OI DIGITAL RESEARCH

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.0 INTERFACE GUIDE

Copyright (c) 1979

DIGITAL RESEARCH

Copyright (e) 1979 by Digital Research. All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written permission of Digital Research, Post Office Box 579, Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with respect to the contents hereof and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. Further, Digital Research reserves the right to revise this publication and to make changes from time to time in the content hereof without obligation of Digital Research to notify any person of such revision or changes.

OI DIGITAL RESEARCH

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.0 INTERFACE GUIDE

Copyright (c) 1979

DIGITAL RESEARCH

Copyright

Copyright (c) 1979 by Digital Research. All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written permission of Digital Research, Post Office Box 579, Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with respect to the contents hereof and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. Further, Digital Research reserves the right to revise this publication and to make changes from time to time in the content hereof without obligation of Digital Research to notify any person of such revision or changes.

CP/M 2.0 INTERFACE GUIDE

Copyright (c) 1979 Digital Research, Box 579 Pacific Grove, California

1.	Introduction	•	•	 •	•	•	 •	1
2.	Operating System Call Conventions	•	•	 •			 •	3
3.	A Sample File-to-File Copy Program	•	•	 •	•		 •	29
4.	A Sample File Dump Utility	•	•	 •	•		 •	3 4
5.	A Sample Random Access Program		•		•		 •	37
6.	System Function Summary						 •	4 6

1. INTRODUCTION.

This manual describes CP/M, release 2, system organization including the structure of memory and system entry points. The intention is to provide the necessary information required to write programs which operate under CP/M, and which use the peripheral and disk I/O facilities of the system.

CP/M is logically divided into four parts, called the Basic I/O (BIOS), the Basic Disk Operating System (BDOS), the Console command processor (CCP), and the Transient Program Area (TPA). BIOS is a hardware-dependent module which defines the exact low level interface to a particular computer system which is necessary for Although a standard BIOS is supplied by peripheral device I/O. Research, explicit instructions are provided for field reconfiguration of the BIOS to match nearly any hardware environment (see the Digital Research manual entitled "CP/M Alteration Guide"). The BIOS and BDOS are logically combined into a single module with a common entry point, and referred to as the FDOS. The CCP is a distinct program which uses the FDOS to provide a human-oriented interface to the information which is cataloged on the backup storage device. The TPA is an area of memory (i.e., the portion which is not used by the FDOS and CCP) where various non-resident operating system commands and user programs are executed. The lower portion of memory is reserved for system information and is detailed later sections. Memory organization of the CP/M system in shown below:

high memory	
FBASE:	IBOB (BBOS:BIOS)
CBASE:	
	TPA
TBASE:	
BOOT:	system parameters

The exact memory addresses corresponding to BOOT, TBASE, CBASE, and FBASE vary from version to version, and are described fully in the "CP/M Alteration Guide." All standard CP/M versions, however, assume BOOT = 0000H, which is the base of random access memory. The machine code found at location BOOT performs a system "warm start" which loads and initializes the programs and variables necessary to return control to the CCP. Thus, transient programs need only jump to location BOOT

to return control to CP/M at the command level. Further, the standard versions assume TBASE = BOOT+0100H which is normally location 0100H. The principal entry point to the FDOS is at location BOOT+0005H (normally 0005H) where a jump to FBASE is found. The address field at BOOT+0006H (normally 0006H) contains the value of FBASE and can be used to determine the size of available memory, assuming the CCP is being overlayed by a transient program.

Transient programs are loaded into the TPA and executed as follows. The operator communicates with the CCP by typing command lines following each prompt. Each command line takes one of the forms:

command
command filel
command filel file2

where "command" is either a built-in function such as DIR or TYPE, or the name of a transient command or program. If the command is a built-in function of CP/M, it is executed immediately. Otherwise, the CCP searches the currently addressed disk for a file by the name

command.COM

If the file is found, it is assumed to be a memory image of a program which executes in the TPA, and thus implicitly originates at TBASE in memory. The CCP loads the COM file from the disk into memory starting at TBASE and possibly extending up to CBASE.

If the command is followed by one or two file specifications, the CCP prepares one or two file control block (FCB) names in the system parameter area. These optional FCB's are in the form necessary to access files through the FDOS, and are described in the next section.

The transient program receives control from the CCP and begins execution, perhaps using the I/O facilities of the FDOS. The transient program is "called" from the CCP, and thus can simply return to the CCP upon completion of its processing, or can jump to BOOT to pass control back to CP/M. In the first case, the transient program must not use memory above CBASE, while in the latter case, memory up through FBASE-l is free.

The transient program may use the CP/M I/O facilities to communicate with the operator's console and peripheral devices, including the disk subsystem. The I/O system is accessed by passing a "function number" and an "information address" to CP/M through the FDOS entry point at BOOT+0005H. In the case of a disk read, for example, the transient program sends the number corresponding to a disk read, along with the address of an FCB to the CP/M FDOS. The FDOS, in turn, performs the operation and returns with either a disk read completion indication or an error number indicating that the disk read was unsuccessful. The function numbers and error indicators are given in below.

OPERATING SYSTEM CALL CONVENTIONS.

The purpose of this section is to provide detailed information for performing direct operating system calls from user programs. Many of the functions listed below, however, are more simply accessed through the I/O macro library provided with the MAC macro assembler, and listed in the Digital Research manual entitled "MAC Macro Assembler: Language Manual and Applications Guide."

CP/M facilities which are available for access by transient programs fall into two general categories: simple device I/O, and disk file I/O. The simple device operations include:

Read a Console Character
Write a Console Character
Read a Sequential Tape Character
Write a Sequential Tape Character
Write a List Device Character
Get or Set I/O Status
Print Console Buffer
Read Console Buffer
Interrogate Console Ready

The FDOS operations which perform disk Input/Output are

Disk System Reset
Drive Selection
File Creation
File Open
File Close
Directory Search
File Delete
File Rename
Random or Sequential Read
Random or Sequential Write
Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address
Set/Reset File Indicators

As mentioned above, access to the FDOS functions is accomplished by passing a function number and information address through the primary entry point at location BOOT+0005H. In general, the function number is passed in register C with the information address in the double byte pair DE. Single byte values are returned in register A, with double byte values returned in HL (a zero value is returned when the function number is out of range). For reasons of compatibility, register A = L and register B = H upon return in all cases. Note that the register passing conventions of CP/M agree with those of Intel's PL/M systems programming language. The list of CP/M function numbers is given below.

```
19
                              Delete File
   System Reset
1
   Console Input
                          20
                              Read Sequential
                          21
                              Write Sequential
   Console Output
3
   Reader Input
                          22 Make File
   Punch Output
                          23
                              Rename File
 4
5
                          24 Return Login Vector
   List Output
6
   Direct Console I/O
                          25
                              Return Current Disk
7
   Get I/O Byte
                          26
                              Set DMA Address
8
                          27
                              Get Addr(Alloc)
   Set I/O Byte
9
                          28
                              Write Protect Disk
   Print String
1 Ø
   Read Console Buffer
                          29
                              Get R/O Vector
                          30 Set File Attributes
11
   Get Console Status
12
   Return Version Number
                          31
                              Get Addr (Disk Parms)
13
                              Set/Get User Code
   Reset Disk System
                          32
14
  Select Disk
                          33
                              Read Random
                              Write Random
15
                          34
   Open File
16 Close File
                          35
                              Compute File Size
17
   Search for First
                          36
                              Set Random Record
18 Search for Next
```

(Functions 28 and 32 should be avoided in application programs to maintain upward compatibility with MP/M.)

Upon entry to a transient program, the CCP leaves the stack pointer set to an eight level stack area with the CCP return address pushed onto the stack, leaving seven levels before overflow occurs. Although this stack is usually not used by a transient program (i.e., most transients return to the CCP though a jump to location 0000H), it is sufficiently large to make CP/M system calls since the FDOS switches to a local stack at system entry. The following assembly language program segment, for example, reads characters continuously until an asterisk is encountered, at which time control returns to the CCP (assuming a standard CP/M system with BOOT = 0000H):

BDOS	EQU	ØØØ5H	;STANDARD CP/M ENTRY ;CONSOLE INPUT FUNCTION
CONIN	EQU	1	
; NEXTC:	ORG MVI CALL CPI JNZ RET END	0100H C,CONIN BDOS '*' NEXTC	;BASE OF TPA ;READ NEXT CHARACTER ;RETURN CHARACTER IN <a> ;END OF PROCESSING? ;LOOP IF NOT ;RETURN TO CCP

CP/M implements a named file structure on each disk, providing a logical organization which allows any particular file to contain any number of records from completely empty, to the full capacity of the drive. Each drive is logically distinct with a disk directory and file data area. The disk file names are in three parts: the drive select code, the file name consisting of one to eight non-blank characters, and the file type consisting of zero to three non-blank characters. The file type names the generic category of a particular file, while the file name distinguishes individual files in each category. The file types listed below name a few generic categories

which have been established, although they are generally arbitrary:

```
ASM Assembler Source PLI PL/I Source File
PRN Printer Listing REL Relocatable Module
HEX Hex Machine Code TEX TEX Formatter Source
BAS Basic Source File BAK ED Source Backup
INT Intermediate Code SYM SID Symbol File
COM CCP Command File $$$$ Temporary File
```

Source files are treated as a sequence of ASCII characters, where each "line" of the source file is followed by a carriage-return line-feed sequence (ØDH followed by ØAH). Thus one 128 byte CP/M record could contain several lines of source text. The end of an ASCII file is denoted by a control-Z character (1AH) or a real end of file, returned by the CP/M read operation. Control-Z characters embedded within machine code files (e.g., COM files) are ignored, however, and the end of file condition returned by CP/M is used to terminate read operations.

Files in CP/M can be thought of as a sequence of up to 65536 records of 128 bytes each, numbered from 0 through 65535, thus allowing a maximum of 8 megabytes per file. Note, however, that although the records may be considered logically contiguous, they may not be physically contiguous in the disk data area. Internally, all files are broken into 16K byte segments called logical extents, so that counters are easily maintained as 8-bit values. Although the decomposition into extents is discussed in the paragraphs which follow, they are of no particular consequence to the programmer since each extent is automatically accessed in both sequential and random access modes.

In the file operations starting with function number 15, DE usually addresses a file control block (FCB). Transient programs often use the default file control block area reserved by CP/M at location BOOT+005CH (normally 005CH) for simple file operations. The basic unit of file information is a 128 byte record used for all file operations, thus a default location for disk I/O is provided by CP/M at location BOOT+0080H (normally 0080H) which is the initial default DMA address (see function 26). All directory operations take place in a reserved area which does not affect write buffers as was the case in release 1, with the exception of Search First and Search Next, where compatibility is required.

The File Control Block (FCB) data area consists of a sequence of 33 bytes for sequential access and a series of 36 bytes in the case that the file is accessed randomly. The default file control block normally located at 005CH can be used for random access files, since the three bytes starting at BOOT+007DH are available for this purpose. The FCB format is shown with the following fields:

where

- dr drive code (0 16)
 0 => use default drive for file
 1 => auto disk select drive A,
 2 => auto disk select drive B,
 ...
 16=> auto disk select drive P.
- fl...f8 contain the file name in ASCII upper case, with high bit = 0
- t1,t2,t3 contain the file type in ASCII
 upper case, with high bit = 0
 t1', t2', and t3' denote the
 bit of these positions,
 t1' = 1 => Read/Only file,
 t2' = 1 => SYS file, no DIR list
- ex contains the current extent number, normally set to 00 by the user, but in range 0 31 during file I/O
- sl reserved for internal system use
- reserved for internal system use, set to zero on call to OPEN, MAKE, SEARCH
- rc record count for extent "ex," takes on values from Ø 128
- cr current record to read or write in a sequential file operation, normally set to zero by user
- r0,r1,r2 optional random record number in the range 0-65535, with overflow to r2, r0,r1 constitute a 16-bit value with low byte r0, and high byte r1

Each file being accessed through CP/M must have a corresponding FCB which provides the name and allocation information for all subsequent file operations. When accessing files, it is the programmer's responsibility to fill the lower sixteen bytes of the FCB and initialize the "cr" field. Normally, bytes I through II are set to the ASCII character values for the file name and file type, while all other fields are zero.

FCB's are stored in a directory area of the disk, and are brought into central memory before proceeding with file operations (see the OPEN and MAKE functions). The memory copy of the FCB is updated as file operations take place and later recorded permanently on disk at the termination of the file operation (see the CLOSE command).

The CCP constructs the first sixteen bytes of two optional FCB's for a transient by scanning the remainder of the line following the transient name, denoted by "filel" and "file2" in the prototype command line described above, with unspecified fields set to ASCII blanks. The first FCB is constructed at location BOOT+005CH, and can be used as-is for subsequent file operations. The second FCB occupies the d0 ... dn portion of the first FCB, and must be moved to another area of memory before use. If, for example, the operator types

PROGNAME B:X.ZOT Y.ZAP

the file PROGNAME.COM is loaded into the TPA, and the default FCB at BOOT+005CH is initialized to drive code 2, file name "X" and file type "ZOT". The second drive code takes the default value 0, which is placed at BOOT+006CH, with the file name "Y" placed into location BOOT+006DH and file type "ZAP" located 8 bytes later at BOOT+0075H. All remaining fields through "cr" are set to zero. Note again that it is the programmer's responsibility to move this second file name and type to another area, usually a separate file control block, before opening the file which begins at BOOT+005CH, due to the fact that the open operation will overwrite the second name and type.

If no file names are specified in the original command, then the fields beginning at BOOT+005DH and BOOT+006DH contain blanks. In all cases, the CCP translates lower case alphabetics to upper case to be consistent with the CP/M file naming conventions.

As an added convenience, the default buffer area at location BOOT+0080H is initialized to the command line tail typed by the operator following the program name. The first position contains the number of characters, with the characters themselves following the character count. Given the above command line, the area beginning at BOOT+0080H is initialized as follows:

BOOT+0080H:

```
+00 +01 +02 +03 +04 +05 +06 +07 +08 +09 +10 +11 +12 +13 +14 14 " "B" ": "X" ". "Z" "O" "T" " "Y" ". "Z" "A" "P"
```

where the characters are translated to upper case ASCII with uninitialized memory following the last valid character. Again, it is the responsibility of the programmer to extract the information from this buffer before any file operations are performed, unless the default DMA address is explicitly changed.

The individual functions are described in detail in the pages which follow.

The system reset function returns control to the CP/M operating system at the CCP level. The CCP re-initializes the disk subsystem by selecting and logging-in disk drive A. This function has exactly the same effect as a jump to location BOOT.

The console input function reads the next console character to register A. Graphic characters, along with carriage return, line feed, and backspace (ctl-H) are echoed to the console. Tab characters (ctl-I) are expanded in columns of eight characters. A check is made for start/stop scroll (ctl-S) and start/stop printer echo (ctl-P). The FDOS does not return to the calling program until a character has been typed, thus suspending execution if a character is not ready.

The ASCII character from register E is sent to the console device. Similar to function 1, tabs are expanded and checks are made for start/stop scroll and printer echo.

The Reader Input function reads the next character from the logical reader into register A (see the IOBYTE definition in the "CP/M Alteration Guide"). Control does not return until the character has been read.

The Punch Output function sends the character from register E to the logical punch device.

The List Output function sends the ASCII character in register E to the logical listing device.

```
*
*
                          *
  FUNCTION 6:
          DIRECT CONSOLE I/O
*********
\star
  Entry Parameters:
*
    Register
            C:
               Ø6H
*
               ØFFH (input) or
    Register
            E:
*
               char (output)
*
*
                          *
  Returned
         Value:
                          *
    Register
            A:
               char or status
               (no value)
```

Direct console I/O is supported under CP/M for those specialized applications where unadorned console input and output is required. Use of this function should, in general, be avoided since it bypasses all of CP/M's normal control character functions (e.g., control-S and control-P). Programs which perform direct I/O through the BIOS under previous releases of CP/M, however, should be changed to use direct I/O under BDOS so that they can be fully supported under future releases of MP/M and CP/M.

Upon entry to function 6, register E either contains hexadecimal FF, denoting a console input request, or register E contains an ASCII character. If the input value is FF, then function 6 returns $A=\emptyset\emptyset$ if no character is ready, otherwise A contains the next console input character.

If the input value in E is not FF, then function 6 assumes that E contains a valid ASCII character which is sent to the console.

```
*************
                       *
*
 FUNCTION 7: GET I/O BYTE
*
Entry Parameters:
*
    Register C:
             Ø 7 H
*
 Returned Value:
    Register
             I/O Byte Value
         A:
***********
```

The Get I/O Byte function returns the current value of IOBYTE in register A. See the "CP/M Alteration Guide" for IOBYTE definition.

The Set I/O Byte function changes the system IOBYTE value to that given in register ${\tt E}$.

The Print String function sends the character string stored in memory at the location given by DE to the console device, until a "\$" is encountered in the string. Tabs are expanded as in function 2, and checks are made for start/stop scroll and printer echo.

```
**********
*
 FUNCTION 10: READ CONSOLE BUFFER
                         *
*
*
 Entry Parameters:
                         *
*
    Register C: ØAH
*
    Registers DE: Buffer Address
*
        Value:
*
    Console Characters in Buffer
**********
```

The Read Buffer function reads a line of edited console input into a buffer addressed by registers DE. Console input is terminated when either the input buffer overflows. The Read Buffer takes the form:

```
DE: +0 +1 +2 +3 +4 +5 +6 +7 +8 ... +n
|mx|nc|c1|c2|c3|c4|c5|c6|c7| ... |??|
```

where "mx" is the maximum number of characters which the buffer will hold (1 to 255), "nc" is the number of characters read (set by FDOS upon return), followed by the characters read from the console. if nc < mx, then uninitialized positions follow the last character, denoted by "??" in the above figure. A number of control functions are recognized during line editing:

rub/del removes and echoes the last character ctl-C reboots when at the beginning of line ctl-E causes physical end of line ctl-H backspaces one character position ctl-J (line feed) terminates input line ctl-M (return) terminates input line ctl-R retypes the current line after new line ctl-U removes currnt line after new line ctl-X backspaces to beginning of current line

Note also that certain functions which return the carriage to the leftmost position (e.g., ctl-X) do so only to the column position where the prompt ended (in earlier releases, the carriage returned to the extreme left margin). This convention makes operator data input and line correction more legible.

The Console Status function checks to see if a character has been typed at the console. If a character is ready, the value 0FFH is returned in register A. Otherwise a 00H value is returned.

Function 12 provides information which allows version independent programming. A two-byte value is returned, with H = 00 designating the CP/M release (H = 01 for MP/M), and L = 00 for all releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in register L, with subsequent version 2 releases in the hexadecimal range 21, 22, through 2F. Using function 12, for example, you can write application programs which provide both sequential and random access functions, with random access disabled when operating under early releases of CP/M.

The Reset Disk Function is used to programmatically restore the file system to a reset state where all disks are set to read/write (see functions 28 and 29), only disk drive A is selected, and the default DMA address is reset to BOOT+0080H. This function can be used, for example, by an application program which requires a disk change without a system reboot.

The Select Disk function designates the disk drive named in register E as the default disk for subsequent file operations, with E = 0 for drive A, 1 for drive B, and so-forth through 15 corresponding to drive P in a full sixteen drive system. The drive is placed in an "on-line" status which, in particular, activates its directory until the next cold start, warm start, or disk system reset operation. If the disk media is changed while it is on-line, the drive automatically goes to a read/only status in a standard CP/M environment (see function 28). FCB's which specify drive code zero (dr = 00H) automatically reference the currently selected default drive. Drive code values between 1 and 16, however, ignore the selected default drive and directly reference drives A through P.

```
*
*
 FUNCTION 15: OPEN FILE
*
*
 Entry Parameters:
   Register C: ØFH
*
   Registers DE: FCB Address
                     *
*
*
 Returned
       Value:
   Register A: Directory Code
```

The Open File operation is used to activate a file which currently exists in the disk directory for the currently active user number. The FDOS scans the referenced disk directory for a match in positions 1 through 14 of the FCB referenced by DE (byte sl is automatically zeroed), where an ASCII question mark (3FH) matches any directory character in any of these positions. Normally, no question marks are included and, further, bytes "ex" and "s2" of the FCB are zero.

If a directory element is matched, the relevant directory information is copied into bytes dØ through dn of the FCB, thus allowing access to the files through subsequent read and write operations. Note that an existing file must not be accessed until a successful open operation is completed. Upon return, the open function returns a "directory code" with the value Ø through 3 if the open was successful, or ØFFH (255 decimal) if the file cannot be found. If question marks occur in the FCB then the first matching FCB is activated. Note that the current record ("cr") must be zeroed by the program if the file is to be accessed sequentially from the first record.

The Close File function performs the inverse of the open file function. Given that the FCB addressed by DE has been previously activated through an open or make function (see functions 15 and 22), the close function permanently records the new FCB in the referenced disk directory. The FCB matching process for the close is identical to the open function. The directory code returned for a successful close operation is Ø, 1, 2, or 3, while a ØFFH (255 decimal) is returned if the file name cannot be found in the directory. A file need not be closed if only read operations have taken place. If write operations have occurred, however, the close operation is necessary to permanently record the new directory information.

⁽All Information Contained Herein is Proprietary to Digital Research.)

```
**********
*
 FUNCTION 17: SEARCH FOR FIRST
*
**********
 Entry Parameters:
*
    Register C: 11H
*
    Registers DE: FCB Address
*
*
 Returned Value:
*
    Register A: Directory Code *
*********
```

Search First scans the directory for a match with the file given by the FCB addressed by DE. The value 255 (hexadecimal FF) is returned if the file is not found, otherwise 0, 1, 2, or 3 is returned indicating the file is present. In the case that the file is found, the current DMA address is filled with the record containing the directory entry, and the relative starting position is A * 32 (i.e., rotate the A register left 5 bits, or ADD A five times). Although not normally required for application programs, the directory information can be extracted from the buffer at this position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any position from "fl" through "ex" matches the corresponding field of any directory entry on the default or auto-selected disk drive. If the "dr" field contains an ASCII question mark, then the auto disk select function is disabled, the default disk is searched, with the search function returning any matched entry, allocated or free, belonging to any user number. This latter function is not normally used by application programs, but does allow complete flexibility to scan all current directory values. If the "dr" field is not a question mark, the "s2" byte is automatically zeroed.

The Search Next function is similar to the Search First function, except that the directory scan continues from the last matched entry. Similar to function 17, function 18 returns the decimal value 255 in A when no more directory items match.

The Delete File function removes files which match the FCB addressed by DE. The filename and type may contain ambiguous references (i.e., question marks in various positions), but the drive select code cannot be ambiguous, as in the Search and Search Next functions.

Function 19 returns a decimal 255 if the referenced file or files cannot be found, otherwise a value in the range \emptyset to 3 is returned.

```
**************
*
 FUNCTION 20: READ SEQUENTIAL
*
*********
*
 Entry Parameters:
                        *
*
              14H
    Register C:
*
    Registers DE: FCB Address
  Returned
        Value:
    Register A: Directory Code
```

Given that the FCB addressed by DE has been activated through an open or make function (numbers 15 and 22), the Read Sequential function reads the next 128 byte record from the file into memory at the current DMA address. the record is read from position "cr" of the extent, and the "cr" field is automatically incremented to the next record position. If the "cr" field overflows then the next logical extent is automatically opened and the "cr" field is reset to zero in preparation for the next read operation. The value 00H is returned in the A register if the read operation was successful, while a non-zero value is returned if no data exists at the next record position (e.g., end of file occurs).

Given that the FCb addressed by DE has been activated through an open or make function (numbers 15 and 22), the Write Sequential function writes the 128 byte data record at the current DMA address to the file named by the FCB. the record is placed at position "cr" of the file, and the "cr" field is automatically incremented to the next record position. If the "cr" field overflows then the next logical extent is automatically opened and the "cr" field is reset to zero in preparation for the next write operation. Write operations can take place into an existing file, in which case newly written records overlay those which already exist in the file. Register A = 00H upon return from a successful write operation, while a non-zero value indicates an unsuccessful write due to a full disk.

The Make File operation is similar to the open file operation except that the FCB must name a file which does not exist in the currently referenced disk directory (i.e., the one named explicitly by a non-zero "dr" code, or the default disk if "dr" is zero). The FDOS creates the file and initializes both the directory and main memory value to an empty file. The programmer must ensure that no duplicate file names occur, and a preceding delete operation is sufficient if there is any possibility of duplication. Upon return, register $A = \emptyset$, 1, 2, or 3 if the operation was successful and \emptyset FFH (255 decimal) if no more directory space is available. The make function has the side-effect of activating the FCB and thus a subsequent open is not necessary.

```
*********
                          *
  FUNCTION 23: RENAME FILE
***********
*
  Entry Parameters:
*
    Register
           C:
               17H
                          *
*
    Registers DE:
              FCB Address
         Value:
  Returned
    Register
           A:
              Directory Code
*********
```

The Rename function uses the FCB addressed by DE to change all occurrences of the file named in the first 16 bytes to the file named in the second 16 bytes. The drive code "dr" at position 0 is used to select the drive, while the drive code for the new file name at position 16 of the FCB is assumed to be zero. Upon return, register A is set to a value between 0 and 3 if the rename was successful, and 0FFH (255 decimal) if the first file name could not be found in the directory scan.

```
*
                       *
*
 FUNCTION 24: RETURN LOGIN VECTOR
*********
*
 Entry Parameters:
                       *
    Register
         C:
             18H
*
 Returned
        Value:
    Registers HL: Login Vector
 *********
```

The login vector value returned by CP/M is a 16-bit value in HL, where the least significant bit of L corresponds to the first drive A, and the high order bit of H corresponds to the sixteenth drive, labelled P. A "0" bit indicates that the drive is not on-line, while a "1" bit marks an drive that is actively on-line due to an explicit disk drive selection, or an implicit drive select caused by a file operation which specified a non-zero "dr" field. Note that compatibility is maintained with earlier releases, since registers A and L contain the same values upon return.

```
*
  FUNCTION 25: RETURN CURRENT DISK
                            *
*
***********
  Entry Parameters:
*
                19H
                            *
     Register
             C:
  Returned
          Value:
                Current Disk
     Register
            A:
**********
```

Function 25 returns the currently selected default disk number in register A. The disk numbers range from \emptyset through 15 corresponding to drives A through P.

"DMA" is an acronym for Direct Memory Address, which is often used in connection with disk controllers which directly access the memory of the mainframe computer to transfer data to and from the disk subsystem. Although many computer systems use non-DMA access (i.e., the data is transfered through programmed I/O operations), the DMA address has, in CP/M, come to mean the address at which the 128 byte data record resides before a disk write and after a disk read. Upon cold start, warm start, or disk system reset, the DMA address is automatically set to BOOT+0080H. The Set DMA function, however, can be used to change this default value to address another area of memory where the data records reside. Thus, the DMA address becomes the value specified by DE until it is changed by a subsequent Set DMA function, cold start, warm start, or disk system reset.

An "allocation vector" is maintained in main memory for each on-line disk drive. Various system programs use the information provided by the allocation vector to determine the amount of remaining storage (see the STAT program). Function 27 returns the base address of the allocation vector for the currently selected disk drive. The allocation information may, however, be invalid if the selected disk has been marked read/only. Although this function is not normally used by application programs, additional details of the allocation vector are found in the "CP/M Alteration Guide."

The disk write protect function provides temporary write protection for the currently selected disk. Any attempt to write to the disk, before the next cold or warm start operation produces the message

Bdos Err on d: R/O

```
***********
*
 FUNCTION 29: GET READ/ONLY VECTOR
*
*********
 Entry Parameters:
*
                         *
              lDH
    Register
           C:
*
                         *
*
 Returned
         Value:
    Registers HL: R/O Vector Value*
********
```

Function 29 returns a bit vector in register pair HL which indicates drives which have the temporary read/only bit set. Similar to function 24, the least significant bit corresponds to drive A, while the most significant bit corresponds to drive P. The R/O bit is set either by an explicit call to function 28, or by the automatic software mechanisms within CP/M which detect changed disks.

```
**********
  FUNCTION 30: SET FILE ATTRIBUTES
***********
*
 Entry Parameters:
                          *
*
    Register
           C:
              lEH
                          *
    Registers DE:
              FCB Address
  Returned
         Value:
    Register
           A:
              Directory Code
********
```

The Set File Attributes function allows programmatic manipulation of permanent indicators attached to files. In particular, the R/O and System attributes (t1' and t2') can be set or reset. The DE pair addresses an unambiguous file name with the appropriate attributes set or reset. Function 30 searches for a match, and changes the matched directory entry to contain the selected indicators. Indicators f1' through f4' are not presently used, but may be useful for applications programs, since they are not involved in the matching process during file open and close operations. Indicators f5' through f8' and t3' are reserved for future system expansion.

```
*
 FUNCTION 31: GET ADDR (DISK PARMS)
*********
*
 Entry Parameters:
*
    Register
             1FH
         C:
                       +
 Returned
        Value:
    Registers HL:
            DPB Address
************
```

The address of the BIOS resident disk parameter block is returned in HL as a result of this function call. This address can be used for either of two purposes. First, the disk parameter values can be extracted for display and space computation purposes, or transient programs can dynamically change the values of current disk parameters when the disk environment changes, if required. Normally, application programs will not require this facility.

```
*
                        *
 FUNCTION 32: SET/GET USER CODE
*
*
 Entry Parameters:
*
    Register
           C:
              20H
*
    Register
           E:
              ØFFH (get) or
*
              User Code (set)
*
*
 Returned
        Value:
    Register
          A:
              Current Code or
              (no value)
```

An application program can change or interrogate the currently active user number by calling function 32. If register $E = \emptyset FFH$, then the value of the current user number is returned in register A, where the value is in the range \emptyset to 31. If register E is not $\emptyset FFH$, then the current user number is changed to the value of E (modulo 32).

```
**********
*
*
 FUNCTION 33: READ RANDOM
*
********
*
  Entry Parameters:
                         *
    Register C:
              21H
*
    Registers DE: FCB Address
*
  Returned
         Value:
    Register A: Return Code
********
```

The Read Random function is similar to the sequential file read operation of previous releases, except that the read operation takes place at a particular record number, selected by the 24-bit value constructed from the three byte field following the FCB (byte positions r0 at 33, r1 at 34, and r2 at 35). Note that the sequence of 24 bits is stored with least significant byte first (r0), middle byte next (r1), and high byte last (r2). CP/M does not reference byte r2, except in computing the size of a file (function 35). Byte r2 must be zero, however, since a non-zero value indicates overflow past the end of file.

Thus, the r0,rl byte pair is treated as a double-byte, or "word" value, which contains the record to read. This value ranges from 0 to 65535, providing access to any particular record of the 8 megabyte In order to process a file using random access, the base extent (extent 0) must first be opened. Although the base extent may or may not contain any allocated data, this ensures that the file is properly recorded in the directory, and is visible in DIR requests. selected record number is then stored into the random record field (rØ,rl), and the BDOS is called to read the record. Upon return from the call, register A either contains an error code, as listed below, or the value 00 indicating the operation was successful. latter case, the current DMA address contains the randomly accessed record. Note that contrary to the sequential read operation, the record number is not advanced. Thus, subsequent random operations continue to read the same record.

Upon each random read operation, the logical extent and current record values are automatically set. Thus, the file can be sequentially read or written, starting from the current randomly accessed position. Note, however, that in this case, the last randomly read record will be re-read as you switch from random mode to sequential read, and the last record will be re-written as you switch to a sequential write operation. You can, of course, simply advance the random record position following each random read or write to obtain the effect of a sequential I/O operation.

Error codes returned in register A following a random read are listed below.

- 01 reading unwritten data
- Ø2 (not returned in random mode)
- 03 cannot close current extent
- 04 seek to unwritten extent
- 05 (not returned in read mode)
- 06 seek past physical end of disk

Error code 01 and 04 occur when a random read operation accesses a data block which has not been previously written, or an extent which has not been created, which are equivalent conditions. Error 3 does not normally occur under proper system operation, but can be cleared by simply re-reading, or re-opening extent zero as long as the disk is not physically write protected. Error code 06 occurs whenever byte r2 is non-zero under the current 2.0 release. Normally, non-zero return codes can be treated as missing data, with zero return codes indicating operation complete.

The Write Random operation is initiated similar to the Read call, except that data is written to the disk from the current DMA address. Further, if the disk extent or data block which is the target of the write has not yet been allocated, the allocation is performed before the write operation continues. As in the Read Random operation, the random record number is not changed as a result of the The logical extent number and current record positions of the file control block are set to correspond to the random record which is Again, sequential read or write operations being written. commence following a random write, with the notation that currently addressed record is either read or rewritten again as the sequential operation begins. You can also simply advance the random record position following each write to get the effect of a sequential write operation. Note that in particular, reading or writing the last record of an extent in random mode does not cause an automatic extent switch as it does in sequential mode.

The error codes returned by a random write are identical to the random read operation with the addition of error code 05, which indicates that a new extent cannot be created due to directory overflow.

```
**********
                          *
  FUNCTION 35: COMPUTE FILE SIZE
*********
  Entry Parameters:
*
                          *
    Register C:
               23H
*
                          *
    Registers DE: FCB Address
*
                          *
         Value:
  Returned
    Random Record Field Set
*********
```

When computing the size of a file, the DE register pair addresses an FCB in random mode format (bytes r0, r1, and r2 are present). The FCB contains an unambiguous file name which is used in the directory scan. Upon return, the random record bytes contain the "virtual" file size which is, in effect, the record address of the record following the end of the file. if, following a call to function 35, the high record byte r2 is 01, then the file contains the maximum record count 65536. Otherwise, bytes r0 and r1 constitute a 16-bit value (r0 is the least significant byte, as before) which is the file size.

Data can be appended to the end of an existing file by simply calling function 35 to set the random record position to the end of file, then performing a sequence of random writes starting at the preset record address.

The virtual size of a file corresponds to the physical size when the file is written sequentially. If, instead, the file was created in random mode and "holes" exist in the allocation, then the file may in fact contain fewer records than the size indicates. If, for example, only the last record of an eight megabyte file is written in random mode (i.e., record number 65535), then the virtual size is 65536 records, although only one block of data is actually allocated.

```
**********
*
 FUNCTION 36: SET RANDOM RECORD
*
Entry Parameters:
*
    Register C: 24H
*
    Registers DE: FCB Address
                        *
*
                        *
*
 Returned
         Value:
    Random Record Field Set
*********
```

The Set Random Record function causes the BDOS to automatically produce the random record position from a file which has been read or written sequentially to a particular point. The function can be useful in two ways.

First, it is often necessary to initially read and scan a sequential file to extract the positions of various "key" fields. As each key is encountered, function 36 is called to compute the random record position for the data corresponding to this key. If the data unit size is 128 bytes, the resulting record position is placed into a table with the key for later retrieval. After scanning the entire file and tabularizing the keys and their record numbers, you can move instantly to a particular keyed record by performing a random read using the corresponding random record number which was saved earlier. The scheme is easily generalized when variable record lengths are involved since the program need only store the buffer-relative byte position along with the key and record number in order to find the exact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a sequential read or write over to random read or write. A file is sequentially accessed to a particular point in the file, function 36 is called which sets the record number, and subsequent random read and write operations continue from the selected point in the file.

3. A SAMPLE FILE-TO-FILE COPY PROGRAM.

The program shown below provides a relatively simple example file operations. The program source file is created as COPY.ASM using the CP/M ED program and then assembled using ASM or MAC, resulting in a "HEX" file. The LOAD program is the used to produce a COPY.COM file which executes directly under the CCP. The program begins by setting the stack pointer to a local area, and then proceeds to move the second name from the default area at 006CH to a 33-byte file block called DFCB. The DFCB is then prepared for file operations by clearing the current record field. At this point, the source and destination FCB's are ready for processing since the SFCB at 005CH is properly set-up by the CCP upon entry to the COPY program. the first name is placed into the default fcb, with the proper fields zeroed, including the current record field at 007CH. The program continues by opening the source file, deleting any exising destination file, and then creating the destination file. If all this is successful, the program loops at the label COPY until each record has been read from the source file and placed into the destination file. Upon completion of the data transfer, the destination file is closed and the program returns to the CCP command level by jumping to BOOT.

```
;
                     sample file-to-file copy program
             ;
             ;
                     at the ccp level, the command
                              copy a:x.y b:u.v
             ;
             ;
                     copies the file named x.y from drive
             ;
                     a to a file named u.v on drive b.
             ;
0000 =
                              øøøøh
                                       ; system reboot
             boot
                     equ
0005 =
             bdos
                     equ
                              Ø Ø Ø 5h
                                       ; bdos entry point
005c =
                                       ; first file name
             fcbl
                              005ch
                     equ
005c =
             sfcb
                     equ
                              fcbl
                                       ; source fcb
006c =
             fcb2
                              006ch
                                       : second file name
                     equ
0080 =
             dbuff
                                       ; default buffer
                              Ø Ø 8 Øh
                     equ
0100 =
                              Ø100h
                                       ; beginning of tpa
             tpa
                     equ
0009 =
             printf
                              9
                                       ; print buffer func#
                     equ
000f =
                              15
                                       ; open file func#
             openf
                      eau
0010 =
             closef
                                       ; close file func#
                     equ
                              16
0013 =
             deletef equ
                                       ; delete file func#
                              19
                                       ; sequential read
0014 =
                              20
             readf
                     equ
0015 =
             writef
                              21
                                       ; sequential write
                     equ
0016 =
             makef
                              22
                                         make file func#
                     equ
0100
                     org
                                       ; beginning of tpa
                              tpa
                              sp,stack; local stack
Ø100 311b02
                      lxi
             ;
                     move second file name to dfcb
Ø103 Øe10
                     mvi
                                       ; half an fcb
                              c,16
```

(All Information Contained Herein is Proprietary to Digital Research.)

```
0105 116c00
                                      ; source of move
                     lxi
                              d,fcb2
Ø108 21da01
                     1 x i
                              h.dfcb
                                      : destination fcb
ØlØb la
                     ldax
                              d
                                       ; source fcb
            mfcb:
                              đ
010c 13
                     inx
                                      ; ready next
Ø10d 77
                     mov
                                       ; dest fcb
                              m,a
Ø10e 23
                     inx
                              h
                                       ; ready next
                                       ; count 16...0
010f Ød
                     dcr
                              С
0110 c20b01
                     inz
                              mfcb
                                       ; loop 16 times
             ;
                     name has been moved, zero cr
             ;
Ø113 af
                                       ; a = \emptyset\emptyset h
                              a
0114 32fa01
                     sta
                              dfcbcr
                                      : current rec = Ø
                     source and destination fcb's ready
Ø117 115c00
                     lxi
                              d,sfcb
                                      ; source file
01la cd6901
                     call
                              open
                                       : error if 255
011d 118701
                     1xi
                              d, nofile; ready message
                                       ; 255 becomes Ø
Ø12Ø 3c
                     inr
Ø121 cc61Ø1
                              finis
                                       ; done if no file
                     CZ
             ;
                     source file open, prep destination
0124 llda01
                              d,dfcb ; destination
                     lxi
Ø127 cd73Ø1
                     call
                              delete ; remove if present
012a 11da01
                     lxi
                              d.dfcb : destination
                                       ; create the file
012d cd8201
                     call
                              make
0130 119601
                     lxi
                              d, nodir ; ready message
                                       ; 255 becomes 0
0133 3c
                     inr
                              а
                                       ; done if no dir space
Ø134 cc6101
                              finis
                     CZ
                     source file open, dest file open
             ;
                     copy until end of file on source
             ;
0137 115c00 copy:
                     lxi
                              d,sfcb
                                     ; source
                              read
Ø13a cd78Ø1
                     call
                                       ; read next record
013d b7
                     ora
                                       ; end of file?
Ø13e c251Ø1
                              eofile ; skip write if so
                     jnz
                     not end of file, write the record
0141 11da01
                      lxi
                              d,dfcb ; destination
0144 cd7d01
                     call
                                       : write record
                              write
0147 lla901
                      lxi
                              d, space; ready message
                                       ; 00 if write ok
014a b7
                      ora
                              a
014b c46101
                     cnz
                              finis
                                       : end if so
Ø14e c337Ø1
                                       ; loop until eof
                     am r
                              copy
             eofile: ; end of file, close destination
0151 llda01
                              d,dfcb ; destination
                      1 x i
0154 cd6e01
                     call
                              close
                                       ; 255 if error
Ø157 21bbØ1
                      1 x i
                              h, wrprot; ready message
Ø15a 3c
                      inr
                                       ; 255 becomes 00
                              а
015b cc6101
                                       ; shouldn't happen
                     CZ
                              finis
             ;
             ;
                     copy operation complete, end
```

```
015e llcc01
                              d, normal; ready message
                      lxi
             finis:
                      ; write message given by de, reboot
                               c,printf
                      mvi
0161 0e09
                      call
                                        ; write message
                               bdos
0163 cd0500
                                       : reboot system
0166 c30000
                      am r
                               boot
                      system interface subroutines
                      (all return directly from bdos)
             ;
                               c.openf
Ø169 ØeØf
             open:
                      mvi
016b c30500
                               bdos
                      am r
                               c.closef
016e 0el0
             close:
                      mvi
                               bdos
Ø170 c3Ø5ØØ
                      j mp
             delete: mvi
                               c.deletef
Ø173 Øe13
                               bdos
0175 c30500
                      am r
0178 Øel4
             read:
                      mvi
                               c, readf
                               bdos
Ø17a c3Ø5ØØ
                      dm f
                               c, writef
017d 0e15
             write:
                      mvi
017f c30500
                               bdos
                      am r
                               c.makef
Ø182 Øe16
             make:
                      mvi
Ø184 c3Ø5ØØ
                               bdos
                      am r
                      console messages
                               'no source file$'
0187 6e6f20fnofile: db
Ø196 6e6f2Ø9nodir:
                               'no directory space$'
                      db
                               'out of data space$'
01a9 6f7574fspace:
                      db
                               'write protected?$'
Ølbb 7772695wrprot: db
                               'copy complete$'
Ølcc 636f700normal: db
                      data areas
             dfcb:
                                        ; destination fcb
                      ds
                               33
01da
                               dfcb+32; current record
\emptysetlfa =
             dfcbcr
                      equ
01fb
                      ds
                               32
                                        ; 16 level stack
             stack:
Ø21b
                      end
```

Note that there are several simplifications in this particular program. First, there are no checks for invalid file names which could, for example, contain ambiguous references. This situation could be detected by scanning the 32 byte default area starting at location 005CH for ASCII guestion marks. A check should also be made to ensure that the file names have, in fact, been included (check locations 005DH and 006DH for non-blank ASCII characters). Finally, a check should be made to ensure that the source and destination file names are different. A speed improvement could be made by buffering more data on each read operation. One could, for example, determine

the size of memory by fetching FBASE from location 0006H and use the entire remaining portion of memory for a data buffer. In this case, the programmer simply resets the DMA address to the next successive 128 byte area before each read. Upon writing to the destination file, the DMA address is reset to the beginning of the buffer and incremented by 128 bytes to the end as each record is transferred to the destination file.

4. A SAMPLE FILE DUMP UTILITY.

The file dump program shown below is slightly more complex than the simple copy program given in the previous section. The dump program reads an input file, specified in the CCP command line, and displays the content of each record in hexadecimal format at the console. Note that the dump program saves the CCP's stack upon entry, resets the stack to a local area, and restores the CCP's stack before returning directly to the CCP. Thus, the dump program does not perform and warm start at the end of processing.

```
; DUMP program reads input file and displays hex data
             ;
0100
                      ora
                               100h
0005 =
             bdos
                               0005h
                                        ;dos entry point
                      equ
0001 =
             cons
                      equ
                               1
                                        :read console
                               \bar{2}
0002 =
                      equ
                                        ;type function
             typef
0009 =
             printf
                               9
                      equ
                                        ; buffer print entry
aaab =
             brkf
                               11
                                        ;break key function (true if char
                      equ
000f =
                               15
             openf
                      equ
                                        ;file open
0014 =
             readf
                      equ
                               20
                                       ; read function
005c =
             fcb
                               5ch
                                        ;file control block address
                      equ
0080 =
             buff
                               80h
                                        ;input disk buffer address
                      equ
             ;
                      non graphic characters
             ;
000d =
             cr
                               Ødh
                                        ; carriage return
                      equ
000a =
             1 f
                                       :line feed
                               Øah
                      egu
             ;
                      file control block definitions
005c =
             fcbdn
                                       :disk name
                      eau
                               fcb+0
005d =
             fcbfn
                               fcb+1
                      equ
                                        ;file name
0065 =
             fcbft
                      equ
                               fcb+9
                                       ;disk file type (3 characters)
0068 =
             fcbrl
                               fcb+12
                                       ;file's current reel number
                      equ
006b =
             fcbrc
                      equ
                               fcb+15
                                       ;file's record count (0 to 128)
ØØ7c =
             fcbcr
                                       ; current (next) record number (0
                      equ
                               fcb+32
\emptyset\emptyset7d =
             fcbln
                               fcb+33
                      equ
                                       ;fcb length
                      set up stack
0100 210000
                      lxi
                               h.0
0103 39
                      dad
                               sp
                      entry stack pointer in hl from the ccp
0104 221502
                      shld
                               oldsp
                      set sp to local stack area (restored at finis)
0107 315702
                      lxi
                               sp,stktop
                      read and print successive buffers
010a cdcl01
                      call
                               setup
                                       ;set up input file
010d feff
                      cpi
                               255
                                       ;255 if file not present
010f c21b01
                      jnz
                               openok
                                       :skip if open is ok
                      file not there, give error message and return
             ;
Ø112 11f3Ø1
                      lxi
                               d,opnmsq
0115 cd9c01
                      call
                               err
Ø118 c351Ø1
                      jmp
                              finis
                                       ;to return
             ;
```

```
openok: ; open operation ok, set buffer index to end
                              a.80h
Ø11b 3e8Ø
                     mvi
                                      ;set buffer pointer to 80h
Ø11d 3213Ø2
                     sta
                              ibp
                     hl contains next address to print
                                      ;start with 0000
0120 210000
                     lxi
                              h.Ø
            gloop:
                                       ;save line position
Ø123 e5
                     push
                              h
0124 cda201
                     call
                              anb
Ø127 el
                                      ;recall line position
                     pop
                              h
Ø128 da51Ø1
                              finis
                                       ; carry set by gnb if end file
                     jс
Ø12b 47
                     mov
                              b,a
                     print hex values
             ;
                     check for line fold
             ;
Ø12c 7d
                              a.l
                     mov
012d e60f
                     ani
                              Øfh
                                       :check low 4 bits
012f c24401
                     jnz
                              nonum
                     print line number
Ø132 cd7201
                     call
                              crlf
             ;
                     check for break key
             ;
Ø135 cd59Ø1
                     call
                              break
                     accum lsb = 1 if character ready
0138 Øf
                     rrc
                                       ; into carry
Ø139 da51Ø1
                     jc
                              finis
                                       ;don't print any more
Ø13c 7c
                              a,h
                     mov
013d cd8f01
                     call
                              phex
Ø14Ø 7d
                     mov
                              a.l
                              phex
0141 cd8f01
                     call
             nonum:
0144 23
                                       ; to next line number
                     inx
                              h
                              a,''
Ø145 3e2Ø
                     mvi
0147 cd6501
                     call
                              pchar
Ø14a 78
                     MOV
                              a.b
                              phex
014b cd8f01
                     call
Ø14e c323Ø1
                     qm r
                              qloop
             finis:
                     end of dump, return to ccp
             ;
                      (note that a jmp to 0000h reboots)
Ø151 cd72Ø1
                              crlf
                      call
Ø154 2a15Ø2
                      lhld
                              oldsp
Ø157 f9
                      sphl
                      stack pointer contains ccp's stack location
             ;
Ø158 c9
                      ret
                                       ; to the ccp
             ;
             ;
                     subroutines
             break:
                      ; check break key (actually any key will do)
Ø159 e5d5c5
                     push h! push d! push b; environment saved
015c 0e0b
                     mvi
                              c.brkf
015e cd0500
                      call
                              bdos
0161 cldle1
                      pop b! pop d! pop h; environment restored
```

```
Ø164 c9
                      ret
             pchar:
                      ;print a character
Ø165 e5d5c5
                      push h! push d! push b; saved
0168 0e02
                      mvi
                               c, typef
Ø16a 5f
                      mov
                               e,a
016b cd0500
                               bdos
                      call
Øl6e cldlel
                      pop b! pop d! pop h; restored
Ø171 c9
                      ret
             crlf:
Ø172 3eØd
                      mvi
                               a,cr
0174 cd6501
                      call
                               pchar
0177 3e0a
                               a,lf
                      mvi
Ø179 cd65Ø1
                      call
                               pchar
Ø17c c9
                      ret
             ;
             ;
             pnib:
                      ;print nibble in reg a
017d e60f
                               Øfh
                      ani
                                        ;low 4 bits
017f fe0a
                      cpi
                               10
Ø181 d289Ø1
                      jnc
                              plø
                      less than or equal to 9
Ø184 c630
                               'ø'
                      adi
Ø186 c38bØ1
                      am r
                               prn
             ;
                      greater or equal to 10
Ø189 c637
             plø:
                      adi
                               'a' - 10
Ø18b cd6501 prn:
                      call
                               pchar
Ø18e c9
                      ret
             phex:
                      ;print hex char in reg a
Ø18f f5
                      push
                               psw
Ø19Ø Øf
                      rrc
Ø191 Øf
                      rrc
Ø192 Øf
                      rrc
Ø193 Øf
                      rrc
0194 cd7d01
                               pnib
                                        ;print nibble
                      call
Ø197 f1
                      pop
                               psw
0198 cd7d01
                      call
                               pnib
Ø19b c9
                      ret
             ;
             err:
                      ;print error message
                      d,e addresses message ending with "$"
Ø19c ØeØ9
                                                ;print buffer function
                      mvi
                               c,printf
Ø19e cdØ500
                      call
                               bdos
Ølal c9
                      ret
             ;
             gnb:
                      ;get next byte
0la2 3al302
                      lda
                               ibp
Øla5 fe8Ø
                      cpi
                               80h
0la7 c2b301
                      jnz
                              90
                      read another buffer
             ;
             ;
```

```
Ølaa cdceØl
                     call
                              diskr
0lad b7
                                       ;zero value if read ok
                     ora
                              а
Ølae cab301
                     jΖ
                              qØ
                                       ; for another byte
                     end of data, return with carry set for eof
             ;
Ø1b1 37
01b2 c9
                     ret
            q0:
                     ;read the byte at buff+reg a
Ø1b3 5f
                                       ; ls byte of buffer index
                     mov
                              e,a
Ø1b4 1600
                     mvi
                              d,Ø
                                       ;double precision index to de
Ø1b6 3c
                     inr
                              a
                                       :index=index+l
Ø1b7 3213Ø2
                     sta
                              ibp
                                       ; back to memory
                     pointer is incremented
                     save the current file address
             ;
Ølba 218000
Ølbd 19
                              h, buff
                     lxi
                     dad
                              d
                     absolute character address is in hl
             ;
Ølbe 7e
                              a.m
                     byte is in the accumulator
Ølbf b7
                     ora
                                       ;reset carry bit
                              a
ØlcØ c9
                     ret
             setup:
                     ; set up file
                     open the file for input
             ;
Ølcl af
                                       ; zero to accum
                     xra
                              а
01c2 327c00
                              fcbcr
                                       ; clear current record
                     sta
Ø1c5 115cØØ
                      1xi
                              d,fcb
01c8 0e0f
                     mvi
                              c, openf
01ca cd0500
                              bdos
                     call
                      255 in accum if open error
             ;
01cd c9
                     ret
             diskr:
                      ; read disk file record
Ølce e5d5c5
                     push h! push d! push b
Øldl 115c00
                     lxi
                              d.fcb
Ø1d4 Øe14
                     mvi
                              c, readf
Ø1d6 cdØ5ØØ
                              bdos
                     call
Øld9 cldlel
                     pop b! pop d! pop h
Øldc c9
                      ret
             ;
                      fixed message area
Øldd 46494cØsignon: db
                              'file dump version 2.0$'
01f3 0d0a4e0opnmsg: db
                              cr, lf, 'no input file present on disk$'
                      variable area
0213
                              2
             ibp:
                      ds
                                       ; input buffer pointer
                              2
0215
             oldsp:
                     ds
                                       ;entry sp value from ccp
             ;
             ;
                     stack area
Ø217
                                       reserve 32 level stack
                     ds
                              64
             stktop:
             ;
Ø 257
                      end
```

5. A SAMPLE RANDOM ACCESS PROGRAM.

This manual is concluded with a rather extensive, but complete example of random access operation. The program listed below performs the simple function of reading or writing random records upon command from the terminal. Given that the program has been created, assembled, and placed into a file labelled RANDOM.COM, the CCP level command:

RANDOM X.DAT

starts the test program. The program looks for a file by the name X.DAT (in this particular case) and, if found, proceeds to prompt the console for input. If not found, the file is created before the prompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return. The input commands take the form

nW nR Q

where n is an integer value in the range Ø to 65535, and W, R, and Q are simple command characters corresponding to random write, random read, and guit processing, respectively. If the W command is issued, the RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by a carriage return. RANDOM then writes the character string into the X.DAT file at record n. If the R command is issued, RANDOM reads record number n and displays the string value at the console. If the Q command is issued, the X.DAT file is closed, and the program returns to the console command processor. In the interest of brevity, the only error message is

error, try again

The program begins with an initialization section where the input file is opened or created, followed by a continuous loop at the label "ready" where the individual commands are interpreted. The default file control block at 005CH and the default buffer at 0080H are used in all disk operations. The utility subroutines then follow, which contain the principal input line processor, called "readc." This particular program shows the elements of random access processing, and can be used as the basis for further program development.

```
***********
          ; *
                                                             *
             sample random access program for cp/m 2.0
          ************
                                  ; base of tpa
0100
                          100h
0000 =
                          0000h
                                  :system reboot
          reboot
                  eau
0005 =
          bdos
                  equ
                          Ø Ø Ø 5h
                                  ;bdos entry point
0001 =
          coninp
                  eau
                          1
                                  ; console input function
0002 =
                          2
                                  ; console output function
          conout
                  equ
                                  ;print string until '$'
0009 =
                          9
          pstring equ
                                  ; read console buffer
                          10
000a =
          rstring equ
000c =
          version equ
                          12
                                  return version number;
000f =
          openf
                          15
                                  ;file open function
                  equ
0010 =
          closef
                          16
                                  :close function
                  equ
                          22
                                  ; make file function
0016 =
          makef
                  equ
0021 =
                          33
                                  :read random
          readr
                  equ
                                  :write random
0022 =
          writer
                  equ
                          34
                                  ;default file control block
\emptyset \emptyset 5c =
          fcb
                          ØØ5ch
                  equ
007d =
                          fcb+33
                                  ; random record position
          ranrec
                  equ
                                  ; high order (overflow) byte
007f =
                          fcb+35
          ranovf
                  eau
                                  ; buffer address
0080 =
                          Ø Ø 8 Øh
          buff
                  equ
           ;
9999 =
                  equ
                          ødh
                                   ; carriage return
           cr
000a =
           1f
                          Øah
                                  ; line feed
                  equ
           *
             load SP, set-up file for random access
               ****************
0100 31bc0
                   lxi
                          sp,stack
                   version 2.0?
0103 0e0c
                   mvi
                          c.version
0105 cd050
                   call
                          bdos
Ø108 fe20
                                   ;version 2.0 or better?
                   cpi
                          20h
Ø10a d2160
                   jnc
                          versok
                   bad version, message and go back
Ø10d 111b0
                   lxi
                          d.badver
0110 cdda0
                   call
                          print
0113 c3000
                   qm r
                          reboot
           versok:
                   correct version for random access
0116 0e0f
                          c, openf ; open default fcb
                   mvi
Ø118 115c0
                   lxi
                          d.fcb
011b cd050
                   cal1
                          bdos
Ølle 3c
                   inr
                          а
                                   ;err 255 becomes zero
Ø11f c237Ø
                   jnz
                           ready
           ;
           ;
                   cannot open file, so create it
```

```
Ø122 Øe16
                          c, makef
                  mvi
                          d.fcb
Ø124 115c0
                  lxi
Ø127 cdØ5Ø
                  call
                          bdos
                  inr
                                  err 255 becomes zero
Ø12a 3c
                          a
Ø12b c237Ø
                  jnz
                          ready
          ;
                  cannot create file, directory full
          ;
Ø12e 113aØ
                  1xi
                          d, nospace
Ø131 cddaØ
                  call
                          print
                                 ; back to ccp
                          reboot
Ø134 c3ØØØ
                  qm r
              ***********
          ; *
          ;
          ; *
              loop back to "ready" after each command
          ; *
                 ***********
          ;
          ready:
                  file is ready for processing
          ;
Ø137 cde5Ø
                  call
                          readcom ; read next command
Ø13a 227dØ
                  shld
                          ranrec
                                 ;store input record#
                  lxi
                          h, ranovf
Ø13d 217fØ
0140 3600
                                  ; clear high byte if set
                  mvi
                          m.Ø
                          '0'
0142 fe51
                  cpi
                                  ;quit?
Ø144 c256Ø
                          notq
                  jnz
          ;
                  quit processing, close file
Ø147 ØelØ
                  mvi
                          c,closef
                          d,fcb
Ø149 115c0
                  lxi
                          bdos
014c cd050
                  call
014f 3c
                  inr
                                  ;err 255 becomes Ø
                          а
Ø150 cab90
                                  ;error message, retry
                  jΖ
                          error
Ø153 c3ØØØ
                          reboot
                                  ; back to ccp
                  jmp
            ***************
          ; *
                                                            *
             end of quit command, process write
           notq:
                  not the quit command, random write?
Ø156 fe57
                          'W'
                  cpi
Ø158 c2890
                  jnz
                          notw
                  this is a random write, fill buffer until cr
Ø15b 114dØ
                  lxi
                          d, datmsq
015e cdda0
                          print
                  call
                                  ;data prompt
0161 0e7f
                  mvi
                          c,127
                                  ;up to 127 characters
0163 21800
                  1xi
                          h, buff
                                  ;destination
           rloop:
                  ; read next character to buff
0166 c5
                          b
                                  ;save counter
                  push
Ø167 e5
                  push
                          h
                                  ;next destination
0168 cdc20
                  call
                          getchr
                                  ; character to a
Ø16b el
                  pop
                          h
                                  restore counter;
```

```
Ø16c cl
                                   restore next to fill
                           b
                   pop
016d fe0d
                                   :end of line?
                   cpi
                           cr
Ø16f ca78Ø
                           erloop
                   jΖ
                   not end, store character
           ;
Ø172 77
                   mov
                          m.a
Ø173 23
                   inx
                           h
                                   ;next to fill
Ø174 Ød
                   dcr
                                   :counter goes down
                           С
Ø175 c266Ø
                                   end of buffer?
                   jnz
                           rloop
           erloop:
                   end of read loop, store 00
           ;
0178 3600
                   mvi
                           m.Ø
           ;
                   write the record to selected record number
           ;
                           c, writer
Ø17a Øe22
                   mvi
                           d.fcb
Ø17c 115c0
                   lxi
                           bdos
Ø17f cdØ5Ø
                   call
Ø182 b7
                   ora
                                   :error code zero?
Ø183 c2b9Ø
                   jnz
                                   ; message if not
                           error
Ø186 c337Ø
                           ready
                                   ; for another record
                   am r
           ; *
             end of write command, process read
                                                              *
           ;*
                                                              *
           notw:
                   not a write command, read record?
Ø189 fe52
                           'R'
                   cpi
Ø18b c2b9Ø
                   jnz
                           error
                                   ;skip if not
           ;
                   read random record
Ø18e Øe21
                   mvi
                           c.readr
Ø19Ø 115cØ
                           d,fcb
                   lxi
Ø193 cdØ5Ø
                   call
                           bdos
Ø196 b7
                   ora
                                   return code 00?
                           а
Ø197 c2b9Ø
                   jnz
                           error
                   read was successful, write to console
Ø19a cdcfØ
                   call
                           crlf
                                   ;new line
Ø19d Øe8Ø
                   mvi
                           c,128
                                   ;max 128 characters
Ø19f 218ØØ
                   lxi
                           h, buff
                                   ;next to get
           wloop:
Øla2 7e
                   mov
                           a,m
                                   ;next character
Øla3 23
                   inx
                           h
                                   ;next to get
Øla4 e67f
                   ani
                           7fh
                                   ; mask parity
Øla6 ca370
                   jΖ
                           ready
                                   ; for another command if 00
Øla9 c5
                   push
                           b
                                   ; save counter
Ølaa e5
                   push
                           h
                                   ; save next to get
                             .
                           1
0lab fe20
                                   ; graphic?
                   cpi
Ølad d4c8Ø
                           putchr
                   cnc
                                   ;skip output if not
ØlbØ el
                   pop
                           h
Ølbl cl
                   pop
                           b
Ølb2 Ød
                   dcr
                           C
                                   ;count=count-1
Ø1b3 c2a2Ø
                   jnz
                           wloop
Ø1b6 c337Ø
                   j mp
                           ready
```

```
; *
            end of read command, all errors end-up here
          error:
Ø1b9 1159Ø
                 1xi
                        d, errmsq
Ølbc cddaØ
Ølbf c337Ø
                 call
                        print
                 jmp
                        ready
          *
          ;* utility subroutines for console i/o
                                                        *
          getchr:
                 ; read next console character to a
Ø1c2 ØeØ1
                        c, coninp
                 mvi
01c4 cd050
                 call
                        bdos
Ø1c7 c9
                 ret
          putchr:
                 ; write character from a to console
01c8 0e02
                        c, conout
                 mvi
Ølca 5f
                               ; character to send
                 mov
                        e,a
01cb cd050
                 call
                        bdos
                               ; send character
Ølce c9
                 ret
          ;
          crlf:
                 ;send carriage return line feed
01cf 3e0d
                 mvi
                               ; carriage return
                        a,cr
                        putchr
Øldl cdc80
                 call
Øld4 3eØa
                 mvi
                        a,lf
                               :line feed
Øld6 cdc8Ø
                 call
                        putchr
Ø1d9 c9
                 ret
          print:
                 ;print the buffer addressed by de until $
Ølda d5
                 push
                        d
Øldb cdcfØ
                 call
                        crlf
Ølde dl
                               ;new line
                        d
                 pop
Øldf ØeØ9
                        c,pstring
                 mvi
Ølel cdØ5Ø
                 call
                        bdos
                               ;print the string
01e4 c9
                 ret
          readcom:
                 ; read the next command line to the conbuf
Øle5 116b0
                 lxi
                        d, prompt
0le8 cdda0
                        print
                 call
                               ; command?
Øleb ØeØa
                 mvi
                        c, rstring
Øled 117aØ
                 lxi
                        d,conbuf
01f0 cd050
                 call
                        bdos
                               ;read command line
                 command line is present, scan it
          ;
```

```
Ø1f3 21000
                   lxi
                           h.Ø
                                   start with 0000
Ølf6 117cØ
                           d, conlin; command line
                   1xi
Ø1f9 la
          readc:
                   ldax
                           d
                                   ; next command character
Ølfa 13
                           đ
                                   to next command position
                   inx
                                   ; cannot be end of command
Ølfb b7
                           а
                   ora
Ølfc c8
                   rz
                   not zero, numeric? sui '0'
Ølfd d630
Ølff feØa
                                   ; carry if numeric
                   cpi
                           10
0201 d2130
                           endrd
                   inc
                   add-in next digit
           ;
0204 29
                   dad
                           h
                                   ; *2
0205 4d
                   mov
                           c,1
                                   ;bc = value * 2
0206 44
                   mov
                           b,h
                                   ; *4
0207 29
                   dad
                           h
                                   ; *8
0208 29
                   dad
                           h
0209 09
                                   ;*2 + *8 = *10
                   dad
                           b
020a 85
                   add
                           1
                                   ;+digit
Ø2Øb 6f
                   mov
                           1,a
020c d2f90
                   jnc
                           readc
                                   ; for another char
020f 24
                                   ; overflow
                   inr
                           h
0210 c3f90
                                   :for another char
                   jmp
                           readc
           endrd:
                   end of read, restore value in a
           ;
Ø213 c63Ø
                   adi
                           '0'
                                   ; command
Ø215 fe61
                           'a'
                   cpi
                                   ;translate case?
Ø217 d8
                   rc
                   lower case, mask lower case bits
           ;
Ø218 e65f
                           101$1111b
                   ani
02la c9
                   ret
           ; *
                                                              *
                                                              *
              string data area for console messages
                                                              *
           badver:
021b 536f79
                           'sorry, you need cp/m version 2$'
                   db
           nospace:
Ø23a 4e6f29
                           'no directory space$'
                   db
           datmsq:
Ø24d 54797Ø
                           'type data: $'
                   db
           errmsg:
0259 457272
                           'error, try again.$'
                   db
           prompt:
Ø26b 4e657Ø
                   db
                           'next command? $'
           ;
```

```
************
        ;* fixed and variable data area
        Ø27a 21
                    conlen ; length of console buffer
Ø 27b
        consiz: ds
                    1
                          ;resulting size after read
Ø27c
        conlin: ds
                    32
                          ;length 32 buffer
0021 =
                    $-consiz
        conlen equ
Ø29c
              ds
                    32
                          :16 level stack
        stack:
Ø2bc
              end
```

Again, major improvements could be made to this particular program to enhance its operation. In fact, with some work, this program could evolve into a simple data base management system. One could, for example, assume a standard record size of 128 bytes, consisting of arbitrary fields within the record. A program, called GETKEY, could be developed which first reads a sequential file and extracts a specific field defined by the operator. For example, the command

GETKEY NAMES.DAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT and extract the "LASTNAME" field from each record, starting at position 10 and ending at character 20. GETKEY builds a table in memory consisting of each particular LASTNAME field, along with its 16-bit record number location within the file. The GETKEY program then sorts this list, and writes a new file, called LASTNAME.KEY, which is an alphabetical list of LASTNAME fields with their corresponding record numbers. (This list is called an "inverted index" in information retrieval parlance.)

Rename the program shown above as QUERY, and massage it a bit so that it reads a sorted key file into memory. The command line might appear as:

QUERY NAMES.DAT LASTNAME.KEY

Instead of reading a number, the QUERY program reads an alphanumeric string which is a particular key to find in the NAMES.DAT data base. Since the LASTNAME.KEY list is sorted, you can find a particular entry quite rapidly by performing a "binary search," similar to looking up a name in the telephone book. That is, starting at both ends of the list, you examine the entry halfway in between and, if not matched, split either the upper half or the lower half for the next search. You'll quickly reach the item you're looking for (in log2(n) steps) where you'll find the corresponding record number. Fetch and display this record at the console, just as we have done in the program shown above.

At this point you're just getting started. With a little more work, you can allow a fixed grouping size which differs from the 128 byte record shown above. This is accomplished by keeping track of the record number as well as the byte offset within the record. Knowing the group size, you randomly access the record containing the proper group, offset to the beginning of the group within the record read sequentially until the group size has been exhausted.

Finally, you can improve QUERY considerably by allowing boolean expressions which compute the set of records which satisfy several relationships, such as a LASTNAME between HARDY and LAUREL, and an AGE less than 45. Display all the records which fit this description. Finally, if your lists are getting too big to fit into memory, randomly access your key files from the disk as well. One note of consolation after all this work: if you make it through the project, you'll have no more need for this manual!

6. SYSTEM FUNCTION SUMMARY.

FUNC	FUNCTION NAME	INPUT PARAMETERS	OUTPUT RESULTS
Ø	System Reset	none	none
1	Console Input	none	A = char
2	Console Output	E = char	none
3	Reader Input	none	A = char
4	Punch Output	E = char	none
5	List Output	E = char	none
6	Direct Console I/O	see def	see def
7	Get I/O Byte	none	A = IOBYTE
8	Set I/O Byte	E = IOBYTE	none
9	Print String	DE = .Buffer	none
10	Read Console Buffer	DE = .Buffer	see def
11	Get Console Status	none	A = 00/FF
12	Return Version Number	none	HL= Version*
13	Reset Disk System		see def
14	Select Disk	E = Disk Number	
15	Open File	DE = .FCB	A = Dir Code
16	Close File	DE = .FCB	A = Dir Code
17 18		DE = .FCB	A = Dir Code
18 19	Search for Next Delete File	none	A = Dir Code
20	Pood Cognetial	DE = .FCB	A = Dir Code
20 21	Read Sequential	DE = .FCB	A = Err Code
22	Write Sequential Make File		A = Err Code
23	Rename File	DE = .FCB	A = Dir Code
24	Return Login Vector	DE = .FCB	A = Dir Code
25	Return Current Disk	none	HL= Login Vect*
26	Set DMA Address	none	A = Cur Disk#
27		DE = .DMA	none
28	Get Addr(Alloc) Write Protect Disk	none	HL= .Alloc
29	Get R/O Vector	none	see def
30	Set File Attributes	none	HL= R/O Vect*
31	Get Addr (disk parms)	DE = .FCB	see def
32	Set/Get User Code		HL= .DPB
33	Read Random	see def	see def
34		DE = .FCB	A = Err Code
35	Compute File Size	DE = .FCB	A = Err Code
36		DE = .FCB	r0, r1, r2
50	Set Random Record	DE = .FCB	r0, r1, r2

^{*} Note that A = L, and B = H upon return

7. ADDENDUM

NEW CP/M 2.2 BDOS FUNCTIONS

The RESET DRIVE function allows resetting of specified drive(s). The passed parameter is a 16 bit vector of drives to be reset, the least significant bit is drive A:.

In order to maintain compatibility with MP/M, CP/M returns a zero value.

The WRITE RANDOM WITH ZERO FILL operation is similar to FUNCTION 34: with the exception that a previously unallocated block is filled with zeros before the data is written.

		•		
- A A 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	 		 	

