Il DIGITAL RESEARCH

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.0 ALTERATION GUIDE

Copyright (e) 1979

DIGITAL RESEARCH

Copyright

Copyright (¢) 1979 by Digital Research. All rights reserved.
No part of this publication mav be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language or computer language, in any form or by any
means, eleetronie, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California 93950,

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any parti-
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

Trademarks

CP/M is a registered trademark of Digital Research. MP/M,
MAC, and SID are trademarks of Digital Research.

I} DIGITAL RESEARCH

Post Office Box 5§79, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.0 ALTERATION GUIDE

Copyright (c) 1979

DIGITAL RESEARCH

Copyright

Copyright (¢) 1979 by Digital Research. All rights reserved. No part of
this publication may be reproduced, transmitted, transcribed, stored in
a retrieval system, or translated into any language or computer
language, in any form or by any means, electronic, mechanical,
magnetic, optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579, Pacific
Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with respect to
the contents hereof and specifically disclaims any implied warranties of
merchantability or fitness for any particular purpose. Further, Digital
Research reserves the right to revise this publication and to make
changes from time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or changes.

Trademarks

CP/M is a registered trademark of Digital Research. MP/M, MAC, and
SID are trademarks of Digital Research.

CP/M 2.0 ALTERATION GUIDE

Copyright (c) 1979
Digital Research, Box 579
Pacific Grove, California

l. Introduction ., « . .
2, First Level System Regeneration .
3. Second Level System Generation .
4, Sample Getsys and Putsys Programs
5. Diskette Organization
6. The BIOS Entry Points ,
7. A Sample BIOS . . v v « o o o o &
8. A Sample Cold Start Loader ., , .
9. Reserved Locations in Page Zero .
18, Disk Parameter Tables
11, The DISKDEF Macro Library
12, Sector Blocking and Deblocking .

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix
Appendix

oaEm@EpoQwy

19
12
14
21
22
23
25
30

34

1. INTRODUCTION

The standard CP/M system assumes operation on an Intel MDS-8060
microcomputer development system, but is designed so that the user can
alter a specific set of subroutines which define the hardware
operating environmment, In this way, the user can produce a diskette
which operates with any IBM-3741 format compatible drive controller
and other peripheral devices.

Although standard CP/M 2.0 is configured for single density floppy
disks, field-alteration features allow adaptation to a wide variety of
disk subsystems from single drive minidisks through high-cavacity
"hard disk" systems, In order to simplify the following adaptation
process, we assume that CP/M 2.8 will first be configured for single
density floppy disks where minimal editing and debugging tools are
available. If an earlier version of CP/M 1s available, the
customizing process is eased considerably. In this latter case, vyou
may wish to briefly review the system generation process, and skip to
later sections which discuss system alteration for non-standard disk
systems,

In order to achieve device independence, CP/M 1is separated into
three distinct modules:

BIOS - basic I/0 system which is environment dependent

BDOS - basic disk operating system which is not dependent
upon the hardware configuration

CCP - the console command processor which uses the BDOS

Of these modules, only the BIOS is dependent upon the particular
hardware, That is, the user can “patch" the distribution version of
CP/M to provide a new BIOS which provides a customized interface
between the remaining CP/M modules and the user's own hardware system,
The purpose of this document is to provide a step-by-step procedure
for patching your new BIOS into CP/M.

If CP/M is being tailored to your computer system for the first

time, the new BIOS requires some relatively simple software
development and testing. The standard BIOS is listed in Appendix B,
and can be used as a model for the customized package. A skeletal

version of the BIOS 1is given in Appendix C which can serve as the
basis for a modified BIOS. 1In addition to the BIOS, the user must
write a simple memory loader, called GETSYS, which brings the
operating system into memory. In order to patch the new BIOS into
CP/M, the user must write the reverse of GETSYS, called PUTSYS, which
places an altered version of CP/M back onto the diskette., PUTSYS can
be derived from GETSYS by changing the disk read commands into disk
write commands, Sample skeletal GETSYS and PUTSYS programs are
described 1in Section 3, and listed in Appendix D. In order to make
the CP/M system work automatically, the user must also supply a cold
start loader, similar to the one provided with CP/M (listed in
Appendices A and B). A skeletal form of a cold start loader is given
in Appendix E which can serve as a model for your loader.

(All Information Contained Herein is Proprietary to Digital Research.)

1

2. FIRST LEVEL SYSTEM REGENERATION

The procedure to follow to patch the CP/M system is given below in
several steps. Address references in each step are shown with a
following "H" which denotes the hexadecimal radix, and are given for a

20K CP/M systenm. For 1larger CP/M systems, add a "bias" to each
address which is shown with a "+b" following it, where b is equal to
the memory size - 20K. Values for b in various standard memory sizes
are

24K b = 24K - 20K = 4K = 1000H

32K: b = 32K - 20K = 12K = 30069H

47K b = 49K - 20K = 20K = 5000H

48K b = 48K - 20K = 28K = 7000H

56K b = 56K = 20K = 36K = 9008H

62K: b = 62K - 20K = 42K = A80¢H

64K: b = 64K - 20K = 44K = BOQ@OH

Note: The standard distribution version of CP/M 1is set for
operation within a 20K memory system., Therefore, you must first bring
up the 20K CP/M system, and then configure it for your actual memory
size (see Second Level System Generation).

(1) Review Section 4 and write a GETSYS program which reads the
first two tracks of a diskette into memory. The data from the diskette
must begin at location 338#H. Code GETSYS so that it starts at
location 194d (base of the TPA), as shown in the first wvart of
Appendix d.

(2) Test the GETSYS program by reading a blank diskette 1into
memory, and check to see that the data has been read properly, and
that the diskette has not been altered in any way by the GETSYS
program,

(3) Run the GETSYS program using an initialized CP/M diskette to
see 1if GETSYS 1loads CP/M starting at 3388H (the operating system
actually starts 128 bytes later at 3400H).

(4) Review Section 4 and write the PUTSYS program which writes
memory starting at 3380H back onto the first two tracks of the
diskette., The PUTSYS program should be located at 200H, as shown 1in
the second part of Appendix D.

(5) Test the PUTSYS program using a blank uninitialized diskette
by writing a portion of memory to the first two tracks; clear memory
and read it back using GETSYS. Test PUTSYS completely, since this
program will be used to alter CP/M on disk.

(6) Study Sections 5, 6, and 7, along with the distribution
version of the BIOS given in Appendix B, and write a simple version
which performs a similar function for the customized environment. Use
the program given in Appendix C as a model. Call this new BIOS by the
name CBIOS (customized BIOS). Implement only the primitive disk
operations on a single drive, and simple console input/output
functions in this phase.

(All Information Contained Herein is Proprietary to Digital Research.,)

2

(7) Test CBIOS completely to ensure that it properly verforms
console character I/0 and disk reads and writes. Be especially
careful to ensure that no disk write operations occur accidently
during read operations, and check that the proper track and sectors
are addressed on all reads and writes, Failure to make these checks
may cause destruction of the initialized CP/M system after it is
patched.

(3) Referring to Figure 1 in Section 5, note that the BIOS 1is
placed between locations 4A0@H and 4FFFH. Read the CP/M system using
GETSYS and replace the BIOS segment by the new CBIOS developed in step
(6) and tested in step (7). This replacement is done in the memory of
the machine, and will be placed on the diskette in the next step.

(9) Use PUTSYS to vlace the patched memory image of CP/M onto the
first two tracks of a blank diskette for testing.

(l4) Use GETSYS to bring the copied memory image from the test
diskette back into memory at 3380H, and check to ensure that it has
loaded back properly (clear memory, if possible, before the 1load).
Upon suc:essful load, branch to the cold start code at location 4AJ0H.
The cola start routine will initialize page zero, then jump to the CCP
at location 34PW¥WH which will call the BDOS, which will call the CBIOS.
The CRIOS will be asked by the CCP to read sixteen sectors on track 2,
and if successful, CP/M will type "A>", the system prompt,

wWwhen you make it this far, you are almost on the air. If you have
trouble, use whatever debug facilities you have available to trace and
breakpoint your CBIOS.

(11) Upon completion of step (18), CP/M has promoted the console
for a command input. Test the disk write operation by typing

SAVE 1 X.COM
(recall that all commands must be followed by a carriage return).
CP/M should respond with another prompt (after several disk accesses):
A>
If it does not, debug your disk write functions and retry.
(12) Then test the directory command by typing
DIR
CP/M should respond with
A: X COM
(13) Test the erase command by typing

ERA X.COM

(All Information Contained Herein is Proprietary to Digital Research.)

3

CP/M should respond with the A prompt. When you make it this far, you
should have an operational system which will only require a bootstrap
loader to function completely.

(14) Write a bootstrap loader which is similar to GETSYS, and
place it on track @, sector 1 using PUTSYS (again using the test
diskette, not the distribution diskette). See Sections 5 and 8 for
more information on the bootstrap operation,

(15) Retest the new test diskette with the bootstrap loader
installed by executing steps (11), (12), and (13). Upon completion of
these tests, type a control-C (control and C keys simultaneously). The
system should then execute a "warm start" which reboots the system,
and types the A prompt.

(16) At this point, you probably have a good version of vyour
customized CP/M system on your test diskette. Use GETSYS to load CP/M
from vyour test diskette, Remove the test diskette, place the
distribution diskette (or a legal copy) into the drive, and use PUTSYS
to replace the distribution version by your customized version. Do
not make this replacement if you are unsure of your patch since this
step destroys the system which was sent to you from Digital Research.

(17) Load your modified CP/M system and test it by typing
DIR

CP/M should respond with a list of files which are provided on the
initialized diskette, One such file should be the memory image for
the debugger, called DDT,COM.

NOTE: from now on, it is important that you always reboot the CP/M
system (ctl-C is sufficient) when the diskette is removed and replaced
by another diskette, unless the new diskette is to be read only.

(18) Load and test the debugger by typing
DDT

(see the document "CP/M Dynamic Debugging Tool (DDT)" for operating
procedures, You should take the time to become familiar with DDT, it
will be your best friend in later steps.

(19) Before making further CBIOS modifications, practice using
the editor (see the ED wuser's guide), and assembler (see the ASM
user's guide). Then recode and test the GETSYS, PUTSYS, and CBIOS
programs using ED, ASM, and DDT. Code and test a COPY program which
does a sector-to-sector copy from one diskette to another to obtain
back-up copies of the original diskette (NOTE: read your CP/M
Licensing Agreement; it specifies vyour legal responsibilities when
copying the CP/M system). Place the copyright notice

Copyright (c), 1979
Digital Research

(All Information Contained Herein is Proprietary to Digital Research.)

4

on each copy which is made with your COPY program.

(20) Modify vyour CBIOS to include the extra functions for
punches, readers, signon messadges, and so-forth, and add the
facilities for a additional disk drives, if desired, You can make
these changes with the GETSYS and PUTSYS programs which vyou have
developed, or vyou can refer to the following section, which outlines
CP/M facilities which will aid you in the regeneration process.

You now have a good copy of the customized CP/M system. Note that
although the CBIOS portion of CP/M which you have developed belongs to
you, the modified version of CP/M which you have created can be copied
for vyour wuse only (again, read your Licensing Agreement), and cannot
be legally copied for anyone else's use,

It should be noted that your system remains file-compatible with all

other CP/M systems, (assuming media compatiblity, of course) which
allows transfer of non-proprietary software between users of CP/M,

(All Information Contained Herein is Proprietary to Digital Research.)

5

3. SECOND LEVEL SYSTEM GENERATION

Now that you have the CP/M system running, you will want to
configure CP/M for your memory size. In general, you will first get a
memory image of CP/M with the “MOVCPM" program (system relocator) and
place this memory image into a named disk file. The disk file can then
be loaded, examined, patched, and replaced using the debugger, and
system generation wprogram. For further details on the operation of
these programs, see the "Guide to CP/M Features and Facilities"
manual,

Your CBIOS and BOOT can be modified using ED, and assembled wusing
ASM, producing files called CBIOS.HEX and BOOT.HEX, which contain the
machine code for CBIOS and BOOT in Intel hex format,

To get the memory image of CP/M into the TPA configured for the
desired memory size, give the command:

MOVCPM xx *

where "xx" is the memory size in decimal K bytes (e.g., 32 for 32K).
The response will be:

CONSTRUCTING xxK Cp/M VERS 2.0
READY FOR "SYSGEN" OR
"SAVE 34 CPMxx.COM"

At this point, an image of a CP/M in the TPA configured for the
requested memory size. The memory imadge is at location @900H through
227FH. (i.e., The BOOT is at ©906H, the CCP is at 98@fH, the BDOS
starts at 1180H, and the BIOS is at 1F80H.) Note that the memory
image has the standard MDS-809 BIOS and BOOT on it, It is now
necessary to save the memory image in a file so that you can patch
your CBIOS and CBOOT into it:

SAVE 34 CPMxx.COM

The memory image created by the "MOVCPM" program is offset by a
negative bias so that it loads into the free area of the TPA, and thus
does not interfere with the operation of CP/M in higher memory. This
memory image can be subsequently loaded wunder DDT and examined or
changed in preparation for a new generation of the system. DDT is
loaded with the memory image by typing:

DDT CPMxx.COM Load DDT, then read the CPM
image

DDT should respond with
NEXT PC
2300 0100
- (The DDT prompt)

You can then use the display and disassembly commands to examine

(All Information Contained Herein is Proprietary to Digital Research.)

o

portions of the memory image between 980H and 227FH. Note, however,
that to find any particular address within the memory image, you must
apply the negative bias to the CP/M address to find the actual
address. Track 90, sector @1 is loaded to location 96¢UH (you should
find the cold start loader at 990H to 97FH), track 9@, sec.>r 92 is
loaded into 980H (this is the base of the CCP), and so-forth through
the entire CP/M system load. 1In a 20K system, for example, the CCP
resides at the CP/M address 3480H, but is placed iunto memory at 980H
by the SYSGEN program. Thus, the negative bias, denoted by n,
satisfies

3490H + n = 980PH, or n = 980H - 34P9P

Assuming two's complement arithmetic, n = D58¢H, which can be checked
by

3400H + D58@H = 10980H = P980H (ignoring- -high-order
overflow),

Note that for larger systems, n satisfies

(3400H+b) + n = 9Y8¥H, or
n 980UH - (3409¥H + b), or
n D580H - b.

Won

The value of n for common CP/M systems is given below

memc-y size bias b negative offset n
20K Vo OoH D58YH - ©H@OYH = D5B0H
24K lgodd D580H - 1000H = C538VH
32K 300898 D580H - 3@0¢990H = AS58UH
49K 50@0H D58YH - 500UUYH = 8580H
438K 7300H D580H - 7300H = 6580H
56K 99 8VH D58YH - 9¢B0H = 4584¥H
62K ABQOH D580H - A80YH = 2D8OH
6 4K BO@OH D580H - B@JIH = 2580H

Assume, for example, that you want to locate the address x within the
memory image loaded under DDT in a 20K system. First type

HxX,n He:zadecimal sum and difference
and DDT will respond with the value of x+n (sum) and x-n (difference).
The first number printed by DDT will be the actual memory address in

the image where the data or code will be found, The input

H3400,D580

for example, will produce 98@H as the sum, which is where the CCP 1is
located in the memory image under DDT.

Use the L command to disassemble portions the BIOS 1located at
(4A®@H+b)—n which, when vyou use the H command, produces an actual
address of 1F8dH. The disassembly command would thus be

(All Information Contained Herein is Proprietary to Digital Research,)

7

L1F80
It is now necessary to patch in your CBOOT and CBIOS routines. The
BOOT resides at 1location ©966H in the memory image, If the actual
load address is “n", then to calculate the bias (m) use the command:

H9006,n Subtract load address from
target address,

The second number typed in response to the command is the desired bias
(m), For example, if your BOOT executes at VUP8UH, the command:

HOG13,B80
will reply
#98y 0880 Sum and difference in hex.

Therefore, the bias “m" would be ¥W880JH. To read-in the BOOT, give the
command:

ICBOOT.HEX Input file CBOOT.HEX
Then:
Rm Read CBOOT with a bias of
m (=9¥JH-n)

You may now examine your CBOOT with:
L9¢0d

We are now ready to replace the CBIOS. Examine the area at 1F80H
where the original version of the CBIOS resides. Then type

ICBIOS.HEX Ready the “hex" file for loading

assume that your CBIOS is being integrated into a 20K CP/M system, and
thus is origined at location 4A@0d. 1In order to properly locate the
CBIOS in the memory image under DDT, we must apply the negative bias n
for a 20K system when loading the hex file. This is accomplished by
typing

RD589 Read the file with bias D580H

Upon completion of the read, re-examine the area where the CBIOS has
been loaded (use an "L1F80" command), to ensure that is was loaded
properly. When you are satisfied that the <change has been made,
return from DDT using a control-C or "G@" command.

Now use SYSGEN to replace the patched memory 1image back onto a

diskette (use a test diskette until you are sure of your patch), as
shown in the following interaction

(A1l Information Contained Herein is Proprietary to Digital Research,)

3

SYSGEN Start the SYSGEN program
SYSGEN VERSION 2.4 Sign-on message from SYSGEN
SOURCE DRIVE NAME (OR RETURN TO SKIP)
Respond with a carriage return
to skip the CP/M read operation
since the system is already in
memory.
DESTINATION DRIVE NAME (OR RETURN TO REBOOT)
Respond with "B" to write the
new system to the diskette in
drive B,
DESTINATION ON B, THEN TYPE RETURN
Place a scratch diskette in
drive B, then type return.
FUNCTION COMPLETE
DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

Place the scratch diskette in your drive A, and then perform a
coldstart to bring up the new CP/M system you have configured.

Test the new CP/M system, and place the Digital Research copyright
notice on the diskette, as specified in your Licensing Agreement:

Copyright (c), 1979
Digital Research

4., SAMPLE GETSYS AND PUTSYS PROGRAMS

The following program provides a framework for the GETSYS and
PUTSYS programs referenced in Section 2. The READSEC and WRITESEC
subroutines must be inserted by the wuser to read and write the
specific sectors.

GETSYS PROGRAM - READ TRACKS @ AND 1 TO MEMORY AT 3380H

H REGISTER USE
; A (SCRATCH REGISTER)
H B TRACK COUNT (2, 1)
; C SECTOR COUNT (1,2,...,26)
; DE (SCRATCH REGISTER PAIR)
; HL LOAD ADDRESS
; SP SET TO STACK ADDRESS
START: LXI SP,3380H ;SET STACK POINTER TO SCRATCH AREA
LXTI H, 3380H ;SET BASE LOAD ADDRESS
MVI B, 0 ; START WITH TRACK ¥
RDTRK: s READ NEXT TRACK (INITIALLY 9)
MVI c,1 ; READ STARTING WITH SECTOR 1
RDSEC: ; READ NEXT SECTOR
CALL READSEC ; USER-SUPPLIED SUBROUTINE
LXI D,128 ;MOVE LOAD ADDRESS TO NEXT 1/2 PAGE
DAD D ;HL = HL + 128
INR C ;SECTOR = SECTOR + 1
MOV a,C ;CHECK FOR END OF TRACK
CPI 27
JcC RDSEC ; CARRY GENERATED IF SECTOR < 27
; ARRIVE HERE AT END OF TRACK, MOVE TO NEXT TRACK
INR B
MOV A,B ;TEST FOR LAST TRACK
CpI 2
JcC RDTRK ; CARRY GENERATED IF TRACK < 2

~-e

~e

ARRIVE HERE AT END OF LOAD, HALT FOR NOW
HLT

USER-SUPPLIED SUBROUTINE TO READ THE DISK
EADSEC:
ENTER WITH TRACK NUMBER IN REGISTER B,
SECTOR NUMBER IN REGISTER C, AND
ADDRESS TO FILL IN HL

e ws we ™o w- -e

PUSH B ;SAVE B AND C REGISTERS
PUSH H ;SAVE HL REGISTERS

perform disk read at this point, branch to

label START if an error occurs

pPOP H s RECOVER HL

POP B sRECOVER B AND C REGISTERS
RET ;BACK TO MAIN PROGRAM

END START

(All Information Contained Herein is Proprietary to Digital Research,)

10

Note that this program is assembled and listed in Appendix C for
reference purposes, with an assumed origin of 100H. The hexadecimal
operation codes which are listed on the left may be wuseful 1if the
program has to be entered through your machine's front panel switches.

The PUTSYS program can be constructed from GETSYS by changing only
a few operations in the GETSYS program given above, as shown in
Appendix D. The register wpair HL become the dump address (next
address to write), and operations upon these registers do not change
within the program, The READSEC subroutine is replaced by a WRITESEC
subroutine which performs the opposite function: data from address HL
is written to the track given by register B and sector given by
register C, It is often useful to combine GETSYS and PUTSYS into a
single program during the test and development phase, as shown in the
Appendix.

(All Information Contained Herein is Proprietary to Digital Research.)

11

5. DISKETTE ORGANIZATION

The sector allocation for the standard distribution version of
CP/M 1is given here for reference purposes, The first sector (see
table on the following page) contains an optional software boot
section. Disk controllers are often set up to bring track @, sector 1
into memory at a specific 1location (often location ¢@000H). The
program in this sector, called BOOT, has the responsibility of
bringing the remaining sectors into memory starting at location
3400H+b., If your controller does not have a built-in sector load, you
can ignore the program in track 9, sector 1, and begin the 1load from
track 9 sector 2 to location 3400H+b,

As an example, the Intel MDS-800 hardware cold start loader brings
track 9, sector 1 into absolute address 300GH. Upon 1loading this
sector, control transfers to location 30086H, where the bootstrap
operation commences by loading the remainder of tracks ¥, and all of
track 1 into memory, starting at 34@0vWH+b, The user should note that
tnis bootstrap loader is of 1little wuse in a non-MDS environment,
although it 1is wuseful to examine it since some of the boot actions
will have to be duplicated in your cold start loader,

(All Information Contained Herein is Proprietary to Digital Research.)

12

Track# Sector# Page# Memory Address CP/M Module name

B3 g1 (boot address) Cold Start Loader
0o 22 /] 340 0H+b ccp
! 23 . 3480H+b "

» 04 21 3580H+b "

" g5 . 353@H+b "

" Do g2 3600H+b "

" a7 " 3680H+b "

B 8 23 3760H+b "

o B9 " 37808H+b "

. 10 g4 3800H+b .

" 11 o 3880H+b "

N 12 45 3900H+b "

" 13 " 3980H+b "

. 14 g6 3A00H+b "

. 15 " 3A80H+b "

" 16 37 3B@GH+b "
00 17 " 3B80H+Db Cccp
a0 18 g8 3CO0H+b BDOS

“ 19 ™ 3C80H+b "

" 20 29 3D@GPH+b "

" 21 . 3D80GH+b "

. 22 19 3E@QH+b "

o 23 . 3E8@H+b "

. 24 11 3F@QH+b "

" 25 . 3F8@H+b "

" 26 12 4308H+b "
21 g1 “ 4380@H+b "

" 02 13 4100H+b "

" 03 . 4180H+b "

" 24 14 42030H+b "

" a5 . 4280H+b "

. 26 15 4300H+b "

N a7 " 4380H+b "

" 28 16 4400@H+b .

" @29 " 4480H+b "

. 19 17 45008+b "

. 11 " 4589H+b "

" 12 18 4600H+b "

B 13 » 4680H+b "

! 14 19 47008H+b .

o 15 o 4780H+b .

o l6 20 4800H+b "

" 17 " 4880H+b "

. 18 21 4900H+b "

21 19 " 4980H+b BDOS

g1 20 22 4700 0H+b BIOS

" 21 " 4A80H+b "

“ 23 23 4BO@H+b "

" 24 " 4B8QH+b "

" 25 24 4CQOPH+Db "

g1 26 " 4C80H+b BIOS

d2-76 B1-26 (directory and data)

(All Information Contained Herein is Proprietary to Digital Research.)

6.

The entry points
are detailed below.
d at 4A0QH+Db,
The jump vector is a

locate

program

control

to

THE BIOS ENTRY POINTS

into the
Entry to
as shown
sequence
the in

BIOS from the cold start loader and BDOS
the BIOS 1is through a "jump vector®
below (see Appendices B and C, as well).
of 17 jump instructions which send
dividual BIOS subroutines. The BIOS

subroutines may be empty for certain functions (i.e., they may contain

a single RET operation) during regeneration of CP/M, but the entries
must be present in the jump vector.
The jump vector at 4A¢YPH+b takes the form shown below, where the

individual jump addresses are given

to the left:

4A0RH+Db JMP BOOT : ARRIVE HERE FROM COLD START LOAD

4AQ3H+D JMP WBOOT ; ARRIVE HERE FOR WARM START

470 6H+b JMP CONST ; CHECK FOR CONSOLE CHAR READY

4A09H+b JMP CONIN ;s READ CONSOLE CHARACTER IN

4AQCH+Db JMP CONOUT : WRITE CONSOLE CHARACTER OUT

4ADFH+Db JMP LIST ; WRITE LISTING CHARACTER OUT

4A12H+b JMP PUNCH ; WRITE CHARACTER TO PUNCH DEVICE

4A15H+b JMP READER ; READ READER DEVICE

4A18H+b JMP HOME ; MOVE TO TRACK ¥6 ON SELECTED DISK

4A1BH+b JMP SELDSK ; SELECT DISK DRIVE

4A1EH+0 JMP SETTRK ; SET TRACK NUMBER

4A21H+Db JMP SETSEC ;s SET SECTOR NUMBER

4A24H+Db JMP SETDMA ; SET DMA ADDRESS

4A27H+b JMP READ ; READ SELECTED SECTOR

4A2AH+D JMP WRITE ; WRITE SELECTED SECTOR

4A2DH+b JMP LISTST ; RETURN LIST STATUS

4A30H+Db JMP SECTRAN ; SECTOR TRANSLATE SUBROUTINE

FEach jump address corresponds to a particular subroutine which

performs the specific function, as outlined below. There are three
major divisions in the jump table: the system (re)initialization
which results from calls on BOOT and WBOOT, simple character I1I/0

performed by calls on CONST, CONIN, CONOUT,

LISTST

LIST, PUNCH, READER, and

, and diskette I/0 performed by calls on HOME, SELDSK, SETTRK,
SETSEC, SETDMA, READ, WRITE,

and SECTRAN,

All simple character I/0 operations are assumed to be performed in
upper and lower case, with high order (parity bit) set to zero,.
condition £
Peripheral

ASCIT,
An
contro
device

In order to operate,

CONOUT
not th
DESPOO

end-of-file
(1AH) .
and are assigned to

1-z
S,

subroutines

e BDOS).
L, and

Further,
thus,

the
(LIST,
the

the 1in

or an input device is given by an ASCII
devices are seen by CP/M as "logical"
physical devices within the BIOS.

BDOS needs only
PUNCH,
LISTST
itial

the CONST, CONIN, and
and READER may be used by PIP, but
entry is used currently only by
version of CBIOS may have empty
devices.,

subroutines for the remaining ASCII

(All Information Contained Herein is Proprietary to Digital Research.)

14

The characteristics of each device are

CONSOLE

LIST

PUNCH

READER

IOBYTE AT

The principal interactive console which communicates
with the operator, accessed through CONST, CONIN, and
CONOUT. Typically, the CONSOLE is a device such as a
CRT or Teletype.

The principal listing device, 1if it exists on vyour
system, which is usually a hard-copy device, such as a
printer or Teletype.

The principal tape punching device, if it exists, which
is normally a high-speed paper tape punch or Teletype.

The principal tape reading device, such as a simple
optical reader or Teletype.

Note that a single peripheral can be assigned as
the LIST, PUNCH, and READER device simultaneously., If
no peripheral device is assigned as the LIST, PUNCH, or
READER device, the CBIOS created by the user may give
an appropriate error message so that the system does
not "hang" if the device is accessed by PIP or some
other wuser vprogram. Alternately, the PUNCH and LIST
routines can just simply return, and the READER routine
can return with a 1AH (ctl-2) in reg A to indicate
immediate end-of-file,

For added flexibility, the user can optionally
implement the "IOBYTE" function which allows
reassignment of ©ovhysical and 1logical devices. The
IOBYTE function creates a mapping of logical to
physical devices which can be altered during CP/M

processing (see the STAT command), The definition of
the IOBYTE function corresponds to the 1Intel standard
as follows: a single location in memory (currently

location Y@P@3H) is maintained, called IOBYTE, which
defines the logical to physical device mapping which is
in effect at a particular time. The mapping is
performed by splitting the IOBYTE into four distinct
tields of two Dbits each, called the CONSOLE, READER,
PUNCH, and LIST fields, as shown below:

most significant least significant

P@G38 | LIST | PUNCH | READER | CONSOLE |

bits 6,7 bits 4,5 bits 2,3 bits 0¢,1

The value in each field can be in the range @-3,
defining the assigned source or destination of each
logical device., The values which can be assigned to
each field are given below

(All Information Contained Herein is Proprietary to Digital Research.)

15

CONSOLE field (bits 0,1)

7] -
1 -
2 -

3 -

console is assigned to the console printer device (TTY:)
console is assigned to the CRT device (CRT:)

batch mode: use the READER as the CONSOLE input,

and the LIST device as the CONSOLE output (BAT:)

user defined console device (UCl:)

READER fleld (bltS 2,3)

=

1 -
2 -
3

READER is the Teletype device (TTY:)

READER is the high-speed reader device (RDR:)
user defined reader # 1 (UR1l:)

user defined reader ¥ 2 (UR2:)

PUNCH field (bits 4,5)

PUNCH is the Teletype device (TTY:)

PUNCH is the high speed punch device (PUN:)
user defined punch # 1 (UPl:)

user defined punch # 2 (UP2:)

LIST field (bits 6,7)

0
1 -
2
3

LIST is the Teletype device (TTY:)
LIST is the CRT device (CRT:)

LIST is the line printer device (LPT:)
user defined list device (ULl:)

Note again that the implementation of the IOBYTE is
optional, and affects only the organization of your
CBIOS. No CP/M systems use the IOBYTE (althougn they
tolerate the existence of the IOBYTE at 1location
J0P3d), except for PIP which allows access to the

physical devices, and STAT which allows
logical~physical assignments to be made and/or
displayed (for more information, see the "CP/M Features
and Facilities Guide"). In any case, the IOBYTE

implementation should be omitted until your basic CBIOS
is fully implemented and tested; then add the IOBYTE to
increase your facilities,

Disk I/0 is always performed through a sequence of
calls on the various disk access subroutines which set
up the disk number to access, the track and sector on a
particular disk, and the direct memory access (DMA)
address involved in the I/0 operation., After all these
parameters have been set up, a call is made to the READ
or WRITE function to perform the actual I/O operation,
Note that there is often a single <call to SELDSK to
select a disk drive, followed by a number of read or
write operations to the selected disk before selecting
another drive for subsequent operations. Similarly,
there may be a single call to set the DMA address,
followed by several calls which read or write from the
selected DMA address before the DMA address is changed,
The track and sector subroutines are always called
before the READ or WRITE operations are performed,

(All Information Contained Herein is Proprietary to Digital Research,)

l6

Note that the READ and WRITE routines should
perform several retries (14 1is standard) before
reporting the error condition to the BDOS. 1If the
error condition is returned to the BDOS, it will report
the error to the user. The HOME subroutine may or may
not actually perform the track 08 seek, depending upon
your controller characteristics; the important point is
that track 00 has been selected for the next operation,
and is often treated in exactly the same manner as
SETTRK with a parameter of 00.

The exact responsibilites of each entry point
subroutine are given below:

BOOT The BOOT entry point gets control from the cold start
loader and 1is responsible for basic system
initialization, 1including sending a signon message
(which can be omitted in the first version). If the
IOBYTE function is implemented, it must be set at this
point, The various system parameters which are set by
the WBOOT entry point must be initialized, and control
is transferred to the CCP at 3400H+b for further
processing, Note that reg C must be set to 2zero to
select drive A,

WBOOT The WBOOT entry point gets control when a warm start
occurs, A warm start 1is performed whenever a user
program branches to location @#@@0H, or when the CPU is
reset from the front panel, The CP/M system must be
loaded from the first two tracks of drive A up to, but
not 1including, the BIOS (or CBIOS, if vyou have
completed your patch). System parameters must be ini-
tialized as shown below:

location 46,1,2 set to JMP WBOOT for warm starts
(B00BH: JMP 4A@Q3H+Db)

location 3 set initial value of IOBYTE, if
implemented in your CBIOS

location 5,6,7 set to JMP BDOS, which 1is the
primary entry point to CP/M for
transient programs, (00B5H: JMP
3CO6H+Db)

(see Section 9 for complete details of page zero use)
Upon completion of the initialization, the WBOOT
program must branch to the CCP at 3490H+b to (re)start
the system, Upon entry to the CCP, register C is set
to the drive to select after system initialization,

CONST Sample the status of the currently assigned console
device and return OFFH in register A if a character is
ready to read, and @@H in register A if no console
characters are ready,

CONIN Read the next console character into register A, and

(All Information Contained Herein is Proprietary to Digital Research.)

17

CONOUT

LIST

PUNCH

READER

HOME

SELDSK

set the parity bit (high order bit) to zero. If no
console character is ready, wait until a character 1is
typed before returning,

Send the character from register C to the <console
output device, The character is in ASCII, with high
order parity bit set to zero., You may want to include
a time-out on a line feed or carriage return, if your
console device regquires some time interval at the end
of the line (such as a TI Silent 760 terminal). You
can, 1if you wish, filter out control characters which
cause your console device to react in a strange way (a
control-z causes the Lear Seigler terminal to clear
the screen, for example),

Send the character from register C to the currently
assigned 1listing device, The character is in ASCII
with zero parity.

Send the character from register C to the currently
assigned punch device, The character is in ASCII with
zero parity,

Read the next character from the currently assigned
reader device into register A with zero parity (high
order bit must pbe zero), an end of file condition is
reported by returning an ASCII control-z (1AH).

Return the disk head of the currently selected disk
(initially disk A) to the track 0@ position. 1If your
controller allows access to the track 6 flag from the
drive, step the head wuntil the +track ¥ flag is
detected. If your controller does not support this
feature, vyou <can translate the HOME call into a call
on SETTRK with a varameter of #.

Select the disk drive given by register C for further
operations, where register C contains # for drive A, 1
for drive B, and so-forth up to 15 for drive P (the
standard CP/M distribution version supports four
drives). On each disk select, SELDSK must return in
HL the base address of a 16-byte area, called the Disk
Parameter Header, described in the Section 16, For
standard floppy disk drives, the contents of the
header and associated tables does not change, and thus
the program segment included in the sample CBIOS
performs this operation automatically. If there is an
attempt to select a non-existent drive, SELDSK returns
HL=0@0BPH as an error indicator. Although SELDSK must
return the header address on each call, it is
advisable to postpone the actual physical disk select
operation until an I/O0 function (seek, read or write)
is actually performed, since disk selects often occur
without utimately performing any disk 1I/0, and many
controllers will wunload the head of the current disk

(All Information Contained Herein is Proprietary to Digital Research,)

18

before selecting the new drive. This would cause an
excessive amount of noise and disk wear.

SETTRK Register BC contains the track number for subseguent
disk accesses on the currently selected drive. You
can choose to seek the selected track at this time, or
delay the seek until the next read or write actually
occurs. Register BC can take on values in the range
@-76 corresponding to valid track numbers for standard
floppy disk drives, and 9-65535 for non-standard disk
subsystems,

SETSEC Register BC contains the sector number (1 through 26)
for subsequent disk accesses on the currently selected
drive. You can choose to send this information to the
controller at this point, or instead delay sector
selection until a read or write operation occurs,

SETDMA Register BC contains the DMA (disk memory access)
address for subsequent read or write operations. For
example, if B = @GPH and C = 88H when SETDMA is called,
then all subseguent read operations read their data
into 8@6H through @FFH, and all subsequent write
operations get their data from 8@H through @FFH, until
the next call to SETDMA occurs. The initial DMA

address is assumed to be B8@H. Note that the
controller need not actually support direct memory
access, If, for example, all data is received and

sent through I/0 ports, the CBIOS which you construct
will wuse the 128 byte area starting at the selected
DMA address for the memory buffer during the following
read or write overations,

READ Assuming the drive has peen selected, the track has
been set, the sector has been set, and the DMA aadress
has been specified, the READ subroutine attempts to
read one sector based upon these parameters, and
returns the following error codes in register A:

] no errors occurred
1 non-recoverable error condition occurred

Currently, CP/M responds only to a zero oOr non-zero
value as the return code, That is, if the value in
register A is @ then CP/M assumes that the disk
operation completed vproperly., If an error occurs,
however, the CBIOS should attempt at least 10 retries
to see if the error is recoverable, When an error is
reported the BDOS will print the message "“BDOS ERR ON
X BAD SECTOR". The operator then has the option of
typing <cr> to ignore the error, or ctl-C to abort.

WRITE Write the data from the currently selected DMA address

to the currently selected drive, track, and sector.
The data should be marked as "non deleted data”" to

(All Information Contained Herein is Proprietary to Digital Research.)

19

maintain compatibility with other CP/M systems, The
error codes given in the READ command are returned in
register A, with error recovery attempts as described
above,

LISTST Return the ready status of the list device. Used by
the DESPOOL program to improve console response during
its operation, The value ¢¢ is returned in A if the
list device is not ready to accept a character, and
@FFH 1if a character can be sent to the printer. Note
that a @0 value always suffices.

SECTRAN Performs sector logical to physical sector translation
in order to improve the overall response of CP/M,
Standard CP/M systems are shipped with a “"skew factor"
of 6, where six physical sectors are skipped between
each logical read operation, This skew factor allows
enough time between sectors for most programs to load
their buffers without missing the next sector,. In
particular computer systems which use fast processors,
memory, and disk subsystems, the skew factor may be
changed to improve overall response, Note, however,
that you should maintain a single density IBM
compatible version of CP/M for information transfer
into and out of your computer system, using a skew
factor of 6. 1In general, SECTRAN receives a logical
sector number in BC, and a translate table address 1in
DE. The sector number is used as an index into the
translate table, with the resulting physical sector
number in HL, For standard systems, the tables and
indexing code is vrovided in the CBIOS and need not be
changed,

(A1l Information Contained Herein is Proprietary to Digital Research,)

29

7. A SAMPLE BIOS

The program shown in Appendix C can serve as a basis for your
first BIOS. The simplest functions are assumed 'in this BIOS, so that
you can enter it through the front wpanel, if absolutely necessary.
Note that the user must alter and insert code into the subroutines for
CONST, CONIN, CONOUT, READ, WRITE, and WAITIO subroutines. Storage is
reserved for user-supplied code in these regions., The scratch area
reserved in page zero (see Section 9) for the BIOS 1is used in this
program, so that it could be implemented in ROM, if desired.

Once operational, this skeletal version can be enhanced to print
the initial sign-on message and perform better error recovery. The
subroutines for LIST, PUNCH, and READER can be filled-out, and the
IOBYTE function can be implemented.

(All Information Contained Herein is Proprietary to Digital Research.)

21

8. A SAMPLE COLD START LOADER

The program shown in Appendix D can serve as a basis for your cold
start loader. The disk read function must be supplied by the user,
and the program must be loaded somehow starting at location G600,
Note that space is reserved for your patch so that the total amount of
storage required for the cold start loader is 128 bytes, Eventually,
you will probably want to get this loader onto the first disk sector
(track #, sector 1), and cause your controller to load it into memory
automatically upon system start-up. Alternatively, you may wish to
place the cold start loader into ROM, and place it above the CP/M
system, In this case, it will be necessary to originate the program
at a higher address, and key-in a jump instruction at system start-up
which branches to the loader. Subsequent warm starts will not require
this key-in operation, since the entry point 'WBOOT' gets control,
thus bringing the system in from disk automatically. Note also that
the skeletal cold start loader has minimal error recovery, which may
be enhanced on later versions,

(All Information Contained Herein is Proprietary to Digital Research.)

22

9. RESERVED LOCATIONS IN PAGE ZERO

Main memory page zero, between locations @@H and UFFH, contains
several segments of code and data which are wused during CP/M
processing. The code and data areas are given below for reference
purposes.

Locations Contents
from to
P00OH - VOO2H Contains a jump instruction to the warm start

entry point at location 4A@3H+b. This allows a
simple programmed restart (JMP 469¥H) or wmanual
restart from the front panel.

P00 3d

P00 3H Contains the Intel standard IOBYTE, which is
optionally included in the user's (CBIOS, as
described in Section 6,

Voad

V9044 Current default drive number (0#=A,...,15=P).

#0@5H 0d07H Contains a jump instruction to the BDOS,and
serves two purposes: JMP 0065H provides the
primary entry point to the BDOS, as described in
the manual "CP/M Interface Guide," and LHLD
@UP6H brings the address field of the
instruction to the HL register pair. This value
is the 1lowest adadress 1in memory used by CP/M
(assuming the CCP is being overlayed). Note
that the DDT program will change the address
field to reflect the reduced memory size 1in
debug mode.

09B8H - 9027H (interrupt locations 1 through 5 not used)

3304 - @B37H (interrupt location 6, not currently used -
reserved)

PP38H - 0OQ3AH Restart 7 - Contains a jump instruction into the
DDT or SID program when running in debug mode
for programmed breakvoints, but is not otherwise
used by CP/M,

@@3BH - WO3FH (not currently used - reserved)

00400 - VO4FH 16 byte area reserved for scratch by CBIOS, but
is not used for any purpose in the distribution
version of CP/M

Q@508 - VUUSBH (not currently used - reserved)

¥@5CH - @87CH default file <control block produced for a
transient program by the Console Command

Processor,

PO7DH

QOTFH Optional default random record vosition

(All Information Contained Herein is Proprietary to Digital Research.)

23

PO8YH - DAFFH default 1238 byte disk buffer (also filled with
the command 1line when a transient is loaded
under the CCP).

Note that this information is set-up for normal operation under
the CP/M system, but can be overwritten by a transient program if the
BDOS facilities are not reguired by the transient,.

If, for example, a particular program performs only simple I/O and
must begin execution at location @, it can be first 1loaded into the
TPA, wusing normal CP/M facilities, with a small memory move program
which gets control when loaded (the memory move program must get
control from 1location @1l806H, which is the assumed beginning of all
transient programs), The move program can then proceed to move the
entire memory 1image down to 1location @, and pass control to the
starting address of the memory 1loaa. Note that if the BIOS is
overwritten, or if location # (containing the warm start entry point)
is overwritten, then the programmer must bring the CP/M system back
into memory with a cold start sequence,

(All Information Contained Herein is Proorietary to Digital Research.)

24

10. DISK PARAMETER TABLES,

Tables are included in the BIOS which describe the particular
characteristics of the disk subsystem used with CP/M. These tables
can be either hand-coded, as shown in the sample CBIOS in Appendix C,
or automatically generated using the DISKDEF macro library, as shown
in Appendix B, The purpose here is to describe the elements of these
tables.

In general, each disk drive has an associated (l6-byte) disk
parameter header which both contains information about the disk drive
and provides a scratchpad area for certain BDCS operations, The
format of the disk parameter header for each drive is shown below

Disk Parameter Header
| XLT | 9000 | 0000 | 00660 IDIRBUF| DPB | CsSv | ALV |
16b 16b 16b 16b 16b 16b 16b 16b

where each element is a word (16-bit) value. The meaning of each Disk
Parameter Header (DPH) element is

XLT Address of the logical to physical translation vector,
if wused for this particular drive, or the value 0000H
if no sector translation takes place (i.e, the physical
and logical sector numbers are the same), Disk drives
with identical sector skew factors share the same
translate tables,

0000 Scratchpad values for use within the BDOS (initial
value is unimportant),

DIRBUF Address of a 128 byte scratchpad area for directory
operations within BDOS. All DPH's address the same

scratchpad area,

DPB Address of a disk parameter block for this drive,
Drives with identical disk characteristics address the
same disk parameter block.

csv Address of a scratchpad area used for software check
for changed disks, This address is different for each
DPH,

ALV Address of a scratchpad area used by the BDOS to keep

disk storage allocation information. This address is
different for each DPH,

Given n disk drives, the DPH's are arranged in a table whose first row

of 16 bytes corresponds to drive @, with the last row corresponding to
drive n-1, The table thus appears as

(All Information Contained Herein is Proprietary to Digital Research,)

25

DPBASE:

90 |XLT 00| 0000 | 0000 | 0009 |DIRBUF|DBP @0@ICSV @00|ALV 00|

—— e — - A —— S S — —— A — — — — —) — — — . S T S =S W GED D Gt ST TEY GEN S D W e - e e = e

91 |XLT 01| 0000 | 0000 | 0000 |DIRBUF|DBP @1|iCSV #1|ALV 41|

n-1|XLTn-1| 0000 | 00060 | 0000 |DIRBUF|DBPn-1|CSVn-1|ALVn-1]|

—— e — — —— —— o — S A — —— — R — S T e T D D S e D G P S D . G — — o —— — -

where the label DPBASE defines the base address of the DPH table.

A responsibility of the SELDSK subroutine is to return the base
address of the DPH for the selected drive, The following sequence of
operations returns the table address, with a @000H returned 1if the
selected drive does not exist,

NDISKS EQU 4 ;NUMBER OF DISK DRIVES
SELDSK :
;SELECT DISK GIVEN BY BC
LXI H,00060H ;ERROR CODE
MOV A,C ;DRIVE OK?
CPI NDISKS ;CY IF SO
RNC :RET IF ERROR
:NO ERROR, CONTINUE
MOV L,C ; LOW (DISK)
MOV H,B ;HIGH(DISK)
DAD H ;%2
DAD H ;%4
DAD H ;%8
DAD H ;%16
LXI D,DPBASE ;FIRST DPH
DAD D ; DPH (DISK)
RET

The translation vectors (XLT @@ through XLTn-1) are 1located
elsewhere 1in the BIOS, and simply correspond one-for-one with the
logical sector numbers zero through the sector count-1, The Disk
Parameter Block (DPB) for each drive is more complex, A particular
DPB, which is addressed by one or more DPH's, takes the general form

| SPT |BSHIBLM|EXM| DSM | DRM |AL@IALll CKS | OFF |
16b 8b 8b 8b 16b l6b 8b 8b 16b 16b
where each is a byte or word value, as shown by the *8b" or "16b"

indicator below the field,
SPT is the total number of sectors per track

BSH is the data allocation block shift factor, determined
by the data block allocation size.

(All Information Contained Herein is Proprietary to Digital Research,)

26

EXM is the extent mask, determined by the data block
aliocation size and the number of disk blocks.

DSM determines the total storage capacity of the disk drive

DRM determines the total number of directory entries which
can be stored on this drive AL®,AL1 determine reserved
directory blocks.

CKS is the size of the directory check vector

QFF is the number of reserved tracks at the beginning of
the (logical) disk.

The values of BSH and BLM determine (implicitly) the data allocation
size BLS, which 1is not an entry in the disk parameter block. Given
that the desijner has selected a value for BLS, the values of BSH and
BLM are shown in the table below

BLS BSH BLM
1,024 3 7
2,048 4 15
4,096 5 31
8,192 6 63

16,384 7 127

where all values are in decimal., The value of EXM depends upon both
the BLS and whether the DSM value is less than 256 or greater than
255, as shown in the following table

BLS DSM < 256 DSM > 255
1,024] N/A
2,048 1]
4,096 3 1
8,192 7 3

16,384 15 7

The value of DSM is the maximum data block number supported by
this particular drive, measured in BLS units, The product BLS times
(DSM+1) is the total number of bytes held by the drive and, of course,
must be within the capacity of the physical disk, not counting the
reserved operating system tracks,

The DRM entry is the one less than the total number of directory
entries, which can take on a 16-bit value, The values of AL# and AL1l,
however, are determined by DRM. The two values AL# and ALl can
together be considered a string of 16-bits, as shown below.

(All Information Contained Herein is Proprietary to Digital Research.)

27

— e G - ——— 0 AmD GOV WD WD AP WP YED M S S — ——— — — — — — — — D = WP WD S P CES =P MR i M s
——- G A Gmm e WD G EUR M e S S AER S M e VD S G G S G G e M S S D S G BEe o TS S S S S S S G -

09 01 02 63 04 65 06 07 68 69 1/ 11 12 13 14 15

where position 80 corresponds to the high order bit of the byte
labelled ALA, and 15 corresponds to the low order bit of the byte
labelled AL1. Each bit position reserves a data block for number of
directory entries, thus allowing a total of 16 data blocks to be
assigned for directory entries (bits are assigned starting at 68 and
filled to the right until position 15). Each directory entry occupies
32 bytes, resulting in the following table

BLS Directory Entries
1,024 32 times # Dbits
2,048 64 times # Dbits
4,096 128 times # bits
8,192 256 times # bits

16,384 512 times # bits

Thus, if DRM = 127 (128 directory entries), and BLS = 1824, then there
are 32 directory entries per block, reguiring 4 reserved blocks. In
this case, the 4 high order bits of AL@ are set, resulting in the
values AL# = OFOH and ALl = 00H,

The CKS value is determined as follows: if the disk drive media
is removable, then CKS = (DRM+l)/4, where DRM is the 1last directory
entry number. If the media is fixed, then set CKS = @ (no directory
records are checked in this case).

Finally, the OFF field determines the number of tracks which are
skipped at the beginning of the physical disk. This value is
automatically added whenever SETTRK is called, and can be used as a
mechanism for skipping reserved operating system tracks, or for
partitioning a large disk into smaller segmented sections,

To complete the discussion of the DPB, recall that several DPH's
can address the same DPB if their drive characteristics are identical.
Further, the DPB can be dynamically changed when a new drive is
addressed by simply changing the pointer in the DPH since the BDOS
copies the DPB values to a local area whenever the SELDSK function is
invoked,

Returning back to the DPH for a particular drive, note that the
two address values CSV and ALV remain, Both addresses reference an
area of uninitialized memory following the BIOS. The areas must be
unigue for each drive, and the size of each area is determined by the
values in the DPB.

The size of the area addressed by CSV is CKS bytes, which is
sufficient to hold the directory check information for this particular
drive. If CKS = (DRM+1)/4, then you must reserve (DRM+l)/4 bytes for
directory check use, If CKS = @, then no storage is reserved.

(All Information Contained Herein is Proprietary to Digital Research.)

28

The size of the area addressed by ALV is determined by the
maximum number of data blocks allowed for this particular disk, and is
computed as (DSM/8)+1.

The CBIOS shown in Appendix C demonstrates an instance of these
tables for standard 8" single density drives. It may be useful to

examine this program, and compare the tabular values with the
definitions given above,

(All Information Contained Herein is Proprietary to Digital Research.)

29

11. THE DISKDEF MACRO LIBRARY.

A macro library is shown in Appendix F, called DISKDEF, which
greatly simplifies the table construction process, You must have
access to the MAC macro assembler, of course, to use the DISKDEF
facility, while the macro library is included with all CP/M 2.8
distribution disks,.

A BIOS disk definition consists of the following sequence of
macro statements:

MACLIB DISKDEF
DISKS n
DISKDEF #,...
DISKDEF 1,...

DISKDEF n-1

ENDEF

where the MACLIB statement loads the DISKDEF.LIB file (on the same
disk as vyour BIOS) into MAC's internal tables, The DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range 1 to 16, A series of
DISKDEF macro calls then follow which define the characteristics of
each 1logical disk, @ through n-1 (corresponding to logical drives A
through P). Note that the DISKS and DISKDEF macros generate the
in-line fixed data tables described in the previous section, and thus
must be placed in a non-executable portion of vyour BIOS, typically
directly following the BIOS jump vector.

The remaining portion of your BIOS 1is defined following the
DISKDEF macros, with the ENDEF macro call immediately preceding the
END statement, The ENDEF (End of Diskdef) macro generates the
necessary uninitialized RAM areas which are located in memory above
your BIOS.

The form of the DISKDEF macro call is

DISKDEF dn,fsc,lsc,[skf],bls,dks,dir,cks,ofs, [0]

where
dn is the logical disk number, # to n-1
fsc is the first physical sector number (9 or 1)
lsc is the last sector number
sk is the optional sector skew factor
bls is the data allocation block size
dir is the number of directory entries
cks is the number of "checked" directory entries
ofs is the track offset to logical track 060
(@] is an optional 1.4 compatibility flag

The value "dn" is the drive number being defined with this DISKDEF

(All Information Contained Herein is Proprietary to Digital Research,)

30

macro invocation. The "fsc" parameter accounts for differing sector
numbering systems, and is usually @ or 1, The "“lsc® 1is the last
numbered sector on a track, When present, the "skf" parameter defines
the sector skew factor which is used to create a sector translation
table according to the skew, If the number of sectors 1is 1less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytes. No translation table is created 1if the

skf parameter is omitted (or equal to 8). The “bls" parameter
specifies the number of bytes allocated to each data block, and takes
on the wvalues 1024, 2048, 4696, 8192, or 16384, Generally,

performance increases with larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk., Further, each directory entry addresses
more data and the BIOS-resident ram space is reduced, The "dks"
specifies the total disk size in "bls" units., That is, if the bls =
2048 and dks = 1008, then the total disk capacity is 2,048,000 bytes.
If dks is greater than 255, then the block size parameter bls must be
greater than 1024, The wvalue of "dir" is the total number of
directory entries which may exceed 255, if desired. The “cks"
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an 1intervening <cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data is not subsequently destroyed). As
stated in the previous section, the value of cks = dir when the media
is easily changed, as is the case with a floppy disk subsystem, 1If
the disk is permanently mounted, then the value of cks is typically @,
since the probability of changing disks without a restart 1is aquite
low. The "“ofs" value determines the number of tracks to skip when
this particular drive is addressed, which <can be used to reserve
additional operating system space or to simulate several logical
drives on a single large capacity physical drive,. Finally, the [0]
parameter 1is included when file compatibility is required with
versions of 1.4 which have been modified for higher density disks.
This parameter ensures that only 16K is allocated for each directory
record, as was the case for previous versions, Normally, this
parameter is not included.

For convenience and economy of table space, the special form
DISKDEF i,]
gives disk i1 the same characteristics as a previously defined drive j.

A standard four-drive single density system, which is compatible with
version 1.4, is defined using the following macro invocations:

(All Information Contained Herein is Proprietary to Digital Research,)

31

DISKS 4
DISKDEF 9,1,26,6,1024,243,64,64,2
DISKDEF 1,9

DISKDEF 2,9

DISKDEF 3,0

ENDEF

with all disks having the same parameter values of 26 sectors per
track (numbered 1 through 26), with 6 sectors skipped between each
access, 1024 bytes per data block, 243 data blocks for a total of 243k
byte disk capacity, 64 checked directory entries, and two operating
system tracks.

The DISKS macro generates n Disk Parameter Headers (DPH's),
starting at the DPH table address DPBASE generated by the macro. Each
disk header block contains sixteen bytes, as described above, and
correspond one-for-one to each of the defined drives, In the four

drive standard system, for example, the DISKS macro generates a table
of the form:

DPBASE EQU $

DPED : DW XLT0 ,0000H,0000H,0800H,DIRBUF ,DPB®,CSVQ ,ALVD
DPEl: DW XLTQ ,0000H,0000H,00800H,DIRBUF,DPBO,CSV]1,ALV]
DPE2: DW XLTO ,0000H,0000H,0000H,DIRBUF ,DPB@,CSV2,ALV2
DPE3: DW XLTO ,0000H,0009H,0900H,DIRBUF,DPB@,CSV3,ALV3

where the DPH labels are included for reference purposes to show the
beginning table addresses for each drive @ through 3, The values
contained within the disk parameter header are described in detail in
the previous section., The check and allocation vector addresses are

generated by the ENDEF macro in the ram area following the BIOS code
and tables,

Note that if the “skf" (skew factor) parameter is omitted (or
equal to @), the translation table is omitted, and a @0G00H value is
inserted in the XLT position of the disk parameter header for the
disk. In a subseguent call to perform the logical to physical
translation, SECTRAN receives a translation table address of DE =
pOOPH, and simply returns the original logical sector from BC in the
HL register pair. A translate table 1is constructed when the skf
parameter 1s present, and the (non-zero) table address is placed into
the corresponding DPH's, The table shown below, for example, is
constructed when the standard skew factor skf = 6 is specified in the
DISKDEF macro call:

XLT@: DB 1,7,13,19,25,5,11,17,23,3,9,15,21
DB 2,8,14,20,26,6,12,18,24,4,10,16,22

Following the ENDEF macro call, a number of uninitialized data
areas are defined. These data areas need not be a part of the BIOS
which is loaded upon cold start, but must be available between the
BIOS and the end of memory. The size of the uninitialized RAM area is
determined by EQU statements generated by the ENDEF macro. For a
standard four-drive system, the ENDEF macro might produce

(All Information Contained Herein is Proprietary to Digital Research.)

32

4C72

BEGDAT EQU §
(data areas)
ENDDAT EQU S
DATSIZ EQU S$-BEGDAT

4DBY
p13C

Wu

which indicates that uninitialized RAM begins at location 4C72H, ends
at 4DBAH-1, and occupies @13CH bytes. You must ensure that these
addresses are free for use after the system is loaded.

After modification, you can use the STAT program to check your
drive characteristics, since STAT uses the disk parameter block to
decode the drive information. The STAT command form

STAT d:DSK:

decodes the disk parameter block for drive 4 (d=A,...,P) and displays
the values shown below:

r: 128 Byte Record Capacity
k: Kilobyte Drive Capacity
d: 32 Byte Directory Entries
c: Checked Directory Entries
e: Records/ Extent

b: Records/ Block

s: Sectors/ Track

t: Reserved Tracks

Three examples of DISKDEF macro invocations are shown below with
corresponding STAT parameter values (the last produces a full
8-megabyte system).

DISKDEF ©,1,58,,2048,256,128,128,2
r=4696, k=512, d=128, c=128, e=256, b=16, s=58, t=2

DISKDEF 4,1,58,,2048,1024,300,0,2
r=16384, k=2048, d=300, c=0, e=128, b=16, s=58, t=2

DISKDEF 6,1,58,,16384,512,128,128,2
r=65536, k=8192, d=128, c=128, e=1024, b=128, s=58, t=2

(All Information Contained Herein is Proprietary to Digital Research.)

33

12, SECTOR BLOCKING AND DEBLOCKING.

Upon each call to the BIOS WRITE entry point, the CP/M BDOS
includes information which allows effective sector blocking and
deblocking where the host disk subsystem has a sector size which is a
multiple of the basic 128-byte unit. The purpose here is to present a
general-purpose algorithm which can be included within your BIOS which
uses the BDOS information to perform the operations automatically,

Upon each <call to WRITE, the BDOS provides the following
information in register C:

normal sector write
write to directory sector
write to the first sector
of a new data block

2
1
2

Condition @ occurs whenever the next write operation is 1into a
previously written area, such as a random mode record update, when the
write 1is to other than the first sector of an unallocated block, or
when the write is not into the directory area. Condition 1 occurs
when a write into the directory area is performed. Condition 2 occurs
when the first record (only) of a newly allocated data block is
written, 1In most cases, application programs read or write multiple
128 byte sectors in seguence, and thus there is little overhead
involved in either operation when blocking and deblocking records
since pre-read operations can be avoided when writing records.

Appendix G lists the blocking and deblocking algorithms in skeletal
form (this file is included on vyour CP/M disk). Generally, the
algorithms map all CP/M sector read operations onto the host disk
through an intermediate buffer which 1is the size of the host disk
sector. Throughout the program, values and variables which relate to
the CP/M sector involved in a seek operation are prefixed by "sek,"
while those related to the host disk system are prefixed by "hst."
The equate statements beginning on line 29 of Appendix G define the
mapping between CP/M and the host system, and must be changed if other
than the sample host system is involved.

The entry points BOOT and WBOOT must contain the initialization
code starting on 1line 57, while the SELDSK entry point must be
augmented by the code starting on line 65, Note that although the
SELDSK entry point computes and returns the Disk Parameter Header
address, it does not physically selected the host disk'at this point
(it 1is selected 1later at READHST or WRITEHST). Further, SETTRK,
SETTRK, and SETDMA simply store the values, but do not take any other
action at this point, SECTRAN performs a trivial trivial function of
returning the physical sector number,

The principal entry points are READ and WRITE, starting on lines
110 and 125, respectively. These subroutines take the place of vyour
previous READ and WRITE operations,

The actual physical read or write takes place at either WRITEHST
or READHST, where all values have been prepared: hstdsk is the host

(A1l Information Contained Herein is Proprietary to Digital Research.)

34

disk number, hsttrk is the host track number, and hstsec is the host
sector number (which may require translation to a physical sector

number) . You must insert code at this point which performs the full
host sector read or write into, or out of, the buffer at hstbuf of
length hstsiz. All other mapping functions are performed by the
algorithms,

This particular algorithm was tested using an 80 megabyte hard
disk unit which was originally configured for 128 byte sectors,
producing approximately 35 megabytes of formatted storage, When
configured for 512 byte host sectors, usable storage increased to 57
megabytes, with a corresponding 4060% improvement in overall response.

In this situation, there 1is no apparent overhead involved in
deblocking sectors, with the advantage that wuser programs still
maintain the (less memory consuming) 128-byte sectors, This 1is

primarily due, of course, to the information provided by the BDOS
which eliminates the necessity for pre-read operations to take place.

(All Information Contained Herein is Proprietary to Digital Research.)

35

Pd00
ffff
0000

0000

0000
P8O6
1880
1600
1663

30089

1880
0ao2
0031
00819
0a18

£800
ffof
0a78
8279
687b
Ba7£

0078
po79
007a
pOff
0oo3
0004
0100

3000 310001
3603 db79
3805 db7b

3007 dbff

3888 58730

APPENDIX A: THE MDS COLD START LOADER
MDS-800 Cold Start Loader for CP/M 2.0

Version 2.8 August, 1979

“e we we we

false equ 0
true equ not false
testing equ false
if testing
bias equ $34006h
endif
if not testing
bias equ d000h
endif
cpmb equ bias 1base of dos load
bdos equ 8@6h+bias ;entry to dos for calls
bdose equ 1880h+bias ;end of dos load
boot egu 16080h+bias ;cold start entry point
rboot egu boot+3 ;warm start entry point
org 3606h ;loaded here by hardware
bdosl equ bdose-cpmb
ntrks egu 2 ;tracks to read
bdoss egu bdosl/128 ;# sectors in bdos
bdos# equ 25 1% on track 9
bdosl eau bdoss-bdos@ :$# on track 1
mon8@d equ §£80806h ;intel monitor base
rmon8@ equ gff@8fh :restart location for mon8@
base equ @78h ; 'base' used by controller
rtype equ base+l ;result type
rbyte equ base+3 ;result byte
reset equ base+7 ;reset controller
dstat equ base ;disk status port
ilow egu base+l ;low iopb address
ihigh eqgu base+2 ;high iopb address
bsw equ Bffh ;boot switch
recal equ 3h srecalibrate selected drive
readf equ 4h ;disk read function
stack equ 1906h suse end of boot for stack
rstart:
1xi sp,stack;in case of call to mon8#@
H clear disk status
in rtype
in rbyte
; check if boot switch is off
coldstart:
in bsw
?R% g%&dstarESWItCh on?

36

300e

30610
3612

3815
3016
3018
3819
3061b

181¢

3022
3024
3826

3028

302b

3024
302e
3031
3032

3034

3037
303a
383b
3083c

303f

da37f

p602
214230

7d
d379
7c
d37a
db78

£89830

db79

e603
fef2

d20830

db7b

17
dc@fff
1f
e6le

c20039

110700
19
05
c21530

c30016

e

~e =

tart:

e wo [wo

waitf:

- we

~e -e -e -e

we we

we w8 we

e weo

clear the controller

out reset :1logic cleared
mvi b,ntrks ;number of tracks to read
1xi h,iopb@d

read first/next track into cpmb

mov a,l

out ilow

mov a,h

out ihigh

in dstat

33 it

check disk status

in rtype

ani 11b

cpi 2

if testing

cnc rmon88 ;go to monitor if 11 or 10
endif

if not testing

jnc rstart ;retry the load

endif

in rbyte ;1/0 complete, check status
if not ready, then go to mon848

ral

cc rmon8@ ;not ready bit set
rar ;restore

ani 111108b ;overrun/addr err/seek/crc
if testing

cnz rmon80 ;go to monitor

endif

if not testing

jnz rstart ;retry the load

endif

1xi d,iopbl ;length of iopb

dad d ;addressing next iopb
dcr b ;count down tracks
jnz start

jmp boot, print message, set-up jmps
jmp boot

parameter blocks

37

3042
3943
3044
3045
3046
3047
poo7

3049
304a
304b
384c
3044
304e
30580

80
04
19
80
g2
po0D

80
g4
18
g1
g1
8§06c

iopb0:

iopbl

iopbl:

db
db

db
db
dw
equ

ab
db
db
db
db
dw
end

86h siocw, no update

readf sread function

bdosd 1% sectors to read trk 0

7] strack @

2 :start with sector 2, trk 8
cpmb ;start at base of bdos
S-iopb@

806h

readf

bdosl ;sectors to read on track 1
1 strack 1

1 ;sector 1

cpmb+bdosf#*128 ;base of second rd

38

PD14

4a00
3400
3c@6
1600
3@2c
6002
ggd4
080
Bada

4200
4a03
4a06
4a@9
4afc

c3b34a
c3c34a
c3614b
c3644b
c36a4db

APPENDIX B: THE MDS BASIC I/O SYSTEM (BIOS)

N Ne Ne we we Se G N we we we we
(1]
[}
n

cpmb
bdos
cpml
nsects
of fset
cdisk
buff
retry

WO MO WO MBS MG MO NG WE NP NS NE WS WO M WS WO WS MG WO NG WS Wp W WO w4 we W

wboote:

mds-89006 i/o drivers for cp/m 2.0
(four drive single density version)

version 2,0 august, 1979
equ 20 ;version 2,0
copyright (c¢) 1979

digital research

box 579, pacific grove
california, 93950

org 4a@dh ;base of bios in 20k system

egu 3406h :base of cpm ccp

equ 3c@6h :base of bdos in 20k system

equ $S-cpmb ;length (in bytes) of cpm system
equ cpml/128; number of sectors to load

equ 2 ;number of disk tracks used by cp
equ 0004h ;address of last logged disk

egu B080h sdefault buffer address

equ 19 ;max retries on disk i/o before e

perform following functions
boot cold start
wboot warm start (save i/o byte)
({boot and wboot are the same for mds)
const console status
reg-a = PO if no character ready
reg-a = £f if character ready
conin console character in (result in reg-a)
conout <console character out (char in reg-c)
list list out (char in reg-c)
punch punch out (char in reg-c)
reader paper tape reader in (result to reg-a)
home move to track 00

(the following calls set-up the io parameter bloc
mds, which is used to perform subseguent reads an
seldsk select disk given by reg-c (6,1,2...)
settrk set track address (#,...76) for sub r/w
setsec set sector address (l1,....,26)

setdma set subsequent dma address (initially 8@h

read/write assume previous calls to set i/o parms
read read track/sector to preset dma address
write write track/sector from preset dma addres

jump vector for indiviual routines

jmp boot

jmp wboot
jmp const
jmp conin
jmp conout

39

4a@f c36d4b jmp list

4al2 c3724b jmp punch
4al5 ¢c3754b jmp reader
4al8 c3784b jmp home
4alb c37d4b jmp seldsk
4ale c3a74b jmp settrk
4a2l c3acdb jmp setsec
4a24 c3bbéb jmp setdma
4a27 c3cl4b jmp read
4a2a c3cadb jmp write
4a2d c37064b jmp listst ;list status
4a3@ c3bléab jmp sectran
maclib diskdef ;load the disk definition library
disks 4 s four disks
4a33+= dpbase equ S ;base of disk parameter blocks
4a33+824a00 dpeb: dw x1t@ ,0000h :translate table
4a37+0000060 dw 30060h,00006h ;scratch area
4a3b+6edc73 dw dirbuf,dpb@ ;dir buff,parm block
4a3f+0dddee dw csv@,alvd :scheck, alloc vectors
4a43+824a0@ dpel: dw x1ltl,064608h stranslate table
4a47+000000 dw 2000h,0006h ;scratch area
4a4db+6edc73 dw dirbuf,dpbl ;dir buff,parm block
4a4f+3c4dld dw csvl,alvl ;check, alloc vectors
4a53+824a0@ dpe2: dw x1t2,00800h ;translate table
4a57+0060000 dw f000h,00008h ;scratch area
4a5b+6e4d4c73 dw dirbuf,dpb2 ;dir buff,parm block
4a5f+6bdddc dw csv2,alv2 scheck, alloc vectors
4a63+824a00 dpe3: aw x1t3,00600h ;translate table
4a67+000000 dw 0000h,00006h ;scratch area
4a6b+6ed4c73 dw dirbuf,dpb3 ;dir buff,parm block
4a6f+9a4d7b dw csv3,alv3 :check, alloc vectors
diskdef 0,1,26,6,1024,243,64,64,0ffset
4a73+= dpb#d equ $;disk parm block
4a73+1ab0 dw 26 ;sec per track
4a75+4+03 db 3 :block shift
4a76+07 db 7 :block mask
4a77+00 db] ;extnt mask
4a78+£200 dw 242 :disk size-1
4a7a+3f00 dw 63 ;directory max
4a7lc+cl db 192 salloch
4a7d4+00 db @ :allocl
4a7e+1000 aw 16 ;check size
4a80+0200 dw 2 ;offset
4a82+= x1t9d equ $;translate table
4a82+01 db 1
4a83+07 db 7
4a84+64d db 13
4a85+13 ab 19
4a86+19 db 25
4a87+05 db 5
4a88+6b db 11
4a89+11 db 17
4a8a+l7 db 23
4a8b+03 db 3

49

4a8c+09
4a8d+0f
4a8e+15
4a8f+02
4a90+08
4a91+Q0e
4a92+14
4a93+1a
4a94+06
4a95+@c
4a96+12
4a97+18
4a298+04
4a99+8a
4a9a+10
4a9b+16

4a73+=
PO1f+=
Pe10+=
4a82+=

4a73+=
0B1f+=
0B10+=
4a82+=

4a73+=
PA1lf+=
0010+=
4a82+=

gafda
gdfc
go£f3
go7e

£800
ffof
£803
£806
£869
f80c
£f80f
£812

dpbl
alsl
cssl
x1tl

dpb?2
als2
css2
x1lt2

dpb3
als3
css3

»

[
(el
w

€ NE MO WE WE WMe WE N WO wp

’
revrt
intc
icon
inte

’

°
14

mon8@
rmon80
ci

ri

co

po

lo
csts

db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
diskdef
equ
egu
equ
equ
diskdef
egu
egu
equ
egu
diskdef
equ
equ
equ
equ

endef occurs at

end of controller - independent code,

9

15
21

2

8

14
20
26

6

12
18
24

4

19
16
22
1,0
dpb®
als@
cssh
x1t@
2,0
dpb@
als@
cssé
x1t@
3,9
dpb@
alsp
cssl
x1t@d

;eguivalent parameters

:same allocation vector size
:same checksum vector size
:same translate table

;equivalent parameters

;same allocation vector size
:same checksum vector size
;same translate table

;equivalent parameters

:same allocation vector size
:same checksum vector size
ssame translate table

end of assembly

the remaini

are tailored to the particular operating environm
be altered for any system which differs from the

the following code assumes the mds monitor exists
and uses the i/0 subroutines within the monitor

we also assume the mds system has four disk drive

equ
equ
equ
equ

gfdh
dfch
Gf3h

sinterrupt revert port
;interrupt mask port
;interrupt control port

$111$1110b;enable rst #(warm boot) ,rst 7

mds monitor equates

equ
equ
equ
equ
equ
equ
equ
equ

0£800h
PEfafh
P£803h
p£8@6h
PEB8O9N
Pf8dch
Pf£8Ofh
P£E8L 2h

41

;mds monitor

s:restart mon806 (boot error)
;console character to reg-a
;reader in to reg-a

sconsole char from ¢ to console o
;punch char from ¢ to punch devic
slist from ¢ to list device
;console status #6/ff to register

0078
0B78
po79
pO7b

0079
po7a

3884
3006
60063
o904
6ona
gd0a

4a9c
4a9f
4aal
4aad
4abl

4ab3
4abb6
4ab9
4abc
4abd
4dacd

4ac3

4acé
4ac8

4dac9
4dacc
dact
4adl
4ad4
4ad6
4ad9
4adb

4ade
4adf

Pddada
3230
6b2043f
322e30
Pdpad@d

3100061
219c4da
cdd34b
af

320400
c36fdb

318000

bdeBa
c5

810634
cdbbdb
DelD
cd7d4b
bedd
cda74b
bed?2
cdacdb

cl
g62c

* we

base
dstat
rtype
rbyte
ilow
ihigh

readf
writf
recal
iordy
cr
1f

signon:

boot:

ALER LI TIE SR LEE 1)
log
o]
O
P

-e

wbootf:

“e we

disk ports and commands

equ 78h :base of disk command io ports
equ base ;disk status (input)

equ base+l ;result type (input)

equ base+3 ;result byte (input)

egu base+l ;iopb low address (output)
equ base+2 ;iopb high address (output)
equ 4h sread function

equ 6h ;write function

equ 3h srecalibrate drive

egu 4h ;i/0 finished mask

equ @dh ;carriage return

equ Pah :line feed

;signon message: xxk cp/m vers y.y

db cr,1f,1f

db ‘29 ;sample memory size

db 'k cp/m vers '

db vers/10+'96','.’ ,vers mod 16+'@’
db cr,1£,0

;Print signon message and go to ccp
(note: mds boot initialized iobyte at 0063h)
1xi sp,buff+80h

1xi h,signon

call prmsg ;print message

Xra a ;clear accumulator

sta cdisk ;set initially to disk a
jmp gocpm ;go to cp/m

loader on track @, sector 1, which will be skippe
read cp/m from disk - assuming there is a 128 byt
start,

1xi sp,buff ;using dma - thus 80 thru ff ok £
mvi c,retry ;max retries

push b

;enter here on error retries

1xi b,cpmb ;set dma address to start of disk
call setdma

mvi c,0 :boot from drive 8

call seldsk

mvi c,d

call settrk j;start with track @

mvi c,2 ;start reading sector 2

call setsec

read sectors, count nsects to zero
pop b ;:10-error count
mvi b,nsects

42

4ael
4ae?
daeb
4ae8
4aeb
4aece
daef
4afg
4afl
4af4
4af7
4af9

4dafc
daff
4b0o 3
4bg1
4bo4
4b@5
4bfe6
4b@7
4bda
4bdb
4bfc

4b0 f
4b19
4bl2
4bl4
4bl5
4b17
4b19
4blb
4blc

4ble
4b21

4b24
4b26
4b29
4b2c
4b2f
4b32
4b35
4b38
4b3b
4b3e

c5
cdcléb
c2494Db
2a6cdc
118000
19

44

4d
cdbbdb
3aéb4dc
fela
da@54b

3abadc
3¢
4f
cda74b
af
3c
4f
cdacédb
cl
g5
c2elda

£3
3el2
d3fd
af
d3fc
3e7e
d3fc
af
d3£f3

V18000
cdbb4b

3ec3

320000
210634a
220100
320500
21063c
220600
323800
2100f8
223900

rdsec:

-e

rdl:

ocpm:

~o (Q we ~s

-e we

we we

e

sread next sector

push
call
jnz
lhld
1xi
dad
mov
mov
call
1da
cpi
jc
must
1da
inr
mov
call
Xra
inr
mov
call
pop
dcr
jnz

b

read
booterr
iod
d,128
d

b,h
c,1
setdma
ios

26

rdl

;s save sector count

;retry if errors occur
sincrement dma address

:sector size

;incremented dma address in hl

;ready for call to set dma

;sector number just read
;read last sector?

be sector 26, zero and go to next track

iot

a

c,a
settrk
a

a

c,a
setsec
b

b
rdsec

;get track to register a
sready for call

s;clear sector number

; £t0 next sector

;ready for call

;recall sector count
;done?

done with the load, reset default buffer address
: (enter here from cold start boot)
enable rstd and rst7

di

mvi
out
Xra
out
mvi
out
Xra
out

a,l2h
revrt
a

intc
a,inte
intc

a

icon

:initialize command

tcleared
;rst@ and rst7 bits on

;interrupt control

set default buffer address to 8@h

1xi
call

b,buff
setdma

reset monitor entry points

mvi
sta
1xi
shld
sta
1xi
shld
sta
1xi
shld
leave

a,jmp

]

h,wboote

1

5

h,bdos

6

7*8

h,mon8@

7*8+1
iobyte set

43

; Jmp wboot at location 60

;jmp bdos at location 5
;Jmp to mon8@ (may have been chan

previously selected disk was b, send parameter to

-e

4b4l1 3a04499 lda cdisk ;last logged disk number
4b44 4f mov c,a ;send to ccp to log it in
4b45 fb ei
4bd6 c30034 jmp cpmb
H error condition occurred, print message and retry
booterr:
4b49 cl pop b ;:recall counts
4bda 9d dcr o]
4b4b cab524b jz booterd
: try again
4bde c¢5 push b
4b4f c3c94a jmp wboot@
booter@:
: otherwise too many retries
4b52 215bdb 1xi h,bootmsg
4b55 cdd34b call prmsg
4b58 c30fff jmp rmon8@# ;mds hardware monitor
bootmsg:
4b5b 3f626f4 db '‘?boot', B
const: :console status to reg-a
H (exactly the same as mds call)
4b61 c312£8 jmp csts
conin: ;console character to reg-a
4b64 cd@3f8 call ci
4b67 e67t ani 7fh ;remove parity bit
4b69 c9 ret
conout: :console character from c to console out
4bba c309f8 jmp co
list: :list device out
H (exactly the same as mds call)
4b6d c30f£f8 jmp lo
listst:
s:return list status
4b70 aft Xra a
4b71 c9 ret salways not ready
punch: ;punch device out
; (exactly the same as mds call)
4b72 c30cf8 jmp po
reader: ;reader character in to reg-a
H (exactly the same as mds call)
4b75 c306£8 jmp ri
home: ;move to home position

44

4b78
4b7a

4b74d
4b89
4b81
4b83

4b84
4b86
4b89
4b8a
4b8c
4b8d
4b9 0@

4b92
4b93
4b96
4b97
4b99
4b9a

483k
4b9%e
4b9f
4bap
4bal
4ba2
4bas
4bab

4ba’
4baa
4bab

4bac
4baf
4bbb

4bbl
4bb3
4bb4
4bb5
4bb6

1BB2

feldd
c3a74b

210000
79
fep4
dg

e602
32664c
79
e601
b7
ca924b
3e30

47
21684c
Te
e6¢cf
bd

77
8200
29

29

29

29
11334a

19
c9

216a4c
71
c9Y

216bdc
71
c9

0600
eb

g9

Te
326b4dc

&§

H treat as track 00 seek

mvi
jmp

seldsk:
1xi
mov
cpi
rnc

-e

ani
sta
mov
ani
ora
jz

mvi

setdrive:

mov
1xi
mov
ani
ora
mov

mnov
mvi

dad
dad
dad
dad
1xi
dad
ret

-e we

settrk:
1xi
mov
ret

’

setsec:
1xi
mov
ret

sectran:

mvi

xchg

dad
mov
sta

mo
re

;set

c,f
settrk

;select disk given by register c¢

h,0006h ;return 9008 if error
a,c
ndisks ;too large?
s;leave hl = 00049
16b ;00 0@ for drive 6,1 and 10 18 fo
dbank :to select drive bank
a,c 100, 01, 10, 11
1b ;:mds has ¢,1 at 78, 2,3 at 88
a sresult 907?
setdrive
a,06110008b :selects drive 1 in bank
b,a ;save the function
h,iof ;io function
a,m
11601111b ;mask out disk number
b ;mask in new disk number
m,a ;save it in iopb
BB :hl=disk number
h : %2
h 2 %4
h :+ %8
h :*16
d,dpbase
a ;hl=disk header table address

;set track address given by c

h,iot
m,cC

sector number given by c¢

h,ios
m,c

;translate sector bc using table at de

b,d ;double precision sector number i
;translate table address to hl

b stranslate(sector) address

a,m stranslated sector number to a
ios
1,a ;return sector number in 1

setdma: ;set dma address given by regs b,c

45

4bbb
4bbc
4bbd
4bcd

4bcl
4bc3
4bcb
4bc9

4bca
dbcc
4bcf
4bd2

4bas3s
4bd4
4bd5

4bdeé
4bd7
4bds
4bdb
4bdc
4bdd

4bef
4be3
4bed
4beb
4be’?

4be8
4bea
4bed
4bee
4pef

4bfo

4bf2

4bf5

4bf8

69
60
226c¢c4c
c9

Beld
cdefidb
cdfd4b
c9

Belb
cdeddb
cdf@d4b
c9

Te
b7
c8

e5
4f
cd6adb
el
23
c3d34b

21684c
e
e6f8
bl

77

€620
216b4c
b6

77

c9

deda

cd3f4c

cd4cdc

3a664c

I
read:

~e we

write:

U -e we wo

rmsq:

-e

’
setfunc:

.
’

-e weo

.
[4

waitio:

rewait:

’

-e

mov i,c

mov h,b
shld iod
ret

;read next disk record (assuming disk/trk/sec/dma

mvi c,readf ;set to read function

call setfunc

call waitio ;perform read function

ret ;may have error set in reg-a

;disk write function

mvi c,writf

call setfunc :;set to write function
call waitio

ret smay have error set

utility subroutines
;print message at h,l1 to @

mov a,m

ora a :2ero?
rz

more to print

push h

mov c,a

call conout

pop h

inx h

jmp prmsg

set function for next i/o (command in reg-c)

1xi h,iof :io function address

mov a,m ;get it to accumulator for maskin
ani 111116006b ;remove previous command
ora c ;set to new command

mov m,a ;replaced in iopb

the mds~800 controller reg's disk bank bit in sec
mask the bit from the current i/o function

ani 0010600080b smask the disk select bit
1xi h,ios ;address the sector selec
ora m ;select proper disk bank
mov m,a ;set disk select bit on/o
ret

mvi c,retry ;max retries before perm error

start the i/o function and wait for completion

call intype ;in rtype
call inbyte ;clears the controller
lda dbank :set bank flags

46

4bfb
4bfc
4bfe
4c09
4c03
4c@5
4céo6
4c@8

4c@b
4cod
4che

4cl9
4cl3
4cl>b

4cls8

4clb
4cld

4c20
4c21

4c24
4c27
4c28
4c2b
4c2c
4c2e

4c31

4c32
4c35

b7
3e67
go4c
c2@bdc
d379
78
d37a
c3104c

d389
78
d38a

cds94c
e6ld4
calfic

cd3fdc

fed?2
ca324c

b7
c2384c

cddcdc
17
da324c
1£f
e6fe
c2384c

c9

cd4cdc
c3384c

~e we

we we

-s we

e wo

~e we

wready:

werror:

WE WE WE WME WE WP wWe we We wo

ora a :szero if drive 0,1 and nz

mvi a,iopb and 0ffh ;low address for iopb
mvi b,iopb shr 8 ;high address for iopb
jnz iodrl ;drive bank 17?

out ilow ;low address to controlle
mov a,b

out ihigh ;high address

jmp waitl :to wait for complete
sdrive bank 1

out ilow+16h :88 for drive bank 10
mov a,b

out ihigh+1dh

call instat ;wait for completion
ani iordy ;ready?

jz waitf

check io completion ok

call intype ;must be io complete (08)
B0 unlinked i/o complete, #1 linked i/o comple
1% disk status changed 11 (not used)

cpi 10b ;ready status change?

jz wready

must be #0 in the accumulator
ora a
jnz werror ;some other condition, re

check i/0 error bits

call inbyte

ral

jc wready ;unit not ready
rar

ani 11111116b ;any other errors?
jnz werror

read or write is ok, accumulator contains zero
ret

snot ready, treat as error for now
call inbyte ;clear result byte
jmp trycount

sreturn hardware malfunction (crc, track, seek, e
the mds controller has returned a bit in each pos
of the accumulator, corresponding to the conditio
~ deleted data (accepted as ok above)

- Crc error

- seek error

address error (hardware malfunction)

- data over/under flow (hardware malfunct
- write protect (treated as not ready)

- write error (hardware malfunction)

- not ready

~Noutibd WS
|

47

4c38
4c39

4c3c
4c3e

4c3f
4cd?2
4c43
4c4de6
4c48
4c49
4cdb

4cdc
4c4f
4c50
4c53
4c55
4c56
4c58

4c59
4c5c
4chd
4c60
4c62
4c63
4c65

4c66

4c67
4c68
4c69
4co6a
4c6b
4cée

pda
c2f24b

3efl
c9

3a664c
b7
c2494c
db79
c9
db89
c9

3a664c
b7
c2564c
db7b
c9
db8b
c9

3a664c
b7
c2634c
db78
c9
db88
cY

0o

80
04
21
02
01
8000

wo (I we we we we wo w»

~e we

i
i
1

ntype:

intypl:

inbyte:

inbytl:

.
7

instat:

instal:

(accumulator bits are numbered 7 6 5 4 3 2 1 0)

it may be useful to filter out the various condit
but we will get a permanent error message if it i
recoverable, in any case, the not ready conditio
treated as a separate condition for later improve

rycount:

register c contains retry count, decrement ‘til z
dcr c
jnz rewait ;for another try

cannot recover from error
mvi a,l ;error code
ret

intype, inbyte, instat read drive bank 00 or 10
lda dbank

ora a
jnz intypl ;skip to bank 10

in rtype

ret

in rtype+léh :78 for 6,1 88 for 2,3
ret

lda dbank

ora a

jnz inbytl

in rbyte

ret

in rbyte+lgh

ret

lda dbank

ora a

jnz instal

in dstat

ret

in dstat+16h

ret

data areas (must be in ram)

db] ;disk bank 09 if drive 0,1
: 190 if drive 2,3

;1o parameter block

db 80h ;normal i/o operation

db readf ;io function, initial read

db 1 ;number of sectors to read

db offset ;track number

db 1 ;sector number

dw buff ;io address

define ram areas for bdos operation

48

endef

4cobe+= begdat equ $

4cee+ dirbuf: ds 128 ;directory access buffer
4cee+ alvd: ds 31

4dgd+ csvi: ds 16

4d1d4+ alvl: ds 31

4d3c+ csvl: ds le

4d4c+ alv2: ds 31

4d6b+ csv2: ds 16

4d7b+ alv3: ds 31

4d9%a+ csv3: ds 16
4daa+= enddat equ $

B1l3c+= datsiz equ $-begdat
4daa end

49

0o14

0009
3400
3cl6
4a00
3004
2003

4a00
30 2c

4a00
4a03
4a06
4a09
4alc
4a0f
4al?2
4al5
4al8
4alb
4ale
4a2l
4a24
4a27
4a2a
4a2d
4a30

4a33
4a37
4a3b
4a3f

4a43
4a47
4adb
4a4f

4a53
4a57
4a5b
4a5f

c39cda
c3ab6da
c31l1l4b
c3244b
c3374b
c3494b
c34d4b
c34f4b
c3544b
c35a4db
c37d4b
c3924Db
c3ad4b
c3c34b
c3d64b
c34bdb
c3a74b

734a00
000000
fo4c8d
ecd4d7g

734a00
VO0BBo
f@4c8d
fc4d8f

734a0a
000000
fd4c8d
dcdeae

size

s we we ~e T we we

bias
ccp
bdos
bios
cdisk
iobyte

’

nsects

~e e

wboote:

Q) e we wo ~e

pbase:

-e

e

APPENDIX C: A SKELETAL CBIOS
skeletal cbios for first level of cp/m 2.0 altera
equ 20 ;Cp/m version memory size in kilo

"bias" is address offset from 34006h for memory sy
than 16k (referred to as "b" throughout the text)

equ (msize=20)*1024

equ 3400h+bias ;base of ccp

equ ccp+8@6h :base of bdos

egu ccp+l16@0h :base of bios

eqgu @304h scurrent disk number 0=a,...,15=p
equ g8063h ;intel i/o byte

org bios ;origin of this program

equ ($-ccp) /128 swarm start sector count

jump vector for individual subroutines

jmp boot :cold start

jmp wboot ;warm start

jmp const ;console status

jmp conin ;console character in
jmp conout ;jconsole character out
jmp list ;list character out
jmp punch ;punch character out
jmp reader ;reader character out
jmp home ;move head to home positi
jmp seldsk :select disk

jmp settrk :set track number

jmp setsec ;set sector number

jmp setdma ;set dma address

jmp read ;read disk

jmp write ;write disk

jmp listst ;return list status
jmp sectran ;sector translate

fixed data tables for four-drive standard
ibm-compatible 8" disks
disk parameter header for disk @0

dw trans,d08006h
aw 0000h,00080h
dw dirbf,dpblk
aw chk06,allo0
disk parameter header for disk 01
dw trans, 0000h
dw 0000h,00060h
dw dirbf,dpblk
dw chk@l,alldl
disk parameter header for disk 92
dw trans,0000h
dw 0000h,00000
dw dirbf,dpblk
dw chk#2,al1102

50

4263
4a67
4a6b
4a6f

273
4a7b
4a7f
4a83
4a87
4a8b

4a8d
4a8f
4a90
4a9l
4a92
4a94
4a96
4a97
4298
4a9%a

4a9c
4a9d
4aab
4aa3

4aab
4aa9
4aab
4aae

4abl
4ab3
4abs

4ab7

4aba
4abb
4abc
4abd
4abe
dacl

734a00
000000
f64c8a
l1cdecd

758208

170369
150268
141a06
121804
1016

lagg
33
a7
09
£200
3f00
cd
00
1006
0200

af

320360
3204060
c3efda

318000
gedl

cd5aédb
cd544b

¥62c
fedd
1602

210034

c5
a5
eb
4a
cd924b
cl

-e

T e weo

rans:

dpb1k :

O we Se me we

’
wboot:

-e

we we

loadl:

disk parameter header for disk 03

dw trans, 2060h
dw 0000h,0000h
dw dirbf,dpblk
dw chk@3,alls3

sector translate vector

98 3575131177 iSSSEQES 4:2:3:8

db 23,3,9,15 :sectors 9,16,11,12
db 21,2,8,14 ;sectors 13,14,15,16
db 20,26,6,12 ;s sectors 17,18,19,240
db 18,24,4,10 ;sectors 21,22,23,24
db 16,22 ;sectors 25,26

;disk parameter block, common to all disks

dw 26 ;sectors per track
db 3 :block shift factor
db 7 :block mask

db] snull mask

dw 242 :disk size-1

dw 63 sdirectory max

db 192 salloc 0

db 7] salloc 1

dw 16 ;check size

dw 2 strack offset

end of fixed tables

individual subroutines to perform each function
;simplest case is to just perform parameter initi

Xra a ;Zzero in the accum
sta iobyte ;clear the iobyte
sta cdisk :select disk zero
jmp gocpm ;initialize and go to cp/

;simplest case is to read the disk until all sect

1xi sp,80h ;use space below buffer £
mvi c,D ;select disk @

call seldsk

call home ;go to track @0

mvi b,nsects :b counts # of sectors to
mvi c,d ;¢ has the current track
mvi d,?2 :d has the next sector to

note that we begin by reading track §, sector 2 s
contains the cold start loader, which is skipped

1xi h,ccp :base of cp/m (initial 1lo
:1load one more sector

push b s save sector count, current track
push d :save next sector to read

push h ;save dma address

mov c,d ;get sector address to register c
call setsec ;set sector address from register
pop b ;recall dma address to b,c

51

4ac?
4ac3

4ace
4acH9
4achb

dace
4acft
4ad2
4ad3
4ad4
4ad>5
4ad6

4ad9
4ada
4adb
4add

4aed
4ae?2

4ae3
4aed
4aeb
daeb
4ae9
4daea
4aeb
4aec

4aef
4afl
4af4
4af’

4afa
4afd
4b0 @

4b03
4b0B6

4b09
4bda
4bad
4bde

cb5
cdaddb

cdc34b
feldd
c2ab6da

el
118000
19
dl
cl
@5
caefda

14

7a
felb
dabada

1601
dc

c5
das
e5
cd7d4b
el
dl
cl
c3bada

3ec3

320000
21034a
220100

320500
21863c
220600

0180006
cdad4b

fb
3ald 400
4f
c30034

e we

“e weo

~eo w8

-y we

—e we

0] ~o we
o
3
3

-e

-e

~e

push
call

b ;replace on stack for later recal
setdma ;set dma address from b,c

drive set to 8, track set, sector set, dma addres

call
cpi
jnz

read
@9dh ;any errors?
wboot sretry the entire boot if an erro

no error, move to next sector

pop
1xi
dad
pop
pop
dcr
jz

h srecall dma address
d,128 sdma=dma+128

d snew dma address is in h,1l

4a ;recall sector address

b ;recall number of sectors remaini
b ;sectors=sectors-1

gocpm ;transfer to cp/m if all have bee

more sectors remain to load, check for track chan

inr
mov
cpi
jc

end
mvi
inr

d

a,d :ssector=27?, if so, change tracks
27

loadl ;carry generated if sector<27

of current track, go to next track

d,1 sbegin with first sector of next
c strack=track+l

save register state, and change tracks

push
push
push
call
pop
pop
pop
jmp

b

a

h

settrk j;track address set from register
h

d

b

loadl : for another sector

end of load operation, set parameters and go to ¢

mvi
sta
1xi
shld

sta
1xi
shld

1xi
call

ei
l1da
mov

jmp

a,fc3h ;c3 is a jmp instruction

@ :for jmp to wboot

h,wboote ;wboot entry point

1 ;set address field for jmp at

5 ;for jmp to bdos

h,bdos ;bdos entry point

6 ;address field of jump at 5 to bd

b, 86h ;default dma address is 806h
setdma

;enable the interrupt system

cdisk ;get current disk number
c,a ;send to the ccp
ccp ;go to cp/m for further processin

52

4bl1
4b21
4b23

4b24
4b34
4b36

4b37
4b38
4b48

4b49
4bda

4b4b
4b4c

4b4d
4b4e

4b4f
4b51
4b53

4b54
4b56
4b59

4b5a
4b5d
4b5e
4b61l

3e00
c9

e67f
c9

79

c9

79
c9

af

79
c9

3ela
e67f
c9

Oel @
cd7d4b
c9

210080
79
32efd4c
febd

onst:

we [T we we we we we we

éeldsk:

simple i/o0 handlers (must be filled in by user)
in each case, the entry point is provided, with s
to insert your own code

sconsole status, return @ffh if character ready,

ds 16h ;space for status subroutine
mvi a,fd6h
ret

;console character into register a

ds 106h ;Space for input routine
ani 7fh ;strip parity bit
ret

;console character output from register c

mov a,c ;get to accumulator
ds 16h ;space for output routine
ret

slist character from register c¢
mov a,c ;character to register a
ret ;null subroutine

sreturn list status (@ if not ready, 1 if ready)
Xra a :+@ is always ok to return
ret

;punch character from register c
mov a,c ;character to register a
ret snull subroutine

;read character into register a from reader devic

mvi a,lah senter end of file for now (repla
ani 7fh ;remember to strip parity bit
ret

i/o drivers for the disk follow
for now, we will simply store the parameters away
in the read and write subroutines

smove to the track 08 position of current drive
translate this call into a settrk call with param

mvi c,0 :select track 0
call settrk
ret ;we will move to 08 on first read

;select disk given by register c

1xi h,808006h ;error return code

mov a,c

sta diskno

cpi 4 smust be between # and 3

53

4b63
4b64

4bé6e
4b71
4b72
4b74
4b75
4b76
4b77
4b78
4b7b
4b7c

4b7d
4b7e
4b81
4b91

4b92
4b93
4b96
4bab

4ba’
4ba8
4ba9
4baa
4bac

4bad
4bae
4baf
4bb2
4bc2

4bc3
4bd3

4bdé6

dag

3aefdc
6f
2600
29

29

29

29
11334a
19

c9

79
32e94c

c9
79
32ebdc
c9

eb
69
6e
2600
c9

69
60
22eddc

c9

c3e64b

rnc ;no carry if 4,5,...
disk number is in the proper range

-e

ds 190 ;space for disk select
; compute proper disk parameter header address
1da diskno
mov 1l,a :1=disk number 6,1,2,3
mvi h,@ shigh order zero
dad h 1 %2
dad h 1 %4
dad h : *8
dad h :*16 (size of each header)
1xi d,dpbase
dad d ;hl=.dpbase(diskno*16)

ret

(4
settrk: ;set track given by register c¢

mov a,c

sta track

ds 16h ;space for track select
ret

’

setsec: ;set sector given by register c

mov a,c
sta sector
ds 16h ;space for sector select
ret

7

sectran:

;translate the sector given by bc using the
;translate table given by de

xchg shl=_trans

dad b :hl=.trans(sector)
mov l,m :1 = trans(sector)
mvi h,d +hl= trans(sector)
ret swith value in hl

[
setdma: ;set dma address given by registers b and c

mov l,c ;low order address

mov h,b ;high order address

shld dmaad ;save the address

ds 16h ;space for setting the dma addres

ret
read: ;perform read operation (usually this is similar
; so we will allow space to set up read command, th
: common code in write)

ds 16h ;set up read command

jmp waitio ;to perform the actual i/o

write: ;perform a write operation
ds 10h ;set up write commanu

H
waitio: ;enter here from read and write to perform the ac

operation, return a #6h in register a if the ope
properly, and @lh if an error occurs during the r

54

in this case, we have saved the disk number in 'd
the track number in ‘track'® (8-76
the sector number in 'sector' (1-
the dma address in ‘dmaad’ (0-655

w8 wp we we WO

4beb ds 256 ;space reserved for i/o drivers
4ceb 3efl mvi a,l serror condition
4ce8 c9 ' ret ;replaced when filled-in

the remainder of the cbios is reserved uninitiali
data area, and does not need to be a part of the
system memory image (the space must be available,
however, between "begdat" and "enddat").

* wme we we ws we

I

4ce9 track: ds 2 ;1 two bytes for expansion
4ceb sector: ds 2 ;two bytes for expansion
4ced dmaad: ds 2 ;direct memory address
4cef diskno: ds 1 :disk number 6-15

: scratch ram area for bdos use
4cfd = begdat equ $;beginning of data area
4cfd dirbf: ds 128 ;scratch directory area
4470 all@g@: ds 31 sallocation vector 4§
448f all@gl: ds 31 sallocation vector 1
4dae allg2: ds 31 sallocation vector 2
4dcd allg3: ds 31 ;allocation vector 3
4dec chk@g@: ds 16 :check vector @
4dfc chk@gl: ds 16 ;check vector 1
4efc chk@2: ds 16 ;check vector 2
4elc chkd3: ds 16 ;check vector 3
4e2c = enddat equ $;end of data area
813c = datsiz equ S-begdat;size of data area
4e2c end

55

8100

po14

0000
3400
3c@d
4a00

0100
9103
0106

0108

d10a
91@d
0110
6111
p112
p113
8115

#6118
#1119
dlla
8llc

p11f
0120

APPENDIX D:

]

nw Hu

318033
218033
0600

fedl

cdoges3
118000
19

gc

79
felb
dafagl

g4

78
fed?2
da6801l

fb
76

A SKELETAL GETSYS/PUTSYS PROGRAM

; combined getsys and putsys programs from Sec 4.

; Start the programs at the base of the TPA
org 0160h

msize egu 20 ; size of cp/m in Kbytes

; "bias" is the amount to add to addresses for > 20k

: (referred to as "b" throughout the text)

bias equ (msize=-20)*1024

ccp equ 3400h+bias

bdos equ ccp+886@h

bios equ ccp+1646h

; getsys programs tracks 6 and 1 to memory at

: 3888h + bias

: register usage

: a (scratch register)

: b track count (#.,..76)

; c sector count (1l...26)

; d,e (scratch register pair)

: h,1 load address

: sp set to stack address

gstart: ; start of getsys
1xi sp,ccp-00880h ; convenient plac
1xi h,ccp-08086h : set initial loa
mvi b,0 ; start with trac

rd$Strk: ; read next track
mvi c,l ; each track star

rdSsec:
call readSsec ; get the next se
1xi d,128 ; offset by one s
dad d : (hl=hl1+128)
inr c : next sector
mov a,c : fetch sector nu
cpi 27 ; and see if la
jc rdsec : <, do one more

; arrive here at end of track, move to next track

inr
mov
cpi
jc

b ; track = track+l
a,b : check for last
2 ; track = 2 ?
rdstrk : <, do another

; arrive here at end of load, halt for lack of anything b

ei
hlt

56

0200

0200
0203
0206

0208

d20a
928d
3210
3211
@212
9213
8215

3218
9219
#2la
p21c

p21€
0220

0300

0300
0301

0302

p342
0343

318033
218033
D600

Pedl

cdgoo4
118000
19

dc

79
felb
dafga@d 2

04

78
fed2
dap8@2

fb
76

c5
e5

el
cl

we we ws

org ($+0166h) and 0f£00h
put$sys:
1xi sp,ccp-0880h
1xi h,ccp-00806h
mvi b,d
wrStrk:
mvi c,1l
wrSsec:
call writeS$Ssec
1xi d,128
dad d
inr c
mov a,c
cpi 27
jc wrSsec

; arrive here at end of track, move to

inr b
mov a,b
cpi 2
jc wrStrk
; done with putsys, halt for lack
ei
hlt

e we we

-e

w8 We e We we we wo

putsys program, places memory image starting at
388dh + bias back to tracks @ and 1
start this program at the next page boundary

convenient plac
start of dump
start with trac

start with sect

write one secto
length of each
<hl>=<hl> + 128
<c> = <K¢> + 1
see if

past end of t
no, do another

next track

we we ws wo

track = track+l
see if

last track
no, do another

of anything bette

; user supplied subroutines for sector read and write

move to next page boundary

-e

org ($+01060h) and Offddh

read$sec
read the next sector
track in ,

sector in <c>
dmaaddr in <hl>

-8 we we we oo

push b
push h
; user defined read operation goes here
ds 64
pop h
pop b

57

0344
0400

0400
0401
0402
0442

0443
P444

p445

c9

c5
e5

el
cl
c9

ret
org ($+0100h) and Gff00h
writeSsec:

; same parameters as read$sec

push b
push h
; user defined write operation goes here
ds 64
pop h
pop b
ret

; end of getsys/putsys program

end

58

’

another page bo

0000
po14

0000
3400
4200
0309
4200
1908
VB32

0ooo
0aa3
P65

010200
1632
210034

WO WO WO NG NE W WG WG WE WO WE MG NG We W WO WO WO

APPENDIX E: A SKELETAL COLD START LOADER

this is a sample cold start loader which, when modified
resides on track 606, sector @1 (the first sector on the
diskette)., we assume that the controller has loaded
this sector into memory upon system start-up (this pro-
gram can be keyed-in, or can exist in read/only memory
beyond the address space of the cp/m version you are
running) . the cold start loader brings the cp/m system
into memory at "loadp" (3466h + "bias"). in a 20k
memory system, the value of "bias" is @006h, with large
values for increased memory sizes (see section 2), afte
loading the cp/m system, the clod start loader branches
to the "boot" entry point of the bios, which begins at
"bios" + "bias." the cold start loader is not used un-
til the system is powered up again, as long as the bios
is not overwritten., the origin is assumed at #006h, an
must be changed if the controller brings the cold start
loader into another area, or if a read/only memory area
is used.

org] ; base of ram in cp/m
msize equ 20 ; min mem size in kbytes
bias equ (msize~-20)*1824 ; offset from 20k system
ccp equ 34@0h+bias ; base of the ccp
bios equ ccp+16@0h ; base of the bios
biosl equ @360h ; length of the bios
boot equ bios
size equ bios+biosl-ccp ; size of cp/m system
sects egu size/128 ; # of sectors to load

~e

begin the load operation

colad:
1xi b,2 ; b=@, c=sector 2
mvi d,sects ; d=# sectors to load
1xi h,ccp ; base transfer address

lsect: ; load the next sector

e We WO We We we wo

insert inline code at this point to
read one 128 byte sector from the
track given in register b, sector
given in register c,

into the address given by <hl>

branch to location "cold"” if a read error occurs

59

poB8
pBBb

Bo6b
pade6c

Pae6f
0872

po73
0074
PO75
bB77

#87a
B07c
8@7d
0080

c36bdgd

15
caddda

318000
39

dc

79
felb
dad 80y

Pedl
04
c30800

“e we we wms wme

I XX EEEE SRR RS RSS R R RS RS SERRRR RS R
*

* user supplied read operation goes here...
*

khkkkkkhkkhkhkhkhkhhkkhkkhhkhkhhhkhkhkhkkhhkhkhkhkkhkhkhkhkkkhkhkkkkkkk

jmp past$patch ; remove this when patche
ds 60h
past$patch:
; go to next sector if load is incomplete
dcr d ; sects=sects-1
jz boot ; head for the bios
: more sectors to load
H
: we aren't using a stack, so use <sp> as scratch registe
H to hold the load address increment
1xi sp,128 ; 128 bytes per sector
dad sp ; <hl> = <hl> + 128
inr c ; sector = sector + 1
mov a,c
cpi 27 : last sector of track?
jc lsect ; no, go read another
; end of track, increment to next track
mvi c,1l s sector =1
inr b ; track = track + 1
jmp lsect ; for another group
end : of boot loader

60

WO W -
e %0 90 e es e e ee o0

53:

WO WO WO NG Ne WE NG WE N We WO W wo WO WE WO WS WE We WO Ws WO N Ne WO NG WO W WO WE N6 NG MO NG Ve Ne WO WS WS NG W We We We Wo VP W W N0 N Ve W w»

APPENDIX F: CP/M DISK DEFINITION LIBRARY

CP/M 2.0 disk re-definition library

Copyright (c) 1979
Digital Rzsearch
Box 579

Pacific Grove, CA
939590

CP/M logicel disk drives are defined using the

macros given below, where the sequence of calls
is:

disks n

diskdef parameter-list-9
diskdef parameter-list-1
éiékdef parameter-list-n
endef

where n is the number of logical disk drives attached
to the CP/M system, and parameter-list-i defines the
characteristics of the ith drive (i=¢,1,...,n-1)

each parameter-list-i takes the form
dn,fsc,1lsc,[skf] ,bls,dks,dir,cks,ofs, [0]

where

dn is the disk number 6,1,...,n-1

fsc is tine first sector number (usually 0 or 1)
1sc is the last sector number on a track

skf is optional "skew factor” for sector translate
bls is tne data block size (1024,2048,...,16384)
dks is tne disk size in bls increments (word)

dir is tne number of directory elements (word)

cks is the number of dir elements to checksum

ofs is the number of tracks to skip (word)

(9] is an optional @ which forces 16K/directory en

for convenience, the form

dn,dm
defines disk dn as having the same characteristics as
a previously defined disk dm,

a standard four drive CP/M system is defined by

disks 4

diskdef ©0,1,26,6,1024,243,64,64,2
dsk set]

rept 3
dsk set dsk+1

diskdef %dsk,@

endm

ender

the value of "begdat"” at the end of assembly defines t

61

54: ; beginning of the uninitialize ram area above the bios,
55: ; while the valve of "enddat" defines the next location
56: ; following the end of the data area. the size of this
57: area is given by the value of "datsiz" at the end of t
58: ; assembly. note that the allocation vector will be qui
59: ; large if a large disk size is defined with a small blo
6d: size.
6l: ;
62: dskhdr macro dn
63: ;3 define a single disk header list
64: dpe&dn: dw xlt&edn,080006h stranslate table
65: dw BOBOh,00806h :scratch area
66: dw dirbuf, dpb&dn ;dir buff,parm block
67: dw csv&dn,alvé&dn scheck, alloc vectors
68: endm
69:
76: disks macro nd
71: :: define nd disks
72: ndisks set nd :;for later reference
73: dpbase equ $;base of disk parameter blocks
74: ;: generate the nd elements
75: dsknxt set]
76: rept nd
77: dskhdr %$dsknxt
78: dsknxt set dsknxc+1l
79: endm
80: endm
81l: ;
82: dpbhdr macro dn
83: dpb&dn equ $;disk parm block
84: endm
85: ;
86: ddb macro data,comment
87: :: define a db statement
88: db data comment
89: endm
90: ;
9l: ddw macro data,comment
92: ;; define a dw statement
93: dw data comment
94:; endm
95: ;
96: gcd macro m,n
97: :; greatest common divisor of m,n
98: ;; produces value gcdn as result
99: ;; (used in sector translate table generation)
100: gcdm set m ;svariable for m
101: gcdn set n ;;variable for n
162: gcdr set 8 :s:svariable for r
193: rept 65535
104: gcdx set gcdm/gcdn
145: gcdr set gcdm - gcdx*gcdn
106: if gcdr = @
197: exitm
168: endif

62

199: gcdm set gcdn

116: gcdn set gcdr

111: endm

112: endm

113: ;

114: diskdef macro dn,fsc,lsc,skf,bls,dks,dir,cks,bfs, kl6
115: ;; generate the set statements for later tables
ll6: if nul lsc

117: ;3 current disk dn same as previous fsc

118: dpb&dn equ dpb&fsc ;eauivalent parameters

119: als&dn equ alss&fsc ;same allocation vector size
126: css&dn equ css&fsc ;same checksum vector size
121: xlt&dn equ xlt&fsc ;same translate table

122; else

123: secmax set lsc=(fsc) ; ;sectors @,.,.secmax
124: sectors set secmax+l; ;number of sectors

125: als&dn set (dks)/8 ;:size of allocation vector
126: if ((dks) mod) ne ¢

127: als&dn set als&dn+l

1238: endif

129: css&dn set (cks)/4 ;;number of checksum elements
139: generate the block shift value

131: blkval set bls/128 ;;number of sectors/block
132: blkshf set @ ;;counts right 9's in blkval
133: blkmsk set 0 ;;0ills with 1's from right
134: rept 16 ;;once for each bit position
135: if blkval=l

136: exitm

137: endif

138: ;; otherwise, high order 1 not found vyet

139: blkshf set blkshf+l

140: blkmsk set (blkmsk shl 1) or 1

141: blkval set blkval/2

142: endm

143: ;; generate the extent mask byte

144: plkval set bls/1024 :snumber of kilobytes/block
145: extmsk set] ;;£1il from right with 1's
146: rept 16

147: if blkval=1l

148: exitm

149: endif

150: ;; otherwise more to shift

151: extmsk set (extmsk shl 1) or 1

152: pblkval set blkval/2

153: endm

154: ;; may be double byte allocation

155 if (dks) > 256

156: extmsk set (extmsk shr 1)

157: endif

158: ;; may be optional [#] in last position

159: if not nul k16

160: extmsk set k16

161l: endif

162: ;; now generate directory reservation bit vector
163: dirrem set dir ;:# remaining to process

63

164:
165:
166:
1l67:
1638:
169:
178:
171:
172:
173:
174:
175:
176:
177:
178:
179:
186
181:
182:
183:
184:
185:
186:
187:
183:
189:
194
191:
192:
193
194
195
196:
197:
198:
199:
200
281:
202
2803
204
2805
206
287
208
289:
210
211:
212
213:
214:
215:
216:
217
213:

dirbks
dirblk

~e weo
—e weo

dirblk
dirrem

dirrem

s e
[

xlt&dn

xlt&dn

Hi
nxtsec
nxtbas

neltst
xlt&dn
nxtsec

nxtsec

nelts

set bls/32 ;;number of entries per block
set 0 ;:£ill with 1's on each loop
rept 16

if dirrem=4g

exitm

endif

not complete, iterate once again
shift right and add i1 high order bit

set (dirblk shr 1) or 8908h
if dirrem > dirbks

set dirrem-dirbks

else

set @

endif

endm

dpbhdr dn ; ;generate egu $
ddw $sectors,<;sec per track>
ddb g$blkshf,<;blcck shift>
ddb $blkmsk,<;blcck mask>

ddb $extmsk,<;extnt mask>

ddw % (dks)-1,<;aisk size-1>
adw $(dir)-1,<;airectory max>
ddb $dirblk shr &6,<;allocé>
ddb $dirblk ana @ffh,<;allocl>
ddw $(cks)/4,<;check size>
ddw 30fs,<;offset>

generate the translate table, if requested
it nul skf

equ 9 ;:no xlate table
else

if skf = @

equ 0 ;no xlate table
else

generate the translate taple

set 7} s :next sector to fill
set ¥ ;;mcves by one on overflow
gcd $sectors,skE

gcdn = gcd(sectors,skew)

set sectors/gcdn

neltst is number of elements to generate
before we overlap orevious elements

set neltst ;;counter

equ S stranslate table
rept sectors ;;once for each sector
if sectors < 256

ddb gnxtsec+ (fsc)

else

ddw gnxtsec+ (f£sc)

endif

set nxtsec+(skf)

if nxtsec >= sectors

set nxtsec-sectors

endif

set nelts-1

if nelts = @

64

219:
220:
221:
222:
223:
224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240
241:
242:
243:
244:
245:
246:
247:
248
249:

nxtbas
nxtsec
nelts

defds
lab:

~e

1ds

endef

begdat
dirbuf:
asknxt

dsknxt

enddat
datsiz

° o
rs

set
set
set
endif
endm
endif
endif
endm

macro
ds
endm

macro
defds
endm

macro

nxtbas+i
nxtbas
neltst

nd of nul fac test
nd of nul bls test

“e we
(O]

lab,space
space

1lb,dn,val
1b&dn, sval&dn

generate the neca2ssary ram data areas

equ
ds
set
rept
las
1ds
set
endm
equ
egu

$

128 ;directory access buffer
7}

ndisks ;;once for each disk
alv,%dsknxt,als

csv, ¥dsknxt,css

dsknxt+1

$
S$-begdat

db 8 at this point forces hex record

endm

65

APPENDIX G: BLOCKING AND DEBLOCKING ALGORITHMS.

REEEEE ST EES LSS ZE SRS R R R R R SRR RS RS EERER R EE RS
’

o K *
i Sector Deblocking Algorithms for CP/M 2.0 :
o K
;***
: utility macro to compute sector mask
smask macro hblk
H compute log2(hblk), return @x as result
i (2 ** @x = hblk on return)
Qy set hblk
@x set Y]
] count right shifts of @y until =1
rept 8
if @y = 1
exitm
endif
Y @y is not 1, shift right one position
Qy set @y shr 1
@x set @x + 1
endm
endm

IEEEE S SR ES ISR SRR R R RS R RS RERARREERR RS RR RS R ERESE]
*

CP/M to host disk constants *

*
;***

.S MO We wme WG
* X % *

blksiz equ 2048 :CP/M allocation size
hstsiz equ 512 shost disk sector size
hstspt equ 20 ;host disk sectors/trk
hstblk equ hstsiz/128 ;CP/M sects/host buff
cpmspt equ hstblk * hstspt ;CP/M sectors/track
secmsk equ hstblk-1 ;sector mask

smask hstblk ;compute sector mask
secshf equ @x :1log2 (hstblk)
;***
P *
e BDOS constants on entry to write *
ok *
;***
wrall equ 0 jwrite to allocated
wrdir equ 1 ;write to directory
wrual egu 2 ;write to unallocated

03
’

;***

« % *
14

: * The BDOS entry points given below show the *
il code which is relevant to deblocking only.,. *
« X *

66

H DISKDEF macro, or hand coded tables go here

dpbase equ $;disk param block base
boot:
wboot:
;enter here on system boot to initialize
Xra a ;8 to accumulator
sta hstact shost buffer inactive
sta unacnt sclear unalloc count
ret
seldsk:
:select disk
mov a,c s:selected disk number
sta sekdsk ;seek disk number
mov 1,a ;disk number to HL
mvi h,?
rept 4 ;multiply by 16
dad h
endm
1xi d,dpbase ;sbase of parm block
dad d shl=_dpb(curdsk)
ret
’
settrk:
;set track given by registers BC
mov h,b
mov l,c
shld sektrk strack to seek
ret
setsec:
;set sector given by register c
mov a,c
sta seksec ssector to seek
ret
setdma:
;set dma address given by BC
mov h,b
mov 1,c
shld dmaadr
ret
sectran:
;jtranslate sector number BC
mov h,b
mov l,c
ret

e

67

104:
185:
166:
167:
108:
109:
119:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142;
143:
144:
145:
146:
147:
148:
149:
158:
151:
152:
153:
154:
155:
156:
157:
158:

:***

o %k *
r

il The READ entry point takes the place of *
1 ¥ the previous BIOS defintion for READ, *
« Kk *
14

;***

read:
:read the selected CP/M sector

mvi a,l

sta readop ;read operation

sta rsflag ;must read data

mvi a,wrual

sta wr type streat as unalloc

jmp rwoper ;to perform the read
;***
;* *
il The WRITE entry point takes the place of *
i the previous BIOS defintion for WRITE, *
ok *
’
;***

write:

;write the selected CP/M sector
Xra a ;0 to accumulator
sta readop ;not a read operation
mov a,c swrite type in c¢
sta wrtype
cpi wrual swrite unallocated?
jnz chkuna ;check for unalloc
I
: write to unallocated, set parameters
mvi a,blksiz/128 snext unalloc recs
sta unacnt
1lda sekdsk ;disk to seek
sta unadsk sunadsk = sekdsk
lhld sektrk
shld unatrk sunatrk = sectrk
ldaa seksec
sta unasec ;unasec = seksec
[
chkuna:
s;check for write to unallocated sector
lda unacnt ;any unalloc remain?
ora a
jz alloc :skip if not
I’
: more unallocated records remain
dcr a sunacnt = unacnt-l
sta unacnt
lda sekdsk ;same disk?
1xi h,unadsk
cmp m ;sekdsk = unadsk?
jnz alloc ;skip if not
r
; disks are the same

68

159:
160:
161:
162:
163:
l164:
165:
166:
l67:
168:
169:
176:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200
201:
202:
203:
204:
205:
206
207:
208:
209:
219:
211:
212:
213:

“e e

~e we

s wg

1

1xi h,unatrk
call sektrkcmp :sektrk = unatrk?
jnz alloc ;skip if not

tracks are the same

lda seksec ; same sector?

1xi h,unasec

cmp m sseksec = unasec?
jnz alloc ;skip if not

match, move to next sector for future ref

inr m sunasec = unasec+l
mov a,m ;end of track?

cpi cpmspt ;count CP/M sectors
jc noovf ;skip if no overflow

overflow to next track

mvi m,d ;unasec =

l1hld unatrk

inx h

shld unatrk ;unatrk = unatrk+1

noovf:

smatch found, mark as unnecessary read

Xra a :@ to accumulator

sta rsflag ;rsflag = @

jmp rwoper :to perform the write
H
alloc:

snot an unallocated record, requires pre-read

Xra a ;0 to accum

sta unacnt sunacnt = @

inr a ;1 to accum

sta rsflag srsflag = 1
;***
;* *
g * Common code for READ and WRITE follows *
« X *
;'***
r

-e we

£
O
T
o
~

;enter here to perform the read/write

Xra a ;zZ2ero to accum

sta erflag ;no errors (yet)

lda seksec ;compute host sector
rept secshf

ora a ;carry = @

rar :shift right

endm

sta sekhst s;host sector to seek

active host sector?

1xi h,hstact shost active flag
mov a,m
mvi m,1l ralways becomes 1

69

214:
215:
216:
217:
218:
219:
220:
221:
222:
223:
224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244:
245
246:
247
248:
249:
250:
251
252:
253:
254:
255
256:
257:
258:
259:
260
261:
262:
263:
264:
265:
266:
267:
268:

e we

- we

~e we

.
’

nomatch:

Hh ~e

ilhst:

3
r

match:

ora a ;was it already?
jz filhst ;£fill host if not

host buffer active, same as seek buffer?
1da sekdsk

1xi h,hstdsk :same disk?
cmp m :sekdsk = hstdsk?
jnz nomatch

same disk, same track?

1xi h,hsttrk
call sektrkcmp :sektrk = hsttrk?
jnz nomatch

same disk, same track, same buffer?
lda sekhst

1xi h,hstsec :sekhst = hstsec?
cmp m

jz match ;skip if match
;proper disk, but not correct sector

1da hstwrt shost written?
ora a

cnz writehst s;clear host buff

;may have to fill the host buffer
lda sekdsk
sta hstdsk
1hld sektrk
shld hsttrk

lda sekhst

sta hstsec

lda rsflag sneed to read?
ora a

cnz readhst ;ves, if 1

Xra a ;0 to accum

sta hstwrt ;no pending write

;copy data to or from buffer

1da seksec ;mask buffer number
ani secmsk ;least signif bits
mov l,a ;ready to shift

mvi h,8: ;double count

rept 7 :shift left 7

dad h

endm

hl has relative host buffer address
1xi d,hstbuf

dad d ;hl = host address
xchg ;now in DE

lhld dmaadr ;get/put CP/M data
mvi c,128 ;length of move

70

269:
270
271:
272:
273:
274:
275:
276:
277:
278:
279:
284@:
281:
282:
283:
284:
285:
286:
287:
288:
289:
290:
291:
292:
293:
294:
295:
296
297:
298:
299:
300:
301:
362
303:
304:
305:
306
307:
308:
369:
319:
311:
312:
313:
314:
315:
316:
317:
318:
319:
320:

1da readop swhich way?

ora a

jnz rwmove ;skip if read
: write operation, mark and switch direction

mvi a,l

sta hstwrt shstwrt = 1

xchg ;source/dest swap
r
rwmove :

;C initially 128, DE is source, HL is dest

ldax d ;jsource character

inx d

mov m,a sto dest

inx h

dcr C :loop 128 times

jnz rwmove
’
; data has been moved to/from host buffer

lda wrtype ;write type

cpi wrdir ;to directory?

1lda erflag ;in case of errors

rnz ;no further processing
14
H clear host buffer for directory write

ora a ;errors?

rnz ;skip if so

Xra a ;9 to accum

sta hstwrt sbuffer written

call writehst

lda erflag

ret
;***
o % *
I
i Utility subroutine for 1l6-bit compare *
o %X *
;***
sektrkcmp:

;HL = ,unatrk or .hsttrk, compare with sektrk

xchg

1xi h,sektrk

1dax d ;low byte compare

cmp m ; same?

rnz sreturn if not
: low bytes equal, test high 1s

inx d

inx h

ldax d

cmp m ;sets flags

ret

71

321:
322:
323:
324:
325:
326:
327:
328:
329:
330:
331:
332:
333:
334:
335:
336:
337:
338:
339:
340:
341:
342:
343:
344:
345:
346:
347:
348;
349:
350:
351:
352:
353:
354:
355:
356:
357:
358:
359:
360:
361:
362:
363:
364:
365:
366:
367:
368:
369:
378:

;***

o« % *
14

e WRITEHST performs the physical write to *
HE the host disk, READHST reads the physical *
1 ¥ disk. *
% *
. *

;**

writehst:
shstdsk = host disk #, hsttrk = host track #,
;hstsec = host sect #. write "hstsiz" bytes
:from hstbuf and return error flag in erflag,
sreturn erflag non-zero if error
ret

I3
’

readhst:
shstdsk host disk #, hsttrk = host track ¥,
shstsec = host sect #. read "hstsiz" bytes
;into hstbuf and return error flag in erflag,
ret

KKK KR K EK KA R AR AR R R A A AR AT AR KR A AR A AR ARKAA KRN RAAR AR AR AR AKX
x

Unitialized RAM data areas *

*
KEKRKEKRKKKEKRKEKKKKKRKKRRKRKKKRRKKKRRKRKKKkAhkkKhhkhkhknkhkkkkhkhkkhkhkkkkikk

N6 N6 Ne N we e we
* F * A %

sekdsk: ds 1 :seek disk number
sektrk: ds 2 ;seek track number
seksec: ds 1 ;seek sector number
hstdsk: ds 1 :host disk number
hsttrk: ds 2 shost track number
hstsec: ds 1 ;host sector number

.
r

sekhst: ds 1 ;:seek shr secshf
hstact: ds 1 ;host active flag
hstwrt: ds 1 ;shost written flag
unacnt: ds 1 sunalloc rec cnt
unadsk: ds 1 :last unalloc disk
unatrk: ds 2 ;last unalloc track
unasec: ds 1 ;last unalloc sector

.
r

erflag: ds 1 ;error reporting
rsflag: ds 1 ;read sector flag
readop: ds 1 ;1 if read operation
wrtype: ds 1 ;write operation type
dmaadr: ds 2 slast dma address
hstbuf: ds hstsiz ;:host buffer

.
’

72

KEKKKRKKRKKKIA KKKk KhRKRkKIAhARkXkhkhkkhkhkhkhkkkhkhhkkhkhhkhkhkhhkhkkkhkhkkk

371:

H
372: ;* *
373: ;* The ENDEF macro invocation goes here *
374: ;% *
375: ;***

376: end

73

595-2534-04

Pl ¥ g L)
A St 3
- -

."'"l.'l'c' "

M
*

Pl ¥ g L)
A St 3
- -

."'"l.'l'c' "

M
*

