IIDIGITAL RESEARCH

Post Office Box 579, Pacific Grove, California 93950, (408) 373-3403

CP/M INTERFACE GUIDE

COPYRIGHT (c) 1976, 1978

DIGITAL RESEARCH

Copyright (e¢) 1976, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacifiec Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

TABLE OF CONTENTS

INTRODUCTION . ¢ ¢ &+ « o o o o o o @
1.1 cp/M Organization
1.2 Operation of Transient Programs

1.3 Operating System Facilities . .

BASIC I/0 FACILITIES . . ¢« « « o « &
2.1 Direct and Buffered 1/0

2.2 A Simple Example

DISK I/0 FACILITIES . + + « « & « &
3.1 File System Organization . . .
3.2 File Control Block Format . . .
3.3 Disk Access Primitives

3.4 Random ACCESS + « + o =« o o o

SYSTEM GENERATION« « « « .« .

4.1 Initializing CP/M from an Existing Diskette

CP/M ENTRY POINT SUMMARY

ADDRESS ASSIGNMENTS « .« .

SAMPLE PROGRAMS « . .

ii

10

12

18

18

19

20

22

23

CP/M INTERFACE GUIDE

1. INTRODUCTION

This manual describes the CP/M system organization including
the structure of memory, as well as system entry points. The
intention here is to provide the necessary information required
to write programs which operate under CP/M, and which use the
pcripheral and disk I/0 facilities of the system.

1.1 CP/M Organization

CP/M is logically divided into four parts:

BIOS - the basic I/0 system for serial peripheral control
BDOS - the basic disk operating system primitives

CCP - the console command processer

TPA - the transient program area

The BIOS and BDOS are combined into a single program with a com-
mon entry point and referred to as the FDOS. The CCP is a dis-
tinct program which uses the FDOS to provide a human-oriented
interface to the information which is cataloged on the diskette.
The TPA is an area of memory (i.e, the portion which is not used
by the FDOS and CCP) where various non-resident operating system
commands are executed. User programs also execute in the TPA.
The organization of memory in a standard CP/M system is shown in
Figure 1.

The lower portion of memory is reserved for system information
(which is detailed in later sections), including user defined inter-
rupt locations. The portion between tbase and cbase is reserved
for the transient operating system commands, while the portion
above cbase contains the resident CCP and FDOS. The last three
locations of memory contain a jump instruction to the FDOS entry
point which provides access to system functions.

1.2 Operation of Transient Programs

Transient programs (system functions and user-defined programs)
are loaded into the TPA and executed as follows. The operator
communicates with the CCP by typing command lines following each
prompt character. Each command line takes one of the forms:

<command>
~command> <filename>

<command> <filename” ,<filetype>

Figure 1. CP/M Memory Organization

fbase: FDOS
cbase: CCP
TPA
tbase:
System Parameters
boot: HEERREN

address field of jump is fbase

entry: the principal entry point to FDOS is at location 0005
which contains a JMP to fbase. The address field at
location 0006 can be used to determine the size of
available memory, assuming the CCP is being overlayed.

Note: The exact addresses for boot, tbase, cbase, fbase,
and entry vary with the CP/M version (see
Section 6. for version correspondence).

Where <command> is either a built-in command (e.g., DIR or TYPE),
or the name of a transient command or program. If the <command>
is a built-in function of CP/M, it is executed immediately; other-
wise the CCP searches the currently addressed disk for a file

by the name

<command>.COM

If the file is found, it is assumed to be a memory image of a
program which executes in the TPA, and thus implicitly originates
at tbase in memory (see the CP/M LOAD command). The CCP loads
the COM file from the diskette into memory starting at tbase,

and extending up to address cbase.

If the <command> is followed by either a <filename> or
<filename>.<filetype>, then the CCP prepares a file control-
block (FCB) in the system information area of memory. This FCB
is in the form required to access the file through the FDOS, and
is given in detail in Section 3.2.

The program then executes, perhaps using the I/0 facilities
of the FDOS. If the program uses no FDOS facilities, then the
entire remaining memory area is available for data used by the
program. If the FDOS is to remain in memory, then the transient
program can use only up to location fbase as data.* In any case,
if the CCP area is used by the transient, the entire CP/M system
must be reloaded upon the transient's completion. This system
reload is accomplished by a direct branch to location "boot" in
memory.

The transient uses the CP/M I/0 facilities to communicate
with the operator's console and peripheral devices, including
the floppy disk subsystem. The I/O system is accessed by passing
a "function number"”" and an "information address" to CP/M through
the address marked "entry" in Figure 1. 1In the case of a disk
read, for example, the transient program sends the number corres-
ponding to a disk read, along with the address of an FCB, and
CP/M performs the operation, returning with either a disk read
complete indication or an error number indicating that the disk
operation was unsuccessful. The function numbers and error in-
dicators are given in detail in Section 3.3.

1.3 Operating System Facilities

CP/M facilities which are available to transients are divided
into two categories: BIOS operations, and BDOS primitives. The
BIOS operations are listed first:**

* Address "entry" contains a jump to the lowest address in the
FDOS, and thus "entry+1" contains the first FDOS address which
cannot be overlayed.

**The device support (exclusive of the disk subsystem) corres-
ponds exactly to Intel's peripheral definition, including I/0
port assignment and status byte format (see the Intel manual
which discusses the Intellec MDS hardware environment).

Read Console Character
Write Console Character
Read Reader Character
Write Punch Character

Write List Device Character
Set I/0O Status

Interrogate Device Status
Print Console Buffer

Read Console Buffer
Interrogate Console Status

The exact details of BIOS access are given in Section 2. The BDOS
primitives include the following operations:

Disk System Reset

Drive Select

File Creation

File Open

File Close

Directory Search

File Delete

File Rename

Read Record

Write Record

Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address

The details of BDOS access are given in Section 3.

2. BASIC I/0 FACILITIES

Access to common peripherals is accomplished by passing a
function number and information address to the BIOS. In general,
the function number is passed in Register C, while the informa-
tion address is passed in Register pair D,E. Note that this
conforms to the PL/M Conventions for parameter passing, and thus
the following PL/M procedure is sufficient to link to the BIOS
when a value is returned:

DECLARE ENTRY LITERALLY '0005H'; /* MONITOR ENTRY */
MON2: PROCEDURE (FUNC, INFO) BYTE;

DECLARE FUNC BYTE, INFO ADDRESS;

GO TO ENTRY;

END MONZ2;

or

MON1: PROCEDURE (FUNC, INFO) ;
DECLARE FUNC BYTE, INFO ADDRESS:
GO TO ENTRY;
END MON1

if no returned value 1is expected.

2.1 Direct and Buffered I/0.

The BIOS entry points are given in Table I. 1In the case of
simple character I/0 to the console, the BIOS reads the console
device, and removes the parity bit. The character is echoed back
to the console, and tab characters (control-I) are expanded to
tab positions starting at column one and separated by eight char-
acter positions. The I/0 status byte takes the form shown in
Table I, and can be programmatically interrogated or changed.

The buffered read operation takes advantage of the CP/M line edit-
ing facilities. That is, the program sends the address of a read
buffer whose first byte is the length of the buffer. The second
byte is initially empty, but is filled-in by CP/M to the number

of characters read from the console after the operation (not
including the terminating carriage-return). The remaining posi-
tions are used to hold the characters read from the console. The
BIOS line editing functions which are performed during this oper-
ation are given below:

break — line delete and transmit

rubout - delete last character typed, and echo

control-C system rebout

control-U - delete entire line

control-E return carriage, but do not transmit

buffer (physical carriage return)

<cr> - transmit buffer

The read routine also detects control character sequences other
than those shown above, and echos them with a preceding "!"
symbol. The print entry point allows an entire string of symbols
to be printed before returning from the BIOS. The string is
terminated by a "$" symbol.

2.2 A Simple Example

As an example, consider the following PL/M procedures and
procedure calls which print a heading, and successively read
the console buffer. Each console buffer is then echoed back in
reverse order:

PRINTCHAR: PROCEDURE (B);
/* SEND THE ASCII CHARACTER B TO THE CONSOLE */
DECLARE B BYTE;
CALL MON1(2,B);
END PRINTCHAR;

CRLF: PROCEDURE;
/* SEND CARRIAGE-RETURN-LINE-FEED CHARACTERS */
CALL PRINTCHAR (ODH); CALL PRINTCHAR (0AH) ;
END CRLF;

PRINT: PROCEDURE (A);
/* PRINT THE BUFFER STARTING AT ADDRESS A */
DECLARE A ADDRESS;
CALL MONL1(9,A):
END PRINT;

DECLARE RDBUFF (130) BYTE;

READ: PROCEDURE;
/* READ CONSOLE CHARACTERS INTO 'RDBUFF' */
RDBUFF=128; /* FIRST BYTE SET TO BUFFER LENGTH */
CALL MON1 (10, .RDBUFF) ;
END READ;

DECLARE I BYTE;

CALL CRLF; CALL PRINT (.'TYPE INPUT LINES $');
DO WHILE 1; /* INFINITE LOOP-UNTIL CONTROL-C */
CALL CRLF; CALL PRINTCHAR ('*'); /* PROMPT WITH '*' */
CALL READ; I = RDBUFF(1);
DO WHILE (I:= I -1) <> 255;
CALIL PRINTCHAR (RDBUFF(I+2)) ;
END;
END:

The execution of this program might proceed as follows:

TYPE INPUT LINES
*HELLOJ

OLLEH

*WALL WALLA WASH]
HSAW ALLAW ALLAW
*MOM WOW,

wWOw MOM

*tC {system reboot)

TABLE I

BASIC I/0 OPERATIONS

FUNCTION/ ENTRY RETURNED TYPICAL
NUMBER PARAMETERS VALUE CALL
Read Console None ASCII Character I = MON2(1,0)

1

Write Console
2

ASCII Character

None

CALL MON1 (2, 'A')

Read Reader None ASCII Character I = MONZ2(3,0)
3

Write Punch ASCII Character None CALL MON1(4,'B')
4

Write List ASCII Character None CALL MON1 (5, 'C")
5

Get I/0 Status None I/0 Status Byte IOSTAT=MONZ2 (7,0)
7

Set I/0 Status I/0 Status Byte None CALL MON1 (8, IOSTAT)
8

Print Buffer Address of None CALL MON1(9, .'PRINT
9 string termi- THIS $')

nated by 'S’

TABLE I

(continued)

FUNCTION/
NUMBER

ENTRY
PARAMETERS

RETURNED
VALUE

TYPICAL
CALL

Read Buffer
10

Address of
Read Buffer*

(See Notel)

Read buffer is
filled to maxi-
mum length with
console charac-
ters

CALL MON1 (10,
. RDBUFF) ;

Interrogate None Byte value with I = MON2(11,0)
Console Ready least signifi-
11 cant bit = 1
(true) if con-
sole character
is ready
Notel: Read buffer is a sequence of memory locations of the form:

kicyfco c3

Cx

m
[—T—current buffer length
Maximum buffer length

Note2: The I/0 status byte is defined as three fields A,B,C, and D

2b 2b 2b 2b
lAIBiCc]D |

MSB LSB

requiring two bits each, listed from most significant to least
significant bit, which define the current device assignment as

follows:
0 TTY 0 TTY 0O TTY 0 TTY
D = 1 CRT c = 1 FAST READER B = 1 FAST PUNCH A = 1 CRT
Console 2 BATCH Reader \ 2 - Punch \ 2 - List 2 -

3 - - 3 - 3 -

3. DISK I/O FACILITIES

The BDOS section of CP/M provides access to files stored on
diskettes. The discussion which follows gives the overall file
organization, along with file access mechanisms.

3.1 File Organization

CP/M implements a named file structure on each diskette, pro-
viding a logical organization which allows any particular file to
contain any number of records, from completely empty, to the full
capacity of a diskette. Each diskette is logically distinct,
with a complete operating system, disk directory, and file data
area. The disk file names are in two parts: the <filename>
which can be from one to eight alphanumeric characters, and the
<filetype> which consists of zero through three alphanumeric
characters. The <filetype” names the generic category of a par-
ticular file, while the <filename> distinguishes a particular
file within the category. The <filetype®s 1listed below give
some generic categories which have been established, although
they are generally arbitrary:

ASM assembler source file
PRN assembler listing file

HEX assembler or PL/M machine code
in "hex" format

BAS BASIC Source file
INT BASIC Intermediate file

COM Memory image file (i.e., "Command"
file for transients, produced by LOAD)

BAK Backup file produced by editor
(see ED manual)

$$$ Temporary files created and normally
erased by editor and utilities

Thus, the name
X.ASM

is interpreted as an assembly language source file by the CCP
with <filename> X.

The files in CP/M are organized as a logically contiguous se-
gquence of 128 byte records (although the records may not be phys-
ically contiguous on the diskette), which are normally read or
written in sequential order. Random access is allowed under CP/M
however, as described in Section 3.4. No particular format with-
in records is assumed by CP/M, although some transients expect
particular formats:

10

(1) Source files are considered a sequence of
ASCII characters, where each "line" of the
source file is followed by carriage-return-
line-feed characters. Thus, one 128 byte
CP/M record could contain several logical
lines of source text. Machine code “hex"
tapes are also assumed to be in this for-
mat, although the loader does not require
the carriage-return-line-feed characters.
End of text is given by the character con-
trol-z, or real end-of-file returned by
CP/M.

and

(2) COM files are assumed to be absolute machine
code in memory image form, starting at tbase
in memory. In this case, control-z is not
considered an end of file, but instead 1is
determined by the actual space allocated
to the file being accessed.

3.2 PFile Control Block Format

Each file being accessed through CP/M has a corresponding
file control block (FCB) which provides name and allocation
information for all file operations. The FCB is a 33-byte area
in the transient program's memory space which is set up for each
file. The FCB format is given in Figure 2. When accessing CP/M
files, it is the programmer's responsibility to fill the lower
16 bytes of the FCB, along with the CR field. Normally, the FN
and FT fields are set to the ASCII <filename> and <filetype>,
while all other fields are set to zero. Each FCB describes up
to 16K bytes of a particular file (0 to 128 records of 128 bytes
each), and, using automatic mechanisms of CP/M, up to 15 addi-
tional extensions of the file can be addressed. Thus, each FCB
can potentially describe files up to 256K bytes (which is slightly
larger than the diskette capacity).

FCB's are stored in a directory area of the diskette, and are
brought into central memory before file operations (see the OPEN
and MAKE commands) then updated in memory as file operations pro-
ceed, and finally recorded on the diskette at the termination of
the file operation (see the CLOSE command). This organization
makes CP/M file organization highly reliable, since diskette file
integrity can only be disrupted in the unlikely case of hardware
failure during update of a single directory entry.

It should be noted that the CCP constructs an FCB for all
transients by scanning the remainder of the line following the
transient name for a <filename> or <filename>.<filetype> com-
bination. Any field not specified is assumed to be all blanks.

A properly formed FCB is set up at location tfcb (see Section 6),
with an assumed I/0 buffer at tbuff. The transient can use tfcb
as an address 1in subsequent input or output operations on this
file.

10a

In addition to the default fcb which is set-up at address tfcbhb, the
CCP also constructs a second default fcb at address tfcb+ 16 (i.e., the
disk map field of the fcb at tbase). Thus, if the user types

PROGNAME X.ZOT Y.ZAP

the file PROGNAME.COM is loaded to the TPA, and the default fcb at tfcb

is initialized to the filename X with filetype ZOT. Since the user typed

a second file name, the 16 byte area beginning at tfcb + 16745 is also
initialized with the filename Y and filetype ZAP. It is the responsibility
of the program to move this second filename and filetype to another area
(usually a separate file control block) before opening the file which
begins at tbase, since the open operation will fill the disk map portion,
thus cverwriting the second name and type.

If no file names were specified in the original command, then the
fields beginning at tfcb and tfcb + 16 both contain blanks (20H). If
one file name was specified, then the field at tfckb + 16 contains blanks.
If the filetype is omitted, then the field is assumed to contain blanks.
In all cases, the CCP translates lower case alphabetics to upper case
to be consistent with the CP/M file naming conventions.

As an added programming convenience, the default buffer at tbuff
is initialized to hold the entire command line past the program name.
Address tbuff contains the number of characters, and tbuff+l, tbuff+2,
..., contain the remaining characters up to, but not including, the
carriage return. Given that the above command has been typed at
the console, the area beginning at tbuff is set up as follows:

tbuff:

+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15
2 ¥ x . 2z o T B Y . Z A P ? 2?2 ?

where 12 is the number of valid characters (in binary), and ¥ represents
an ASCII blank. Characters are given in ASCII upper case, with un-
initialized memory following the last valid character.

Again, it is the responsibility of the program to extract the infor-
mation from this buffer before any file operations are performed since
the FDOS uses the tbuff area to perform directory functions.

In a standard CP/M system, the following values are assumed:

boot: O000H bootstrap load (warm start)
entry: OOO5H entry point to FDOS

tfch: 005CH first default file control block
tfcb+16 006CH second file name

tbuff 0080H default buffer address

tbase: O{00H base of transient area

11

Figure 2. File Control Block Format
0 123 456 7 8 91011 1213141516 171819.. ...2728 29303132
(. J J \ — _/
ET FN FT EX RC DM NR
FIELD FCB POSITIONS PURPOSE
ET 0 Entry type (currently not used,
but assumed zero)
FN 1-8 File name, padded with ASCII
blanks
FT 9-11 File type, padded with ASCII
blanks
EX 12 File extent, normally set to
Zero
13-14 Not used, but assumed zero
RC 15 Record count is current extent

Size (0 to 128 records)

DM 16-31 Disk allocation map, filled-~in
and used by CP/M

NR 32 Next record number to reay or
write

12

3.3 Disk Access Primitives

Given that a program has properly initialized the FCB's for
cach of its files, there are several operations which can be per-
formed, as shown in Table II. In each case, the operation is
applied to the currently selected disk (see the disk select oper-
ation in Table II), using the file information in a specific FCB.
The following PL/M program segment, for example, copies the con-
tents of the file X.Y to the (new) file NEW.FIL:

DECLARE RET BYTE;

OPEN: PROCEDURE (A)
DECLARE A ADDRESS;
RET=MON2 (15,A) ;
END OPEN;

CLOSE: PROCEDURE (A) ;
DECLARE A ADDRESS;
RET=MON2 (16,A3) ;
END:

MAKE : PROCEDURE (A) ;
DECLARE A ADDRESS;
RET=MON2 (22,A) ;
END MAKE;

DELETE : PROCEDURE (A) ;
DECLARE A ADDRESS;
/* IGNORE RETURNED VALUE */
CALL MON1(19,A);
END DELETE;

READBF: PROCEDURE (A) ;
DECLARE A ADDRESS;
RET=MON2 (20,3) ;
END READBF;

WRITEBF: PROCEDURE (A);
DECLARE A ADDRESS;
RET=MON2 (21, 3) ;
END WRITEBF;

INIT: PROCEDURE ;
CALL MON1(13,0);

END INIT;

/* SET UP FILE CONTROL BLOCKS */
DECLARE FCB1 (33) BYTE
INITIAL (O, 'X ','Y ',0,0,0,0),
FCB2 (33) BYTE
INITIAL (O, 'NEW ', 'FIL',0,0,0,0);

13

CALL INIT;
/* ERASE 'NEW.FIL' IF IT EXISTS */
CALL DELETE (.FCB2):
/* CREATE''NEW.FIL' AND CHECK SUCCESS */
CALL MAKE (.FCB2);
IF RET = 255 THEN CALL PRINT (.'NO DIRECTORY SPACE $');
ELSE
DO; /* FILE SUCCESSFULLY CREATED, NOW OPEN 'X.Y' */
CALL OPEN (.FCB1l);
IF RET = 255 THEN CALL PRINT (.'FILE NOT PRESENT $');
ELSE
DO; /* FILE X.Y FOUND AND OPENED, SET
NEXT RECORD TO ZERO FOR BOTH FILES */
FCB1 (32), FCB2(32) = 0;
/* READ FILE X.Y UNTIL EOF OR ERROR */
CALL READBF (.FCBl); /*READ TO 80H*/
DO WHILE RET = O;
CALL WRITEBF (.FCB2) /*WRITE FROM 80H*/
IF RET = 0 THEN /*GET ANOTHER RECORD*/
CALL READBF (.FCRl); ELSE
CALL PRINT (.'DISK WRITE ERROR $');
END;
IF RET < >1 THEN CALL PRINT (.' TRANSFER ERROR $');
ELSE
DO; CALL CLOSE (.FCB2);
IF RET = 255 THEN CALL PRINT (.'CLOSE ERRORS'):
END;
END;
END;
EOF

This program consists of a number of utility procedures for
opening, closing, creating, and deleting files, as well as two
procedures for reading and writing data. These utility procedures
are followed by two FCB's for the input and output files. 1In
both cases, the first 16 bytes are initialized to the <filename>
and “~filetype” of the input and output files. The main program
first initializes the disk system, then deletes any existing
copy of "NEW.FIL" before starting. The next step is to create
a new directory entry (and empty file) for "NEW.FIL". If file
creation 1is successful, the input file "X.Y" is opened. If this
second operation is also successful, then the disk to disk copy
can proceed. The NR fields are set to zero so that the first
record of each file is accessed on subsequent disk I/0 operations.
The first call to READBF fills the (implied) DMA buffer at 80H
with the first record from X.Y. The loop which follows copies
the record at 80H to "NEW.FIL" and then reports any errors, or
reads another 128 bytes from X.Y. This transfer operation con-
tinues until either all data has been transferred, or an error
condition arises. If an error occurs, it is reported; other-
wise the new file is closed and the program halts.

A

(dOJ°“9T)ZNOK = I

qussaad

jou JT ¢GZ IC ‘9D4
syl 03 burpuodssi
-100 Aajus Axojzoear1p
92Ul JO ssaappe 2349

pouado

I0 po3eaad ATsSnota
-21d useq sey yoTyYM
g0d u® JO SSSAPPY

9T
STT3F 9SOTD

(d0A°‘ST)ZNOW = T

*soad @2yl Aq

39s oae s©34Aq WA 92Ul
*jussaad 30u 9TT3F

JT gGZz I0 ‘punog 3IT

4 A10309ITP ©U3l ut dOJd
9yl JO Sssoappe 91314g

passaooe
°q 03 ®TTF °Y3 I103
04 ®Y3 JO SS°Ippy

ST
9173 uadg

A:m: M&H.@ Cﬂl@OHv

suoljexado STTI
jusnbssgns 103 pe3j
-O8TSS pur ,SUTII-UO,
pPOISOPTISUOD ST X YSTQ

*03 sN”U \H“m ~0"<
:uT-boT 03 HYSTp
?y3 03 butpuodssx

T

X
3STp 309T9s

(T‘%T) TNOW TTIYD DUON -~I00 @nTea Iobsaur uy pue ur-bor
wOUTT el
-JJO, DPSIASPISUOD B8IP HOg8 ©3
Sa9y3lo TTIe °2TTuym ,UT SsS2appe VWA 39S
-pobbOT,, ST ¥ YSIP -

Jeyy ST 309IF® °PTS

MSTP 309T9S pue

(0'€T) INOW TI¥D SUON SUON soqg ®zTTeT3TUl
SATIP 3Jusxand
wox3y pe3zTT ST peeH a
(0'2T)ZNOW TTV¥YD SUON SUON pPeSH 33TT
TTIYD TYOIdAL INTVA QININLITYE SYAIANVEVA AMINA JAGWAN/NOIIONNI

SHAILIWI¥d SSHDOY ¥SId

IT 41dVYdL

ST

*0X9z 03 39S9I ST PIoTF ¥UN 2yl pue ‘ATTedT3iewoine psausdo ST 3U331XD 3XaU 8yl
‘gzT Speoodox® PI®TI ¥UN °2Yy3 JI -uoTieasdo sayj I93Je pojuswaIour ATTedTiewoline ST dgDJd

Sy3 Jo PTSTF ¥N ®y3 ‘I8yzang - (9g UOTIOUNI 99S)
sseTun s21X&g 8z 3IXSU 8Y3z I0JF H(Q8 SSOIppe woxj /o3

pexs31Te uo®ag sey ssaippe VWA 22Ul
eiep I9suexl suorzeasdo O/I SYL uﬁwuoz

sso00®
uopurI UT B3RP
U933 TIMUN DbuIpesdx =
S9TT3
Jo pus 3sed pesax =
(824" '0Z) ZNOW I peaI TNJSSs00NS =

(e |

Aﬂwuoc 59s) pesx O3
pIoo9I 31XsU ay3z o3

39S YN U3t ‘o133
PONAJO ATInJssooons
B JO gDA FO SSaappy

0¢
pI0oOSY 3XSN peod

(40d° ‘6T) ZNORW 9UON

It
H

S339YSTP

WOII s3aT19p 03 STTJ
Jo <adAjyeTI3> pue
<3uWRUSTII> butuTtel
-Uo0dD g)Jd JO SS9IpPpPVY

6T
9T1TJd 239T2d

(804" “8T)CZNOW = T 3XaUu JO ssaippe 934g

(peMOTT® STTEO
50dd ®S3eTpswIsjut
I9Yy3zo ou) /LT UoIl

-dunj I933je poIIeo
INg ‘SAO0JE SB SWES

8T

BOUSIINDDO
1X8U I03J YdIedg

*UOo3eW OU S93BOTIPUT
GGz 9sTmIsyao !Aue

IT ‘gDd andur seyo3jRrW

3ey3 AI0309IIP UT gD4

(d0d°LT)CZNOW = I 3SITI JO ssaappe 934g

* I930vIBYD
Aue ssyojew gog ur
wiu IIDSY "ydjeuw
03 <adA3sTT3I> pue
<dweusTII> buruTte]
~-U00 goJd JO SSaIpPpY

LT
9TTJ I0J Yyoieog

TIVD TYDIdAL ANTVA QININLIE

SYHLANYIVd AdINI

JIIWAN/NOTILONNA

(pSnNuUT3UOD)

IT HTdYL

*3U93XS TRUOTITPPER Uoes IO0J SUO pue

‘o113 Azeutad ayz 103 poxTnbox sT Axjue aud 9Id9YM ‘ (SOTIJUS GGz 03 popuedxs
oq uED) 9339YSTP Yoed U0 STgeITeA® SOTIFUS AIOFODITP 9 ATTBPWIOU aIe SIdYL : Coq0N

*yojewr ou IT GG¢
paio3Te ST <odA3
-9TTIJ> pue<OWRUSTTII>
oUL °s934Aq 9T

s931&q 9T puooss
UuT L4 pu®e NJg #dU

3SITI oYl Ssaydjeuw pue ‘s93Aq 9T 3SIT3I €T
yoTym Axjus Ax10309 ut IJd pue NJ pPI©
(404" ‘€ 7) TNOW = -ITp 9Y3z JO SsS3IAPPY Y3t dDd FJO SSSIpPPY 04 sweusy
*R3dwe 03 pozZTTeTI3TUT
9TqeTTRAR ST 90®dS ST 9TTIF °U3l ‘poje
A10308aTP OU IT GGT -2x0 st Ax3us Axo3
Io0 ‘gDJd 2Uy3 03 pel -0911Q 395 <adik3 7z
-eooTTe Axjus A10309 ~-3TTI> PUR <DWRUDTTII>
(804" 'ZZ) ZNOW = -ITp 3O ssaappe 334d U3Tm g04 3O SS3ApPPY STTd 3YeR
[4
(“230u o95)
ooeds Axo308
~-ITp 9I0W OU = GG
B3IRD XSTP 3O PuUS = ¢
8113 but 93 TIM O3 DPIODSI 1z

(dD3° TZ) ZTNOW

-pus3xX® Uul I0II8 = T
93TIM TNISS200NS = (

3X9Uu 3yl 03 39S ST YN
1dsoxs ‘SA0qeR Se sues

pI0oay 3IXON 93TIM

TTYD TYOIdAL

dNTVA dININLAY

SUIdLINYIVd AJLNI

YIIWON/NOILONAI

(ponuT3UOD)

IT JTIdVYL

LT

uot3iexsdo YSTP IXOU BY3 I0F
pesn oq TITM UOTUM SATIP
dY3 ‘*9°T) NSTP PobboT

Y4
Taqumu

f(0’SZ)ZNOW = I AT3usxano Jo Iaqumu YSTJd SUON SATIJ 23eboxxsjul
(puew
(0’LZ)ENONW = ¥ ~Wwod SAIVLS Aqpesn)
YSTP JUSIIND 9Y3 Le
*SsH¥aav I03 I03D9A UOT3ED UOTJIEOOTTY
(*°*)@NAID0Ed :ENOW -OTT® 9Y3z 3FO SSBAPPY 9UON o3eboxasjzur
Axoursu
Ul SS8Ippe PaTIIo
-ads e asoeid soiyel
0/I ¥STp 3uenbosqns 193I0q ¥HA 9¢

(HO00Z“92) INOW TIVD

SUON

9349 82T 3O SS3IPPY

SS2Ippe VWA 39S

(0P Z)ZNOW = I

WY, ¥STP o3 burpuod
~-S3II02 3T JUEDTJ
-TubTSs 3sesT Yy3aTm
‘s)sSTp ,9UIl uo,

Jo suoTatsod 3Tq Ut
wTu UIT# onTea 2349

QUON

¥e

I0309A UT
-boT 23vboxasyur

TIVD TVYDIdAL

dNIVA dININLAY

SYALINVIVd AJINA

YIFWNN/NOIILONNI

(pPenuUT31UOD)

IT d7149v¥aL

18

3.4 Random Access

Recall that a single FCB describes up to a 16K segment of a
(possibly) larger file., Random access within the first 16K seg-
ment is accomplished by setting the NR field to the record number
of the record to be accessed before the disk I/0 takes place.
Note, however, that if the 128th record is written, then the
BDOS automatically increments the extent field (EX), and opens
the next extent, 1f possible. 1In this case, the program must
explicitly decrement the EX field and re-open the previous extent.
If random access outside the first 16K segment is necessary,
then the extent number e be explicitly computed, given an absol-
ute record number r as

- _r
€= L128J

SHR(r,7)

or equivalently,

)
I

this extent number is then placed in the EX field before the seg-
ment is opened. The NR value n is then computed as

n r mod 128

orxr

n r AND 7FH.

When the programmer expects considerable cross-segment accesses,
it may save time to create an FCB for each of the 16K segments,

open all segments for access, and compute the relevant FCB from
the absolute record number r.

4., SYSTEM GENERATION

As mentioned previously, every diskette used under CP/M is assumed to
contain the entire system (excluding transient commands) on the first two
tracks. The operating system need not be present, however, if the diskette
is only used as secondary disk storage on drives B, C, ..., since the CP/M
system is loaded only from drive A.

The CP/M file system is organized so that an IBM-compatible diskette
from the factory (or from a vendor which claims IBM compatibility) looks
like a diskette with an empty directory. Thus, the user must first copy
a version of the CP/M system from an existing diskette to the first two
tracks of the new diskette, followed by a sequence of copy operations,
using PIP, which transfer the transient command files from the original
diskette to the new diskette.

19

NOTE: before you begin the CP/M copy operation, read your Licensing
Agreement. It gives your exact legal obligations when making reproductions
of CP/M in whole or in part, and specifically requires that you place the
copyright notice

Copyright (c), 1976
Digital Research

on each diskette which results from the copy operation.
4,1. 1Initializing CP/M from an Existing Diskette

The first two tracks are placed on a new diskette by running the tran-
sient command SYSGEN, as described in the document "An Introduction to CP/M
Features and Facilities." The SYSGEN operation brings the CP/M system from
an initialized diskette into memory, and then takes the memory image and
places it on the new diskette.

Upon completion of the SYSGEN operation, place the original diskette
on drive A, and the initialized diskette on drive B. Reboot the system;
the response should be

aA>

indicating that drive A is active. Log into drive B by typing
B:

and CP/M should respond with
B>

indicating that drive B is active. If the diskette in drive B is factory
fresh, it will contain an empty directory. Non-standard diskettes may,
however, appear as full directories to CP/M, which can be emptied by typing

*
ERA *, 2

when the diskette to be initialized is active. Do not give the ERA command
if you wish to preserve files on the new diskette since all files will be
erased with this command.

After examining disk B, reboot the CP/M system and return to drive A for
further operations.

The transient commands are then copied from drive A to drive B using the
PIP program. The sequence of commands shown below, for example, copy the
principal programs from a standard CP/M diskette to the new diskette:

A)PI%
*B:STAT.COM=STAT.COM,
*B:PIP.COM=PIP.COM;
*B:LOAD.COM=LOAD.CODb

*B:ED.COM=ED.CONb

*B:ASM.COM=ASM. COoM,,

*B:SYSGEN.COM=SYSGEN.COM

2

*B:DDT.COM=DDT. CONL)

2
- 0Y

20

The user should then log in disk B, and type the command

*
DIR.‘?

to ensure that the files were transferred to drive B from drive A. The
various programs can then be tested on drive B to check that they were

transferred properly.

Note that the copy operation can be simplified somewhat by creating

a "submit” file which contains the copy commands.

named GEN.SUB, for example, and might contain

SYSGEN,

PIP B:STAT.COM=STAT.COMJ

PIP B:PIP.COM=PIP.COM,

PIP B:LOAD.COM=LOAD.COI‘:1)

PIP B:ED.COM=ED.COM.,

PIP B:ASM.COM=ASM.COM,

PIP B:SYSGEN.COM=SYSGEN.COM)
PIP B

:DDT .COM=DDT. COM’,

The file could be

The generation of a new diskette from the standard diskette is then done

by typing simply

SUBMIT GEN

14

5. CP/M ENTRY POINT SUMMARY

The functions shown below summarize the functions of the
FDOS. .The function number is passed in Register C (first para-
meter in PL/M), and the information is passed in Registers D,E

(second PL/M parameter).
Register A. 1If a double

Single byte results are returned in
byte result is returned, then the high-

order byte comes back in Register B (normal PL/M return). The

transient program enters
Section 7.) as shown in Section 2.

in assembly language.

CALL entry

the FDOS through location "entry" (see
for PL/M,

or

All registers are altered in the FDOS.

Function

LC 0 3 0 b W N = C

e
~ O

12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27

Number

System Reset

Read Consonle

Write Console

Read Reader

Write Punch

Write List

(not used)
Interrogate I/0 Status
Alter I/0 Status
Print Console Buffer
Read Console Buffer
Check Console Status

Lift Disk Head
Reset Disk System
Select Disk

Open File

Close File

Search First
Search Next
Delete File

Read Record
Write Record
Create File
Rename File
Interrogate Login

Interrogate Disk

Set DMA Address

Interrogate Allocation

Information

ASCII character
ASCII character

ASCITI character

I/0 Status Byte
Buffer Address
Buffer Address

Disk number
FCB Address

DMA Address

21

Result

ASCITI character

ASCII character

I/0 Status Byte

True if character
Ready

Completion Code

Login Vector

Selected Disk
Number

Address of Allo-
cation Vector

22
6. ADDRESS ASSIGNMENTS

The standard distribution version of CP/M is organized for an Intel
MDS microcomputer developmental system with 16K of main memory, and two
diskette drives. Larger systems are available in 16K increments, providing
management of 32K, 48K, and 64K systems (the largest MDS system is 62K
since the ROM monitor provided with the MDS resides in the top 2K of the
memory space). For each additional 16K increment, add 4000H to the values
of cbhase and fbase.

The address assignments are

boot = O0O0OH warm start operation

tfcb = O005CH default file control block location
tbuff= 0080H default buffer location

tbase= 010C0H base of transient program area
cbase= 2900H base of console command processor
fbase= 3200H base of disk operating system
entry= 0005H entry point to disk system from

user programs

23

7. SAMPLE PROGRAMS

This section contains two sample programs which interface with the CP/M
operating system. The first program is written in assembly language, and
is the source program for the DUMP utility. The second program is the CP/M
LOAD utility, written in PL/M.

The assembly language program begins with a number of "equates" for sys-
tem entry points and program constants. The equate

BDOS EQU 0OOS5H

for example, gives the CP/M entry point for peripheral I/0 functions. The
defualt file control block address is also defined (FCB), along with the
default buffer address (BUFF). Note that the program is set up to run at
location 100H, which is the base of the transient program area. The stack
is first set-up by saving the entry stack pointer into OLDSP, and resetting
SP to the local stack. The stack pointer upon entry belongs to the console
command processor, and need not be saved unless control is to return to the
CCP upon exit. That is, if the program terminates with a reboot (branch to
location 000O0H) then the entry stack pointer need not be saved.

The program then jumps to MAIN, past a number of subroutines which are
listed below:

BREAK -~ when called, checks to see if there is a console
character ready. BREAK is used to stop the listing
at the console

PCHAR - print the character which is in register A at the
console.
CRLF - send carriage return and line feed to the console
PNIB - print the hexadecimal value in register A in ASCII
at the console
PHEX - print the byte value (two ASCII characters) in
register A at the console
ERR - print error flag #n at the console, where n is
1 if file cannot be opened
2 if disk read error occurred
GNB - get next byte of data from the input file. 1If the

IBP (input buffer pointer) exceeds the size of the
input buffer, then another disk record of 128 bytes
is read. Otherwise, the next character in the buffer
is returned. IBP is updated to point to the next

P R e e

24

The MAIN program then appears, which begins by calling SETUP. The SETUP
subroutine, discussed below, opens the input file and checks for errors.
If the file is opened properly, the GLOOP (get loop) label gets control.

On each successive pass through the GLOOP label, the next data byte
is fetched using GNB and save in register B. The line addresses are listed
every sixteen bytes, so there must be a check to see if the least signi-
ficant 4 bits is zero on each output. If so, the line address is taken
from registers h and 1, and typed at the left of the line. In all cases,
the byte which was previously saved in register B is brought back to
register A, following label NONUM, and printed in the output line. The
cycle through GLOOP continues until an end of file condition is detected
in DISKR, as described below. Thus, the output lines appear as

0000 bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb
0010 bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb

until the end of file.

The label FINIS gets control upon end of file. CRLF is called first
to return the carriage from the last line output. The CCP stack pointer
is then reclaimed from OLDSP, followed by a RET to return to the console
command processor. Note that a JMP OOOQOH could be used following the
FINIS label, which would cause the CP/M system to be brought in again from
the diskette (this operation is necessary only if the CCP has been over-
layed by data areas).

The file control block format is then listed (FCBDN ... FCBLN) which
overlays the fcb at location 05CH which is setup by the CCP when the
DUMP program is initiated. That is, if the user types

DUMP X.Y

then the CCP sets up a properly formed fcb at location 05CH for the DUMP

(or any other) program when it goes into execution. Thus, the SETUP sub-
routine simply addresses this default fcb, and calls the disk system to

open it. The DISKR (disk read) routine is called whenever GNB needs another
buffer full of data. The default buffer at location 80H is used, along

with a pointer (IBP) which counts bytes as they are processed. Normally,

an end of file condition is taken as either an ASCII 1AH (control-z), or

an end of file detection by the DOS. The file dump program, however, stops
only on a DOS end of file.

FILE DUMP PROGRAM, READS AN INPUT FILE AND PRINTS IN HEX

COPYRIGHT (C), DIGITAL RESEARCH, 1975, 1976

we wme wes we

25
2100 ORG 1008
BpBs5 = BDOS EQU BOO5H +DOS ENTRY POINT
PP0F = OPENF EQU 15 +FILE OPEN
gRld = READF EQU 20 +READ FUNCTION
pRo2 = TYPEF EQU 2 :TYPE FUNCTION
pRvl = CONS EQU 1 :READ CONSOLE
PRoB = BRKF EQU 11 :BREAK KEY FUNCTION (TRUE IF CHAR READY)
p@s5C = FCB EQU 5CH ¢+FILE CONTROL BLOCK ADDRESS
gp80 = BUFF EQU 80H s INPUT DISK BUFFER ADDRESS
: SET UP STACK
0100 210008 LX1I H,0
183 39 DAD SP
B1@4 220FQ1 SHLD OLDSP
9187 315101 LX1 SP,STKTOP
N19A C3C401 JMP MAIN
: VARIABLES
@10D IBP: DS 2 : INPUT BUFFER POINTER
: STACK AREA
Gg10F OLDSP: DS 2
G111 STACK: DS 64
@151 = STKTOP EQU S
: SUBROUTINES
BREAK: ;CHECK BREAK KEY (ACTUALLY ANY KEY WILL DO)
151 ESD5CH PUSH H! PUSH D! PUSH B; ENVIRONMENT SAVED
2154 GE®OB MVI C,BRKF
156 CDO500 CALL BDOS
159 C1DlE1l POP B! POP D! POP H;: ENVIRONMENT RESTORED
@15C C9 RET
PCHAR: ;PRINT A CHARACTER
#15D E5D5CS PUSH H! PUSH D! PUSH B:; SAVED
@160 0OEQ2 MVI C,TYPEF
@gl62 S5F MOV E,A
3163 CC@500 CALL BDOS
166 C1D1E1 EOP B! POP D! POP H; RESTORED
3169 C9 RET
CRLF:
@16A 3E@D MVI A, @DH
#16C CD5D@1 CALL PCHAR
@16F 3EDA MVI A, BAR
8171 CD5D@1 CALL PCHAR
2174 C9 RET

PNIB: ;;PRINT NIBBLE IN REG A
A175 E6GF ANI AFH ;LOW 4 BITS
@177 FEBA CPI 10
179 D281¢1 JNC P19

P17cC
P17E

P18l
9183
P186

0187
$188
¥189
@18A
p188
218C
@18F
8190
9193

P194
P197
#199
919C
A19D
P19F
Q1Aa2
G1A5

01A8
P1AB
@1AD

¥1B0
9183

91B4
01B5
w1B7
K188

p1BB
@1BC
P1BF
p1Co

P1C1
p1C?2
p1C3

81C4

C6340
C38301

Ce37
CD5DA1
C9

F5
gr
DF
QF
gFr
CD7501
Fl
CD7561
C9

CD6AO1
3E23
CD5D61
78
C630
CD5D21
CD6AR1
C3F701

3A9D01
FE8D
C2B4@1

CDl6d2
AF

5F
1600
3C
320001

ES5
218000
19
7E

El
23
C9o

CDFFH#1

-e

Pl0:
PRN:

PHEX:

ERR:

GNB:

e wo we

~e we

~e we we

MAIN:

LESS THAN OR EQUAL TO0 9

-

ADI 0

JMP PRN

GREATER OR EQUAL TO 1¢
ADI ‘AT - 10

CALL PCHAR

RET

+ PRINT HEX CHAR IN REG A
PUSH PSWH

RRC

RRC

RRC

RRC

CALL PNIB ¢+ PRINT NIBBLE
POP PSW

CALL PNIB

RET

: PRINT ERROR MESSAGE

CALL CRLF
MVI A, "#°
CALL PCHAR
MOV A,8
ADI ‘9
CALL PCHAR
CALL CRLF
JMP FINIS
:GET NEXT BYTE
LDA IBP
CPI 80d
INZ el

READ ANOTHER BUFFEK

CALL DISKR

XRA A

:READ THE BYTE AT BUVFF+REG A
MOV E,A

MVI D,o

INK A

STA IBP

POINTER IS INCREMENTED
SAVE THE CURRENT FILE ADDRESS
PUSH H

LXI H,B80FF
DAD D
MOV a,M

BYTE IS IN THE ACCUMULATOR

RESTORE FILE ADDRESS AND INCREMENT
FOP H

INX H

RET

; READ AND PRINT SUCCESSIVE BUFFERS
CALL SETUP ;SET UP INPUT FILE

26

@1cC7
91C9
p1CC

P1CF
@1D2

@1D3
01D4
#1D6

P1D9

91DC
P1DF
P1ED

PlE3
P1lE4
PlE7
PlES8

9P1EB
P1ED
01FD
g1F1

g1ré

91F7
A1FA
81FD
U1lFE

pa5C
gA5D
2065
0068
bo6B
e
go7D

PLlFFE
¥282
0204

0207
$209

3E80
320001
21FFFF

CDABQ1
47

7D
E6QF
C2EB@1

CD6AB1

CD5101
oF
DAF701

7C
Ch8701
7D
Cp87081

3E20
CD5D¥1
78
CD8701

C3CFgl

CDh6a#1
2A0F01
F9
C9

115Cu0
AEQF
CDé529

FEFF
C211672

GLOOP:

~e

-e

~e weo

-e

NONUM:

EPSA:

FINIS:

.
’
-
1

FCBDN
FCBFN
FCBET
FCBRL
FCBRC
FCBCR
FCBLN

ETUP:

~e [} ~e ~o

~e

MVI
STA
LXI

CALL
MoV
PRINT

CHECK
MOV
ANI
JINZ
PRINT
CALL

CHECK
CALL
RERC
JC

MOV
CALL
MOV
CALL

Mv1
CALL
MOV
CALL

JMP

: END

r

CALL
LELD
SPHL
RET

HE

A,80H
IBP
H,QFFFFHR

GNB
B,A
X VALUES

;SET BUFFER POINTER TO 80H
;s SET TO -1 TO START

FOR LINE FOLD

A,L
QFH
NONUM

;CHECK LOW 4 BITS

LINE NUMBER

CRLF

FOR BREAK KEY

PSA

BREAK
FINIS

A,H
PHEX
A,L
PREX
a,” -
PCHAR
A,B
PHEX

GLOOP

;DON T PRINT ANY MORE

END OF INPUT

CRLF
OLDSP

FILE CONTROL BLOCK DEFINITIONS

EQU
EQU
EQU
EQU
EQU
EQU
EQU

FCB+@
FCB+1
FCB+9
FCB+12
FCB+15
FCB+32
FCB+33

;SET UP FILE
CPEN THE FILE FOR INPUT

LXI
MVI
CALL

D,rCRB
C,OPENF
RDO3

CHECK FOR EREKORS

CpPI1
N

255
OFLOK

;DISK NAME
sFILE NAME
;DISK FILE TYPE

(3 CHAKRACTERS)

sPILE"S CURRENT REEL NUMBER

;FILE"S RECORD COUNT

;CURRENT (NEXT)
;FCB LENGTH

RECORD NUMBER

(@ TO 128)

(¢

27

TO 127)

g28C
P20E

6211
p212
0215

3216
9219
p21C
g21E
p221
0224
0226

p227
9229

p22C
B22E

p231

0601
CD9401

AF
327CP0
C9

E5D5C5
115Caep
PE1I4
CDu500
C1D1lE1l
FEQOC
c8

FE@1
CaF701

2602
CD94¢1

~e

OPNOK :

DISKR:

BAD OPEN

MVI B,1 ;OPEN ERROR
CALL ERR

;OPEN IS OK.

XRA A

STA FCBCR

RET

;s READ DISK FILE RECORD

"PUSH H! PUSH D! PUSH B

LXI D,FCB

MVI C, READF

CALL BDOS

PCP B! POP D! POP H

CFI 0 ;CHECK FOR ERKS
RZ

MAY BE EOF

CPI 1

JZ FINIS

MVI B,2 ;DISK READ ERROR
CALL ERK

END

29

The PL/M program which follows implements the CP/M LOAD utility. The
function is as follows. The user types

LOAD filename2
1f filename.HEX exists on the diskette, then the LOAD utility reads the "hex"
formatted machine code file and produces the file

filename.COM

where the COM file contains an absolute memory image of the machine code,
ready for load and execution in the TPA. If the file does not appear on
the diskette, the LOAD program types

SOURCE IS READER
and reads an Addmaster paper tape reader which contains the hex file.

The LOAD program is set up to load and run in the TPA, and, upon com-
pletion, return to the CCP without rebooting the system. Thus, the pro-
gram is constructed as a single procedure called LOADCOM which takes the
form

QFAH :
LOADCOM: PROCEDURE;
/* LIBRARY PROCEDURES */
MON1: ...
/* END LIBRARY PROCEDURES */
MOVE: ...
GETCHAR: ...
PRINTNIB: ...
PRINTHEX: ...
PRINTADDR: ...
RELOC: ...
SETMEM:
READHEX :
READBYTE :
READCS:
MAKEDOUBLE :
DIRGNOSE:
END RELOC;

DECLARE STACK(16) ADDRESS, SP ADDRESS;
SP = STACKPTR; STACKPTR = .STACK(LENGTH (STACK)) ;

CALL RELOC;
STACKPTR = ©P;
RETURN O;

END LOADCOM;

EOF

30

The label OFAH at the beginning sets the origin of the compilation to OFAH,
which causes the first 6 bytes of the compilation to be ignored when loaded
(i.e., the TPA starts at location 100H and thus OFAH,...,JFFH are deleted
from the COM file). 1In a PL/M compilation, these 6 bytes are used to set up
the stack pointer and branch around the subroutines in the program. In this
case, there is only one subroutine, called LOADCOM, which results in the
following machine memory image for LOAD

OFAH: LXI SP,plmstack ;SET SP TO DEFAULT STACK
OFDH: JY4P pastsubr ; JUMP AROUND LOADCOM
100H: beginning of LOADCOM procedure

end of LOADCOM procedure

RET

pastsubr:
EI
HLT

Since the machine code between OFAH and OFFH is deleted in the load,
execution actually begins at the top of LOADCOM. WNote, however, that

the initialization of the SP to the default stack has also been deleted;
thus, there is a declaration and initialization of an explicit stack and
stack pointer before the call to RELOC at the end of LOADCOM. This is
necessary only if we wish to return to the CCP without a reboot operation:
otherwise the origin of the program is set to 100H, the declaration of
LOADCOM as a procedure is not necessary, and termination is accomplished
by simply executing a

GO TO OOOOH;

at the end of the program. Note also that the overhead for a system re~
boot is not great (approximately 2 seconds), but can be bothersome for
system utilities which are used gquite often, and do not need the extra
space.

The procedures listed in LOADCOM as "library procedures" are a standard
set of PL/M subroutines which are useful for CP/M interface. The RELOC
procedure contains several nested subroutines for local functions, and
actually performs the load operation when called from LOADCOM. Control
initially starts on line 327 where the stackpointer is saved and re-initialized
to the local stack. The default file control block name is copied to
another file control block (SFCB) since two files may be open at the same
time. The program then calls SEARCH to see if the HEX file exists; if not,
then the high speed reader is used. If the file does exist, it is opened for
input (if possible). The filetype COM is moved to the default file control
block area, and any existing copies of filename.COM files are removed from
the diskette before creating a new file. The MAKE operation creates a new
file, and, 1f successful, RELOC is called to read the HEX file and produce
the COM file. At the end of processing by RELOC, the COM file is closed
(line 350). WNote that the HEX file does not need to be closed since it
was opened for input only. The A=nta written to a file is not permanently
recorded until the file is successfully closed.

BT

Disk input characters are read through the procedure GETCHAR on line
137. Although the DMA facilities of CP/M could be used here, the GETCHAR
procedure instead uses the default buffer at location 80H and moves each
buffer into a vector called SBUFF (source buffer) as it is read. On exit,
the GETCHAR procedure returns the next input character and updates the
source buffer pointer (SBP).

The SETMEM procedure on line 191 performs the opposite function from
GETCHAR. The SETMEM procedure maintains a buffer of loaded machine code
in pure binary form which acts as a "window" on the loaded code. If there
is an attempt by RELOC to write below this window, then the data is ignored.
If the data is within the window, then it is placed into MBUFF (memory
buffer). If the data is to be placed above this window, then the window
is moved up to the point where it would include the data address by writing
the memory image successively (by 128 byte buffers), and moving the base
address of the window. Using this technique, the programmer can recover
from checksum errors on the high-speed reader by stopping the reader,
rewinding the tape for s<me distance, then restarting LOAD (in this case,
LOADing is resumed by interrupting with a NOP instruction). Again, the
SETMEM procedure uses the default buffer at location 80H to perform the
disk output by moving 128 byte segments to 80H through OFFH before each
write.

20001
00002
govo3
PYBB4
WoBB5
Yooo6
poae7
0ooBS
POBY9
NAvLO
Qad1l
npKl12
Vo013
ESS */
00014
PeBLS
20016
/
Gwali
WPpels
00019
00020
PRG21
nag22
*/
poO23
Do0D24
ROM THE
020825

S THE MACH

aen26
*/
BRAB27
* kKKK K
o028
WRad29
waQ30
P31
Pev32
Veo33
VB34
BYB35
Ban36
Bov37
nen38
pwBL39
0PvB4aL
veLedl
WO042
0aa43
pooa4d
beR45
VYY4a6
wewd
60048
Bo049
0059

NNNMNMNRMNMONWWWRARNWWW WNRNWWWWNNDNN

O O N N e e e e el el ol o

N NN DN NS NN DN

NN

2

2

JFAH: DECLARE BDOS LITERALLY

37

“Q@@5H "

/* TRANSIENT COMMAND LOADER PROGRAM

COPYRIGHT (C)
JUNE, 1975

*/

LOADCOM: PROCEDURE BYTE;
DECLARE FCBA ADDRESS INITIAL(
DECLARE FCB BASED FCBA (33)

DECLARE BUFFA ADDRESS INITIAL(8%H),

BUFFER BASED BUFFA (128)

DECLARE SFCB(33) BYTE,

BSIZE LITERALLY

EOFILE LITERALLY

SBUFF (BSIZE) BYTE
INITIAL(EOFILE) ,

RFLAG BYTE,

SBP ADDRESS;

19247,
“1AH",

DIGITAL RESEARCH

5CH) :

3YTE;

/* 1/0 BUFFER ADDR

BYTE;

/* SOURCE FILE CONTROL BLOCK *

/* SOURCE FILE BUFFER */

/* READER FLAG */
/* SOURCE FILE BUFFER POINTEKR

/* LOADCO# LOADS TKANSIENT COMMAND FILES TO THE DISK F

CURRENTLY DEFINED READER PERIPHERAL.

CODE INTO A

THE LOADER PLACE

FILE WHICH APPEARS IN THE LOADCOM COMMAND

J¥* kkxxxkxkxxxxxxk* [TBKAKY PROCEDUKES FOR DISKIQ ***xk*x

MON1: PROCEDURE(F,A):
DECLARE F BYTE,
A ADLCRESS:
GO 170 BDUS;
END MOND;

MONZ2: PROCEDURE (F,A)
DECLARE ¢ BYTE,
A ADDRESS:
GO TO BDCOS:
END MONZ;

8YTE;

READRDR: PROCEDURE
/% READ CURRENT READER DEVICE
RETURN MON2(3,8):

ENL KFEALDRDR:

BYTE ;

DECLAKE
TRUE LITERALLY "1°7,
FALSE LITERALLY “6°,
FOREVER LITERALLY
CR LITERALLY 137,

"WwHILE TRUE’

*/

r

gugsl 2 LF LITERALLY 107,
paP52 2 WHAT LITERALLY “637;
pRBs53 2

LY) PRINTCHAR: FEROCEDURE (CHAR) ; 33
22055 3 DECLARE CHAR BYTE;
PRB56 3 CALL #MON1 (2,CHAR) ;
peas57 3 END PRINTCHAR;

Q@358 2

NPA59 2 CRLF: PROCEDURE;

0pe6d 3 CALL PRINTCHAK(CR) 3
0006l 3 CALL PRINTCHAR(LF) ;
pod62 3 END CRLF;

pEP63 2

09064 2 PRINT: PROCEDURE(A) ;
0pe65 3 DECLARE A ADDRESS;: _
00066 3 /* PRINT THE STRING STARTING AT ACDKESS A UNTIL THE
60067 3 NEXT DOLLAR SIGN IS ENCOUNTERED */
20968 3 CALL CRLF;

o869 3 CALL MON1(9,A);
pgo78 3 END PRINT:

gee71 2

pRR72 2 DECLARE DCNT BYTE;

peR73 2

POB74 2 INITIALIZE: PROCEDURE;
po975 3 CALL MON1(13,0):
00676 3 END INITIALIZE;
aeo7T 2

pee78 2 SELECT: PROCEDURE(D) ;
079 3 DECLARE D BYTE;
P0680 3 CALL MON1(14,D):
pP281 3 END SELECT;

60982 2

pea83 2 OPEN: PROCEDUKE (FCB) ;
0ne84 3 DECLARE FCR ADDRESS;
0g@e85 3 DCNT = MON2(15,FCB);
p0P86 3 END OPEN;

0oep87 2

aee8e 2 CLOSE: PROCEDURE (FCB) ;
0p89 3 DECLAKE FCE ADDRESS:
00090 3 DCNT = MONZ(16,FCB);
g0B91 3 END CLOSE;

pOe92 2

60093 2 SEARCH: PROCEDURE (FCB) ;
00294 3 DECLARE FCB ADDKESS;
pee9s5 3 DCNT = MON2(17,FCB);
pOv9s 3 END SEARCH;

poo97 2

wpe9s 2 SEARCHN: PROCEDURE:
pAB99 3 DCNT = MON2(18,0) ;
He1ee 2 END SEARCHN;

¢olel 2

pR16z =2 DELEIE: PRUOCEDUKE (FCB) ;
PPIB3 3 DECLAKE FCB ADDRESS;
29104 3 CALL MON1(19,FCB);
p91065 3 END DELETE:

nplee 2

0n1a7 2 DISKKEAD: PROCEDUKRE (FCB) BYTE;
polps 3 DECLARE FCB ADDRESS;:
08149 3 RETURN MON2 (20,FCB) ;
go11g 3 END DISKREAD;

49111 2

99112 2 DISKWRITE: PROCEDURE (FCB) BYTE;

P2113 3 DECLARE FCB ADDRESS;

09114 3 RETURN MON2(21,FCB); 24
PB115 3 END DISKWRITE;

93116 2

00117 2 MAKE: PROCEDURE (FCB) ;

#0118 3 DECLARE FCB ADDRESS;

9119 3 DCNT = MON2(22,FCB);

00120 3 END MAKE;

pR121 2

P0122 2 RENAME: PROCEDURE (FCB)

90123 3 DECLARE FCB ADDRESS;

¥Wel124 3 CALL MON1(23,FCB) ;

@125 3 END RENAME:;

@126 2

00127 2 J* kkkkkkkkkkkkkkkxkk* END OF LIBRARY PROCEDURES ***xkxxk*xx%”
KKKk KXk*%X */

w128 2

90129 2 MOVE: PROCEDURE(S,D,N);

00139 3 DECLARE (S,D) ADDRESS, N BYTE,

90131 3 A BASED S BYTE, B BASED D BYTE;

w132 3 DO WHILE (N:=N-1) <> 255;

g9133 3 B = A; S=S+1;: D=D+1;

70134 4 END;

#8135 3 END MOVE;

g@136 2

P@137 2 GETCHAR: PROCEDURE BYTE;

PP138 3 /* GET NEXT CHARACTER */

#9139 3 DECLARE I BYTE:

90149 3 IF RFLAG THEN RETURN READRDR;

p@141 3 IF (SBP := SBP+1) <= LAST (SBUFF) THEN

90142 3 RETURN SBUFF (SBP) ;

90143 3 /* OTHERWISE READ ANOTHER BUFFER FULL */
90144 3 DO SBP = ¢ TO LAST (SBUFF) BY 128;

P0145 3 IF (I:=DISKREAD(.,SFCB)) = ¢ THEN

PRl4e 4 CALL MOVE (80H,.SBUFF (SBP) ,80H); ELSE
pR147 4 DO; IF I<>1 THEN CALL PRINT (. DISK READ ER
RORS ") ;

00148 5 SBUFF (SBP) = EOFILE:

02149 5 SBP = LAST(SBUFF) ;

gg15¢ 5 END;

00151 4 END;

PP152 3 SBP = @; RETURN SBUFF;:

g#153 3 END GETCHAR;

0we154 2 DECLARE

00155 2 STACKPOINTER LITERALLY “STACKPTR:

pR156 2

08157 2

#0158 2 PRINTNIB: PROCEDURE (N) ;

@g159 3 DECLARE N BYTE;:

poleo 3 IF N > 9 THEN CALL PRINTCHAR(N+ A -1Q); ELSE
polel 3 CALL PRINTCHAR(N+'07):

Ppl162 3 END PRINTNIB:

g@a163 2z

PP164 2 PRINTHEX: PROCEDURE (B) ;

g8l65 3 DECLARE B BYTE; - :
Pele6e 3 CALL PRINTNIB(SHR(B,4)):; CALL PRINTNIB(B AND @FH)
00167 3 END PRINTHEX; -

20168 2

P0169
P0176
908171
00172
@e8173
PB174
PO175
00176
@a177
PB178
0a179
pP180
p@181
38182
90183
PP184
08185
oc */

PB186
pB187
00188
20189
001990
00191
pa192
*/

$8193
Po194
PB195

GRAPH */

PR196
PB197
P0198
PB199
00200
PB201
PO202
pR203
pB204
g02a5
B0206
PB207
00208

Vo209 -

00219
pg211
pe212
00213
p8214
@a0215
0B216
00217
00218
pB219
po220
pp221
0222
PB223
00224
PB225

WWWWww WwwdhNhNNNNDWWWwN

B wwwwww

S D

SHwWwhh bbb WWHB A B BLLWWAELUISNDNROOUNULITUTUIOY U &

PRINTADDR: PROCEDURE (A) ;
DECLARE A ADDRESS;
CALL PRINTHEX(RIGH(A)); CALL PRINTHEX(LOW(A));
END PRINTADDK;

35
/* INTEL HEX FORMAT LOADER */
RELOC: PROCEDURE;
DECLARE (RL, CS, RT) BYTE;
DECLARE
LA ADDRESS,. /* LOALD ADDRESS */
TA ADDRESS, /* TEMP ADDRESS */
SA ADDRESS, /* START ADDRESS */
FA ADDRESS, /* FINAL ADDRESS */
NB ADDRESS, /* NUMBER OF BYTES LOADED */
SP ADDRESS, /*¥ STACK POINTER UPON ENTRY TO REL

MBUFF (256) BYTE,
P BYTE,
I, ADDRESS;

SETMEM: PROCEDURE (B) ;
/* SET MBUFF TO B AT LOCATION LA MOD LENGTH (MBUFF)

DECLARE (B,I) BYTE;
IF LA < L THEN /* MAY BE A RETRY */ RETURN;
DO WHILE LA > L + LAST (MBUFF); /* WRITE A PARA

DO I = @ TO 127; /* COPY INTO BUFFER */
BUFFER(I) = MBUFF(LOW(L)); L =1L + 1;

END;
/* WRITE BUFFER ONTO DISK */
P =P + 1;

IF DISKWRITE (FCBA) <> @ THEN
DO; CALL PRINT(. DISK WRITE ERROKRS);
HALT
/* RETRY AFTER INTERRUPT NOP */
L =L - 128;
END;
END
MBUFEF (LOW(LA)) = B;
END SETMEM;

READHEX: PROCEDURE BYTE;
/* READ ONE HEX CHAKACTER FROM THE INPUT */
DECLARE H BYTE;

IF (H := GETCHAR) - "0 <= 9 THEN RETURN H - 67
IF A - A" > 5 THEN GO TG CHARERR;
RETURN H - A7 + 10;

END READHEX;

READBYTE: PROCEDURE BYTE;
/* READ TWO HEX DIGITS */
RETURN SHL(READHEX,4) OR READHEX;
END READBYTE;

READCS: PROCEDURE BYTE;
/* READ BYTE WHILE COMPUTING CHECKSUM */

BVL26
08227
00228
pB229
0B230
PB231
00232

S */

88233
PR234
PR235
PB236
008237
P@238
P0239
002440
po241
00242

PP243
np244
pB245
00246
00247
nRn248
$0249
80250
Pa251
PP252
WB253
80254
@a255
PB256
PB257
0B258
#0259
P0260
po2el
DB262
00263
0B264
00265
*/

P0266
00267

NTERED

.
’

00268
P3269

00270
00271
008272
PB273
PB274
Pa275
00276
08277
P6278
00279

B W Wb B

LD D D W WS B

WWWWWWWa S HUTUTOU B DS D B SROTO

*
S WN Www

B W WwWWwwwwwd N

DECLARE B BYTE;

CS = CS + (B := READBYTE);

RETURN B;

END READCS; 36

MAKESDOUBLE: PROCEDURE (H,L) ADDRESS;
/* CREATE A BOUBLE BYTE VALUE FROM TWO SINGLE BYTE

DECLARE (H,L) BYTE;
RETURN SHL (DOUBLE (H),8) OR L;
END MAKESDOUBLE;

DIAGNOSE: PROCEDURE;

DECLARE M BASED TA BYTE;

NEWLINE: PROCEDURE; .
CALL CRLF; CALL PRINTADDR(TA); CALL PRINTCHAR(:)

CALL PRINTCHAR(™ °);
END NEWLINE:

/* PRINT DIAGNOSTIC INFORMATION AT THE CONSOLE */
CALL PRINT (. LOAD ADDRESS $°); CALL PRINTADDR(TA);
CALL PRINT (. ERROR ADDRESS $°); CALL PRINTADDR(LA) ;

~e we

CALL PRINT(. BYTES READ:$°); CALL NEWLINE:
DO WHILE TA < LA;
IF (LOW(TA) AND @QFH) = ¢ THEN CALL NEWLINE;
CALL PRINTHEX (MBUFF (TA-L)); TA=TA+l;
CALL PRINTCHAR();
END;

CALL CRLF;

HALT;

END DIAGNOSE;

/* INITIALIZE */

SA, FA, NB = 0;

SP = STACKPOINTER;

P = 0; /* PARAGRAPH COUNT */

TA,LA,L = 100H; /* BASE ADDRESS OF TRANSIENT ROUTINES

IF FALSE THEN
CHARERR: /* ARRIVE HERE IF NON-HEX DIGIT IS ENCOU

DO; /* RESTORE STACKPOINTEKR */ STACKPOINTER = SP;
CALL PRINT(, NON-HEXADECIMAL DIGIT ENCOUNTERED $7)

CALL DIAGNOSE;
END;

/* READ RECORDS UNTIL :00XXXX IS ENCOUNTERED */

DO FOREVER;

/* SCAN THE : */
DO WHILE GETCHAR <> ":°
END;

~e

00280
Pp281
TH */
06282
00283
00284
00285
00286
90287
00288
P6289
20290
60291
38292
00293
00294
00295
00296
608297
20298
20299
60300
00301
20302
00303
00304
00305
60306
20307
20308
80309
00310
@311
00312
29313
PP314
20315
Y9316
60317
90318
90319
00320
90321
00322
06323
HEX TAP
60324
80325
00326
60327
00328
80329
00330
Pp331
0332
00333
60334
00335
Aa336

ol

NDNNONNONDNDRONNNDNDNNONNNNNODIONNWWWWWWWW:D WWWWwWW B U OB D e U D B DB DD DD DRSS

/* SET CHECK SUM TO ZERO, AND SAVE THE RECORD LENG

CS = 0;
/* MAY BE THE END OF TAPE */ 37
I (RL := READCS) = @ THEN

GO TO FIN:

NB = NB + RL;

TA, LA = MAKESDOUBLE (READCS,READCS) ;

IF SA = @ THEN SA = LA;

/* READ THE RECORD TYPE (NOT CURRENTLY USED) */
RT = READCS:

/* PROCESS EACH BYTE */

DO WHILE (RL := RL - 1) <> 255;
CALL SETMEM(READCS); LA = LA+]1;
END;

IF LA > FA THEN FA = LA - 1;

/* NOW READ CHECKSUM AND COMPARE */

IF CS + READBYTE <> ¢ THEN
DO; CALL PRINT(. CHECK SUM ERROR $7):
CALL DIAGNOSE;:

END;
END:;
FIN:
/* EMPTY THE BUFFERS */
TA = LA;

DO WHILE L < TA;
CALL SETMEM(@) ;
END;

/* PRINT FINAL STATISTICS */

LA = LA+1:

CALL PRINT(, FIRST ADDRESS $°): CALL PRINTADDR (SA) :
CALL PRINT (., LAST ADDRESS $°); CALL PRINTADDR(FA):
CALL PRINT(, BYTES READ $"): CALL PRINTADDR(NB);
CALIL PRINT (., RECORDS WRITTEN $°); CALL PRINTHEX(P):
CALL CRLF:

END RELOC;

/* ARRIVE HERE FROM THE SYSTEM MONITOR, READY TO READ THE™

/* SET UP STACKPOINTER IN THE LOCAL AKEA */
DECLAKE STACK(1l6) ADDRESS, SP ADDRESS;:
SP = STACKPOINTEK; STACKPOINTER = ,STACK(LENGTH(STACK)) ;

SBP = LENGTH (SBUFF) ;

/* SET UP THE SOURCE FILE */

CALL MOVE (FCBA, .,SFC3,33);

CALL MOVE(.{ HEX ,0),.SFCB(9),4);

CALL SEARCH (.SFCB);

IF (RFLAG := DCNT = 255) THEN

CALL PRINT (., SOURCE IS READERS); FLSE
DO; CALL PRINT (. SOUKCE IS DISKS);

V0337
00338
EST);
P339
00340
30341
00342
@343
00344
@0345
28346
o347
20348
) ; ELSE
BB349
00350
@351

90352
06353
908354
PB355
PB356
00357
PB358
90359
PA360

w w N NDRNNDNDDDNDNDNNDDNDW w w

HENNNDNDNDDNNDW

CALL OPEN (.SFCB) ;
IF DCNT = 255 THEN CALL PRINT (. —-CANNOT OPEN SOURC

END;
CALL CRLF; 6

CALL MOVE(., COM",FCBA+9,3);

/* REMOVE ANY EXISTING FILE BY THIS NAME */

CALL DELETE (FCBA) ;

/* THEN OPEN A NEW FILE */

CALL MAKE (FCBA); FCB(32) = 0; /* CREATE AND SET NEXT RECORD */
IF DCNT = 255 THEN CALL PRINT(. NO MORE DIRECTORY SPACES ~

DO; CALL RELOC;
CALL CLOSE (FCBA) ;
IF DCNT = 255 THEN CALL PRINT (. CANNOT CLOSE FILES

END;
CALL CRLF;

/* RESTORE STACKPOINTER FOR RETURN */

STACKPOINTER = SP;
RETURN @;
END LOADCOM;

EOF

= ":u"—».;_.
T =

e
T e
o

==,
s

S :
e 2
===

i

S

= ":u"—».;_.
T =

e
T e
o

==,
s

S :
e 2
===

i

S

