Il DIGITAL BESEARCH

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.0 INTERFACE GUIDE

Copyright (e) 1979

DIGITAL RESEARCH

Copyright (e) 1979 by Digital Research. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language or computer language, in any form or by any
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any parti-
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

Il DIGITAL BESEARCH

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.0 INTERFACE GUIDE

Copyright (c) 1979
DIGITAL RESEARCH

Copyright

Copyright (¢) 1979 by Digital Research. All rights reserved. No part of
this publication may be reproduced, transmitted, transcribed, stored in
a retrieval system, or translated into any language or computer
language, in any form or by any means, electronic, mechanical,
magnetic, optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579, Pacific
Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with respect to
the contents hereof and specifically disclaims any implied warranties of
merchantability or fitness for any particular purpose. Further, Digital
Research reserves the right to revise this publication and to make
changes from time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or changes.

CP/M 2.0 INTERFACE GUIDE

Copyright (c) 1979
Digital Research, Box 579
Pacific Grove, California

Introduction

Operating System Call Conventions

A Sample File-to-File Copy Program

A Sample File Dump Utility .

A Sample Random Access Program .

System Function Summary

29
34
37

46

1. INTRODUCTION,

This manual describes CP/M, release 2, system organization
including the structure of memory and system entry points. The
intention is to provide the necessary information required to write
programs which operate under CP/M, and which use the peripheral and
disk I/0 facilities of the system.

CP/M is logically divided into four parts, called the Basic I/0
System (BIOS), the Basic Disk Operating System (BDOS), the Console
command processor (CCP), and the Transient Program Area (TPA). The
BIOS is a hardware-dependent module which defines the exact low level
interface to a particular computer system which 1is necessary for
peripheral device 1I/0. Although a standard BIOS is supplied by
Digital Research, explicit instructions are provided for field
reconfiguration of the BIOS to match nearly any hardware environment
(see the Digital Research manual entitled "CP/M Alteration Guide").
The BIOS and BDOS are logically combined into a single module with a
common entry point, and referred to as the FDOS. The CCP is a
distinct program which uses the FDOS to provide a human-oriented
interface to the information which is cataloged on the backup storage
device, The TPA is an area of memory (i.e., the portion which is not
used by the FDOS and CCP) where various non-resident operating system
commands and user programs are executed, The lower portion of memory
is reserved for system information and is detailed later sections,
Memory organization of the CP/M system in shown below:

high | I

memory | |
I FDOS (BDOS+BIOS) |

FBASE: | |
| I

I CCP |

CBASE: | |
| I

| I

| I

I TPA |

I I

TBASE: | I
| system parameters |

BOOT: | |

The exact memory addresses corresponding to BOOT, TBASE, CBASE, and
FBASE vary from version to version, and are described fully in the
“CP/M Alteration Guide.," All standard CP/M versions, however, assume
BOOT = @00PH, which is the base of random access memory. The machine
code found at location BOOT performs a system "warm start" which loads
and initializes the programs and variables necessary to return control
to the CCP. Thus, transient programs need only jump to location BOOT

(All Information Contained Herein is Proprietary to Digital Research,)

1

to return control to CP/M at the command level, Further, the standard
versions assume TBASE = BOOT+@100H which is normally location @100H.
The principal entry point to the FDOS 1is at location BOOT+8@05H
(normally @@05H) where a jump to FBASE is found., The address field at
BOOT+@@@6H (normally @@@6H) contains the value of FBASE and can be
used to determine the size of available memory, assuming the CCP is
being overlayed by a transient program.

Transient programs are loaded into the TPA and executed as
follows. The operator communicates with the CCP by typing command
lines following each prompt, Each command 1line takes one of the
forms:

command
command filel
command filel file2

where "command” is either a built-in function such as DIR or TYPE, or
the name of a transient command or program, If the command is a
built-in function of CP/M, it is executed immediately. Otherwise, the
CCP searches the currently addressed disk for a file by the name

command, COM

If the file is found, it is assumed to be a memory image of a program
which executes in the TPA, and thus implicitly originates at TBASE in
memory, The CCP loads the COM file from the disk into memory starting
at TBASE and possibly extending up to CBASE,

If the command is followed by one or two file specifications,
the CCP prepares one or two file control block (FCB) names in the
system parameter area, These optional FCB's are in the form necessary
to access files through the FDOS, and are described in the next
section,

The transient program receives control from the CCP and begins
execution, perhaps using the I/0 facilities of the FDOS. The
transient program is "called" from the CCP, and thus can simply return
to the CCP upon completion of its processing, or can jump to BOOT to
pass control back to CP/M. 1In the first case, the transient program
must not use memory above CBASE, while in the latter case, memory up
through FBASE-1 is free,

The transient program may use the CP/M 1I/0 facilities to
communicate with the operator's console and peripheral devices,
including the disk subsystem. The I/O system is accessed by passing a
"function number" and an "information address®™ to CP/M through the
FDOS entry point at BOOT+@@05H, In the case of a disk read, for
example, the transient program sends the number corresponding to a
disk read, along with the address of an FCB to the CP/M FDOS. The
FDOS, in turn, performs the operation and returns with either a disk
read completion indication or an error number indicating that the disk
read was unsuccessful. The function numbers and error indicators are
given in below.

(All Information Contained Herein is Proprietary to Digital Research,)

2

2, OPERATING SYSTEM CALL CONVENTIONS.

The purpose of this section is to provide detailed information
for performing direct operating system calls from user programs. Many
of the functions 1listed below, however, are more simply accessed
through the I/0 macro library provided with the MAC macro assembler,
and listed in the Digital Research manual entitled "MAC Macro
Assembler: Language Manual and Applications Guide."

CP/M facilities which are available for access by transient
programs fall into two general categories: simple device I/0, and
disk file 1I/0. The simple device operations include:

Read a Console Character

Write a Console Character

Read a Sequential Tape Character
Write a Sequential Tape Character
Write a List Device Character

Get or Set I/O0 Status

Print Console Buffer

Read Console Buffer

Interrogate Console Ready

The FDOS operations which perform disk Input/Output are

Disk System Reset

Drive Selection

File Creation

File Open

File Close

Directory Search

File Delete

File Rename

Random or Sequential Read
Random or Sequential Write
Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address

Set/Reset File Indicators

As mentioned above, access to the FDOS functions is accomplished
by passing a function number and information address through the
primary entry point at location BOOT+@@05H, In general, the function
number is passed in register C with the information address in the
double byte pair DE. Single byte values are returned in register A,
with double byte values returned in HL (a zero value is returned when
the function number is out of range). For reasons of compatibility,
register A = L and register B = H upon return in all cases, Note that
the register passing conventions of CP/M agree with those of 1Intel's

PL/M systems programming language. The list of CP/M function numbers
is given below.

(All Information Contained Herein is Proprietary to Digital Research.)

3

g System Reset 19 Delete File

1 Console Input 20 Read Sequential

2 Console OQutput 21 Write Sequential

3 Reader Input 22 Make File

4 Punch Output 23 Rename File

5 List Output 24 Return Login Vector

6 Direct Console 1I/0 25 Return Current Disk

7 Get I1I/0 Byte 26 Set DMA Address

8 Set I/0 Byte 27 Get Addr(Alloc)

9 Print String 28 Write Protect Disk
10 Read Console Buffer 29 Get R/O Vector

11 Get Console Status 30 Set File Attributes
12 Return Version Number 31 Get Addr(Disk Parms)
13 Reset Disk System 32 Set/Get User Code
14 Select Disk 33 Read Random
15 Open File 34 Write Random
16 Close File 35 Compute File Size
17 Search for First 36 Set Random Record

18 Search for Next

(Functions 28 and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.)

Upon entry to a transient program, the CCP leaves the stack
pointer set to an eight level stack area with the CCP return address
pushed onto the stack, leaving seven levels before overflow occurs.
Although this stack is usually not used by a transient program (i.e.,
most transients return to the CCP though a jump to location §009H), it
is sufficiently large to make CP/M system calls since the FDOS
switches to a 1local stack at system entry. The following assembly
language program segment, for example, reads characters continuously
until an asterisk is encountered, at which time control returns to the
CCP (assuming a standard CP/M system with BOOT = @@GP@H):

BDOS EQU 00051 ; STANDARD CP/M ENTRY
CONIN EQU 1 s CONSOLE INPUT FUNCTION
’
ORG 01608 ;BASE OF TPA
NEXTC: MVI C,CONIN s READ NEXT CHARACTER
CALL BDOS : RETURN CHARACTER IN <A>
CPI PR ;:END OF PROCESSING?
JNZ NEXTC ;LOOP IF NOT
RET sRETURN TO CCP
END

CP/M implements a named file structure on each disk, providing a
logical organization which allows any particular file to contain any
number of records from completely empty, to the full capacity of the
drive. Each drive is logically distinct with a disk directory and
file data area. The disk file names are in three parts: the drive
select code, the file name consisting of one to eight non-blank
characters, and the file type consisting of zero to three non-blank
characters. The file type names the generic category of a particular
file, while the file name distinguishes individual files in each
category. The file types listed below name a few generic categories

(All Information Contained Herein is Proprietary to Digital Research.)

4

which have been established, although they are generally arbitrary:

ASM Assembler Source PLI PL/I Source File

PRN Printer Listing REL Relocatable Module
HEX Hex Machine Code TEX TEX Formatter Source
BAS Basic Source File BAK ED Source Backup
INT Intermediate Code SYM SID Symbol File

COM CCP Command File $$$ Temporary File

Source files are treated as a sequence of ASCII characters, where each
“"line" of the source file is followed by a carriage-return line-feed
sequence (@DH followed by 0AH). Thus one 128 byte CP/M record could
contain several lines of source text, The end of an ASCII file 1is
denoted by a control-Z character (l1AH) or a real end of file, returned
by the CP/M read operation, Control-Z characters embedded within
machine code files (e.g., COM files) are ignored, however, and the end
of file condition returned by CP/M is wused to terminate read
operations,

Files in CP/M can be thought of as a sequence of up to 65536
records of 128 bytes each, numbered from @ through 65535, thus
allowing a maximum of 8 megabytes per file,. Note, however, that
although the records may be considered logically contiguous, they may
not be physically contiguous in the disk data area, Internally, all
files are broken into 16K byte segments called logical extents, so
that counters are easily maintained as 8-bit values, Although the
decomposition into extents is discussed in the paragraphs which
follow, they are of no particular consequence to the programmer since
each extent 1is automatically accessed in both sequential and random
access modes,

In the file operations starting with function number 15, DE
usually addresses a file control block (FCB)., Transient programs
often use the default file control block area reserved by CP/M at
location BOOT+@@5CH (normally #65CH) for simple file operations. The
basic unit of file information is a 128 byte record used for all file
operations, thus a default location for disk I/0 is provided by CP/M
at location BOOT+0@80H (normally @#@80H) which is the initial default
DMA address (see function 26). All directory operations take place in
a reserved area which does not affect write buffers as was the case in
release 1, with the exception of Search First and Search Next, where
compatibility is required.

The File Control Block (FCB) data area consists of a sequence of
33 bytes for sequential access and a series of 36 bytes in the case
that the file 1is accessed randomly, The default file control block
normally located at 005CH can be used for random access files, since
the three bytes starting at BOOT+0@7DH are available for this purpose.
The FCB format is shown with the following fields:

(All Information Contained Herein is Proprietary to Digital Research.)
5

99 1 62 ... 88 #9 19 11 12 13 14 15 16 ... 31 32 33 34 35
where

dr drive code (0 - 16)
@ => use default drive for file

1 => auto disk select drive A,
=> auto disk select drive B,

16=> auto disk select drive P.

fl...£8 contain the file name in ASCII
upper case, with high bit = 0

tl,t2,t3 contain the file type in ASCII
upper case, with high bit = 0
t1l', t2', and t3' denote the
bit of these positions,

tl' = 1 => Read/Only file,
t2' =1 => SYS file, no DIR list
ex contains the current extent number,

normally set to 060 by the user, but
in range ® - 31 during file I/0O

sl reserved for internal system use

s2 reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

rc record count for extent “ex,"
takes on values from 4 - 128

dd...dn filled-in by CP/M, reserved for
system use

cr current record to read or write in

a sequential file operation, normally
set to zero by user

ré,rl,r2 optional random record number in the
range #-65535, with overflow to r2,
rd,rl constitute a 16-bit value with
low byte r@, and high byte rl

Each file being accessed through CP/M must have a corresponding
FCB which provides the name and allocation information for all
subseguent file operations, When accessing files, it is the
programmer's responsibility to fill the lower sixteen bytes of the FCB
and initialize the "cr" field. Normally, bytes 1 through 11 are set
to the ASCII character values for the file name and file type, while
all other fields are zero,

(All Information Contained Herein is Proprietary to Digital Research.)

6

FCB's are stored in a directory area of the disk, and are
brought into central memory before proceeding with file operations
(see the OPEN and MAKE functions). The memory copy of the FCB is
updated as file operations take place and later recorded permanently
on disk at the termination of the file operation (see the CLOSE
command) .,

The CCP constructs the first sixteen bytes of two optional FCB's
for a transient by scanning the remainder of the 1line following the
transient name, denoted by “filel"™ and "file2" in the prototype
command line described above, with unspecified fields set to ASCII
blanks. The first FCB is constructed at location BOOT+@@5CH, and can
be used as-is for subsequent file operations. The second FCB occupies
the d9 ... dn portion of the first FCB, and must be moved to another
area of memory before use, If, for example, the operator types

PROGNAME B:X, 20T Y,ZAP

the file PROGNAME.COM is loaded into the TPA, and the default FCB at
BOOT+@@5CH is initialized to drive code 2, file name "X" and file type
“zZoT", The second drive code takes the default value 0, which is
placed at BOOT+0@6CH, with the file name "Y" placed into 1location
BOOT+@@P6DH and file type “ZAP" located 8 bytes later at BOOT+9075H.
All remaining fields through “cr" are set to zero. Note again that it
is the programmer's responsibility to move this second file name and
type to another area, usually a separate file control block, before
opening the file which begins at BOCT+0@5CH, due to the fact that the
open operation will overwrite the second name and type.

If no file names are specified in the original command, then the
fields beginning at BOOT+@@5DH and BOOT+@@6DH contain blanks., In all
cases, the CCP translates lower case alphabetics to upper case to be
consistent with the CP/M file naming conventions,

As an added convenience, the default buffer area at 1location
BOOT+@¥8PH 1is initialized to the command 1line tail typed by the
operator following the program name. The first position contains the
number of characters, with the characters themselves following the
character count., Given the above command line, the area beginning at
BOOT+0®8PH is initialized as follows:

BOOT+0080H :
+00 +01 +02 +83 +04 +05 +06 +07 +08 +09 +10 +11 +12 +13 +14
l 4 (1] (1] ”» B " (1} . [T} " x [1] " . " " Z " L1} O " L1} T 1] " L1} ”» Y b L] . " L1} Z (1} " A L1} " P L1

where the characters are translated to wupper case ASCII with
uninitialized memory following the last valid character, Again, it is

thg responsibility of the programmer to extract the information from
this buffer before any file operations are performed, unless the
default DMA address is explicitly changed,

The individual functions are described in detail in the pages
which follow.

(A1l Information Contained Herein is Proprietary to Digital Research.)
7

I EEEEEXEXTTESSEREEZSES RS R R SRR R SRR RS

* *
* FUNCTION g: System Reset :
*

khhkhkhkhkhkkhkhhkhkhkhkhkkkkhkhkkkkkkkkkhkkkhkkkkhkhhkk
* Entry Parameters: *
* Register C: 00H *

LR R L 2SS RZEES S22 R R R R R R ERR S

The system reset function returns control to the CP/M operating
system at the CCP level. The CCP re-initializes the disk subsystem by
selecting and logging-in disk drive A. This function has exactly the
same effect as a jump to location BOOT.

Ak hhhkhkhA ARk kkhkhkhhkhhhkdokhhhhhkkhkkkhx

* *
* FUNCTION l1: CONSOLE INPUT *
* *
e K K KK K K g Kk doode de de do e K ek dedeok Kok ko de ok dok ok ok ok kkkkkk
* Entry Parameters: *
* Register C: @1H *
%* *
* Returned Value: *
* Register A: ASCII Character *
B RS EE SRR EREEEE SRS ES SRR RS SR R R R RSN RS

The console input function reads the next console character to
register A, Graphic characters, along with carriage return, line
feed, and backspace (ctl-H) are echoed to the console, Tab characters
(ctl-I) are expanded in columns of eight characters. A check is made
for start/stop scroll (ctl-S) and start/stop printer echo (ctl-P),
The FDOS does not return to the calling program until a character has
been typed, thus suspending execution if a character is not ready.

AR KA KA R KA RAA AR R AR R KA AR KRR AR R A Kk hkokk

* *
* FUNCTION 2: CONSOLE OUTPUT *
* *
LER R EE R R R S R R R R RS LR
* Entry Parameters: *
* Register C: 02H *
* Register E: ASCII Character *
* *

KAKKAR AR KRR KRR AR IR KIAR KRR AR ANRRRR AR AR R KA K

_ The ASCII character from register E 1is sent to the console
device, Similar to function 1, tabs are expanded and checks are made
for start/stop scroll and printer echo.

(All Information Contained Herein is Proprietary to Digital Research.)

8

kNhkhhkhkhkhhhkhhhhkhkhkhkhkhkhkhkkkhhkhkhkhkhkhkhhkkhhhhkk

* *
* PUNCTION 3: READER INPUT *
* *
KEKKKKAAKAAAR AR A RA A ARAX A hkRAAhkhkhkhkkhkhkkkk
* Entry Parameters: *
* Register C: @3H *
* *
* Returned Value: *
* Register A: ASCII Character *
KRKKKKAAAAAKAKKAAKAKRKRAAKA Rk AR Ak hkhkhkkikhkkk

The Reader Input function reads the next character from the
logical reader into register A (see the IOBYTE definition in the "CP/M
Alteration Guide"), Control does not return until the character has
been read.

AR SRR RS R R R R R E T RS X R

* *
* FUNCTION 4: PUNCH OUTPUT *
* *
khkhkhkhkhhkhhkhkhkhhkhkhkhkkkkkhkkhkhhhkhkhkhkkkhkhkkhkkhkkik
* Entry Parameters: *
* Register C: 04H *
* Register E: ASCII Character *
* *

LR RS SRS SRS RS REES R LER SRS R E R

The Punch Output function sends the character from register E to
the logical punch device.

KRkkAkhkhkhkhkkhhhhhhhhhkhhhhhkhkhkhkkhhkhhkhkkhkkkkkk

* *
* FUNCTION 5: LIST OUTPUT *
* *
KEAKKAKERKRAKR AR AARAKRAKAR R AR AR AR R A AR R AR KA XK
* Entry Parameters: *
* Register C: 05H *
* Register E: ASCII Character *
* *

KKKKRIAA A AR ARk hkhkhhhhkhkhkhhkhkhhkkhkhhhkhkkk

The List Output function sends the ASCII character in register E
to the logical listing device,

(All Information Contained Herein is Proprietary to Digital Research.)

9

A S SRR RS RS RRRRRERREREREERESE SR

* *
* FUNCTION 6: DIRECT CONSOLE I/0 x
*
IR R RS EEXESEEEEEEEEEEEEE RS RS S S SR 2
* Entry Parameters: *
* Register C: @6H *
* Register E: @OFFH (input) or *
* char (output) *
* *
* Returned Value: *
* Register A: char or status *
(no value) *
KEKR AR AR KRR AR KRR KA ARk hhkkkkhkkk

Direct console I/0 is supported under CP/M for those specialized
applications where unadorned console input and output 1is required,
Use of this function should, in general, be avoided since it bypasses
all of CP/M's normal control character functions (e.g., control-S and
control-P), Programs which perform direct I/0 through the BIOS under
previous releases of CP/M, however, should be changed to use direct
I/0 under BDOS so that they can be fully supported under future
releases of MP/M and CP/M.

Upoq entry to function 6, register E either contains hexadecimal
FF, denoting a console input request, or register E contains an ASCII
character, If the input value is FF, then function 6 returns A = @0

if no character is ready, otherwise A contains the next console input
character,

If the input value in E is not FF, then function 6 assumes that
E contains a valid ASCII character which is sent to the console,

(All Information Contained Herein is Proprietary to Digital Research.)

10

IR SR SRR SRR R R R EES SRR SRS R SR RS EEEEREEERE]

* *
* FUNCTION 7: GET I/O BYTE *
* *
RS EE XSRS SRS R Ss R R RS R R R ER R R RERERS
* Entry Parameters: *
* Register C: 07H *
* *
* Returned Value: *
* Register A: 1I/0 Byte Value *
KKK AKRKAKRKKKRKAA R A A A A Ak ARk hkdbdb bk dk

The Get I/0 Byte function returns the current value of IOBYTE in
register A, See the "CP/M Alteration Guide" for IOBYTE definition.

AA KRR AR R A AR A A A A A AR K AR A ARR A AR AR AR AR R

* *
* FUNCTION 8: SET I/0 BYTE *
* *
RAXKRKA KA A A AR A A KR AKRKR A AR A A AR AR AARR A A Rk k ok k
* Entry Parameters: *
* Register C: @8H *
* Register E: I/0 Byte Value *
* *

ERARKR KR AR R KR A AN IR AR KN KRKR AR KRRANRKRRRAARRRARKRRK A

The Set I/0 Byte function changes the system IOBYTE value to
that given in register E.

khhhhkhkhkhkhhkhkhkhkAkhkkhkhkhhkkkhhkhkhkhkhkkkhkhhkhhkkikk

* *
* FUNCTION 9: PRINT STRING *
* *
LEEEEE RS EETETETEEE TR R R R LTI I RO RO TP
* Entry Parameters: *
* Register C: 0O9H *
* Registers DE: String Address *
* *

AKAARA A AKX A AR AN A RA AR A AR AR AR A RN NI A R A KRR
The Print String function sends the character string stored in
memory at the location given by DE to the console device, until a “$"

is encountered in the string, Tabs are expanded as in function 2, and
checks are made for start/stop scroll and printer echo,

(All Information Contained Herein is Proprietary to Digital Research.)

11

LA EE SR SRS R RS R SRR R SRR R SR ERERERERS]

* *
* FUNCTION 10: READ CONSOLE BUFFER *
* *
LR R R R R Y P S R R RS R R R R R R
* Entry Parameters: *

Register C: @AH
Registers DE: Buffer Address

*
*
*
* Returned Value:
*
*

Console Characters in Buffer
LR RS E SRS SRR AL R R L R R R R R B R R R R R g g g S &]

*
*
*
*
*
*
The Read Buffer function reads a line of edited console input
into a buffer addressed by registers DE, Console input is terminated

when either the input buffer overflows. The Read Buffer takes the
form:

DE: +0 +1 +2 +3 +4 +5 +6 +7 +8 « o » +n

where "mx" is the maximum number of characters which the buffer will
hold (1 to 255), "nc" is the number of characters read (set by FDOS
upon return), followed by the characters read from the console., if nc
< mx, then uninitialized positions follow the last character, denoted
by "??2" in the above figure, A number of control functions are
recognized during line editing:

rub/del removes and echoes the last character
ctl-C reboots when at the beginning of line
ctl-E causes physical end of line

ctl-H backspaces one character position

ctl-J (line feed) terminates input line

ctl-M (return) terminates input line

Ctl-R retypes the current line after new line
ctl-U removes currnt line after new line
ctl-X backspaces to beginning of current line

Note also that certain functions which return the <carriage to the
leftmost position (e.g., ctl-X) do so only to the column position
where the prompt ended (in earlier releases, the carriage returned to

the extreme left margin). This convention makes operator data input
and line correction more legible,

(All Information Contained Herein is Proprietary to Digital Research.)

12

I RS2 L2222 22222222222 Rt R 22222

* *
* FUNCTION 11: GET CONSOLE STATUS *
* *

LR R EZEXEXSESEEEEEEEZRS R R R R R R R R R RS

* Entry Parameters: *
Register C: ©OBH

* *
* *
* Returned Value: *
* *
* *

Register A: Console Status
IR R EEEEEEEE SRS RS S SRR ER R EEEE

The Console Status function checks to see if a character has

been typed at the console., If a character is ready, the value OFFH is
returned in register A. Otherwise a @0H value is returned,

khkkkhhkhkhkkkhkhhkhkhkkhkkhkhhkhkhkhkhkhkkhkhkkkhkkkkkkx

X *
* FUNCTION 12: RETURN VERSION NUMBER *
* *
khkhkhkhkhhkhhkhkkhkhkhkkhkhkhkhkhhkhkhkkkkhkhkhdhkkkikkikk
* Entry Parameters: *
* Register C: 0CH *
* *
* Returned Value: *
* Registers HL: Version Number *
kKAkhkkkhkhkhhkhkhkhkhkhkhkhhkhkhkkhkhhkhkhkhkhkhkkhkkkkkkkkkk
Function 12 provides information which allows version
independent programming, A two-byte value is returned, with H = 08

designating the CP/M release (H = @01 for MP/M), and L = @6 for all
releases previous to 2.0. CP/M 2.0 returns a hexadecimal 24 1in
register L, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F, Using function 12, for example, you can
write application programs which provide both sequential and random
access functions, with random access disabled when operating under
early releases of CP/M.

(All Information Contained Herein is Proprietary to Digital Research.)

13

AAKKKKIAAAARKXKRKRAKR AR AR AR A A A Ak ko khkik

* *
* PUNCTION 13: RESET DISK SYSTEM *
:*************************************:
* Entry Parameters: *
* Register C: @DH *
* %*

KRhkhkhhkhkhkkhkhhkhkhkhhkrkhhkhhkhkhkkhhhhhkhkhhbhkhhkkk

The Reset Disk Function is used to programmatically restore the
file system to a reset state where all disks are set to read/write
(see functions 28 and 29), only disk drive A 1is selected, and the
default DMA address 1is reset to BOOT+9@80H. This function can be
used, for example, by an application program which requires a disk
change without a system reboot,

KAKAKKAKAKKRKAKAKRAAKRRAAANKA A A A ARk Ak hdhkhhkhhkkkk

* *
* FUNCTION 14: SELECT DISK *
* *
ISR EE SRR EE R RS RERRERERREEEEEERE SR
* Entry Parameters: *
* Register C: #@EH *
* Register E: Selected Disk *
* *

KEKKKKKKRAKKKKAKAKKKKAKAKKRKAXR KA IR R A A KA Ak k k%

The Select Disk function designates the disk drive named 1in
register E as the default disk for subsequent file operations, with E
= @ for drive A, 1 for drive B, and so-forth through 15 corresponding
to drive P in a full sixteen drive system., The drive is placed in an
"on-line" status which, in particular, activates its directory until
the next cold start, warm start, or disk system reset operation, 1If
the disk media is changed while it is on-line, the drive automatically
goes to a read/only status in a standard CP/M environment (see
function 28). FCB's which specify drive code =zero (dr = @0H)
automatically reference the currently selected default drive. Drive
code values between 1 and 16, however, ignore the selected default
drive and directly reference drives A through P,

(All Information Contained Herein is Proprietary to Digital Research.)
14

LR EEE R L TP TR P T R R R

* *
* FPFUNCTION 15: OPEN FILE :
*

HAKRI AR AR R RR KR RRAKIAR KA RR AR AR KRR AR R A A Ak *

* Entry Parameters: *
* Register C: OFH *
* Registers DE: FCB Address *
* *
* Returned Value: *
* *
* *

Register A: Directory Code
Khkkkhhhhkhkhkhhkhkhkhhkhhkhkhkhhkhkhkhhkhkhkhkhkkhkhkkkk

The Open File operation is used to activate a file which
currently exists in the disk directory for the currently active user
number, The FDOS scans the referenced disk directory for a match 1in
positions 1 through 14 of the FCB referenced by DE (byte sl is
automatically zeroed), where an ASCII guestion mark (3FH) matches any
directory character in any of these positions. Normally, no guestion
marks are included and, further, bytes "ex" and "s2" of the FCB are
zero.

If a directory element 1is matched, the relevant directory
information 1is <copied into bytes d@# through dn of the FCB, thus
allowing access to the files through subsequent read and write
operations. Note that an existing file must not be accessed until a
sucessful open operation is completed. Upon return, the open function
returns a “directory code"” with the value # through 3 if the open was
successful, or OFFH (255 decimal) if the file cannot be found, 1If
guestion marks occur in the FCB then the first matching FCB |is
activated. Note that the current record ("cr") must be zeroed by the
program if the file is to be accessed sequentially from the first
record,

(All Information Contained Herein is Proprietary to Digital Research.)

15

hhhkhkhkhhhkhkhdkhkhdhhdkkkkikkkkikhkhkkkkkkkkkkikix

* *
* FUNCTION 16: CLOSE FILE *
* *
LA EEEEE RS IR IR RS RS RS R RS RS RS EE L &
* Entry Parameters: *
* Register C: 10H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *
IS SRR RS ER S SRS EERE R RS R SRR R R 2]

The Close File function performs the inverse of the open file
function, Given that the FCB addressed by DE has been previously
activated through an open or make function (see functions 15 and 22),
the close function permanently records the new FCB in the referenced
disk directory. The FCB matching process for the close 1is identical
to the open function. The directory code returned for a successful
close operation is @, 1, 2, or 3, while a @FFH (255 decimal) is
returned if the file name cannot be found in the directory. A file
need not be closed if only read operations have taken place, 1If write
operations have occurred, however, the close operation is necessary to
permanently record the new directory information,

(All Information Contained Herein is Proprietary to Digital Research.)

l6

hkhkhkhkRKkkhkhhhkhhkhkkhkhkkkkkkhkhkhhhkkhkxhhkhkkhhkkkk

* *
* FUNCTION 17: SEARCH FOR FIRST :
*

KEAKKAKAAKRKKNAAkARA ARk hkhkhkkhkhkhkkhkkhkhhhkkhkkhkkhkkk
* Entry Parameters: *

* Register C: 1l1H *
* Registers DE: FCB Address :
*

* Returned Value: *
* *
* *

Register A: Directory Code
LEEE S EFEEREEEEEESEESSRSEEE LSRR SR L & & 8]

Search First scans the directory for a match with the file given
by the FCB addressed by DE, The value 255 (hexadecimal FF) 1is
returned if the file is not found, otherwise 6, 1, 2, or 3 is returned
indicating the file is present. In the case that the file is found,
the current DMA address is filled with the record containing the
directory entry, and the relative starting position is A * 32 (i.e.,
rotate the A register left 5 bits, or ADD A five times). Although not
normally required for application programs, the directory information
can be extracted from the buffer at this position,

An ASCII guestion mark (63 decimal, 3F hexadecimal) in any
position from “f1" through "ex" matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the
"dr” field contains an ASCII gquestion mark, then the auto disk select
function 1is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number, This latter function is not normally used by
application programs, but does allow complete flexibility to scan all
current directory values. If the "dr" field is not a question mark,
the "s2" byte is automatically zeroed.

IR EETEEXESEESEEES SRS SRR RS SRR RS RS SRS

* *
* PFUNCTION 18: SEARCH FOR NEXT *
* *
AAKKKKXKKKKRRKKAKKRRARAKARRKAAKkAIAAAkkhkhkhhkhhkd
* Entry Parameters: *
¥ Register C: 12H X
* Returned Value: *
* Register A: Directory Code *
KAKRKKAAARKRKRKRKRKRKRKARKRRARAA kA hkAAkAAAhkhkhkhkhkkk

The Search Next function 1is similar to the Search First
function, except that the directory scan continues from the last

matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match,

(All Information Contained Herein is Proprietary to Digital Research,)

17

AhRkhkhhkkhhhhhhkhhkAkhrkhkkhkkhhhhkkhhkkhkd

* *
* FUNCTION 19: DELETE FILE *
* *

KKKk KKARKKK AR hhkhkhkhhhkhkhkhkkhhhkhhhkhhhkhkhk

* Entry Parameters: *
Register C: 13H
Registers DE: FCB Address

Returned Value:)
Register A: Directory Code

*
*
*
*
*
KAkKR Kk kAR hhhkhkkkhhkhrdkkhkhhhhkkhkhkhk

*
*
*
*
*
*

The Delete File function removes files which match the FCB
addressed by DE. The filename and type may contain ambiguous
references (i.e., question marks in various positions), but the drive
select code cannot be ambiguous, as in the Search and Search Next
functions.

Function 19 returns a decimal 255 if the referenced file or

files cannot be found, otherwise a value 1in the range @ to 3 is
returned.

LEREEE SRR SRR EES S E SRR R R R R 2

* *
* FUNCTION 2¢: READ SEQUENTIAL *
* *
LA SRS RS RE RS R R R EEE RS
* Entry Parameters: *
* Register C: 14H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *
khkkkkhkkhkkkkkhkkhkhkkkkkkhkkhkhkkhkkkkkhkkknhk

Given that the FCB addressed by DE has been activated through an
open or make function (numbers 15 and 22), the Read Sequential
function reads the next 128 byte record from the file into memory at
the current DMA address. the record is read from position "cr" of the
extent, and the "cr" field is automatically incremented to the next
record position, If the "cr" field overflows then the next logical
extent is automatically opened and the "cr" field is reset to zero in
preparation for the next read operation. The value @@H is returned in
the A register if the read operation was successful, while a non-zero
value is returned if no data exists at the next record position (e.g.,
end of file occurs).

(All Information Contained Herein is Proprietary to Digital Research.)

18

KAKKAKIRKRKRKRKRRRR AR ARk hhhkkhhhhdhkkhkkkkkkk

* *
* FUNCTION 21l: WRITE SEQUENTIAL :
*

KAkhhhkhhhkhkkhkkhhhhkhhkhkhrhkhkkhkhhhkhkhkhkhhkkhkkkk
* Entry Parameters: *

* Register C: 15H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* *
* *

Register A: Directory Code
KKK KA KRR A AR KA Rk khkhkhkhhkhkhhkhkkik

Given that the FCb addressed by DE has been activated through an
open or make function (numbers 15 and 22), the Write Sequential
function writes the 128 byte data record at the current DMA address to
the file named by the FCB. the record is placed at position "cr" of
the file, and the "cr" field is automatically incremented to the next
record position, If the "cr" field overflows then the next logical
extent is automatically opened and the "cr" field is reset to zero in
preparation for the next write operation, Write operations can take
place into an existing file, in which case newly written records
overlay those which already exist in the file. Register A = @@H upon
return from a successful write operation, while a non-zero value
indicates an unsuccessful write due to a full disk.

LR EE RS LS R R RS R RS Y

* *
* FUNCTION 22: MAKE FILE *
* *
KAKKKKAKRKARKAAKRKAKRKR KA A AR AR KKk AR ARk Ak kAR Xk *
* Entry Parameters: *
* Register C: 1l6H *
* Registers DE: FCB Address *
* *
* Returned value: *
* Register A: Directory Code *
LR R R ESER RS SRS R E R XSRS SRR SRS E R X

The Make File operation is similar to the open file operation
except that the FCB must name a file which does not exist in the
currently referenced disk directory (i.e., the one named explicitly by
a non-zero "dr" code, or the default disk if *"dr" is zero). The FDOS
creates the file and initializes both the directory and main memory
value to an empty file. The programmer must ensure that no duplicate
file names occur, and a preceding delete operation is sufficient if
there is any possibility of duplication. Upon return, register A = @,
1, 2, or 3 if the operation was successful and @FFH (255 decimal) if
no more directory space 1is available, The make function has the
side-effect of activating the FCB and thus a subsequent open 1is not
necessary.

(All Information Contained Herein is Proprietary to Digital Research,)

19

khkkkhkkhkAhkhkhkhkkhkhkhkhkhkhhkhhkkhkkhkkhkhkhkhkhkkhkkkkkkk

* *
* FUNCTION 23: RENAME FILE *
* *
KRKKKRKRKRAKRARKKAKKXR AR KRAKRR IR AR KA A kA kT kX k%
* Entry Parameters: *
* Register C: 17H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *
LEERE XS ESEEEEEES SRS RE AR SRS ERESEEEEESS

The Rename function uses the FCB addressed by DE to change all
occurrences of the file named in the first 16 bytes to the file named
in the second 16 bytes. The drive code "dr" at position 0 is used to
select the drive, while the drive code for the new file name at
position 16 of the FCB is assumed to be zero., Upon return, register A
is set to a value between @ and 3 if the rename was successful, and
PFFH (255 decimal) 1if the first file name could not be found in the
directory scan,

KhkKAAKAK IRk kkhhkkhkhhkhhkhkkhkhkdhhkrhkrkhkhhk

* *
* PFUNCTION 24: RETURN LOGIN VECTOR *
* *
ERKAKR AR AR R ARAKRAKRAAARAAKARARRRRA KRR AR Ak AR KX
* Entry Parameters: *
* Register C: 18H *
* *
* Returned Value: *
* Registers HL: Login Vector *
KAKKKKKKRKKAKKAKRKRKRRKRKRKAR AR ARRAR KAk khkkhkkkk%k

The login vector value returned by CP/M is a 16-bit value in HL,
where the least significant bit of L corresponds to the first drive A,
and the high order bit of H <corresponds to the sixteenth drive,
labelled P. A "0" bit indicates that the drive is not on-line, while
a "1" bit marks an drive that is actively on-line due to an explicit
disk drive selection, or an implicit drive select caused by a file
operation which specified a non-zero "dr" field. Note that
compatibility is maintained with earlier releases, since registers A
and L contain the same values upon return,

(All Information Contained Herein is Proprietary to Digital Research.)

20

Khhkhkhkhkhkhhhhhhkhkhkhkhkhkhkkhkhhhhkhkhkhkkkkkhhkhkkk

* *
* FUNCTION 25: RETURN CURRENT DISK *
* *
RS R E R R R R R E SR E R SRS E R TR R R X
* Entry Parameters: *
* Register C: 19H *
* *
* Returned Value: . *
* Register A: Current Disk *
KAERKKEKAKRKAKRARKRKAKARRKRRARAKRKRA AR A AR A A hkhdkkhkhkk

Function 25 returns the currently selected default disk number

in register A, The disk numbers range from ¢ through 15 corresponding
to drives A through P.

X 2822222222233 2222 222 2R 2 R ot t R R 8

* *
* FUNCTION 26: SET DMA ADDRESS *
* *
KA RKEKRKR AR KRAKRARAKRRKRAIRRARAR RN A IR A R A AR h X
* Entry Parameters: *
* Register C: 1AH *
* Registers DE: DMA Address *
* *

IS EEE SRS RS SERR RS RS RERRE SRR RRREEEEES,

"DMA* is an acronym for Direct Memory Address, which 1is often
used in connection with disk controllers which directly access the
memory of the mainframe computer to transfer data to and from the disk
subsystem., Although many computer systems use non-DMA access (i.e.,
the data 1is transfered through programmed I/0 operations), the DMA
address has, in CP/M, come to mean the address at which the 128 byte
data record resides before a disk write and after a disk read. Upon
cold start, warm start, or disk system reset, the DMA address 1is
automatically set to BOOT+8#80H. The Set DMA function, however, can
be used to change this default value to address another area of memory
where the data records reside. Thus, the DMA address becomes the
value specified by DE until it is changed by a subsequent Set DMA
function, cold start, warm start, or disk system reset,.

(All Information Contained Herein is Proprietary to Digital Research.)

21

AKAkkkkhkhhkhkhkhkhkhhkhkkhhhhkhhkhkkhkhkhkhkhkkhhhhkhkkhk

* *
* FUNCTION 27: GET ADDR(ALLOC) *
* *

KAKKKRAKKKKRAKAKRKKAAKAKRARRARA kA Ak hkhhkkhkhhk

* Entry Parameters: *
Register C: 1BH

Registers HL: ALLOC Address
KEKKAKXKKKARAKRAKRAKRKRARKA AR KRR A ARk hkkhkkhkk

* *
* *
* Returned Value: *
* *
* *

An "allocation vector" is maintained in main memory for each
on-line disk drive, Various system programs use the information
provided by the allocation vector to determine the amount of remaining
storage (see the STAT program). Function 27 returns the base address
of the allocation vector for the currently selected disk drive. The
allocation information may, however, be invalid if the selected disk
has been marked read/only. Although this function is not normally

used by application programs, additional details of the allocation
vector are found in the "CP/M Alteration Guide."

EAKKKA KRR AARKARKRAKRAARAKRARARARR AR AR A kA AKX Kk %k

* *
* FUNCTION 28: WRITE PROTECT DISK :
)

AR SR SRR S S EE RS R E TR SRS RS R RS R R R EEEE R
* Entry Parameters: *
* Register C: 1CH *
* *

LERE SRS SRS AR R R E R SRR R R

The disk write protect function provides temporary write
protection for the currently selected disk. Any attempt to write to
the disk, before the next cold or warm start operation produces the

message

Bdos Err on d: R/O

(All Information Contained Herein is Proprietary to Digital Research.)

22

KKK AA KA AARIARRARRkARRA kA hhkhhhhhkkkkix

* *
*¥ PUNCTION 29: GET READ/ONLY VECTOR *
* *
khkhkhkhkkhhkhkhhkhkkhkhkkrkhkhkkhkkhkkhkhkkhkhkhkhkhkhkhkkkk
* Entry Parameters: *
* Register C: 1DH *
* *
* Returned Value: *
* Registers HL: R/0O Vector Value*
KEKKKKEKKKKKKAKKKKKRKKANARARKRAAA XK KkAkhkhkkkkkk

Function 29 returns a bit wvector in register pair HL which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant bit corresponds to drive A,
while the most significant bit corresponds to drive P. The R/O bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M which detect changed disks.

KA KKK AKRKRKRAKR KA I AKRKAIRKRKRKRR R AR ARR R AR ARk Ak

* *
* FUNCTION 3@¢: SET FILE ATTRIBUTES *
* *
LRSS SRR SRS R R S R R R R R R SRR R R R R R
* Entry Parameters: *
* Register C: 1EH *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *
LR R RS SR EEEREEEEEESEEERSEELE R RS LSS S SRS

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/0 and System attributes (tl' and t2') can be set or
reset,. The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset,. Function 30 searches for a
match, and changes the matched directory entry to contain the selected
indicators. Indicators fl' through f4' are not presently used, but

may be useful for applications programs, since they are not involved
in the matching process during file open and close operations.

Indicators £5' through f8' and t3' are reserved for future system
expansion.

(All Information Contained Herein is Proprietary to Digital Research.)

23

KRR KRR IR KRR AR KRR ARR KRR R AR AR K AR R K AN KA AKX
* *
* FUNCTION 31: GET ADDR(DISK PARMS) *
* *
Kk AARIRKRRAKR KRR KA RK AR AR ARk R AR KA XA KAk kK

* Entry Parameters:
Register C: 1FH

Registers HL: DPB Address

*
* *
* *
* Returned Value: *
* *
KEKAKKARKNRRKRKAARKA AR R AKRKRKR AR KRR AR A AR A AR * X

The address of the BIOS resident disk parameter block is
returned in HL as a result of this function call, This address can be
used for either of two purposes. First, the disk parameter values can
be extracted for display and space computation purposes, or transient
programs can dynamically change the values of current disk parameters

when the disk enviromment changes, if required. Normally, application
programs will not require this facility.

Khkhkhkhhkhkhkhkhkkk kXA hAhkhhkhhkhhkhkhkhkhhhhhhkhkhkkk
*

FUNCTION 32: SET/GET USER CODE *
*

*

*

*

LR RS S SRR LSRR R LR RS EE NSRS SRS RS ER S
* Entry Parameters:

* Register C: 20H

* Register E: OFFH (get) or
*

*

*

*

*

*

*

User Code (set)

Register A: Current Code or

(no value)
IR AR SR E LR SRR R E R R P P P P PR E RS R RS

*
*
*
*
Returned Value: *
*
*
*

An application program can change or interrogate the currently
active user number by calling function 32. If register E = @FFH, then
the value of the current user number is returned in register A, where
the value is in the range # to 31. 1If register E is not @FFH, then
the current user number is changed to the value of E (modulo 32).

(All Information Contained Herein is Proprietary to Digital Research.)

24

khkhhhhkhkhkhkhkhhkkhhhhkhkkhhkhhkhkhkhkhkkhkkkkkhhhkk

* *
* FUNCTION 33: READ RANDOM :
*

LR AR E R R E YRR SRS SRR SRS R RS R RS R RS
* Entry Parameters:

Register C: 21H
Registers DE: FCB Address

*

Register A: Return Code

*
*
*
%*
*
Khkkhkhhkkkkkkhkhkkhhkhkhkkkkkkkhkhkhkkkkkkkkkkkk

*

k3

*

Returned Value: *
*

X

The Read Random function is similar to the sequential file read
operation of previous releases, except that the read operation takes
place at a particular record number, selected by the 24-bit wvalue
constructed from the three byte field following the FCB (byte
positions r@ at 33, rl at 34, and r2 at 35). Note that the sequence
of 24 bits 1is stored with least significant byte first (r@), middle
byte next (rl), and high byte last (r2). CP/M does not reference byte
r2, except in computing the size of a file (function 35). Byte r2

must be zero, however, since a non-zero value indicates overflow past
the end of file,

Thus, the r#,rl byte pair is treated as a double-byte, or "word"
value, which contains the record to read. This value ranges from 4 to
65535, providing access to any particular record of the 8 megabyte
file, 1In order to process a file using random access, the base extent
(extent @) must first be opened. Although the base extent may or may
not contain any allocated data, this ensures that the file is properly
recorded in the directory, and 1is visible in DIR reguests, The
selected record number 1is then stored into the random record field
(r@,rl), and the BDOS is called to read the record. Upon return from
the call, register A either contains an error code, as listed below,
or the value 00 indicating the operation was successful, In the
latter case, the current DMA address contains the randomly accessed
record., Note that contrary to the sequential read operation, the
record number 1s not advanced, Thus, subsequent random read
operations continue to read the same record.

Upon each random read operation, the logical extent and current

record values are automatically set, Thus, the file can be
sequentially read or written, starting from the current randomly
accessed position. Note, however, that in this case, the last

randomly read record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a sequential write operation, You can, of course, simply advance
the random record position following each random read or write to
obtain the effect of a seguential I/0 operation,

Error codes returned in register A following a random read are
listed below.

(All Information Contained Herein is Proprietary to Digital Research.)

25

@1 reading unwritten data

B2 (not returned in random mode)
83 cannot close current extent

04 seek to unwritten extent

@5 (not returned in read mode)

6 seek past physical end of disk

Error code 01 and 64 occur when a random read operation accesses a
data block which has not been previously written, or an extent which
has not been created, which are equivalent conditions., Error 3 does
not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is
not physically write protected. Error code #6 occurs whenever byte r2
is non-zero under the current 2.0 release, Normally, non-zero return
codes can be treated as missing data, with 2zero return codes
indicating operation complete,

(All Information Contained Herein is Proprietary to Digital Research.)

26

Khkhkhkhhkhkhkhkkhkhkkhhkhkhkhhhhkkkhkhhkhkkhkhhkhkhkkhhkkk

* *
* FUNCTION 34: WRITE RANDOM *
* *

AAKKKRKKKAKKRRKRKAKRKRKRAKR A RRAKAR Ak khkkhkhkkkhhkk

* Entry Parameters: *
Register C: 22H
Registers DE: FCB Address

Returned Value:

Register A: Return Code

*
*
*
*
*
KKK KARA kA hkAkhkhkhkhkkhkrhkhkhkhhhhkhkhkhkhkhrkhhkkhkkkk

*
*

*
*
*

*

The Write Random operation is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address, Further, if the disk extent or data block which is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues, As in the Read Random
operation, the random record number is not changed as a result of the

write. The logical extent number and current record positions of the
file control block are set to correspond to the random record which is
being written, Again, sequential read or write operations can

commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins., You can also simply advance the random
record position following each write to get the effect of a seguential
Write operation, Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent
switch as it does in sequential mode,

The error codes returned by a random write are identical to the
random read operation with the addition of error code 05, which
indicates that a new extent cannot be created due to directory
overflow,.

(A1l Information Contained Herein is Proprietary to Digital Research.)

27

RS SR SRS LR R R R RS AR SRR EREEEREEEEEEEEEEEE

* *
* FUNCTION 35: COMPUTE FILE SIZE *
* *
AAkKhkhkhkhkhhhhkhkhkhhkhkhkhhkhkhkhkhkhkhkkkkhkkkkkkkhkkkk
* Entry Parameters: *
* Register C: 23H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Random Record Field Set *
AAKKKAEAKRKAKXKAKRKAAKAAKRAAAAAN AR A A KRR R A A KAk hkkkdk

When computing the size of a file, the DE register pair
addresses an FCB in random mode format (bytes r#f, rl, and r2 are
present)., The FCB contains an unambiguous file name which is used 1in
the directory scan. Upon return, the random record bytes contain the
“virtual" file size which is, in effect, the record address of the
record following the end of the file. if, following a call to
function 35, the high record byte r2 is #1, then the file contains the
maximum record count 65536, Otherwise, bytes r@ and rl constitute a
l6-bit wvalue (r® 1is the least significant byte, as before) which is
the file size,

. Data can be appended to the end of an existing file by simply
calling function 35 to set the random record position to the end of

file, then performing a sequence of random writes starting at the
preset record address,

The virtual size of a file corresponds to the physical size when
the file is written sequentially., 1If, instead, the file was created
in random mode and "holes" exist in the allocation, then the file may
in fact contain fewer records than the size indicates. If, for
example, only the last record of an eight megabyte file is written in
random mode (i,e., record number 65535), then the wvirtual size 1is
65536 records, although only one block of data is actually allocated.

(All Information Contained Herein is Proprietary to Digital Research,)

28

L EA R RS SEE SRS SRR RS2 R R R R T

* *
* FUNCTION 36: SET RANDOM RECORD *
*

KAARKRAR ARk A AR Ak hhkhkhkhhkhhkkhhhkkhkkkhk
* Entry Parameters: *
* Register C: 24H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Random Record Field Set *
AEKAKKKAKRKAAKRKRAKKRAKRAKREEAKR KR AA R A AN A kA khk X X%k

The Set Random Record function causes the BDOS to automatically
produce the random record position from a file which has been read or
written sequentially to a particular point, The function can be
useful in two ways.

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various “key" fields, As
each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record position is placed into a
table with the key for later retrieval, After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier,
The scheme is easily generalized when variable record lengths are
involved since the program need only store the buffer-relative byte
position along with the key and record number in order to find the
exact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write, A file is
sequentially accessed to a particular point in the file, function 36
is called which sets thé record number, and subsequent random read and
write operations continue from the selected point in the file,

(All Information Contained Herein is Proprietary to Digital Research.)

29

3. A SAMPLE FILE-TO-FILE COPY PROGRAM,

The program shown below provides a relatively simple example of
file operations. The program source file is created as COPY.ASM using
the CP/M ED program and then assembled using ASM or MAC, resulting in
a "HEX" file. The LOAD program is the used to produce a COPY.COM file
which executes directly under the CCP. The program begins by setting
the stack pointer to a local area, and then proceeds to move the
second name from the default area at O06CH to a 33-byte file control
block called DFCB. The DFCB is then prepared for file operations by
clearing the current record field, At this point, the source and
destination FCB's are ready for processing since the SFCB at @@5CH is
properly set-up by the CCP upon entry to the COPY program, That 1is,
the first name is placed into the default fcb, with the proper fields

zerogd, including the current record field at @@07CH, The program
contlnues by opening the source file, deleting any exising destination
file, and then creating the destination file, If all this is

successful, the program loops at the label COPY until each record has

been read from the source file and placed into the destination file,
Upon completion of the data transfer, the destination file 1is <c¢losed

and the program returns to the CCP command level by jumping to BOOT.

sample file-to-file copy program
at the ccp level, the command
copy a:z:x.y b:u.v

copies the file named x.y from drive
a to a file named u.v on drive b,

@ we WE NE Ne we WO wo wo

0009 = boot egu 2060h ; system reboot
geB5 = bdos equ 8805h ; bdos entry point
@@5¢c = fcbl egu 0@5ch ; first file name
B@5c = sfcb equ fcbl ; source fcb
Boe6c = fcb2 equ g@e6ch ; second file name
8380 = dbuff eqgu @9080%h : default buffer
0106 = tpa equ 0100h ; beginning of tpa
P09 = printf equ 9 ; print buffer func#
OOt = openf equ 15 : open file func#
9019 = closef equ 16 ; close file func#
39l3 = deletef equ 19 : delete file func#
P14 = readf equ 20 ; sequential read
@g@1l5 = writef equ 21 ; sequential write
Bole = makef equ 22 ; make file func#
P10 org tpa ; beginning of tpa
2100 311bg2 1xi sp,stack; local stack

; move second file name to dfcb
0103 9eld mvi c,l6 + half an fcb

(All Information Contained Herein is Proprietary to Digital Research.)

30

01065 116c0@ 1xi d,fcb2 source of move

0168 21dagl 1xi h,dfcb ; destination fcb
#410b la mfcb: ldax d ¢ source fcb
010c 13 inx d ; ready next
g1ea 77 mov m,a : dest fcb
f1lge 23 inx h ; ready next
g1of @d dcr c ; count lo6,.,.0
0110 c20b01 jnz mfcb ; loop 16 times
H name has been moved, zero cr
@113 af Xra a : a = 00oh
@114 32fapl sta dfcbcr ; current rec = @

source and destination fcb's ready

e we we

@117 115c00 1xi d,sfcb ; socurce file
glla cdé69gl call open : error if 255
9114 118701 1xi d,nofile; ready message
3120 3c inr a ; 255 becomes @
$121 cc6la1 cz finis ; done if no file

~s we

source file open, prep destination

124 11dapl 1xi d,dfcb ; destination

127 cd7301 call delete ; remove if present
$1l2a 11dag@gl 1xi d,dfcb ;: destination

$12d cdg8zol call make : create the file

$130 119601 1xi d,nodir ; ready message

133 3¢ inr a : 255 becomes 0

134 ccel@l cz finis ; done if no dir space

source file open, dest file open
copy until end of file on source

() ~¢ ~eo o w»

137 115c00 copy: 1xi d,sfcb ; source
P13a cd7801 call read : read next record

134 b7 ora a : end of file?
$pl3e c25181 jnz eofile ; skip write if so
: not end of file, write the record
9141 116a01 1xi d,dfcb ; destination
0144 cad7d491 call write ; write record
$147 11a961 1xi d,space ; ready message
9ld4a b7 ora a s 060 if write ok
@1l4b c46101 cnz finis : end if so
Bl4e c33701 jmp copy ; loop until eof
eofile: ; end of file, close destination
0151 11dagl 1xi d,dfcb ; destination
154 cdoefdl call close : 255 if error
@157 21bbgl 1xi h,wrprot; ready message
@l5a 3c inr a : 255 becomes 00
915b cc6181 cz finis ; shouldn't happen

we o

copy operation complete, end

(All Information Contained Herein is Proprietary to Digital Research,)

31

#15e llicchl 1xi d,normal; ready message

finis: ; write message given by de, reboot

P16l PeP9 mvi c,printf
3163 cd0500 call bdos ; write message
9166 c30000 jmp boot ; reboot system

system interface subroutines
(all return directly from bdos)

Q we we wo =

0169 debf pen: mvi c,openf
Bléb c30509 jmp bdos
gleoe Beld élose: mvi c,closef
0170 c306500 jmp bdos
0173 Gel3 delete: mvi c,deletef
9175 c305080 jmp bdos
9178 Geld éead: mvi c,readf
Bl7a c30500 jmp bdos
0174 gel5 write: mvi c,writef
817f c30500 jmp bdos
0182 Gel6 make: mvi c,makef
9184 c30500 jmp bdos
; console messages
0187 6e6f20fnofile: db ‘'no source file$'
#1196 6e6£209nodir: db 'no directory space$'
0la9 6f7574fspace: db ‘out of data space$’
g1lbb 7772695wrprot: db ‘write protected?s$’
dlcc 636f700%normal: db ‘copy completeS$'
H data areas
@1da dfcb: ds 33 : destination fcb
glfa = dfcbcr equ dfcb+32 ; current record
@1fb ds 32 ; 16 level stack
stack:
#21b end

Note that there are several simplifications in this particular
program, First, there are no checks for invalid file names which
could, for example, contain ambiguous references, This situation

could be detected by scanning the 32 byte default area starting at
location #85CH for ASCII question marks, A check should also be made

to ensure that the file names have, in fact, been included (check

locations @05DH and 9#@6DH for non-blank ASCII characters)., Finally, a
check should be made to ensure that the source and destination file

names are different, A speed improvement could be made by buffering
more data on each read operation, One could, for example, determine

(All Information Contained Herein is Proprietary to Digital Research.)

32

the size of memory by fetching FBASE from location 00P6H and use the
entire remaining portion of memory for a data buffer. In this case,
the programmer simply resets the DMA address to the next successive

128 byte area before each read, Upon writing to the destination file,
the DMA address 1is reset to the beginning of the buffer and
incremented by 128 bytes to the end as each record is transferred to

the destination file.

(All Information Contained Herein is Proprietary to Digital Research.)

33

4. A SAMPLE FILE DUMP UTILITY,

The file dump program shown below is slightly more complex than
the simple copy program given 1in the previous section. The dump
program reads an input file, specified in the CCP command 1line, and
displays the content of each record in hexadecimal format at the
console, Note that the dump program saves the CCP's stack upon entry,
resets the stack to a local area, and restores the CCP's stack before
returning directly to the CCP. Thus, the dump program does not
perform and warm start at the end of processing.

DUMP program reads input file and displays hex data

~e weo

0100 org 18 6h
pegs = bdos equ 8005h ;dos entry point
6ol = cons eqgu 1 jread console
0802 = typef egu 2 ;type function
6089 = printf equ 9 ;buffer print entry
goob = brk £ equ 11 ;break key function (true if char
goot = openft eqgu 15 :file open
0614 = readf equ 20 ;read function
@65c = fcb egu 5ch :file control block address
0080 = buff equ 80h ;input disk buffer address
; non graphic characters
0004 = cr egu @dh ;jcarriage return
popga = 1f equ @ah ;line feed
H file control block definitions
@gB5c = fcbdn egu fcb+0 ;disk name
gos5d = fcbfn equ fcb+l ;f£ile name
0065 = fcbft equ fcb+9 ;disk file type (3 characters)
0068 = fcbril equ fcb+12 ;file's current reel number
go6b = fcbrc equ fcb+15 ;file's record count (8 to 128)
B@7c = fcber equ fcb+32 ;current (next) record number (0
gg7d = fcbln equ fcb+33 ;fcb length
H set up stack
0100 210000 1xi h,?
41063 39 dad sp
; entry stack pointer in hl from the ccp
$104 221502 shld oldsp
: set sp to local stack area (restored at finis)
0107 315702 1xi sp,stktop
; read and print successive buffers
@lPa cdclgl call setup ;set up input file
#0164 feff cpi 255 ;255 if file not present
010f c21bgl jnz openok ;skip if open is ok
H file not there, give error message and return
112 11£391 1xi d,opnmsg
9115 cd9chl call err
9118 c35101 jmp finis ;£0 return

-e

(All Information Contained Herein is Proprietary to Digital Research.)

34

openok: ;open operation ok, set buffer index to end

@d11b 3e80 mvi a,86h
$11d 321302 sta ibp ;set buffer pointer to 86h
; hl contains next address to print
0120 210000 1xi h,0 ;start with 0009
gloop:
3123 e5 push h ;save line position
0124 cda20dl call gnb
127 el pop h ;recall line position
0128 da5101 jc finis ;carry set by gnb if end file
812b 47 mov b,a

print hex values
check for line fold

-e we

fpl2c 7d mov a,l
@124 eodf ani @fh ;:check low 4 bits
012f c24401 jnz nonum
H print line number
$132 cd7281 call crlf
; check for break key
3135 cd5901 call break
; accum 1lsb =1 if character ready
0138 6f rrc ;into carry
2139 da5141 jc finis ;don't print any more
#13c 7c¢ mov a,h
@13a@ cd8fgl call phex
0140 74 mov a,l
#141 cd8fgl call phex
nonum:
3144 23 inx h sto next line number
0145 3e290 mvi a,' !
0147 cd6501 call pchar
Pl4a 78 mov a,b
#14b cdg8fol call phex
fl4e c32301 jmp gloop
finls:
: end of dump, return to ccp
: (note that a jmp to #060h reboots)
8151 cd7201 call crlf
3154 2al1582 l1hld oldsp
8157 £9 sphl
H stack pointer contains ccp's stack location
3158 c9 ret :to the ccp
; subroutines
break: ;check break key (actually any key will do)
8159 e5d5c5 push h! push d! push b; enviromment saved
915c Belb mvi c,brkf
P1l5e cde509 call bdos
#1l6l cldlel pop b! pop d! pop h; environment restored

(All Information Contained Herein is Proprietary to Digital Research.)

35

9164 c9 ret

pchar: ;print a character

8165 e5d5c5 push h! push d! push b; saved
0168 Ped2 mvi c,typef
@léa 5f mov e,a
@1l6b cdp500 call bdos
glé6e cldlel pop b! pop d! pop h; restored
@171 c9 ret
crif:
8172 3efBd mvi a,cr
0174 cde501 call pchar
8177 3eBa mvi a,lf
8179 cde6s501 call pchar
@17¢ ¢9 ret
pnib: ;print nibble in reg a
9174 e6df ani gfh slow 4 bits
017f feba cpi 10
9181 428901 jnc pld
: less than or equal to 9
#184 c630 adi ‘g’
0186 c38b@l jmp prn

; greater or equal to 149
8189 c637 P
p

10: adi ‘a' - 10
#18b cd6501 prn: call pchar
#18e ¢9 ret

phex: ;print hex char in reg a
@18f f£5 push psw
0190 Of rrc
9191 0of rrc
p192 @f rrc
@193 0f rrc
0194 cd7401 call pnib ;print nibble
2197 f1 pop psw
198 cd7d01 call pnib
219b c9 ret

err: ;print error message

: d,e addresses message ending with "s$"
#19c GelB9 mvi c,printf :print buffer function
#19e cdgs500 call bdos
#lal c9 ret

gnb: ;get next byte
fla2 3al302 lda ibp
fla5 fe8# cpi 80h
@la7 c2b3g1l jnz g

read another buffer

-e we

(All Information Contained Herein is Proprietary to Digital Research.)

36

-e

@laa cdcefdl call diskr

6lad b7 ora a :zero value if read ok
flae cab301l jz gd ; for another byte
; end of data, return with carry set for eof
g1bl 37 stc
@1b2 ¢9 ret
go: ;read the byte at buff+reg a
§1b3 5f mov e,a ;11s byte of buffer index
g1b4 1600 mvi 4,0 ;double precision index to de
#1bé6 3c inr a ;index=index+1
@1b7 321302 sta ibp sback to memory

pointer is incremented
save the current file address

-e we

#lba 218000 1xi h,buff
@1bd 19 dad d
: absolute character address is in hl
@lbe 7e mov a,m
: byte is in the accumulator
@1bf b7 ora a ;reset carry bit
@1lcl® c9 ret
setup: ;set up file
: open the file for input
@lcl af Xra a ;zero to accum
@lc2 327cH0 sta fcber :clear current record
glc5 115c00 1xi d,fcb
01c8 Qebdf mvi c,openf
@lca cdos509 call bdos
H 255 in accum if open error
glcd c9 ret
diskr: ;read disk file record
@lce e5d5c5S push h! push d! push b
81dl 115cH0@ 1xi d,fcb
B1d4 Oeld mvi c,readf
0146 cdgs509 call bdos
#3149 cldlel pop b! pop d! pop h
g1ldc c9 ret
; fixed message area
#1dd 46494chsignon: db '‘file dump version 2.0S$°’
P1f3 #dPadedopnmsg: db cr,1f,’no input file present on disk$'
: variable area
8213 ibp: ds 2 ;input buffer pointer
9215 oldsp: ds 2 ;entry sp value from ccp
H stack area
9217 ds 64 sreserve 32 level stack
stktop:
8257 end

(All Information Contained Herein is Proprietary to Digital Research.)

37

5. A SAMPLE RANDOM ACCESS PROGRAM.

This manual is concluded with a rather extensive, but complete
example of random access operation, The program listed below performs
the simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,
assembled, and placed into a file labelled RANDOM.COM, the CCP level
command:

RANDOM X.DAT

starts the test program. The program looks for a file by the name
X.DAT (in this particular case) and, if found, proceeds to prompt the
console for input, If not found, the file 1is created before the

prompt is given, Each prompt takes the form
next command?

and is followed by operator input, terminated by a carriage return.
The input commands take the form

nw nR Q

where n is an integer value in the range #§ to 65535, and W, R, and Q
are simple command characters corresponding to random write, random
read, and gquit processing, respectively., If the W command is issued,
the RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return. RANDOM then writes the character string into the
X,DAT file at record n. If the R command is issued, RANDOM reads
record number n and displays the string value at the console., If the
Q command is issued, the X.,DAT file is closed, and the program returns
to the console command processor, In the interest of brevity, the
only error message 1is

error, try again

The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at the
label "ready" where the individual commands are interpreted. The
default file control block at B65CH and the default buffer at 9080H
are used in all disk operations. The utility subroutines then follow,
which contain the principal input 1line processor, called ‘“readc."
This particular program shows the elements of random access

processing, and can be used as the basis for further program
development.

(All Information Contained Herein is Proprietary to Digital Research.)

38

;***

. % *
;* sample random access program for cp/m 2.0 *
. % *
;***

0100 org 100h ;jbase of tpa

0eop = reboot equ 0000oh ;jsystem reboot

OG5 = bdos equ 9900 5h ;bdos entry point

o011 = éoninp egu 1 ;console input function

gag2 = conout equ 2 ;console output function

Ba99 = pstring equ 9 ;print string until '$’

g0f%a = rstring equ 10 ;read console buffer

g@dc = version equ 12 ;return version number

oot = openf equ 15 ;file open function

3819 = closef equ 16 ;close function

gole6 = makef equ 22 smake file function

g821 = readr equ 33 :read random

6022 = writer equ 34 ;write random

@@5¢c = fcb eqgu #05ch sdefault file control block

p@g7d = ranrec eqgu fcb+33 ;random record position

pgo7f = ranovf equ fcb+35 ;high order (overflow) byte

0080 = buff egu @@80h :buffer address

goRd = cr equ Gdh ;carriage return

goda = 1f egu @ah :line feed
;***
o % *
;* load SP, set-up file for random access *
.k *
;***

3160 31bco 1xi sp,stack
; version 2,.07?

0103 dehc mvi c,version

3105 cdesg call bdos

0108 fe2@ cpi 20h ;version 2.0 or better?

@lba d2168@ jnc versok
: bad version, message and go back

41964 111b@ 1xi d,badver

#1160 cddag call print

0113 c3000 jmp reboot
versok:
H correct version for random access

9116 Dedf mvi c,openf ;open default fcb

2118 115c@ 1xi d,fchb

@1lb cd@gs5@ call bdos

@lle 3c inr a serr 255 becomes zero

g11f c23740 jnz ready

~e we

cannot open file, so create it

(A1l Information Contained Herein is Proprietary to Digital Research,)

39

3122 Ggels mvi c,makef

3124 115cH 1xi d,fcb

@127 cdgse call bdos

gl2a 3c inr a ;err 255 becomes zero

g12b c2370 jnz ready
; cannot create file, directory full

Fgl2e 113a0 1xi d,nospace

@131 cddag call print

0134 c3000 jmp reboot ;back to ccp
;***
ok *
;* loop back to “ready" after each command *
. % *
';***
ready:
; file is ready for processing

@137 cdeb5@ ’ call readcom ;read next command

@13a 22740 shld ranrec ;store input record#

8134 217£0 1xi h,ranovf

3140 3699 mvi m,Qd sclear high byte if set

9142 fe51 cpi 'Q° ;quit?

#3144 c2569 jnz notq
; quit processing, close file

8147 Geld mvi c,closef

3149 115cH 1xi d,fcb

0l4c cdos5g call bdos

B14f 3c inr a serr 255 becomes 0

@150 cabgyg jz error ;error message, retry

@153 c3000 jmp reboot ;back to ccp
;***
K *
:* end of guit command, process write *
. *
;*************************'k*************************
notqg:
: not the gquit command, random write?

0156 fe57 cpi 'w'

9158 c2890 jnz notw
H this is a random write, f£ill buffer until cr

@15b 11440 1xi d,datmsg

P15e cdda# call print ;data prompt

@316l Be7f mvi c,127 sup to 127 characters

0163 218048 1xi h,buff ;destination
rloop: ;read next character to buff

8166 c5 push b ;save counter

#8167 e5 push h ;next destination

3168 cdc2p call getchr ;character to a

0leb el pop h srestore counter

(A1l Information Contained Herein is Proprietary to Digital Research.)

40

glé6c cl pop b ;restore next to fill

gl6d fedd cpi cr :end of line?

Bl6f ca784d jz erloop
H not end, store character

@172 77 mov m,a

173 23 inx h snext to fill

8174 0d dcr c ;jcounter goes down

@175 c2660 jnz rloop send of buffer?
erloop:
H end of read loop, store 00

0178 3600 mvi m,?
H write the record to selected record number

g17a Qe22 mvi c,writer

@17c 115c@ 1xi d,fcb

B17f cdgs5e call bdos

2182 b7 ora a ;error code zero?

9183 c2b9@d jnz error ;message if not

9186 c3374 jmp ready ; for another record
;***
o %k *
:* end of write command, process read *
o %k *
;***
notw:
: not a write command, read record?

9189 feb52 cpi ‘R’

#18b c2b90 jnz error ;skip if not
; read random record

318e @e2l mvi c,readr

8190 115c@ 1xi d,fcb

#0193 cdgs59 call bdos

8196 b7 ora a sreturn code 00?

9197 c2b9@ jnz error
; read was successful, write to console

#19a cdcfo call crlf ;hew line

6194 Ge80 mvi c,128 ;max 128 characters

B19f 21800 1xi h,buff ;next to get
wloop:

0la2 7e mov a,m ;next character

dla3 23 inx h snext to get

flad e67f ani 7fh ;mask parity

flac ca37d jz ready ;for another command if 00

#lag9 c5 push b ;save counter

glaa e5 push h ;save next to get

0lab fe28 cpi v ;graphic?

0lad dac8o cnc putchr ;skip output if not

B1bd el pop h

g1bl cl pop b

81b2 @d dcr c ;count=count-1

01b3 c2a29 jnz wloop

#1b6 c3379 jmp ready

(All Information Contained Herein is Proprietary to Digital Research.)

41

LEEEEERERRESXTILEESRSSSSS SRR R RS2 E AR R R R R R R SRR S
*

end of read command, all errors end-up here :

% % ¥ * *

LR EEEE RS RS SEE R S s EE XYY SRR SSSEEETEEL SR X

(D ~¢e wo we “e ms ws =

rror:
#1b9 11599 1xi d,errmsg
@1bc cdda#d call print
@1bf c3379 jmp ready
;***
o % *
s* utility subroutines for console i/o *
o %k *
;***
getchr:
sread next console character to a
flc2 Gedl mvi c,coninp
Blcd cdd5d call bdos
#1lc7 c9 ret
putchr:
;write character from a to console
01c8 0ed2 mvi c,conout
flca 5f mov e,a scharacter to send
@1cb cd@gsd call bdos :send character
Plce c9 ret
crlf:
;send carriage return line feed
@1lcf 3e8d mvi a,cr scarriage return
9141 cdc8e call putchr
8144 3efa mvi a,lf :line feed
#1d6 cdc8@é call putchr
8149 c9 ret
print:
;print the buffer addressed by de until §
glda d4s push d
@1db cdcfd call crlf
glde dl pop d ;new line
g14f 0ed9 mvi c,pstring
flel cd@s5g call bdos ;print the string
fled c9 ret
readcom:
sread the next command line to the conbuf
gle5 116b0 1xi d,prompt
fle8 cddad call print ;command?
Pleb gela mvi c,rstring
@led 117a@ 1xi d,conbuf
#1f0 cdgse call bdos s;read command line

command line is present, scan it

-e

(All Information Contained Herein is Proprietary to Digital Research,)

42

01£3 210066 1xi h,0 ;start with 0000

g1f6 117cH 1xi d,conlin;command line

g1f9 1la readc: 1ldax d :next command character

glfa 13 inx d ;to next command position

g1fb b7 ora a ;cannot be end of command

#lfc c8 rz
; not zero, numeric?

@1fd de639 sui ‘g’

g1ff fega cpi 10 ;carry if numeric

p201 d2139 jnc endrd
: add-in next digit

0204 29 dad h 1 %2

0205 44 mov c,l

g206 44 mov b,h :bc = value * 2

0207 29 dad h 1 %4

0288 29 dad h ;*8

0209 09 dad b :1*¥2 + *8 = *1§

B206a 85 add 1 ;+digit

g20b 6f mov 1,a

@280c d2f90 jnc readc ; for another char

020f 24 inr h soverflow

9210 c3f99 jmp readc : for another char
endrd:
H end of read, restore value in a

9213 c639 adi ‘g : command

@215 feb6l cpi - ;translate case?

8217 48 re
H lower case, mask lower case bits

8218 e65f ani 141$1111b

@2la c9 ret
;***
. % *
;* string data area for console messages *
e % *
;***
badver:

@21b 536£79 db *sorry, you need cp/m version 2$'
nospace:

@23a 4e6f£29 db ‘no directory space$’
datmsg:

0244 547970 db 'type data: $'
errmsg:

@259 457272 db ‘error, try again,$®
prompt:

B26b 4e6579 db 'next command? $°

’

(All Information Contained Herein is Proprietary to Digital Research.)

43

;***

o % *
;* fixed and variable data area *
o % *
;***
g27a 21 conbuf: db conlen ;length of console buffer
g27b consiz: ds 1 ;resulting size after read
g27c conlin: ds 32 ;length 32 buffer
g2l = conlen equ $-consiz
629c ' ds 32 ;16 level stack
stack:
@ 2bc end

Again, major improvements could be made to this particular
program to enhance 1its operation, In fact, with some work, this
program could evolve into a simple data base management system, One
could, for example, assume a standard record size of 128 bytes,
consisting of arbitrary fields within the record. A program, called
GETKEY, could be developed which first reads a sequential file and

extracts a specific field defined by the operator. For example, the
command

GETKEY NAMES.DAT LASTNAME 14 20

would cause GETKEY to read the data base file NAMES.DAT and extract
the "LASTNAME" field from each record, starting at position 16 and
ending at character 20. GETKEY builds a table in memory consisting of
each particular LASTNAME field, along with its 16-~bit record number
location within the file., The GETKEY program then sorts this list,
and writes a new file, called LASTNAME.KEY, which is an alphabetical

list of LASTNAME fields with their corresponding record numbers,
(This list is called an “inverted index" in information retrieval
parlance,)

Rename the program shown above as QUERY, and massage it a bit so
that it reads a sorted key file into memory. The command 1line might
appear as:

QUERY NAMES.DAT LASTNAME.KEY

Instead of reading a number, the QUERY program reads an alphanumeric
string which 1is a particular key to find in the NAMES.DAT data base.
Since the LASTNAME.KEY list is sorted, you can find a particular entry
guite rapidly by performing a "binary search," similar to looking up a
name in the telephone book. That is, starting at both ends of the
list, you examine the entry halfway in between and, if not matched,
split either the upper half or the lower half for the next search,
You'll quickly reach the item you're looking for (in log2(n) steps)
where you'll find the corresponding record number. Fetch and display

this record at the console, just as we have done in the program shown
above,

(All Information Contained Herein is Proprietary to Digital Research.)

44

At this point you're just getting started. With a 1little more
work, you can allow a fixed grouping size which differs from the 128
byte record shown above. This is accomplished by keeping track of the
record number as well as the byte offset within the record. Knowing
the group size, you randomly access the record containing the proper
group, offset to the beginning of the group within the record read
sequentially until the group size has been exhausted.

Finally, you can improve QUERY considerably by allowing boolean
expressions which c¢ompute the set of records which satisfy several
relationships, such as a LASTNAME between HARDY and LAUREL, and an AGE
less than 45. Display all the records which fit this description,
Finally, if your 1lists are getting too big to fit into memory,
randomly access your key files from the disk as well. One note of
consolation after all this work: if you make it through the project,
you'll have no more need for this manual!

(All Information Contained Herein is Proprietary to Digital Research,)

45

6. SYSTEM FUNCTION SUMMARY.

FUNC FUNCTION NAME

INPUT PARAMETERS

)] System Reset

1 Console Input

2 Console Output

3 Reader Input

4 Punch OQutput

5 List Output

6 Direct Console I/0
7 Get I/O Byte

8 Set I/O Byte

9 Print String

10 Read Console Buffer
11 Get Console Status
12 Return Version Number
13 Reset Disk System
14 Select Disk
15 Open File

16 Close File
17 Search for First
18 Search for Next
19 Delete File
20 Read Sequential

21 Write Sequential

22 Make File
23 Rename File
24 Return Login Vector
25 Return Current Disk
26 Set DMA Address

27 Get Addr(Alloc)

28 Write Protect Disk
29 Get R/O Vector

30 Set File Attributes
31 Get Addr(disk parms)
32 Set/Get User Code
33 Read Random
34 Write Random

35 Compute File Size
36 Set Random Record

* Note that A = L, and B =

none
none

E = char
none

E = char

E = char

see def

none

E = IOBYTE
DE = .Buffer
DE = ,Buffer
none

none

none

E = Disk Number
DE = .FCB

DE = FCB
DE = [FCB
none

DE = .FCB
DE = .FCB

DE = ,FCB

DE = ,FCB

DE = .FCB
none

none

DE = .DMA
none

none

none

DE = .FCB
none

see def

DE = .FCB

DE = FCB

DE = ,FCB

DE = ,FCB

H upon return

OUTPUT RESULTS

see def

A = IOBYTE
none
none
see

A:

HL=

see

def
g@8/FF

Version*
def
def
Dir
Dir
Dir
Dir
Dir
Err
Err

n
®
(1]

Code
Code
Code
Code
Code
Code
Code
Dir Code
Dir Code
Login Vect*
Cur Disk#

(md

o v i i S

none
HL=
see

.Alloc
def
R/O Vect*

def
.DPB

def

Err Code
Err Code

rl, r2
rl, r2

(All Information Contained Herein is Proprietary to Digital Research.)

46

7. ADDENDUM

NEW CP/M 2.2
BDOS FUNCTIONS

Tede oA dedededede e Yo e e dede e vy e e e e e e e e ek

“ FUNCTION 37: RESET DRIVE .
*

Fededededededededededededededo Tl e dedede e de e de e dede e de e de K e
* Entry Parameters: *
w Register C: 25H *

* Register DE: Drive Vector *
¥ *

* Returned Value *
3 Register : PPH *

ot et afo o shealo ol nfo aloafo afo ale ale alo o aba el alonfo alonte alo nle alo ol ale b ale ala sl nta ol
WIWHKWHKHIWHWR WKWK TR TR R RWRERR KW RK

The RESET DRIVE function allows resetting of specified
drive(s). The passed parameter is a 16 bit vector of drives
to be reset, the least significant bit is drive A:.

In order to maintain compatibility with MP/M, CP/M
returns a zero value.

B o\ L JEDNL SFPRC JUPR JPR PR RN AN JRPL AR S N JN DU JU RPN JEP JSON R R JARC AN AR SN UG S DN SURE S O 7%
IR WKWK RN KW EH W R TR IR IR WHE WKWK

% FUNCTION 40: WRITE RANDOM WITH:
* ZERO FILL *

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

',
W W R WH KW R KWK WHRRN WKWK WR KRR SR IKWRWKE

* Entry Parameters: *
* Register C: 28H *
s Register DE: FCB Address *
* Returned Value: g
* Register A: Return Code ~

P e e Yo ntaade o alonto abaata Lt \"~‘¢7]a\"~">'-\‘_~‘/>"~L>' LU TNUTEN SR RN PRSP
WHRRWRWHHRE KRR KK WKW W WKWK KW R Wi s i

The WRITE RANDOM WITH ZERO FILL operation is similar
to FUNCTION 34: with the exception that a previously

unallocated block is filled with zeros before the data
is written.

47






PO,
MLAF ;_'\1,:2';, ;
B A T

s o e




PO,
MLAF ;_'\1,:2';, ;
B A T

s o e






