.

C§7M—8000 Programmer's Guide 2.4 Transient Program Models

2.4 Transient Program Execution Model

CP/M-8000 divides memory into two categories: System and the
Transient Program Area (TPA). CP/M-8000 System memory contains the
Basic Disk Operating System (BDOS), the Basic I/O System (BIOS), and
the Console Command Processor (CCP). The bootstrap program
initializes the memory locations for. these components which can
reside in any single segment, provided, the BDOS and CCP are
contiguous. CP/M-8000 Exception Vector handling is performed by a
subroutine present in the BDOS. -

The System memory components (BDOS, BIOS, and CCP) use the 28000's
System Address Space, in which code and data are combined to save
the space reguired for code/data separation. The TPA, which
consists of the memory segments not occupied by the operating
system, resides in the 28000's Normal Address Space.

A user stack, a base page, and the three program segments: a text
gsegment, an initialized data segment, and a block storage segment
(bss), exist for each transient program loaded in the TPA. The BDOS
Program Load Function (59) loads a transient program in the TPA. If
memory locations are not specified when the transient program is
linked, the program is loaded in the TPA as shown in Figure 2-2.

High High
Memory Memory
SYSTEM STACK " - BASE PAGE

Reserved
USER STACK
ccp
' Reserved
BDOS ¢
' User Code
and Data
'BIOS
0 0
CP/M System Memory Transient Program Area
(System Address Space) (Normal Address Space)

Figure 2-2. CP/M-8000 Default Memory Model

CP/M-8000 Programmer's Guide 2.4 Transient Program Models

The TPA can be a segmented or nonsegmented area of memory. If the
TPA is nonsegmented, it can combine or separate code and data in
different segments, depending upon the hardware configuration and
the transient program's space requirements.

CP/M-8000 contains three additional BIOS system calls to support
memory management and address space communication:

® Map Address (_map_adr)
e Memory Copy (_mem_cpy)
e Transfer Control (_xfer)

The _map_adr system call translates logical addresses into physical
addresses. ' The _mem_cpy System call copies a specified number of
bytes from one physical address to another. The _xfer system call
~transfers control to a new program context. These functions are .
available to transient programs. For example, a transient program
can obtain a copy of the Memory Region Table as follows:

1. Fetch the MRT System Address using the BIOS Function 18.

2. Translate the System Add:éssLihté’;fPhysical Address with
_map_adr. R S S

3. Copy the MRT from-the;PhyéigéiiéadtéQSﬁiﬁto the program's own
address space using the_;@gmgppy~£ystem Call.

Section 4.2 of the CP/M-8000 System Guide describes the BIOS System
Calls in detail.

Some systems can configure and load CP/M-8000 in such a manner that
one or more portions of high memory cannot be addressed by the CP/M-
8000 operating system. In such instances, CP/M-8000 does not know
the memory exists and cannot define or configure the memory in the
BIOS. However, a transient program that knows this memory exists
can access it. '

End of Section 2

Section 3 .
Command File Format

This section describes the x.out format of CP/M-8000 command files.
Command files are output by the Linker/Loader (LD8K), Assembler
(ASZ8K) through XCON, and C Compiler (ZCC). These utilities give a
command file the default file name of X.OUT.

A command file contains a header, segment information array, text
and data’ segments, relocation data, and a symbol table. These

components are shown in Figure 3-1 and described in the following
sections.

Header

Segment
Information

Code and
Data Segments

Relocation Data
(If present)

Symbol Table
(If present)

Pigure 3-1. CP/M-8000 Command File Layout

3.1‘ The Command File Header

' The first component of a CP/M-8000 command file is the header. It
specifies the file's data type and the size and ‘'starting address of

the file's other components. Figure 3-2 shows the format of a CP/M-
8000 command file header. '

3-1

CP/M—BOOO'Programmer's Guide ' 3.1 Command File Header

Byte
Offset Sample Values Contents
< 1 word >
- Magic Number EEO3 denotes a
008 EEOQO3 nonsegmented command file.
Number of entries in the
02H 0004 segment information array.
‘ B§te count of code, constant
04H o 29870 pool, and initialized data. |
: 'Byte count of relocation data;
08H ‘ 0000 - if 0, file has been linked.
Length of symbol table; if 0,
OCH 0036 | file has been stripped.

< 1 Longword >

PFigure 3-2. CP/M-8000 Command File Header Pields

The Magic Number field of the header specifies one of six data types
for each CP/M-8000 command file., Valid Magic Numbers are shown in
Table 3-1. -

Table 3-1. Magic Number Values

Magic Number Type of Data
EEOO . segmented, nonexecutable
'EEOIV segmented, executable
EEQ2 _ nonsegmented, nonexecutable
EEQ3 noﬁsegmented, executable,

nonshared I & D space

EEQ7 nonsegmented, executable,
shared I & D space

EEOB nonsegmented, executable,
split I & D space

3-2

CcB/M-8000 Programmer's Guide 3.1 Command File Header

Because of word alignment, the byte counts in the third, fourth, and
£ifth fields of the header will always be even. The code and data
segments, relocation data, and symbol table are word aligned.

Section 3.5 describes how to print the header information of an
object or command f£ile with the XDUMP utility.

3.2 Segment Information

The segment information portion of the command file contains an

entry for each of the file's segments. Each entry consists of the
following four fields:

o The segment's assigned number (one byte): a preassigned number
from 0 to 127 or a value of 255. A value of 255 is used to
indicate that the linker can assign the segment's number.

e The segmeht's type (one byte): the type and content of the
Segment are indicated according to the values shown in Table 3-
2. :

e The segmént's execution length (one unsigned word)

e The segment's array element (one byte): a subcount of the
number of segment entries in the second field of the header.

Table 3-2. Segment type values.

Value , o Type
1 Uninitialized data segment (bss) -- the corresponding
portion of the file is not present
2 Stack segment ~- no data in file
3 Code or text segment
4 Constant pool
5 Initialized data
6 Mixed code/data, not protectable
7 Mixed code/data, protectable

3-3

Cp/M-8000 Programmer's Guide Des Lugimeiiw .o

Type 1 specifies space for uninitialized data generated by the
program during execution. Although space for the bss is specified.
in the source command file, it is not allocated until the command
file is loaded into memory. The source command file on the disk
contains no uninitialized data.

Type 2 specifies the user stack area.

Text segments (type 3) specify the program's instructions.

A

Type 4 specifies the segment that contains the program's constants.

Type 5 identifies the ‘'segment(s) .that contain data initialized
within the command file.

Segment types 6 and 7 are provided for convenience in placing code
and data in ROM. WNo mixed segment is allowed if the 28000 is being
operated as a split I and D space machine. A mixed type that is not
protectable indicates that the code might need to store into the -
data items. A protectable mixed type can safely be put into ROM.

3.3 Relocation Data Section

The relocation data section of the file consists of a series of
. 8tructures, each describing some item to be relocated. The

- relocation items are in the following form:

® The segment‘number (one byté):' £he'drd1na1jhumber of the
segment containing the item to be relocated. This number must
be less than the number segments field in the header.

® The type of relocation to be performed (one byte). Table 3-3 i
lists the values for the relocation types.

e The location of item to be‘rélécated {one unsigned word).
® An index to an entry in the symbol table, or the segment by

which to relocate (one unsigned word).

Table 3-3. Relocation Type Values.

Value Flag Type of Relocation
1 OFF Adjust a 16-bit offset value only
2 SSG Adjust a short form (l6-bit)

segment plus offset

3 LSG Adjust a long form (32~bit)
segment plus offset

CP/M-8000 Programmer's Guide 3.3 Relod&tion Section

Table 3-3. (continued)

Value Flag Type of Relocation

5 XOF Adjust a 16-bit offset,
referenced by an external item

6 XSSG Adjust a short segment,
referenced by an external item

7 XLSG Adjust a long segment,
referenced by an external item

The first three relocation types are references between segments in
the current file. For these cases, the relocation value is the
segment number relevant to the file.

References to external symbols, types 5, 6, and-:.7, must be made
using the symbol table. ‘

3.4 Symbol Table

The symbol table defines the symbols referenced by the command file.
A symbol table entry is a l2-byte structure divided into four fields
that indicate the symbol's segment number, type, value, and name.
Figure 3-3 depicts a symbol table entry.

Fiel@{ <m— Bytg -
Segment No. | -3 |
Type 3
Value . 74B2
S Y
Name s S .
. T K
Null Null
== Word -—D>

Figure 3;3. Symbol Table Entry

CP/M-8000 Programmer's Guide 3.4 Symbol Table

The first field of the symbol table entry, segment number,
identifies the segment within the file that contains the symbol. A
value of 255 indicates either an absolute or external reference.

Symbol type values are shown in Table 3-4.
The value field for undefined external references contains the
amount of space to be allocated for the symbol. For ather

references, the value is the offset within the segment containing
the symbol.

Table 3-4. Symbol Type Values

Value ' ; Type
.1 Local (Debugging only)
2 ‘Undefined External
3 . Global Definition
4 ‘Segment Name_

'DDT for CP/M-8000 creates local symbol definitions for use during
debugging segsions. These local - symbals do not 1nfluence file
linking. -

Undefined external entries referenca symbols that are contained in
another’ module. However, a nonzero value field associated with such
an entry will cause the linker to allocate space for the symbol.

Global entries reference symbols (either absolute or relocatable)
defined in the current module.

The last type of symbol table entry, segment name (4), is used to
point to a specific segment. When such an entry is made, the symbol
name field is filled with a segment name that corresponds to the
segment number field of the entry. The default segment names are

__text First (or only) text segment
__text([x...]" Subsequent text segments
___data First data segment

data[Xe...] Subsequent data segments
__bss First uninitialized data (bss) segment
__bss(x...] Subsequent bss segments

Segment name and number correspondences are accomplished by using
the 4 option in the LDZ8K command line (see Section 6.2).

3-6

CP/M-8000 Programmer's Guidé 3.4 SYmboliTable

The last four words of the entry contain the symbol's name. This
field is padded with null characters if the symbol's name is less
than eight ASCII characters.

3.5 Printing the Symbol Table

CP/M-8000 provides two utilities with which you may print the symbol
table of an object or command file, NMZ8K and XDUMP. XDUMP can also
be used to print a file's header and segment information.

To invoke NMZ8K, use the following command line format:

.NMZ8K filename

NMZ8K will only operate on object or command files. NMZ8K will not
sort the symbols; it prints them in the order in which they appear
in the file. The format of NMZ8K output is shown below:

symbols:

31E6 o 4 0 _ text
31F2 1 4 0 __data
31FE 2 4 0 __bss
320A 6 3 50 __BDOS
3216 255 1 ‘4 ARG2

The first column is the length of the symbol, offset from the.
previous symbol (12 bytes). The second column identifies the number
of the segment (within the file) that contains the symbol. The
third column is the symbol type. The fourth column represents the
symbol's value (space to be allocated or offset within the segment) .
The last column of NMZ8K output shows the symbol's name or, for type
4 symbols, the name of the segment.

You can also use XDUMP to print the symbol table of an object or
command file. Along with the symbol table, XDUMP prints the file's
: header and segment information. To invoke XDUMP for this purpose,
include the -8 option in the command line as follows: v

XDUMP -5 filename

3-7

CP/M-8000 Programmer's Guide 3.5 Printing the Symbol Table

XDUMP will print the header information, segment information, and
symbol table for the object or command file identified by "filename”
in the following format:

.magic = EEO3 nseg = 4 init = 29870 reloc = 0 symb = 11928
10 sg{0): sgno =0 ¢typ = 3 len = 27082
14 sg{l]: sgno =1 ¢typ = 4 len = 518
18 sg[2]: sgno = 2 typ = § len = 2270
1C sg3]: sgno = 3 typ =1 len = 7860
segment 0 type is code
segment. 1 - type is constant pool
segment 2 type is initialized data
segment 3 type is bss
symbols:

30 o0 4 0 _ text
3C 0 -3 10 cret
3

48 -0 0 csv

XDUMP prints the five fields of a file's header in the first row of
its output. The next four rows represent the file's segment
information ‘array. ‘Each of ‘these rows indentifies a segment's
assigned number, type value, and executlon length.

The type values and contents of the flle 8 segments are prlnted in
the next four rows of XDUMP output. XDUMP formats the symbol table
. output just like NMZ8K: length, segment number, symbol type, symbol
value, and symbol name. {See Section 7.3 for more complete
information on the XDUMP utility) '

End pf Sgction 3

3-8

Section 4

Ba51c Disk Operating System (BDOS Functions)

This section describes the operating system services available to
transient programs through the Basic Disk Operating System (BDOS)

module of CP/M-8000.

The section begins with a description of BDOS

functions and parameters, invocation procedures, and organization.
Table 4-1 summarizes the CP/M-8000 BDOS functions.

Table 4-1. CP/M-8000 BDOS Functions
F§ Function Type

0 System Reset System/Program Control

1l Console Input Character 1/0, Console Operation

2 Console Qutput Character I/0, Console Operation

3 Auxiliary Input¥* Character I/0, Additional Serial I/0

4 Auxiliary Qutput* Character I/0, Additional Serial I/0

5 List Output Character I/0, Additional Serial I/0

6 Direct Console I/0 Character I/0, Console Operation

7 Get I/O Byte* I/0 Byte

8 Set I/Q Byte* I/0 Byte .

9 Print String - Character I/0, Console Operation
10 Read Console Buffer . Character 1/0, Console Operation
1l Get Console Status - Character I/0, Console Qperation
12° Return Version Number System Control
13 Reset Disk System Drive
14 Select Disk Drive .

15 Open File File Access
16 Close File File Access
17 Search for First File Access
18 Search for Next File Access
19 Delete File File Access
20 Read Sequential File Access
21 .Write Sequential File Access
22 Make File . File Access
23° Rename File File Access
24 Return Login Vector Drive

25 Return Current Disk Drive

26 Set DMA Address File Access
28 Write Protect Disk Drive

29 Get Read-Only Vector Drive

30 Set File Attributes File Access
31 Get Disk Parameters Drive

32 ~. Set/Get User Code System/Program Control
33 Read Random File Access
34 Write Random File Access
35 Compute File Size File Access
* These functions must be implemented in the BIOS.

CP/M-8000 Programmer's. Guide 4.1 BDOS Functions
Table 4-1. (continued)
F# Function Type
36 Set Random Record ?ile Access
37 Reset Drive Drive

Write Random With
Zero Fill

Get Disk Free Space
Chain To Program
Flush Buffers

File Access’

Drive
System/Program Control
System/Program Control

50 Direct BIOS Call System/Program Control
59 Program Load System/Program Control
61 Set Exception Vector Exception
62 Set Supervisor State Exception

Exception

63 Get/Set TPA Limits

4.1 BDOS Functiona and Parameters

To invoke a BDOS function, you must specify one Or more parameters.
Each BDOS function is identified by a number, which is the first
parameter you must specify. The function number is loaded in
register RS. Some functions require a second parameter, which is
loaded, depending on its size, in word register R7 or longword
register RR6.-

Byte parameters are passed as l6-bit words. The low order byte
contains the data, and the high order byte should be zeroced. For
example, the second parameter for the Console OQutput Function (2) is
an ASCII character, a byte parameter. The character is loaded in the
low order byte of R7.

Some BDOS functions return a valua, passed in register R7. The
hexadecimal value FFFF is returned in register R7 when you specify
an invalid function number in your program.

Table 4-2 summarizes the registers used by CP/M-8000 BDOS functions.

Table 4-2. BDOS Parameter Summary

BDOS Parameter Register
Function Number RS
Word Parameter R7
Longword Parameter RR6
Return Value, if any R7

4-2

CP/M-8000 Programmer's Guic¢ 1.1 BDOS Functions

-

4.1.1 Invoking BDOS Functions

After the parameters for a function are loaded in the appropriate
registers, your program must specify a system call (SC) #2
instruction to access the BDOS and invoke the function. The
following example illustrates the assembler syntax required to
invoke the Console Output Function (2).

14 r5,%2 ;Loads the function number in RS
i1d r7,#'U' ;Loads the ASCII character U.in R7
sc $2 sAccesses the BDOS to invoke the function

In this example, the ASCII character uppercase U is output to the
console. The assembler load instructions load register RS with the
number 2 for the BDOS Console Output Function and register R7 with-
the ASCII character uppercase U. A pair of single ('') or double
("") quotation marks must enclose an ASCII character. The SC #2
instruction invokes the BDOS Qutput Console Function, which echoes
the character on the console's screen. ,

4.1.2 Organization Of BDOS Functions

The parameters of each BDOS function and its operation are described
in the following sections. Each BDOS function is categorized

according tQ the. operatlon‘it.performs The BDOS.functlon.categorles
are as follows: :

e File Access

e Drive Access

e Character 1/0

e System/Program Control
e Exception

As you read the description of each function, notice that some
functions require a physical address parameter 6551gnat1ng the
starting location of the Direct Memory Access (DMA) buffer or File
Control Block (FCB). The DMA buffer is an area in memory where a
128-byte record resides before a disk write function and after a
disk read operation. BDOS functions often use the DMA buffer to
obtain or transfer data. The FCB, described in Section 4.2.1, is a
33- or 36-byte data structure used by BDOS file access functions.

CP/M-8000 Programmer's Guide 4.2 File Access runcuiuis
4.2 Pile Access Functions
This section describes functions to create, delete, seek, read, and

write files. File access functions are listed in Table 4-3.

Table 4-3. PFile Aécess Functions

Function Function Number
Open File . 15
Close Pile e 16
Search For First vi?
Search For Nexﬁ' -18
Delete File 19
Read Sequentia;l | ;}9'
Write Sequeﬁtiai'f 21
Make File | 22
| Rename File %?3‘]
Set DMA Address 26 |
Read Randoﬁ ‘_ ‘5%:
Write Random »é, : 34
Compute FilefSize; 35'
W;ite Random With ?;.
Zero Fill 40

4.2.1 A File Control Block (FCB)

Most of the file access functions in Table 4-3 require the address
of a File Control Block (FCB). An FCB is a 33- or 36-byte data
structure that provides file access information. The FCB can be 33
or 36 bytes when a file is accessed sequentially, but it must be 36
bytes when a file is accessed randomly. The last three bytes in the
36-byte FCB contain the random record number, which is used by
random I/0O functions and the Compute File Size Function (35). The
starting location of an FCB must be an even-numbered address. The
format of an PFCB is shown in Figure 4-1. Table 4-4 contains
definitions for each FCB field.

4-4

Cé}M-BOOO Programmer's Guide 4.2 File Access Functions

Field dr £f1 £2 ... f8 €1 £#2 t3 ex sl 82 rc d0 ... dn cr r0 rl r2
Byte 00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35

Pigure 4-1. File Control Block (FCB) Format.

Table 4-4. File Control Block (FCB) Fields

FCB
Field Definition

dr drive code (0 - 16)
0 => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,

. o

16=> auto disk select drive P.

£f1...£8 contain the filename in ASCII upper-case. High bit
should equal 0 when the file is opened.

tl,t2,t3 contain the filetype in ASCII upper-case. The high bit
should equal 0 when the file is opened. tl', t2°',
and t3' denote the high bit for the Set File
Attributes Function (see Section 4.2.13). The
following list shows which attributes are indicated
when these bits are set and equal the value 1.

tl' = 1 => Read-Only file
t2' = 1 => SYS file
t3' = 1 => Archive

ex contains the current extent number, normally set to 00
by the user, but is in the range 0 - 31 (decimal) for
file 1/0

sl reserved for internal system use

s2; : - reserved for internal system use, set to zero for the
Open (15), Make (22), and Search (17,18) file
functions. .

rc - record count field, reserved for system use

do0...dn filled in by CP/M, reserved for system use

cr current record to be read or written; for a sequential
read or write file operation, the program normally
sets this field to zero to access the first record in
the file ‘

CP/M-8000 Programmer's Guide 4.e |

Table 4-4._ (continued)

FCB '
Field Definition

r0,rl,r2 optional, contain random record number in the range 0-
3FFFFH; bytes r0, rl, and r2 are a 24-bit value with
the most significant byte r0 and the 1least
significant byte r2. Random I/O functions use the
random record number in this field.

For users of other versions of CP/M, note that CP/M-80..version 2.2,
CP/M-68K, .apnd CP/M-8000 perform directory operations in a reserved
area of memory that does not affect the DMA buffer contents, except
for the Search For First (17) and Search For Next (18) Functions.

For these functions, the directory record is copied to the current
DMA buffer..

4.2.2 File Processing Errors

When a program calls a BDOS function to process a file, an error
condition can cause the BDOS to return one of five error messages to
the console-

e CP/M Disk read e:ror on drive x

e CP/M Disk write error on drive x

e CP/M Disk select error on drive x

e CP/M Disk change error on drive x*

e CP/M Disk file error: ffffffff ttt ia read-only.

The variable x 15 a one-letter dtive code Hhat indxcates the drive
on which CP/M-8000 detects the error. :

When CP/M-8000 detects one of these erro:s, the BDOS traps it.
CP/M-8000 displays a message indicating the error and, depending on
the error, allows you to abort the program, retry the operation, or
continue processing. Each of these errors and their options are
described below.

CP/M issues a CP/M Disk read or write error when the BDOS receives a
hardware error from the BIOS. The BDOS specifies BIOS read and
write sector commands when the BDOS executes file~related system
functions. If the BIOS read or write routine detects a hardware
error, the BIOS returns an error code to the BDOS that results in
CP/M-8000 displaying a disk read or write error message at your
console. In addition to the error message, CP/M-8000 also displays
the following option message:

WARNING -- Do not attempt to change disk.
Do you want to Abort (A). Retry (R), or Continue with bad data (C)?

4-6

CP/M-8000 Programmer's Guide 4.2 PFile Access Functions

You may type one of the letters enclosed in parentheses and a RETURN

in response to this message. Each of these options is described in
Table 4-5.

Table 4-5. Read/Write Error Message Response Options

Option | Action

A The A option or CTRL-C aborts the program and
returns control to the CCP. CP/M-8000 returns the
system prompt (>) preceded by the drive code.

R The R option retries the operation that caused the
error. For example, it rereads or rewrites the
sector. If the operation succeeds, program
execution continues as if no error occurred. 1If
the operation fails, the error message and optxon
message are redisplayed.

c The C optlon ignores the error that occurred and
continues program execution. The C optiofiis not’
an appropriate response for all types of programs;
program execution should not be continued in some
cases. For example, if you are updating a data
base and receive a read or write error but®
continue program execution, you can corrupt the
index fields and the entire data base. For other
programs, continging program execution i® .
recommended. For example, when you ‘transfer kT
long text file and receive an ertdr because one
sector is bad, you may continue transferring the
£ile. Review the file after it has been
transferred. Using an editor, add the data that
was not transferred owing to the bad sector.

. Any response other than an A, R, C, or CTRL-C is invalid. The BDOS
reissues the option message if you enter any other response.

CP/M~-8000 displays the disk select error when you select a disk but
receive an error due to one of the following conditions:

® You specified a disk drive not supported by the BIOS.
e The BDOS receives an error from the BIOS.
® You specified a disk drive outside the range A through P.

CP/M~-8000 Programmer's Guide _ 4.2 File Access runctivus

Before the BDOS issues a read or write function to the BIOS, the
BDOS issues a disk select function to the BIOS. 1If the BIOS does
not support the drive specified in the function, or if an error
occurs, .the BIOS returns an error to the BDOS. The BDOS then causes
CP/M-8000 to display the disk select error on your console. If the
error is caused by a BIOS error, CP/M-8000 returns the following
option message:

WARNING -- Do not attempt to change disks

Do you want to 2bort (A) or Retry (R)?

- To select one of the options in the message, ‘type one of the letters
enclosed in parentheses. The A option terminates the program and
returns control to the CCP, The R option tries to select the disk
- again. If the disk select function fails, CP/M-8000 redisplays the
disk select error message and the option message. :

However, if the error is caused because you specified a disk drive
outside the range A through P, CP/M-8000 will display only the disk
select error message. CP/M~-8000 aborts the program and returns
control to the CCP. , '

‘CP/M-8000 displays the CP/M disk change error message when the BDOS
detects the disk in the drive is not the same disk that was logged
in previously. Your program cannot recover from this error and will
terminate. CP/M-8000 returns program control to the CCP.

You can log in a disk by accessing the disk or resetting the disk or
disk system. The Select Disk Function (14) resets a disk. The
Reset Disk System Function (13) resets the disk system. Files
cannot Dbe opened when your program invokes either of these -
functions.

You can use either a STAT command or the BDOS Set File Attributes
Function (30) to set a file to read-only status. If you call the
BDOS to write to a. file that is set to read-only status, you will
receive the CP/M disk file error and option messages shown below.
CP/M Disk File Error: f£ffffffff.tt is read-only.
Do you want to: Change it to read/write (C), or Abort (A)?
The variable ffffffff.ttt in the error meséage denotes the filename

and filetype. To select one of the options, type one of the letters
enclosed in parentheses. Each option is described in Table 4-6.

4-8

CP/M-8000 Programmer's Guide 4.2 PFile Access Functions

Table 4-6. Disk File Brror Response Options

Option : Action

c Changes the status of this file from read-only to
read-write and continues executing the program
that was being processed when this error occurred.

A Terminates execution of the program that was being

processed and returns program control to the CCP.

The status of the file remains read-only. If you

~enter a CTRL-C, it has the same effect as
specifying this optioen.

CP/M-8000 reprompts with the option message if you enter any
. response other than those described above.

4-9

CP/M-8000 Programmer's Guide 4.2 File Access Functions

FUNCTION 15: OPEN FILE

Entry Parameters:
Register R5: OFH
Register RR6: FCB Address

Returned Values:
Register R7: Return Code

sucecess: OOH - 03H
error: FFH

The Open File Function matches the filename and filetype fields of :
the FCB specified in register RR6 with the corresponding fields of a
directory entry for an existing file on the disk. When a match
occurs, the BDOS sets the FCB extent (ex) field and the second
‘system (S2) field to zero before the BDOS opens the file. Setting
“these ane-byte fields to zero opens the file at the bhase extent, the
"first extent in the file. In CP/M-8000, files can be opened only at
the base extent. In addition, the physical I/0 mapping information,
which allows access to the disk file through subsequent read and
‘write operations, is copied to fields 40 through dn of the FCB. A
- file cannot be accessed untll it has been successfully opened.

. The Open File Function returns an integer value ranging from 0OH
through 03H in R7 when the open operatlon is successful. This
function returns FFH in register R7 when it cannot locate the file.

The gquestion mark (?) wildcard can be specified for the filename and
- filetype fields of the FCB referenced by register RR6. The ?
wildcard has the value 3FH. For each position containing a ?
wildcard, any character constitutes a match. For example, if the
filename and filetype fields of the FCB referenced by RR6 contain
only ? wildcards, the BDOS accesses the first directory entry. You
should not create an FCB of all wildcards for this function because
you cannot ensure which file this function will open using such a
flle specification.

Note that the current record fleld (cr) in the FCB must be set to
zero by the program for the first record in the file to be accessed
by subsegquent sequential I/O functions. However, setting the
current record field to zero is not required to open the file.

CP/M-8000 Programmer's Guide 4.2 File Access Functions

FUNCTION 16: CLOSE FILE

Entry Parameters:
Register R5: 10H
Register RR6: FCB Address

Returned Values:
Register R7: Return Code

success: 00H - 03H
error: FFH

The Close File Function performs the inverse of the Open File
Function. When the FCB passed in RR6 has been previously opened by
either an Open File (15) or Make File (22) Function, the ‘close
function updates the FCB in the disk directory. The process used to
match the FCB with the directory entry is identical to the Open File
Function: (15). Close File returns an integer value ranging from 0QH
though 03B in R7 for a successful close operation. The value FFH is
returned in R7 when the file cannot be found in the directory.

Closing the file is . not. requlred when only read functions access a

file. .However,; when write functions access a file, it must be
closed to update its disk dlrectory entry.)

4-11

CP/M-8000 Programmer's Guide 4.2 File Access Functions

FUNCTION 17: SEARCH FOR FIRST

Entry Parameters:
Register RS: 11lH
Register RR6: FCB Address

Returned Values: . o
Register R7: Return Code

success: O00H - 03H
error: FFH.

The Search For First Function scans the disk directory allocated to .
the current user number to match the filename and filetype of the
FCB addressed in register RR6 with the filename and filetype of a
‘directory entry. The value FFH is returned in register R7 when a
matching directory entry cannot be found. An integer value ranging
from 00H through 03H is returned in register R7 when a matching
directory entry is found. B ISR o

_The directory record containing the matching entry is copied to the
"buffer at the current DMA address. Each directory record contains
four directory entries of 32 bytes each. The integer value returned
in R7 indexes the relative location of the matching directory entry
within the directory record. For example, the value 0lH indicates
that the matching directory entry is the second one in the directory
record in the buffer. The relative starting position of the
directory entry within the buffer is computed by multiplying the
value in R7 by 32 (decimal), which is equivalent to shifting the
binary value of R7 left 5 bits.

All entries, including empty entries, for all user numbers on the
default disk are searched when the drive (dr) field contains a ?
wildcard. This function returns any matching entry, allocated or
free, that belongs to any user number.

An allocated directory entry contains the filepame and filetype of
an existing file. A free entry is not assigned to an existing file.
If the first byte of the directory entry is ESH, the entry is free.
A free entry is not always empty. It may contain the filename and
filetype of a deleted file because the directory entry for a deleted
file is not zeroed.

4-12

CP}M—SOOO Programmer's Guide 4.2 File Access Functions

FUNCTION 18: SEARCH FOR NEXT

Entry Parameters:
Register RS: 12H

Returned Values:
Register R7: Return Code

success: O0OB - 03H
error: FFH

The Search For Next Function scans the disk directory for an entry
that matches the. FCB and follows the last matched entry, found with
~this or the Search For First Function (17).

A program must invoke a Search For First Function (17) befc:e‘
invoking this function for the first time. Subsequent Search For.
Next Functions can follow, but they must be specified without other
disk related BDOS functions intervening. Therefore, a Search For
Next Function must follow either itself or a Search For Flrst

Functlon .

The Search For Next Function returns the value FFH in: R? when no
.more dlrectory entries match. , 4

4-13

CP/M-8000 Programmer's Guide 4.2 File Access Functions

FUNCTION 19: DELETE FILE

Entry Parameters:’
Register R5: 13H
Register RR6: FCB Address

Returned Values:
Register R7: Return Code

guccess: 00H
error: FFH

The Delete File Function removes files and frees the directory -
entries for and space allocated to files that match the filename in
the FCB pointed to by the address passed in RR6. The filename and
~ filetype can contain wildcards, but the drive select code cannot be
a wildcard as in the Search For Pirst (17) and Search For Next (18)
Functions. Use wildcards carefully. The Delete File Function will
‘erase an antire disk directory if the asterisk (*) wildcard appears
in. both 'the FCB filename and flletype fields. A

This function returns the value PFE in §Qiater R7 when it cannot _
- find the referenced file. R7 contains ﬁhe value 00H. when the Delete
Pile Functlon locates the file._

4-14

é%/M-BOOO Programmer's Guide 4.2 Pile Access Functions

FUNCTION 20: READ SEQUENTIAL

Entry Parameters:
Register R5: 14H
Register RR6: FCB Address

Returned Values:
Register R7: Return Code

success: 00H
error: O0lH

The Read Sequential Function reads the next 128-byte record in a
file. The FCB passed in register RR6 must have been opened by the
Open File (15) or Make File Function (22) before this function is
invoked. The program must set the current record field to zero
following the open or make function to ensure the file is read from
the first record in the file, After the file is opened, Read
Sequential reads the 128-byte record specified by the current record
field from the disk file to the current DMA buffer. The FCB current
record (cr) and extent (ex) fields indicate the location of the
record that is read. The current record field is automatically
incremented to the next record in the extent after a read operation.

When the current record field overflows, the next logical extent is
automatically opened and the current record field is reset to zero
before the read operation is performed. After the first record in
the new extent is read, the current record field contains the value
01lH.

The value 00H is returned in register R7 when the read operation is
successful. 0lH is returned in R7 when the record being read
contains no data. Normally, a "no data"” situation is encountered at
the end of a file. However, it can also occur when this function
tries to read either a previously unwritten data block or a
nonexistent extent. These situations usually occur with files
created or appended with the BDOS Write Random Function (34).

4-15

CP/M-8000 Programmer's Guide 4.2 Pile Access Functions

FUNCTION 21: WRITE SEQUENTIAL

Entry Parameters:
Register RS5: 15H
Register RR6: FCB Address

Returned Values:
Register R7: Return Code

success: 00H
error: 01H or OZH

‘The Write Sequential Function writes a 128-byte record from the DMA
buffer to the disk file whose FCB address is passed in register RR6.
The FCB must be opened by either an Open File (15) or Make File (22)
Function before your program invokes the Write Sequential Function.
The DMA buffer record is written to the current record, as specified
in the FCB current record (cr) field.

The FCB current record field is automatically incremented to the
nekt record. When the current record field overflows, the next
logical extent of the file is automatically opened and the current
record field is reset to zero before the write operation. After-the

‘ write-operatlon, the current record field in the néwly opened extent
is set to 01H.

Reccrds can be written to an existing file. However, newly written
records can overlay existing records in the file because the current
‘record field is usually set to zero after a file is opened or
"created. This action is performed to ensure a subsequent sequential
I1/0 function accesses the first record in the file.

The value 00H is returned in register'RV when the write operation is
successful. A nonzero value in register R7 indicates the write’

operation is unsuccessful due to one of the conditions described in
Table 4-7.

EP/M—BOOO Programmer's Guide - 4.2 File Access Functions

Table 4-7. Unsuccessful Write Operation Return Codes

Value Meaning

01 No available directory space - This condition
occurs when the write command attempts to create
a new extent that requires a new directory entry
and no available directory entries exist on the
selected disk drive.

02 No available data block - This condition is
encountered when the write command attempts to
allocate a new data block to the file and no
unallocated data blocks exist on the selected
disk drive.

4-17

CP/M-8000 Programmer's Guide ' 4.2 File Access Functions

FUNCTION 22: MAKE FILE

Entry Parameters:
Register R5: 16H
Register RR6: FCB Address

Returned Values:
Registet R7: Return Code

success: 00H - 03H.
error: FFH

The Make File Function creates and opens a new file on a specified -
or default disk. The address of the FCB for the file is passed in
register RR6. You must ensure the FCB contains a legal filename

. that does not already exist in the referenced disk directory. The
drive field (dr) in the FCB indicates the drive on which the

- directory resides. The disk directory is on the default drive when
;;the FCB drive field contains a zero. ‘j ‘

“The BDOS cteates the file and 1n1tializes ‘the ﬂirectory and the FCB
in memory to indicate an empty file. 'The program must ensure that
no duplicate filenames occur. Invoking the Delete File Function
«419) prior to the Make File Functlon ‘prevents, the occurrence of
~duplicate filenames. s o
fReglster R? contains an integer value in the range 003 through 033
when the function is successful. Register R7 contains the value FFH
‘when a file cannot be created due to insufficient directory space.

4-18

CP/M-8000 Programmer's Guide 4.2 File Access Functions

FUNCTION 23: RENAME FILE

Entry Parameters:
Register R5: 17H
Register RR6: FCB Address

Returned Values:
Register R7: Return Code

success: 00H
error: FFH

The Rename File Function uses the FCB specified in register RR6 to
change the fileéename and filetype of all directory entries for a
file. As shown in Figure 4-2, the first 12 bytes of the FCB contain
the file specification for the file to be renamed. Bytes 16 through
27 (d0 through d12) contain the new name of the file. The filenames
and filetypes specified must be valid for CP/M. Wildcards can be
specified in the filename and filetype fields. Use the Rename File
Function carefully. The Rename File Function will rename all files
on the drive if the wildcard "*" appears in both the filename and
filetype fields. : -

The FCB drive field (dr) at byte position 0 selects the drive. The
Rename File Function ignores the drive field at byte position 16 if
it is specified for the new filename. Register R7 contains the
_value zero when the rename function is successful. It contains the
value FFH when the first filename in the FCB cannot be found during
the directory scan. :

FCB byte position
0 1 2 3 4 5 6 7 8 91011 ... 16 17 18 19 20 21 22 23 ... 27

ar |£1]e2 |£3]e4 g5 g6 e7] e8] e1]e2[€3] .. J aofar[a2[a3]as]as[as[a7] .. .| a12]...
} L)

1 ;
old file specification new file specification

Figure 4-2. FCB Format for Rename Function

Figure 4-2 uses horizontal ellipsis to indicate FCB fields that are
not required for this function. Refer to Section 4.1.2 for a
description of all FCB fields.

CP/M-8000 Programmer's Guide 4.2 PFile Access Functions

FUNCTION 26: SET DMA ADDRESS

Entry Parameters: -
Register R5: 1lAH
Register RR6: DMA Physical Address

Returned Values:
. Register R7: O00H

The Set DMA Address Function sets the beginning physical address of
the 128-byte DMA buffer. DMA is an acronym for Direct Memory
Access. The DMA buffer 'is an area of memory that the disk
controller can access directly to transfer data to and from the disk
subsystem. Many computer systems use nonDMA access in which the
data is transferred through programmed I/O operations. CP/M-8000
uses the DMA buffer to store the results of disk I/0 regardless of
whether the disk controller actually performs direct memory access
or not. The DMA physical address in CP/M=-8000 is the beginning
physical address of a 128-byte data buffer, called the DMA buffer.
‘The DMA buffer is the area in memory where a data record resides
before a disk write operation and after a disk read:operation. The
"DMA buffer can begin on an even or odd physical address.

Transient programs must convert a logical ‘DMA address to the
physical DMA address before calling the Set DMA Address Function.
The entry parameter in register RR6 must be a physigal address. Use
‘the Map Address (_map_adr) System Call to convert a logical address
to a physical address. Section 4.2 of the CP/M~8000 System Guide
describes the _map_adr System Call in detail. " R

CP/M-8000 Programmer's Guide 4.2 File Access Functions

FUNCTION 30: SET FILE ATTRIBUTES

Entry Parameters:
Register RS5: 1EH
Register RR6: FCB Address

Returned Values:
Register R7: Return Code

success: 00H
error: FFH

The Set File Attributes Function sets or resets file attributes
supported by CP/M-8000 and user defined attributes for application
programs. CP/M-8000 supports read-only, system, and archive
attributes.. g ' ~ -

The high bit of each character in the ASCII filename (f£1 through £8)
and filetype (tl through t3) fields in the FCB denotes whether
attributes are set. When the high bit in _any of these fields has
the value 1, the attribute is set. : :

The address of the FCB is passed in register RR6. Wildcards cannot
be specified in the filename and filetype fields. -

This function searches the directory on the disk drive, specified in
the FCB drive field (dr), for directory entries that match the FCB
filename and filetype fields. All matching directory entries are
updated with the attributes this function sets. This £function
returns a zero in register R7 when the attributes are set. If a
matching entry cannot be found, register R7 contains FFH. Table 4-8
denotes the FCB fields and their attributes.

CP/M-8000 Programmer's Guide

Table 4-8. File Attributes

" Field

Attribute

£l

£5
tl

t£2

through £4

through £8

t3

User~-defined attributes for application
programs.

Reserved for future use by CP/M-8000.

The Read-Only attribute indicates the file
status is Read-Only. The BDOS does not allow
write commands to operate on a file whose
status is Read-Only. The BDOS does not permit
a Read-Only file to be deleted. '

The System attribute indicates the file is a
system file. Some built-in commands and
system utilities differentiate between system
and user files. For example, the DIRS command

provides a directory of system files. The DIR

command provides a directory of user files for
the current user number. For details on
these commands, refer to the CP/M-8000
Operating System User's Guide.

The Archive attribute is reserved but not used
by CP/M-8000. If set, it indicates that the
file has been written to backup storage by a

‘user-written archive program. To implement
“this 'facility, the archive program sets this

attribute when it copies a file to backup

‘storage; any programs updating or creating
“files reset this attribute. The’ archive

program backs up only those files that have
the Archive attribute attribute reset. Thus,

- an automatic backup facility restricted to

modified files can be easily implemented.

The Open File (15) and Close File (16) Functions do not use the high

bit in the filename and filetype fields when matching filenames.
However, the high bits in these fields should equal zero when you
the Close File Function does not update the

open

a file. Also,

attributes in the directory entries when it closes a file.

4.2 Pile Access Functions

CP/M-8000 Programmer's Guide 4.2 File Access Functions

FUNCTION 33: READ RANDOM

Entry Parameters:
Register R5: 21H
Register RR6: FCB Address

Returned Values:
Register R7: Return Code .

success: 00H
- : i error: 0lH, 03H
04H, 06H

The Read Random Function reads records randomly, rather than
sequentially. The file must be opéned with an Open File Function
(15) or a Make File Function (22) before this function is invoked.
The address of a 36-byte FCB is passed in register RR6. The FCB
random record field denotes the record this function reads.

The random record field is a 24-bit field, with a value ranging from
00000H through 3FFFFH. This field spans bytes r0, rl, and r2 which
are bytes 33 through 35 of the FCB. The most significant byte is
first, r0, and the least significant byte, r2, is last. This byte
sequence is consistent with the addressing conventions for the 28000
and MC68000 microprocessors but differs from other versions of CP/M.

The random record number must be stored. in the FCB random record
field before the BDOS is called to read the record. After reading
the record, register R7 contains either an error code (see Table 4-
9), or the value 00H, which indicates the read operation was
successful. When the read operation is successful, the current DMA
buffer contains the randomly accessed record. The record number is
not incremented. The FCB extent and current record fields are
updated to correspond to the location of the random record that was
read. A subsequent Read Sequential (20) or Write Sequential (21)
Function starts from the record that was randomly accessed.
Therefore, the randomly read record is reread wheh a program
switches from randomly reading records to sequentially reading
records. This is alsc true for the Write Random Functions (34, 40).

The last record written is rewritten if the program switches from
randomly writing records to sequentially writing records with the
Write Sequential Function (21). However, by incrementing the random
record field following each Read Random Function (33) or Write
Random Function (34, 40), a program can obtain the effect of
sequential I/0 operations.

Table 4-9 lists the numeric codes returned in register R7 following
a random read operation.

4-23

CP/M-8000 Programmer's Guide 4.2 Pile Access Functions

Table 4-9.. Read Random Function Return Codes

Code ’ Meaning

00 Success - returned in R7 when the Read Random
Function succeeds.

01 Reading unwritten data - returned when a randomf‘
read operation accesses a previously unwritten =
data block.

03 Cannot close current extent - returned-:when the

BDOS cannot close the current extent prior to
moving to the new extent containing the FCB
random record number. This egrror can be caused
by an overwritten FCB or a read random operation
on an FCB that has not been opened.

04 - Seek to unwritten extent - returned when a

; : random read operation accesses a nonexistent
extent. This error situation is equivalent to
error 01. T *

06 Random record number out of range - _ returned
‘ “when the value of the FCB random record field is
greater than BFFFFH..~'

4-24

-r

CP/M-8000 Programmer's Guide 4.2 File Access Functions

FUNCTION 34: WRITE RANDOM

Entry Parameters:
Register R5: 22H
Register RR6: FCB Address

Returned Values:
Register R7: Return Code

success: O00OH
error: O02H, 03H
05H, 06H

The Write Random Function writes. a 128-byte record from the current
DMA address to the disk file that matches the FCB referenced in
register RR6. Before this function is invoked, the file must be

opened with either the Open File Function (15) or the Make File
. Function (22).

This functlon requires a 36-byte FCB. The last three bytes of the
FCB compose the random record field and contain the number of the
record that is to be written to the file. You can append to an
existing file by using the Compute File Size Function (33) to write
the random record number to the FCB random record field.

_For a new file, created with the Make File Function (22), you do not
need to use the Compute File Size Function to write the first record
in the file. 1Instead, specify the value 00H in the FCB random

record field. The first record written to the newly created file is
Zero.

When an extent or data block must be allocated for the record, the
Write Random Function allocates it before writing the record to the
disk file. The random record number is not changed following a
Write Random Function. Therefore, a new random record number must
be written to the FCB random record fleld before each Write Random
Function is 1nvoked.

However, the logical extent number and current record field of the
FCB are updated to correspcnd with the random record number that is
written. Thus, a Read Sequential (20) or Write Sequential (21)
Function that follows a Write Random Function either rereads or
rewsites the record that was accessed by the Read or Write Random
Function. To avoid overwriting the previously written record and
simulate sequential write functions, increment the random record
number after each Write Random Function.

After the random write function has completed its operation,

register R7 contains either an error code (see Table 4-10), or 00H
to indicate that the operation was successful.

4-25

CP/M-8000 Prdgrammer's Guide 4.2 File Access Functions

Table 4-10. Write Random Function Return Codes

Code Meaning

00 Success - returned when the Write Random Function
succeeds without error.

&

02 No available data block - occurs when the Write

: Random Function attempts to allocate a new data
‘block to the file, but the selected disk does not
contain any unallocated data blocks.

03 Cannot close current extent - occurs when the
" 'BDOS cannot close the current extent before
moving to the new extent that contains the record
-gpecified by the FCB random record field. This
error can be caused by an overwritten FCB or a
write random operation on an FCB that has not

been opened.

05 No’available directony space = .OCCUrs when the
write function attempts to create a new extent
but the selected disk drlve has nOfavaiiable
directory entries. : : .

06 1»-Random record mumber out of rangevw‘ féﬁﬁfﬁeaf
- when the value of the FCB random recorﬂ ﬁield is .
greater than 3FFFFH. i o S

4--26

CP/M-8000 Programmer's Guide 4.2 File Access Functions

FUNCTION 35: COMPUTE FILE SIZE

Entry Parameters:
Register RS5: 23H
Register RR6: FCB Address

Returned Values:
Registe: R7: O0OH

success: File Size written
to FCB random
Record Field
error: Zero written to
: ~ PCB Random Record
Field

The Compute File Size Function computes the size of a file and
writes it to the random record fields of the 36-byte FCB whose
address is passed in register RR6.

The FCB filename and filetype are used to scan the directory for an
entry with a matching filename and filetype. If a match cannot be “
found, the value zero is written to the FCB random record field.
When a match occurs, the virtual file size is written in the FCB
random record field. A o 5 »

The virtual file size is the record number of the record following
the end of the file. The virtual size of a file corresponds ‘to the
physical size when the file is written sequentially. However, the
virtual file size may not equal the physical file size when the
records in the file were created by random write functions. The
Compute File Size Function computes the file size by adding the
value 1 to the record number of last record in a file. However, for
files that contain randomly written records, the record number of
the last record does not necessarily indicate the number of records
.in a file. For example, the number of the last record in a sparse
file does not denote the number of records in the file. Record
numbers for sparse files are not usually sequential. Therefore,
gaps can exist in the record numbering sequence. You can create
sparse files -with the Write Random Functions (34 and 40).

In addition to computing the file size, you can use this function to
determine the end of an existing file. For example, when you append
data to a file, this function writes the record number of the first
unwritten record to the FCB random record field. When you use the
Write Random (34) or the Write Random With 2ero Fill (40) Function,
your program appends data to the file more efficiently because the +
FCB already contains the appropriate record number.

CP/M-8000 Programmer's Guide | 4.2 File Access Functions

" FUNCTION 36: SET RANDOM RECORD

Entry Parameters:
Register RS5: 24H
Register RR6: FCB Address

Returned Values: Random Record *
Field Set

* The Set Random Record Function calculates the random record number
of the current position in the file. The current position in the
file is defined by the last operation performed on the file. Table
4-1]1 lists the current position :elatlve to operations performed on -
the file.

Table 4-11. Current’ Position Definitions

~ Operation . Function | Current Position
Open file ‘Open Pile (15) ‘record 0
Create £ile 1: : : 'f&f record 0
Random read ‘Read Raﬁ&6m5133) ‘last record read
Random write Write Random (34) _ last record
' Write Random With ‘written
Zero Fill (40) _
Sequential'read ReadAsequéntial (20) record following
L the last record
read

Sequential write Write Sequential (21) record following
: ' the last record
written

This function writes the random record number in the random record
field of the 36-byte FCB whose address your program passes 1in
register RR6.

4-28

5?/M-8000 Programmer's Guide 4.2 File Access Functions

You can use this function to set the random record field of the next
record your program accesses when it switches from accessing records
sequentially to accessing them randomly. For example, your program
sequentially reads or writes l128-byte data records to an arbitrary
position in the file that is defined by your program. Your program
then invokes this function to set the random record field in the
FCB. The next random read or write. operation that your program
performs accesses the next record in the file.

Another application for the Set Random Record Function (36) is to
create a key list from a file that you read sequentially. Your
program sequentially reads and scans a file to extract the positions
of key fields. After your program locates each key, it.calls this
function to compute the random record position for the record
following the record containing the key. To obtain the random
record number of the record containing the key, subtract one from
the random record number that this function calculates. CP/M-8000
reads and writes 128-byte records. If your record size is also 128
bytes, your program can insert the record position minus one into a
table with the key for later retrieval. By using the random record
number stored in the table when your program performs a random read
or write operation, your program locates the desired record more
efficiently.

Note that if your data records are not equal to 128 bytes, your
program must store the random record number and an offset into the
physical record. For example, you must generalize this scheme for
variable-length records. To find the starting position of key
records, your program stores the buffer-relative position and the
- random record number of the records containing keys.

4-29

CpP/M-8000 Programmer's Guide 4.2 File Access Functions

FUNCTION 40: WRITE RANDOM WITH ZERO FILL

Entry Parameters:
Register RS: 28H
Register RR6: FCB Address

Returned Values:
Register R7: Return Code

'success: 00H
error: 02H, 03H
05H, 06H

The Write Random With Zero Fill Function, like the Random Write

Function (34), writes a 128~byte record from the current DMA buffer
to the disk file. The address of a 36-byte FCB is passed in
register RR6. The last three bytes contain the FCB random record
field. This field specifies the tecord number of the record that
~ this function writes to the file. Refer to Write Random Function
{34) for details on the FCB- and getting its random record field.

. Like the Write Random Function, this functlon allocates a data block
‘before writing the record when a block is not already allocated.
However, in addition to allbcating the data block, this function
also initializes the block with zeroes before writing the record.
If your program uses this function to write random records to files,
it ensures that the contents of unwritten records in the block are
predictable.

Upon completion of the random write functicn;~zegister R5 contains
either an error code (see Table 4-10), or 00H, which indicates that
the operation was successful.

Cf?M-SOOO Progrémmer's Guide 4.3 Drive Functions

4.3 Drive PFunctions
This section describes drive functions that reset the disk systenm,

select and write-protect disks, and return vectors. These functions
are listed in Table 4-12.

Table 4-12. Drive Functions

Function Function Number
Reset Disk System 13
Select Disk 14
Return Login Vector ‘ 24
Return Current Disk - 25
Write Protect Disk . 28
_Get Read-Only Vector | 29
Get Disk Parameters .) 31
Reset Drive 37
' Get Disk Free Space | 46

CP/M-8000 Programmer's Guide 4.3 Drive Functions
4.3.1 Reset Disk System Function

FUNCTION 13: RESET DISK SYSTEM

Entry Parameters: ,
Register R5: ODH

‘Returned Values:
Register R7: 00H

The Reset Disk System Function restores the file system to a reset
state. All disks are set to read-write (see the Write Protect Disk
Function (28) and Get Read-Only Vector Function (29)), and all the
disk drives are logged out. This function can be used by an °
application program that requires disk changes during operation.
The Reset Drive Function (37) can also be used for this purpose.
-All files must be closed before your program invokes this function.

CP/M-8000 Programmer's Guide 4.3 Drive Functions

FUNCTION 1l4: SELECT DISK

Entry Parameters:
Register R5: OEH
Register R7: Disk Number

Returned Values:
Register R7: OOH

The Select Disk Function designates the disk drive specified in
register R7 as the default disk for subsequent file operations. The
decimal numbers 0 through 15 correspond to drives A through P. For
example, R7 contains a 0 for drive A, a 1 for drive B, and so forth
through 15 for a full 16-drive system. 1In addition, the designated
drive is logged-in if it is currently in the reset state. Logging
in a drive places it in an on-line status which activates the
drive's directory until the next cold start, or Reset Disk System
(13) or Reset Drive (37) Function.

When the FCB drive code equals zero (dr = O0H), this function
references the currently selected drive. However, when the FCB

drive code value is between 1 and 16, this function references
drives A through P.

If this function fails, CP/M-8000 returns a CP/M disk select error,
as described in Section 4.2.2.

. 4-33

CP/M-8000 Programmer's Guide 4.3 Drive Functions

FUNCTION 24: RETURN LOGIN VECTOR

Entry Parameters:
Register RS: 18H

Returned Values:
Register R7: Login Vector

The Return Login Vector Function returns a 16-bit value that denotes
the log-in status of the drives in register R7. The least
significant "bit corresponds to the first drive, A, and the high
order bit corresponds to the sixteenth drive, labeled P. Each bit
has a value of zero or one. The value zero indicates the drive is
not on-line. The value one denotes the drive is on-line. When a
drive is logged in, its bit in the log-in vector has a value of one.
Explicitly or implicitly logging in a drive sets its bit in the log-
in vector. The Select Disk Function (14) explicitly logs in a
‘drive. File operations implicitly log in a drive when the FCB drive
field (dr) contains a nonzero value.

- 4-34

CP?M-SOOO Programmer's Guide 4.3 Drive Functions

FUNCTION 25: RETURN CURRENT DISK

Entry Parameters:
Register R5: 19H

éeturned Values:
Register R7: Current Disk

The Return Current Disk Function returns the current default disk
number in register R7. The disk numbers range from 0 through 15,
- which correspond to drives A through P. Note that this numbering
convention differs from the FCB drive field, which specifies
integers 1 through 16 for drives labeled A through P. :

4-35

CP/M-8000 Programmer's Guide 4.3 Drive Functions

FUNCTION 28: WRITE PROTECT DISK

Entry Parameters:
Register R5: 1CH

Returned Values:
Register R7: OOH

The Write Protact Disk Function provides temporary write protection
for the currently selected disk. Any attempt to write to the disk,
before the next cold start, warm start, disk system reset, or drive
reset operatidw produces the message:

'Disk change error on drive X

Your program terminates when thls error’ ocaurs.:ﬁPrpgram»control
returns to the CCP. Lo

4-36

CP/M-8000 Progtammer's Guide 4.3 Drive Functions

FUNCTION 29: GET READ-ONLY VECTOR

Entry Parameters:
Register R5: 1DH

Returned Values:
Register R7: Read-Only
Vector Value

The Get Read-Only Vector Function returns a 1l6-bit vector in
register R7. The vector denotes drives that have the temporary
read-only bit set. Similar to the Return Login Vector Function
(24) , the least significant bit corresponds to drive A, and the most
significant bit corresponds to drive P. The Read-Only bit is set
either by an explicit call to the Write Protect Disk Function (28),
or by the automatic software mechanisms within CP/M-8000 that detect
changed disks.

4-37

:'s Guide : 4.3 Drive Functions

FUNCTION 31: GET DISK PARAMETERS

Entry Parameters:
Register R5: 1FH
Register RR6: CDPB Address

Returned Values:
Register R7: 0OOH ,
CDPB: Contains DPB Values

. The Get Disk Parameters Function writes a copy of the l6-byte BIOS.
Disk Parameter Block (DPB) for the current default disk (CDPB) at
the address speclfied in register RR6. The entry parameter 1n RR6
can be a logical address.

The values in the CDPB can be extracted and used for display and
~space computation purposes. Normally, application programs do not
use this function. Figqure 4-3 illustrates the format of the DPB and
CDPB. For more details on the BIOS DPB, refer to the CP/M-8000
:Operatlng System System Guide,

4-38

CP/M-8000 Programmer's Guide 4.3 Drive Functions

SPT BSH BLM EXM RES DSM DRM RES CKS OFF

16 | 8 8 8 8 16 16 | 16 16 | 16

Figure 4-3. DPB and CDBP
"Table 4-13 lists the fields in the DPB and CDPB.

Table 4-13. Fields in the DPB and CDPB

Field Description

SPT Number of 128-byte logical sectors per tréck
BSH ~ Block shift factor

BLM Block mask

EXM Extent mask

RES Reserved;byte

DSM Total number of blocks on the disk ,
DRM Total number of directory entries on the disk
RES Reserved for system use

CKS Length (in bytes) of the checksum vector

OFF Track offset to disk directory

4-39

CP/M-8000 Programmer's Guide ' 4.3 Drive Functions

FUNCTION 37: RESET DRIVE

Entry Parametersrc
Register RS5: 25H
Register R7: Drive Vector

Returned Values:
Register R7: 00H

The Reset Drive Function restores specified drives to the reset
state. A reset drive is not logged-in and its status is read-write.
Register R7 contains a l6~-bit vector indicating the drives this
function resets. The least significant bit corresponds to the first .
‘drive, A. The high order bit corresponds to the sixteenth drive,

-labeled P. Bit values of 1 indicate the drives this function
resets. ‘ - '

To maintain compatibility with other Digital Research operating
‘systems, this function returns the value zero in register R7.

4-40

CP/ﬁ;BOOO Programﬁer‘s Guide 4.3 Drive Funciions

FUNCTION 46: GET DISK FREE SPACE

Entry Parameters:
Register RS5: 2EH
Register R7: Drive Number

Returned Values:
DMA Buffer: Free Sector Count

The Get Free Disk Space Function returns the free sector count in
the first four bytes of the current DMA buffer. This function
returns the free sector count as the number of free 128-byte sectors
on the specified drive, which you pass as a drive number in register
R7. CP/M-8000 assigns disk numbers sequentially from 0 through 15
(decimal). Each number corresponds to a drive in the range A
through P. For example, the disk drive number for drive A is 0 and
for drive B, the number is 1.

- Note that these numbers do not correspond to those in the drxve

field of the FCB. The FCB drive field (dr) uses the numbers 1
through 16 (decimal) to designate drives.

4-41

CP/M~8000 Programmer's Guide : 4.4 Character I/0 Functions

4.4 Character I/0 Punctions

This section describes the functions that handle serial I/0 for a
physical device assigned to one of the four logical devices
supported by CP/M-8000: CONSOLE, AUXIN, AUXOUT, and LIST.

BDOS character I/0 functions read and write an individual ASCII
character or character string to and from these devices, or report
the devices' status. These functions are listed in Table 4-1%.

Physical to logical device assignments are defined in the I/O Byte,
described later in this section. The STAT command can be used to
display and change current physical to logical device assignments.
STAT is described in the CP/M-8000 User's Guide.

‘Table 4-14. Character I/O Functions

~ Punction _ Function Number
cgﬁsole Input | 1
' Console Output 2
Direct Ccnéole»I/O é}
Print String 9
‘Read Console Buffer 10
Get Console Status 11

Auxiliary Input
AuxiLiary Qutput
List Output

Get I/0 Byte

0w N v e W

Set I/0 Byte

4-42

CP7M-8000 Programmer's Guide 4.4 Character I/0 Functions

FUNCTION 1l: CONSOLE INPUT

Entry Parameters:
Register RS: 0l1H

Returned Values:
Register R7: ASCII Character

The Console Input Function reads the next character from the logical
console device (CONSOLE) to register R7. Printable characters,
along with carriage return, line feed, and backspace (CTRL-H), are
echoed to the console. Tab characters (CTRL-I) are expanded into
columns of eight characters. Other CONTROL characters, such as
CTRL-C, are processed. All other nonprintable characters are
returned in register R7 but not echoed to the console.

The BDOS does not return to the calling program until a character

has been typed. Thus, execution of the program is suspended until a
character is ready.

4-43

CP/M-8000 Programmer's Guide 4.4 Character I/O Punctions

FUNCTION 2: CONSOLE OUTPUT

Entry Parameters:
Register R5: 02H
Register R7: ASCII Character

Returned Values:
Register @ R7: 00H

The Console Qutput Function sends the ASCII character from R7 to the
logical console device. Tab characters expand into columns of eight
characters. In addition, a check is made for stop scroll (CTRL-S),
start scroll (CTRL-Q), and the printer switch (CTRL~P). This.
function also processes CTRL-C, which aborts the operation of the
calling program and warm boots the system.

If the console is busy, execution of the calling program is
suspended until the console accepts the character.

CP/M-8000 Programmer's Guide 4.4 Character I/0 Functions

FUNCTION 6: DIRECT CONSOLE I/0

Entry Parameters:
Register R5: O06H
Register R7: OFFH (input)
OFEH (status)
or
Character (output)

Returned Values:
" Register R7: Character or Status

Direct Console I/O is supported under CP/M-8000 for those
specialized applications that require character-by-character console
input and output without the control character functions supported
by CP/M=-8000. This function bypasses all of CP/M-8000's normal

CONTROL character functions such as CTRL~-S, CTRL-Q, CTRL-~P, and
CTRL~C. "

Upon entry to the Direct Console I/0 Function, register R7 contains
one of the values listed below.

Table 4-15. Direct Console I/0 Function Values

Value Meaning
FFH denotes a CONSOLE input request
FEH denotes a CONSOLE status request
ASCII output to CONSOLE where CONSOLE is the
character logical console device

When the input value ‘is FFH, the Direct Console I/O Function calls
the BIOS CONIN Function, which returns the next console input
character in R7 but does not echo the character on the console
screen. The BIOS CONIN function waits until it receives a

character. Thus, execution of the calling program remains suspended
until a character is ready.

4-45

CP/M-8000 Programmer's Guide 4.4 Character I/O'Functions

When the input value is FEH, the Direct Console I/0 Function returns
the status of the console input in register R7. When register R7
contains the value zero, no console input exists. However, when the
value in R7 is nonzero, console input is ready to be read by the
~BIOS CONIN Function.

When the input value in R7 is neither FEH nor FFH, the Direct
Console I/0 Function assumes that R7 contains a valid ASCII
character, which is sent to the console.

cf}u-aooo Programmer's Guide 4.4 Character I/0 Fuhctions

FUNCTION 9: PRINT STRING

Entry Parameters:
Register R5: 09H
Register RR6: String Address

Returned Values:
Register R7: 0QO0H

The Print String Function sends the character string stored in
memory at the address contained in register RR6 to the logical
console device (CONSOLE). The print string is terminated by a
dollar sign (S). Tabs are expanded as in the Console Output -
Function (2), and checks are made for stop scroll (CTRL-S), start
scroll (CTRL-Q), and the printer switch (CTRL-P).

4-47

CP/M-8000 Programmer's Guide , 4.4 Character I/O Functions

FUNCTION 10: READ CONSOLE BUFFER

Entry Parameters:
Register RS: OAH
Register RR6: Buffer Address

Returned Values: :
Register R7: O0OH .
Register Buffer: Character Count
and Characters

The Read Buffer Punction reads a line of edited console input from
.the logical console device (CONSOLE) to a buffer address passed in
register RR6. Console input is terminated when the input buffer is
filled, or a RETURN (CTRL-M) or line feed (CTRL~J) character is
entered. The input buffer addressed by RR6 takes the form.

*%

RR6: +0 +1 *2:f3«+4 +5 46 +7 +8 . . . +n

mx nc cl c2 ¢3 c{vgsiqé 57,'. . e e ??

The variable mx is the maximum number of characters the buffer
holds. The variable nc is the total number of characters placed in
the buffer. Your program must set the mx value prior to invoking
this function. The mx value can range in value from 1 through 255
(decimal) . - The characters entered from the keyboard follow the nc .
value. The value nc is returned to the buffer. It can range from O
to the value of mx. . If the nc value is less than the mx value,
uninitialized characters follow the last character. Uninitialized
characters are denoted as double question marks (??) in the
representation of the input buffer shown above. A terminating
RETURN or line feed character is not placed in the buffer and is not
included in the total character count nc.

This function supports several editing control functions, which are
briefly described in Table 4-16.

4-48

Cﬁ?M—SOOO Progr;mmer's Guide

4.4 Character 1/0 Funétions

Table 4-16. Line Bditing Controls
Keystroke Result
RUB/DEL removes and echoes the last character
CONTROL-C reboots when it is the first character on a
line
CONTROL-E causes physical end-of-line
CONTROL-H backspaces one character position
CONTROL-J (line feed) terminates input line
CONTROL-M (return) terminates input line
CONTROL-P gtarts and stops the echoing of console
output to the logical LIST device
CONTROL~-Q restarts console I/0 after CTRL-S halts it
CONTROL-R retypes the currentvline on the next line
CONTROL-S halts console I/0O and waits for CTRL-Q to
restart it
CONTROL-U ~echoes a pound sign (#) and advances the
' cursor to the next line, all previously
, input characters are ignored S
CONTROL-X backspaces to beginning of current line:‘

Certain line editing controls return the cursor to its previous
column position before invoking the Read Console Buffer Function.
This convention makes your data input and line correction more
legible.

4-49

CP/M~-8000 Programmer's Guide 4.4 Character I/0 Functions

FUNCTION 11: GET CONSOLE STATUS'

Entry Parameters:
Register R5: OBH

Returned Values:
Register R7: Console Status

The Get Console Status Function checks ' for the presence of a
character typed at the logical console device (CONSOLE) If a
character is ready, a nonzero value is returned in register R7-
otherwise the value 00H is returned in R7.

4-50

CP/M-8000 Programmer's Guide 4.4 Characéer I/0 Fuﬁc%ions

FUNCTION 3: AUXILIARY INPUT

Entry Parameters:
Register RS: 03H

Returned Values:
Register R7: ASCII Character

The Auxiliary Input Function reads the next character from the
auxiliary input device into register R7. The calling program
remains suspended until the character is read. This function
assumes the BIOS implements its Auxiliary Input Function. When more
than one auxiliary input port exists, the BIOS should implement the
I/0 Byte Function. For details on the BIOS Auxiliary Input and I/O
Byte Functions, refer to the CP/M-8000 System Guide.

4-51

CP/M-8000 Programmer's Guide 4.4 Character I/0 Functions

FUNCTION 4: AUXILIARY OUTPUT

Entry Parameters: :
Register R5: O04H
Register R7: ASCII Character

Returned Values:
Register R7: OOH

The Auxiliary Output Function sends a character from register R7 to
the auxiliary output device. Execution of the calling program
 remains suspended until the hardware buffer receives the output °
character. This function assumes the BIOS implements its Auxiliary
. ‘Output Function. When more than one auxiliary output port exists,
the BIOS should implement the I/0O Byte Function. For details on the
BIOS Auxiliary Output and I/0 Byte Functions, refer to the CP/M-8000
System Guide.

4-52

CP/M-8000 Programmer's Guide 4.4 Character I/0 Functions

FUNCTION 5: LIST QUTPUT
Entry Parameters:
Register R5: O05H
Register R7: ASCII Character

Returned Values:
Register R7: 00H

The List Output function sends the ASCII character in register R7 to
the logical list device (LIST).

4-53

CP/M-8000 Programmer's Guide 4.4 Character I/0 Functions

FUNCTION 7: GET I/O BYTE

Entry Parameters:
Register R5: 07H

Returned Values:
Register R7: I/0 Byte Value

The Get I/0 Byte Function returns the current value of the I/O Byte
in register R7. The I/O Byte is an 8-hit wvalue that assigns
physical devices, represented by 2-bit fields, to each of the
logical devices: CONSOLE, AUXILIARY INPUT, AUXILIARY OUTPUT, and
LIST. Figure 4-4 shows the format of the CP/M-8000 I/O Byte.

most significant ~ least significant
1/0 Byte LIST AUXILIARY AUXILIARY = CONSOLE
e e e ourPUT . INPUT

“'Pigure 4~4. I/0 Byte"

4-54

CP/M-8000 Programmer's Guide 4.4 Character I/0 Functions

The value in each field of the I/O Byte ranges from 0-3 and defines

the assigned source or destination of each logical device, as shown
in Table 4-17.

Table 4-17. I/0 Byte Pield Definitions
CONSOLE field (bits 1,0) '

0 - console is assigned to the console printer
(TTY:)

1 - console is assigned to the CRT device (CRT:)

2 - batch mode: use the AUXILIARY INPUT as . the
CONSOLE input, and the LIST device as the

. CONSOLE output (BAT:)

3 - user defined console device (UCl:)

AUXILIARY INPUT field (bits 3,2)

0 - AUXILIARY INPUT is the Teletype device (TTY:)

1 - AUXILIARY INPUT is the high-speed reader device
(PTR:)

2 - user defined reader # 1 (URl:) -

3 - user defined reader # 2 (UR2:)

AUXILIARY OUTPUT field (bits 5,4)

0 - AUXILIARY OUTPUT is the Teletype device (TTY:)

1 - AUXILIARY OUTPUT is the high-speed punch device
(PTP:) -)

2 - user defined punch # 1 (UPl:)

3 - user defined punch # 2 (UP2:)

LIST field (bits 7,6)

LIST is the Teletype device (TTY:)
LIST is the CRT device (CRT:)

LIST is the line printer device (LPT:)
user defined list device (ULl:)

wNHHo

Please note that the Get I/O Byte Function is valid only if the BIOS
implements its I/O Byte Function. The implementation of the BIOS
I/0 Byte Function is optional. PIP and STAT are the only CP/M-8000
utilities that use the I/O Byte. PIP accesses physical devices.
STAT designates and displays the logical-to-physical device
assignments. For details on implementing the I/O Byte Function,
refér to the CP/M-8000 System Guide.

CP/M-8000 Programmer's Guide 4.4 Character I/0 Functions

FUNCTION 8: SET I/O BYTE

Entry Parameters: -
Register RS: O08H
Register R7: 1I/0 Byte Value

Returned Values:
Register R7: 0OO0H

The Set I/O Byte Function changes the system I/0O Byte value to the
value passed in register R7. This function allows programs to
modify the current assignments for the four logical devices:
CONSOLE, AUXILIARY INPUT, AUXILIARY OQUTPUT, and LIST in the I/0
Byte. This function is valid only if the BIOS implements its I/0
Byte Function. Refer to the CP/M-8000 System Guide for details on
implementing the I/O Byte Function. See the Get I/0 Byte Function

(7) for a description of the I/0 Byte format and the possible values
for its fields. - 2 . :

4-56

CP;M—BOOQ Programmer's Guide 4.5 System Control Functions

4.5 System/Program Control Functions

The system and program control functions described in this section
warm boot the system, return the operating system version number,
call the Basic I/0 System (BIOS) functions, and terminate and load
.programs. These functions are listed in Table 4-18.

Table 4-18. System and Program Control Functions

Function Function Number
System Reset Q
Return Version Number 12
Set/Get User Code _ 32
_Chain to'P:cgram |) 47
Flush Buffers 48
Direct BIOS Call 50
Program Load 59

4-57

CP/M-8000 Programmer's Guide 4.5 System Control Functions

FUNCTION 0: SYSTEM RESET

Entry Parameters:
Register R5: OOH

Returned Values: Function Does Not

Return to Calling
Program

The System Reset Function terminates the calling program and returns
control to the CCP command level.

4-58

ﬁs Guide. 4.5 System Control Functions

FUNCTION 12: RETURN VERSION NUMBER

Entry Parameters:
Register ~ R5: OCH

Returned Values:
Register R7: .Version Number

The Return Version Numbér Function provides information that allows
version dependent programming. The one-word value 3022H is the
version number returned in register R7 for version 1.1 of CP/M-8000.

Add the hexadecimal value 0200 to the version number when the system

implements CP/NET.. For example, CP/M-80 Release 2.2 returns the
version 0222H when the system implements CP/NET.

4-59

CP/M-8000 Programmer's Guide 4.5 System Control Functions

FUNCTION 32: SET/GET USER CODE

Entry Parameters:
Register RS: 20H
.Register R7: FFH (get)
or
User Code
(set)

Returned Valugs? :
Register R7: Current User
‘ Number

An application program can change or obtain the currently active
user number by calling.the Set/Get User Code Punction. If the value
in register R7 is FFH, the wvalue of the current user number is
returned in register R7. The value ranges from 0 to 15 (decimal).

If register R7 contains 2 wvalue in the range 0 through 15

{decimal), the current user number 1is changed to the wvalue in

register R7. When the program terminates and control returns to the

- CCP, the user number reverts to the BDOS default user number. The

 BDOS assumes the default is zero unless you specify the USER command
to set an alternate default. ~ 7

4-60

P

CP/M-8000 Programmer's Guide 4.5 System Control Functions

FUNCTION 47: CHAIN TO PROGRAM

Entry Parameters:
Register R5: 2FH

Returned Values:
Register R7: -Function Does Not
Return to Calling
Program

The Chain to Program Function terminates the current program and
executes the command line stored in the current DMA buffer. The
- format of the command line consists of a one-byte character count
(N), the command line characters, and a null byte as shown in Figure .
4-5. The character count contains the number of characters in the .
command line. The count must be no more than 126 characters. If an

error occurs, you receive one of the CCP errors described in
Appendix E.

N Command Line (N characters) 0

1 byte ‘ N bytes < 126 bytes o 1 byte

Figure 4-5. Command Line Format in the DMA Buffer

4-61

CP/M-8000 Programmer's Guide 4.5 System Control Functions

FUNCTION 48: FLUSH BUFFERS

Entry Parameters:
Register RS5: 30H

Returned Values:
Register R7: Return Code

success: O00H
error: nonzexro
value

The Flush Buffers Function calls the BIOS Flush Buffers Function
(21) , .-which forces the system to write the contents of any unwritten
or modified disk buffers to the appropriate disks. Control and
editing applications use this function to ensure that data is
periodically physically written to the appropriate disks. When the
buffers are successfully flushed, this function returns the value
00H in register R7. However, if an error occurs, and this function
- does not complete successfully, this function returns a nonzero
value in register R7. ‘ -

4-62

Ccp Guide 4.5 System Control Functions

FUNCTION 50: DIRECT BIOS CALL

Entry Parameters:
Register R5: 32H '
Register RR6: BPB Address (Physical)

Returned Values: ‘ .
Register R7: BIOS Return Code
(if any)

Function 50 allows a program to call a BIOS function and transfers
control through the BDOS to the BIOS. The RR6 register pair
contains the address of the BIOS Parameter Block (BPB), a S5-word
memory area containing two BIOS function parameters, Pl and P2, as
shown in Figure 4-6. When a BIOS function returns a value, it is
returned in register R7. _ ‘ :

As with other BDOS functions, your program must specify a SC $#2
instruction to invoke this BDOS function after the registers are
loaded with the appropriate parameters. The starting location of
the BPB must be an even-numbered address.

Direct BIOS calls such as Set DMA Address (12) and Get Address of
Memory Region Table (18) require the use of CP/M-8000's Map Address
(_map_addr) and Memory Copy (_mem cpy) System Calls. _map_addr
converts a logical address to a physical address. Logical addresses
depend on the mode (system or normal) of the program using the
address and on the space to be accessed (program or data). _mem_cCpy
copies a block of data from a specified source to a specified
destination and can be used to copy the data stored at an address
returned from a BIOS function call to the calling program's address
space. See Section 4.2 of the CP/M-8000 System Guide for more
information on the Map Address and Memory copy System Calls.

4-63

CP/M-8000 Programmer's Guide 4.5 System Control Functions

Field Size
Function Number 1 word
Value Pl 1 longword
Value P2 1 longword

Figure 4-6. BIOS Parameter Block (BPB)

In the Figure 4-6, the function number is a BIOS function number.
(See Appendix A for a list of BIOS functions.) The two values, Pl
and P2, are 32-bit BIOS parameters, which are passed in registers
RR6 and RR8 before your program invokes the BIOS function.

For more details on BIOS functions, refer to the CP/M-8000 System
Guide. Note that if the parameters are addresses, they are NOT
mapped, so that the caller can specify addresses in any part of
memory. ‘ '

4-64

CPF/M-8000 Programmer's Guide 4.5 System Control Functions

FUNCTION 59: PROGRAM LOAD

Entry Parameters:
Register R5: 3BH
Register RR6: LPB Address (Physical)

Returned Values:
Register R7: Return Code

success: 00H
error: O0lH - 03H

The Program Load Function loads an executable command f£ile into
memory. In addition to the function code, passed in register RS,
your program must load register pair RR6 with the physical address
of Load Parameter Block (LPB). Use the Map Address (_map_addr)
system call to obtain the physical address of the LPB. _map_ addr is
described in Section 4.2 of the CP/M-8000 System Guide.

After a program is loaded, the BDOS loads registe: R7 with one of
the return codes listed in Table 4-19.

Table 4-19. Program Load Function Return Codes

Code . Meaning
00 the function is successful
01 insufficient memory exists to locad the flle, or
the header is bad
02 a read error occurs while the file is loaded in
memory

03 bad relocation bits exist in the program file

The LPB describes the program and denotes the segment into which it
is loaded. The format of the LPB is outlined in Figure 4-7. The
Program Load Function reads the file header to complete the LPB
before returning. The starting location of the LPB must be an even-
numbered address.

4-65

Cp/M-8000 Programmer's Guide 4.5 System Control Functions

Byte Content R ' Size
Offset : :
0H |address of PCB of successfully opened program file 1 longword
4H |segment in which to load non-segmented program | 1 longword
8H |segment in which to load segmented program 1 longword
CH |address of base page (returned by BDOS) . 1 longword
10H default user stack pointer (returned by BDOS) 1 longword
148 |loader control flags 1 word

Figure 4-7. Format of the Load Parameter Block (LPB)

Before a program specifies the Program Load Functlon, the flle must
be opened with an Open File Function (15). “The Open File Function
is aescribed in Section 4 2.,

The loader control flags in the LPB seleet 1oader optlons ‘as shown
- in Table 4-20

Table 4-20. Load.Pa:ameter~ﬁibCk Options

Bit Number | Value " Meaning
0 (least | 0 Loadyﬁrbgtam‘in non-segmented,
significant non-split I & D TPA
byte) o
-1 Load program in segmented TPA
1 Load program in non-segmented,
'split I & D TPA
l - 15 (decimal) 0 . Reserved, should be set to
zero, : '

The CCP uses the Program Load Function to load a command file. The
CCP places the base page address on the program's stack. The base
page address is located at the address pointed to by register RI15
- (nonsegmented) or RR14 {segmented), the stack pointer. The program
must return to the CCP by executing the BDOS Function 0 (Reset).
The format of the base page is outlined in Appendix C.

CP/M-8000 Programmer's Guide 4.5 System Control Functions

The BDOS allocates memory for the base page within the segements
specified in the LPB and returns the address of the allocated base
page in the LPB. Locations 0000H - 0024H of the base page are
initialized by the BDOS. Locations 0025H through 0037H are not
initialized but are allocated and reserved by the BDOS. The CCP
initializes the remaining base page values when it loads a program.

The BDOS allocates a user stack located just below the base page in
the highest address of the TPA. The maximum size of the stack
equals the address of the stack pointer minus the last address of
the program plus 1. The value of the stack pointer is passed to the
LPB by the BDOS. :

For programs loaded by a transient program, rather than the CCP,
refer to Section 2.2.3. Appendix B contains an example of a C
program that illustrates how a transient program loads another
program with the Program Load Function but without the CCP.

4.6 Exception Functions
This section describes the Set Exception Function (6l), the Set
Supervisor State Function (62), and the Get/Set TPA Limits Function

(63) that set exceptions for error handling and other exception
processing.

4-67

CP/M-8000 Programmer's Guide ' 4.6 Exception Functions

FUNCTION 61: SET EXCEPTION VECTOR

Entry Parameters:
Register R5: 3DH
Register RR6: EPB Address

Returned Values:
Register+ R7: Return Code

success: 'OOH
error: FFH

The Set Exception Vector Function allows a program to reset current

. exception vectors, set new exception vectors, and create exception
handlers for the 28000 microprocessor. Where possible, CP/M-8000
exception vector numbers match those used in CP/M-68K.

' In addition to passing the function number in register RS, a program
‘" must pass the address of the Exception Parameter Block in register
"RR6. The EPB is a l0-byte data structure containing a one-word
‘ yector number and two longword vector values (see Figure 4-8). The
/EPB specifies the exception and the address of the new exception
Jaggéler. ‘The starting location of the EPB must be an even-numbered
+address. ' ' ’

Field Size

Vector Number D 1 word
New Defined Vector Value "1 1 longword

014 Vector Value Returned by BDOS 1 longword

Figure 4-8. Exception Parameter Block (EPB)

The vector number identifies the exception. The New Vector Value
specifies the address of the new exception handler for the specified
exception. The BDOS returns the value that the exception vector
contained before this function was invoked in the 0ld Vector Value
Field. The BDOS replaces the old vector value with the new vector
value in its table of exception handlers and returns the address of
the old exception handler to the old vector value in the EPB. After
the BDOS sets the new exception vector, it passes the value 00H in
register R7. However, if an error, such as a bad vector, occurs
while the vector is being set, this function passes the value FFH in
register R7. The bad vector error occurs when an invalid vector is

4-68

CP}ﬁ—8000 Programmer's Guide | 4.6 Exception Functions

specified for this function. Table 4-22 lists the valid exceptions
that correspond to 28000 microprocessor hardware.

Table 4-21. Valid Vectors and Exceptions

Vector Exception
0 Nonmaskable Interrupt
1 EPU Trap
2 Segment Violation
8 Privilege Violation
32* System Call 0
(debugger breakpoint)
36%* System Call 4
37w System Call 5
3gw ‘ System Call 6
- 39** ° gystem Call 7

* Védtdrs“ﬁeserved for Resident System Extensions (RSX)
implemented with the Get/Set TPA Limits Function (63).

h Recommen&ed Trap vectors for applications.

When an exception occurs, before the BIOS passes control to the BDOS
exception handler, it saves the registers on the system stack in a
form suitable for use with the Control Transfer (_xfer) System Call
provided by the BIOS (as described in Section 4.2 of the CP/M-8000
. System Guide). The BIOS then calls the BDOS exception handler as a
subroutine, in system, segmented mode. The BDOS exception handler
restores the status to that of the program that was executing when
the exception occurred (usually normal, nonsegmented mode), and
places a copy of the context block on the appropriate (system or
normal) stack. The exception handler must return control to the
interrupted program using the _xfer System Call.

4-69

CP/Q—BOOO Programmer's Guide 4.6 Exception Functions

If an exception occurs for which no exception handler exists, the
BDOS default exception handler returns an exception message to the
logical console device (CONSOLE) before it aborts the program. The
BDOS exception message format is defined below:

Exception nn at user address aaaaaaaa. Aborted.
where:

nn is a hexadecimal number in the range 2H through 17H or 24H
through 2FH that defines all exceptions excluding reset,
hardware interrupts, and system Traps 0 through 3.

aaaaaaaa is the address of the instruction fgllowing the one that
caused the exception. i

Except for exceptions handled by Resident System Extensions (RSXs),
the BDOS reinitializes all vectors to the default exception handler
~when the BDOS System Reset Function (0) is invoked. Any exception
wvectors set by your program are reset after the BDOS warm boots the
‘géystem. An RSX is a program that is not configured in the operating
.system but remains resident in memory after it is loaded. RSXs
normally provide additional system functions. . The Get/Set TPA
‘Limits Function (63) allows you to create an area in the TPA in
:which one or more RSXs can reside. '

4-70

Cp/M-8000 Progbammer;s Guide | ' 4.6 Exception Functions

FUNCTION 62: SET SUPERVISOR STATE

Entry Parameters:
Register RS5: 3EH

Returned Values:
Register R7: O0O0H

The Set Supervisor Function puts the calling program in supervisor
(system) state. If the calling program is running on a segmented
processor (28001 or Z8002), this function also puts the program into
segmented mode. This function should not be used by novice

programmers, and experienced programmers should be careful when
invoking it. - -

The user stack is swapped when the program enters supervisor state.
On return from this function, the stack pointer, register RR14, is
the supervisor stack pointer and not the user stack pointer.
Therefore, you cannot use register RR14 to reference the user stack.
You must use the user stack pointer, which is accessible with the
Load Control (LDCTL) instruction. :

The supervisor stack is used by the BDOS and the BIOS. The size of
this stack is unpredictable, and the percentage of the stack used by
the system is dependent on the operation being performed and those
previously performed. Therefore, you cannot predict how much of the
stack is available for program operations. To avoid stack overflow
and overwriting the system, you should not push more than a few
dozen bytes onto the stack.

An alternate method of avoiding stack overflow is to switch to a
private supervisor stack. You create the stack by loading into RR14
the address of an area in memory that you use as the supervisor
stack. The address must be an even address. If you call BDOS and
BIOS functions, your private supervisor stack should be 300
longwords more than the space required by the program. If your
program exits supervisor mode, make sure your program restores the
system stack pointer to its original value. The supervisor stack is
reinitialized when the system warm boots.

4-71

CP/M-8000 Programmer's Guide | 4.6 Exception Functions

FUNCTION. 63: GET-SET TPA LIMITS

Entry Parameters:
Register RS5: 3FH
Register RR6: TPAB Address

Returned Values: -
Register R7: O0OH
Register TPAB: Contains TPA
: Values .

The Get/Set TPA Limits Function allows you to obtain or set the
boundaries of the Transient Program Area (TPA). You must store the -
address of the Transient Program Area Block (TPAB) in register RR6.
The TPAB is a 5-word data structure consisting of one word .and two
longwords. You create the TPAB in the TPA as illustrated in Figure
4-9. . - AR . .

Byte Offset I | jkﬁﬁieldigb ;i;~1 ‘;,; Size

. 00H . , _‘ Parameters - - : va4ﬁ : kllwdrﬁ;’
02H ' Low TPA physical address 1" 1 1ongwora
06H | High TPA physical address + 1 1 longword

FPigure 4-9. Transient Program Parameter Block

The value of the first two bits in the one-word Parameters Field
determines whether this function gets or sets the TPA limits and
which fields you supply. Figure 4-10 illustrates the format of the
parameters field. - .

4-72

CP/M-8000 Programmer's Guide : 4.6 Exception Functions

Parameters | 15{14|13{12]11/10{9(8{7{6|5{4(3|2(1|0
Field

reserved bits (2-15) = 0

bits: 1 0
values = 1/0 1/0

Figure 4-10. Parameters Field in TPAB

Bit Zero determines whether you get or set the TPA limits. When
the value of bit zero is zero, the BDOS returns the current TPA
boundaries in the Low and High Address fields of the TPAB. When the
value of bit zero is one, the BDOS sets new TPA boundaries. The
BDOS uses the wvalues that you specify in the Low and High TPA
physical address fields of the TPAB to set the new TPA boundaries.
Use the Map Address (_map_adr) System Call to convert the Low and
"High TPA logical addresses to physical addresses. Section 4.2 of
the CP/M-8000 System Guide describes the _map_addr System Call.

When you set the TPA boundaries, bit one determines whether the
boundaries are temporary or permanent. When the value of bit one is
zero, the TPA boundaries that you set are temporary; when the system
warm boots, the previous TPA limits are restored. When the value of
bit one is one, the TPA values that you set are permanent; they are
not changed when the system warm boots.

Bits 2 to 15 contain zeroes and are reserved for future use.

Table 4-22.
Values For Bits 0 and 1 in the TPAB Parameters Field
Bit Value Explanation
0 0 Return boundaries of current TPA in

TPAB Low and High Address Fields.

1 Set new TPA boundaries with the walues
loaded in TPAB Low and High physical
address fields.

1 0 Restore previous TPA values when the
system warm boots.

1l Permanently replace the TPA boundaries
with the ones you specify in the Low
and High TPAB physical address fields.

CP/M-8000 Programmer's Guide 4.6 Exception Functions

The following examples illustrate and explain values for bits zero

and one.

.

Examples:

1)

2)

3) P

Get TPA Limits
1l 0
0 0

This form of;functidn 63 retﬁrns-the boundaries of the
current TPA in* the Low and High address fields of the TPAB
when the value of bit zero equals 0.

Temporarily Set TPA Limits
A

0
This.form of the Get/Set TPA Limits Functigﬁ~ﬁem90féfily
sets the TPA boundaries to the boundaries that you supply
in the Low and High physical address fields of the TPAB

when bit 2zero equals 1 and bit one equals 0. The TPA
boundaries are reset when the system warm boots.

ermanently Set TPA Limitﬁr

i

{11 | 1

When bit zero equals one and bit one equals one, function
63 permanently sets ‘the TPA boundaries to the values that
you supply in the Low and High physical address fields of
the TPAB. The TPA limits remain set until this function is
called to reset the boundaries or the you cold boot the
system.

End of Section 4

4-74

Section 5
ASZ8K Assembler

5.1 Assembler Operation

The CP/M-8000 Assembler, ASZ8K, assembles an assembly language
source program for execution on the 28000 microprocessor. It
produces a relocatable object file and, optionally, a listing. The
assembly language accepted .by ASZ8K is identical to that of the
Zilog 28000 assembler as described in the Zilog 28000 CPU User's
Reference Manual. Appendix D of the present manual contains a
summary of the instruction set. Exceptions and additions are
described in Sections 5.5 and 5.6.

ASZ8K uses a predefinition file named ASZ8K.PD to reference 278000
mnemonics agalnst hexadecimal instruction codes. This ASCII file
must be present in the current user number on the logged in drive in
order to assemble a %8000 source file with ASZ8K.

Use the XCON utility to convert the relocatable object files output
by ASZ8K into the x.out format descrlbed in Sectlon 3. XCON is
described in Section 7.5. :

Appendix E lists the error messages generated by ASZBK.

S.2 Invoking the Assembler (ASZS8K)
Invoke ASZ8K by entering a command of the . following form:
ASZ8K [-o outfile] [-lux] file. 8k{n|s}

Table 5-1 lists and describes the options associated with the ASZ8K
command line.

CP/M-8000 Programmer's Guide 5.2 Invoking the Assembler (ASZ8K)

Table 5-1. Assembler Options

Option Meaning

-1 or -L

Generates a listing file named file.lst if no -o
outfile option and name are selected. The -x or <X
option implies this as well,

-0 or -0
'Generates -an output ﬁile with the outfile name.
This command option also invokes the XCON utility to
convert outfile to the x.out command file format..
-u or -U
‘Treat all undefined symbols in the assembly as
global.
-x or =X

' Generates an assembly and cross réference listing
file named file.lst if no ~o outfile option is
selected. The -1 or -L option implias %his as’ wéll.

i

file.8kn or file.8ks

This is the only required parameter.?”ft is the file
specification of the asgembly language source
program to be assembled. With the ,8kn extension,
nonsegmented object code will be generated; the .8ks
extension generates segmented object code.

outfile

If the -0 or -0 option is specified, an object file
with the name outfile.rl will be generated instead
of the default file.rl.

ASZ8K will display the following message if the command you enter to
invoke the assembler contains a syntax error:

Usage: asz8k [-o outfile] ([-luxs] file.8k{n|s}

P

CP/M-8000 Programmer's Guide 5.3 Assembly Language Directives
5.3 Assembly Language Directives
This section alphabetically 1lists and briefly describes the

directives ASZ8K supports.

Table 5-2. Assembly Language Directives

Label Directive Operands

.ABS

| The .ABS directive causes the assembler to generate object code
into the absolute section at the point most recently left off in
that section. The absolute section is the default section for
object code generation at the beginning of the assembly.

[label] .ALIGN expression

The .ALIGN directive forces alignment of the location counter in
the current section. The expression in the operand field must
be an integer between 0 and 16. Assuming the value of the
expression is "a", the location counter is incremented, if
necessary, until it is divisible by 2a

[label] .BLOCK expression

The .BLOCK directive reserves a block of contiguous memory
locations. The expression in the operand field must be
absolute. A block is reserved whose size in bytes is the
expression value. The label, if present, is assigned the value:
of the location counter before the block is generated. A label
can be used to reference the address of the first byte of the
block.

(label] .BYTE {expression}
[label] .BYTE "string”
[label] .BYTE "string",0

The first .BYTE directive generates successive bytes of object
code with specified values. The expressions are evaluated in
order from left to right, and their values, truncated to 8 bits,
are placed in successive bytes of object code. Label, 1if
present, is assigned the value of the location counter before
the first byte is generated.

CP/M-8000 Programmer's Guide ~ 5.3 Assembly Language Directives

Pable 5-2. (continued)

Label Directive Operands

The second .BYTE directive generates successive bytes of code
whose values are specified by a string expression. Label, if
present, is assigned the value of the location counter befare
the first byte is generated.

The third .BYTE directive generates successive bytes of code
whose values are specified by a string expression, followed by a
single byte whose value is zero. Label, if present, is
assigned the value of the location counter before the first byte
is generated.

label .COMMON

The .COMMON directive begins a new common section with a
specified name. Label is required, and becomes the name of the
new section.

_ <EJECT -

| The .EJECT directive begins a new page in the listing file. .The
next line of the output listing will begin at the top of a new

' page. A form-feed character (ASCII code 0C hex or "L) in the

source file will produce the same effect, and is the preferred
method of formatting listings.

.ELSE

‘The ELSE directive can appear only within a conditionally
assembled portion of the source. This section begins with an
.IF directive and ends with a matching .ENDIF directive. The
effect of .ELSE is to reverse the effect of its matching .IF
directive, or of a preceding .ELSE directive. 1If a preceding
.IF directive or .ELSE directive caused .assembly to be
suppressed, the .ELSE causes it to resume. The reverse case is
also true, and both are valid only until the matching .ENDIF or
another .ELSE is encountered.

.END 1expression]

The .END directive marks the end of a source file module, and
optionally specifies a’ program starting address. If the
expression is present in the operand field, its value will be

"used as the starting address when the program is loaded into
memory and executed.

CP/M~8000 Programmer's Guide 5.3 Assembly Language Directives

Table 5-2. (continued)

Label ' Directive Operands

The .END directive must be the last statement of a source
module. Any statements following -.END are ignored by the
assembler. If all source statements are exhausted without
encountering an .END directive, the assembler will assume the
presence of an .END directive (w1thout operand) after the final
source line.

.ENDIF

The .ENDIF directive terminates a conditionally assembled
portion of the source. The .ENDIF directive must always be
matched by a previous .IF directive,.

.ENDM

The .ENDM directive terminates a macro definition. The .ENDM
directive must always be matched by a previous .MACRO directive.

.ENDR

The .ENDR.directlve terminates a repeated portion of the source.

' The .ENDR directive must always be matched by a prevzous . REPEAT
directive.

[label] .EQU expression

The .EQU directive permanently assigns a value and a type to an
identifier. The label is given the value and type of the
expre551on in the operand field. Any subsequent attempt to
redefine the label will cause an error diagnostic to be printed.

.ERROR string

The .ERROR directive forces an error flag to be set, just as
though a real assembly error had occurred. It is useful for
detecting unexpected assembly time conditions, especially within
macros. The first 1 - 3 characters of the specified string are
placed into the error flags field of the assembly listing. The
assembler's error count is appropriately incremented.

CP/M-8000 Programmer's Guide 5.3 Assembly Language Directives

Table 5-2. (continued)

Label Directive Operands

+EXIT

The .EXIT directive terminates a macro expansion or a repeat
block before the assembler reaches the end. It is illegal
outside of a macro expansion or a repeat block. .

The current_mac:o expansion or repeat block will'be'exited, and
processing will continue with the first statement following the
macro expansion or repeat block.

'

.GLOBAL {identifier}

The .GLOBAL directive declares one or more identifiers to be
glcobal (accessible to the linker). o o
Bach of the identifieérs in the operand field is declared to be
global. ‘“Those which are defined within the current assembly
will be svailable to other object modules at link time. Those
which are not defined within the current assembly may be
supplied by other object modules at link time. a o

e . L e

CLIF expression

Upon encountering an .IF directive, the assembler will evaluate
the given expression. If the value of the expression is zero
1 (false), the assembler will ignore subsegquent statements until a
matching .ELSE or .ENDIF directive is read. Statement
processing will resume in the ngrmal manner, = R

1f the value of the expression is nonzero (true), the assembler
will process subsequent statements normally. If a matching
.ELSE directive is encountered, it will then ignore statements
until it reads a matching .ENDIF directive.

Each .IF directive begins- a conditionally assembled portion of
the source which must be terminated by a.matching .ENDIF
directive. An .ELSE directive can optionally appear within that
.portion of the source.

Conditionally assembled portions of the source can be nested
down to an arbitrary level.

5-6

CP/M-8000 Programmer's Guide 5.3 Assembly Language Directives

Table 5~-2. (continued)

Label Directive Operands

. INPUT string

The .INPUT directive causes the assembler to begin reading its
source from a specified file.

The string in the operand field must be the name of a source
file. The assembler will read from the specified file until it
reaches the end. It will then resume reading from the original
source file. The effect is as though the .INPUT directive was
replaced by the contents of the specified file.

(label] .LONG {expression}

The .LONG directive generates successive long words of object
code, with specified values. Expressions are evaluated from
left to right and their values are placed in successive long
words of object code. The label, if present, is assigned the
value of the location counter before the first long word is

generated. This permits reference to the address of the first
long word.

label .MACRO

The .MACRO directive begins the definition of a macro. Upon
encountering a .MACRO directive, the assembler will define (or
redefine) a macro whose name appears in the label field., The
body of the macro is taken from subsequent source lines until a
matching .ENDM directive is encountered. ’

{label] .ORG expression

The absolute origin directive (.ORG) sets the location counter
to the value of the expression. - The label, if present, is
assigned the new value of the locatioh counter. ' ..
The assembler uses the value -of location counter to assign
absolute memory locations to subsequent statements. The
expression cannot contain any forward, undefined, or external
references.

CP/M-8000 Programmer's Guide 5.3 Assembly Language Directives

Table 5-2. (continued)

Label Directive Operands

.REPEAT expression

The .REPEAT directive begins a portion of source which is to be
repeated according to the number specified in the expression.
If the expression is negative or zero, that portion of source is
skipped entirely. A matching .ENDR directive terminates the
.REPEAT directive. Repeated portions of source may be nested
down to any manageable level.

-RESUME identifier

The .RESUME directive causes the assembler to resume using a
previously declared section of source, referenced by the
identifier in the operand field. Object code will be generated
into the specified section at its most recently exited point.

label ’.SECT

The .SECT directive begins a new sectlon with the name speczfied
by the labal.,r

The .SET directive assigns a value and a type to an identifier
specified by the label. Both the value and type of the
expression in ‘the operand field are assigned to the label. The
label can be redeflned any number of times by subsequent .SET
»ditectivés.,

’qf‘.SPACE expression

The .SPACE directive causes a specified number of blank lines to
be produced in the listing file. If the expression specifies
more lines than are left on the current listing page, the effect
will be the same as the .EJECT directive. The source line
containing .SPACE will not appear in the listing.

.STITLE string

The subtitle directive uses the string in the operand field to
specxfy a new listing subtitle. .STITLE also begins a new page
in the listing file. An .EJECT directive will be simulated, and
.STITLE will not appear in the listing file.

CP/M-8000 Programmer's Guide 5.3 Assembly Language Directives

Table 5-2. (continued)

Label Directive Operands

.TITLE string

The .TITLE directive uses the string in the operand field to
specify a new listing title, and begin a new listing page. An
.BJECT directive will be simulated, and TITLE will not appear
in the listing file.

.WARN string

The .WARN directive forces a nonfatal warning flag to be set in
the assembler. This is useful for detecting unexpected assembly
time conditions, especially within macros. The first 1 - 3
characters of the specified string are placed into the error
flag field of the assembly listing. The assembler's warning
count. is appropriately incremented.

{label] .WITHIN expression

The .WITHIN directive specifies the memory size that can be
occupied by the current section. The expression for this
directive. is an integer from 0 through 32 representing an
exponent to the base 2. This determines .memory size for the

curcent sectlon, and begins at an address ‘that is a multiple of
o€Xpression.

(label] .WORD {expression}

The .WORD directive generates successive words of object code
with specified values. Expressions are evaluated from left to
right, their values truncated to 16 bits, and placed 1in
successive words of object code. The label, if present, is
a551gned the value of the location counter before the first word
is generated.

5.4 Sample ASZS8K Commands

The following command assembles the source file TEST.8KN and
produces the nonsegmented object file TEST.O. Error messages appear
on the screen. Any undefined symbols are treated as global.

A>ASZ8K -o TEST.O —-u TEST.8KN

5-9

CP/M-8000 Programmer's Guide 5.4 Sample ASZ8K Commands

The command shown below assembles the source file SMPL.8KS and
produces the segmented object file SMPL.O. Error codes and the
assembly listing are contained in the file named SMPL.LST.

A>ASZ8K -0 SMPL.0O -1 SMPL.BKS
Note that the XCON utility converts the object files produced by
ASZ8K to the x.out format described in Section 3. XCON is described
in Section 7.5. '

5.5 Assembly Language Differences

The syntax differences between the ASZ8K assembly language and
Zilog's assembly language are listed below.

1. To force the generation'of a short form segmented address,
. prefix the address expression with a vertical bar (l]). Por
-example: : -
1a - ‘r2,loop
willwgé@eratefa long segmented address, while
14 £2,]lo0p
willZQEhéfiﬁé‘57353;t?§égﬁéh£§§faédrgés.
2. To form a hard segmented address at assembly timé} use:

[segment]bffsét‘: ‘:
The ASZS8K assemblér uées'the folldwing conventions:

1. ASZ8K accepts upper- and lower-case characters. You can
specify instructions and directives in either case. However,
labels and variables are case sensitive. For example, the
labels "START" and "Start" are not equivalent.

2. ASCII string constanﬁs must be enclosed in double quotes:
"acl4"
3. Registers can be referenced with the following mnemonics:
r0-rl5
RO-R15
rrO0-rrld
RRO-RR14
rg0-rgl2
RQO-RQ12

Upper- and lower-case references are equivalent.

5-10

CP/M-8000 Programmer's Guide 5.5 Assembly Language Differences

4.

5.6

Comment lines must begin with a semicolon and end with a
newline character. The comment field is included in the
assembly listing file, but is otherwise ignored by the
assembler.

Radix suffixes are as follows:

Radix Suffix

2 B‘or b

8 . 0, Q, 0, 0or g
10 D or 4
.16 Hor h

In the last case, hexadecimal numbers, the letters A-F or a-f
represent the numbers 10-15. Since a number must begin with a
numeral, prefix a leading zero (0) to those hex numbers
beginning with a letter. ‘ ‘

Macro Descriptions

The ASZ8K assembler includes a feature that allows a group of.
statements to be defined as a macro. The use of macros consists of
two distinct phases: macro definition and macro expansion.

Macro definition is initiated by the .MACRO directive, and is
terminated by a matching .ENDM directive. No object code is
generated at this point. : ’ :

Macro expansion is the process of inserting a previously defined
macro into the source, which is then processed normally by the
assembler. Macro expansion is initiated by the appearance of a
macro name in the operation field of a statement.

During macro expansion, variable arguments can be inserted into the
generated source at previously defined locations. This permits a
single macro to be used in many different instances of a general
situation. ' '

5.6.1 Macro Definition vk

ASZ8K macro definition takes the general form:

Label Directive Operands

" label .MACRO

.ENDM

5-11

CP/M-8000 Programmer's Guide 5.6 ASZ8K Macro Descriptions

The symbol in the label field of the .MACRO directive becomes the
name of the macro. Source statements between the .MACRO and .ENDM
directives become the body of the macro. Whenever the macro name
appears in.a subsequent operation field, the body of that macro will
be inserted into the source.

5.6.2 Macro Expansion

The general form of a ASZ8K macro expansion is:

Label Directive ~ Operands

[argument] identifier {argument}

The identifier in the operation field must be the name of a
previously defined macro. Label and operand fields contain optional
arguments that will be substituted into the body of the macro as it
is expanded.

The arguments in the operand field are separated by blanks, tabs or
commas. If an argument is to contain one of these separator
characters, the entire argument can be ‘enclosed in braces ({ }).
The outermost set of enclosing braces will be removed from the
argument before it is substituted into ‘the ‘macro body.

'5.6.3 Macro Argument Substitution

During macro definition, the question mark (?) immediately followed
by a digit is interpreted by the assembler as an argument
substitution indicator. The digit following the question-mark is
used to select one of the arguments from the macro call. Arguments
in the operand field are numbered sequentially from left to right,
beginning with 1. The optional argument in the label field is
argument 0. For example, "?2" would use the second argument in the
operand field; "?0" selects the argument in the label field.

The number of arguments in a macro call need not match the number of
arguments referenced in the macro definition. If there are too few
arguments in the macro call, references to the missing arguments are
replaced by empty strings. If there are too many arguments in the
macro call, the extra arguments are available using the "22?"
argument specifier. See Section 5.6.4.

You can produce the question mark character in a macro expansion

without argument substitution by preceding the question mark with a
backslash (\?).

5-12 . -

CP/M-8000 Programmer's Guide 5.6 ASZ8K Macro Descriptions

5.6.4 Referencing Extra Macro Arguments

The special argument specifier "??" can be used to reference extra
arguments that might be present in a macro call. Extra arguments
are identified as follows: each extra argument is enclosed in
braces, these braced arguments are then combined into a list,
separated by commas; the resulting string is used to replace each
appearance of "??" in the macro definition.

When used with recursive macro calls, the ability toc reference extra
macro arguments allows you to write macros that can process a
variable number of arguments.

5.6.5 Nesting Macro Definitions

A macro definition can contain another macro definition, which can
contain a third macro, and so on, to any reasonable depth An inner

macro will not become defined until its outer macro is called and
expanded.

- 5.6.6 Nesting Macro Calls

A macro can contain a call to another macro, which can contain a
call to a third macro, and so on. A macro can also contain
recursive calls to itself. - The nesting of macro calls is limited
only by practlcal considerations.

5.6.7. Macro Redefinition
If a previously defined macro name appears in the label field of a
subsequent .MACRO directive, it will be redefined. The old macro

definition is simply discarded and replaced by the new definition.
Macros can be redefined any number of times.

End of Section 5

5-13

Section 6
LD8K Linker

6.1 Linker Operation

LD8K is the CP/M-8000 linker/loader that combines several ASZ8K
assembled (object) programs’ into one executable file and creates
absolute files from relocatable command files. It is capable of
linking both segmented and nonsegmented 28000 object modules.
However, all of the modules linked must be of the same type. LD8K
has facilities for searching libraries in the same format prepared
by the archive utility, ARS8K.

The error messages displayed by LD8K are listed in Appendix E.

6.2 Invoking the Linker (LD8K)
Invoke LD8K by entering a command of the following form:
LD8K -w [-o0 outfile] [-inrstu] [-1lxx] [-d] file ...

The default output file is named x.out. Arguments to LD8K are
processed in their order of appearance in the command line.
Libraries are searched exactly as they appear in a command. Only
routines' that resolve at least one external reference are loaded.
Library ordering is important.

The type of the first object module encountered determines whether
linking will be segmented or nonsegmented. Mixing of types is not
permitted. Only entry points in modules with the correct type will
be considered when archive files are searched.

Several options are available with LDSK. Except for 1library
specification (-lxx), all options should appear before any file
name. Table 6-1 lists and explains the LD8K command options.

CP/M-8000 Programmer's Guide 6.2 Invoking the Linker

Table 6-1. Linker Command Options

Option Meaning

-d or =D

The next argument is taken to be a file namé
containing segment numbers and name
correspondences. In this way, specific segment
numbers can be assigned to named segments, or the
loader can be forced to ignore specific segment
numbers. There are two formats for the descriptor
file. The first is a sequence of ASCII lines as
follows:

<number> [, <typechar>] *=<name> [, <name>] *
or
<numbe:> T

The first form requires the named ‘segments to be

-+ assigned the given number, .The <typechar> should
. be one of the letters t,. d, b, or ¢ to indicate
. segment types: text, .bss; data, or constant,
-jrespeciively. 1f the type is not indicated, the
type of the named segment will be used. If all of
the named segments-with the same name will not fit

- into 64KB, an error message will be issued. The
named segments are assigned to the numbered
segments according to the order in which the names
appear in the control input line. The second form

. effectively reserves the segment number and does
not permit the loader.to use it.

The second type of descriptor file is as follows:
<type>=<number>!—<numb er>] ([-<number>]*
In this second form, the type is one of the names:

text, bss, data, or cons, and the numbers are the
valid numbers for this type of segment.

CP/M-8000 Programmer's Guide _ 6.2 1Invoking the Linker

Table 6-1. (continued)

Option Meaning

-d or =D
(cont.)

Both forms cause the output file segments to
appear in the order they are encountered in the
descriptor file. 1In this way, the object order
can be forced.

.text=11,9,7
cons=10,12,8
data=1l1-18
bsg=3-1

The preceding example causes text to be put first
in segment 11, then 9, then 7 (as each segment is
filled in turn). It causes constants to be put
into 10, 12, and 8. Data occupies segments 11l
through 18, and the bss occupies segments 1
through 3.

If segment types are mixed (text=5/d4ata=5), both
types of segments will be allocated first in
segment five. Subsequent allocation will be
separated however, if the file reads
text=4,6/data=5,6. -

-d"descriptor line"

This is a short form of the preceding control in
which one line will suffice. The -d commands can
be repeated, in which case they are processed in
the order they are encountered.

-1 or -I

Prepares the objegct file for split I and D space.
That is, it starts the data addresses at zero. 1In
the case of segmented loads, segment numbers can
also be reused.

-lxx or -Lxx

Search the library name libxx.a. This may appear
any place in the command line.

6-3

CP/M-8000 Programmer's Guide 6.2 Invoking the Linker

Table 6-1. (continued)

Option Meaning

-n or -N

Mark the text read-only, so that it can be shared.

This is meaningful only for nonsegmented load$.

The data boundary is moved up to the .next 8K
. boundary.

-0 filename

fhe next argument is téken as the name of the
object file instead of x.out. -

-r or ~R
Preserves relocation information in the output,
even if all references are resolved.
-8 or -S
Save space in the object file by stripping the
output of the symbol .table and relocation bits.
-t or ~T
The next argument is a decimal number that sets
the size of the stack segment.

-1 or -~U

Enters the next argument as an undefined reference
so that loading can be accomplished solely from an
archive file.

6.3 Sample Commands Invoking LD8K

The following command links the assembled file TEST.O into the file
named TEST.8K and strips out the symbol table and relocation bits:

A>LD8K -s —-o TEST.8K TEST.O

The assembled files A.0, B.O, and C.0 are linked to produce the
default output file X.OUT in the following command:

A>LDS8K A.O0 B.O C.O

CP/M-8000 Programmer's Guide 6.3 Commands Invoking LDSK

The command shown below produces an output file named TEST.8K by
linking the assembled files TEST.O and TEST1l.O.

A>LD8K -o TEST.8K TEST.O TEST1l.0

End of Section 6

Section 7
Programming Utilities

This section describes the five programming utilities supported by
CP/M-8000: AR8BK, DUMP, XDUMP, SIZEZ8K, and XCON. AR8K allows you
to create and modify libraries. DUMP displays the contents of a
file in hexadecimal and ASCII notation. XDUMP displays the header
"fields, segment information, initialized data, relocation
information, and symbol table ¢f an object or command file. SIZEZS8K
displays the total size of a memory image command file and the size
of each of its program segments. XCON converts ASZ8K object file
output into the x.out format described in Section 3.

7.1 Archive Utility

ARBK, the archive utility create a library or replaces, adds,
deletes, lists, or extracts object modules in an existing library.
AR8BK can be used on the C run-time library distributed with CP/M-
8000 and documented in the C Lanquage Programmer's Guide for CP/M-
8000 for. the Z8000 microprocessor.

7.1.1 ARSK Syntax

To invoke AR8K, specify the components of the following command
line. Optional components are enclosed in square brackets [].

ARSK DRQTX (V] ARCFILE (FILES...]

You can specify multiple object modules in a command line provided
the command line does not exceed 127 bytes. The delimiter character
between components consists of one or more spaces. Table 7-1 lists
and explains the AR8K command line components.

Table 7-1. AR8SK Command Line Components

Component « Meaning

AR8K * Invokes the Archive Utility. However, if you
specify only the AR8K command, AR8K returns the
following command line syntax and system prompt.
A>AR8K
usage: ARSK KEY ARCFILE [files. . .]

A>

CP/M-8000 Programmer's Guide : 7.1 Archive Utility

Table 7-1. (continued)

Component Meaning

KEY Indicates you must specify one of the following
letters as an AR8B8K command: D, R, Q, T, X
Each of these one-letter commands is described
in Table 7-2.

\'4 _ Indicates you can specify this one-letter
option. The V option is described with the
ARS8K commands in. Table 7-2.

ARCFILE Indicates the library file specification.

FILES Indicates object modules.

7.1.2 ARSBK Operation

ARBK sequentially parses the command line once. ARBK searches for,
inserts, replaces, or deletes object modules in the library in the
sequence in which you. specify them in the command line.

When AR8SK processes a command, it creates a temporary work file
called ARBKXXXX.TMP. AR8BK uses ARBKXXXX.TMP when it processes ARS8K
commands. After the operation is complete, ARBK erases
ARBKXXXX.TMP. However, depending on when an error occurs,
ARS8KXXX.TMP is not always erased. If this occurs, erase
ARBKXXXX.TMP with the ERA command. Refer to Appendix E for error
messages output by ARSK. :

Table 7-2 lists and describes the AR8K commands. Examples in the

table illustrate the affect of each command and its interaction with
the V option.

Table 7-2. ARBK Commands and Options

Command | Option Meaning

D Delete one or more object modules (as
specified in the command) from the library.
You can specify the V option for this
command.

v ~ List the modules in the 1library being
deleted by the D command:

CP/M-8000 Programmer's Guide 7.1 Archive Utility

Table 7-2. (continued)

Command | Option o ' Meaning

A>AR8K DV RUS§.ARC ORC.O
Deleting:

orc.o

A>

The D command deletés the module ORC.O from
the library RUSS.ARC. The V optlon displays
"Deleting:"™ to indicate the action of the D
command.

R Create a library when the one specified in
the command line does not exist. The R
command can also be used to replace or add
object modules to an existing library. Your
command line must specify one or more object
modules.

You can replace more than one object module
in the library by specifying module names in

. the command line. However, when the library
contains more than one module with the same
name, ARSK replaces only the first module it
finds that matches the one specified in the
command line. ARSK replaces modules already
in the library only when your command line
specifies the names of the existing modules
before the names of the new modules to be
added to the library. For example, if you
specify the name of a module that you want
replaced after the name of a module you are
adding to the library, AR8K adds both
modules to the end of the library.

By default, the R command adds new modules
to the end of the library. The R command
adds an object module to a library if:

e The object module does not already exist
in the library.

e The name of a module follows the name of a
module that does not already exist in the
library.)

CP/M-8000 Programmer's Guide 7.1 Archive Utility

Table 7-2. (continued)

Command | Option Meaning

You may specify the V option with the R
command to indicate the result of the
operation performed on the library. -

v List the object modules that the R command
replaces or adds. :

A>ARBK RV TOOLS.DBG NAIL.O WRENCH.O
Replacing:

nail.o

A>

The R command replaces the object module |
NAIL.O and adds the module WRENCH.O to the |:
library TOOLS.DBG. The V option lists the |:
object modules being replaced by the R
command. -

Q Quickly append the named mecdule(s) to the
end of the archive file specified in the
command 1line. The Q command does not -
perform any checking to determine if the
modules to be appended are already in the
archive file.

v You can specify the V option with this
command :

A>ARSBK QV RUSS.ARC WORK.O MAIL.O
Appending:

work.é

mail.o

The Q command appends the object modules
WORK.O and MAIL.O to the library RUSS.ARC.
The V option displays "Appending:" to
indicate the action of the Q command.

CP/M-8000 Programmer's Guide 7.1 Archive Utility

Table 7-2. (continued)

Command | Option Meaning

T Print a table of contents or a list of
specified modules in the library. If you do
not specify object modules in the command
line, the T command will print a table of
contents for the entire library. The V
option cannot be used with this command.
A>ARS8K T LIBF.C
ftoa.o
etoa.o
atof.o

"etof.o
A>

The T command prints a table of contents in
the library LIBF.C

X - . . . Extract a copy of one or more object
R modules from a library and write them to the
default disk. If no object modules are
specified in the command line, the X command
extracts a copy of each module in the

library. The library is not modified.

v List only those modules the X command
extracts from the library.

A>AR8K XV LIBF.C ETOF.O FTOA.Q
Extracting:
etof.o

ftoa.o

CP/M-8000 Programmer's Guide 7.1 Archive Utility

7.1.3 BErrors -

when ARS8K encounters an error during an operation, the operation is
not completed. The original library is not modified if the
‘operation would have modified the library. Thus, no modules in the
library are deleted, replaced, added, or extracted. Refer to
Appendix E for error messages output by ARS8K. -

7.2 DUMP Utility
The DUMP Utility (DUMP) displays the contents of a CP/M file in both
hexadecimal and ASCII notation. You can use DUMP to display any
CP/M file regardless of the format of its contents (binary data,
ASCII text, or executable file).
7.2.1 1Invoking DUMP
Invoke DUMP by entering a command in the following format.

DUMP [-shhhhhh] filenamel [>outfile]
Table 7-3 lists and describes the components of the DUMP command

line.

Table 7-3. DUMP Command Line Components

Component Meaning

-shhhhhh This option allows you to specify a
hexadecimal offset into the file to be
dumped. When you specify this option,
DUMP starts displaying the contents of the .
file from the byte-offset hhhhhh. By
default, DUMP starts dumping the file's
contents from the beginning of the file.

filename The name of the file you want to dump.

>outfile The greater than sign (>) followed by a
filename or logical device optionally
redirects DUMP output. You can enter any
valid CP/M file specification, or one of
the logical device names CON: (console) or
LST: (list device). If you do not specify
this optional parameter, DUMP sends its
output to the console.

CP/M-8000 Programmer's Guide 7.2 DUMP Utility

Note that DUMP will display the correct command format if you make
an error while entering the DUMP command line:
usage: dump [~-shhhhhh] file

DUMP displays its error messages at the console. See Appendix E for
error messages outout by DUMP, .

7.2.2 DUMP Output

DUMP sends its output to the console (or to a file or device, when
specified), 8 words per line, in the following format:

rrrr oo (ffffE€f): hhhh hhhh hhhh hhhh hhhh hhhh hhhh hhhh *aaaaaaaaaaaaaaaa*

Table 7-4. DUMP Output Components

Component i ‘ Meaning

rrrr The record number (CP/M records are 128
bytes) of the.current line of the display.

0o - The offset (in hex bytes) from the
beginning of the CP/M record.

EfFFEf - The offset (in hex bytes) from the
beginning of the file, ’

hhhh The contents of the file displayed in
' ' hexadecimal.

aaaaaaaa The contents of the file displayed as
: ASCII characters. If any character is not
representable in ASCII, it is displayed as

a period (.).

CP/M~-8000 Programmer's Guide 7.2 DUMP Utility

An example of DUMP output from a command file containing both binary
and ASCII data is shown below.

A>DUMP dump.Z8K

0000 00 (000000): 60la 0000 1b34 0000 0lld 0000 QOeSe 0000 *"....4....... S
0000 10 (000010): 0000 0000 0000 0000 0900 ffff 6034 4320 *........ aea.4C
0000 20 (000020): 5275 6e74 6964 6520 436f 7079 7269 6768 *Run-time Copytight*
0000 30 (000030): 7420 3139 3832 2062 7920 4469 6769 7461 *t 1984 by Digital®
0000 40 (000040): 6c20 5265 7365 6172 6368 2056 3031 2¢30 *1 Research V01.0*
0000 50 (000050): 3320 206f 0004 2268 0018 2649 d3e8 00lc *3 ©.."h..&ISh..*

e« +« + » (and so on) . . .

7.3 XDUMP .Utility
The XDUMP utility displays the header fields, segment information, .
initialized data, relocation information, and symbol table of an
object or command file. The format of CP/M-8000 command files is
described in Section 3. '
7.3.1 Invoking XDUMP
To invoke XDUMP, enter a command in the following format:

XDUMP -D -R -§ -X filename

Table 7-5 describes the components of the XDUMP command line.

Table 7-5. XDUMP Command Line Components

Component : Meaning

XDUMP displays the header fields, segment information,
initialized data, symbol table, and relocation
information of the specified object or command file.

-D displays the header fields, segment information, and
: initialized data portion of the specified object or
command file.

-R displays the header fields, segment information, and
relocation informatiorn of the specified object or
command file.

-8 displays the header fields, segment information, and
symbol table of the specified object or command file.

CP/M-8000 Programmer's Guide 7.3 XDUMP Utility

Table 7-5. (continued)

Component ' Meaning

-X ‘ displays only the header fields and segment
information of the specified command or object file.

filename indicates the name of the object or command file you
-want to dump. XDUMP will ignore any characters
entered beyond the filename component of the command
line. ‘

7.3.2 XDUMP Output

XDUMP sends its output to the console. XDUMP output is composed of
five sections: header fields, segment information, segment
contents, relocation information, and symbol table data.

The first row of XDUMP's output contains the fxve fields of the file
header (see Section 3.1):

magic = EEQ2 nseg = 4 init = 9412 reloc = 4224 symb = 9528

XDUMP displays its segment information output in the fOllOWlng
format: :

255 typ

10 sg[0]: sgno = = 3 len = 7996
14 sg[l}s-.sgno = 255 typ = 4 len = 44

18 sg[2]: sgno = 255 typ = 5 1len = 1372
1C sg{3]: sgno = 255 typ =1 len = 204

The first column contains the hexadecimal offset from the beginning
of the file and identifies the segment's logical number. The second
column, sgno =, is the segment's preassigned number. The third
column shows the segment's type value. The last column, len =, is a
byte count (decimal) of the segment's execution length. For bss
segments, len = is a byte count of the amount of space to be
reserved for uninitialized data generated by the program during
execution. (See Section 3.2.)

XDUMP also indicates the type of data contained in each segment:

.

segment 0 type is code

segment 1 type is constant pool
segment 2 type is initialized data
segment 3 type is bss

CP/M-8000 Programmer's Guide

XDUMP uses the following format to display segment contents:

00 od oh

20 0 0
30 16 10

Table 7-6 describes

7.3 XDUMP Utility

hhhh hhhh hhhh hhhh hhhh hhhh hhhh hhhh

eB8le e822 e800 7c00 140e 0b00 bffe 1402
0200 0100 7444 7455 2100 0114 bb4l 0020

the components of this output.

-

Table 7-6. XDUMP Segment Contents Output Components
Component Meaning

00 The offset in hexadecimal bytes from the
beginning of the file.

od The offset in decimal bytes from the
beginning of the segment.

oh The offset in hexadecimal bytes from the
beginning of the segment.

hhhh The contents of the file displayed in
hexadecimal words. Each line of output
represents 8 words.

XDUMP displays its relocation data output in the following format:

floc sgn flg loc bas

24E4 0
24EA 0
Where:

» floc is the hexadecimal offset from the beginning of the file.

® sgn is the ordinal number of the segment containing the item to

be relocated.

5 68 19
5 58 26

s flg is the type of relocation to be performed.

7-10

CP/M-8000 Programmer's Guide 7.3 XDUMP Utility

e loc is the location of the item to be relocated.

e bas is the index to an entry in the symbol table or the segment
by which to relocate.

See Section 3.3 for a description of command file relocation data.

The format of the symbol table data displayed by XDUMP is fully
described in Section 3.5, Printing the Symbol Table.

-

7.4 SIZEZ8K Utility

The SIZEZ8K utility (SIZEZ8K) diéplays the sizes of each program
segment within one or more command file and the total memory needed

by each file. CP/M-8000 command files usually have a filetype of
.Z8K or .REL. :) '

The size of a command file returned by SIZEZ8K and the size of a
command file returned by the STAT command are not equal. The file
size returned by SIZEZ8K includes the size of the text, data, and
bss program segments but does not include the size of the header,
symbol. table, and relocation data. For more details on the CP/M-
8000 command file format, refer to Section 3. For details on the
STAT command, refer to the CP/M-8000 User.'s Guide.

SIZEZ8K error messages are listed and described in Appendix E.

7.4.1 Invoking SIZEZ8K
Invoke SIZEZ8K by entering the followihg command line:

SIZEZ8K filename [filename2 filename3 ...] [>outfile]

Table 7-7. SIZEZ8K Command Line Components

Component . Meaning
filename The file specification of a command or
. - object file whose size you want to
determine.
.. filenamel Indicates one or more additional file
' filename2 specifications of files whose size you
want to determine. SIZEZ8K can process
multiple files, provided the command line
does not exceed 128 bytes.

CP/M-8000 Programmer's Guide : 7.4 SIZEZ8K Utility

Table 7-7. (continued)

" Component Meaning

>outfile Specifies the file to which SIZEZ8K sends
its output. If you do not include an
output file specification, SIZEZ8K sends
its output to the console. You can
specify a valid CP/M filename, or one of
the logical device names CON: (console),
or LST: (list device) for the SIZEZ8K
output file. g '

i

7.4.2 SIZEZ8K Output

SIZEZ8K produces one-output line for each input file you specify.
When a non-segmented input file is specified, SIZEZ8K reports if it
operates in split I and D mode. The output line is formatted as
shown below: '

filename: caize + dsize + bsize = tgize (hex) stack size = ssize

. .Table 7-8 describes the components of the SIZEZ8K output line.

Table 7-8. SIZEZS8K Output Components

Component] Meaning

csize The size, in decimal bytes, of the text
segment of the file.

dsize The size, in decimal bytes, of the data
segment of the file.

bsize The size, in decimal bytes, of the block
storage segment (bss) of the file.

tsize The total size, in decimal bytes, of the
memory image occupied by the file.
tsize is the sum of csize, dsize, and

bsize.

hex The same value as tsize, expressed in
hexadecimal bytes.

ssize The size of the stack required by the
file.

For an explanation of the program segments of a command file, see
Section 3, Command File Format.

7-12

CP/M-8000 Programmer's Guide 7.4 SIZEZ8K Utility

7.4.3 SIZEZ8S8K Examples

This

l.

section contains three examples of SIZEZ8K command lines.

The SIZEZ8K command line specified in the following example
returns the size of one command file and its program segments.

A>SIZEZ8K stat.z8k

STAT.Z8K: 7156 + 1358 + 60 = 8574 (217E) stack size = 0
Split I/D program

The program file STAT.Z8K contains a 7156—byte (decimal) text
segment, a l1358-byte (decimal) data segment, and a 60-byte
(decimal) bss. The total size of the program file is 8574

-decimal bytes, which is the same as 217E hexadecimal bytes.

The header in the STAT.Z8K file does not specify a minimum
stack size. However, when CP/M-8000 loads a command file, it
always reserves at least 256 bytes for the user stack. CP/M-
8000 also creates a 256-~byte base page. Therefore, to run
STAT.Z8K, the minimum size of the TPA cannot be less than 9086
decimal bytes (8574 bytes for the program, 256 bytes for the
stack, and 256 bytes for the base page). SIZEZ8K also reports
that STAT.Z28K, a nonsegmented program, operates two segments,
one for program 1nstructlons and one for data (called split I
and D spaces).

The following SIZEZ8K command llne returns the 51ze of two
program files and their program segments.'

A>SIZEZ8K sizez8k.z8k dump.z8k

sizez8k.z8k: 7010 + 388 + 3706 = 11104 (2B60) stack size = 0
dump.z8k: 6964 + 286 + 3678 = 10928 (2ABO) stack size = 0

When you specify multiple. file spec1flcatlons in a SIZEZ8K
command line, use a space to delimit each file specification.

SIZEZ8K will return an error message in response to this last
example because the specified file is not a command or object
file.

A>SIZEZ8K clink.sub

Not x.out format: clink.sub

7-13

CP/M-8000 Programmer's Guide

CLINK.SUB is an ASCII file, not a command file.
SIZEZ8K must be command or object files.

for the format of CP/M-8000 command files.

7.5 XCON Utility

The XCON utility converts ASZ8K relocatable object file output into
the x.out format of CP/M-8000 command files.
executable if they contain no unresolved references.
for a description of the CP/M-8000 command file format.
AS7Z8K will automatically invoke XCON when the assembler's -o option
is included in the command line.

cescription of the ASZ8K -o option.

If XCON encounters any Z800l-only relocation entries during a
conversion operation, it marks its output as a segmented file.

XCON error messages are described in Appendix E.

7.5.1 Invoking XCON

To invoke XCON, enter a command line in the following format:

XCON [~o outfile] [-s] file.obj

Table 7-9.describes the components of XCON command line.

Table 7-9. XCON Command Line Components

Component

Meaning

~o outfile

file.obj

The -0 outfile option directs XCON output
to a specific file. You can specify any
valid CP/M-8000 file specification. Note
that CP/M-8000 uses a filetype of Z8K to
recognize executable command files. XCON
uses x.out as the default file
specification when this option is not
included in the command line.

The -s option forcesy XCON to mark its
output file as segmented regardless of the
format of the input file.

This is the specification of the object
file you want XCON to convert to CP/M-
8000's x.out command file format.

7-14

7.4 SIZEZ8K Utility

Files input to
Refer to Section 3

XCON output files are
See Section 3
Note that

Refer to Section 5.2 for a

CP/M-8000 Programmer's Guide 7 7.5 XCON Utility

7.5.2 XCON Command Line Example

The following example of the XCON command line shows the ASZ8K
object file named GENINT.OBJ being converted to the x.out format.

A>XCON -o intrpt.z8k genint.obj’
This command line causes XCON to convert GENINT.OBJ into the x.out

command file format. The -o option spec1f1es that XCON output be
placed in a file named INTRPT.ZBK.

End of Section 7

Section 8
DDT-Z8K |

8.1 DDT-Z8K Operation

DDT-Z8K allows you to test and debug programs interactively in the
CP/M-8000 environment. The description of DDT-Z8K operation in this
section assumes you are familiar with the Z8000 Microprocessor, the
assembler (ASZ8K) and the CP/M-8000 operating system.

Appendix E describes the error messages returned by DDT-Z8K.

8.1.1 Invoking DDT-Z8K

Invoke DDT-Z8K by entering one of the foliowing commands:
DDT

DDT filename

The first command loads and executes DDT-Z8K. After displaying its
sign-on message and hyphen prompt character (-), DDT-Z8K is ready to
accept commands. The second command invokes DDT-Z8K and loads the
program specified by filename for execution under the debugger.

8.1.2 DDT-Z8K Command Conventions

When DDT-Z8K is ready to accept a command, it prompts you with a
hyphen (-). In response, you can type a command line of up to 64
characters. A command line must be terminated with a RETURN. Use
the standard CP/M line-editing controls to correct typing errors
while entering a command line. Table 4-16 summarizes the standard
CP/M line-editing controls. DDT-Z8K does not process the command
line until you enter a RETURN.

The first nonblank character of each command line determines the
command action. Table 8-1 summarizes DDT-Z8K commands. Section 8.2
describes the 'DDT-Z8K commands in detail.

CP/M-8000 Programmer's Guide 8.1 DDT-Z8K Operation

Table 8-1. DDT-Z8K Coinand Summary

Command . Action

assemble opcodes
set or display breakpoints
clear breakpoints

‘display memory in hexadecimal and ASCII
load program file for execution
fill memory block file with a constant
begin execution with optional breakpoints
sum/difference sum/difference
set up file control block and command tail
list memory using Z8000 mnemonics
move memory block
port data read or write
quit or exit DDT
read file image into TPA
set memory to new values
trace program execution
untrace program monitoring
show memory layout of disk file read
write contents of memory block to disk
examine or modify CPU state
set or clear flag status and control bits

" calculate hexadecimal expressions; display
number in decimal, hex and octal:; display
addresses/values for A, B, D, I, L, and
$$ commands

A

MHKXE<LCHAWAODTIMHTINORMEHNUOWY

9 assign symbol values
? display a summary of DDT-Z8K commands
RETURN repeat previous command
One or more arguments can follow most command characters. These

arguments may be hexadecimal values, filenames, or other
information, depending on the command. You can separate arguments
for any command with a comma or a space. Some commands can operate
on byte, word, or longword data. The letter W for word or L for
longword must be appended to the command character for commands that
operate on multiple data lengths. You can enter a RETURN to repeat
the previous command. Section 8.2 describes the command arguments
in detail for each command.

8.1.3 Specifying Addresses

Most DDT-Z8K commands accept one or more addresses as operands. All
addresses are entered as hexadecimal numbers of up to eight
hexadecimal digits. DDT-Z8K will right justify and zero pad from
the left any address you enter with less than eight hexadecimal
digits.

CP/M-8000 Programmer 's Guide " 8.1 DDT-Z8K Operation

8.1.4 Terminating DDT-Z8K

Terminate DDT-28K by typing a CTRL-C (°C) or the Q command in
response to the hyphen prompt. DDT will return control to the CCP.

8.1.5 DDT-Z8K Operation with Interrupts

DDT-Z8K operates with interrupts enabled or disabled, and preserves
the interrupt state of the. program being executed under DDT-Z8K.
When DDT-Z8K has control of the CPU, either when it is initially
invoked, or when it regains control from the program being tested,
the condition of the interrupt mask is the same as it was when DDT-
Z8K was invoked, except for a few critical regions where interrupts
are disabled. While the program being tested has control of the
CPU, the user's CPU state, which can be displayed with the X
command, determines the state of the interrupt mask.

Note that DDT-Z8K uses the Vectored Interrupt and Pfivileged
Instruction Trap exceptions. Therefore, programs debugged under
test should not use these exceptions.

8.2 DDT-Z8K Commands

This section defines DDT-Z8K commands and their arguments. DDT-Z8K
commands give you control of program execution and allow you to
display and modify system memory and the CPU state.

8.2.1 The A (Assemble) Command

The A command causes DDT-Z8K to assemble the opcodes you enter from
the terminal. You enter a single instruction opcode mnemonic and

operands as arguments of the A command. You may also enter the A
command without opcode arguments. This will cause DDT-Z8K to query
the terminal for instruction opcodes. DDT-Z8K will continue to

query the terminal for instruction opcodes until you enter a command
line consisting of only a carriage return.

The forms of the A command are

‘A [optional address]
A [optional address],[instruction opcode mnemonic], [operand],...

CP/M-8000 Programmer's Guide 8.2 DDT-28K Commands

If you enter the A command without specifying the address field,
DDT-Z8K will assemble instructions at the current location of the A
command pointer. If you enter the A command without specifying the
instruction opcode mnemonic and operands, DDT-Z8K will query the
terminal for instructions to assemble. DDT-Z8K will stop querying
the terminal for instructions when you €nter a carriage return alone
in response to a query.

8.2.2 The B (Breakpoint) Command

The B command lets you set and display breakpoints in the program
you are debugging. The forms of the B command are

B
B{address 1], [address 2],...[address 10]

The first form of the B command displays all set breakpoints. The

second form sets breakpoints at up to ten addresses. Use the C
command to clear breakpoints.

8.2.3 The C (Clear) Command

The C command allows you to clear breakpoints in the program you are
debugging with DDT-28K. The forms of the C command are

c .)
C(address 1], [address 2],...[address 10]

The first form of the C command clears all set breakpoints. The
second form clears breakpoints at up to ten addresses. Use the B
command to set breakpoints.

8.2.4 The D (Display) Command

The D command displays the contents of memory as 8-bit, 16-bit, or
32-bit hexadecimal values and in ASCII code. The forms of the
Display command are

D

Ds
Ds,f
DW
DWs
DWs, £
DL
DLS
LS, £

where s is the starting address, and f is the last address that DDT-
Z8K displays.

8-4

CP/M-8000 Programmer's Guide 8.2 DDT-Z28K Commands

Memory is displayed on one or more lines. Each line shows the
values of up to 16 memory locations. For the first three forms, the
display line appears as follows:

aaaaaaaa bb bb ... bb cc ... cc

where aaaaaaaa is the address of the data being displayed, bb is the
contents of the memory locations in hexadecimal, and cc represents
the contents of memory in ASCII. Any nongraphic ASCII characters
are represented by periods.

In response to the Ds form of the D command, shown above, DDT-Z8K
displays 12 lines that start from the current address. Form Ds,f
displays the memory block between locations s and £. Forms DW, DWs,
and DWs,f are identical to D, Ds, and Ds,f except that the contents
of memory are displayed as 16-bit values, as shown below:

adaaaaaa WwWwWWwWw WWwWwW cse WWWW | CCCC cee ccC

Forms DL, DLs, and DLs,f are identical to D, Ds, and Ds,f except
that the contents of memory are displayed as 32-bit or longword
values, as shown below:

aaaaaaaa 11111111 11111111 ... 11111111 cceccecece ...

You can cancel the D command display at any time by typing any
character at the console. -

8.2.5 The E (Load for Execution) Command

The E command loads a file in memory so that a subsequent G, T or U
command can begin program execution. The syntax for the E command
is

Efile
file represents the file specification of the file to be loaded.

An E command reuses memory used by any previous E command. This
means that only one file at a time can be loaded for execytion.

When the load is complete, DDT-Z8K displays the file's magic number,
the starting and ending addresses of each segment in the file, and
the command tail. Use the V command to display this information
later.

CP/M-8000 Programmer's Guide 8.2 DDT-28K Commands

If the file does not exist or cannot be successfully lcaded in the
available memory, DDT-Z8K displays the following error message:

error #80° inload: can't open inload file .

Appendix E describes the other error messages returned by DDT-Z8K.

8.2.6 The F (Fill) Command

The F command £ills an area of memory with a byte, word, or longword
constant. The forms of this command are

Fs,f,b
FWs,£f,w
FLs,f,1

s is the starting address of the block to be filled, and £ is the
address of the final byte of the block within the segment specified
in s. ‘

In response to the first form, DDT-Z8K stores the 8-bit value b in
locations s through £. 1In the second form, the 1l6-bit value w is
stored in locations s through f in standard form--the high 8 bits
are first, followed by the low 8 bits. In the third form, the 32~
bit wvalue 1 is stored in locations s through £, with the most
significant byte first.

If you do not supply all three arguments (s, £, and b, w, or 1) in
the Fill command line, DDT-Z8K displays the following error message:

error $63 dbg: need 3 args

DDT-Z8K displays the error message below when the value you specify
for s is greater than or equal to the value you specify for £.

error #66 dbg: argl >= arg2

8.2.7 The G (Go) Command

The G command transfers control to the program being tested, and
optionally sets one to ten breakpoints. The Go command lines are

G
G,bl,...blo0
Gs
Gs,bl,...bl0

s 1s the address where you want the loaded program to begin
executing, and bl through bl0 are the addresses of the breakpoints
you want to set.

8-6

CP/M-8000 Programmer's Guide 8.2 DDT-Z8K Commands

In the first two forms of the G command, no starting address is
specified. The program starts executing at the address specified by
the program counter (PC). The first form transfers control to the
program without setting any breakpoints. The second - form sets
breakpoints before passing control to the program. The next two
forms are analogous to the first two, except that the PC is first
set to s. . :

Once control has been transferred to the program under test, that
program executes in real time until a breakpoint is encountered.
DDT-Z8K then regains control, clears all breakpoints, and displays
the CPU state in the same form as the X command. When a breakpoint
returns control to DDT-Z8K, the instruction at the breakpoint
address has not yet been executed. To set a breakpoint at the same
address, you must first specify a T or U command.

8.2.8 The H (Hexadecimal Math) Command

The H command computes the sum and difference of two 32-bit values.
The form of the H command is

Ha,b

a and b are the values whose sum and difference are computed. DDT-
28K displays the sum (ssssssss) and the difference (dddddddd)
truncated to 16 bits on the next line:

ssssssss dddddddd -

8.2.9 The I (Input Command Tail) Command

The I command prepares a file control block (FCB) and command tail
buffer in DDT-Z8K's base page, and copies the information in the
base page of the last file loaded with the E command. The form of
this command is

Icommand tail

command tail is a character string, which usually contains one or
more filenames. i

The first filename is parsed into the default file control block at
005CH. The optional second filename, if specified, is parsed into
the second default file control block beginning at OOQ38H. The
characters in the command tail are .also copied to the default
command buffer at 0080H. The length of the command tail is stored
at 0O80H, followed by the character string terminated with a binary
zero.

If a file has been loaded with the E command, DDT-Z8K copies the

file control block and command buffer from the base page of DDT-Z8K
to the base page of the loaded program.

8-7

CP/M-8000 Programmer's Guide 8.2 DDT-Z8K Commands

8.2.10 The L (List) Command

The L command lists the contents of memory in assembly language.
The forms of the List command are

L
Ls
Ls, £

The starting address is indicated by s, and f is the last address in
the list. _ :

The first form lists 12 lines of disassembled machine code, starting
from the current address. The second form sets the list address to
s and then lists 12 lines of code. The last form lists disassembled
code from s through f. In all three cases, the list address is set
to the next unlisted location in preparation for a subsequent L
command. When DDT-Z8K regains control from a program being tested
(see G, T and U commands), the list address is set to the address in
the program counter (PC).

You can cancel long displays by typing any key during the list
process. To halt the display temporarily, enter a Ctrl-S (°S).
Type Ctrl-Q to restart the display after Ctrl-S has halted it.

In general, the syntax of the assembly language statements produced
by the L command is standard Z8000 assembly language, as described
in the 28000 CPU User's Reference Manual, Prentice-Hall, 1982.
Three minor exceptions are ’ :

e DDT-Z8K prints all numeric values in hexadecimal.
® DDT-ZBK uses lowercase mnemonics.
e DDT-Z8K assumes word operations unless a byte or. longword
specification is explicitly stated.
8.2.11 The M (Move) Command

The M command moves a block of data wvalues from one area of memory
to another. The form of the Move command is

Ms, f,d

s is the starting address of the block to be moved, f is the address
of the final byte to be moved, and 4 is the address of the first
byte of the area to receive the data.

Note that if the value represented by 4 is between s and f, some of
the block being moved will be overwritten before it is moved,
because data is transferred starting from location s.

CP/M-8000 Programmer's Guide 8.2 DDT-Z8K Commands

8.2.12 The P (Port Read/Write) Command

The P command allows you to read data from or write data to an I/0
port. The P command has four forms: .

P port#

PW port#

P port #[,byte 1][,byte 2]...
PW port #[,word 1]([,word 2]...

The first form of the P command causes DDT-Z8K to read and display
the first eight bits from the port indicated by port#. The second
form reads and displays the word at the indicated port. The third
form of the P command writes the argument bytes to the specified
port. The fourth form writes the argument words to the specified
port. :

Table 8-2 shows the Z8000 port numbers and their assignments for the
Olivetti.. M20. ‘

Table 8-2. 28000 Port Assignments for the Olivetti M20

Port Number | Assignment
81 o Qutput to Parallel Port
83 " Input from Parallel Port
85 Parallel Port I/O Bits
87 Parallel Port Control Byte
Cl Serial Port I/0
C3 Serial Port Status/Control

8;2.13 The: R (Read) Command

The R command reads a file to a contiguous block in memory. 1Its
format is '

Rfile([,offset]

file is the name and filetype of the file to be read.

CP/M-8000 Programmer's Guide 8.2 DDT-Z8K Commands

DDT-Z8K reads the file in memory and displays the starting and next
available addresses of the block of memory occupied by the file. A
Value (V) command can redisplay the information at a later time.
The default breakpoint and list pointers (for subsequent B and L
commands) are set to the start of the file's code segment.

You can include an optional offset in the R command line. .The
offset must be specified in hexadecimal; DDT-Z8K loads the file to
be read into memory starting at the location indicated by the
offset. When you include an offset in the R command line, DDT-Z8K
displays the address, the file belng read, and the next addressable
location in memory:

-rddt.z8k, 002000000
locading memory at 00A000000 from 'ddt.z8k':
next address= 00A00002D .

8.2.14 The S (Set) Command

The S command allows you to examine and change the contents of
bytes, words, or 1ongwords in memory. The forms of the Set cammand
are

Ss -

SWs

SLs

s represents the address in memory to be examined and changed.

DDT-Z8K displays the memory address and its current contents on the
following line. In response to the S command, DDT-Z8K displays the
address specified in the command line and the contents of memory at
that address in byte, word, or longword format. The format used to
display the contents of the specified memory address is related to
the form of the § command you enter.

You can alter the memory location displayed or leave it unchanged.
If you enter a valid hexadecimal value, DDT-Z8K uses that value to
replace the contents of the byte, word, or longword at the memory
address previously specified. If you do not enter a value, DDT-Z8K
leaves the contents of memory unaffected and displays the contents
of the next address. In either case, DDT-Z8K continues to display
successive memory addresses and values until you enter a period or
an invalid value.

8-10

CP/M-8000 Programmer's Guide 8.2 DDT-Z8K Commands

8.2.15' The T (Trace) Command

The T command traces program execution for as many as OFFFFFFFFH
program steps. The Trace command has two forms:

T
Tn

n indicates the number of instructions to execute before returning
control .to the console.

After DDT-Z8K traces each instruction, it displays the current CPU
state and the disassembled instruction in the same form as the X
command display.

DDT-Z8K transfers control to the program under test at the address
indicated in the PC. If n is not specified, one instruction is
executed. Otherwise, DDT-Z8K executes n instructions and displays
the CPU state before each step. You can discontinue a long trace
before all the steps have been executed by entering any character
from the console.

After DDT-Z8K executes a Trace (T) command, it sets the list address
used in the L command to the address of the next 1nstruct10n to be
executed.

Note that DDT-Z8K does not trace through a BDOS interrupt
instruction, since DDT-Z8K itself makes BDOS calls and the BDOS is
not reentrant. Instead, the entire sequence of instructions from
the BDOS interrupt through the return from BDOS is treated as one
traced instruction.

8.2.16 The U (Untrace) Connahd

The operation of the U command is identical to the Trace (T) command
except that the CPU state is displayed only after the last
instruction is executed, rather than after every step. The U
command has two forms:

U
Un

Use n to specify the number of instructions to be executed before
DDT-Z8K returns control to the console. You can discontinue the
Untrace (U) command before all the steps have been executed by
entering any character from the console.

R

8-11

CpP/M-8000 Programmer's Guide 8.2 DDT-Z8K Commands

8.2.17 The V (Value) Command

The V command displays information about the last file loaded under
DDT-Z28K. The form of the V command is

v

The V command's display, shown below, includes the following
information for the last file loaded under DDT-Z8K: the file's
magic number, the starting address and length of each of the file's
segments, the length of the free segment, and the command tail.

magic number=EEQ3 ,

code segment start address,length= 0A000000,84B4
data segment start address,length= 0A0084B4,4122
bss segment start address,length= 0A00C5D6,1770
free segment length= 000020BA

command tail= *'

See Section 3.1 for magic number values and a description of CP/M-
8000's command file format.

If you have not already loaded a file by gpecifying the file's name
when you invoked DDT-Z8K or by entering the E or the R command, the
V command displays the following ertor message: o

error #90 T " file not specified

8.2.18 The W (Write) Command

The W command writes the contents of a contiguous block of memory to:
disk. The Write command has two forms:

Wfilename
Wfilename,s,f

filename is the file specification of the disk file that you want to
receive the data. The letters s and f are the first and last
addresses of the block to be written. If £ does not specify the
last address, DDT-2%28K uses the same value that was used for s.

If the first form is used, DDT-2Z8K assumes the values for s and £
from the last file read with an R command. This form is useful for
writing out files after you have installed patches, assuming the
overall length of the file is unchanged. If a file was not
previously read by an R command, DDT-28K displays the following
error message in response to the first form of the W command:

error $90 " file not specified

If the file specified in the W command already exists on disk, DDT-
28K deletes the existing file before it writes the new file.

8-12

CP/M~-8000 Programmer's Guide 8.2 DDT-Z8K Commands

8.2.19 ‘The X (Examine CPU State) Command

The X command displays the entire state of the CPU, including the
identifier field of program status area, flag and control word,
program counter segment, program counter, all eight data registers,
all eight address registers, the disassembled instruction at the
memory address currently in the program counter, and the processor
flag bits. The X command has two forms:

X
Xr

Use r to specify one of the deneral-purpose registers RO - RF.

The first form of the X command causes DDT-Z8K to display the CPU
state as follows:

rOmXXXX rl=xxXX C2=XXXX r3I=XXXX C4=2XXXX [5=XXXX [6=2XXXX L 7=XXXX
r8mXXXX rI=XXXX CAMXXAX CDHFAXXX CC=XXXX [d=XXXX CEIXXXX rf=xxxx
id=xxxx fOWSXXXX DCS®XXXX PCE=XXXX L,xxxxxxxx fedcba9876543210
XAXXXXAK: XXXX ' opcode XXXXX

The first two lines DDT-2Z8K displays in response to the first form
of the X command are the contents of the .16 general purpose
registers. The third line displays, from left to right: the
identifier field of the program status area (id); the flag and
control word (fcw); the program counter segment (pcs); the program
counter address (pc); the length, segment and offset of the current
instruction; and the individual flags. The fourth line displays the
address of the current instruction and the current instruction in
hexadecimal, the opcode, and the operand.

The second form, Xr, allows you to display and change the value in
the registers of the program being tested. The r denotes the
register. DDT-2Z8K responds by displaying the current contents of
the register, leaving the cursor on that line. If you type a
RETURN, the value is not changed. If you type a new valid value and
"a RETURN, the register is changed to the new value. You can specify
the: high or low order byte of a register by entering h or 1
respectively. For example, the command: '

-Xrh2

will cause DDT-Z8K to display the high order byte of register 2. If
you type a new value and a RETURN, DDT-Z8K changes the high order
byte of register 2 and then displays the low order byte of register
2: -

-Xrh2
rh2=00 01
rl12=00 02
rh3=00

CP/M-8000 Programmer's Guide 8.2 DDT-2Z8K Commands

The X command continues to display the high and low order bytes of
the registers until you do not type a new value and a RETURN. When
you type only a RETURN, the X command displays the entire state of
the CPU including any new values you have specified.

8.2.20 The Y (Set/Clear FCW Bits) Command .
The Y command allows you to set or clear the status flag and control
bits of the FCW. The Y command has two forms:

Y
Ybit

The first form of the Y command causes DDT-Z8K to display the
current hexadecimal value of the Flag and Control Word (FCW) and
indicate which bits are set: '

-Y
1800: ceesVNesseravwssse

The second form of the Y command enables you to specify which FCW
bit is to be set or cleared. Figure 8-1 shows the format of the
" PCW. Note that FCW bits 0, 1, 8, 9, and F are not used with the
current implementation of DDT-28K. Table 8-3 lists the assignment
of each flag status and control bit.

F E D C B A 9 8 7 6 5 4 3 2 1 0

0 X e vin 0 0 0 c z | s P d h 0 0

High-order Byte ' Low-Order Byte

Figure 8-1. PFlag and Control Word

8-14

CP/M-8000 Programmer's Guide 8.2 DDT-Z8K Commands

Table 8-3. Status Flag and,COntrol Bits.

Word Status

Bit Flag Assignment

2 "h Half Carry (H)

3 d Decimal-Adjust (D)

4 P Parity/Overflow (P/V)

5 s Sign (S)

6 z Zero (2)

7 c Carry (C)

Control
Bit

B n Non-Vectored Interrupt Enable (NVIE)
o v Vectored Interrupt Enabled (VIE)

D e Extended Processor Architecture Mode (EPA)
E x System/Normal Mode (S/N)

'Note that you can also use the X command to set or clear the flag
status and control bits when you specify the FCW register. For
example, the following X command will clear all flag status and
control bits:

XFCW
fcw=1800 0000

In the example above, DDT-Z8K first displays the current value of
the FCW in response to the X command. "fcw=1800" indicates that the
v and n control bits are set. All other flag status and control
bits are cleared. 0000 is specified for the new value of the FCW;
this value causes causes DDT-Z8K to clear all FCW bits.

8.2.21 The $ (Calculate) Command

The $ command allows you to calculate the value of expressions and
display the pointers associated with the A, B, D, I, L and S
commands. This command also displays the previous value calculated
or previous symbol assignment. The forms of the § command are

$

$ <arithmetic expression>

The £first form of the $ command causes DDT-Z8K to display the
pointers associated with the A, B, D, I, L, S, and $$ commands, as
well as the value associated with the previous value calculated with
the § command. The command pointers tell you the address where DDT-
Z8K would perform the pointers' associated commands were you to
invoke a command without specifying an address field. DDT-28K
displays these pointers and the value last calculated with the §$
command as hexadecimal numbers.

8-15

CP/M-8000 Programmer's Guide 8.2 DDT-Z8K Commands

The argument to the $§ command may be any valid arithmetic expression
consisting of numbers of up to eight hexadecimal digits and
concatenated with the "+", "=-", "*" and "/" operators and
parentheses. Use parentheses to specify the evaluation precedence.
DDT-28K displays the results of the calculation in decimal,
hexadecimal, and octal forms. ™

8.2.22 The $$ (Assign Symbol Value) Command

The $$ command allows you to assign values to symbol names. You can
use the symbols you create with the $$ command as operands in many
of the other DDT-~28K command as described below. The form of the $$
command is ' ‘

$Ssymbol=value

Symbols assigned with the $$ can be up to 11 alphabetical characters
in length. Values can be any valid hex address. For example, the

following $$ command assigns the symbol name "first" to a value of
0A000000:

$$£irst=0A000000
167772160 0A000000 $1200000000

In response, the $$ command displays the decimal, hex, and octal
forms of the value assigned to the symbol name "first." If you
enter a subsequent $§ command without specifying a value to be
calculated, DDT-28K includes the symbols you have assigned with the
$$ command in its list of pointers:

-$

$ 00A000000
$a 000000000
$b 00A000000
$d 000000000
$i 000000000
$1 00A000000
$s 000000000

first 00A000000

8-16

CP/M-8000 Programmer's Guide 8.2 DDT-Z8K Commands

The symbols you assign with $$ command can be used in place of the
operators for the A, B, b, F, G, L, M, S, T, and U command lines.
To use a previously defined symbol with any of those commands,
specify the symbol by using a $ prefix. Two examples of DDT-Z8k
command lines that use symbols assigned through the $$ command are
shown below. :

-D$first

—G$first,$second

End of Section 8

8-17

Appendix A
Summary of BIOS Functions

Table A-1 lists the BIOS functions supported by'CP/M-BOOO. For more
details on these functions, refer to the CP/M-8000 System Guide. .

Table A-l. Summary of BIOS Functions

Function F# Description
Init 0 Called for Cold Boot
'Warm Boot 1 Called for Warm Start
Const 2 Check for Console Cﬁaracter
: Ready
Conin 3 Read Console Character In
Conout 4 Write Console Character Out
List 5 Write Listing Character Out
Auxiliary Output é Write Character to Auxiliary
Output Device
Auxiliary Idput 7 Read from Auxiliary Input
Device
Hoﬁe 8 Move to Track 00
Seldsk 9 Select Disk Drive
Settrk 10 Set Track Number
| Setsec 11 Set Sector Number
Setéma 12 Set DMA Offset Address
Read ' 13 Read Selected Sector
Wri£e 14 Write Selected Sector
‘ﬁistst 15 Return List Status
Sectran 16 Sector Translate
Get Memory Region
Table Address 18 Address of Memory Region
Table

A-1

CP/M-8000 Programmer's Guide A Summary BIOS Functions

Table A-l. (continued)

Function F§ Description
Get I/0 Byte 19 Get I/0 Mapping Byte
Set I/O Byte 20 Set I/0 Mapping Byte
Flush Buffers 21 Writes Modified Buffers
Set Excaption Vector 22 Sets Exception Vector

-

Note that CP/M-8000 memory management and context switching
functions (_map_addr, _mem_cpy-and xfer) are available through BIOS
SC #1. Refer to Section 4.2 of the CP/M-8000 System Guide for a
description of BIOS SC #1l.

End of Appendix A

Appendix B
Transient Program Load Example

This appendix contains an example C langauge program that
illustrates how a transient program loads another program with the
BDOS Program Load Function (59), but without the CCP.

Listing B-1. CP/M-8000 BDOS Program Loader
/ﬁ'**ﬂ*ﬁt’*t**#*****i***'***ﬁ*****’*******ti**t**ﬁ**’it*i*i******

CP/M-8000 BDOS Program Loader
Copyright 1984, Digital Research Inc.

*

*

»

*

. .

* This function implements the BDOS Program Load

* Function (59). The single parameter passed is a

* pointer to a space containing a partially filled

* Load Parameter Block (LPB). pgmld must £ill in the
* base page address and the atarting user stack pointer.
* In addition, the %8000 implementation will set a

* loader flag if the program being loaded requires

: separate 1/D space or sagmentation. ‘

*
*
»*
*
»*
»
»

NOTE: Unlike the usual CP/M loader, the %8000 loader
returns the actual starting address of the code segment
(starting PC) in the LPB, clobbering the program load
address. This is because the sagment containing the
code may not be known until load time. '

L2 2 5 B 2R BN NE NN NE E N N N AR 2 2R 2R

»

ﬁi*ﬁf.*#*****i#*********’*#***t*"ii’***t*ii*i*iﬁ*ttf******/

tinclude "cpmstdio.h" /* Standard declarations for BDOS, BIOS */
#include "bdosgsdef.n” /* Type and structure declarations for BDOS */
$include "biosdef.h” /* Declarations of BIOS functions */

" $#include "basepage.h" /* Base page structure */
#include "xout.h" /* structure of x.out (".Z8[KS] file") */
$define SPLIT 0x4000 " /* Separate I/D flag for LPB . */
$define SEG 0x2000 /* Segmented code flag for TPA */
$define NSEG 16 /* Maximum number of x.out segments */
#define SEGLEN 0x10000 /* Length of a 28000 segment */

/* Address of basepage (near top of TPA)*/
$define BPLEN (sizeof (struct b_page))

tdefine DEFSTACK 0x100 /* Default stack length */
$deflne NREGIONS 2 /* Number of reqions in the MRT */

/* return values */

$define GOOD 0 /* good return value */
$define BADHDR 1 /* bad header */
$define NOMEM 2 /* not enough memory */
f#define READERR 3 /* read error */

CP/M-8000 Programmer's Guide

#define MYDATA O
$define TPAPROG 5
$define TPADATA 4

$define TRUE_TPAPROG
struct l?b

XADDR

XADDR

XADDR

XADDR

XADDR

short
} mylpb;

struct ustack
short

short

}s
gstruct sstack
XADDR

XADDR

struct m_rt {
: Tnt count;
struct
XADDR
XADDR

/t
/*
/*
/*
/t
*
(TPAPROG |

/*
fcbaddr;/*

B Transient Program Load Exan

Listing B-~1l. (continued)

Argument for map_adr

Argument for map_adr

Argument for map_adr

Get actual code segment (as opposed
to segment where it can be accessed
as data) -

0x100)

Load Parameter Block

Address of fcb of opened file

pgldaddr;/* Low address of prog load area

High address of prog load area, +1
Address of basepage; return value

stackptr;/* Stack ptr of user; return value

pgtop; /*
bpaddr; /*
flags; /*
/i
two; /*
/i

bpoffset;/* Pointer to basepage

/-t
stwo; /*

/'!
sbpadr; /*

/t

tpalow;
tpalen;

} m_reg [NREGIONS];

b

$4define SPREG 1
#define NSPREG O
$define SDREG 2
$#define NSDREG O

$#define READ 20
#define SETDMA 26
extern UWORD bdos () :

static XADDR textloc,
dataloc,
bssloc,
stkloc:

static XADDR textsiz,
datasiz,
bsssiz,
stksiz;

/*

Loader control flags; return value

User's initial stack - nonségmén:ed

"Return address” (actually address
of warm boot call in user's startup)

User's initial stack - segmented

*"Return address™ (actually address
of warm boot call in user's startup)
Pointer to basepage

The Memory Region Table

The MRT reqion for split I/D programs
The MRT region for non-split programs
The MRT region for split I/D data
The MRT region’ for non-split data

Read Sequential BDOS call

Set DMA Address BDOS call

To do 1/0 into myself (note this
function does not map 2nd param -
see mbdos macro below)

Physical locations of pgm sections.

Sizes of the various sections.

YRR

*

% 4 %

LR LT

t/
*/
*’ﬂ

* A
I4

*)
#
*y

*/

CP/M~8000 Programmer's Guide B Transient Program Load Examples

Listing B~1l. (continued)

static UWORD split, /* Tells if split I/D or not */

seg; /* Tells if segmented or not */
static char *gp; /* Buffer pointer for char input */
static char *mydma; /* Local address of read buffer */
struct x_hdrl x_hdr; /* Object File Header structure */
struct x_sg %x_sg [NSEG] ; /* Segment Header structure */
static XADDR .- segsiz(NSEG]; /* Segment lengths ‘ */
static XADDR seqglim {NSEG]; /* Segment length limits */
static XADDR segloc [NSEG] ; /* Segment base physical addresses */
static short textseq, /* Logical seg # of various segments */

dataseq,

bssseqg,

stkseg;

/*i*i*i*ii*i*t*t*'***'i**w*t*ﬁ***/

/* . */
/* Start of pgmld function - */
* - »
ﬁi*itt**itﬁi*'t*ti**i#**i**i*ii**/

UWORD pgmld(xlpbp}) /* Load a program from LPB info */

XADDR xlpbp:;

{ register int i,j; - /* Temporary counters etc. */
struct m_rt = *mrp; /* Pointer to a MRT structure */
char . mybuthECLEN}; /* Local buffer for file reading*/

‘ : ' /* get local LPB copy */
cpy_in(xlpbp, &mylpb, (long) sizeof mylpb); .

mydma = mybuf; /* Initialize addr for local DMA*/
gp = &mybuf [SECLEN]; /* Point beyond end of buffer */

mrp = (struct m_rt *) bgetseg():/* Get address of memory region */
/* table (note segment # lost)*/

if (readhdr () == EOF) /; Get x.out file header */

return (READERR); /* Read error on header */

s switch (x_hdr.x_magic) /* Is this acceptable x.out file*/
case X_NXN MAGIC: /* Non-seg, combined I & D */

Split = FALSE;
seg = FALSE;
break;

case X_NXI_MAGIC: /* Non-seg, separate I & D */
split = SPLIT;
seqg = FALSE;

break;
h case X_SX_MAGIC: /* Segmented - must be combined */
split = FALSE;
seqg = SEG;
break:
default:
return (BADHDR); /* Sorry, can't load it!

*/

CP/M~-8000 Programmer's Guide B Transient Program Load Examples

Listing B-l. (continued)

/* Set the user space segment number from the low address in the */
/* appropriate entry of the MRT. */
/* m_reg[SPREG) is the region used for split I/D programs in the MRT */
/* m_reg [NSPREG] is used for non-split. */
/* -1 is used for segmented *)
/* NOTE -- the tpa limits passed in the LPB are ignored. This is */
/* incorrect, but saves the caller from having to look at the */
/* load module to determine the magic number. ' */

map_adr (seg ? ~1L
: (mrp->m_ :eg[splxt ? SPREG : NSPREG].tpalow),

Ox£££L) ;
for (i = 0; i < x_ hdr x_nseg; i++) { /* For each segment... */
if(readxsg(i) == EOF) /* ...get segment hdr */
return (READERR) ;
seglim[il = SEGLEN; /* ...set max length */
segsiz[i] = OL; . /* ...and current size */

/* Set section base addresses */

textloc = dataloc = bssloc = stkloc = 0OL;

/* Zero section sizes */
textsiz = datasiz = bsssiz = OL;
_ stksiz = DEFSTACK;
if (seq) | /* Locate text & data segments */

/* if segmented we know nothing */
textseg = dataseg = bssseg = stkseg = 0;
} else { /* if nonsegmented ... */
/* assign segment numbers */
textseg = 0;
dataseg = (split) ? 1 : 0;
stkseg = bssseg = dataseg;

/* assign locations ®/
segloc[textseqg] = map_adr (0L, TPAPROG);
if (split)
segloc(dataseg] = map_adr (0L, TPADATA);

/* Assign limits */
seglim{textseg] = SEGLEN;
seglim({dataseg] = mrp->m_reg(split ? SDREG : NSDREG].tpalen
- BPLEN - stksiz;

/* Assign stack location */
stkloc = segloc(dataseg] + seglim[dataseg] + stksiz;

}

for (i = 0; i < x_hdr.x_nseg; i++) /* For each segment... */
if((j = Toadseg(i)) != GOOD) /* ...load memory. If */
return (j); /* error return, pass */

/* it back. *
sathase (setaddr (amylpb)):; /* Set addresses in LPB,*/
/* Set up base page */

cpy_out ((XADDR) &mylpb, xlpbp, sizeof mylpb):
return (GOOD); .

CP/M-8000 Programmer's Guide B Transient Program Load Examples

Listing B-1l. (continued)

/* Macro to call BDOS. First parameter is passed unchanged, second */
/* is cast into an XADR, then mapped to caller data space. */

¢define mbdos(fung, param) (bdos((func), map_adr ((XADDR) (param), MYDATA)))
/* Macro to read the next character from the input file (much faster */
/* - than having to make a function call for each byte) */

¢define fgetch() ((gp<mydma+SECLEN) ? (int)*gp++&0xff : fillbuff())
/* Routine to fill input buffer when fgetch macro detects it is empty */

int £illbuf () /* Returns first char in buffer */
) i I* or EOF if read fails */

/* Set up address to read into */
mbdos (SETDMA, mydma); ’ :

if (bdos(READ, nmylpb.fcbaddr) != 0) /* Bave BDOS do the read*/
return (EOF);)

gp = mydma; /* Initialize buffer pointer */

return ((int)*gp++ & Ox£f); /* Return first character */

}
/* Routine to read the file header */
int readhdr ()

register int n, k:
register char *p; _
'p = (char *) &x_hdr; .
for (n = 0; n < sizeof (struct x hdr); n++) {
if((kx = fgetch()) == pEOF)
return (k)
*p++ = (char) k;

return (GOOD):;

}
/* Routine to read the header for segment i */
int readxsg (i)
int i;
register int n, k;
register char *p:;

p = (char *) &x_sgl(i];)
"for(n = 0; n < sizeof (struct x_sg); n++) {
if ((k = fgetch()) == EOF)
return (READERR) ;
*p++ = (char) k;

A return (GOOD);

CP/M-8000 Programmer's Guide B Transient Program Load Examples

Listing B-1l. (continued)

/* Routine to load segment number i */
/* This assumes that the segments occur in load order in the file, It */
/* assumes that all initialized data and, in the case of combined I/D */

/* programs, text segments, precede all bss segments. */
/* *
/* In the case of segmented programs, the stack segment must exist, ¥y
/* and all segments are presumed to be of maximum length. */
/* Text, data, bss, and stack lengths are sum of lengths of all such */
/* segments, and so may be bigger than maximum segment length. */
. int loadseg(i) '
%nt i;
register UWORD 1, length; /* Total, incremental length v/
register int type: /* Type of segment loaded */
register short lseg; /% logical segment index */
register XADDR phystarg; /* physical target load address */
L = x sg[i].x_sg_len; /* number of bytes to load */
type = x_sg(i].x_sg_typ; /* Type of segment */
1§eg = textseq; . /* try putting in text space */
if (splie) { /* If separate I/D, this may */
switch {(type; /* be a bad guess */
case X_SG_CON: /* Separate I/D: all data goes ¥/
case X_| N _DAT: ‘ /* in data space */
case X SG “BSS:
) case X_SG_STK:
| lseg = dataseq;
} |
if (seqg) | /* If segmented, compute phys. */
/* address of segment */
/* search to see if seg was used already */
/* if so, use the same logical segment index. */
/* (if not, loop ends with lseg == {) v/
for (lseg = 0;)
x_38g(lseq].x sg no 1= x sg(i]l.x_sg_no;
1seg++) ;
| segloc(lseg] = ((long)x_sg(i].x_sg_no) << 24;
phystarg = segloc[lseqg] + segsiz[lseg]:; /* physical target addr */
switch (type) /* Now load data, if necessary */
{ /* save physical address & size */
case X_SG_BSS: /* BSS gets cleared by runtime */
/* . startup. */

stkloc = (phystarg & Oxf£££f0000L) + SEGLEN - BPLEN - stksiz;
/* ...in case no stack segment */
if (bssloc == QL) bssloc = phystarg:;
bsssiz += 1;
if ((segsiz([lseq] += 1) >= seglim[lseqg])
return (NOMEM) ;
return (GOOD); /* Transfer no data */

B-6

CP/M~-8000 Programmer's Guide B 'Transient Program Load.Examples

Listing B-1. (continued)

case X _SG_STK: . /* Stack segment: * /
1f Tstkloc == 0L) { /* if segmented, we now */

/* know where to put */

seglim[lseg] == BPLEN; /* the base page */

stkloc = gsegloc(lseg] + seglim(lseq]:

}

stkseg = lseg; :
stksiz += 1; /* adjust size and v/
seglim[lseg] -= 1; /* memory limit */
if (segsiz[lseg] >»>= seglim[lseqg])

return (NOMEM) ;

return (GOOD); A /* Transfer no data */
case X_SG_COD: ' /* Pure text segment - o/
case X_. SG MXU: - /* Dirty code/data (better not)*/
case X SG MXP: . /* Clean code/data (be sep I/D)*/

If (textloc == OL) textloc = phystarg;
textsiz += 1; .

break;
case X_SG_CON: /* Constant (clean) data */
case X_SG DAT: /* Dirty data */
stkloc = (phystarg & OXE£££0000L) + SEGLEN - BPLEN - stksiz;
/* ...in case no stack or */
/* bss segments */

if (dataloc a= (L) dataloc = segloc(i}]:;
datasiz += 1;
break;

/* Check seg overflow */
1f ((segsiz[lseg] += 1) >= seglim{lseg]) _
raturn (NOMEM) ;

/* load data from file */

/* Following loop is optimized for load speed. */
/ It knows about three conditions for data transfer: */
- /* 1) Data in read buffer: : */
/* Transfer data from read buffar to target */

/* 2) Read buffer empty and more than 1 sector of */

/* data remaining to load: */

S* Read data direct to target */

/* 3) Read buffer empty and less than 1 sector of */

/* data remaining to load: */

/* _Fill read buffer, then proceed as in 1, above */

CP/M-8000 Programmer's Guide B Transieﬁt Program Load

}

Listing B-1. (continued)

while (1) /* Until all loaded
/* Data in disk buffer? '/
%f {gp < mydma + SECLEN)

length = min(l, mydma + SECLEN - gp):
cpy_out (gp, phystarg, length),
gp += length;

else if (1 < SECLEN) . /* Less than 1 sector */
/* remains to transfer*/
length = 0; -
mbdos (SETDMA, mydma),
£illbuf () ;

} gp = mydma;
elge /* Read full sector */
/* into target space */
length = SECLEN;)
bdos (SETDMA, phystarg);
| bdos (READ, mylpb.fcbaddr):

phystarg += length;
1 -= length;

}

return (GOOD);

/* Routine to set the addresses in the Load Parameter Block
/* Unlike normal CP/M, the original load address is replaced on r*™rr-
/* by the actual starting address of the program (true Code~-space .ddrc

int setaddr (lpbp)
Ttxuct ipb *1lpbp;

}

register int space;

space = (gplit) ? TPADATA : TPAPROG;

lpbp->pgldaddr = (seg) ? textloc : map_adr {textloc, TRUE_TPAPRC
lpbp~->bpaddr = stkloc;)
lpbp->stackptr = gtkloc - (seg? sizeof (struct sstack)

:) : sizeof (struct ustack)):
lpbp~>flags = split | seq;
return (space);

/* Routine to set up the base page. The parameter indicates whether

* the data and bss should be mapped in code space or in data space.
*

GEP/M-BOOO Programmer's Guide B Transient Program Load Examples

Listing B-1. (continued)

VOID setbase (space)
int space;

/* was
/*Co*/

struct b_page bp:

if (seg) {
bp.lcode = textloc;
bp.ltpa = OL;

} else .
} bp.lcode = bp.ltpa = map_adr (textloc, TRUE_TPAPROG);
bp.htpa = mylpb.stackptr; /* htpa is where the stack is */

bp.codelen = textsiz;

bp.ldata = dataloc: cfw */

bp.ldata = (seg || split) ? dataloc : textloc + textsiz; /*rfw 5/7/84*/
bp.datalen = datasiz:

if (bssloc == O0L) bssloc = dataloc + datasiz;

bp.lbss = bssloc; .

bp.bsslen = bsssiz;

bp.freelen = seglim(basseg] - segsiz[bssseg];

cpy_out(&bp, map_adr((long) stkloc, space), sizeof bp);

End of Appendix B

B-9

Table C~-1 shows the format of the base page.
describes a program's environment.
allocates space for a base page when this function is invoked to
load an executable command file.
Load Function and command files, refer to Sections 4.5.7 and 3.0,

Appendix C
Base Page Format

respectively.
Table C-1. Base Page Format: Offsets and Contents
Offset Contents
0000 - 0003 Lowest address of TPA (from LPB)
0004 - 0007 1 + Highest address of TPA (from LPB)
0008 -~ 000B Starting address of the Text Segment
000C - 000F Length of Text Segment (bytes)
0010 - 0013 Starting address of the Data Segment
4 (initialized data)
0014 - 0017 Length of Data Segment
0018 - 001B Starting'address of the bss
(uninitialized data)
t"OOZI.C - 001F Length of bss
0020 - 0023 Length of free memory after bss
0924 - 0024 Drive from which the program was loaded
0625 - 0037 Reserved, unused
0038 - 005B 2nd parsed FCB from Command Line
005C - 007F lst parsed FCB from Command Line
0080 - OOFF Command Tail and Default DMA Buffer

End of Appendix C

The base page
The Program Load Function (59)

For more details on the Program

Appendix D
Instruction Set Summary

This appendix contains a summary of the 28001/2 instruction set used
by the ASZ8K assembler. For details on specific instructions, refer
to the 28000 CPU User's Reference Manual, Prentice-Hall, 1982.

Table D-1. Instruction Set Summary .

Instruction Description
adc Add word with carry
adcb Add byte with carry
.add : Add word
addb Add byte
addl Add long word (32 bits)
and Logical AND word
andb Logical AND byte
bit Bit test word
bitb Bit test byte
call Call subroutine
calr Call subroutine, relative
clr Clear word
clrb Clear byte :
com 1's complement word
comb l's complement byte
comflg 1's complement flag bits
cp Logical compare word
cpb Logical compare byte
cpd Compare and decrement word
cpdb Compare and decrement byte
cpdr Compare, decrement, and repeat word
cpdrb Compare, decrement, and repeat byte
cpi Compare and increment word
cpib Compare and increment byte
cpir Compare, increment and, repeat word
cpirb Compare, increment and, repeat byte
cpl Logical compare longword (32 bits)
cpsd : : Compare string and decrement word
cpsdb Compare string and decrement byte
cpsdr Compare string, decrement and repeat word
cpsdrb Compare string, decrement and repeat byte
* cpsi Compare string and increment word
cpsib Compare string and increment byte
cpsir Compare string, increment and repeat word
cpsirb Compare string, increment and repeat byte

CP/M-8000 Programmer's Guide D Instruction Set Summary

Table D-1. '(continued)

Instruction Description
dab Decimal adjust byte
dbjnz Decrement byte and jump if not zero
dec Decrement word ™
decb Decrement byte
di . Disable interrupt
div Divide word
divl Divide longword (32 bit)
djnz Decrement word and jump if zero
el Enable interrupt
ex ' Exchange register contents word
exb Exchange register contents byte
exts Extend 319n word .
extsb Extend 51gn byte
extsl ' Extend sign longword (32 blt)
halt - Halt processor operation
in input word
inb input byte
inc ' Increment word
incb Increment byte
ind Input word and decrement
indb Input byte and decrement
indr Input word, decrement and repeat
indrb . Input byte, decrement and repeat
ini Input word and increment
inib Input byte and increment
inir Input word, increment and repeat
inirb Input byte, increment and repeat
iret Interrupt return
jp Jump
jr Jump relative
14 Load word
lda Load address word
ldar Load address relative
1ldb Load byte
ldctl Load Control register
ldctlb Load Control byte
ldd Load word and decrement
1lddb Load byte and decrement
lddr Load word, decrement and repeat
lddrb Load byté, decrement and repeat
1di Load word and increment
1d4ib Load byte and increment
ldir ‘Load word, increment and repeat
ldirb Load byte, increment and repeat
1dk Load constant

CP/M-8000 Programmer's Guide D Instruction Set Summary

Table D-1. (continued)

Instruction Description
1ldl Load longword
1ldm Load multiple words
ldps Load Program Status
ldr Load word relative
ldrb , Load byte relative
ldrl Load longword relative
"mbit Multi-micro bit test
mreq ' Multi-micro request
mres Multi-micro reset
mset Multi-micro set
mult Multiply word
multl ‘ Multiply longword
neg Negate word (2's complement)
negb Negate byte (2's complement)
nop No Operation
or Logical OR word
orb Logical OR byte
otdr : “Output word, decrement and repeat
otdrb Output byte, decrement and repeat
otir Output word, increment and repeat
otirb - Output byte, increment and repeat
out Output word ~
outb : Output byte
outd Output word and decrement
outdb -Qutput byte and decrement
outi Output word and increment
outib OQutput byte and increment
pop Increment the stack pointer
push Decrement the stack pointer
res Reset word
resb Reset byte
resflg Reset Flag bit(s):
ret Return from subroutine
rl Rotate word left
rlb - Rotate byte left
rlec Rotate word left through carry
rlcb Rotate byte left through carry
. rldb Rotate left digit
" orr Rotate word right
rrb ‘ Rotate byte right
rre Rotate word right through carry
‘rrcb Rotate byte right through carry
rrdb Rotate right digit

CP/M-8000 Programmer's Guide

{continued)

D Instruction Set

Table D-1.
Instruction Description
sbc Subtract word with carry (borrow)
sbecb Subtract byte with carry (borrow)
sc - System Call -
sda Shift dynamic arithmetic word
sdab Shift dynamic arithmetic byte '
sdal - Shift dynamic arithmetic longword’
sdl - Shift dynamic logical word
sdlb Shift dynamic logical byte .
sdll Shift dynamic logical longword
set Set word -
setb Set byte
setflg . Set Flag bit(s)
sin Special Input byte
sinb ‘Special Input byte .
- 8ind Special Input word and decrement
sindb Special Input byte and decrement
sindr Special Input word, decrement and repe
sindrb Special Input byte, decrement and rep=
sini Special Input word and increment
sinib Special Input byte and increment |
sinir Special Input word, increment and rep=
sinirb Special Input byte, increment and repe
sla Shift word left arithmetic
slab Shift byte left arithmetic
slal Shift longword left arithmetic
sll Shift word left logical
sllb Shift byte left logical
slll Shift longword left logical
sotdr Special word output, decrement and rer
sotdrb Special byte output, decrement and rep
sotir Special word output, increment and rep
sotirb Special byte output, increment and rep
sout Special word output :
scutb Special byte output :
souti Special word output and increment
soutib Special byte output and increment
sra Shift word right arithmetic
srab Shift byte right arithmetic
sral Shift longword right arithmetic
srl Shift word right logical
srlb Shift byte right logical
srll Shift longword right logical
sub Subtract word
subb Subtract byte
subl Subtract longword

CP/M-8000 Programmer's Guide D Instruction Set Summary

Table D-1. (continued)

Instruction Description
tcc Test Condition Code word
tccb Test Condition Code byte
test Test word
testb Test byte
testl Test longword .
trdb Translate and decrement
trdrb Translate, decrement and repeat
trib Translate and increment
trirb . Translate, increment and repeat
trtdb Translate, test and decrement
trtdrb Translate, test, decrement, repeat
trtib Translate, test and increment
trtirb Translate, test, increment, repeat
tset Test and set word
tsetb Test and set byte
Xor Exclusive OR word
xorb Exclusive OR byte -
End of Appendix D

Appendix E ‘\
Error Messages

This appendix lists the error messages returned by the internal
components of CP/M-8000 and by the CP/M-8000 programmer's utilities.
The sections are arranged alphabetically by the name of the internal
component or utility. Error messages are listed alphabetically
within each section, with explanations and suggested user responses.

. You should contact the dealer from whom you purchased your system if
an error persists even after you have followed the suggested
responses. In such cases, provide your dealer with the following
information:

‘e Indicate which version of the operating system you are using.

e Describe your system's hardware configuration.

e Provide sufficient information to reproduce the error.
Indicate which program was running at the time the error
occurred. If possible, you should also provide a disk with a
copy of the program.

" B.1 ARSK Error Messages
The errors messages returned by AR8K are listed below in

alphabetical order with explanations and suggested user responses.

Table E-1. ARS8K Error Messages

Message Meaning

bad file name

Your command line contains an illegal file
specification. Refer to Section 1.5 for
information on CP/M-8000 file
specifications.

CP/M-8000 Programmer's Guide E.1 AR8BK Error Messages

Table E-1l. (continued)

Message Meaning

bad read

Your command line includes a file that
cannot be read. This message means one of ™
three things: the file to be read is
corrupted; a hardware error has occurred;
or the file was not correctly written by
ARSBK when it was created because of an
error in the utility's internal logic.

Cold start the system and retry the
operation. If you receive this error
message again, you must erase and recreate
the .file. Use your backup file, if you
maintained one. If the error recurs,
check for a hardware error. If the error
persists, contact the dealer from whom you
purchased your system for assistance.
Provide your dealer with the _information
listed in the beginning of this appendix.

. bad write

~The disk to which ARBK is writing a file
is full. Erase any unnecessary files, or
insert a new disk before you reenter the
command line.

cannot create filename

The drive code for the file indicated by
the variable filename is invalid, or the
disk to which ARBK is writing is full.
Check the drive code. If the code is
valid, the disk is full. Erase any
unnecessary files, or insert a new disk
before you reenter the command line.

cannot open filename

The file indicated by the variable
filename cannot be opened because the
filename or the drive code is incorrect.
Check the drive code and the £filename
before you reenter the command line.

E-2

CP/M-8000 Programmer's Guide E.1 AR8K Error Messages

Table E-~l. (continued)

Message Meaning

header write error

The operating system returned an error
while AR8K was writing an archive header
to the archive. Check that the disk is
not full. If the disk is full, erase any

- unnecessary files from it, or replace it
with another disk that contains a copy of
the archlve.

No key specified

Your command line did not contain an ARS8K
key. Reenter the command line and specify
which action is to be performed by ARS8K.
AR8K will display its command line keys
when you type ARBK and enter a RETURN.
See Section 7 for a detailed explanatlon
of the AR8K command line.

not archive format: filename

The file indicated by the variable
filename is not a library. Ensure that
you are using the correct filename before
you reenter the command line.

not object file: filename

The file indicated by the variable
filename is not an object file and cannot
be added to the library. Any file added
to the library must be an object file,
output by the assembler, ASZ28K, or the
compiler. Assemble or compile the file
before you reenter the AR8K command line.

only one of keys [drgtx] allowed

The ARS8K command line requires one of the
D, R, Q, T, or X command keys, but not
more than one. Reenter the command line

with the correct command. Refer to
Section 7 for an explanation of the ARS8K
commands.

CP/M-8000 Programmer's Guide " E.1 ARSK Error Messages

Table E-l. (continued)

Message Meaning

filename not in library

The object module indicated by the
variable filename is not in the library. =~
Ensure that you are regquesting the
filename of an existing object module
before you reenter the command line.

temp file write error
" .
: The disk to which AR8BK was writing the
temporary file is full. Erase any
unnecessary files, or insert a new disk
before you reenter the command line.

Too many file names

You command line specifies more than 256
files. 'The upper limit for file names in
an ARBK command line is 256. Delete one
or more file names from the command line
and reenter it.

Unable to recopy the archive

ARBK completed the working copy o©f the
archive but the coperating system returned
an error when AR8K attempted to overwrite
the original archive with the working
copy. Ensure that the original archive
file is set to DIR, R/W status and that
the disk’ to be written to is not full.

unknown key

The key in the command line is an invalid
option. Enter ARBK and RETURN and the
utility displays a usage statement
indicating valid command line keys. Refer
to Section 7 for an explanation of . the
command line options. Specify a wvalid
option and reenter the command line.

d@/M-BOOO Programmer's Guide E.1 ARSK Error Messages

Table E-1l. (cohtinued)

Message Meaning

usage: ARSK KEY ARCFILE [files. . .]

This message-indicates a syntax error in
the command line. The correct format for
the command 1line is given, with KEY
indicating one of the command letters D,
R, Q, T, or X and the file specification
for the object file(s) in brackets. Refer
to Section 7 for a more detailed
explanation of the command line.

E.2 ASZ8K Error Messages

The CP/M-8000 assembler, ASZ8K, returns both diagnostic error codes
and fatal error messages. Fatal errors stop the assembly of your
program.

E.2.1 ASZ8K Diagnostic Error Codes

Diagnostic error codes report errors in the syntax and context of
the program being assembled, without interrupting assembly. Refer
to the Zilog 16-Bit Microprocessor User's Manual for a full
discussion of the assembly language syntax.

- When ASZ8K encounters errors within the assembly language program,
it lists them as single-character codes in the leftmost position of
the source listing. ASZ8K also echoes the line in error to the
console so that you need not examine the source listing to determine
if errors are present. Table E~2 defines the ASZ8K error codes.

Table E-2. ASZ8K Diagnostic Error Codes

Code Meaning

A Macro definition syhtax'error

o . Incorrect placement of an .ELSE or .ENDIF
directive

CP/M-8000 Programmer's Guide E.2 ASZ8K Error M.

Table E-2. (continued)

Code ‘Meaning -

E Expression evaluation error: too large a val:
for a field; Register 0 specified fc
addressing mode where restricted; register pai
used as a pointer in nonségmented mode
register used as a pointer in segmented mode;
relocatable value used in an expression tha
allows only constants

L Label error: label field mlssing from an .EQU
.COMMON, .SECT, or .MACRO directive

M ‘ Multiple definition of a symbol: a symbol i
the indicated source line has been defined a
both global and common; delete one of th

directives and reassemble the source flle

0 Opcode error: undefined opcode or pseudo—opi
improperly placed .EXIT directive; imprope:
operand format for specified opcode : |

P~ Phase error: the type, value, or relocatics
type of a label were inconsistent between ths
two passes of the assembler; this error mighi

~be caused by 1label redefinition oremw:
indistinguishable labels

] Syntax error: invalid characters or misplace:
delimiters in pseudo-op, expression, or operans
field following last assembled operand

U Undefined symbol: label operand in this
statement has not appeared elsewhere in 4
statement that generates machine c¢ode or

reserves memory, as in an .EQU or .ORG or .SET
directive

1

E.2.2 ASZ8K Fatal Error Messages

The fatal error messages displayed by ASZ8K are listed in Table:
E-3. When an error occurs because the disk is full, ASZ8K

creates a partial file. You should erase the partial file to
ensure that you do not try to link it.

CP/M-8000 Programmer's Guide ‘ E.2 ASZ8K Error Messages

Table BE-3. ASZ8K Fatal Error Messages

Message Meaning

Cannot create filename

The operating system returned an error to
ASZ8K while the utility was attempting to
write the file indicated by the variable
filename on the disk. Check the filename,
drive code, user number, and level of disk
write protection. You may also have to
erase a file to make space in the
directory. Respecify the command line
before you reassemble the source file.

Cannot open filename

The file indicated by the variable
filename does not exist, is invalid, or
has an invalid drive code or user number.
Check the filename, drive code, and user
number. Respecify the command line before
you reassemble the source file. ‘

Cannot reopen vm file

The operating system returned an error to
ASZ8K when the assembler attempted to
reopen its work file, Erase the work file
and check the number of directory entries
and space remaining on the disk.
Reassemble the source file.

Input stack overflow

The source code contains too many
operations for the user stack =-- the
program is too large to be assembled.

No PREDEF file

ASZ8K cannot locate the ASZ8K.PD
predefinition file. Check that this file
is present on the default disk and in the
correct user area. If ASZ8K.PD is not on
the disk, recopy it from your distribution
disk.

CP/M-8000 Programmer's Guide E.2 ASZ8K Error Messages

Table E-3.

ASZ8K Fatal Error Messages

Message Meaning

PREDEF file error at line number

The predefinition file ASZ8K.PD has beén
corrupted. This message indicates the
line number with ASZ8K.PD that contains
the bad data. Erase the corrupted copy of
2SZ8K.PD from the disk and replace it with
a new copy from your distribution disk.

-

Too many externals

The source code uses too many externally
defined global symbols for the size of the
external symbol table. Eliminate some
"externally defined global symbols and

reassemble the source file.

Usage: aszB8k [-o outfile] [-luxs] file.8k{n|s}

This error message indicates that your
ASZ8K command line contains a syntax
error.
of the ASZ8K command line as described in
Section 5.2.

This message shows you the format

E.3 BDOS Error Messages

The CP/M-8000 Basic Disk Operating System, BDOS, returns fatal error

messages at the console.

The BDOS error messages are listed below

in alphabetic order with explanations and suggested user responses.

CP/M-8000 Programmer's Guide E.3 BDOS Error Messages

Table E-4. BDOS Error Messages

““Message Meaning

CP/M Disk change error on drive x

The disk in the drive indicated by x is
not the same disk the system logged in
previously. When the disk was replaced
you did not enter a Ctrl-C to log in the
current disk. Therefore, when you
attempted to write to, erase, or rename a
file on the current disk, the BDOS set the
drive status to read-only and warm booted
the system. The current disk in the drive
was not overwritten. The drive status was
returned to read-write when the system was
warm booted. Each time a disk is changed,
- you must type a Ctrl-C to log in the new

CP/M Disk file error: filename is Read-OnlY%.
Do you want to: - Change it to read/write (C),
or Abort (A)?

You attempted to write to, erase, or
rename a file whose status is read-only.
Specify one of the options enclosed in
parentheses. If you specify the C
option, the BDOS changes the status of the
file to read/write and continues the
operation. The read-only protection
previously assigned to the file is lost.
If you specify the A option or a CTRL-C,
the program terminates and CP/M-8000
returns the system prompt.

CP/M Disk read error on drive x
WARNING -~ Do not attempt to change disks
Do you want to: Abort (A), Retry (R), or Continue with bad data (C)?

This message indicates a hardware error.
Specify one of the options enclosed in
parentheses. If you specify the A option
or enter Ctrl-C, CP/M-8000 terminates the
operation and returns the system prompt.

E-9

CP/M-8000 Programmer's Guide E.3 BDOS Error Messages

" Table B-4. (continued)

Message Meaning

If you specify the R option, CP/M-8000
retries the operation. If this action
fails, the system reprompts with the
option message. '

Specifying option C causes the system to
ignore the error and continue program
execution. Use this optiéon with caution.
Program execution should not be continued
for some types of programs. For example,
if you are updating a data base and
receive this error but continue program
execution, you can corrupt the index
fields of the entire data base. For other
programs, continuing program execution is
recommended.’ For example, when you
transfer a long text file and receive an
error because one sector is bad, you can
continue transferring the file. Once the
file is transferred, review it and add the
data that was not transferred because of
the bad sector.

CP/M Disk write error on drive x
Do you want to: Abort (A), Retry (R), or Continue with bad data (C)?

This message indicates a hardware error.
Specify one of the options enclosed in
parentheses. Please see the explanation
of the preceding error message for a
description of each option presented in
this message.

CP/M Disk select error on drive x
Do you want to: Abort (A), Retry (R)

. There is no disk in the drive, or the disk
is not inserted correctly. Ensure that
the disk is securely inserted in the
drive. If you enter the R option, the
system retries the operation. If you
enter the A option or Ctrl-C the program
terminates and CP/M-8000 returns the
system prompt.

E-10

CP/M-8000 Programmer's Guide E.3 BDOS Error Messages

Table B-4. (continued)

Message

Meaning

CP/M Disk select error on drive X

The disk selected in the command line is
outside the range A through P. CP/M-8000
can support up to 16 drives, lettered A
through P. Check the documentation
provided by the manufacturer to find out
which drives your particular system
configuration supports. Specify the

"correct drive code and reenter the command

line. .

E.4 BIOS Error Messages

The CP/M-80Q0 BIQS error messages are listed below in alphabetical

_ order with explanations and suggested user responses.

Table E-5. BIOS Error Messages

Message

Meaning

BIOS ERROR -- DISK X NOT SUPPORTED

The disk drive indicated by the variable X
is not supported by the BIOS. The BDOS
supports a maximum of 16 drives, lettered
A through P. Check the manufacturer's
documentation for your system
configuration to find out which of the
BDOS drives your BIOS implements. Specify
the correct drive code and reenter the
command line.

BIOS ERROR -~ Invalid Disk Status

The disk controller returned unexpected or
incomprehensible information to the BIOS.
Retry the operation. If the error
persists, check the hardware.

CP/M-8000 Programmér's Guide

E.5 CCP Error Messages

The CP/M-8000 Console Command Processor, CCP, returns two types of

error messages at the console: diagnostic and internal logic error

messages.

E.5.1 Diagnostic Error Messages

The CCP error messages are listed below in alphabetical order with

explanations and suggested user responses.

Table E-6. CCP Diagnostic EBrror Messages

Message

Meaning

bad relocation

information bits

This message is a result of a BDOS Program
Load Function (59) error. It indicates
that the file specified in the command
line is not a valid executable command
file, or that the file has been corrupted.
Ensure that the file is a command file.-
Section 3 of this manual describes the
format of a command file. If the file has
been corrupted, reassemble or recompile
the source file, and relink the file
before you reenter the command line.

File already exists

This error occurs during a REN command.
The name specified in the command line as
the new filename already exists. Use the
ERA command to delete the existing file if
you wish to replace it with the new file.
If not, select another filename and

‘reenter the REN command line.

E-12

E.5 CCP Error Messages

CP/M-8000 Programmer's Guide E.5 CCP Error Messages

Table B-6. (continued)

Message Meaning

insufficient memory or bad file header

This error could result from one of three
causes:

e The file is not a valid executabie
command file. Ensure that you are
requesting the correct file. This
error can occur when you enter the
filename before you enter the command
for a utility. Check the appropriate
section of this manual or the CP/M-8000
User's Guide for the correct command
syntax before you reenter the command
line. If you are ¢trying to run a

- program when this error occurs, the
program file may be corrupted.
Reassemble or recompile the.source file
and relink the file before you reenter
the command line.

e The program is too large for the
available memory. Add more memory
boards to the system configuration, or
rewrite the program to use less memory.

e The program is linked to an absolute
location in memory that cannot be used.
The program must be made relocatable or
linked to a usable memory location.
The BDOS Get/Set TPA Limits Function
(63) returns the high and 1low
boundaries of the memory space.that is
available for loading programs.

E-13

CP/M-8000 Programmer's Guide E.5 CCP Error Messages

Table E-6. (continued)

Message Meaning

No file

The filename specified in the command line
does not exist. Ensure that you use the
correct filename and reenter the command
line.

No. wildcard filenames

The command specified in the command line
does not accept wildcards in file
specifications. Retype the command line
using a specific filename.

read error on program load

This message indicates a premagure end-of-
‘file. The file is smaller than the header
information indicates. Either the file
header has been corrupted or the file was
only partially written. Reassemble or
recompile the source file, and relink the
file before you reenter the command line.

SUB file not found

The file requested either does not exist
or does not have a filetype of SUB.
Ensure that you are requesting the correct
file. Refer to the section on SUBMIT in
the CP/M-8000 User's Guide for information
on creating and using submit files.

Syntax: REN newfile=oldfile

The syntax of the REN command line is
incorrect. The correct syntax is given in
the error message. Enter the REN command
followed by a space, then the new
filename, followed immediately by an
equals sign (=) and the name of the file
you want to rename.

CP/M-8000 Programmer's Guide E.5 CCP Error Messages

Table E-6. (continued)

Message Meaning

Too many arguments: argument?

The command line contains too many
arguments. The extraneous arguments are
indicated by the variable argument. Refer
to the CP/M-8000 User's Guide for the
correct syntax for the command. Specify
only as many arguments as the command
syntax allows and reenter the command
line. Use a second command line for the
remaining arguments, if appropriate.

User % range is [0-15]

"The user number specified in the command
line is not supported by the BIOS. The
valid range 1is enclosed in the square
brackets in the error message. Specify a
user number between 0 and 15 (decimal)
when you reenter the command line.

E.5.2 CCP Inietnal Logic Error Messages

The following message indicates an undefined failure of the BDOS
Program Lcad Function (59).

Program Load Error
If you receive this message, contact the dealer from whom you
purchased your system for assistance. You should provide the
fcllowing information: :
e Indicate which version of the operating system you are using.
e Describe your system's hardware configuration.
e Provide sufficient information to' reproduce the error.
Indicate which program w&s running at the time the error

occurred. If possible, you should also provide a disk with
a copy of the program.

CP/M-8000 Programmer's Guide E.6 DDT-Z8K Error Mess.
E.6 DDT-Z8K Error Messages
Error messages for the CP/M-8000 debugger, DDT-28K, are listed be

in alphabetical order.

Table E-7. DDT-Z8K Error Messages

ey

Message Meaning

argl > arg2

The starting address in a D (Display), F
(Fill), L (List), or W (Write) command
line is greater than the final address.
Respecify the command.

argl >= arg2

The starting address in a D (Display), F
(Fill), L (List), or W (Write) command
line is greater than or equal to the final
address. Respecify the command line.

bad argx

DDT-Z8K displays this error message when
you have specified an invalid argument in
a DDT-Z8K command. The actual error
message indicates which argument in your
command line is invalid by replacing x
with the appropriate number.

bad character in symbol

This error message indicates that the
symbol name to which you are assigning a
value with the $$ command contains a
delimiter character. See Section 1.5 for
a list of the CP/M-8000 delimiter
characters. :

E-16

CP/M-8000 Programmer's Guide E.6 DDT-Z8K Error Messages

Table BE-7. (continued)

Message Meaning

bad delimiter

DDT-28K displays this error message when
the operands or arguments in your command
line are not correctly separated. Most
DDT-Z8K commands accept a comma or space
as a delimiter character. See the DDT-Z8K
command descriptions in Section 8.

bad header

This message occurs in response to an E
(Load for Execution) command. The error
could be caused by one of the following
conditions:

® The system you are using dSes not have
enough memory available. Ensure that
the program and DDT-Z8K fit into the
TPA. Exit DDT-Z8K. Use. the SIZE68
Utility to display the amount of space
your program occupies in memory. DDT-
Z8K is approximately 20K bytes. The
BDOS Get/Set TPA Limits Function (63)
returns the high and low boundaries of
the TPA. If you do not have
sufficient space in the TPA to execute
your command file and DDT-28K
simultaneously, additional memory must
be added to the system configuration.

@ The file is not a command file or has
a corrupted header. If the command
file does not run, but you are sure
that your memory space is adequate,
use the R command to look at the file
and check its format. You might be
trying to debug a file that is not a
command file. If it is a command
file, the header may have been
corrupted. Reassemble or recompile
the source file before you reenter the
E command line.

E-17

CP/M-8000 Programmer's Guide E.6 DDT-Z8K Error Messages

Table E-7. (continued)

Message Meaning

® The command file you are debugging is
linked to an absolute location in
memory that is already occupied by
DDT-28K. DDT-Z8K is approximately 20K
bytes, and usually resides in the
highest addresses of the TPA. The
recommended location for linking your
file is the base address of the TPA +
100H. The BDOS Get/Set TPA Limits
Function (63) returns the high and low
boundaries of the TPA.

" bad opcodé

This error occurs in response to a List
(L) command if the memory location being
disassembled does not contain a valid
instruction. The error ma¥®# have been
caused by one of three things:

e You gave the L command the wrong
address. Reenter the L command with
the correct address.

e The file is not a command file.
Ensure that the file you specify is a
command file and reenter the L
command.

e The command file has been corrupted.
Reassemble or recompile the source
file before you reread it into memory
with a Load for Execution (E) or Read
(R) command, as appropriate. . If the
problem persists, use the debugging
commands in DDT-28K to look for an
error in the program that causes it to
overwrite itself. See Section 8 for a
complete description of the DDT-Z8K
commands and options.

CP/M-8000 Programmer's Guide E.6 DDT-Z8K Error Messages

Table E-7. (continued)

Message Meaning

can't load program

This message occurs in response to a Load
for Execution (E) command. Possible
causes for this error condition include an
incorrect user number, drive code, or
filename. Check the user number, drive
code, and filename before you reenter the
command. line. If the error persists, it
is probably due to a premature end-of-file
mark -- the £file is smaller than the
header information indicates. Either the
file has been corrupted or the file was
only partially written. Reassemble or
recompile the source file and relink the
file befdre you reissue the command line.

can't open inload file

This error occurs during a Read (R)
command. It indicates an incorrect user
nurber, drive code, or filename. Check
the user number, drive code, and filename
‘before you reenter the command line.

can't open memory file

This error occurs during a Write (W)
command. The disk to which DDT-28K is
writing has no more directory space
available: in effect, the disk is full.
If you have another drive available,
reenter the Write (W) command and direct
the file to the disk on that drive. If
you do not have another drive available,
you must exit DDT-Z28K and lose the
contents of memory. Erase any unnecessary
files, or insert a new disk.

CP/M-8000 Programmer's Guide E.6 . DDT-28K Error Messages

Table E-7. (continued)

Message Meaning

file not specified

DDT-Z8K displays this error message in
response to an R (Read) or W (Write)
command line that does not include a
filename. Specify a filename and then
reenter either command. DDT-Z8K also
displays this error message in response to
a V (Value) command when you have not
previously loaded a file. Load a file
with the E (Load for Execution) or R
(Read) command before you reenter the V
command. You can also locad a file under
DDT-Z8K by specifying the filename when’
you invoke the debugger.

memory file write error

The disk to which DDT-28K is writing is
full, or the disk contains a bad sector.
Retry the command. If the error persists,
and you have another disk drive available,
redirect the output to the disk on ‘that
drive. If you do not have another drive
available, you must exit DDT-Z8K. Use the
STAT command to check the space on the
disk. If it is full, erase any
unnecessary files, or insert a new disk.
Because the contents of memory are lost
when you exit DDT~Z8K, you must reload the
file in memory. If the disk was not full,
it has a bad sector, and you should
replace it.

memory overflow

This message occurs during a Read (R)
command when the file being read is too
large to fit in memory. DDT-Z8K reads
only the portion of the file that can be
read into the existing memory. To debug
this program, additional memory boards
must be added to the system configuration.

CP/M=-8000 Programmer's Guide E.6 DDT-Z8K Error Messages

Table E-7. (continued)

Message Meaning

read error

This message indicates one of three error

situations. Retry the operation -- if the
error persists, try the responses
indicated:

® A write error at the time:-the file was
created. You must recreate the file.
If the error recurs, or if you cannot
write to the disk, the disk is bad.

e A bad disk. Use PIP or COPY to copy the
file from the bad disk to a new disk.
Any files that cannot be copied must be
recreated or replaced from backup
files. Discard the damaged disk.

e A hardware error. If the error
persists, check your hardware.

unknown flag mnemonic

The flag specified in an Y command line is
invalid. Check that you have typed the
correct flag mnemonic and reenter the
command. Table 8-3 lists the valid status
flag and control bit mnemonics.

unknown instruction

This error occurs during a List (L)
command. The instruction being
disassembled has an illegal value. Use a
Display (D) command to display the
location of the error. This error could
be caused by one of three things:

e The memory location being disassembled
does not contain an instruction.
Ensure that the area selected is an
instruction. If it is not, reenter the
L command with a correct location.

E-21

CP/M-8000 Programmer's Guide E.6 DDT-Z8K Error Messages

Table E-7. (continued)

Message Meaning

e The size field of the instruction has
been corrupted. Use the debugging
commands in DDT-Z8K to look for an
error that causes the program to
overwrite itself. Refer to Section 8
for a complete description of the DDT-
Z8K commands and options.

e An invalid instruction was generated
by the compiler or assembler used to
create the program. Recompile or
reassemble the source file before you
reinvoke DDT-Z8K.

unknown register

The register specified in an X command
line is invalid. Reenter the Zommand line
with a legal register. See Section
8.2.19.

E.7 DUMP Error Messages
DUMP returns fatal and diagnostic error messages at the console.

The DUMP error messages are listed below in alphabetical order with
explanations and suggested user responses.

Table E-8. DUMP Error Messages

Message . Meaning

Unable to open filename

Either the drive code for the input file
indicated by the variable filename is
incorrect, or the filename is misspelled.
Check the filename and drive code before
you reenter the DUMP command line.

CP/M-8000 Programmer's Guide E.7 DUMP Error Messages

Table E-8. (continued)

Message ' Meaning

Usage: dump [-shhhhhh] file

The command line -syntax is incorrect. The
correct syntax is given in the error
message. Specify the DUMP command and the
filename. If you want to display the.
contents of the file from a specific
address in the f£ile, specify the -S option
followed by the address. Refer to Section
7.2 for a description of the DUMP command
line and options.

E.8 LD8K Error Messages

The CP/M-8000 Linker, LD8K, returns the error messages listed below.

Table E-9. LD8K Error Messages

Message Meaning

bad read in filename

The object file indicated by the variable
filename does not contain the number of
bytes indicated by the file's header. The
file is either incorrectly formatted or
has been corrupted. This error 1is
commonly caused when the input to LD8K is
a partially assembled or compiled object
file. ASZ8K and ZCC create partial object
files when a "disk full" status is
returned to them by the operating system
while assembling or compiling a file. Use
the DUMP utility to ensure that the file
is a complete object file. Reassemble or

recompile the source before you relink the
file.

E-23

CP/M-8000 Programmer's Guide E.8 LD8K Error Messages

Table B-9. (continued)

Message Meaning

bad relocation read in filename

LD8K could not read the relocation

information in the file specified by-
filename. The file hag been corrupted.

Reassemble or recompile the files source
_before you relink it.

bad segment header read in filename

~ The specified file contains an error in
its segment header. The file may have
been damaged. Reassemble or recompile the
file before you reenter the LD8K command
line.

bad symbol table read in filename

LD8K detected an error in the specified
file's symbol table or symbol table header
entry. The file may have been damaged.
Reassemble or recompile the source before
you relink the file.

bad write in filename

LD8K could not write the file specified by
filename. The disk or disk file directory
may be full. Erase any unnecessary files
or insert a new disk before reentering the
LD8K command line.

code too big for non-seg load

The LD8K command line specified a
nonsegmented load but the code to be
loaded exceeded 64 Kbytes.

®

E-24

CP/M-8000 Programmer's Guide E.8 LD8K Error Messages

Table E-9. (continued)

Message Meaning

cannot create filename

LD8K was unablé to create, or open to
write, the file indicated by filename.
Either the command line specified an
invalid drive code, or the disk to which
LD8K was writing is full. If the drive
code was correct, the disk is full. Erase
any unnecessary files, or insert a new
disk before you reenter the command line.

cannot open filename

LD8K cannot open the specified file to
read. Either the specified filename is
invalid, or the file does not exist.
Check the filename before you reenter the
command line. -

<filename> is a segmented file in a nbn-segménted load

The first file specified in the command
" line was nonsegmented, but a subsequent
file was segmented. The two types of
object files cannot be intermixed. LD8K
determines the type of load from the first
file it reads. Determine the type of load
you want performed, and reenter a command
line that specifies files of the same

type.

hash table overflow: number

This error message indicates a fatal error
in the internal logic of LD8K. Recopy

. LD8K from the distribution disk to ensure
that you have an undamaged copy.

map overflow in filename

The load caused LD8K to overflow its
internal map table. LD8K allows 512 map
entries per 1load. The specified file
contains the entry that caused the map
entry count to exceed 512.

E-25

CP/M-8000 Programmer's Guide E.8 LD8K Error Messages

Table E-9. (continued)

Message Meaning

multiple def: list of symbols

The list of symbols specifies those global
symbols in the load which were defined -
more than once. Rewrite the source code.
Provide a unique.definition for each
symbol and reassemble or recompile the
source code before you relink the file.

not x.out format: filenéme

The specified input file is either not in
the proper object file format for CP/M-
8000 or the file has been corrupted.
Ensure that the file is an object file,
output by ASZ8K or the compiler (ZCC).
Section 3 describes the CP/M-8000 x.out
file format. You may have td reassemble
or recompile the file before you relink
it. ‘. ,

segment overflow in filename :

The file specified by filename contains
code for an undefined segment. Rewrite
the source so that the file uses a valid
segment, Reassemble or recompile the
source before you relink the file.

segment number overflow in filename

The load attempted to place too much code
or data into the segment specified by
number. 64K is the maximum segment
capacity. The error occurred when LD8K
attempted to load the file specified by
filename.

stack segment too big

The stack segment specification exceeds
64K. Rewrite the source code so that it
specifies a stack segment of less than
64K. Reassemble or recompile the source
before you relink the file.

E-26

CP/M-8000 Programmer's Guide E.8 LD8K Error Messages

Table E~9. (continued)

Message Meéning

symap overflow in filename

The load caused LD8K to overflow its
symbol map. LD8K allows 4096 symbols per
load. The specified file contains the
symbol that caused the symbol map count to
exceed 4096. Rewrite the source code so
that the file contains fewer symbols.
Reassemble or recompile the source before
you relink the file.

symbol seek failed in filename

LD8K detected a gymbol error in the file
gpecified by filename. The file may have
been damaged. Reassemble or recompile the
source before you relink the file.

symbol table overflow in filename

The load caused the LD8K symbol table to
overflow. LD8K allows a maximum of 6114
unique global symbols. The file specified
by filename contains the symbol that
caused the unique global symbol count to
exceed 6114. You can resolve this error
by rewriting the source code so that the
file declares fewer global symbols.
Reassemble or recompile the source before
you relink the file.

too many files

The command line specified.more than 128
filenames. Reenter a command line that
specifies fewer than 128 filenames.

too many modules at filename

More than 256 modules appeared in the
specified object file during the link.
Rewrite the source code so that the file
contains fewer modules. Reassemble or
recompile the source before you relink the
file.

CP/M-8000 Programmer's Guide E.8 LD8K Error Messages

Table E-9. (continued)

Message Meaning

number undefined symbols: symbol list

This message indicates the number and
provides a list of the symbols that were
not defined. Provide a valid definition
for these symbols and reassemble the
source code before you reenter the LD8K
command line.

unexpected EOF wﬁile reading~header on filename

LD8K could not properly read the file
specified by filename. The file has been
damaged. . Reassemble or recompile the
file's source before you relink it.

unknown option char
The command line contains an option that

is not allowed. The option noted by char
will be ignored.

E.9 NMZ8K Error Messages
NMZ8K returns fatal diagnostic error messages at the console.

NMZ8K error messages are listed below in alphabetical order
explanations and suggested user responses.

Table E-10. NMZ8K Error Messages

The
with

Message Meaning

cannot open filename

The file specification indicated by the
variable filename is incorrect. Check the
spelling of the filename and the drive
code before you reenter the command line.

E-28

CP/M-8000 Programmer's Guide E.9 NMZ8K Error Messages

Table E-10. (continued)

Message Meaning

Not x.out format: filename

The input file indicated by the variable
filename is neither an object file nor a
command file. This message can also
indicate that the file hzs been corrupted.
NMZ8K prints the symbol table of an
object file or a command file. Ensure
that the file is one of these types of
file. If the file is an object or command
file and you receive this message, the
file is corrupted. Rebuild the file with
the compiler or assembler. If the file is
a command file, relink it. Reenter the
NMZ8K command line.

read error on file: filename

The input file indicated by the variable
filename is truncated. Rebuild the file
with the compiler or assembler. If the
file is a command file, relink it.
Reenter the NMZ8K command line.

usage: nmz8k objectfile

The command line syntax is incorrect. Use
the syntax given in the error message and
reenter the command line.

E.10 SIZEZ8K Error Messages

SIZEZ8K returns fatal, diagnostic error messages at the console.
The SIZEZ8K error messages are listed below in alphabetical order
with explanations and suggested user responses.

CP/M-8000 Programmer's Guide E.10 SIZEZ8K Error Messages

Table BE-11l. SIZEZ8K Error, Messages

Message Meaning

cannot open filename

Either the drive code is incorrect, or the
file indicated by the variable filename
does not exist. Check the drive code and
f%lename. Rzenter the SIZEZ8K command
line. '

Not x.out format: filename

The file indicated by the variable
filename is neither an object file nor a
command file. SIZEZ8K requires either an
object file, output by the assembler or
the compiler, or a command file, output by
the 1linker. Ensure that the file
specified is one of these and reenter the
SIZEZ8K command line.

read error on filename

The file indicated by the variable
filename is truncated. Rebuild the file.
Reassemble or recompile, and relink the
source file before you reenter the SIZEZ8K
command line.

E.12 XDUMP Error Messages

The XDUMP utility returns fatal error messages at the console.
XDUMP error messages are listed below in alphabetical order with
explanations and suggested user responses.

E-30

CP/M-8000 Programmer's Guide E.12 XDUMP Error Messages

Table E-12. XDUMP Brror Messages

Message Meaning

cannot open filename

Either the drive code is incorrect, or the
file indicated by the variable filename
does not exist. Check the drive code and
filename. Reenter the SIZEZ8K command
line.

Not x.out format filename

The file indicated by the variable
filename is neither an object file nor a
command file. SIZEZ8K requires either an
object file, output by the assembler.or
the compiler, or a command file, output by
the linker. Ensure that the file
specified is one of these and reenter the
SIZEZ8K command line. -

read error on filename

The file indicated by the variable
filename is truncated. Rebuild the file.
g Reassemble or recompile, and relink the

source file before you reenter the SIZEZ8K
command line.

End of Appendix E

E-31

Appendix F
New Functions and Implementation Changes

CP/M-8000 has six new Basic Disk Operating System (BDOS) functions
and additional implementation changes in the BDOS functions and data
structures that differ from other CP/M systems.

Table F-1l. New BDOS Functions

Function Number
Get Free Disk Space 46
Chain to Program 47
Flush Buffers 48
Sét Exception Vector 61
Set Supervisor State 62
Get/Set TPA Limits 63

F.1 BDOS Function and Data Structure Changes
Implementation changes in CP/M-8000 BDOS functions are described in

Tal le F-2. Data structure changes in CP/M-8000 are described in
Tal-le F-3t

Table F-2. BDOS Function Implehentation Changes

BDOS Function Number Implementation
Change
Return Version Number 12 Contains the version number

3022H, indicating CP/M-~-
8000 Version l.1.

Reset Disk‘System 14 Does not log in drive A
when it resets the disk
system.

Open File 15 Opens a file only at extent

0, the base extent.

Get Disk Parameters 31 Returns a copy of the Disk
Parameter Block (DPB).

CP/M-8000 Programmer's Guide

F New Functions

Table F-3. BDOS Data Structure Implementation Changes
Structure Implementation
Change

Base Page

Additional information has been

added. The base page is no
longer located at a fixed
address. Appendix C outlines the

structure of the base page.

File Control Block

byte

The byte sequence for the Random
Record Field has changed.
most significant byte
first and the least significant

The

(r0) 1is

(r2) is last.

F.2 BDOS Functions Not Supported By CP/M-8000

The list below contains functions and commands supported by other
CP/M systems, but not by CP/M-8000.

Table P-4. BDOS Functions Not Supported by CP/M-8000
BDOS Function Number
Get Address of Allocation Vector 27
Set DMA Base 51
Get DMA Base 52
Get Maximum Memory* 53
Get Absolute Memory* 54
Allocate Absolute Memory* 55
Free Memory* 56
Free All Memory* 57

* Memory management within
these functions.

CP/M-8000 does not require

End of Appendix F

Appendix G

Decimal-ASCll-Hex Table

DECIMAL | ASCII | HEX | DECIMAL | ASCII | HEX | DECIMAL | ASCII | HEX
0 NUL 00 43 + 2B 86 v 56
1 SOH 01 44 , 2C 87 W 57
2 sTX 02 45 - 2D 88 X 58
3 ETX 03 46 . 2E 89 Y 59
4 EOT 04 47 / 2F 90 A 5A
5 ENQ 05 48 0 30 91 [5B
6 ACK 06 49 1 31 92 \ 5C
7 BEL 07 50 2 32 93 1 5D
8 BS 08 51 3 33 94 ~ 5E
9 HT 09 52 4 34 95 5F

10 LF oA 53 5 35 96 =~ 60
11 vT 0B 54 6 36 97 a 61
12 FF ocC 55 7 37 98 b 62
13 CR 0D 56 8 38 99 c 63
14 SO OE 57 9 39 100 a 64
15 SI OF ‘58 : 3A 101 e 65
16 DLE 10 59 : 3B 102 f 66
17 DC1 11 60 < 3c 103 g 67
18 pc2 12 61 = 3D 104 h 68
19 DC3 . 13 62 > 3E 105 i 69
20 DC4 14 63 ? 3F 106 3 6A
21 NAK 15 64 @ 40 107 k 6B
22 SYN 16 65 A 41 108 1 6C
23 ETB 17 66 B 42 109 m 6D
24 CAN 18 67 c 43 110 n 6E
25 CR 19 68 D 44 111 o 6F
26 SUB 1A 69 E 45 112 P 70
27 ESC 1B 70 F 46 113 q 71
28 FS 1c 71 G 47 114 r 72
29 GS 1D 72 H 48 115 s 73
30 RS 1E 73 I 49 116 t 74
31 us 1F 74 J 4a 117 u 75
32 SP 20 75 K 4B 118 v 76
33 1 21 76 L 4c 119 w 77
34 " 22 77 M 4D 120 X 78
35 # 23 78 N AE 121 v 79
36 $ 24 79 o) 4F 122 z 7A
37 $ 25 80 P 50 123 { 78
38 & 26 81 Q 51 124 J 7C
39 ' 27 82 R 52 125 7D
40. (28 83 S 53 126 = 7E
41) 29 84 T 54 127 DEL 7F
42 * 27 85 U 55

End of Appendix G

G-1

Index

$ command, 8-15 auxiliary output, 4-52
$$ command, 8-16 : device, 4-52
-d option, 6-3 function, 4-52, A-1l
-i option, 6-3 .
-lxx option, 6-3 B
-n option, 6-4 ,
-o option, 6-4 B (Breakpoint) command
-r option, 6-4 (DDT-28K), 8-4
-s option, 6-4 ' bad vector error, 4-69
-t option, 6-4 - base page, 1-3, 2-2, 4-66
.ENDM directive, 5-11 format, C-1 _
MACRO directive, 5-11 . initialization, 2-2, 2-3
_map_addr System Call, 4-20, Basic Disk Operating
4-63, 4-65, 4-73 System, (See BDOS)
_map_adr System Call, 4-20 Basic Input/Output System,
_mem_cpy System Call, 4-63 (See BIOS)
_xfer System Call, 4-69 BDOS, 1-1, 2-5
: file access functions, 4-4
A function parameters, 4-2
output console function, 4-3
A (Assemble) command _ program load function, 2-3
(DDT-28K), 8-3 registers, 4-2
absolute (.ABS) directive, 5-3 system reset function, 2-4
~access : BDOS functions, 4-1
operating system, 1-3 invoking, 4-3
address, 1-7 organization, 4-3
align (.ALIGN) directive, 5-3 BIOS, 1-1, 2-5
allocated directory error messages, E-11
entry, 4-12 parameter block, 4-63
AR8K, 1-3, 7-1 A return code, 4-63
- commands, 7-2 block (.BLOCK) directive, 5-3
‘error messages, E-l block storage segment
errors, 7-6 (bss), 1-8
operation, 7-2 : breakpoints, 8-6
options, 7-2 : built-in commands, 1-4, 2-1
syntax, 7-1 byte, 1-7 ’
archive utility, 1-3, 7-1 byte (.BYTE) directive, 5-3
ASCII string constants, 5-11
assembler operation, 1-3, 5-1 C

assembly language
directives, 5-3

O

(Clear) command

ASZ8K, 1-3 (DDT-Z8K), 8-4
assembly language, 5-10 C compiler commands, 1-5
error messages, E-5 CcCcpP, 1l-1, 4-66
invoking, 5-9 chain to program
usage message, 5-2 function, 4-61
AS28K.PD, 5-1 character I/0 functions, 4-42
auxiliary input, 4-51 close file function,
device, 4-51 4-11, 4-22

function, 4-51, A-1

Index-1

command file, 1-2
data types, 3-3
format, 3-1
header, 3-2
segment information, 3-3
command tail, 2-3
common (.COMMON)
directive, 5-4
compute file size
function, 4-27
conin function, A-1l
conout function, A-l
console buffer, 4-48
Console Command Processor,
1-1, 2-5
console input function, 4-43
console output function, 4-44
console status, 4-50
const function, A-1l
COPY, 1l-4
CpP/M-8000
architecture, 1-1
commands, 1-3
default memory model, 2-5
operating system, l-1
terminology, 1-7
text editor, 1-4
CPM.SYS file, 1-1
CPU ’
state of, 8-13
current default disk
numbers, 4-35
Current Default Disk Parameter
Block (CDPB), 4-38

D

D (Display) command
(DDT-28K), 8-4
D command, 7-2
data segment, 1-8
ppT, 1-3
DDT-Z28K, 1-3
command conventions, 8-1
command summary, 8-2
commands, 8-3
error messages, E-16
operation, 8-1
terminating, 8-3
delete file function, 4-14
delimiter characters, 1-6
DIR, 1l-4
direct BIOS call
function, 4-63

direct console I/0
function, 4-45
directory operations, 4-6
DIRS' 1-4
disk change error, 4-6,
disk directory, 4-12
disk file error, 4-6, 4-8
Disk Parameter Block
(DPB), 4-38
disk read error, 4-6
disk select error, 4-6
disk write error, 4-6
DMA buffer, 4-20
drive functions, 4-31
drive select code, 1-5
DUMP’ l-3' 7"1’ 7-6
command line, 7-6
error messages, E=-22
invoking, 7-6
output, 7-7
utility, 1-3
usage message, 7-7

E

E (Load for Execution) command

(DDT-Z8K), 8-3
editing control
functions, 4-48
eject (.EJECT) directive, 5-4
else (.ELSE) directive, 5-4
end (.END) directive, 5-4
endif (.ENDIF) directive, 5-5
endmacro (.ENDM)
directive, 5-5
endrepeat (.ENDR)
directive, 5-5
equate (.EQU) directive, 5-5
ERA’ 1'4
‘error (.ERROR) directive, 5-5
error messages
ARSK, E-1
ASZ8K, E-5
DDT-Z8K, E~16
DUMP, E-22
LD8K, E-23
NMZ8K, E-28
SIZEZ8K, E-29
'XDUMP, E-30
errors
AR8BK, 7-6
exception functions, 4-67

Index-2

exception handler, 4-68, 4-69
exception parameter block
exception vectors, 2-5, 4-68
exit (.EXIT) directive, 5-6
exiting transient

programs, 2-4

F

F (Fill) command
(DDT-28K), 8-6

FCB, 4-4

file attributes, 4-22

‘File Control Block (FCB), 4-4

file loading, 2-2 :

file processing errors, 4-6

file size, 4-27

file specification, 1-5

file structure, 1-1

file system access, 1-2

filetype fields, 1-5

flag and ccntrol word, 8-13

flush buffers functlon, '
4-62, a-1

FORMAT, 1-4

free directory entry, 4 12

free sector count, 4-41

function code, 4- 65

G

G (Go) command (DDT-2Z8K), 8-6
get address of disk parameter
block, 4-39
get console status
function, 4-50
get disk free space
function, 4-41
get disk parameters
function, 4-38
get I/0 byte function,
4-54, aA-1
get memory region table
address function, A-1l
get or set user code, 4-60
get read-only vector
function, 4-37
get/set TPA limits, 4-72
global (.GLOBAL)
directive, 5-6

H

H (Hexadecimal Math) command
(DDT-28K), 8-7
home function, A-1

I

I (Input Command Tail) command

(DDT-Z8K), 8-7

I/0 :
direct console, 4-45.

I/0 Byte, 4-54

I/0 functions

character, 4-42
if (.IF) directive, 5-6
init functjion, A-1l
initial stack pointer, 4-67
input (.INPUT) directive, 5-=7
instruction set, D-1

L
L (List) command
(DDT-28K), 8-8

error messages, E-23

-line editing controls, 4-49

linker (LD8K) operation, 6-1

list function, A-1 -

list output function, 4-53

load parameter block (LPB),
4-65, 4-66

loading a proyram 1nto
memory, 2-2

loading multiple programs, 2-2

logical console device,
4-43, 4-48, 4-69

logical list device, 4-53

login vector, 4-34

long (.LONG) directive, 5-7

longword, 1-7

M

M (Move) command
(DDT-28K), 8-8
macro, 5-11
macro (.MACRO) directive, 5-7
Macro
argument substitution, 5-12

Index-3

definition, 5-11 Q
expansion, 5-12

nesting, 5-13 . Q command (AR8K), 7-4
redefinition, 5-13
magic number, 3-3 R
make file function, 4-18. ,
multiple programs R (Read) command
loading, 2-2 . (DDT-Z8K), 8-9
' R command (AR8K), 7-3
N . radix suffixes, 5-11
random record field,
nibble, 1-7 : 4-23, 4-28
NMZ8K, 1-3, 3-7 . random record number,
NMZ8K error messages, E-28 4-23, 4-28
nonsegmented mode, 1-8 read buffer, 4-48
nonsegmented programs, l1-2 read console buffer
, function, 4-48
o] . : ' . read error, 4-6
read function, A-1l
offset, 1-7 read random function, 4-23
open file function, 4-10, 4-22 read sequential function, 4-15
operating system access, 1-3 read-only bit, 4-37
org (.ORG) directive, 5-=7 register mnemonics, 5-11
: relocation data, 3-4
P REN, 1-4
’ rename file function, 4-19
P (Port Read/Write) command repeat (.REPEAT)
(DDT-Z8K), 8-9 : directive, 5-8
BDOS- functions, 4-2 S reset disk system
PC (Program Counter), 8-8 function, 4-32
physical file size, 4-27 reset drive, 4-40
PIP, 1-4 , resident system
print string function, 4-47 extension, 4-70
printer switch, 4-44 resume (.RESUME)
program control directive, 5-8
functions, 4-57 return current disk
program counter, 8-13 function, 4-35
program counter (PC), 8-=7 return login vector
program counter segment, 8-13 function, 4-34
program execution return version number
tracing of, 8-11 _ function, 4-59
program load, 4-67 RSX, 4-70
program load function, 4-65
program segments, 2-2 S
program status area, 8-13
program S (Set) command
loading, 2-2 : (DDT-Z8K), 8-10
programming tools and SC #2 instruction, 4-3
commands, 1-2 search for first
programming utilities, 7-1 function, 4-12

Index-4

search for next function, 4-13
sect (.SECT) directive, 5-8
sectran function, A-l
segment
block, 1-8
data, 1-8
number, 3-4
text, 1-8
type, 3-3
z8001, 1-8
segmented mode, 1-8
‘'segmented programs, 1-2
seldsk function, A-1l
select disk function, 4-33
set (.SET) directive, 5-8
set direct memory access (DMA)
address function, 4-20
set exception vector
© function, 4-68, A-l
set file attributes
function, 4-21
set I/0 byte function,
4-56, A-1
set random record
function, 4-28
set supervisor state, 4-71
Bet/get user code
function, 4-60
setdma function, A-1l
setsec function, A-1l
settrk function, A-1
SIZEZS‘K, 1-3' 7"1
error messages, E-29
output, 7-12
utility, 7-11 .
space (.SPACE) directive, 5-8
sparse files, 4-27
split I and D spaces, 1-2
start scroll, 4-44
STAT, 1-4
stop scroll, 4-44
subtitle (.STITLE)
directive, 5-8
supervisor stack, 4-71
supervisor state, 4-71
symbol table, 3-1, 3-5
symbol types, 3-6
system control functions, 4-57
system reset function, 4-58
system state, 4-69
system/program control
functions, 4-57

T

T (Trace) command
(DDT-28K), 8-11

T command (AR8K), 7-4
tab characters, 4-43
terminating DDT-Z8K, 8-3
text segment, 1l-7
title (.TITLE) directive, 5-9
TPA, 1-2
TPAB parameters field, 4-73
transfer control function, A-1l
transient command, 2-1
transient program, l-2
Transient Program Area, l1-2,
transient programs, 1l-2

exiting, 2-4 '
TYPE, 1-4

U

U (Untrace) command
(DDT-Z8K), 8-11

USER, 1-4

user number, 4-60

user stack, 2-2

v

V (Value) command
(DDT-28K), 8-12

V option (AR8BK), 7-2,
7-4, 7-5

vector number, 4-68

vector values, 4-68

version dependent
programming, 4-59

version numbers, 4-59

. virtual file size, 4-27

W

W (Write) command
(DDT-28K), 8-12

warm boot function, A-1l

warning (.WARN) directive,
5-9

wildcards, 1-6, 4-10, 4-14

within (.WITHIN)
directive, 5-9

word, 1-7

word (.WORD) directive, 5-9

Index-5

write error, 4-6

Write function, A-1l

write protect disk, 4-36

write protect disk
function, 4-36

write random function,
4-25

write sequential
function, 4-16

X

X (Examine CPU State) command
(DDT-Z8K), 8-13
X command (AR8K), 7-5
x.out, 7-14
x.out format, 3-1, 5-~1
XCON, 1-3, 5-1, 7-1,
7-14, 7-15
pump, 1-3, 3-7, 7-1, 7-8
error messages, E-30
output, 7-9, 7-10
atility, 1-3

Y

Y (Set/Clear FCW Bits) Command
(DDT), 8-14

Z

ZCC3, 1-5

Index-6

	001
	002
	003
	004
	005
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	4-66
	4-67
	4-68
	4-69
	4-70
	4-71
	4-72
	4-73
	4-74
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	6-01
	6-02
	6-03
	6-04
	6-05
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	C-01
	D-01
	D-02
	D-03
	D-04
	D-05
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	E-19
	E-20
	E-21
	E-22
	E-23
	E-24
	E-25
	E-26
	E-27
	E-28
	E-29
	E-30
	E-31
	F-01
	F-02
	G-01
	Index-1
	Index-2
	Index-3
	Index-4
	Index-5
	Index-6

