DIGITAL
RESEARCH"

CP/M-8000"
Operating System

System Guide

1038-2013-001

c?/M~8000"

Operating Systam
Systam Guide

COPYRIGHT

Copvright © 1984 Digital Research Inc. All rights reserved. No
part of this publication may Dbe reproduced, <transmitted,
~-ranscribed, stored in a retrieval system, or translated into any
Language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or
otherwise, without the prior written permission of Digital Research
inc., 60 Garden Court, Post Office Box DRI, Monterey, California
93942.

DISCLAIMER

DIGITAL RESEARCH INC. MARES NO REPRESENTATIONS OR WARRANTIES WITH
AESPECT TO THEE CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY
:MPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR
PURPOSE. Further, Digital Research Inc. reserves the right to
revise this publication and to make changes Zrom time tO time in the
~ontent hereof without obligation of Digital Research Inc. to notify
any person of such revision or changes.

NOTICE TQO USER

Prom time tO time changes are made in the filenames and in the £iles
actually included on the distribution disk. This manual should not
be construed as a representation or warranty that such files or
facilities exist on the distribution disk or as part of the
materials and programs distributed. Most distribution disks include
a "README.DOC" file. This file explains variations from the manual
which do constitute modification of the manual and the items
included therewith. Be sure to read this file before using the
software.

TRADEMARKS

~o/M, CP/M=86, and Digital Research and its logo are registered
~-ademarks of Digital Research. CP/M-68K, CP/M=80, Cp/M=-8000, DDT,
M?/M, and TEX are trademarks of Digital Research. Zilog is a
registered trademark of Zilog, Inc. 280 and Z8000 are trademarks of
Zilog, Inc. Olivetti is a registered trademark of Olivetti, Inc.
5C0S and Olivetti M20 are trademarks of Olivetti, Inc. TI Silent
790 Terminal is a registered trademarx of Texas Instruments,
Iacorporated.

Tnhe CP/M=-8000"™ Operating Svstem Svstem Guide was prepared using the
Digital Research TEX™ Text Formatter and printed in the United

States of America.

Y X R 2222282222 2R R X 2 R AR 2 2 X A2 AR &)
* First Edition: August 1984 *

P Y I 222222222222 L R d X 2 2R d sl dd

Foreword

CP/M=8000™ is a single-user general purpose operating system. It is
designed for use with any disk-based computer using a
Zilog?® Z8000™ or compatible procsssor. CP/M-8000 is modular in
design, and can be modified to sui:t the nesds of a particular
installation.

The hardware interface for a particular hardware environment 1is
supported by the O0EM or CP/M-8000 distributor. Digital
Research® supports the user intarfacs to CP/M~8000 as documented in
the CP/M-8000 Operating Systam User's Guide. Digital Reaearch does
not SUpPPoOrt any additions Of modiZicaticns made to CP/M-8000 by the
CEM or distributor.

Purpose and Andience

This manual is intended to provide the information needed by a
- systams programmer in adapting CP/M-8000 to a4 particular hardware
anvironnent. A substantial degrse of programming expertise is
assumed on the part of rhe reader, and it {3 not expected that
typical usaers of CP/M~8000 will need or want to read this manual.

Prerequisites and Related Publicaticns

In addition to this sanual, the reader should be familiar with the
architecture of the Zilog 28000 as described in the Zilog 16-38it
Microprocessor User's Manual (third edition), the CP/M=-8000
Operating 3System User 's Guide, the CP/M-8000 Operating 3vstem
Programmer s Guide, and, of courss, the details of the hardware
anvironment wheres CP/M~=8000 is to be implemented. Further
information on assembly language programming for the IBOGO aay be
found in Programming the 2ZB00OD, by Richard Matsosial, Sybex, 1980.

Bow This Book is Organized

Section 1 presents an overview of CP/M=-8000 and describes its aajor
components. Section 2 discusses the adaptation of CP/M-8000 for
your specific hardware system. Section 3 discusses bootstrap
procedures and relatad information. Secticn 4 dascribes each 3I0S
-function including entry parameters and return values. Section 3
describes the process of creating a BIOS for a custom hardware
interface. Section 6 discusses how to get CP/M® working for the
first tcime on a new hardware environment. Section 7 provides
information on using the distributed version of CP/M~8000. Section
8 describes the PUTBOOT utility, which generatas a bootable disk.

1ii

appendix A describes the contents of =he CP?/M=-8000 distribution
disks., Appendix B is a listing of the normal and boot BIOS's,
conditionally compiled. Appendix C contains a listing cf the
PUTBOOT utility program.

iv

Table of Contents

1 Systam Overview
1.1 Introduction« « « « 4 4 4 0 4 o4 . .
1.2 CP/M~8000 Organization « . « . .
1.3 Memory Layout . . .« . . .« .« . ¢« ¢ o o v . .
1.4 Console Command Procesgor
1.5 Basic Disk Operating System (BDOS)

1.6 Basic I/0 System (BIOS) . . .

1.7 I/O Devices ¢« ¢ < v 4 v 4
1.7.1 Character Devicas . . -
1.7.2 Disk Devices

1.8 System Generation and Cold Start Operation

2 sfaﬁu Generation
2.l CGverview v 4 e e e e e e
2.2 CQreating CPM.SYS ¢ « « ¢« « &« .
2.3 Relomating Utilities

3 Bootatrap Procedures
3.1 Bootstrapping Overview
3.2 Creating the Cold Boot lLoader . . .

3.2.1 Writing a Loader 8I0S
3.2.2 Building CPMLDR.SYS

3.3 Introduction to ths CP/M-8000 Target Machine

L M20 Memory Architecture e e .
2 CP/M~-3000 Implementation
3 Display and Disk Drivers . . .
4 Addressing the Screen Bit Map

1

[V PE RN DU PV
[
[IRV RVIETY

(continued)

BIOS Functions

4.1 Intreoduction

4.2 Memory Management System Calls

Creating a BRIOS

5.1 Overvieaw ¢ ¢t v v e e e e e e e e

5.2 Disk Definition Tables
5.2.1 Disk Parameter Header
5.2.2 Sector Translate Table
5.2.3 Disk Parameter Block

5.3 Disk Blocking
5.3.1 A Simple Approach
5.3.2 Some Refinements ¢ « v « .
5.3.3 Track Buffering+« .« . .
5.3.4 Least Recently Used Buffer Replacement .
5.3.5 The New Block Flag

Table of Contents

Installing and Adapting the Distributed BIOS
and CP/M-8000

Overview +« « ¢ « v v e e v
Booting on an Oliveecti M20

Bringing up CP/M-8000 Using the CPMSYS.REL File .

Boot Automatic Command Execution
OQuerview ¢« v 4t it e e e e e e e e e

Setting Up Cold Boot Automatic Command Execution

The PUTBOOT Utility

8.1

8.2

PUTBOOT Operation ¢ + & « & & o « + &

Invoking PUTBOOT« « o + « o » &

vi

8-1

Appendixes

A Contents of Distribution Disks

B Sample BIOS Written in C
C PUTBOOT Utility C Lafiguage Socurce
Tables and Figures

Tables
l=l. CP/M=8000 TermS8 . ¢ « « o + « o o+ o =« &
4-1. BIOS Register Usage e e e e
4-2, BIOS functions

© 4-3. CP/M-8000 Logical Dmvxcu Cha:accarxstmca
“4d, I/0 Byte Fisld Definitions
fS*L. Disk Parameter Saadmr Elnu-nta o e e v
‘5»2, Disk Parameter Block Fields
“S=3. BSH and BLM Valuss . . « . . .« 4+ + « .+ =«
S«4, EXM Values + ¢ o v o + o 2 « « -«
Pigures .

“l=ls CP/ M=8000 Do:aul: Mmmory ModaL e e
4l Mamory Region Table’ Fom: 0 N e e s
A=2, I/0 Byte Fields . . . « o« « & o & « « &
5-1. Disk Parametsr Header . . . + <« . . .
5«2. Sample Sector Translate Tabla
3-3. QOisk Parameter Block e e e e . .

vii

4=21
4-23

W L
[
4

Section |
System Overview

1.1 Introduction -

CP/M-8000 is a single-user, general purpose operating system for
miczocomputers based on the 2ileog 28000 or equivalent microprocessor
chip. It is designed to be adaptable to almost any hardware
environment, and can be readily customized for particular hardware
systems. ‘

CP/M~8000 is equivalent to other CP/M systems with changes dictated
by the 28000 architacture. In particular, CP/M-8000 supports the
very large segmented address spacs of the ZB000 family.

The CP2/M-8000 £ile system is upwa:dly compatible with CP/M-
80" Varsion 2.2, CP/M=-86" Version l.l, and CP?/M~G8K™ Version 1.2.
The CP/M-8000 file structure allows files of up to 32 nmegabytes per
file. ~.CP/M=-800Q0 supports from one. to sixtaen disk. drxvss with as.
many a8 $12 megabytes per drive. rfii("‘,:fi :

The entize CE/M—BOOO Qperating systqm rusidas in its own memory
‘segment at all times, and is not ralosded at -a warm start. CP/M-
8000 can ‘be configured to reside in any portion of memeory. The
remainder ‘of the gddress space is available for appl.xcanons
Srograns . ‘and i called the transient program arsa, TPA, The TPA is
assumed to congist of one or wmore complete (§4 Kbyte) memory
segreants. CP/M-8000 supports both ssgmentad and non-segmented user
programs, and supports the the splitting of user program and data
into saparats addresszing spaces.

Several tmrms used throughout this maduai-aze defined in Table l-l.

" Table l-l. CP/M~8000 Tarms

. Term _ Meaning

nibble j=bit half-byte

byte 3=~0it value

word l6-bit value :

longword 32-pit value E

address 32-bit identifier of a storage E
location ,

physical address address of a location .n physical i
memory i

s
'
o)

ZP/M=-8000

Svstem Guide

Table 1l-1l.

L.1 Introguction

(continued)

Term

Meaning

logical address

‘system mode

normal mode

offaet

text segment
data segment
block storage
sggment (Z8001)

segnented mode

non-segnmentced
mode

absolute

relocatable

address as issued by a program,
possibly requiring translation into
a physical address.

a program running in system mode can
execute all instructions, including
1/0 instructions and instructions to
change the contents of special
control registers

programs running in normal mode are
prevented £from executing the so-
called privileged instructions

a valve defining an address in
storage:; a Zixed displacement from a
base address. For example, the base
address of segment AE with an offset
of B00OR provides a phvsical address
of OAOO8B000EH.

program section containing machine
instructions

pregram section containing
initialized data

program section coentaining
uninitialized data

set of adjacent memory addresses (up
t0 64K) with the same segment number

running-state of zhe segnented CPU in
which addresses can have different
segment members

running-state of the 28000 CPU's. All
addresses generated by segmented
CPU's in this mode have the same
segment number

" describes a program that must reside

at a fixed memory address.

describes a program which includes
relocation information so it can be
loaded into memory at any address

CP/M=-8000 System Guide 1.1 Introduction

The CP/M-8000 programming mcdel is described in detail in the CP/M-
8000 Operating Systam Programmer's Guide. Aftar CP/M-8000" i3
loaded 1n memory, the remaining segments of address space that are
not occupiad by the operating system are called the Transient
Program Area (TPA). To summarize this programming model briefly,
CP/M-8CU0 supports the following memory segments that ars not
occupied by the operating sygstem: a user stack, a base page and the
three program segments. These thres program segments consist of a
text segment, an initialized data segment , and a block storage
segment (bss). When a program is loaded, CP/M-8000 allocates space
for these progran segments in the TPA. The BDOS Program Load
Function (59) loads a transient program in the TPA. If memory
locations are not specified when the transient program is linked,
the program is loaded in the TPA as shown in Figure 1-1.

High : o High
Memory ; ’ Mermory
System Stack) Basa Page
Reserved . . User Stack
cce S .~ Reserved

.BDOS
. User Code
! and Data i
BIOS
0 0
CP/M System Mamory Transient Program Area

(System Address Spacs). (Normal Address Space)

Pigure l-i. CP/M-3000 Default Memory Model

-z, M=8000 System Guide 1.1 Introduction

Wnen a transient program is loaded it may be run in segmented Oor
ncn-segmenteé mode and the address of the transient program (TPA)
may be a segmented or non-segmented space. If the TPA is non-
segmented it may combine or separate code and data, depending upon
~re linker options used to link the program and the space
requirements ©of the transient progran. Non-segmented transient
programs may be run either in a single TPA segment space or in a
segment space split into two spaces: one for instructions and one
<cr data (called split I and D space). The Memory Region Table will
decide in which physical segments to run the non-segmented program.
1f the program is to run with split instruction and data spaces, two
onysical segments are required (with the data, bss, and stack in the
same physical segment), otherwise only a single physical segment is
used. All addresses generated by a non-segmented transient program
will have the same segment number.

A program running in segmented mode will be loaded into a segmented
~BA in which addresses can have different segment numbers. This
allows segmented programs to use any segment of the TPA, as
svecified in their object files. A sesgmented program requires cthe
allocazion of physical address segments to logical address segments,
and this is accomplished during link time.

1.2 CP/M—8000 Organization

2P /M=8000 comprises three system mnodules: the Conscle Command
Processor (CCP), the Basic Disk Operating System (BDOS), and the
Basic lnput/Output System (BIOS). These modules are linked together
2o form the operating system. They are discussed individually in
Znis section.

.1 Memory Layout

The CP/M-8000 operating system can reside anywhere in memory. The
location of CP/M-8000 is defined during system generation. Typically
sne system occupies a segment which is logically separated £rom the
T3L. See previous Figure 1-1 for an illustration of a logical
secment separation of tne system and the TPA.

The TPA for non-segmented programs consists of one to two 64 Kbyte
segments, one £or program code and one for data. Some programs
axpect program code and data to be mixed in one segment. The segmant
in which such programs are run may be the same as or different from
the segments that contain programs with separated program code ‘and
data. The TPA for segmented programs consists of up to 128 segments.

CP/M-BOOQ'Systnm Guide 1.3 Memory Layout

The mapping of logical addresses (which consist of a 7-bit segment
numbar and a l6-bit offset within a segment) into physical addredses
is done by system~specific hardware, and the BIOS contains memory
managament oparations to map addressas and copy blocks of memory.
The two functions for map addressing and to copy blocks of memorvy
are map adr and mem cpy. The function map_adr translates logicz.i
addressss into physical addresses and mem |_CPYy copies a specified
number of bytlt !:um one physical addztss "to another.

See Piqutu 1-1 (CE/M‘BOOO Mampory’ Modal)ﬁgpt a discussion of the
CP/M~-8000 memory structure. In this memory model, the CP/M-8000
operating system resides in the System Memory and is the system
address space (system operating mode). The system address space
combines code and data, since there is no need for the extra space
provided by code/data separation. The usar task has a Transient
Program Area {TPA) which resides in the normal address space (normal
oparating modae). The TPA may be segmentad or non-segmented. The Baase
Page is in the highest part of data: spacu and the user stack is just
below it in &ata space.

As di:cuaaad aa:linr, memory lacations are aﬁdrassad by a saven-bit
segment. nuabar ‘and 3 sixteen-bit offset within the segment. This is
not a linear but a two-dimensional space, capable of addressing 8
megabytes. Moreover, the System and Normal ¢perating modes can have
‘B@parate address spaces, so that a total of 16 meqabytns of physical
‘gemory San. be supported.

P:ocnaamz (ccr)

!huACQnsnla CQmmand Processar, (CCPY ptuvidas tho user interface to
LP/M=-8000. It uses the BDOS to read user commands and load
graqraus..and provides several built-in user commands. It also
-providtlzpansinq ot ccmnand linegs entared at the console.

& »fcperatznq Systtm (BDGS) ptuvxﬂns ‘dperating . system
services 't ;&ppliﬁ;tions programs .and to the CCP, These include
character. /0, disk £ile I/0 (the BDOS disk 1/0 operations comprise
the CP/M~8000 file system), program loadinq, and others.

2r/M=-8000 System Guide 1.6 Basic I/0 System (3108)

1.6 Basic 1/0 System (BIOS)

Tre Basic Lnput Output System (BIOS) is the interface between CP/M-
300C and its hardware environment. All physical input and output is
done by the BIOS. It includes all physical device drivers, tables
defining disk characteristics, and other hardware specific functions
and tables. The CZP and BDOS do not change for different hardware
anvironments because all hardware dependencles have been
soncentrated in the BIOS. Each hardware configuration needs 1ts own
370S. Section 4 describes the BLOS functions in detail. Seczion 5
discusses how to write a custom BIOS. A sample BIOCS is presented in
Appendix B.

1.7 I/0 Devices

27 /M=-8000 recognizes two basic types of I/0 devices: character
devices and disk drives. Character devices are devices that handle
one character at a time. Disk devices handle data in units of 128
mvtes, called sectors, and provide a large number of sectors which

~an be accessed in random, nonseguential, order. In fac:, real
svstems might nave devices with characteristics different £rom
these. I+ is the BIOS's responsibility to resolve differences

nerween the logical device models and the actual physical devices.

1.7.1 Character Devices

Tharacter devices are input/output devices which accept oOr supply
scresams of ASCII characters to the computer. Typical character
4evices are consoles, printers, and modems. In CP/M-8000 operations
on charactar devices are done one character at a time. A character
input device sends ASCII CTRL-2 (lAH) to indicate end-ocf~-file.

1.7.2 Disk Devices

Disk devices are used for file storage. They are organized into
sec~ors and tracks. Each sector contains 128 bytes of data. If
sector sizes other than 128 bytes are used on the actual disk, then
+he BIOS must do a logical-to-physical mapping to simulate 128-byte
sectors to the rest of the system. All disk I/0 in CP/M-8000 is
done in one-sector units. A track is a group of sectors. The
numper of sectors on a track is a constant depending on the
pcarticular device. The charactaristics of a disk device are
specified in the Disk Parameter Block for that device. (See
Section 5.)

To locate a particular sector, the disk, track number, and sector
numcer must all be specified.

CP/M=-8000 System Guide ‘ 1.8 System Generation

1.8 System Generation and Cold Start Operation

Generating a CP/M-8000 systam i3 done by linking together the CCP,
BDOS, and BIOS to creats a file called CPM.SYS, which is the
operating systanm. Section 2 discusses how to create cpH. SYS.
CPM.SYS is brought into memory by a bootstrap loader, which
typically resides on the f£irst two tracks of a systen disk. The
tera system disk as used hers means a disk with the £file CPM,.SYS5 and
a bootstrap loader, CPMLDR.SYS on the systam tracks. Section 3
discusses the creation of a hootstrap loadar.

Zad of Section 1

Section 2
System Ceneration

2.1 Overview

This section describes how to build a custom version of CP/M-8000 by
combining your BIOS with the CCP and BDOS supplied by Digital
Research to obtain a CP/M~8000 operating system suitable for your
specific hardware systsm. Saection $ describes how to create a BIOS.

In this section, we assume that you have access to an already
configured and executable CP/M-8000 systam. If you do not, you
should firat read Section 6, which discusses how you can make your
first CP/M-8000 system work.

- ACP/M~8000 operating system is generated by using the linker, LDBK,
o link .tégether the system modules (CCP, BDOS, and BIOS) and bind
- the system to an absoluts nemory lotation. The resulting file is the
- cmtiguzad epuae;nq systan. It is named CPM.SYS.

;fz 2 Creating CPM. srs

Thc €CP and BDOS tar CP/M-'SOGO are distributad in a relocatable
~‘object code file named CPMHYS.REL. ' You must link your BIOS with
cpum.m vaing th- tollamnq comnd

A)&ﬂﬂ! N -0 CFH&S!S 3105.33& CEHSYS REL, -1CPM

where axos REL is the cau;lil.ed or assembled BIOS. This creates
CPM. SYS. whlch is an. abwlu:n_ varsion of your systen.

}~:;a" Enlowntinﬂ Btiliti-!

'*-‘jiincn the tilities all mm in’ nanﬂ-smanud aode,’ t:hey do not need.
. to be telocaced: they will run in whatsver segments you have
i assigned for the TPA. Nots that the compiler and linker raquire
' gepazate code and data seqmencs; all other utilities supplied with
the system will run with nonsplit instruction and data segments when
linksed without the "-i" option of the linker.

. End of Section 2

Section 3
Bootstrap Procedures

3.1 _aootatxnppingfovhziiﬁ“:“’

ffaouta::np lﬂldinq is tht aeaia o! brnnqing the CP/M-GOOO operating
systam into memory and passing control to it. Beotstrap loading is
. necessarily ha:dwcrqndnp-ndmnt. and it is nct possible to discuss
all possible variations jin this wsanual. - However, the manual
pressants a model of me:m:appmg that is tpplz.e:ble to many
syutt-. and pa:ticuxazly ko thu oxivnctt"anu

The model of h@qtstxupgxng :hn: we pxcnant‘nasuua- that the CP/M-
8060 mmgiaq .Systam i3 t6 be’ J,md-d ‘intc”,nemry from & disk in
' ch i faw trac G Eirﬂfitwo) ars reserved

- , A \-pg:lmiters is
<dia¢un&ud:i] '/4-8000 operating
systen reside ils na CPML Y ‘ribed in Section
2), and the Fyscam brécks contain 4 B taté;p lmdur . program

‘ Pr . ! nnd;
“ROM, the ha:dwixt ‘LoAdy Onie O TOZE aoutarn beginning at track
0. sactor . l. intn nanuzy at a predetsrsined address, and then

. * . ' he ' syst it
CPMLDR) into Amtnn: praﬁnts:minﬂ o.ddrusa in mnn:y
jumps ko that addrees. ~ Note ‘that if your hardware is smarc
enough, -steps Ll and 2 uan e ccnninod xnto onc aLep.

3. The code loaded in stap 2, which is now ex.cutinq. is the CP/M
Cold Boot Loader, CPMLDR, which is an abbreviatad version of
CP/M~8000 itsalf. CPMLDR now finds the file CPM.SYS, loads it,
and jumpa to it. A copy of CPM.SYS is now in memory,
executing. This compietes the bootatrapping process.

=3 M=8000 System Guide 3.. Bootstrapping Overview

'y order to create a CP/M-B8000 diskette that can de bootecd, you need
=5 KnOw how to create CPM.SYS (see Section 2.2), how to create the
~>1¢é Boot Loader, CPMLDR, and how to put CPMLDR onto your system
--acks. You must also understand your hardware enough to be ‘able to
des1gn a method for bringing CPMLDR into memory and executing it.

3.2 Creating the Cold Boot Loader

CPMLDR is a miniature version of CPM.SYS. It contains stripped
varsions of the BDOS and BIOS, with only those functions which are
n=zeded to open the CPM.SYS file and read it intc memory. CPMLDR
exists in at least two forms; one form is the information in the
system tracks, the other is a file named CPMLDR.SYS, which 1is
created by the linker. The term CPMLDR is used to refer to either
of these forms, but CPMLDR.SYS only refers to the file.

CPMLDR.SYS is generated using a procedure similar to that used in
generating CPM.SYS. That is, a loader BIQS is linked with a loader
svstem library, named CPMLDR.REL, to produce CPMLDR.SYS. Addicional
modules can be linked in as reguired by vour hardware. The
resulting file is then loaded onto the system tIacks using the
PUTBOO0T utility program.

To perform the link and load, enter the following command line:

A> LDBEK =W =0 CPMLDR.SYS LDRBIOS.REL CPMLDR.REL -1CPM

3.2.1 Writing a Loader BIOS

The loader BIOS is very similar to your ordinary BIOS; it just has
Zewer functions, and the entrvy convention is slightly different.
The following is a list of the differences.

L. Only one disk needs to be supported. The loader system selects
only drive A. If you want to boot £rom a drive other than A,
vour loader BIOS should be written to select that other drive
when it receives a request to select ‘drive A.

2. The loader BIOS is not called through a trap: the loader BDOS
calls an entry point named bios instead. The parameters are
still passed in registers, Just as in the normal BIOS. Thus,
your Punction 0 does not need to initialize a trap, the code
that in a normal BIOS is the Trap 3 handler should have the
label _bios, and you exit from your loader BIOS with an RET
instruction.

CP/M=-8000 Systam Guide 3.2 Creating the Cold Boot Loader

3. Only the following BIOS functions need to be implemented:

0 (Init) Called just once, should initialize hardware as
necessary, no return value necessary. Neote that Function
0 is called via the bios label with the function annber
equal to 0. You do not need a separats _lnit entry pcunt.

4 {Conout) Usad eovp‘rint error messages during boot. If you
do not want error messages, this function should just be an
RET instruction.

9 (Seldsk) Called just onca, to select drive A.

10 (Settrk)

11 (Setsec)

12 (Setdma)

13 (Read)

16 (Sectran) -

18 (Gnt MRT§ ﬁ’m‘.- Gused now, but might be used in future
re Lusna.. .

zz (Snt cxeoptiani

4. You aa not - mud s include an allocation vector or a check
' ‘vector, and the Disk Parameter Header valuas that point to
thesa. can be anything. However, you s§till need a Disk
Parameter Header, Disk Paranster B‘lock, and directory buffer.

143 ia pcniblo tu usq the same source code for both your ncmnl 8108
and your locader B8I0S if you use conditional compilation or assesmbly
.20 distinguish the two. Appendix B8 prov:.dls an exuple of
:t»:,cnnduianu mpilm:im.

3.2.3 Buildinq CPMLDR. SY3

Once you have writtsn and compiled (or assembled) a loader BIOS, you
can build CPMLDR.SYS in a manner very similar to building CPM.SYS.
There is one additional complication here: the result of this step
is placed an the system tracks. So, if you need a small prebooter
to bring in the bulk of CPMLDR, the prebooter must also be included
in the link you are about to do. The details of what must be done
are hardware dependent, but the following example should help to
clarify the concepts involved.

CP?/M-8000 System Guide 3.2 Creating the Cold Boot Loader

Sucpose that your hardware reads track 0, sector 1, into memory at
Tocation <>400H when reset is pressed, then jumps to 400H. Then
vour boot disk must have a small program in that sector that can
load the rest of the system tracks into memory and execute the code
“hat they contain. Suppose that you have written such a preogram,
assembled it, and the assembler output is in BOOT.O. Also assume
that your loader BIOS object code is in the file LDRBIOS.REL. Then
rhe following command links together the code that must go on the
svstem tracks. .

A>LDSK =W =0 CPMLDR.SYS BOOT.O LDRBICS.REL CPMLDR.REL —-/CPM

Once vou have created CPMLDR.SYS in this way, you can use the
PUTBOOT utility to place it on the system tracks. PUTBOOT is
described in Section 8. The command to place CPMLDR on the system
cracks of drive A is

A>PUTBOOT CPMLDR.SYS A:

PUTSOOT reads the Z%ile CPMLDR.SYS and puts the result on the
specified drive. After vou have copieé CPM.SYS to the disk, you can
boot from it.

3.1 Introduction to the CP/M-8000 Target Machine

This section presents the Olivetti M20 as a specific microcomputer
model chosen to implement the CP/M-8000 operating system. The

i¢fference between the M20 model and the generic model is the
pootstrapping loader placenment.

The Olivetti M20 uses the Zilog 28001 microprocesor and is capable
of supoorting up to 512K bytes of physical memory. The standard
configuration of the M20 includes a monochrone, bit-mapped display
screen and two built-in 5 1/4 inch floppy disk drives with a
capacitvy of 320K bytes each. Optionally, one of the floppy disk
drives can be replaced by a built-in hard disk drive with 8
megapbyvtes of storage. The M20 also has a serial port, which may be
aztached to a line printer or to another computer.

CP/M-8000 System Guide 3.3 The CP/M-8000 Target Machine

3.3.1 M20 Mewmory Architecture

Whan mplmm:inq or porting over the CP/M-8000 operating system to
‘the Olivetti M20, the memory architecture of the M20 requires
particulac. attantion. Physical memory in the M20 is configured in

aks of 16K by‘hu each. The mapping between seqmented addresses and
_physical memocy banks i.s done through a ROM, and thus is not
programmablia by thHe user. The M20 contains 5 memory map for a
‘configuration with 256K bytss and a monochrotu#display. One 16K
bank is set aside for the bit-mapped display. This memory is
‘sddressed as aegment 3. Segment 4 addresses the bovotstrap ROM, and
‘segment 2 is used as RAM by the ROM. The rest of memory is available
‘for program use. Note that the same banks of physical memory can be
‘addressed in various ways. For instance, segment 8 has a separated
eode and data space. Segment 10 has a combined code and data space,
%whoan phyuieal memory is t-.he same as the _segment 8 code space

t _i:':ion

_;he ¢9/M—80W aptratan tystm :asidas in

_ user programs are loaded into segment 8 if
, and data, or into sagment 10 if they use
:ﬁg ,ggd 8. The infumatzoﬁ describing the type of
8 nedds 1§ pragent in the first word of the program's

' snted programs age loaded lnto whatever
eic b;wt "511 Lo)

sce dr;wus £or the displ.a? screen and the
rite his own drivers or ‘use the drivers
-8000 BIOSIO module invokas the segmentad
addressing. rode b all pf memory is addressable. ‘The
HIN8I0 module-thent _1-.1 : ROM drivers ind: rwtl? through a branch

<kable which residas at a E.i.med location in the ROM. This feature
‘makes it unnecessary to change the cwu-soao WIOSIO module to
operate compatibly with ' any future versions of the Olivetti ROM.

13 cvwaﬁ hare. ‘!h:ﬁ P/

~p/M-3000 System Guide 3.3 The CP/M-8000 Target Machine

3.3.4 Addressing the Screen Bit Map

Graphics programs may be implemented easily using the SC $#1 memory
management primitives. The user program builds an image of the bit
map in a 16K buffer of its own. The user program then calls mem_cpy
+o =opv that buffer to segment 3, locations 0 <through 16383.
Alternatively, a user program can invoke the segmented addressing
mode by executing a _map_adr system call. The program then will
address the bit map memory directly. The programmer should be aware
-na% entering segmented mode has side effects for which the user
program must compensate.

End of Section 3

Section 4
- BIOS Functions

4.1 Introduction

All CP/M=-8000 hardware dependencies are concentrated in subroutines
that are collectively refarred to as the Basic I/0 System (BIOS). A
CP/4-8000 system implementor can tailor CP/M-8000 to fit nearly any
28000 operating environment:.. This section describes each BIDS
function: its calling conventions, parameters, and the actions it
must perform. The discussicn of Disk Definition Tables is treated
geparately in Zection S.

. When the B3DCS calls a BIOS function, it places the function number

“in register R3, and function parameters in cegisters RR4 and RR6.
. It then exscutes a 3C #3 {instruction. R3 is always needed to
. gpecify the function, but each function has its own requirements for
. ¢ther parametess. S$pecific parameter requirements are provided in-
- the deascription of sach function. The BIOS uses RR6 to return any

""¢alues to the caller. The size of the returned value depends on the
-~ particular BIOS function. Byte values contained in word or long=
- word length registers are null padded.

" Yote: The systam call handler in the BICS must preserve at least

- registers RB through R15. The handlers provided in most BICS's

© preserve all cegistars, except for RR6 which is used to ceturn

“results. Of course, Lf che BIOS usas intagrupfs to service /0, the
interrupt hendlers will need to preserve registers.

Table 4-l summarizes BIOS register usage.

“-Dmser applications typically do not need to make direct use of BIOS
Sunceions. - ‘Howaver, when access to the BIOS is requicad by user

/software, it should use the BDOS Direct 8I08 Punction, Call 30,
‘{nsteaad of calling the '8I08 with a SC 43 instruction. This rule
snsures that spplications remain compatible with future systems.

Phe BIOS must also maintain a vector of Excaption Handler addresses,
through which all system calls and traps are routed. The vector
numbers have been selgcted to match the excmption used in C2/M-6B8K.
These numbers will be found in the Programmer's Guide.

Section 4.2 describes the system calls for 28000 memory management.

The Disk Parametmsr Header (DPH) and Disk Parameter Block (DPB)
formats have changed slightly from previous CP/M versions o
accommodate the 280003 32-bit addresses. The formats are described
in Section S.

4-1

22 M=-8000 Svstem Guide 4.1 Introduction

Table 4-1. BIOS Register Usage

Eantry Parameters:

R3 = function code
RR4 = first parameter
RR6 = second parameter

Return Values:

RL7 = byte values (8 bits)
R7 = word values (16 bits)
RR6 = longword values (32 bits)

e decimal BIOS function numbers and the functions they correspond
=0 are listed in Table 4-2.

Table 4-2. BIOS Functions

E Number Function

r- o} Initialization (called for cold boot)

! 1 Warm Boot (called for warm start)

} 2 ‘ Conscle Status (check for console

character ready)

g 3 Read Console Character In
E 4 Write Console Character Out
é 5 List (write listing character out)
é 6 Auxiliary Output (write character to
E auxiliary output device)
f 7 Auxiliary Input (read €from auxiliary
input)
8 Home (move to track 00)
9 Select Disk Drive
10 Set Track Number
11 Set Sector &umber_

CP/M=-8000 System Guide 4.1 Introduction

Table 4~2. {continued)

Number Function
12 Set DMA Address
13 Read Selectsd Sector
14 Writs Selacted Sector
15 Return List Status
16 Sector Translate
18 Get Memory Region Table Address
19 Get I/0 Mapping Byte
20 Set I/0 Mapping Byte
21 Flush Buffers
22 Set Exception Handler Address

~F /M=8000 Svstem Guide Tuncstion 0: Init:alization

FONCTION 0: INITIALIZATION

Entry Parameters:
Register R3: O0OO0E

Returned Value:
Register R7: User/Disk Numbers

370S Function 0 executes the cold bootstrap sequence and initializes
rhe BIOS. Unlike other BIOS functions, this function is not invoked
w.ch an SC #3 instruction. Instead, a jump to the "entry:" label in
the biosboot module invokes this function to execute. The biosboot
module sets up the PSA system segment and system stack pointer, then
jumps to the to a location labeled "bios" to invoke tnis function.

Tinceion 0 calls _trapinit and _biosinit to enable the BIOS. The
_:xrapinit routine initializes zhe trap handler table. The _biosinit
Toutine inicializes the hardware and internal BIQS variables.
Pince=ion 0 then transfers control to the CCP.

inction 0 returns a longword value. The CCP uses this value to set
ne initial user number and the initial default disk drive. The
2ast significant byte of RR6 is the disk number (0 for drive A, 1
or drive B, and so on). The nex:t most significant byte is the user
naumber. The high-order bytes should be zero. :

The entry peoint to this function must be named bios and must be
declared global. This function is called only once £rom the System
at system initialization.

r3r an example of bootstrap code, see tne BIOSBOOT.B8KN £ile on the
diswribution disk.

CP?/M=-8000 System Guide

Function 1l: Warm Boot

FUNCTION l: WARM BOOT

Entzry Parametars:
Register R3: OlH

Reaturned Value: None

This function

is called whenever a program terminates. Some
reinitialization of the hardware or software might occur.

When this
function completes, it jumps directly to the entry point of the CCP,
named _ccp. Note that _ccp must be declared as a global.

Cp/mM-B000 System Guide Function 2: Console Status

FUNCTION 2: CONSOLE STATUS

Entry Parameters:
Register R3: O2H

Returned Value:
Register R7: OOFFH if ready
Register R7: OOQOH if not ready

T™his function returns the status. of the currently assigned console
device. It returns OOFFH in register R7 when a character is ready

+~ be read, or OOOOH in register R7 when no console characters are
ready.

CP/M-8000 System Guide Punction 3: Read Console Character

FUNCTION 3: READ CONSOLE CHARACTER

Entry Parameters:
Register R3: 03"

Returned Value:
Register 37: Character

This function reads the next console character into register R7. If
no console character is ready, it waits until a character is typed
before returning.

ZP/vw-8000 System Guide Function 4: Write Console Character

FUNCTION 4: WRITE CONSOLE CHARACTER

Entry Parameters:
Register R3: O4H
Register R5: Character

Returned Value: None

This function sends the character £rom register R5 to the consocle
output device. The character is in ASCII. You might want to
irclude a delay or filler characters for a line-feed or carriage
recurn, 1f your console device requires some time interval at the
and of the line (such as a TI Silent 700 Terminal™). You can also
filrer out control characters that have undesirable effects on the
zcnsole device.

CPp/M-8000 System Guide Function S: List Character OQutput

FUNCTION 5: LIST CHARACTER OUTPUT

Entry Parameters:
Register R3: OS5H
Registar RS5: Character

Returned Value: None
This function sends an ASCII character from register RS to the

currently assigned listing device. If your list device requires
some communication protocol, it must be handled here.

Cp/M-3000 System Guide funcsion 6: Auxiliary Qu

FUNCTION 6: AUXILIARY OUTPUT

Entry Parameters:
Register R3: O06H
Register RS5: Character

Returned Value: None

This function sends an ASCII character from register R5 to
cur-ently assigned auxiliary output device.

Tput

the

CP/M=-8000 System Guide Function 7: Auxiliary Input

FUNCTION 7: AUXILIARY INPUT
Entry Parameters:
Registsr R3: 07H
Returned Value:

Register R7: Character

This function reads the next character from the currently assigned
auxiliary input device into register R7. It reports an eand-of-file
condition by returning an ASCII CTRL~Z (lAH).

4-11

o2 ,;M=-8000 System Guide Function 8: Home

FUNCTION 8: HOME

Entry Parameters:
Register R3: O8H

Returned Value: None

™ .s function returns the disk head of the currently selected disk
to the track 00 position. I1f your controller does not have a
special feature for finding track 00, you can translate the call to
a SETTRK function with a parameter of 0.

CP/M=-8000 System Guide Function 9: Select Disk Drive

FUNCTION 9: SELECT DISK DRIVE

Entry Parameters:
Register R3: Q09H
Register RS: Disk Drive
v Register R7: Logged-in Flag

Returned Value:
Register RRG: Address of Selected
Drive's DPH

This function selects the disk drive specified in register RS for
further operations. Registar RS contains 0 for drive A, 1 for drive
B, up to 1S for drive P,

On each disk select, this function returns the address of the
selectad drive's Disk Parameter Header in register RR6. See Section
5 for a discussion of the Disk Parameter Header.

This function must return 00000000H in register RR6 if a nonexistent
drive has been indicated in register RS. Although the function must
return the header address on each call, it is advisable to postpone
the actual physical disk select operation until an I/0 function
(seek, read, or write) is performed. Disk select operations can
occur without a subsequent disk operation. Thus, doing a physical
salect sach time this function is called may waste time.

If the least significant bit in register R7 is zero on entry to the
Selact Disk Drive function, the disk is not currently logged in. If
the disk drive is capable of handling varying media (such as single-
and double~sided, single- and double-density disks), the B3I0S should
check the type of media currently installed and then set up the Disk
Parameter Block.

CP/M-8000 System Guide Function 10: Ser Track Number

FUNCTION 10: SET TRACK NUMBER

Entry Parameters:
Register R3: OAH
Register RS: Disk track number

Returned Value: None

This function specifies in register RS the disk track number for use
in subsequent disk accesses. The track number remains active until
eitrer another Function 10 or a Function 8 (Home) is performed.

You c=an chocse to physically seek to the selectaed track at this
~ime, or delay the physical seek until the next read or write
actually occurs.

T™he <-rack number can range £rom O to the maximum track number
supported by the physical drive. However, =he maximum track number
1s limited to 65535 by the fact that it is being passed as a 16-bit
quanzity. Standard floppy disks have cracks numbered from 0 to 76.

4-14

CP/M=8000 System Guide Function ll: Set Sector Number

'

FUNCTION 11: SET SECTOR NUMBER

Entry Parametsrs:
Ragister R3: OBH
Registar RS: Sector Number

Returned Value: None

This function specifies in register RS the sector number for
subsequent disk accesses. This number remains active until Function
11 is callad again.

The function selects actual {unskswed) sector numbers. I1f skewing
is appropriate, call Function 16 previous to calling Function 1ll.

You can sand the sector number information to the controller after
executing Function 11, or you may delay sector selection until a
read or write operation occurs.

27 /M-8000 System Guide Function 12: Setz DMA Address

FUNCTION 12: SET DMA ADDRESS

Entry Parameters:
Register R3: OCH
Recister RR4: DMA Address

Returned Value: None

Tris function contains the DMA (disk menory access) address in
register RR4 for subsequent read or write operations. Note that the
ccntroller need not actually support direct memory access. The BIOS
uses the l128-byte area starting at the selected DMA address for the
memorv buffer during the following read or write operations. This
“inction can be called with either an even or an odd address for a
OMA buffer.

CP/M=-8000 System Guide Function 13: Read Sector

FUNCTION 13: READ SECTOR

Entry Parameters:
Register R3: ODH

Retugned Value:
Register R7: 0 if no error
Register R7: 1 if physical error

After the drive has been selscted, the track has been set, the
sector has been set, and the DMA address has been specified, the
Read Sector Function uses these parameters to read one sactor and
‘returns the error code in register R7,.

Currently, ¢P/M-8000 responds only to a zero or nonzero return code
value. If the value in register R7 is zero, CP/M-8000 assumes that
the disk operation completad properly. If an error cccurs, the BICS
should attempt at ‘least ten retries to see 1f the error 1is
recoverable.

4=-17

C?/M-8000 System Guide Function l4: Wraite Sector

FUNCTION 14: WRITE SECTOR

Entry Parameters:
Register R3: OEH
Register RS: O=normal write
il=write to a directory
sector
2=write to first sector
' of new block

Returned Value:

Register R7: O=no error
l=physical error

function is used to write 128-byte data blocks from the

This

currently selected DMA buffer to the currently selected sectar,
track, and disk. The value in register RS indicates wnether the
write 1s an ordinary write operation or whether there are special

consigeratians.

1f register R5=0, this is an ordinary write operation. I£ RS=],
this is a write to a directory sector, and the write should be
chysically completed immediately. I RS=2, this is a write to the
fi1rst sector of a newly allocated block of the disk. The
significance of this value is discussed in Section 5 under Disk
Buitering. .

CP/M-8000 System Guide Function 15: Return List Status

FUNCTION 15: RETURN LIST STATUS

Entry Parameters:
Registar R3: QOFH

Returned Valus:
Register R7: OOFFH=mdevice ready
Register R7: 0000H=mdevice not resady

This function returns the status of the list device. Ragister R7
can contain OOOOH to indicate that the list device is not ready to
accept a character, or Q0FFH to indicate that the list device is
ready.

Z?/4-8000 System Guide Function 16: Sector Translate

FUNCTION 16: SECTOR TRANSLATE

Entry Parameters:
Register R3: 10H
Register R5: Logical Sector Number
Register RR6: Address of Translate
Table

Returned Value:
Register R7: Physical Sector Number

This function performs logical-to-physical sector translation, as
discussed 1n Section 5.2.2. The Sector Translate function receives
a logical sector number £rom register R5. The logical sector number
can range from O to the number of sectors per track minus ons.
Function 16 also receives the address of the translate table in
register RR6. This address must be in the system's address space.
The logical sector number is used as an index into the translate
tacie. The resulting physical sector number is returned in R7.

I register RR6 = OO0O00000H, indicating that there is no translate
table, register R5 1s copled to rsgister R7 befeore Function 16
rezurns. Note that other algorithms are possible:; in particularz, it
1s common to increment the logical sector number in order to convert
the logical sector range of O to n~l into the physical range of 1 to
n. Sector Translate is always called by the BDOS, whether the
translate table address in the Disk Parameter Header is zero or
nenzero.

4-20

CP/M=-8000 Systsm Guide Function 18: Get Address of MRT

FUNCTION 18: GET ADDRESS OF MEMORY
REGION TABLE

Entry Parametars:
Ragistar R3: 12H

Returned Vidlue:
Register RR6: Memory Region
Table Address

This function returns the address of the Memory Region Table (MRT)
in register RR6. The MRT, which must be presant and must begin on an
eaven address, desacribes the segments that compose the TPA for aon-
segmented programs. The format of the MRT is shown below:

Entry Count (always = 4) 16 bits
Base address of first regiocn 32 bits
Langth of first region 32 bits
Base address of second region 32 bits
Length of second region 32 bits
Base address of third ragion 32 bits
Langth of third region 32 bits
.Basa address of fourth region 32 bits
Length of fourth region 32 bits

Pigure 4-1. Memory Region Table Format

4-21

CP/M-8000 System Guide Funczion 18: Get Address of MRT

The regions are:

Region 1 - the segment used for procrams with merged
program and data segments:

Region 2 - the instruction segment for programs with
split instruction and data segments:

Region 3 ~ the data segment for programs with split
instructicn and data segments:

Region 4 ~ an instruction segment from which a program
can access the instructions in region 2 as
data. -

A program with instructions residing in region 4 can access the
instructions stored in region 2 as data. The segment number field
of the program counter of & such a program in ragion 4 can be the
segnent number of region 2.

CP/M-8000 System Guide Function 19: Get I/0 Byte

FUNCTION 19: GET I1/0 BYTE

Entry Parameters:
Register R3: 13H

Returned Value:
Registar R7: I/0 Byte Current
Value

This function resturns the current value of the logical to physical
input/output device byte (I/Q byte) in register R7, This 8-bit value
associates physical devices with CP/M=8000's four logical devices as
noted in Figura 4-2., Tabkle 4-~3 defines these devices. Note that
even though this is a byte values, we are using word references. The
upper byte must be zero.

The I/0 byta is split into four 2-bit fields called CONSQLE,
AUXILIARY INPUT, AUXILIARY OUTPUT, and LIST, as shown in Figure 4-2.

Most Significant Least Significant
AUXILIARY AUXILIARY
1/0 Byte LIST QUTPUT INPUT CONSOLE
bits: 7.6 5.4 3,2 1.0

Pigure 4~2. I/O Byte Pields

Pearipheral davices other than disks are seen by CP/M~8000 as logical
devices, and are assigned to physical devices within the BIOS.
Device characteristics are defined in Table 4-3.

3=23

P/M~8000 System Guide Function 19: Get 1/0 Bvte

Table 4-3. CP/M-8000 Logical Device Characteristics

Device Name Characteristics

CONSOLE The interactive console that you use

to communicate with the system is
i accessed through functions 2, 3 ang
4. Typically, the console is a CRT
or other terminal device.

LIST The listing device, usually a
printer.

AUXILIARY OUTPUT An opticnal serial output device.

AUXILIARY INPUT An optional serial input device.

The value in each I1/0O Byte field can be in the range 0-3, defining
the assigned source or destination of each logical device. The
vaiues that can be assigned to esach £ielé are given in Table 4-4.

Note that a single peripheral can be assigned as the LIST, AUXILIARY
iINFUT, and AUXILIARY QUTPUT device, sizmultanecusly. If no
peripheral devices are assigned to LIST, AUXILIARY INPUT, or
AUXILIARY OUTPUT, your BIOS should give an appropriate error

message. This prevents system hang-up if the device is accessed by
PIP or some other transient program. Alternatively, the AUXILIARY
OUTPUT and LIST functions simply can return to the caller, and the
AUXILIARY INPUT function can return with a lAH (CTRL-Z) in register
R7 to indicate an immediate end-of-file.

CP/M=8000 System Guide Function 19: Get I/0 Byte

Table 4-4. [/0 Byte Field Definitions

CONSOLE field (bits 1,0)

Bit Dafinition

' 0 console is assignad to the console printer (TTY:)
1 console is assigned to the CRT device (CRT:)
2 batch mode: use the AUXILIARY INPUT as the CONSOLE

input, and the LIST device as the CONSOLE output
(BAT:)
3 user defined console device (UCl:)

AUXILIARY INPUT field (bits 3,2)

Bit Definition
0 AUXILIARY INPUT i3 the Taletype davica (TTY:)
1 AUXILIARY INPUT is the high—-spesed reader device

(PTR:) i
2 user defined reader #*1 (URl:)
3 user dafined reader #2 (UR2:)

AUXILIARY OQUTPUT field (bits 5,4)

8it Definition

0 AUXILIARY OUTPUT is the Teletype daevice (TTY:)

1 AUXILIARY OUTPUT is the high-speed punch device (PTP:)
2 user defined punch %1 (UPl:)

3 user defined punch #2 (UP2:)

LIST field (bits 7,6)

3it Dafinition

0 LIST is the Teletype device (TTY:)

1 LIST is tha CRT device (CRT:)

2 LIST is the line printar device (LPT:)
3 user defined list device (ULlL:)

The implementation of the I/0 byte is optional, and affects only the
organization of vour BIOS. The only CP/M-8000 utilities to use the
I/O byta are PIP and STAT. PIP allows access to the physical
devices. STAT allows logical-physical assignments to be mnade and
displayed. It is good practice first to implement and test your
BIOS without the IOBYTE functions, then to add the 1/0 byte function
after tasting.

4-25

C?/M-8000 System Guide Function 20: Set 1/0 Byte

FUNCTION 20: SET 1/0 BYTE

Entry Parameters:
Register R3: 14H
Register RS5: Desired

Returned Value: None

This function uses the value in register RS to set the value of the
I/0 Byte. See Table 4-4 for the 1/0 byte field definitions.
Because this is a byte valuae, the most significant byte must be
zZero.

CP/M-8000 System Guide Function 21: Flush Buffers

FUNCTION 21: FLUSH BUFFERS

Entry Parameters:
Register R3: 15H

Returned Value:
Register R7: O00QH=successful write
Register R7: FFFFHsunsuccessful write

This function forces the contents of any disk buffers that have been
modified to be written., Aftar this function has been performed, all
disk writes have been physically completed. Aftar the buffers are
written, this function returns a zero in reqgister R7. However, if
the buffers cannot be written or an aerror occurs, the functicn
returns a value of FFFFH in register R7.

4=~27

2?/mM=-8000 System Guide Function 22: Set Exception Address

FUNCTION 22: SET EXCEPTION HANDLER ADDRESS

Entry Parameters:
Register R3: 16H
Register RS: Exception Vector Number
Register RR6: Exception Vector Address

Returned Value:
Register RR6: Previous Vector Contents

This function sets the exception vector indicated in register RS to
the value specified in register RR6. The previous vector value is
returned in register RR6. Unlike the BDOS Set Exception Vector
Fungtion (61), this BIOS function sets any exception vector. Note
that register R5 contains the exception vector number. Thus, to set
exception #2, segmentation <rap, this register contains a 2.

The exception handler 1s called as a subroutine, with all of its
ragisters saved on the stack, in the form given for the context
block in the Transfer Control instruczion. On a segmented CPU, the
exception handler is entered in segmented mode. It should return
with a RET instruction.

All of the caller's registers except RRO are alsc passed intact to
the handler.

-2 Memory Management System Calls

The system call SC #1 1s used for nemory management operations:
mapving addresses £rom logical to physical, copying biocks of
(physical) memory. and transferring control from one address space
-0 another. Parameters are specified in registers RR2, RR4, and
RR6, and a value may be returned in RR6. The SC #1 descriptions
below illustrate the register settings to use when making the calls
with assembly language as well as the C language calling seguence.
The C language library contains system call SC #1 functions designed
to be called from non-segmented C progranms.

CP/M-8000 System Guide 4.2 Memory Management

To use the memory management system calls successfully, take care to
distinguish between logical and physical addresses. A legical
address refers to an address in a program's address space; it is 16
bits long for a non-segmented program, and 23 bits long (stored in a
32-bit word) for a segmented program. A physical address is the
address of the physical memory which the processor accesses. Two
cases illustrate the necessity of this distinction: first, the
hardware may map a logical address to derive from it a physical
address. Second, a default segment numbet associates with the
logical addresses of a non-segmented program rfunning on a segmented
CPU. This default segment number is taken from the program counter
(PC).)

For CPM-8000, it is necassary that the logical-to-physical mapping
process not affect the low—-order 16 bits (offset part) of an
address. Thus, on systems with MMU's that permit segments to start
on arbitrary boundaries, the apparently "physical” addresses used in
the BIOS code might be subject to further mapping by the MMU. So,
when writing a 3I0S for such systems it is necessary to distinguish
the memory segments which belong to the system addresses from those
which belong to the TPA.

BIOS operations done through BDOS call 50 are mapped from the
caller's address space into physical addresses.

4-29

CP/M-8000 System Guide SC #1: Memory Copy

SYSTEM CALL 1l: MEMORY COPY

Entry Parameters:
Register RR2: Length
Register RR4: Destination
Register RR6: Source

Returned Value: None

C language call sesguence:
long scurce, dest, length;

/* source: scurce address.
dest: destination address.
length: length of block in bytes. */

mem_cﬁy (sourcs, dest, length)

This operation copies a block of Length bytes £rom Source to
Deszination. Length must be greater than zero and less than 635536
{(a Length of zerc is used to distinguish different memory management
operations). The Source and Destination are segmented physical
addresses, as provided by the Map Address operation below.

4-30

CP/M~-8000 Systsm Guide SC %1: Map Address

SYSTEM CALL l: MAP ADDRESS

Entry Parametars:
Register RR2: 0
Register RR4: Spacs Code
Register RR6: Logical Address

Returned Value:
Register RR6: Physical Address

C language call sequencs:
long addr, paddr; int space:

/* addr: Logical Address.
paddr: Physical Address
{returned value)

space: Space Code. */

paddr = map adr (addr. space)

This form of SC #1 is used to convert a logical address to a
physical address. Since logical addresses depend on both the nodae
(systsm or normal) of the program using them, and on the space being
accessed (program or data), a code determines from which space to
map.

If the program in the TPA is running non-segmentsd, the Set TPA
Segmant version of'SC #1 will have been used to tall the mapping
routine which segment is being used. If the TPA is running with
split program and data, it is also anecessary to distinguish between
the segment number that ¢oes in the program counter to access
instructions, and the physical segmeant by which the TPA's
instruction segmeant can be accessed as data.

The space codes are as follows:

: Caller's Data Space

257: Caller's Program Space (as Instructions)
2: System's Data Space

3: System's. Program Space (as Data)

259 Systam's Program Space (as Instructions)
4: TPA's Data Space

St TPA's Program Space

261: TPA's Program Space (as Instructions)

CP/M-8000C System Guide

SYSTEM CALL 1:

Entry Parameters:
Register RR2:
Register RR4:
Register RR6:

Returned Value:

SC #1l:

SET TPA SEGMENT

0
OOCOFFFFh
TPA Base Address

None

C language call seguance:

(This function uses the
map_adr function with
speclial parameter values.)

long addr, padadr:
/* addr: TPA Bass Address */

map_adr (addr, -1)

Set TPA Segmen:

This operation sets the base segment £0r a non-segmented progran
running in the TPA. This base address is usually obtained from
entry 1 in the Memory Region Table for programs with instructions
and daca in the same segment, and f£rom entry 2 for programs with
split instruction and data segménts.

If R6 (the high-order word of RR6) is FFFFh, the program running in
the TPA is assumed to be running in segmented mode.

4-32

CP/M-8000 System Guide 4 SC #1: Transfer Control

SYSTEM CALL l: TRANSFER CONTROL

Entry Parameters:
‘Register RR2: 0
Register RR4: FFFEh
Register RR6: Context Block Address

Returned Value: none

C language call saquence:
long context;
/* context: Context Block Address, */

xfer (acontext)

This operation causes control to be transferred to another address
space. It allows all of the registers to be specified except for
the system mode stack pointer. DDT™ uses this operation to transfec
control to the program being debugged.- RR6 points to a context
block of the form:

word RO

word Rl

word R2

word R3

woerd R4

word]5

word R6

word R7

word RrR8

word R9

word R10

word R11

word R12

word R13

word R14 (normal mode R1l4)
word 215 (normal mode R1l4)
word ignored

word FCW (Flag/Control Word)
word PC Segment

word PC Qffsat

CP/M-8000 System Guaide SC #l: Transfer Control

Note that the PC segment word 1s requirec for compatibilitcy even if
the PU 1s a non-segmented 28002.

End of Section 4

4-34

Section 5
Creating a BIOS

%<1l Overview

The BIOS providesa a standard intarface to the physical input/output
devices in your systam. The BIOS intarface is defined by the
functions described in Section 4. Those functions, taken together,
constitute a wmodel of the hardware environment. Each BIOS is
responsible for mapping that model onto the real hardware.

In addition, the BIOS contains disk definition tables that define
the characteristics of the disk devices that are present, and
provides some storage for usae by the BDOS maintaining disk directory
information.

Section 4 describes the functions that must be performed by the
BIOS, and the external interface to those functions. This Section
contains additional information describing the structure and
significance of the disk definition tables and information about
sector blocking and deblocking. Careful choices of disk parameters
and disk buffering methods are necessary if you are to achieve the
best possible performance from CP/M-8000. Therefore, you should
rsad this section thorocughly before writing a custom BIOS.

5.2 Disk Dafinition Tables
As in other CP/M systems, CP/M-8000 defineas disk device

charatsristics through a set of tablas. This section describes each
table and discusses parameter options.

CP/M~-3000 System Guide 5.2 Disk Definition Tables

S5.2.1 Disk Parameter Header

Each disk drive has an associated 26-bvte Disk Parameter Header
(DPH) which both contains information about the disk drive and
provides a scratchpad area for certain BDOS operations. Each drive
must have its own unique DPE. The format of a Disk Parameter Header
is shown in Figure 5-1.

XLT 0000 | 0000 0000 | DIRBOF DPB csv ALV

3i2b 16b l6b l6b 32b 32b 32b 32b

Figure 5-1. Disk Parameter Header

Zacn element of the DPH i3 either a word or longword value. Table
35~1 gives the meanings of :he Disk Parameter Header (DPH) elements.

Table 5~1. Disk Parameter Header Elements

Element Description

XLT Address of the logical-to-physical sector
translation table. If there is no translation
table, it contains the value 0, and the physical
and logical sector numbers will be identical.
Digk drives with identical sector translation can
share the same tranglate table. Section 5.2.2-
describes the sector translation table.

0000 Three scratchpad words for use within the BDOS.

DIRBUF Address of a 128-byte scratchpad area for
directory operations within BDOS. All DPHs
address the same scratch pad area.

DPB Address of a disk parameter block for this drive.
Drives with identical disk characteristics can
address the same disk parameter block.

CP/M-8000 System Guide 5.2 Disk Definition Tables

Table S5~1. {(continued)

=

Element : Description

csv Address of a checksum vector. The BDOS uses this
area to maintain a vector of directory checksums
for the disk. Thesea checksums detect when the
disk in a drive has been changed. If the disk is
not removable, then it i3 not necessary-to have a
checksum vector. Each DPH must point to a unigque
checksum vector. The checksum vector—should
contain 1 byte for every four directory entries,
or 128 bytes of directory. The length of the
checksum vector is equal to (DRM+l) / 4. Section
5.2.3 discusses the DRM value.

ALV Address of the allocation vector, a scratchpad
area used by the BDOUS to kaep disk storage
allocation information. The area must be unique
for each DPH, There must be one bit for each
allocation block on the drive. This requirces
that the length of the allocation vector be equal
to (DSM/8) + l. Section 5.2.3 discusses the DSM
value.

5.2.2 Sector Translate Table

Sector translation in CP/M=-8000 is a method of logically renumbering
the sectors on each disk track to improve disk I/0 performance.
Fraquently programs must access disk sectors sequentially. Howaver,
in reading sectors sequentially, most programs lose a full disk
revolution between sectors because thers i3 not encugh time between
adjacent sectors to begin a new disk operation. To alleviate this
problem, the traditional CP/M solution is to create a logical sector
numbering scheme in which logically saeaquential sectors are
physically separated. Thus, batween two logically contiguous
s3ectors, there is a rotational delay. The sector translate table
defines the logical-to=-physical mapping for a particular drive.

Sector translate tables are used only within the BIOS, and may have
any convenient format. The only interaction the BDOS has with the
table is to fetch the sector translate table address from the DPH
and to pass that address to the Sector Translate Function of the
3I0S. The most common form for a sector translate table is an n-
byte or n~word array of physical sector numbers, where n is the
numpber of sectors per disk track. Indexing into the table with the
logical sector number yields the corresponding physical- sector
number.

CP/M-8000 System Guide 5.2 Disk Definizion Tables

Alzhough vou may choose any convenient logical-to-physical mapping,
“here is a nearly universal mapping used in the CP/M community for
single~sided, single-density, 8-inch diskettes. That mapping is
shown in Figure 5-2. Your choice of mapping affects diskette
compatibility among” different systems. To make your mapping
compatible with different systems, we recommend the mapping shown in
Figure 5-2.

Logical Sector 6 1 2 3 4 5 6 7 8 9 1011 12
Physical Sector 1 7131925 S 1117 23 3 9 15 21

Logical Sector |13 14 15 16 17 18 19 20 21 22 23 24 25
Physical Sector 2 8 14 20 26 6 12 18 24 4 10 16 22

Figure 5~-2. Sample Sector Translate Table

5.2.3 Disk Paramaeter Block

A Disk Parameter Block (DPB) defines several characteristics
associated with a particular disk drive. These include the size of
the drive, the number of sectors per track, and the amount of
directory space.

One or more DPH's may use a common DFB if the disks are identical in
definition. Figure 5-3 shows the DPB format. Table 5-2 describes
the DPB fields. :)

SPT BSH BLM EXM 0 DSM DRM Reserved CKS QFF

16b b 8b g8b g8b 1l6b léd len 16b 16n

Pigure 5-3. Disk Parameter Block

CP/M~8000 System Guide 5.2 Disk Definition Tables

Each field is a word or a byte value. Table 5-2 describes each
field. e,

Table 3-~2. Disk Parameter Block Pialds

Field) Definition
SPT Number of 128-byte logical sectors per track.
BSH The block shift factor, detarmined by the data

block allocation size, as shown in Table 5-3.

BLM The block mask, determined by the data block
allocation size, as shown in Table 5-3.

EXM The extant mask, determined by the data block
allocation size and the number of disk blocks, as
shown in Table S-4.

0 Reserved byte.

DSM Detarmines the total storage capacity of the disk
drive and is the number 0f the last block, zero
relative. The disk contains DSM+l blocks.

DRM Datarmines the total number of directory entries
that can be stored on this drive. DRM is the
number of the last dirsctory entry, zero
relative. The disk contains DORM+1 directory
entries. Each directory entry reguires 32 bytes.
For maximua afficiency the value of DRM should be
such that the diresctory entries exactly £ill an
intagral number of allocation units.

CKS The size of the directory check vector. The CKS
value is zero if the disk is permanently mountesd.
The CKS value is equal to (DRM) / 4 + 1 for
removable media.

OFF The number of raserved tracks at the beginning of
a logical disk. This is the number of the track
on which the directory begins.

CP/M~B8000 System Guide 5.2 Disk Definition Tables

In order to select appropriate values for the Disk Parameter Block
elements, you must understand how disk space is organized in CP/M-
80CC. A CP/M-B000 disk has two major areas: <he boot or system
tracks, and the £file system tracks. The boot tracks hold a machine-
dependent bootstrap loader for the operating system. They consist
of tracks O to OFF=~l. Zero is a legal value for OFF, and in that
case, there are no boot tracks. The usual value of QOFF for 8-inch
floppy disks is two.

The tracks after the boot tracks, beginning with track number OFF,
contain the disk directory and disk files. Disk space in this area
is grouped into units called allocation units ar blocks. The block
size for a particular disk is a constant, called BLS.

BLS can take on any one ocf these values: 1024, 2048, 4096, 8192, or
16384 bytes. No other values for BLS are allowed. Note that BLS
does not appear explicitly in any BIQS table. However, it
determines the valuas of a number of other parameters. The DSM
£ield in the Disk Parameter Block is one less than the number of
blocks on the disk. Space is allocated to a £file or to the
directory in whole nlocks. No fraction of a block can be allocated.

The znoice of BLS is very important. . affects the efficient use
of disk space. There is a minimum value of BLS that allows an
entire disk to be used. BEach block on the disk has a block number
from O to DSH. The largest Dblock number allowed is 32767.
Therefore, the largest number of bytes that can be addressed in the
file system space is 32768 * BLS. Because the largest allowable
value for BLS is 16384, the disk capacity that CP/M-800 can access
is 1£384*32768 = 512 Mbytes.

Each directory entry can contain either 8 block numbers, if DSM is
greater than or egual to 256, or 16 block numbers if DSM is less
than 256. Each file needs sufficient directory entries to hold the
block numbers of all blocks allocated to the file. A large value
for 3LS implies that fewer directory entries are needed. If fewer
dir=ctory entries are used, directory search time is decreased.

The disadvantage of a large value for BLS is that files are
allocated BLS bytes at a time, and there is potentially a large
unused portion of a block at the end of the file. If there are many
small files on a disk, the waste can be significant.

The BSH and BLM parameters in the DPB are functions of BLS. Once
you have chosan BLS, use Table 5-3 to determine BSH and BLM. The
EX¥ parameter of the DFB ig a function of BLS and DSM. Use Table
5-4 to find the value of EXM for your disk.

CP/M-8000 System Guide 5.2 Disk Definition Tables

Table 5-3. BSH and BLM Values

BLS BSH BLM
1024 3 7
2048 4 15
4096 5 1
8192 6 63
16384 7 127

Table S5S—~4. XXM Values

BLS DSM <= 255 . DSM > 255
1024 0 N/A
2048 1 0
4096 3 1
8192 7 3
16384 15 7

The DRM entry in the DPEB is one less than the total number of
directory entriss. Choosa a DRM value large enough so that you do
not run out of directory entries before running out of disk spacs.
It is not possible to give an exact rule for determining DRM because
the nmumbar of directory aentriss needed depends on the number and
sizes of the files present on the disk.

The CKS entry in the DPB is the byte count of the checksum vector.
The CSV £ield of the DPH points to the checksum veactor. If the disk
is not removable, a checksum vector is not needed, so this value can
be zaro.

5.3 Disk Blocking

When the BDOS performa a disk read or write operation using the
810S, the unit of information read or written is a 128-byte sector.
This aight correspond to the actual physical sector size of the
disk. If not, the BIOS must implement a method of representing the
128~-byta sectors used by CP/M-8000 on the actual device. Usually if
the physical sectors dra not 128 bytas long, they are some multiple
of 128 bytas. Thus, one physical sector <an hold some intager
number of 128-byte CP/M sectors. In this case, any disk I/0
actually transfers saveral CP/M sectors at once.

CP/M~-800Q System Guide 5.3 Disk Blocking

It might also be desirable to perform disk 1/0 in units of several
126-byte sectors to increase disk <throughput by decreasing
rotational latency. Rotational latency is the average time it takes
for the desired position on a disk to rotate around to the read-
write head. Generally this averages 1/2 diskx revolution per
transfer. Because much diskx 1/0 is seguential, rotaticnal latency
can be greatly reduced by reading several sectors at a time, and
storing them for future use.

In both the preceding cases, the point of interest is that physical
I/0 occurs in units larger than 128-byte sectors. - Section 5.3.1
discusses methods of performing disk 1/Q0 in units larger than 128-
byte sectors.

S5.3.1 A Simple Approach

This section presents a simple approach to handling a physical
sec-or Size larger than the 128-byte logical sector size. The
method discussed in this section is a starting point for refinements
discussed in the £pllowing sectcions. Iss simplicity makes 1t a
logical thoice for a £irst BIQOS on new hardware. However, the disk
tnroughput that you can achieve with this method is poor, and the
refinements discussed later give dramatic improvements.

Probably the easiest method for handling a physical sector size that
is a2 multiple of 128 bytes is to have a single buffer the size of
the physical sector internal to the BIOS. Then, when a disk read
occurs the physical sector containing the degsired 128- byte logical
gsector is read into the buffer, and the appropriate 128 bytes are
copied to the DMA addrass. Writing is a little more complicated:
vou must put data into a l2B~byte portion of the physical sector,
but you can only write a whole physical sector. Therefore, you must
first read the physical secter into the BIOS's buffer, copy the 128
bvrtes of output data into the proper l28-byte piece of the physical
sector in the buffer, and £inally, write the entirce physical sector
back to disk.

Note: This operation involves two rotaticonal latency delays in
addition to the t“ime needed to copy the 128 bytes of data. In fact,
the second rotational wait is probably nearly a £ull Qdisk
revolution, since the copying is usually much faster than a disk
revolution.

5-8

CP/M-8000 Systam Guide 5.3 Disk Blocking

5.3.2 Some Refinements

There are many methods you may use to improve the performance of the
algorithm of Section 5.3.1. The first method is based on the fact
that disk accesses are usually done sequentially. Thus, if data
from a certain physical sector is needed, it is likely that another
pliece of that sector will be needed on the next disk operation. To
take advantage of this fact, the BIOS can keep information with its
physical sector buffer as to which disk, track, and physical sector
(if any) is represented in the buffer. Then, when reading, the BIOS
need only perform physical disk reads when the data needad is not in
the buffer.

When performing disk writes, the BIOS still needs to preread the
physical sector for the same reaszons discussed in Section 5.3.1.
Once the physical sector is in the buffer, subsequent writes into
that physical sector do not require additional prereads. To save
additicnal disk accesses, do not write the sector to the disk until
absolutsly necessary. Section 5.3.4 discusses the conditions under
which the physical sector nust be written.

5.3.3 Track Suffering

Track buffering is a special case of disk buffering whare the I/0 is
done a full track at a time. -“This method is quits good when
sufficisnt nemory for sevaral full track buffers is available. This
method employs the following differences from that discussed in
Section 5.3.2. Pirst, transferring an entire track is much more
efficient than transferring a single sactor. The rotational latency
is incurred only once for the entire track, whereas if the track is
transferred one sector at a time, the rotaticnal latancy occurs once
per sactor. On a typical disketts with 26 sectors per track,
rotating at 6 revolutions per second, the diffarence in rotational
latency per track is about 2 seconds versus a twelfth of a second.
Of course, in applications where the disk is accessed purely
randoaly, there is no advantage because there is a low probability
that sora than one sector will be used from a given track. Nota
that such applications are extremely rare.

5.3.4 Least Recently Used Buffer Replacement

Wwith any method of disk buffering using more than one buffer, it is
necassary to have an algorithm to manage the buffars. A buffer
should be filled when there i3 a request for a disk sector that is
not prasently in memory.

CP/%~8000 System Guide : 5.3 Disk Blocking

Generally, 1t 1s desirable to defer writing a buffer until it
becomes necessary. Thus, several transfers can be done %0 a buffer
for the cost of only one disx access, or two accesses if the buffer
must be preread. There are four reasons why buffers must be written
back to disk: :

1. When a BIOS Write operation with mode=)l (write to directory
sector) has been invoked. It is very important to the
integrity of the CP/M~8000 file system that directory
information on the disk is kept up to date. Therefore, all
directory writes should be performed immediately.

Z. A BIOS Flush Buffers operation. This BIOS function forces all
disk buffers toc be written. After performing a Flush Buffers,
1t is safe to remove a disk from its drive.

3. A disk buffer is needed, but all buffers are full. Therefore a
suffer must De emptied to make it available for reuse.

4. A Warm Boot occurs. This is similar to number 2 above.

Case three above is the only case in which the BIOS writer has any
discretion as to which buffer should be written. The best strategy
15 td write out the buifer that has been Least Recently Used. The
fact that the contents of a buffsr have not been accassed for some
time is a fairly good indication that it will not be needed again
soon. .

5.3.5 The New Block Plag.

As explained in Section 5.3.2, the BDOS allocates disk space to
files 1n blocks of BLS bytes. When such a block is first allocated
to a £Zile, the information previously in that block need not be
preserved. To enable the BIOS to take advantage of this fact, the
3D0s uses a special parameter when calling the BIOS Write Function.
This special parameter is indicated when register RS contains the
value 2 on a BIOS Write call, then the write being done is to the
Sirst sector of a newly allocated disk block. Tharefore, the BIOS
need not preread any seactor of that block. If the BIOS performs
disx buffering in units of BLS bytes, it can markx any free buffer as
corresponding to the disk address gspecified in this write. This is
because the contents of the newly allocated block are unimportant.
IZ£ the BIOS uses a buffer size other than BLS, then the algorithm
for taking full advantage of this information is more complicated.

CP/M=-8000 Systam Guide 5.3 Disk Blocking

Proper use of this flag reduces disk delay. Consider the case whare
one file is read sequentially and copied to a newly created fide.
Without this flag, every physical write would require a praread.
With the flag, no physical write requires a preresad. Thus, the
number of physical disk operations is reducad by one third.

End of Section S

Section 6
Instailing and Adapting the
Distributed BIOS and CP/M-8000

6.1 Overview

Digital Research supplies CP/M-8000 in a form suitable for booting
on an Olivetti M20 system. If you have an Olivetti M20, you can
read Section 6.2, which tells how to load the distributed system.
Similarly, you can buy or lease some other machins that already runs
CP/M=8000.

If you do not have an Olivetti M20, you can use the .REL files
supplied with your distribution disks to bring up your first CP/M-~
8000 systam. Section 6.3 discussas this procass.

6.2 Booting on an Olivetti M20

The CP/M=8000 disk set distributed by Digital Research includes
disks to boot and run CP/M-8000 on the Olivetti M20. You can usae
the distribution systam hoot disk without modification if you have
an Olivetti M20 systam with the following configuration:

o 256K memory (minimum requized by the Olivetti memory management
schene)

e at least two double sided § 1/4" floppy drives, or one doubla
sided 5 1/4" fleppy drive and one 5 1/4" hard disk. -

To load CP/M-3000 on a system with two floppy drives, do the
following:
1. Placa the disk in the first floppy drive.

2. Press the SYSTEM RESET button (on the right hand side of the
machine).

3. Type "F¥. This will cause the systam to boot from floppy drive
Az,

l7P/4-3000 System Guide ©.2 Booting on an QOlivett:i: M20

Tc load CP/M=8000 on a system with one Zfloppy and one hard disk
éri:ve, do the following:

.. Insert the Olivetti PCOS™ system disk into zhe £floppy drive.

“. Press the SYSTEM RESET button toc boot PCOS.

L. Type "vf 10:" and a carriage return to format the hard disk.

«. Insert the CP/M-8000 distribution disk into the £loppy drive.

. Press the SYSTEM RESET button, then type “F". CP/M-8000 will
boot. .

5, Type "ERA C:*.*" and a carriage return to clear the hard disk
directory.

You may then use PIP to transfer £iles to the hard disk.

6.3 Bringing Up CP/M—8000 Using the CPMSYS.REL Piles

The CP/M-8000 distribution disks contain a copy of the CP/M-8000
operating system in relocatable object code form, for use in
mringing up CP/M-8000 on any Z8000 system. The relocatable CP/M-
3000 system is in the CPMSYS.REL £file. This £ile contains the CCP
ancd BDOS, but no BIOS. Releasgse notes and/or a2 £file named README.DOC
describe the exact characteristics of the CPMSYS.REL €£ile
distributed on your d&isks. To bring up CP/M-8000 using the
CPMSYS.REL €file, you need:

a2 method to down-load absoclute data into your target system

s a computer capable of reading the CP/M-8000 distribution disks,
such as the Qlivetti M20

a C language BIOS written for vour target computer. This BIOS
may be developed from “he C language BIOS supplied on the CP/M-
3000 distribution disks. Typically you will need to modify all
the BIOS modules, and to write a new BIOSIO.C module.

~ven the above items, you can use the following procedure to bring
a working version of CP/M-8000 to your target system:

%]

L. Compile your BIQS on the Olivetti M20.

2. Link CPMSYS.REL and your new BIOS.REL files on the Olivetti
M20. Section 2 desacribes this process.

i

Down~load your new CP/M system created in step 2 to the target
computer.

CP/M=-8000 System Guide 6.3 CP/M-8000 with CPMSYS.REL

Now that you have a working version of CP/M-8000, you can use the
tools provided with the distribution system for further developmeént.

End of Section 6

6=3

Section 7
Cold Boot Automatic Command Execution

7.1 Overview

The Cold Boot Automatic Command Execution feature of CP/M-8000
allows you to configure CP/M=-8000 so that the CCP will automatically
sxecute a predetarmined command line on cold boot. This f£sature can
be used to start up turn-kay systems. .

7.2 Setting up Cold Boot Automatic Command Execution

The CBACE feature uses two global symbols: _autost, and _usercmd.
Thesa are both defined in the CCP, which uses them on cold boot to
detsrmine whether this feature is enabled. If you want to have a
CCP command automatically exscuted on cold boot, you should include
code in your BIOS‘'s cold boot routine (at the label "bios") to
perform the following:

1. Set the byte at _autost to the value OlH.

2, The command line to be executad must be placed in memory
beginning at the usarcmd location. The command must be
terminatad with a NULL (OOH) byte, and may not excsad 128 bytas
in length. All alphabetic characters in the command line
should be upper-case.

Once you writs a BIOS that performs these two cperations, you can
build it inte a CPM.SYS file aa described in Saction 2. This
system, when bootad, will executa the command ysu have built into
it.

End of Section 7

Section 8
The PUTBOOT Utility

8.1 PUTBOOT Operation
The PUTBOOT utility copies a bootstrap loader program from a file to
the system tracks of a disk.
8.2 Invoking PUTBOOT
Invoke PUTBOOT with a command of the form:
PUTBOOT <filename> <drive>

where

e <filenane> is the name of the file to be writtan to the system
tracks;

e ¢drive> is the drive specifier for the drive to which
<filename> is to be written (letter in the range A-Pf.)

»

PUTBOOT writes the specified file to tha system tracks of the
spacified drive. Sector skswing is not used: the file is written to
the systam tracks in physical sector number order.
Because the system tracks for the Olivetti M20 must have some
special PCOS information on them, PUTBOOT contains logic to add that
information to the system file placed on the system tracks.
PUTBOOT issues nmessages indicating successful or unsuccessful
execution of the copy operation. The messages indicating successful
axacution are :

Sootatrap file is x bytas.
This indicates the size of the boot file.

Bcotscrép has been writtan.

This indicataes the operation is complete.

3-1

ZF '»=3000 System Guide wnvoking PUTEOOT

The ressages 1ndicating errors in the PUTBOOT execution are
nsutboot: Illegal drive code <drive>

This i1ndicates an illegal drive code in zne <drive> specifier on the
A

command iine.
2utboot: Can't open bootstrap f£ile <filename>

Thi13 1ndicates that PUTBOOT cannot open %the file specified 1n
fiiename> on the command line.

A

Bootstrap too big.

This indicates the £ile specified on the command line is too big to
be copied to the system tracks.

Usage: putboot <filename> <drivecocde>

This ndicates that the command line had an argunent earror.

PUUT30CT uses BDOS calls to reacd the bootstrap loader program storec
wn tne Zile specified in <«filename>. PUTBOCT uses BICS calls o
wIll€ tne pootstrap program =@ the system tracks. It refers to the
OFF and SPT parameters 1n the Disk Parameter 23lock to determine the
siie of system track space. The source and command <iles for
PUTBOOT are supplied on the distribution disks for CP/M=-8000.

End of Section 8

8-2

APPENDIX A

Contents of Distribution Disks

This appendix describes briefly the files on the diskettes that
contain CP/M-8000 as distributed by Digital Research.

File

ARSK.Z8K
ASZ8K.PD
ASZ8K.Z8K

XCON.Z8K

8I0S.REL
LORBIOS.REL
BIOS.SUB

3I0SBOOT. 8RN
3IOSDEFS.8KN
3T0STIF.8KN
BIOSIO.8KN
BIOSMEM. 8RN
BIOSTRAP.8KN
BI0s.C

Contents

Exacutable version of the archiver/librarian.
Predefinition file for the assembler.
Executable version of the assembler.
Executable version of the XCON utility. The
XCON utility translates from UNIDOT object file
format to XOUT obiject file format.

A relocatable code file containing the 3I0S for
the Olivetti M20.

A relocatable code file containing the loader
3I08 for the Olivetti M20

A submit file which creates a relccatable
BIOS.REL file.

BIOS boot code.

BIOS assembly definitions for 3I0S modules.
BIOS intsrface code.

BIOS I/0 routines.

8I0S memory management coutines.

8I0S trap routines.

C language source of 3gotstrap and normal 3I0S
for the Olivetti M20.

ZP/%~8000 System Guide A Contents of Distribution Dlsks

SYSCALL.8KN
COPY.Z8K

CPM.S5YS

CPMSVYS.REL

CPMSYS2.REL

CPHMLDR.REL

CPMLDR.SYS

CPMSYS.S5UB

DDT. Z8K

DUMP.ZBK
ED.Z8K

FORMAT.Z8K

ry
4]

PE.OQ

FRPEDEP.Q

Contents

Interface for system callils in 3I0S for Z8001.
An executable version of the COPY utility.

Executable CP/M~8000 operating system file for
the Qlivetsi M20.

Relocatable version of CP/M~8000 containing the
CCP and BDOS modules.

Relocatable versicn of CP/M-B0D00 for the 28002.
Containsg the CCP ané BDOS modules.

Relocatable bootstrap loader for the M20.
Contains only BDOS module.

The bootscrap loader for the M20. A copy of
this is written =0 <the svystem &tracks using
PUTBOOT.

A submit f£file to create CPM.SYS.

An executable version of DDT, the interactive
debugger.

An executable version of the DUMP utility.

An executable version of the ED utilicty.

An executable version of the disk formatter
utility for the Olivetzi M20.

Object £file for floating point processor
emulactor. Linked intc normal BIOS.

Object £ile for processor dependent floating
Delnt Drocessor emulator code. Linked into
normal BIOS.

CP/M=-8000 System Guide

File

LDBDOS . REL
LD8K.Z8K
LIBCPM.a

LIBCPMS.a

QPT.O
QPT.C
QPT1.0
QPT1.C

QPTION.H

CTYRE.H
ERRNO.H
PORTAB.H
SETJIMP .H
SIGNAL.H
STDIO.H
XQUT.H
ASSERT.H
MAKELDR.SUB
MKPUTBT.SUB

NMZBK.Z8K

PIP.Z8K

A Contents of Distribution Disks
Contents

Loader BDOS rslocatable object file.
Executable version of linker/loader

C language runtime library for the 2Z8002.
Functions executs in non-segmented mods.

C language runtime library for the Z800l.
Functions execute in segmentsd mode.

Object and C language varsions of C language
library optimization facilities. The filse

OPTION.H contains commentary explaining these
facilities.

The £following files prefixed ".H" -are C
language declarations to be used in the 2I0S or
other user programs via the C language
"include" directive.

Declarations to aliminate unused < runtime
library functions.

Macro definitions for ASCII coded integers.
Docia:aﬁion- of eror codes.

Declazrations for BIOS portability.
Daclaraticons for satjmp and longjmp functions.
Declarations for the signal function.
Declaration of C standard [/0 functions
Daclarations of CP/M-8000 object format.
Declaration of the ASSERT macro.

Submit file to create CPMLDR.SYS.

Submit file to creata PUTBOOT.

Executable version of the symbol table dump
utility.

An executable version of the PIP utility.

ZF/M-8000 System Guide £ Contents of Distribution Disks

Tlie

PUTBOOT.C

PUTBOOT.Z8BK

README

SILEZ8K.ZBK

TARTUP.Q

STARTUP . 8KN
STARTUP. 8KS
STAT.L8K

XDUMP . 18K

20C2.2I8K

ZCCL.Z8BK
ZCC2.Z8K
2CZ3.28x

Concents

C language source of zhe Olivett1 PUTBOOT
utility.

Executable version of the Olivetti PUTBOOT
utilicy.

Object code specific to the Olivetti M20.
PUTBOOT uses this code.

An ASCII file containing 1nformation relevant to
this shipment of CP/M-8000.

Executable version of SIZEZ8XK utility.

Startup routine for use witch C programs.
STARTUP must be the first object £file linked.

STARTUP.8KN is for the Z8QC2.

STARTUP.8KS :s for the 28001.

hAn executable version of the STAT utilisy.
Executable varsion of XDUMP utilicy. XDUMP is

like DUMP, and prints additional header and
symbol table information.

The T language compiler and its overlays.

Znd of Appendix A

APPENDIX B
Sample BIOS Written in C

The listings in this appendix are also found on your CP/M~80Q00
distribution disk.

The Olivetti BIOS consists of both C language and assembly coda.
The C language code is conditionally compiled to producs either a
loader BIOS for use with CPMLDR.SYS or a normal BIOS for use with
CPM.S5YS. Listing B-1 is the C language BIOS. Listings B-2 and B~-3,
BIOSASM. 8KN and LBIOSASM. 3KN, assemble thae seven remaining assembler
modules to form either a normal BIOS or a loader 3I0S, based on the
value of the label "LOADER".

Listing B-1. C Language BICS

/” o}

/QL .;./
/'1 . %'/
5'! CP/M-8000(tm) BIOS for the OLIVETTI M20 (2ZB00O) v/
'1 "/
5'1 Copyright L9684, Digital Research lac. tv/
* . L/
/.,-. - n/
/* - /
/e v '

/* Campilacion informacion :5

/*To compile bios.c for cpmldr.sys the command is: zee —¢ -Ml -dLOADER dios.c */
/"This conditionally cospiles bios.¢ leaving unrequirad code ocut of the object®/

/"¢ile. ./
/' -_‘I
/* The normal bDios compile coemand £or c<pm.sys is: zeg -¢ =Ml bhios.o ./
;’ This will provide che fuil funccicnallicy of the bHios in the object file b
. - */
/* By compiling %ios.c with the command : zec -¢ -Ml ~ATRANSFER bics.c ./
/* You are provided with a bDios object that allows the two floppy drives =o */
/* have two different formats. This is left pureiy as an example for the */
;' cthe benefit of porting to a different format and can be nodified. .!
./

/* 8y compiling bios.c with the commmnd: zce -¢ -Ml -dsect26 bios.c v/
;: 8" tloppy disk support is provided by conditional compirlation. b
-

/

()
o]

.

I

char copyright(] =

7w
v
ww
-
rw
re
-
-
-w
-
-w
-
LR
-
-
-
2N
-
»a
e
..
-
v
(2]
s
ww
L 2]
-

v/

4~8000 System Guide 8 Sample BIOS Written in C

idafine DEBUG

1ISTORY

320803

330614

330804

£308C4

830809

831205

831212

taefine BAUD 1

i

"y

~

Listing B-1l. (continued)

/ / Decommenzing this define will conditionally compile*/
/* code setting the tty por: to 1200 baud listening “/
/* XOPF an that port. ®/

/ / By decommenting this define hard disk debugging "/
/" 13 enapled. This provides drive., block. and */
/" crack i1nformation to be printed on the console. */

“Copyright 1984 Digital Research Ilnc.":

Savitzky (Zilog) =— derived from 68000 EXORMACS bios

ilotnick (Zilog) =~ removad inizialization of iobyte
upon each warmboot. Jhanged seldisk to test for
overflow of the dphtab (to fix the “dir d:° bug).

Slotnick (Zileg) == Added conditional compilation for
loader 3I0S. whach only needs & few 0f =he BIOS
funczions. The loadar DQES require :the definition
ol a2 context structure. for :ranster of control o
the systag proper.

Slotnick {Zilog) -- Changad Disxk Parameter Blocks to
reflac: new DooOtatrap method.

Zlotnick (Zilog) -~ Added escape character to kxeybcard
nap, as c=rl 7.

Greendarg (Zilog) —— Tixed disk parametar table for nard
drive C to point to dpbl, not dpdb2 (80 zrx floppy).

Greenberg (Zilog) — HModified disk parameter tablas for
hard disk to look sore lLixe floppise (fewar sectors
buz more zracks). This will fix the sector deblocking
part of the bios tc be compatible with dboth. Also
switched =0 4K allocation blocks and 512 direntZies.

‘--'-'-""l"'."""-.".""'I".'"'".'""-".'.'.'.0"""."."'/

.'1-ﬁ-'"i""'"""'."'.""I"...""""""""""'-“.-."""...'/

C.

P w

.

</C Device

«/
Dafinitions -/
./

-v-.-o'-'v'-""'vv."."'t"v'v'v"""-"-""-'-'vv""»"v"'vt""'/

.-r--‘--'v"-'-'tv"tv"‘v'tvvvvrvv""'-"'!"v""011'-'-0"."-"""'/

CP/M=-8000 Systam Guide B Sample BIOS Written in C

Listing B-1. (continued)

/ '."""""’I".""'-"."""'""."""."""."i"'""l""""t"'/

/* Dafine Interrupt Controller constants .y
/.'.."."".".',""""."."""""".'ﬂﬂ‘.""'-"'""""‘.""t-/

/* The interrupt controller is an Intsl 8259 laft-shifted one bDit */
/* to allow for the word-alligned interrupt vectors of the ZH00Q. .y

/* sws Agsuse that this is set up in the PROM mw= */

/ “"“".'.‘l'.."'.'.'.'-"‘..'Q‘l"i'..""""""""Q""n'..'l'""'.'/

/* Oetfine the two USART ports =/

/.."."‘."'"'-".""".""-ﬂ"'.""'"""I"".""i'ﬂ".'1"'." i/

/* The USARTa are Intel 8251's */

sdefine KBD OxAl /" Reyboard USART base e
$detfine R3232 O0OxCl /¥ R8-232 terminal */
tdetine SERDATA 0 /* daca port offset */
tdefine SERCTRL 2 /* control port offsac */
sdefine SERSTAT 2 /* status port offset ./
tdetine SERINIT Ox37 /* init (3 tizses) v/
tdefine SERRES 0x40 /T zeset */
detine SERMODE Ox£E /* node (2 stop, even parity */
/” parity disable, 8 bits */
/v divide by L6 v/
/* DUBIOUS. 1577 v/
tdetine TTYOM 0OxJ37 /%" cad (no hant, no reset. ./
/* RTS»0, srror resec, */
/* noO bresk. rcv enable, ./
P DTReO, xmc enadle v/
tdetine SERRRDY 0x02 /* RCY ready bDit zask */
tdefine SERXRDY OxOl /® XMT rsady bit amsk */
sdetine XON Oxl1l /* Control- Q v/
sdefine XOFF 0xi3 /* Conerol- S v/

/."""'..0"'".-"""..""W.'.'.."..'.‘."'.‘"."'.'v"‘"'-""-'/
/

/* Define the counter/tiser ports ./
/'..".""'.".""'Q'"""‘.ﬂ'l""."""'"I."."-..'m""l"..."./

/* The countar-~cimer is an lacel 32831 %/

tdefine CT_232 0=xi21 /® counter/tiser 0 -~ RS232 baud race */
tdefine CT_XBD 0x123 /*® counter/timer L — xbd baud rate v/
ddefine CT_RTC 0Oxl2$ /* councer/timer 2 -= NVI (rt clock) “/
tdefine CT_CTRL 0xl127 /* counter/timer control pore -/

8-3

-~

2?2 M~300C System Guide 53 Sample ZI0OS Writczern

Listing B-l. (continued)

tdet.ne CTOCSTL Ox36 /* e/t Q0 control byte ./
taefine CTICTL 0Ox76 /% e/t . conzrol ovre */
taef.ine CT2CTL OxB4 /% /% 2 control byrte */
control byte is followed by LSB, ther MSB of coun:t to data register °/
‘* baud rate ctahle follows: v/
¥ :naef LOADER /% NOT needed Dy the ioadar Bios ~/
:nt paudRates{10] = |
538, IAd 50 */
699, /" 110 v/
256, I 300 */
128, /* 600 v/
64, /® 1200 v/
32, /" 2400 */
16, /® 4800 */
8. /* 9600 “/
s, /* 19200 */
Z /* 384Q0 v/
I
1endid /v EZpgd Conditaional v/

AR A AL AR S ARl AL Al Al Al AR XXX XA A2 2222 R X222 X222 XX X2 L 2 22 2 2 20 2% 2 2
* leliine Parallel Port constants ./

Al AL LA AL AL A AL AL Al s Al Al il dd il ddd il ddd i il il dddddd it st ddlddd s

¥ "he parallel (printer) port 1s an lnctel 8255 v/

sdeiine PAR_A 0x81 /* pert A dacta v/

sdezine PAR_3 0x83 /* porr B data v/

aeiine PAR C 0x85 / part T data */

datine PARCTRL 0x87 / contrel port ~/

sdefine PARBSY 0x02 /* bit one ‘dbusy DBit) needs to be low */
sdsZine PARFLT 0xl10 /* b1t five {Zaulz Di:) needa to be high */

CP/M-8000 System Guide B Sample BIOS Written in C

Listing B-l1. (continued)

Q"..."‘.-D""".""""""ﬂ'.""-'.""""".""""""ﬁ"""'
/'-"'-"'-.""'.'b""""""@.-.""""""'."""'"".""Q'.""/
L] ./
/* PROM AND HARDWAREZ INTERFACE : ./
. , -
/"'...'.."'..""'....""'."m"""""'."'..".""-"..""'Q'."'/
/.""".'-"...-.""".'.'"'-D."'.'.f"".""""“'."'"'.".""‘/

/"""""'."'."'..."C."."W’ﬂ""""'t"""..'""."-"""'I"'/

/* Dafine PROM [/O Addresses and Related Conatants */

/Q""'O"'Q"'.'.'.""'i'.""W""'.".".."'.""'.'ﬂ"".'.'0".-'./

/* SEE BIOSIO.AKM POR THESE EXTERNALS v/

sxtern int disk_io(); /* (char drive, cmd -= disk I/0Q */
/* int Dblk_count, */
/* int Dblk_nus. v/
/* char ‘dest) =-> int error? ./

extarn cert_puc(): /* (char character) -= put byts to CRT ./

axtarn cold_boot():; /¥ boot operating system ./

sdefine DSKREAD O /* disk read command ./

tdetine DSKWRITE 1| /® disk writs command */

tdefine OSKFMT 2 /® disk format command */

sdefine DSKVFY 3 /" disk verify command “/

sdetine DSKINIT 4 /* disk init. command ./

/."".."""'.."""."Q"-'..'."'l""""""".""'i'"'."""1‘/

/® Define external [/O routines and addresses . */
/".""'-."""'.-'?'.'."‘""'""""'.'"'.."'.‘.".m"."""".‘/
/* SEE BIOSIF.8KH FOR THESE EXTERNALS ./
extarn output():; /* (poren., data: ine) - cutput v/
extarn int inpuc(): /* (poret: iat) - igput */
/."i'-...'ﬂ".'.".""'.-""1"""""'."."?.."..-".'.Q.‘.C""'./
/* Define axternal nesory zanagesent coutines .
/""""'."..‘...'...""."ﬂw""...'..'."-.."".""'ﬂ"'""'.".'/
/ SEE SYSCALL.SKN FOR THESE EXTERNALS b
extern zem_cpy(): /* (sre, dest, lLsnt long)=- copy daca "/
extern lLong map_adr(); /* paddr = {laddr: long:; space: int) ./
tdefine CDATA QO /* caller data spacs v/
tdetfine CQODE 1 /* caller code space */
sdefine SDATA 2 /* system daca space */
sdefine SCODE 3 /" systam code space ./
sdetine NDATA 4 /® normal data space ./
sdefine NCODE 3 /* normal code space -/

ZFP/M-3000 System Guide £ Sample 3I0S Written :iIn

Listing B~l1. (continued)

AR AAAAA S AAA A Al A A bl il bl il dd il i add it il il il ddiiddiddddddd)

/. Systen Entry and Stack Pointer -/
4/‘ ""14'".""""'w'"".'.""'.""."""-'.".'"".""""O.""'.'./
des.ne SYSENTRY 0x0BO00006L / entry point */
sde?.ne SYSSTKPTR Ox0p00bffeal /* syster's stack pointar starc “/
v'"#-l"'.""'."."-'-"""'-""""."...'-"'".ﬁ"""'""'."'"'-/
v Menory Region Taple ./
/‘F"""-""'""'I"'"""-""'"""'.""""'.'.-'I'I'-'.."""-'--/
t1fndef LOADER /* NOT needed for the Loader Bios */

A
szruzr ar: | int couns:

struc: (long ctpalow:
long tpalen:

I regions{4]:
)
namtab = (4,
Ox0AQ00000L, 0x10000L, /" serged I ang D v/
0x0800000QL. Ux10000L., /* separaced I v/
Ux08000000L, 0x10000L, . and O */
OUx0BOO0OQOOL, 0x1000GL ‘Y accwssing I ag O '/
tenc.i ’ ‘" Epd conditienal v/
t:icei LOADER '* NEEDED for the Loader Bios */
struc @rt | int count;
STruct i(lorg tpalow:
long ctpalan:
)] regions{l];
i
aemtab = [],
x0OBOO00OOL, Ox0CODOL, /* system space: marged 1 and D %/
i ’
sTIuct context /* Starzup context for user's progras. */
shore regsi{i4];
iong segstkper:
short ignore:;
shors FOW:
iong PC:

)

CP/M-8000 System Guide B Sample BIOS Written in C

Listing B-~l1. (continued)

struct cContext contaxt =

{ /* Ragwx Q=13 gleared. sp set up below */
[O! ov ol 0, ov ol ov Ou 00 On o) 0' ol ol' :
SYSSTXPTR, /" Losded systes’s stack pointer .
0, /® lgnore: value is zero ./
0xD800, /* PCW: segmentad asystem, VI, NVI sec 7/
SYSENTRY /* Enctxy point to system \J
tendif /* End conditional */
/.'.'.""""'.."""""."'."'--"".'.'.'."'-'"""'."."".".'"/
/¥ Set Excsption Vector entry */
/ ..""""".'.""".'.‘..CQ"’l".'-"'."'..".."'.'."."0".""..'l'"/
extern long trapvec(l: . /* trap vector */
long setkvect{vnum. vval)
int vmua:

tang vval:
registear long oldval:

oldval = crapvec{vnual];
trapvea{vnual = vval;

return(oldval):

Z7'M=-3000 system Guide B Sample BIOS Written

Listing B-l. (continued)

/-"""""""'.""""I'"ﬂ".""""""""".--'."v"""""""/
o 'O"""'""'""-'"""'."""-‘""'l"'..-'"'.-'.'n"-""’."'II'/
s ./

-
I CHARACTER I/0 /

i ./
AL AL SRR adad i il Al d sl ddlildsd il ittt diddbddtibidldd it dddddid i)

IR 2222 2R A4 40 d Al ddd A d i dl i1 24242000 ddiidliid ittt ddddddidiidiidlli

;sc’-v-v'-'.'"v""'v""""."'n""v"’-.'-'-"'-v'-"w"'-"'-""'./

‘o Ganeric¢ Serial Port L/0 Procadures */
Il 1"'-"""'"'.'.'.""'"""-..".'.""’.'"'.'"".'."Vl.'..""-..'.'/

/' define as extern the dirty flag, which 1is actually defined later "/
/* an 1n this £ile. Used to flush the buffer &t an opportune moment. o

+xcern int thdirey:

surinit(posre)
L.t port:

ouspus(pors+~SERCTRL, SERINIT):
outputiport+SERCTRL, SERINIT):
output(pers+SERCTRL, SERINIT):

ocutput(por:+SERCTRL, SERRES):
ouzpus(porz+SERCTRL. SERMODE):
gutput(port+SERCTRL, TTYON):

+.£ BAUD /" Conditional 2or 1200 paud ./
output(CT_CTRL, CTOCTL) ; /" Set baud rate genrator */
output(CT_232,baudRatea(s]): /% Mmodify tor different speeds “/
output(CT_232.0): /* Set for 1200 paud ./

}aine
/* mms aggume the PROM ssts it up. === */

tandy$ /" End conditional */

L1t ser:irdy(pors!

L3t porv:

return(! {inpuct(pors+SERSTAT) & SERARDY) == SERRRDY} ? OxFF : 0):

1

n

~
-

CP/M-8000 System Guide B Sample BIOS Written

Listing B-1. (continued)
char serin(porxt)
%nt pore:

while (serirdy(port) == 0)
return input(port+SERDATA):

int serordy(port)
%ne port:

ceturn(((inpue(port+SERSTAT) & SERXRDY) == SERXRDY) ? OxfF : 0):

seroue(pore, ch)

iac pore:

?hlt ch:

sit BAUD * sonditional for 1200 baud and XOFY */
while (((input(port =+ SERSTAT) & SERXROY)
|=» SERXRDY) ((((input{port + SERDATA))

& Ox7P) ° XOFP) == 0)):
cutput(port + SERDATA, ch):
telas *
while ((input{port + SERSTAT) & SERXRDY) |= SERXRDY)
output({port+SERDATA, c¢h):

:cndiz . /* End conditional */

parordy(pore)
?n: pore:

int status?
status = (input(port)):
return (((scatus & PARBSY) |= PARASY) &k
| ({seatus & PARFLT) == PARFLT) ? OxfF : Q):

parout(poret, <h)
int pore:;

char c¢h:

{

in

c

2P #-800C System Guide B Sample BIOS Written 1n <

Listing B-l1. (continued)

register 1nt 1. scatus:

.= 0
do
i
1f (==1 == Q) /¥ only check for */
iprintstr (“nrPrinter Timeout.nr™): /* prainter ready a */
return; ‘" %inite number of "/
j /* tines "/
1 -
wnile (iparocrdy(PAR_B)}: /* 1% printer ready */
output (port, ch): /* print character "/
output (PARCTRL, OxOA;: /" set strobe LOw v/
ouctput (PARCTRL, Ox0B}: /* set strobe high */

;--w------'v"'.'cvvr'v""'v""-"""v"-'w'-'"vt"'.'-""""'l'-"/

o Olivett) keyboard translation table.

I
/I'1"--""'..'."'."'.""".-'"'."..."'”"l"'-.".'.""-""'-"/

s14noef LOADER /% NOT needed for the Loader Baios ./
srar xDsran(256; =

law xev codes ior main keypad:

Z A B < 2 £ F G H : M K . ™ N
B 3 o} R (3 T v v W X b4 z 0 by 2 3
3 6 7 5 9 - - @ {] /

nain keyboard UNSHIFTED. */

SxEB. 'y, ‘a', '®'. 'e', '4', ‘e', £, g’ 5 SRS R ST PR PR : S
> - LR L R AL T A ‘W', o 'x', Cy', Tz, @, 1Y, T2t 3t
;~ .5.‘ '6'. '7', -al’ '9" --:' 0-1’ l'-. 0(-' l' v' -J- . , 0 -' ¢/|‘

/" mairn xeyboard SHIFTED */

0:DE, . .Y |- g, ‘D, ‘T ' ‘G, 'H' p4 < X ‘L, ‘M, N’
bl o R, 'S T U’ v, w! X', v - , et R
A S T ot - iTLoe, e,

"¢ narn keyooard CONTROL -- CTL E and < di4ter %from Olivetza. */
G<AO,Ox7F.O:OL.0102.0103.0x04.0:05.0206,0107,0x08.0x09,D:OA.OxOB.OXOC,OzOD,OxOE.

O:OF,OxlC.Oxll.OxLZ.OILS,0:14,0xLS.Oxlé,OxL?,OxlE.Oxl9,0xlA.DxBS,OxSl.0:52,0:53.
J:Eé.ﬂxES.OxDG.OxS?,OxEB,OxEB.O:E&,OxEB.0:00.0;15.0:12.0xlf,DxLD.OxFE.O:P?.OxA4.

B-10

CP/M~-8000 System Guide B Sample BIOS Written in

Listing B-l1. (continued)

/* aain keyboard COMMAND */

r~
£

oxDrF, 0x¥8,0x80,0x81,0x82, 0x83,0x4,0xa85, ox86,0x87,0x68,0x89, 0x8A,1x8B, 0x8C, Ox8D,
ox8E, 0x8F,0x90,0x91,0%92,0x93,0x94,0x95, 0x96,0x97,0x98,0x99 ,.0x£EC, OxED,OxER, Oz EF,
OxF0,0xPFl, OxF2,0x¥F3,0xP4,0x¥FS, 0xi’6,0xP7,0xl3,0x1C, 0%FC, 0xFD, OxIP, IxFI, OxfA,0xAS,

/* other Xeys

M 4 (043 S1 33
KEYPAD . Q Q0 1
2 3 4]

s 7 8 9

- - - /

"/
/* other keys UNSHIFTED -~ CR differs from Olivertti v/

*.', '0',0xA6, ‘L°,
120' IJ. l40' ‘50’
.6., l7l Ia' l9'
cer ! ! el e

/* other keys SHIFTED -- CR diffsrs from Olivetta ./

T, 'z',0xAB, 0xA9,

'Lt, ‘0 ,0xA6,0x1C,
Qx9A.0x1D,0x98,0x9C,
0x9D,0x1E,0x9E,0xlF,
Ox2B,0x2D,0x2A,0x2YF,

/* other kays CONTROL */

tt, e’ ,0xAB,0xA9, '
0x80,0x81,0xA82,0x83,
OxB4,0xBS,0xB6,0x1lB8,
Oxa8,0x89,0xaA, 0x88,
0xBC,0x8D,0x8K,0xAL,

/* special -=- substituts r for Oliveeti's OxAF. */

pr.'e', ‘e, e’

}:

stendif /* End conditional */

B-11

P 4-8000 System Guide B Sample BIOS written in

Listing B-l. (continued)

P T I T T I TR R R T R 22 2 2 R 2 A A A 2 2 4 4 A A A A A AL AL S A DA i)

- speci1fic 1/C procedures for use with 10Dyte ./

PR A T2 22 T TR T TR TR 2 2 A2 A A4 2 R L A A A4 A A A A A A A Al At A A A

‘* CRT status, read, write routines v/
~nt crzrs{)

recurn(serirdy(KBD}):

¥1indef LOADER /* NOT needad for the Loader Bios */
zhar erzrd()

i

return{ xbtran{serin(KBD) & Ox2£]):

teacid /® End con2:zional */

1 foei LOADER /% Zondizionai for Loader Bios disable KBD *y
sgeiine crwrd nulrd

sencii ‘* End condizionai “/

.at Trtwsi)

return(Ox¥Fr):
rdeine Crtwr cri_put /" output routine in PROM °/

‘e ~mv gratus, read, write routines */
int ztyrs()

return{ serizdy(RS232)): ~

recurniserin{RS232)):

rT octyws ()

recurn(serordy (RS232)}:

CP/M-8000 System Guide B Sample BIOS Written in C

Listing B~l1. (continued) a
teywe(ch)
c[:hnx chs

) serout(R3232, ch):

/* LPT status, output reutines v/
imc Lpewe()

| return (parordy (PAR_B)):

lpewr(ch) /*® ARGSUSED */
c{.’hu chs

| parout (PAR_A, ch):

/ VOOV RR TR PV C RPN RN NIV N RN R VRN NP C R OW NP CRN N EN TV NI RO RN IR PRIV T RICIIOIOIRTS /

/* generic davics names, batech, and aull devices ./
/"".'"""l"""".“'..""""'ﬁ.""""'.'.'.""'."'."l"""'..-"/

/* the devics names azs the offsatc of the propesr field ia icbyte */
tddfine CON Q

tdefine READER 2

sdefine PUNCH 4

sdefine LIST 6

/* BATCH status, read, weits coutines */

*ifndef LOADER /" NOT needed by che Loader 3ios */
?nt bacrs()

int genseace():

’ ceturn genscat{READER)

char baczrd{)
({
int genzead()

return genread(READER) :

8-13

ZP/M=-800C System Guide E Sample B8I0S Wr:itten

Listing B=l. (continued)
nazwrich!
=nar ch:

genwrite(LIST, ch):
tendif /* End Conditicnal */
f.faet LOADER /* NEEDET for the Loader Bios ./
sazfine patrd nulrd
tdefine patrs nulst
*dziine bDacwr nuiwr
seacis /* End conditicnal v/
/* NULL status, read, write routines °/
int nulsc()

return OxFF:

=nar nulrd(;
recurn OxFF:

Auiwry2h ’* ARGSUSED "/
=rar sn:

i '""""".'"""".""'."'."""."""".'."V""'"""'"""""/
. Generic I/0 routines using 10Dvte v/
‘awwwwe """"'."'"-'."."""""""""""'"."""""".""."'/
-

e {Obyte :1t3ell.

zrazr 10byte = Ox4l::
¥* Device operatior tables. DJEVINDEX :s the :index 1nto the
~abie appropriate to a device (row; and 1ts 10byte index (coluan)

nonexistent devices are mapped into NUL.

'
e
o
-

*jefine DEVINDEX (((1obyte>>dev) & 3) =+ {(dev * 2))

B-14

CP/M-~-8000 Systam Guide

Listing B~1l.

ine (*seebi(161)() = {
ttyra, crtrs,
ttyrs, nulat,
ttyws, nulst,
ttyws, cTtws,

batrs,
malse,
nulse,
lptws,

milae,
nulse,
aulse,
nulse /*

Vs

char (*rdtbl(16])() = |
ceyrd, crtrd, baczd,
etyrd, nulzrd, nulrad,
aulrd, rmulrd, malrd,
malzrd, nulrd, nulrd,

nulrd,
nulzrd,
aulzd,
) auslrd

int (*wrebl(18])() = |
EEYwWE, <rtwr,
nulwre, nulwr,
Cty‘lt . malwr,
LLYyWwE, CILWE,

milwe,
nulwer,
nulwe,
nulwe

baewr,
milwz.
nulwre,
i lptwr,

‘.
o

the generic servics routines thesselves

int genstat(dev)
int dev?
(*setbl{ DEVINDEX])()

recurn():

}

int genread(dev)
int dev?

{
l
genwrita(dev,

ine dev:
?hlt chy

recurn((*rdebl{DEVINDEX])()):

ch)

| (*Wwrthi(DEVINDEX])(ch):

#ifndet LOADER

8-15

/* 3Q0T needed for Loader 3ios

3 Sample BIOS Written

{continued)

*/
*/
*/
*/

con
reader
punch
liste

in

c

T2 4-8B000 System Guide 2 Sample EIOS Written

Listing B-l. (continpued)

’ .'n'-"."'-"""""-"".-"'-"-"""."'.'I""""'.""""'--'./
i Zrror procedure ftor SIQS .

. ---cv-o-'-'v."-"--"v---"vr'-.t"'-'-"v'w.v-'"t"'-'-'-t'..""tvtvt/

Dicaerri errueg)
register char “errmeg:

sraintser{ "nrBl0S ERROR —)
srinctscr(errmsqg):
printser(“.nr"):

while(l):

1
H

prinusczris) /* used by bioserr “/
Taglster char “a:

t
wrile ("s) lcrewr(®s): s == L: }:

sendi? /* End condiz:ional */
t:idef DEBUS /* Cond:izional for Oisx Debugging Hex outpuz v/
sunaexcel L] ‘" put a nex 2igi: o crt Y.
L = Ox$:
1 {1 <« 10)
crewr(a +« '0'):
alse
crzwr{i = ‘a' = 10):
puthexv() /* put’ an int in hex */
i3c 1
puthexd(1 >> 12):
puthexd(s >> 8):
pucthexd{: >> 4}:
puchexd(i):
sencis /* End conditional */

B-16

1in

0

CP/M-8000 Systsm Guide B Sample B3I0S Written in C

Listing B-1. (continued)

/ ""."""'v.‘.’"'.".'.‘.""“"..'..-.‘.'""”'.-'-'."'.‘.'""".." /
/ """'-.'."'"""'"'."""’.l""".."“'"‘."""'""‘.‘."""""‘/
. v/
/* DISK I/0 oo */
- -
/"".‘“'“"""."'"""'..'-"'"..""‘.'."""".".""""'..“‘-.".’

/..""‘"."'O""'."."'."'."'il"'."‘""'..'."I.""""."‘."'."'/

/* BIOS Tablae Definiticns */

/ """"I""."Q""".".'."".*."'"D""""..'.'."'-'""f.'i"'/

?tzuct dpb
int spt: /¥ seqtors per track v/
char bsh: /* block shift = lLog2(blocksize/128) v/
char blm: /* viock mask = 2**pgh ~ 1 ./
char exm: /¥ axtant casx ./
char dpbiunk: /e dummy field to allign words */
ine dam: /* size of disk less offset, 1n oloexs */
inc dra: . /" aize of directory ~ 1 >/
char alo: /" resarvacion bdits for directory v/
char all: /* ... v/
ine cks? "/* size of checksum vector = (drmei)/4 ¥/
int off; /* crack offassc for OS boot v/
char pah: /* Lag2(seccorsize/128) */
| char pam: /¥ physical sizs oask = 2*%pan - | ./
?ezuce dph
char *xLltpr 4 {*% => geqtor translation table ./
int dphser{3]: ;7 /% scratchpad for B800S v/
char *“dirbutpsr /* =» dirsstory buffer (128 bvytas) */
struct dpb *dpbp: /* = diak parameter block v/
char *esvp? /* => sottwars check vector (cks Sytms) *f

char *alvps /* <> allos veztor ((dsm/8)+L bytws) ¢/

B-17

IF M-38000 System Guade 2 Sample BIOS Wrizten 1in

Listing B-l. (continued)

(--ﬂt-"""""'-."".""'0.""-"-'I'.'I""""v"""'-."""'I'-'/

e Disk Parameter Blocks v/

!‘ﬁl""""'-".""'."'."'."'-."-'.""'".'"'.'-..ﬂ"".""'."'/

X3

" ZP/M assumes that disks are made of l26-Dyte logical sectors.

-

** The Olivatt: uses 236-Dyte aectors on 1t3 cdisks. This BIOS buffers
¥ a track at a time. S0 sector address translation 18 not needed.

-

“* Sample tabiles are included for several differant disk gizes.

®

;7 wemwm Qlivetti has 3 floppy formats & a hazd diak =mma ¢/

*define SECSZ 128 /% CP/M logical sector size */
sdefine TRKSZ 32 /* track si1ze for Iloppies, 1/2 track sz for hd */
sdefine PSECSZ 256 /™ Olivetti physical sector size ./
rdefine PTRKSZ 16 /Y physical track size */
+.Sndef TRANSFER /* Condaitional for Normal bios ~/
sietine MAXDSK 3 /* max. number of disks ./
sandil ‘* End conditional v/

t.idef TRANSFER /Y Tranter Zonditional needs ar exira dpb define®’
sjefine MAXDSK 4 ‘* Disx 4 1s a pseudonvm for Qdisk &, with s
sandid re an old-style dpd 0 rescue zhase files. A

S* End condizional Y/

it spt, bsh, blx. exm, JInk. dse, dram, all. ail. cks, off, psh. psm */

szruct dpo dpbl= /¥ === 1 s1de, 16%256 sector, 35 zrack. 140KD we= */
i 32, 4, 15, i 0. 64, 63, 0xCC. o, 16, 3}:

struct dpb d4pbile /* =e— 2 si1de, 167236 seczor, 15 rack. 280kb ~— *f
v 32, 4, LS5, L, a, L34, 8623, 0xCO, c, 16, 3l

struct dpb dpbldw /® === 2 sides, 167256 sector, B0 crack. 640KD ~—= %/
i 3z, 4, 15, a, 0, 314, 83, 0xCO. o, 16, 3},

stzruct dpb dpbis /® == 6 g1de, 327286 sector, l80 trk. B640KD ~= ¥/
32, s, 31, i, [+ 2154, 511, O=x:f0, o, o, 3}:

s13def TRANSFER /* Conditional Trantar dpb defined here v/

struct dpb dApbés S e 2 s1de. 167256 seczar. 35 rack. 280XKD m== */
t 32, 4, 15, L, Q. 120, &3, OxCo, Q. 16, 10}

tendif /* End conditional */ .

i : bls = 2K dsm = (diskx size -] reservecd tracks) ./ onls °/

g pls = 4K %or hard disk (8640 - 24) 4 v/

s1ideZ SECT26 /* Conditional for 8" floppv drives v/

/¥ mms The Olivetti does not nave 26-sector disxs, but zany people do.
b The following parameter blocks are provided for their use.

-

B-~18

CP/M-8000 System Guide B Sample BIOS Written in C

Listing B-l. (continued)

struct dpb dpbSe /* === 1 side, 267128 sector, 77 trk ~=- */
a8, 3, 7. Q. Q, 242, 83, 0xCO, o, 16, 2}:
struct dpb dpbD= /* === L side., 287256 sector, 77 trk === */
s2, 4, 18, Q, 0, 42, 63, 0OxCO, [« 16, 2}7
bangdis /* End conditional */
/ """-.-I......'..."I"'"."C"."-".'"."'Q."""'"".'“--’.""""/
/* BDO8 Scratchpad Areas ./

/ TRRTPRNOTOW ..".""'.’.'-..'."“l.'.'."'.".."--"".-"'x"'.'." a*avew /

char dirbuf{ 3ECSZ];

char c3vo(16]);
char csvi[18];
char esv2{32];

sifdef TRAMSFER /* Por Transfar conditional */
char cavif{16];
tendif /* EBnd conditional */
char aivo(l2l; /* (damO / 3) = | */
char alvif321]: /* (daml / 8) + | */
char alv2{2002); /* (dam2 / 8) ») .

. *ifdef TRANSFER /* For Transter conditional °*/
char alv3f32]:
tendif /* End conditional */

/ L T T e e T T T T NI NN TANCVRC VT RN OO NY™ [

/* Sector Translats Tabla */
/ R AL A A AL 2 Al LAl Al Al LAl il Xl R LR D 0 b 1 1 1°2 T Rrary y g ey gy g g e o gL g R S ey /

¢tifdet 3ECT26 /* Conditional for 8" floppy drives */

/® wmm The Olivetti doss not have 16-sector disks, but mzany p-opl; de.
'7 The following translace table is provided for their use.

.

char xlc26(286] = { L, 7, 13, 19, 25, 5, il, 17, 23, 3, 9, LS, 21,
2. 8, 14, 20, 26, 6, 12, 18, 24, 4, 10, 16, 22 }:

sendif /* tad condicional */

char xiel632) =« { L, 2, 3, 4, 8%, 6, 7, 8, 9,10,11,12,13,14,15.16,
17,18,19,20,21,.22,23,24,25,26,27,28,29,30,31,32}:

B-19

IP 'M-8000 System Guide E Sample 3I0S Wraitten

Listing B-l. (continued)

y.r"-'-'"""""'.v-v'v'--'-"""""-w.'--"-"v"v'v'---.'t"-.'-'i/

’* Disk Parameter Headers v/
A ./
B /
’* Three diaks are defined: dsk a: diskno=0, drive 0 v/
. dsk b: diskno=l, drive 1 ./
/. dsx ¢: diskno=2, drive 10 ~/
7 vv"""".."".."..'.'""'.""'..""’""""""""""..""""/
irindef{ TRANSFER /* Normal bios dph conditional */
struct dph dphtab{l] =
t lxlels, {0, O, 0}, dizbuf, adpbl. asv0, alvO]. /*dsk a*/
{xlelé, (0, 0, O}, dirbuf, &dpbl, csvl, alvl], /*dsk b*/
txlelé,- {0, O, 0], disbuf, &dpbl, esv2, alvi], /*dsk ¢cv/
)
sendif /* End conditional */
ft:1idef TRANSFER /* Trnater conditional with extra dph v/
stzuct dph dphtab{s4] =
U ixlelé, {0, 0, O}, dirbué. adpbl, esv0. alvo0}, /“dsk a*/
ixlslé, 10, C. O, dirpuf, adpbl, csvi. alvli, /*dsk b*/
{xlzle, 10, 0, 0}, disbuf, &dpb3. csvi, alvil, /"dsk c*/
ixitl6. G, G, 0j, d:rbul, dppsé. csv3, alvl), /“dsk g%/
sencéz? /* End conditzionay */

J1-'v"--'v'vv""'v"""v't.'-'-'--'-"-..'.'-".-I'Q'w"""""vt'vv/

. Jurrently Seleczed Disx Stufl v/
'"."""-"'O'-""'"'.""""""-"v'.""."""'0'-'-"""'..'./
11T settrk, setsec, setdsk: /" track, sector, Aisk # v/
iong sevdan: /" dma address with segment info: long */
snaz trkbuf{TRKSZ " SECSZ]}: /* erack buftfer -/
Lot tbvalid = 0O: /* zrsck bulfer valid v/
.ot thdirey = O: /" zrack buffer dirwy ./
¥ 13 tberk: /* track buffer track ¢ */
.at todsk 'Y cracx bufter disk ¢ */
.nt dskery: /% disk error */

'™

CP/M-8000 Systam Guide B Sample BIOS Written in C

Listing B-1. (continued)

/ ‘.."'7?""."."‘"""'Q""'-"'"'.""'t'""""'.'Q'."‘l"""""'/

/* Diak 1/0 Procedures : */

/ '.".ﬁ""'ﬁ...".'.""""".'ﬂ"."'""..'."."'."".’1’.'.'"'Q"'/

dekxfer(dsk, trk. bufp. cad) /" transfer a disk track */
tegistear int dsk, trk, cmd;
7:qiltn: char "dufp:

This is a handy place to keep notse on Olivetti block
mumbering. Por a floppy, bita 3-0 are sector., bit 4 is side,
and high-order bits ars track. We define a floppy to have
twica as sany seqtors as thefe are on a track: thus, the
WCtOr number ovearflows to the side bit and all is well. Om
the hazd disk, Dits 4=~0 are seqtor (there are 12 per track),
and the high-order bits are (track®6)+surface, where surface
is in the range 0..5. To aake the indexing of crkbuf consistent,
we define a hard disk to have only 32 logical (16 physical)
Sectors par =rack, like a floppy. Thus we will ctransfer only
half a track to/from the bDuffar at a time. and the logical
20CLOr number will overflow ints the rsal high-order bdiz of
the sector number. This works because we will always aove
half a track at a time. The tracks and surfaces siaply take
care of themseives, incrementing through zhe surfaces and
affectively ainimizing saseks.

"/
{
int blknum:
1f (dmkmml) .
dsk = 10: /" convert hagd diak drive & ¢/
¢tifdet TRANSFER /*® Conditional rsasignment for Transfer */
if{dak==3) dsk = 1l; /* for tranafer diasks */
senditf /* End condisional */
dskerr=0¢ /* assume no error v/
/® do cransisrc */

sitdet OZBUG /* Conditional OEBUG cutput */
blknum = crk*PTRKSZ: .
princstr("naxtfer block *):
puthexv({blknua) :
princstr(” uniec "):
puthexd(dsk) ;
printser(” track "):
puthexv(trk);
1§ (¢md == DSKREAD)
grincaer(" cead”):

B-21

v
o

{
H

P M=-300C System Guide = Sampie 2i0S written

Listing B-l. (continued)

else
printsts(” wraite™):
crewzr (10} ezewrs(lld):
senci: /® End condizional */
12 (0 1= disk_io(dsk, cmd. PTRKSZ, «rx"PTRKSZ, map_adr(({long)butp,0))]
dsserr=]}:
tdeline wrongtk ({1 cbvalid) (| (tbezk i= settrk]) |{ (chbdsk (= setdsk))
tdezine gettirk 1f (wrongtk) £illtp()
t1tndef LOADER /* NOT needed tor Loader Baios */
€luani)

i
14 0 ebdirty && sbvalid) dskxfer(cbdsk, tbork, 2rkbuf, OSKWRITE):

wodirty = G

dend * Zné condin:ignal ¢

fllLno(l

v.ndef LOADER /* NOT needed bdv ioader Bios */
1f 0 tbvalid &b tbdirty) flush():

rend; 4 /% End conditional */

dskxter!{secdsx, settrk, =rkbuf, DSKREAD):
tbvalid = }:

=bdiresy = Q:

oerk = seTIrk:

“odsk = setdsk:

23cread(;
register char “p:

geturk:
2 = Wtrkbuf[SESSZ * (setsec~l)):

B-22

{1

CP/M=-8000 System Guide 3 Sample 3I0S Written in C

Listing B-1. (continued)

/* transfer betwaen zZamory spaces. setdma is physical address */
sem_cpy(map_adr({(long)p, CDATA), setdma, (long)SECSZ):

) return(dskerr);

#ifndet LOADER /* NOT needed by Loader 3ios it doesan't writse */
dskwrite(aode)
?ha: aode !

registear char *pr

gettek;
P = &trXbuf(SECSZ * (setsec~l)]:

/* tzansfer between uemory spaces. setdma is physical address °/

mem_cpy(setdma, nap_adr((long) p, CDATA), (long)SECSZ):

thdizrey = L:
if (oode == |) flush():
| rsturn(dskerr):
sendif /* Bad conditional */
char sectran(s, xzp)
int L Y
?hn: *zpr

; if (xp I= 0) ratuzn xp(s]; else return s;:

struct dph "seldisk(dask, logged)
register char dsk:
char logged:

tegister struct dph *dphp:

12 (dsk > MAXDSK) resturn(OL):

setdsx = dsk:

dphp = sdpheabl{dsx]:

if (dphp >= dphead * (sizeof(dphtab)/sizecf{struce Jdph))) return(0L}:
{2 (| lLogged)

/* wmm disk not logged Ln. select density, aetc. »sm v/

}
.cecurn(dphp)

B=23

ZF M=-3000 System Gu:ide B Sample 3IDS wWriczten

Listing B-l. (continued)

A XA AR A4 A A A AR A XA 2 A 2 A X R R R R X A R 2 R R A R R R R A R AR R R A2 A X R R R X R X X X 8 Il

R A AR R A R A A R A R A A2 2 A A Y R A R A I R R R R R R R R RS R R R A Y R R L 2

- ./
o BIGS PROPER v/
.. LA

RAAAAA A4 A A Al A4 A A2 d il il dd Al d il Aidd ARl A a2 AT A2 aX22 222 0l

-w'v'vv"'vc".---'-vv"-v'""'v""v.vv‘uv'v'vvvvOO'Q'w'v'v"!'ttivvti/

pDrasiarz()

t1:de¢ DEBUG /* Condizional banner tor DEBUG "/
princser(" rnCP/M=-8000: Oliver:: M20 BIQS JEBUS™):
tend:il ‘" End conditionas *!
‘'* serinit(KBD):*, ‘Y DON'T 1nit keyboard serial pors v/
sezinic(RS232}): ‘¥ oinit 78232 serial pers -/
tovalad = O ‘T inar disk flags v
wpdirty = O
‘" Foliowing rese: 2¢ 10DVIe On eacCh warz DOOT has Deen °
‘" removed. sc¢ na: STAT can reassign aevices. 10bvte
/% 13 now 1nl:ia..zed On 29i& OO only. M
‘" 1obvce ®= Ox4l: ./ ‘* zcor, liast = JRT: rdr. punch v TTY v

v 1

+n the LOADER Dics. the main routine 15 called “bios”, not " _dios™ */

::12aef LOADER /v woader 3108 conditional v/
tdeZine _bios D108
rendy’ /* End conditional °/

ione _bios(d0, dl. d2)
oNT a0:
icng 4L, d2:

switch({d0}
case O: *e INIT vy
nilosiniti)
Sreax:
-
- Indef LOADER /* Nermal 3108 use "/
case l: ‘v WROOT .
wboot()
Dreak:
sendif /* End comditional */

B-24

e

(B}

CP/M=-8000 Systaem Guide

B Sample BIOS Written in C

Listing B-1. (continued)

case 2: /* CONST */
return(genatcat:{CON)) ;
break?

case 3: -/* CONIN ./
caturn{ genread (CON))
Break: Y

case 4t /* coNouT ./
genwrite(CON, (char)dl);
break:

¢ifndef LOADER /* Normal Bios use "/

cape St /v LIST v/
genwrite(lXST, (chag)dl):
break:

case 61 /* PUNCH «/
genwrite(PUNCH, (char)dl):
break:

case 7: /* READER ./
return(gencread(READER)) :
break:

case 8: /* #OME */
seesrk = O:
break:

tendif /* Bad conditional */

case 9t ’ /* SELDSK “/
recurn({(long) seldisk({char)dl., (char)d2)):;
break;

case 10t /* SETTRK ./
sectrk » (ine)dl;
break:

case li: /* SETSEC */
secsex » (ine)dl:
break:

case l2: /* SETDMA ./
setdma = dl:
break:

case l3: . /*® READ v/
recurn(dskread()):
break;

B-25

ZF mM-300C Sysctem

rendid

™

sencs

inaef LOADER

case

case

case

case

case

case

case

case

Guide £ Sample BIO0S

15:

20:

22:

S * end switeh

cezurn(Q):

" =nd D103 procedure

Znc of

C Bios

./
/

Listing B-l. (continued)

./

/® Normal Bios use

‘* WRITE
return{dskwrite{ (char)dl)):
Dreax:

/* LLISTST
returnigenscac{ LeST))
break:

/* End tonditionai */

/* SECTRAN
return(sectran((inz)él. (char*)dl)}):
break:

/* GMRTA
recurn({long lamemcabd}:
oreak:

/* Normal Bios use "/

‘e GETIOB
return({long iobvee;:
Dreax:

‘* SETIOB
iopyte = (cnarldil:
oreax:

/* FLUSH
£lusn():
return((long)dskezz):
break: .

/" End conditiocnal "/

1 STTXVECT
resurn(secxvect({int)dl, d2)):
break:

./

.,

Wrizten

*/

./

*/

./

v/

v/

v/

v

-

~

CP/M-8000 Systsm Guide B Sample BIOS Written in C

Listing B-2. Normal BIOS Assembler

: "TrTTZ2222 22222220222 L LR S 2 0 2 R R 0 2 2 R dd dd Al bl Al

;Build the usssembly modules using conditionals

-~

—text: .ssct
;by setting the value of the label LOADER false
1(0) the normal Bios code will be generated
:while setting the label to true (1) will
;provide the loader Bios code.

LOADER .equ 0 : L or 0 which ever

- wo

.input "biosdefs.8kn"
.input "biosboot.8kn"
.input "biosif.8kn"
.input "biosio.8kn"
.input "biosmenm.8kn"
.input “"biostrap.8kn”
.input “"syscall.Skn”

T L2222 22T LD L L L 2L L AL 22 d L il il il ds il dsd

¥ %

&
Y

~e *s se =2 o
* &

P L 22222222222 2222 2 22 222 20 O 0 A A A2 A R QA sl il d sl sy

bss: .sect

_Sysseg: .block 2 system segment

_usrseg: .block 2 ;user segment

_sysatk: .block 4 ;3ystam stack pointer
_Paap: .block 4 jprogram status area ptr

B=-27

Liszing B-3. (continued)
R TN T TR R PN TN N N R N N P T P YN NN TP PR TN ETYN

;¥ Trap vector table

*
. entries 0..3]1 are misc. system traps
T enzries 3Z..47 are system calls 0..1.5

RS AR AL E R ARl ll sl il d sl il il st Xl il s i XXX]

_nrapvec:
.Dlock NTRAPS*4

- lr,t"""‘f"f'*"""'f""I"'"""‘"’""""'1!""'

T W RN N T P TN PN T R P N I I T Y I A P PP P Y T N T R PP TR TP IRNANTTREY

wewwr 8/15/84 R.F.W. *TTv*

B-30

CP/M-8000 System Guide B Sample BIOS Written in
Listing B-4. BIOS Assembly Language Definitions o

jewRRLRRAN 1iogdefs.Skn cpm.sys +cpmldr, sys*yrrraaewas

il Assembly language definitions for
1 CP/M-8000 (tm) BIOS
7#

:* 821013 S. Savitzky (2ilqm) -— created.

7i'ii‘t""ﬂ'i"ﬂ*"*ii'i**m**tﬁ'i"iiit*itit*i"'*'t
: »
:+* System Calls and Trap Incexes
»
b
4
: PANERRTWRRITIRRRF T RRYTRANRAIRRVIRNNRNARANTRR NN RANNRITRID

XFER_SC .equ
BIOS_SC .aqu
BDOS_SC .equ
MEM_SC .equ
DEBUG_SC .equ

O e W

:* the traps use numbers similar to those in the
:* 58K version of P-CP/M

NTRAPS .equ 48 ;total number of traps
SCOTRAP .equ 32 trap # of system call O

;28000 traps
:EPU (floating pt. emulator)
;seqmentation (68K bus err)
;non-maskable int.
;priviledge violation
;Interrupts, etc.
: tracs

EPUTRAP .equ
SEGTRAP .aqu
NMITRAP .squ
PITRAP .aqu

W 0o

TRACETR .equ

8=-31

‘g
o8
e

M~300C System Guaide E2 Samzlie 2I0S5 Wristen

Listing B—-4. (continued)

W AT T N T T NN RN N P N N Y Y T Y Fr P PP r YRR YNNI RAITTNVEYS

. W

:* O Stack frame eguates

i A C stack frame consists of the PC on top,

P followed by the arguments, leftmost argument Sirst.
..

B The caller adjusts the stack on return.

L4

; Rewurned value is 1n r7 (wnt) or rré (long)

P N

AL LAl Al l ARl lld il Al d sl Rl ll Al dld sl sld Rl]

pTSIz . egu 2 :PC size non-segmentced
INTSIZE .equ 2 - :INT data tvpe size
LONGSZIZE .equ 4 : LONG data type size

ARGL . eqgu PCSIZE integer arguments
ARGZ .equ ARGL+INTSIZE '
ARGZ .equ ARG2-INTSIZE
ARG+ . eqgu ARG3I=INTSIZE
ARG3S .equ ARG4+INTSIZE

RN TN Y W T RN TN TN AN TR P AR YR TRNN TP RNRTTRTRPECTENRTEETEREY

-

1" Segmented Mode Operations
b

i NOTE: segmented indirsct-registar operations

il can be done by addressing the low halé
pr of the register pair.

.

et i i il l i st ild s s il il il dd sl sttt il isdd s s

SEG .MACRO ; START segmented mode
: 0 destroved.
ldctl r0,FCW
set r0,#.5
ldeel FCW, r0
. ENDM
NONSEG .MACRO : END segmented mode

: r0 destroyed.

ldetl r0,FCwW
res r0, #15
ldetl FCW, r0

(@]

CP/M-8000 Systam Guide B Sample BIOS Written in C

Listing B-4. (continued)

scall <MACRO : (sagaddr) segmented CALL
«word 05FQ0h
.long ?1
. ENDM
sscall .MACRO : (| segaddrl) short segmented CALL

.word QSFOOh
. word 21

r"'**i*'*"""'*""'*"w*"*'ﬁ'*‘*'*'**'i***'*'ii'
L]
.

;% Systam Call Trap Handler Stack Frame

-
h

:*'-."t**’*'*”""’*""W"*”'I"I"'i'*'ﬂf**ﬂ'*#i

er0 .squ 0 ;WORD caller ro

crl +oqu crO+2 3 WORD caller rl

cr2 .equ cxl+2 ; WORD callar r2

cr3 .agqu <cri+2 : WORD caller r3

cr4 .aqu cri+2 ; WORD caller r4

exs .aqu cré+ ; WORD caller rS

cré .aqu crS+2 ;s WORD caller r6

er7 .aqu Qré6+2 ;WORD callar 7

exr8 - .equ crT+2 :WORD caller r8

cr9 .equ crB+2 : WORD caller r9

erlo equ Cr9+2 ; WORD caller rlO
crll .aqu crliO+2 : WORD caller ril
erl2 .aqu cril+2 1 WORD caller rl2
erlld .aqu crl2+2 ; WORD callar rll
nrlsd .equ crli+2 ;WORD normal rl4
nrls .equ nrli+2 : WORD normal rls
scinst .equ nrl5+2 ;s WORD SC instruction
scfcw .equ scinst+2 ;WORD caller FCW
scsag .equ scfcw+l ;s WORD callar PC SEG
scpce .8qu scsag-2 ; WORD caller PC OFFSET

FRAMESZ .aqu scpc+2

B-33

ZP'M-3000 Svstem Guide 2 Sample BI0S Written

Listing B~5. Olivetti Bootstrap Initialization

pY¥wwwww¥® biosboot.8kn for cpm.sys + cpmldr.sys*Trr*
i Copvright 1984, Digital Research Inec.

-

Y #2Z1013 S. Savizzky (2ilog) =-- adapt for nonseg.

;Y 820930 S. Savitzky (Zilog) == created
;¥ 340813 R. Welser (DRI) -- cond:tional assembly

.

Al s Al il A s lslll Xl il R XXX AR R X2 X222 K 2 X R RT3

T2xXe: .sect

——

.

LA A s A A sl il il iRl X2 X L X A d XX X XX 2-X"% 22" 2"

*

&+

NOTE -- THIS CODE IS HIGHLY SYSTEM-DEPENDENT

-
Ed This module contains both the bootstrap

P * writer, and the code that receives control
* after deing booted,

-

B The main Zunction of the latier 1s to make

ce wa g s

sure that the system, whose entsy point is
* called "bios”, 1s passed a valid stack
and PSA pointer.

-
. Although <this code runs segmented, iz must
- be linked with non-segmenteé code, so it

* locks rather o244.

*

L

ba A A A A A 4 AR LR Al Rl il d il sl sl d Rl A L2 2L 21 20

0

[}

CP/M~8000 System Guide B Sample BIOS Written in C

Listing B-5. (continued)

:i*'i***'**i*"i****'**'*'*'ﬁ'**ii**ﬁ*'***iﬁ*****w**i

:* CP/M ~ 8000 on the Qlivetti M20.

- W

: QOlivetti's peculiar format, has a lot of

¥ Olivetti‘s file system in it.

+ W

¥ Track 0 is unused except for sector 0, since
:* it is single density and thus has smaller

v sectors.

'S

i A total of 10 tracks are resarved from CP/M,
1 * leaving 9 tracks for the system proper.

. W

i The first sector on track 1 is the PCOS file
ol descriptor block; the second is the boot file
:* header and the start of thae system code.

s J

:* This leaves something under 28K for the

il system (BIOS+BDOS+CCP). It is assumed that
il the systam starts at its lowest address,

b and that data follows immediately aftar code.
a W .

;v For now, we asaume that the systam starts at
;P <<11>>0000 (hex) for normal systesm
i €¢1l0>>0000 (hex) for boot system

«®

s W BWAW PRV TRRRNPATVAVENIRRARNRPFARRIRAERTRANRACRR PR RTRRAW

-~

;t***‘if"""'i**-"'*""**""i"'i""*""*ﬂ'*"
I

Hid Globals

« W
‘

:t*"'."""".'*"'"-"*""**i'**""i"‘*'me"t

.if LOADER
.global _startld :entry to read systam tracks
.andif

8-3S

CF/mM-300C Syster Guaide 2 Sampie EI0S Written

Listing B~5. (continued)

. MWW 'I"i""f"'""!.r't.i"1‘""ﬁt"l’"""f"'"!""
. ®

;

. " =

; Ixternals

.

BAA ARl A S A Al AL LRl Lld s EERd L Add R R L E XA RN LR XL EET 2 X R RER-RVREY

.clobal bios

. 1% LOADER

.else ; no warm boots in loader bias
.global _wbhoot

.endif

AL AL RS AL AR ARl L ARl il ildd i sl X L R 2 3 22 R 20 2 R 2 "X R T BT
.
. "

;* Tonstants

- "

- .7"f""f'*"'*”'i.""""'""""""""""*""

. 2% LOADER
300TSYS .egqu OAQ00QQO0N :svstem address on boot
BOCTSTK .equ BOOTSYS+0BFFEnR :system stack top on boot
.else
SYSTEM .equ 0BGO0O0QON : systenm address
SYSSTK .equ SYSTEM+QBFFENh : system stack top
.endif
3p7 .equ 16 ; #blocks in a track
3PS .egu 256 I #bytes in a3 sector
NBLKS . equ g*lé : *blocks in boot
HDRSIZE .equ 24 : #hyvtes in header
FILSIZE .equ 256" (NBLKS-1) : £ile data size
SYS3IZE .equ FILSIZE~HDRSIZE : total svstem size’
51SIZE .egu , 3P5-dDRSIZE : data 1n sector 1
SEG4 .equ 04000000h
SEG2 . equ 02000000h
S5YSPSR .egqu SEG2+100h ; system PSA .
BOCTPSA .equ SEG4+100h ; PSA in PROM for boot
3scall .nmacro rshort segmented call

.word 0S£00n
.ward 71
.endm

B=-36

n

-~
-

CP/M-8000 System Guide B Sample BIOS Written in C

Listing B~5. (continued) N

;ti'tiii**'ttt"***t*******w**it**i*i**iﬁii'i'iit**'t
a W

!

;* Entry Points and post-boot Initialization

-
]

;i***i"i*ﬁ*t**"*"*'Q""@iiiﬁ*'*"**'*t*i**i*iﬁi**

;* transfar vector

. if LOADER

.alse ; no warm boot in the loader bios
iz wboot

.andif

jr antry

;" post-boot init.

antry: : SEGMENTED
.if LOADER
_Startld:
.endif
DI VI, NVI
.1if LOADER
1dl rrl4, $BOOTSTK :init boot stack pointer
.alse
1dl rrld, #SYSSTK ;init normat stack pointer
.endif
14l rr2, *SYSPSA ; copy PROM's PSA

ldetl z4, psapseg
ldetl r$, psapoff

14 r0, #570/2
ldir 8r2. Rr4, 0
14l rr2, #SYSPSA ; shift PSA pointer

ldetl psapseqg, r2
ldetl psapoff, rl

B8-37

2?2, M-8000 System Guide B Sampie BIOS Wrizten in C

Listing B-5. (continued)

1 r2,#142h ; CROCK== wurn off

ic r3,#lfen ; usart 1nterruptcs

out @r2,r3

ldar r2, § : go

1é r3,*bi1os

p gx2

.1£ LOADER

.else ' inO waImboot in loader bios
wboot: ldar r2, §

id r3,#_wboot

ip @r2

.engif

B-38

CP/M-8000 System Guide B Sample BIOS Written in C
Listing B-6. BIOS Assembly Langquage Interface oy

pARReRANLT biosif.8kn for cpm.sys + cpmldr.sys *rewwew

. Copyright 1984, Digital Ressarch Inc.

Py .

:* Assembly language interface for CP/M=-8000(tm) BIOS
: ——m— System-Ilndepandent —w=—

« W

:*® 821013 S. Savitzky (Zilog) == split into modulas
;¥ 820913 8. Savitzky (2ilog) -= qreated.

:* 840811 R. Weiser (DRI) -= conditional assembly

« W
H

__text: .sect

: LA LA AL S AL LAl A A Ad Rl R LA X Ll 22 d 2 E X 2 g R Rryry gy ey

:* NOTE

b The C portion of the BIOS is non-segmentad.
» ¥

i This assembly-language module is assembled

b non~-segnented, and serves as the interface.
+» W

:* Segmented operations are well-isolated, and
:* are either the same as their non-segmented

A counterparts, or constructed using macros.

P The resulting code looks a little odd.

'R . .

T RERARERRRURERNTREARTRNRRAALRRRTRPRRAIRDTRNN PRI R OIS

8-39

~

~

F~»-3000 System Guide 5 Samp.e 2I0S Writzen

Listing B~6. (continued)

W TR TR N TN TR N T T N N P T P P TN F P T e rFrrrrrerrerr e
-
» >
LZxternals
-

A A s R A2l Al ddd sl il i sl Rl ldld sl sl lllldddlX sl sl S R4

.global _biosinit ;C portion init

1f LOADER is True then
Load the system into memory

.1f£ LOADER
.global _ldcpm

.else ; else i1ts the normal bios

.global _flush :Flush buffers

.global ccp ;Command Processor
.end1f : end condiciona.
.global _zrapinit rwrap starsup

.¢lobal _psap, _sysseg, _Sysstk

AR LA AL LAl ALl ladll Rl il ldl Al ldl s Radddd)
’

.

:¥ Glopal declarations

. >

R R R L R N X L R R e R L 2 XY

.global bios initialization

~ ~e

.1if LOADER If Loader stub out _wboot
.else

.global _wboot I warm boot

.end21f

input a byte

.global _input
cutput a byte

.global _output

~e <

B=40

-

n

H

~

CP/M-8000 System Guide 8 Sample BIOS Written in
Listing B~6. (continued) .

:ﬁ*ﬁ*'t**ii*'***'***iﬁ***"ﬂ*****i****t*'****itii*iti
i* '

:* Bios Initialization and Eantry Point

»

¢
.
.
'
-
.

hd This is where control comes after boot.
* If (the label LOADER is true 1)

ol Control is transferred to ~ldcpm

> alse .

:: Control is transferred to the ccp.

;Y Wie get here from bootstrap with:

:® segmented moda

A valid stack pointer

: valid PSA in RAM

!
:ti""***i.i"'*i'****‘***@"**'*'*"*iﬁ**'ﬁ*t'*"**

bios:

: sntar in segmentad mode.
; Get system (PC) segment into r4

DI VI,NVI
calr kludge ; get PC segment on stack
kxludge: popl rr4, .8rl4d

; get PSAP into rri.

ldctl r2, PSAPSEG
ldctl r3, PSAPOFF

go non-segmentsd. save PSAP, systam segment,
system stack pointer (in systam segment, please)

e 2

NONSEG

ld1 _psap, rr2

14 _sysseg, r4
1d rl4, sysseg
ldi . _8ysstk, rrlaé
.if LOADER

.else

; set up. system stack so that a return will warm boot

B-4l

ZP%-8000 System Guide & Sample

‘

({4
=
O
n
x
"
-
"t
ot
[
jal

Listing B-6. (continued)

push @rl5,#_wboot
.endif
set up traps, then enable interrupts

call _trapinit
=I VI,NVI

ser up C part of Bios

call _biosinit

Turn control over to. command processor
.1f LOADER
Jp _ldepm : do Program load
.else
ip ccp

AR A R LA S A LA LA RS ARl il s il il il il X LA XX X XX X 1)

;¥ warm Boot

i £lush buffers and initialize Bios
Hi then transfer two CCP

AL LA RS S LA LAl Sl A lsdd il il sl sl liidd il sl e 2 2
’ - . .

_wooot:

call _Eihsh

call _biosinit
idl rrl4, _sysstX
Bl ccP

.end1f

B-42

CP/M=-8000 Systam Guide B Sample BIOS Written in

Listing B-6. (continued)

K3

?t‘ﬂ***'*iiii**"t‘********iﬁt'**'**ii****f*'*i*t"*i
- W
’

;* I/0 port operations
»

* int = input(port: int)
* ocutput (port, data: int)

[]
’
.
4
.
’
.
4
4

"'i*'i*ii‘*"’.'i.ﬁ"t**&f‘t*i**".**‘*ii'i'**'#’-*

input:
r2,ARGl(rlS)
subl rr6, rrbd
inb rl7,Q@r2
1db rl6,rl7
ret
Sutput:
14 r2,ARGL(rlS)
1d .r3,ARG2(rlS)
outb ar2,.rld
. ret

-'*'"*""i’."*'**i'*"'W**""'*""Q*'i""""'i'
.t***ﬁ""'*""*"ﬂt*"*‘W""i‘*‘*"**""*"&'i"*'

B-43

[

o2

]

“® 4 4 o X B & %

——

M-B00C System Guide S Sample 3105 Wrictten

Listing B-7. BIQOS 1/0 Routines

TEETFETT blosio.8kn for cpm.syvs + cpmldr.sys wrTrrer

Copyrignt 1984, Digital Research Inc.

1/0 routines for CP/M-8000(=m) BIOS
for Olivetti M20 (ZBOOl) system.

221013 S. Savitzky (Zilog} == created.
340815 R. Weiser (DRI) == conditiocnal assembly

LextT:

-sect

Al Al s A A i Al RSl d 2l Al a2 R L R X K2 X2 2 RVE 2 E"8 2"

.

. n

NOTE

The Olivettii PROM routines are segmentec.
The C portion of the BICS is non-segmented.

This assembly-~ianguage module is assembled
aon-segnmented, anc serves as the 1nterface.

Segmented cperations are well-isolated,. and
are either the same as their ncon-segmented
counterparts, or constructed using macras.

AR AL A Al st Al l i il il il XX 'R L2 R 2 2 "2 71

A LS Al A 444l il d i sl il el el il Rl 2 22 X 2" 28 2

3

Slobal declarations

AL A LA S LALLMl 4R ALl X Al 22X 0 £ XX X3 222 % 2 2 1)

-global _disk_io
.Global _crt_pu:
.global _cold_boot

in

~

-

CP/M=8000 System Guide B Sample BIOS Written in C

Listing B-7. (continued)

H (22 2122212022222 XX 22X 22220 2 2222222222222 22222212 222 %]
-

')

:* Prom Subroutine Access

oW

’

: PORERRPRERTRRRPTRRRPRIRNRRPRRRPRDRLIRNRRRRPRIRPPIUAPIREIIREI RPN D

disk_ios ;err=disk_io(drv, cmd, count, blk, addr)
dec 1S, #14 ;save rogiétnra
1ldm @rlS.rB. #7
1db rh7,14+ARGL+L(rlS) ;get args
ldb rl7,l4+ARGR+1(rlS5)
14 r8, L4+ARG3(rlS)
1d £9, l4+ARG4(rlS)
14l rrl0, l4+ARGS(rls)

sth7 =» Adrive #%

1zl7 = zommand

;r8 = hlock count

:r9 = block number

;rrlQ = sagmented address

SEG

scall 84000068h

NONSEG
;r8 = block count not transferred
;th7 = fratrias
;rl7 = final error code (RETURNED)
:ché = error retried

and r7, #OFFh ;value recurned in 7

ldm r8,3rls, #7 ;restore rags

inc rls5, 314

ret

_ert_put: ;ert_put(char)

dec rl5,314 ;save registers

1dm 3rls5,c8, #7

1d rl,l4+ARG1(rlS) :get arg in rl

SEG : SEG clobbers rQ

1d rO,rl :rl0 = char

scall 84000080n

NONSEG

B-45

7 »-800C System Guide 5 Sampie 3I0S Written 1n T

Listing B-7. (continued)

1ém r8,@rl5, %7 :restore regs
inc rl5,%14
ret

_cslc_boot:

SEG .
scall B8400008Ch
NONSEG

ret

B-46

CP/M~8000 System Guide " B Sample BIOS Written in C
Listing B-~8. Memory Management BIOS

;uRRAREE hiosmem.8kn for cpm.sys + cpmldr.sys **wawews

: Copyright 1984, Digital Research Inc.

o ¥ .
v Memory Management for CP/M-8000(tm) BIOS
il '~ for Olivetti M20 (Z8001) system.

;¥ 821013 8. savitzky (Zilog) == split modules
:* 820913 8. Savitzky (%ilog) =— created.
1* 840815 R. Weiser (DRI) -— conditional assembly

taxt: .sect

LA LS L2 2 4R sl sl sl el iR X 2R X2 22 2 2 2 2U2 2 R T T L L Erp ey

w

*»

* This modula copies data from one memory space
* to another. The machine-dependent parts of

* the mapping are well isclated.

»

* Segmented operations are well-isolated, and

" ars either the same as their non-~sagmented

* counterparts, or constructed using macros.

- y

w

S8 6 N6 Se “e me N wa w2 g

i WRRBERVBERERRBRTNTRRARNRRAVERTANRPRRECTARRPANERBENTOLRRRNY

:ﬂ"*'*ﬂ*w"'i""ﬁ**""iﬂi"’*t".*i'if"**""i"'
.

4

:* Global declarations

- W

4

;i"""'*ﬁ*""*'**""‘*Q't'*i"*i"ii"-*'ﬁﬂﬁﬂiifﬁ

-global _sysseg, _usrseg, _sysstk, _peap

.global menmsc

BAAAALALL LA LAl X2 22 2 2 2 T2 4 X2 L 2 R 2 Y 2 T ary S aue e e
»
.

;* Externals
. ®

:.'*'***'t"'*"ﬂf'**i.*""ﬂ"*'**'*"'*ﬂ"""?'*'*

.global xfarsc

8-47

TP

M-8000 System Guide

Listing B-8.

E Sampie BIOS wWr:i:tte

(coptinued)

T EAEE RIS AL AR 2R R AR ARl lildidl Rl sl RSl sl S A R X1

X & B 4 4 £ % % »

L]

Svstem/User Memory Access

_mem_cpy(source, dest, length)
long source, dest, length:

_map_adr(addr, space)
long addr: int space;

_map_adr(addr, =-1)

-

-2

sets user seg#% from addr

_map_adr(addr, ~-2)

paddr

addr

control transfer to context as addr.

system call: mem cpy
rré: source
rr4;: deszt
Tr2: iength (0 <« length <= 84K)
returns
registers unchanged
svstem call: map adr
o6 logical addr
5: space code
ré4: ignared
rr2: 0
raturns
rré: physical addr
space codes:
0: caller data
L caller vrogram
2: syster dacta
E system program
4 TPA daz:a
3: TPA progranm
x+256 x=1, 3, 5 : segmented I-space addr.
instead of data access
FFFF: set user segnent

AR XA L 222 Rl Ad Rl i lddl A sdl Rl)il lllddl il il sl ddlddddd

B-48

O

Y

(@}

CP/M-8000 System Guide

nemnsc:

. ta-ti
jr 2z

nem_copy:

ldizb
1dl
ret

mem_nap

HONSEG'

i eq

calr

IRt

Listing B-8.

;memory manager

rr2
nem_MmAap

B Sample BIOS Written in C

(continued)

systam call

CALLED FROM SC

IN SEGMENTED MUDE
rr6: source

rrd4: dast / space
rr2: length / 0O

~p wo wp %

;7 copy data.

@r4,@r6,r3
rr6,rrd

rr6: sourcs
rr4: dest
rr2: length

“s ~o

~

; rr6 = dest + langth

; map address

l‘5 ' "‘2
xfarsc.

r4,scseg+4(rls)
22,scfcw+rd(rls)
map Ll

cre+4(rl%), rré

5, #0FFFFh
set_usr

rls, 30
call_data
£l5, %1
call prog
ris, #2
sys_data
rls, #3
sys_prog
rl3, 34
usr data
rlS, #3

usr_prog

rré: sourcs

;7 rd: caller's seg.
1 £5: space
: £2: caller's FCW

-~

space=-~2: xfer

! retcurn rré

; dispatch

~e

space=~l: user seg

B8-49

2P '»-8000 System Guide

rsturns

Listing B-8.

_usrseg,rb

* rré6= logical address

- ré = caller’'s PC segment
s r2 = caller's FCW

*

: rré= mapped address

Mose

for access as daza.

ca.. daca:
bit

et nz

id
ret

call prog:
bit

3T

ia

svs data:
- id
ret

1d

ret eq

ret

nz

T2,#%15

ré,r4&

r2.#15

map_prog
ré,r4 .
map_orog

r€, _sysseg

r6, _sysseg

$-~1
_usrseg

r0,
ro,

ré, _usrseg

£ Sample BIOS Written

(continued)

;default: no mapping

:~1l: set user seg.

THE FOLLOWING CODE IS5 SYSTEM-DEPENDENT *=*~*

-

- of the system dependencies are in map prog,
;¥ wnich maps & program segment into a data segmen:
+« ¥

-

! segmented caller?
; ves—=— use vassed seg
! No == uss pC segnent

i alresady mapped

: segmented caller?
yes-~ use passed seg
no — use pc segment
map prog as data

;! assume svs does not
: separate code, data

N -

P

~
~

CP/M=-8000 System Guide B Sample BIOS Written in C

Listing B-8. (continued)

usr_progi
. lda r0, #-1
cp rQ, _usrseg
jr «q map prcg
14 ré, _usrseg
ir map_prog
map prog: ;smap program addr into data
; £26 = address
testb rhs ; data access?
ret nz : no: done
and ré, #7F00nh ; extract seg bits

: olivetti: segment 8 is the only one with
H ssaparate I and D spaces, and

: N the program space is accessad
; as segment 10's dacta.

--epb " "rhé, 38
'8t ne
1ab rhé, #10
ret C

B~51

7 »-B8B000 System Guide Z Sample EZICS Written in T

Listing B-9. BIOS Trap Handlers

;¥wwwwwwww* prostrap.B8kn cpm.sys + cpmldr.sys TvvTTT

P Copyright 1984, Digital Researcn Inc.

i Trap handlers for CP/M-8000(tm) BIOS

;* 3221013 S. Savitzky (2ilog) == created

;¥ 821223 D. Dunlop (Zilog) -~ added Olivecti M20-
. specific code to invalidate track buffer

. contents when disk drive motor stops

H (£ixes directorv-overwrite on disk charige)
;* 830305 D. Sallume (Zilog}) =~-— added FPE trap

P code.

r* 840815 R. WEISER (DRI) =-- conditional assambly

“ -

“2Xt: .sect

TN PP TP RO TP R TN TR T RN PR P TP RN P W T YT PR P P YR TRYTY
NOTE

;T Trap and interrupt handlers are started up

i 1n segmented mode.

.

A AU BN T P T ECW R TP PRI PR TR ERP T PRI TIPSO TOILAPRETTIY

. W W R NN RN T TR I T P P TN P P T AP r rrrtr e r rwrwrorve P rwrery
;

s

. ® P

; Ixternals

- ®

W R P AN W W RPN TR TP TR RN TR P TN NPTTRTYRTTARNARTITIPIITEETR
i

.1% LOADER

.global _bios : C portion of Loader Bios
.else

.global _ bios :C portion of Normal Bios
.endif .

.Global memsc memory-management SC
-Global _tbvalicd rdisk track bufi valid
.global _tbdirty ;disk track buff is direy
.global _sysseg, _usrseg, _sysstk, _psap,

.1f LOADER

.else : only the normal Bios
-global fp_epu

.endif

CP/M-8000 System Guide B Sample BIOS Written in C

Listing B-9. (continued)

:.""*'*ii"ﬂ*"****'ﬂﬁ**i******‘*'***i*i’i*ﬁ*****'i
:'

:* M=20 ROM scratchpad RAM addressaes

o«

’
;."'I'**C"'*"'iﬁii'*'**i*iif'****ﬁ'-i*‘*iii*****i'

rtc_ext: .equ 82000022h ;Place to put address
; of list of functions
) ; for each clock tick
motor_on: .equ 82000020h :Disk motor timeout

:t*i*ﬁ'*'ﬂ**"'*"*ﬁﬁ'iﬁ"*'.'QO'*"'Q’!#'*"**ttﬁtti
;t

!* Global declarations

oW

[
;t'*t*'i'*t*ti***it*i'i'ﬁiwt'ti**'*i*'*i****"i*t*ii'

-global ;trapinit
-global _trapvec
.global _trap

.global xfarsc

:'i'-'"ﬂ"'""‘*""'**"'*"'*"*'*'*.*'*’**ﬁ""'
Rl '

;¥ System Call and General Trap Handler And Dispatch

- ¥
!

Hd It is assumed that the systam runs

el non-segmentad on a segmented CPU.

« W

: trap is jumped to segmentsd, with the

s following information on the stack:

«W

b trap type: WORD

: rsason: WORD

o fow: WORD

el pec: LONG

- W

P The trap handler is called as a subroutinae,
Hid with all registars saved on the stack,

P * IN SEGMENTED MODE. This allows the trap

Hd handler to be in another segment (with some
i care). This is useful mainly to the debugger.
« W

i All registers except rr0 are also passed

i intact to the handlar.

« W

IRAAA L A AL LA S AL AR AL Al sl il s i 12222 2 22 2 2" 1 2

o

‘“-300C Svstem

push

it
"
ey

Guide

Listing B-9.

rsystem call

érl4,0rl4

rlS, #30
@rld,r0,%14

rl,NSP

nrl4(zlS).rls
rl,nrl5(zsls)

chl,#7Fh
trap _disp

rnl
zl, *SCOTRAP

Check mwm

rl,s2
rr0,_zrapvec(rl)
rr0

_trap_ret :

@rlS, rro

@rl4,rro0

(continued)

rap server

"

push caller state

go nonsegmented

b}

crap® now in rl
systemr call?
no

yes: map it

dispatch

Zaro =-- no action
else call seg @r-0
(done via kiudge)

Jp @rro

CP/M-8000 System Guide 8 Sample BIOS Written in C

Listing B-9. (continued) .

trap_rat: ;return from trap or interrupt

NONSEG

14 zl,nrlS(rlsS) ! pop state

14 rl4,nrl4(rls)

ldetl NSP,rl .

SEG ;! g0 segmented for the iret.

ldm r0,Q8rl4, #1l4

add rl5, #32

iret ; return from intarrupt

: *Q'i"‘ﬁ*ﬂ"‘l""""""'li'il*"‘l'l"".*-"i'*"ﬁiﬁii"**’*‘.
:'

;* Assorted Trap Handlers

. " .
0]
: BRRREREURPREBENFRRRIRRPRREIRRPAIRRRTIOTUWT PRI TNTREITRLPNLTRR

epu_trap:
push @rl4, sEPUTRAP
iz trap
Pi_trap:
push 3rls, #PITRAP
jr . _Erap
seg_trap:
push Qrl4, #SEGTRAP
jzr _trap
nmi_trap:
push 3rl4d, sNMITRAR
ir trap
.if£ LOADER . ‘
.alsa . not usaed in Loader Bios

8=-535

M-8000 System Guaide 2 Sample EI0S Written 1n

Listing B-9. (continued)

W W TN TR TR T P T T RN R N T RN N TN TN TN TP AT AN
. 2

L.

. 3105 system call handler

-

AR P T TR T T T P R P R T P T R r e P P v R P P R P P r Y PP PN R AR T T PRI

PRV L-IK ;call bios -
NONSEG
: £33 = operation code
: rr4é= Pl
: rré= P2
14 r0, scfew+4{rlS) : 1f caller nonseg, normal
and rQ, #0C00QN
jz nz seg_ok
x r4,scseg+4{(-l5) : then adé seg to Pl, P2

é
id ré, r4
set up T stack frame

pushl @rls3,rré
pushl RrlS5, rré

push @rls5,r3
; call C program
call bios :
; clean stack & return
adad rl5,#10
18l cxb6+4{zrl3),rré : with long in cré
SEG
ret
.endif

B~56

CP/M-8000 System Guide B Sample BIOS Written in C

Listing B~9. (continued)

w

H E L2 A2 A2 2222l el il d iRl il iliidtis il dlddsd])

:* Contaxt Switch System Call

HA xfer{contaxt)

:: long context:

:* context is the physical (long) address of:
: * r0

: f.,

ol rl3

:* rl4 (normal rl4)

A £l5 (normal rl5)

il ignored word ,

;* FCW (had bettar specify normal mode)
P PC segment

i PC cffsat

'* Tha system stack pointer is not affected.

¥ Control never raturns to the caller.
»

MLl Il ALl d il d i il Xd it lisddldsdsididdd il idddd)

xifersc: . ;senter heres from system call
SEG :

; build frame on systam stack

; when called from systam call, the frame replaces
; the caller's context, which will never be resumed.

ine rls, #4 idiscard return addr
141 rrd4,rrld imove context

1d r2, #FRAMESZ/2 e

idir @r4,3r6,r2

jr _trap_ret ;restores context

8~-57

ZP 'M-3000 System Guide 3

Listing B-9. (continued)

R AR LML AL AL Rl sl l Al A i 2l X2l Xt R XX 2R 2 8 28 2

motor< == check if disk motor s:iill running.
Entered each clock tick. Invalidates
track buffer when motor stops

i (Note: runs segmented)

A AR A A A S ARl Al sl sl Al Rl R X 2R LR R 2 R X 2 R X R R RN
‘

_mcear _q:

1dl IT4, ¥mOtOr_on ;Motor rumning?
test @rs
ret nz :Yes: do nothing
ldar r4,$% :
lé 5, #_tbdirty : Is =rack buff direy?
test @rs ; Yes. ..
ret nz : ...reTurn wizhous
d r5,3_tbvalad
clr 3 L3 :No: mark &track buffer
ret ; wnvalad

Tanle of functions run each real time clock Gtick

rcktab:
.long -1 :Will contain _motor_c
.word 0ffs :Terminator

AR A A A AL Al llistad il add i ddl i a2l XX 22 2 2 2 2 0 "2 % 243

. X

;* _trapinit -- initialize trap sys:enm
P 4

AR AL S A s AL Al sl Al sl l il il R LR XX 20 X R R R R LRI

* ?5A (Program Status Area) szructure
.equ 8

; === segmented ——

Sample EIOS W

-

o
1]
t
®
3

invalidating

-

size 0f a program status entry

CP/M~8000 System Guide B Sample BIOS Written in C
Listing B-9. (continued)

EPU trap offsat

psa_epu .equ l*ps
priviledged instruction trap

psa_prv .equ 2*ps

psa_sc .equ 3*ps ; system call trap
psa_seqg .squ 4*ps : segmentation trap
psa_nmi .equ S*ps : non-maskable intarrupt
psa_nvi .equ 6*ps : non-vectored intsrrupt
psa_vi .equ 7*ps ; vectored interrupt
psa_vec .squ psa_vi+(ps/2) ; vectors
trapinit:

: initialize trap table

lda r2, trapvec
1d r0, FNTRAPS
subl rr4,rrd

clrtraps:
1dl 3r2,rr4é
inc r2, #4 . .
dinz rO,clrttaps
id- £2,_sysseqg
.if LOADER o
.alse ;not used by Loader Bios
lda r3,biossc .
1dl __trapvec*(EIIOS_SC-I-SCOTRAP Y*4,rr2
.endif '
lda 3, memsc
14l trapvec+{MEM SC+SCOTRAP)™"4,rr2
.if LOADER
.alse : not used by Loader Bios
lda r3, tp_epu
14l _trapvec+EPUTRAP"4,rr2
.andif

; initialize some PSA entries.

H rx0 PSA entry: FCN (ints ENABLED)

: rr2 PSA entry: PC

: rr4 ->» PSA slot
141 rr4, _psap
SEG
14l rrQ, #0000DB00h ; traps here

) ~

IF4-3000 System Guide E Sample BIOS Written in C

Listing B-9. (continued)

add r3, #ps ; EPU trap

ldar r2,epu_trap

ldm 8r4,r0, #4

add r5, ¥ps ; Priviledged Inst
ldar r2,p1_xrap

ldm @ré,r0, ¢4

add r3, #ps : System Call

ldar r2,sc_trap

1édm @r4,r 0, #4

add .r5,¥ps : segmentation
ldar r2, seg_trap

lam @r4,z0, #4

ada rS, sps : Non-Maskable Int.
iéar £2,am)_trap

lém @r4,r0, 24

et up Real-Time Clock external call loc

idar r2, _motor_c
ldar r4,_ticktab
ldl @r4,rr2

1dl rr2, #rtc_ext
1é1 @r2,rr4
NONSEG

ret

A Al L A ARl l AR Adl sl Rl dl Al il il ARl R 2 22T

PR AL AL R AR A2l Rl sl il il il i il sl dld s s S

CP/M-8000 System Guide B Sample BIOS Written in
Listing B-10. System—Call Interface

jeRwERRRwEY gugaall.8kn cpm.sys + cpmldr.sys *rTweRw

il Copyright 1984, Digital Resasarch Inc.

. W .

: Systam Call interface for CP/M~-8000(tm) BIOS

H

840815 R. Weiser (DRI) ~- conditional assembly

*

»

»

;* 820927 3. Savitzky (Zilog) -—- created.
o« W

;'.

__text: .sect-

H HARNBENNRRRARERRRERRTRWR A RTTR WRERBRPRNEIRPIRERIRT RN

;" NOTE

" The following systam call interface routines
A ars designed to be called from non-segmentad
' C programs.

-

e Addresses ars passad as LONGs.

? Q"".'*"ﬂ"'ﬁ"'*'.".'""""‘h*ﬂ'.""l"".'i""“.**ﬂ'i"

.global _xfer
.global _mem_ cpy
.global _map_adr
.global Dbios

.global _bdos

.y

.

.

2
)e
it
n
1]
o
)
o]

"#4-3000 System Guide 2 Samp.ie EI0S W

Listing B-10. (continued)
LA A S A A SRS R Al ARl Al l Rl lllll sl Al ldd R A dll S Ssd]

Zontext Switch Routine

xfer(context)
long context:

context 1s the physical (long) address of:
r0
z1l3
rl4 (normal rl4)
rl5 {(normal rl5)
ignored word
FCW (had better specify normal mecde)
PC segment
PC offset

The system stack pointer is no: affeccted.

Control never returns to the caller.

N R RN N T TR P P R N N P T PV R I A rF AN rP I r P WP rors e PR s wTreee e

£

fer:
14l rr6,ARGL(rlS)
14l rrd,$-2
subl rr2,rr2
sC #XFER_SC
ret

B-62

[®]

CP/M-8000 Systam Guide B Sample BIOS Written in C

Listing B~10. (continued)

: RRFBRRRARRRREANRRTBPERRRLPRREERARLNRARNTLERRRNIRA TR RNN

«»

[N I B JEF B B N BN N B AN

~e s ws v¢ wg ol wg ng ma v vy e we &

System/User Memory Access

_nem_cpy(source, dest, length)

13 sourcs, dest, length:

_map_a :? addr, space) -> paddr
long addr: int space:;

bap_adr(addr, -l1)
sets usar segment # from addr.

_map adr(addr, -2)
transfer to context block at addr

system call: mem_cpy

rr6: source

rr4: dest :

rr2: langth (0 < langth <= &4K)
returns

registars unchanged

system call: map_adr

14 4- K logical addr
rS5: space code
£d: {ignored

rra: 0

raturns

rr6: physical addr

space codes:

Q: callar data

l: caller progranm
2: system data -
3: system progranm
41 TPA data

S: TPA progranm

x+256 return segmented instruction address,
not data access address

FFFF set uier#spucs segment from address

AW ERVRRBRRRRTLPIRIRRRRRERARRNEPRRANRPRIATIRWRRTRETTRR RPN TR

8-63

CP.M-800C System Guide B Sample BIOS Wrizten

Listing B-10. (continued)

_mex_cpy: ;copy memory O subroutine
idl1 rr6,ARGl (rlS)
181 rr4,ARG3(rl5)
lal rr2,ARGS(z15)
sc #MEM_SC
ret
_map_adr: ;map address C subroutine
T o
1dl rré,ARGl(rl5)
1d r53, ARG3(zl3)
subl rr2,rx2 : 0 length says map
sc #MEM_SC
ret

.1f LOADER
.else : not used by Loader Bics

T R RPN RN TR R P NN P I P T P P N PR P T T NN P W IR TN P RENTTERRTTN
h

:* long _bics{code, pl, p2)
;* long _bdos(code, pl)

P int code:

¥ long pl, p2:

BIOS, BDOS access

R

A A A S A A 4 & A LA s d il ld Al Al llllllsllssd il ol Al d X 2]

_Dios:
1é r3,ARGL(rl3)
141 rr4,ARG2(rl3)
ldal rr6,ARG4(z15)
sc #BIOS_SC
ret

_hdos:
la r5,ARGL1(rlS)
141 rr6,ARG2(zr15)
ac #*BDOS_SC
ret,. §
.endif

End of Apwendix B

(@}

APPENDIX C

o

PUTBOOT Utility C Language Source

Listing C-1. Bootstrap Writsr for the Olivetti M20

‘e -/
7os ./
/1 | e/
;'! CP/M-28K(tm) Bootstrap Writer for the OLIVETTI M20 (28000) }';
" -
;’: Copyvighe 1984, Digital Research Inc. ::ﬁ
/e y

char *copyrt = “"CP/M-Z8K(tm) Ver. 1.1, Copyright 1984,

char Tserial = "0OX-0000-4354321°:

/* HISTO!
L4 4

*w
LA 4
e

*/

tinclude
sinclude
sinclude
$include
3include

sdetine
sdefine

tdetine
sdefine
sdefine
sdetine

XADDR
struce
struce
XADDR

axtearn

Y

330801 PF. Zletnick (Zilog) = writtem

8403524 riw nodified

ingludes

840801 rfw asds 5o look generic

“portab.h”
"osif.n"

CDATA O
DIRSEC 4

SETTRK 10
SETSEC Ll
8SETDMA 12
WEECTOR 14

phyadiz:

dpbs idpb¢
Dios_parm ibpy
physibp?

Long 2ap_adr();

/% cpm.h and bdos.h ceplaces with

/% ogif.h 03=-15=84 rtw

/* Parameater for
/* Paramecer

/* BIOS

/* BIOS Puncetion
/* 8108 Function
/* 3108 Fungeion

awp_adr()
3108 Write call

10 = Set Track

1l = Sat Sector
12 = Set OMA Adar
14 = Write Segtor

/* SIQI.ﬂtld‘lddl-l' of dirdus

/* Oiak Parametsr 8loek
/* 3I0S param block for B800S call 50%/
/* physical address of ibp scructuze*/

Digital Researzch Inc."”:

v/
./

*/
*/
v/
./
*/
*/
*/
./

/* Function to return physical addr */

2P #-300C System Guigde C PUTBOOT Ut:ility C Language Source

Listing C-1. (continued)

tim£:.ne BPLS 128 /¥ Bytes per logical sector °*/
é.lefine BPS 256 /®* Bytes per sector */

#ieiine BPSQO 128 /* Byves per sector, trk 0 v/
#3efine SPT 16 /" sectors per zrack "/

$aeiine LSPT 32 /* Logical sectors per :rack °/
sjefine SYSTRKS 2 /* Number of boot tracks "/
sieiine SYSSIZE SPTYBPS“SYSTRKS ‘Y Max size of bootstrap "/

+3e fine STARTRK . /* Tracx numper to star: on °/
TiLE *fin:

zaazs syscode(SYSSIZE): /* Hold the entire bootstrap here! °/
zhar “sysces = “CPMLDR.SYS": /* Name of the prog to boet */

struct x_hdr xh:
$TTUCT X_s3g x3;
LR dsknum; /* Drive numbDer 0-15 = A=p */

Ta.ntargec,azrgv}

at argqe:
~nar rargv(l:

fegister int P PR 4

feq:ster char -H

iong isize:

ins curdask: /* Good O remember, L reset®/

iflarge I= 1) usagel):
system = “weargv:

1f((deknum = "“wwargv - ‘a’) ¢ 0 |! dsknum > 15) |
printf(“putboot: lllegal drive code %cn”, ‘argv(0]):
exit{l):

J
curdsk = ret cdisk():
-ger_dpbimap_adr({long) &idpb. CDATA)): /*® Phvsaddr of idpb */
20 (2in = fopend(svstem, "r")) == NULL) |
princi{ puthoot: Can': opan bDootsrrap Zi:le \sn", systen)
exit(l):

£aize = QL:

CP/M-8000 System Guide C PUTBOOT Utility C Language Source

/'.
/l

/'
e
-y
e
*e
e

*/

)

Listing C~1. (continued)

/* read file header */

p'- (char *) &xh;
for (i = 0r { ¢ sizeof(xh): i+>r)
*p++ = (char) gete(fin);

/* read and count segment headers to get f£ila size */
for (i = 0r I < xh.x_nseg: i++)
P = (char *) axas
fox(§ = 07 j ¢ sizeof{xm); j+*)
- *per = (char) getc(tin):
L2(xzs.x_sg_typ |= X_3G_888 & xs.x_sg_typ I» X_S5G_STK)
ize += x8.x_3g_lan?

}
it (fmize > SYSSIZE) {
prines(“Bootstrap too bign“):
| exit(l):
else
princt(“Booecstrap f£ile is 31ld Lytesn”, faize):
p = syscode?

If any other special inforaacion is newded at thwe beginning of the */
sysesm track of the loader load them into the syscode arsa now. ¢/
while{ fsize==) [)
if((e = gets(tin)) == goP) |
printi("Unexpected ZOF in V¥s. 1ld leftn”,sysctem, fxiza);
) axit(l): e
} . e &2 N ‘ i

At this point., the antire bootstrap prograa code and data has Desn loaded
into the array named "syscoda', preceded by a bunch of PCOS garbage
which the Olivecti bDoot PROM expects to find thers. VYow wa use dirsct
8I0S calls to writs the syscode array out o the proper aree on Jdiask.
Ffor the Oliveczi, this is czracks L and 2. since track 0 is special.

putboot(syscode) ;
printf("Scotstrap has bean written.a"):
_sel_diak(curdsk): /* zeselsct originai disk*/

CP/4-3000 System Guide C PUTBOCT Uxtility C Language Source

Listing C-~1. (continued)

nusoot(code)

onaxs “code;
register 1at i /* Bandy index ./
register int nlaecs: /" % logical sectors .n boot®/
regiscer char - /* Dty to next par: of code °*;
int track: ' /* Current zrack b
int seCTLOor: /Y Current sector ./

physibp © map_adr({(long) kibp. CDATA):
alsecs = SYSTRKS * LSPT: /* 3ize / log secs per srx %/

/* Pause for the user to i1nsert disk */
pause{drvname);: v/
/¥ Put code here when trkxO sect0 are spacial */
32 2 _sel dask fnr the drive you want */
tnen calil putbhlk rkQ, sec:0, and zhe address c? sector information °/

s-

.

fori: * 0: @ ¢ nlsecs: 1==) |
tracr = STARTRK -~ ./LSPT:
sector = LVLSPT:
Pushlk(track, sector. pl:
» ~= BPLS:

-

»

function wO seliect a given track £Or writing on. on the current disk.
¥ Maxes use cf the 3DOS direct BIOS call to :ssue Bios function 10.

sezzrkin)

:n.r:-: n;
ibp.req = SETTRK: /* BIOS request number 10 */
1bp.pl = (leong) n: /* paramecer = rrack ¢ °/
_bios_call(physibp): /* Pass seg 1bp address */

)

CP/M~-8000 System Guide C PUTBOOT Utility C Language Source

Listing C~1. (continued)

'/m.wum-co put block i of the boot track.
-

putblk(tzk, sec, addr)
int crk, seal
c(:lur *addr?

register ine nr

_sel_disk(dsknum); /* select as current disk */
seteER(crk): .

n = see * L /® sector number */
ibp.ceq = SETSEC; /* BIOS requeat numbar 11 */
i{bp.pl = (long) n; /® parametar = sector $ */
_bions_call(physibp): /* Pass seg ibp addrass */

/* Sector is now set: now set dms address. */

ibp.reg = BSBETDMA; /* 3108 Raquast number 12 */
ibp.pl = sap_adz((leng) addr, CDATA):
/* param = seq address ot I/o putfar */

Jdios_call(physibp): /* Call BI0S */
/* dNow can do & wrice */

ibp.zeq = WSECTOR; ; /* 8108 Raquest nuaber l4 */
ibp.pl = OIRSEC; ' T /% Complete write immediacely */
Dbiom_call(puynw oo 7* Do itL v/

1* . -7 R

S ')It the user iavoked us with the wrong cuaber of aAZgs...

xiuq-()
printf(“Usage: putboot <filename> <drivecodssn™):

) exit(l):

End of Appendix C

C-5

Ihdex

+REL files, 6-1, 6§-2
bringing up CP/M-8000, 6-2

A

Abmlut.'].-2
absolute data

down-load, 6-2
address, 1-2
address spacs, l-l
algorithms, 4-20
allocation vector, 3-3
uv' 5‘3
‘applications programs, . 1«5
ABCII character, l-6, d4=9
ASCII CTRL-Z2 (1lAH), 4-1l1l

AUXILIARY INPUT device, 4-24.

AUXILIARY QUTPUT davice, 4~24-

B

bann pnq-. 1-2. l— :

. BDOS, 1l-4, 1l-5, 1l-7, 2-1, &-2
Dizect BIOS Funceion, 4=}
function 61 Set Exception
- Vector, 4-28

BIOS' l"'" 1-"5' 1‘7 3"2' 4"1;

llosstigah buttn:s opo:atimn'

BIO8 Punction

’ Initialization,” 4-4

Console Status, 4=8: :

"Read Console ehtraathw;*

4=7

Weite Console Cha:actnr.

4-8

List Character Output, 4-9
Auxiliary Qutput, 4-10
Auxiliary Input. 4~ll
Home, 4-12

Select Disk Drave. 4-L3

10 Set Track Number, 4-1l4

1l Set Sector Number, 4-15

12 Set DMA Address, 4-16

13 Read Sector, 4~17

14 Write Sector, 4-18

1S Return List Status, 4=19

16 Sector Translate, 4-20

18 Get Address of MRT,

4-21, 4-22
19 Get I/0 Byte, 4-23

COdAW & WO

20 Set I/0 Byra, 4~-2§
22 Set Exception Handler
Address, 4-28

BIOS function
called by BDOS, 4-1
Home (8), 4-14

BIOS
creating, S-1
interfacs, 5=l
internal variables, 4-~4
ragister usags, 4-2
write operation, 5+-10

BLM, 3%-5

block mask, 3-5.

block number

largest allowed, 5-§ -
block shift factor, S~5
block zize, 5=6 .
block storage, l«z
BLS bytas, S-10 '$,{
boot T tande
diSk, 3-" ‘-'1 “‘ ‘
tracks, 5-6 ‘
warm, 5-10
bootstrap
loader, 1-7, 8=-1 :
‘machine dopcndent. 5~6
procedure, 3-1
bootsetrap loadinq, 3-1 .
BSH' 5"5 = :
b.a‘ 1-2
buffer
weiting to disk, 5-9
bytce, l-2
byte (8 bit) value, 5-5

g

c

carriage return, 4-8

CBACE feature, 7-1

CCP, I."4' 1-"5']-"7' 2-l. 6-2

CCP entry point, 4-5

character devices, 1-6

checksum vector, 5-3

CKS] 5-5

cold boot

augomacic command axecution,

-1

Index-1l

creazing, 3=2

loader, 2-1
cold stare, 1l-7
communication protocel, 4-9

coniiguration requirements, 6-1

conout, 3=3

CONSOLE device, 4-24

context block, 4-33

CP/M=-8000
configuration, 5-1
customizing, 2-1
£ile structure, 1l-1
zenerating, 2-1
installing, 6-1
loading, 6-l
logical device

characteristics, 4~24

memory model, 1=3
programming model, 1«2
svstem modules, l-4

CPM.REL, 2-1 -

CPM.SYS file, 7-1

CPM.8YS
creating, 2=-1

CPMLDR, 3-2 ’

CPMLDR.SYS, 3-2
nuilding, 3=3

CPMLIB, 2-1

CSV, 5=3 - .

CTRL-2 (lAH), 1-6

D

data segment, l=2
device models
ilogical, 1-6
DIRBUF, 5-2
directory buffer, 3-3
directory check vector, 5-5
cisx, 1=7
disk access
sequential, 5-9
disk buffers
writing, 4=-27
disk i
definition tables, 5=-1
devices, 1=~6)
disk - .
drive Co
total storage capacity, 5=5
disk head, 4-12°
Disx Parameter Block (DFB)},
3-3, 4~1, 4-13, 5-4, 5-6
fields, 5=3

2

.

D.sk Parameter Header (DPH),
3-3, 4-1, 4-13, 4-20,
5-2, 5-3

disk select operation, 4-13

disk throughput, 5-8

disk wr.tes, 4-27

DMA address, 4-16

DMA buffer, 4-18

DPB, 5-=2

DRM, 5-5

DSM, 5-5, 5=6

E

" end-of-£file, 1~6

end-of-file condition, 4-1ll
error indicator, 4-13

ESHM, 5=6

exception vector, 4-28
extent mask, 5-5

4

Z2ile storage, 1-6
£ile system tracks, 5-6

G
Get MRT, 3-3
1

I/0
bvete, 4=-23
byte field definitions, 4-25
character, 1-5 .
1/0 byte devices
characteyr, 1l=-6
disk draives, l1-6
disk file, 1.-5
Inieg, 3=-3
interface
hardware, 1-5
interrupt vector area, l-4

J
jsr _init, 4-4
L

LD8K command, 2-1
LDRLIB, 3-2
line-feed, 4-8
list device, 4-9

Index=-2

LIST device, 4-24
loader BIOS
writing, 3-2
loader system library, 3-2
logical
address, 1-2 ‘
sector numbering, %-3
segment separation, l-3
longword, 1=-2
longword value, 4-4, 5=2
LRU buffer replacement, 5-9
LRUO buffers, 5-10

N
map address, 4-31

map addressing, l-%
mapping

logical to physical, 5—3

map_adr, 1l-3

maxImum track number
5535, 4-14 -

memory block copy, l-5
absolute, 2-1 -
copy, 4~30 :
location REN
managsment, 4=i, 4~28

memory cegion table,- 4-21

mem_cpy, 1-§
N

A

nibble, 1-2
¢)

OFF parametsr, 8-2

offset, 1-2

Olivetti M20, 3-8, 6=1

output device
auxiliary, 4-10

P

parsing
command lines, 1-5%
physical
address, 1-2
seactor, S5-9
PIP, 4~-25

PUTBOOT utility, 3-2, 3-4, 8-1

8C #L: '

SeCEor, l-6

galdsk, 3-3

R

read, 3-3°
read/write head, 5~8
README file, §-~2
regions, 4-21
register contents

destroyed by BIOS, 4-1
relocatable, 1-2 o
reserved tracks

number of, S=~5
RET, 3=-2 L
ceturn code value, 4-17
rotational latency,

S=3, 5=8, 5-9 o

rts instruction, 4-4.

8 Ve

“map addrass;: 4—31 .
mamory copy, 4=30:
‘transfer cantrol.‘ﬂ-!ﬁ

- geratchpad

‘Area, 5-2

sactor numbers
unskawed, 4-15 .
sector skewing, 8-1.
sector translats tahlc. 5-3
sector
128-byte, l=-6, 5-7
sgectran, l3-3 _
sagment, l-2
set excesption, 3-3 Vi
set TPA sagment, 4-32-
setsac, 3=3
settrk, 3=3 :
SETTRK function, d4-12
SPT, 5=5
SPT parameter, 38-2
STAT, 4-25
system
address space, L-S
calls, 4-1, 4= 28
disk, 1-7
generation, l-7
mode, l-=2

Index-3

operating mode, 1=~-3
stacxk area, 1-5

T

text segment,’ 1-2

TPA. L-i- S

track, lwg, Lk=3... S

track 00 position, 4~-12

transfes control, .4=33 7

transient program, i=-2 -

transient program area, 1-5

translate table, ;4-20

t:ap - PR

handler, 3-2_ . .
VeCLor, i 4-=¢ .- -)

trav initialization, 3«3

Turn-xey systems, 7-1

4]

user o
icerface, 1-5
stack, k-3 .:
user commands
BuLli-in, l~5

W - ! A

warm oovot, 5-l@x, .,

word, l-=2--. ... L
{16=-0it) value, 5«2
refarences, 4-28

XLT, 3«2
_autost, J-l
_Cep, 4=5 -
inst, A=A

iaiz routine, 7-1
usercmd, 7-1

Index-4

	000
	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	2-01
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	6-01
	6-02
	6-03
	7-01
	8-01
	8-02
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-30
	B-31
	B-32
	B-33
	B-34
	B-35
	B-36
	B-37
	B-38
	B-39
	B-40
	B-41
	B-42
	B-43
	B-44
	B-45
	B-46
	B-47
	B-48
	B-49
	B-50
	B-51
	B-52
	B-53
	B-54
	B-55
	B-56
	B-57
	B-58
	B-59
	B-60
	B-61
	B-62
	B-63
	B-64
	C-01
	C-02
	C-03
	C-04
	C-05
	Index-1
	Index-2
	Index-3
	Index-4

