(408) 246-7501

mes:-8

A Guide to
PL/M Programming

PL/M is a new high level programming language designed specifically for Intel 's 8
bit microcomputers The new language gives the microcomputer systems program-
mer the same advantages of high level language programming currently available in
the mini and large computer fields. Designed to meet the special needs of systems
programming, the new language will drastically cut microcomputer programming
time and costs without sacrifice of program efficiency. In addition, training, docu-
mentation, program maintenance and the inclusion of library subroutines will all be
made correspondingly easier. PL/M is well suited for all microcomputer program-
ming applications, retaining the control and efficiency of assembly language, while
greatly reducing programming effort The PL/M compiler is written in ANS/ stand-
ard Fortran IV and thus will execute on most machines without alteration.

SEPTEMBER 1973
REV. 1

© Intel Corporation 1973

Section
L INTRODUCTION TO PL/M .. i e
II. ATUTORIAL APPROACH TOPL/M i i e i e
1. The Organization ofa PL/M Program
2. Basic Constituents of a PL/M Program
21. PL/M Character Set
2.2. Identifiers and Reserved Words
2.3. Commentsii it e
3. PL/M Statement Organization
4. PL/MDataElementsc.00 ..
4.1. Variable Declarations
4.2. Byte and Double Byte Constants
5. Well-Formed Expressions and Assignments
6. ASimpleExample e
T DO-GrOUPDS .ottt ittt ittt sttt e e e e
7.1. The DO-WHILE Groupouuiiiininnnnnnn..
7.2. The Iterative DO-Group unn...
7.3. The DO-CASE e
8. Subscripted Variables and the INITIAL Attribute
8.1. Subscript Declarations and Value References
8.2. The INITIAL Attribute
9. ASortingProgram
10. Procedure Definitions and Procedure Calls
10.1. Procedure Declarationsouiiinrnnn..
10.2. Procedure Callsiiiiiiiiii i,
11. Based Variablesc.cuiiiiiineeine i iiienennnnn.
12. LongConstants
13. Scopeof Variables i,
14. Statement Labelsand GOTO’s
14.1. LabelNames e
14.2. GOTO Statementsciiiiii ..
14.3. Scopeof Labels iiinnnn..
15. Compile-Time Macro Processing
16. Predeclared Variables and Procedures
16.1. Condition Code Variables
16.2. The MEMORY Vector..............c i iununnn..
16.3. The TIME Procedurecciiiiieiinnnnnnn..
16.4. Type Transfer Functions
16.5. Bit Manipulation Procedures
16.6. I/OProcessingoviiiminnn e i,
II1. THE FORMAL DEFINITION OF PL/Mt
IVv. COMPILING AND DEBUGGING PL/M PROGRAMS
1. PLM1 Operating Procedures.coouuieiininnnne....
2. PLM2 Operating Procedures.c.couuiiuiinenne. ...
3. Program Check-Out
4. Implementation-Dependent Operating Procedures
V. PL/M RUN-TIME CONVENTIONS FOR THE 8008 CPU
1. Storage Allocationt
2. Subroutine Linkage Conventions
3. Use of Assembler Language Subroutines with PL/M

TABLE OF CONTENTS

Page

[y

WO O -3 -3 U = DN

A GUIDE TO PL/M PROGRAMMING

I. INTRODUCZION TO PL/M.

S~ T armerinn Aaci o
acoiy

[T}
0]

o
e eC

]

n
r
a

o
ot

i
for the INTEL MCS-8 Microcomputer. Th

=
Q
=
)
Q
o
H
[4)]

structurally similar to PL/I (in particular, PL/M closely
resembles XPL), with data types and primitive operations
which reflect the architecture of the MCS-8 CPU. Thus, the
systems designer can use PL/M to quickly and easily express
programs which execute on the MCS-8 CPU, with little or no
loss in execution efficiency when compared to assembly
language programming. In addition, programs written in PL/¥
are somewhat self-documenting, are easily altered and
maintained, and provide upward software compatibility in the
INTEL 8000 CPU series. That is, programs written in PL/M
for the 8008 CPU can be recompiled for the 8080 CPU with no
alteration of the source progran. In each case, the
resulting object code takes advantage of the particular

target CPU architecture.

The discussion of PL/M given here 1is in two main
sections. Section II provides a tutorial description of
PL/M; only a minimal amount of programming experience is
assumed, and the discussion is mainly expository. Section
III presents a more formal approach to PL/M, providing the
exact syntactic structure and corresponding actions of each,
statement in PL/M. Section III is intended as a reference
manual, but may be used as an introduction to PL/M by
readers who are familiar wWwith block structured 1languages

similar tc PL/I or XPL.

The remaining sections provide system notes on the use
of PL/M, including compiler error messages, control toggles,
- and execution controls and commands. Appendix A contains
sample PL/M programs; it may be useful for the reader to
refer occassionally to this appendix to find instances of
the various statements as they are discussed in Sections II

and III.

II. A TUTORIAL APPROACH TO PL/M.

As mentioned above, this section describes the PL/M
programming language from a tutorial viewpoint. The various
structures of PL/M are introduced at various levels of
complexity. Examples of each of the constructs are also
given. The overall structure of a PL/M program is given
first.

1. The Organization of a PL/M Progran.

A PL/H progranm is arranged as a sequence of

declarations and statements separated by semicolons. The

declarations allow the programmer to control allocation of
storage, define simple macros, and define procedures.
Procedures are subroutines which are invoked through certain
statements in PL/M. These procedures may contain further
declarations which control storage allocation and define
nested procedures. The procedure definition capabilities of
PL/M allow modular programming; that is, a particular
program can be divided into a number of subtasks, such as
processing teletype input, converting from binary to decimal
forms, and printing output messages. Each of these subtasks
is written as a procedure in PL/M. These procedures are
conceptually simple, are easy to formulate and debug, are
easily incorporated into a large program, and form a basis
for library subroutine facilities when writing a number of

similar programs.

In addition to the procedure declaration facilities,
PL/M allows a number of data types to be declared and used
in a program. The two basic data types are Byte and
Address. A Byte variable or constant is one which can be

represented in an eight-bit word, while an Address variable

or constant requires sixteen bits (double byte). The
programmer can declare variable names in a PL/M program to

represent Byte and Address values. PL/M also allows the

vectors of Byte or Address variables to be declared.

A number of arithmetic, 1logical, and relational
operations are defined in PL/M on Byte and Address variables
and constants. These operators and values are combined to

form expressions which resenble elementary algebraic

expressions. The PL/M expression

X* (Y-3) /R
represents the calculation of the value of X times the
quantity Y-3 divided by the +wvalue of R. When values in
expressions are both Byte and Address type, PL/NM

automatically converts the Byte value to an Address value.

Expressions are the major components of most PL/M
statements. A simple statement form is the PL/M assignment
statement which allows the programmer to compute a result
and store it in a location defined by a variable nane.
Thus, the assignment

Q=X (¥Y-3) /R
first causes the computation of the expression to the right
of the equal sign. The result of this computation is then
saved 1in the memory location represented by the variable

name Q.

Additional statements are provided in PL/M for
conditional tests and branching, iteration control, and

procedure invocation with parameter passing.

Input and output statements in PL/M allow the
programmer to read the eight-bit value 1latched into a
particular MCS-8 input port, or set the value of an
eight-bit output port. Procedures can be defined which use

these basic input and output statements to perform more

complicated I/0 functions.

A compile-time macro processing facility is also
provided in PL/M. This facility allows the programmer to
define a name in the program to represent an arbitrary
sequence of characters. Each time the name is encountered,
the corresponding character sequence is substituted into the

source progranme.

The section which follows provides a detailed

description of the format of a PL/M program.

2. Basic Constituents of a PL/M Proqram.

PL/M programs are written in free-form. That is, the
input lines are column independent and blanks can be freely
inserted between the elements of the program. The only
requirement is that the declarations and statements are all
terminated with a semicolon. The characters recognized by

PL/M are given below. These characters can be combined to

2.1. PL/M Character Set. The character set recognized
by PL/M 1is a subset of both the ASCII and EBCDIC character
sets. The valid PL/M characters consist of the alphanumerics

01234567289
ABCDEFGHIJKLMUNOPQRSTUVUWIXY?Z
along with the special characters
$=./7 () +-0v*x <>
all other characters are ignored by PL/M (a blank is

substituted for an unrecognized character).

Special <characters and combinations of special
characters have particular meanings in a PL/M program, as
shown below.

Symbol HName Use

dolliar

“

sign
= egqual
:= assign
. dot
/ slash
() parens
+ plus
- mninus

compiler controls, number

and identifier spacer

relational test and assignments
imbedded assignments

address indicator

division symbol and comment delimiter
list and subscript delimiter

addition

subtraction

' apostrophe string delimiter

* asterisk

< less

> greater

<= less or
equal

>= greater
or equal

<> not equal

multiplication and comment delimiter

relational tests

: colon label delimiter
: semicolon declaration and statement delimiter
2.2. Identifiers and Reserved Words. A PL/M

identifier is used

to represent names of variables,

procedure names, macro names, and statement label names.

Identifiers can be up to 31 characters in length; the first

character must be

alphabetic, and the remaining characters

can be alphabetic or numeric. Imbedded dollar signs ($) are

ignored by PL/M, and can be used to improve readability of a

name. Thus, valid identifiers are

Note, however,

X
GAMMA
LONGIDENTIFIER
INPUT$SCOUNT

that there are a number of reserved

words in PL/M which cannot be wused as names in a PL/M

program. These reserved words are shown below
Reserved Hord Use

IF conditional tests and branching
THEN

ELSE

DO statement grouping
PROCEDURE and procedure definition
END

DECLARE data declarations

BYTE

ADDRESS

LABEL)
INITIAL

DATaA

LITERALLY

BASED

GO unconditional branching
TO and iteration control

BY

GOTO

CASE

WHILE

CALL subroutine call

RETURN subroutine return

HALT machine stop

OR logical or

AND logical and

XOR logical xor

NOT logical not

MOD remainder after division
PLUS add with carry

MINUS subtract with carry

EQF end-of-file

Blanks may be inserted freely around identifiers and
special characters. Blanks are not necessary, however, when
two identifiers are separated by a special character. Thus,
the expression

X * (Y-3) /R
is equivalent to
1* (Y-3) /R
in PL/M.

2.3. Comments. Explanatory remarks can be used
throughout a PL/M program to improve readability and provide
a measure of self-documentation. Conments are sequences of
symbols from the character set of PL/M bounded by the symbol
pairs /* and */. Thus, the sequence

/¥THIS IS A COMMENT ABOUT COMMENTS*/
is completely ignored by the PL/M compiler, and has no
effect on the program. Comments may be freely interspersed

in a PL/M program, and may appear anywhere a blank is valid.

2 PL/M Statement Organization.

The statements found in PL/M programs are one of three

basic types: simple statements, conditional statements, and

groups.

An example of a simple statement is the PL/M assignment

A =B + C * D;
Note that simple statements are always followed by a
semicolon. Other forms of simple statements are defined 1in

later sections.

Conditional statements are preceded by the reserved

word IF and contain one or more other statements as a part

of the statement body. A <conditional statement could be
written in PL/M as

IF A > B THEN A& = Bj
which assigns the value of B to the variable A only if A's

value is greater than B's value.

A more complicated conditional statement involves an
alternative, denoted by the reserved word ELSE. The
conditional

IF A > B THEN C = A; ELSE C = B;
assigns the larger of the two values A and B to the variable
C.
Statements can be collected together in groups which are
delimited by the reserved words DO and END. These groups of
statements are then treated as a single statement in the
flow of ccntrol. The group could, for example, become a
part of a conditional statement:
IF A > B THEN
DO; A = B; B = C;
END;
which would perform the two assignments to A and B only if

A is greater then B.

Simple statements, conditional statements, and groups
can be labelled for control flow purposes. The label may be
a PL/M identifier, which precedes the statement, and is
separated from the statement by a colon (:). Thus,

LAB1: A = B + C * D;
is an example of a simple statement labelled by LABI1.

The exact details of the various simple, conditional,

and statement groups are discussed in following sections.

4. PL/M Data Elements.

PL/M data elements represent single bytes, double
bytes, and strings corresponding to 8-bit values, 16-bit
values, and ASCII character strings of length greater than
two. Data elements can be either variables or constants.
Variables are PL/M identifiers corresponding to values which
can change during execution of a PL/M program, while
constants have a value which is fixed. The expression

X * (¥Y-3) /R
involves the variables X, Y, and R, and the constant 3.

Variables must declared in PL/N programs before they
are used in expressions. The declaration tells the PL/M
compiler how to handle expressions and assignments which
involve the variable.

4.1. Variable Declarations. A declaration for a
variable or set of variables is headed by the reserved word
DECLARE and followed by either a single identifier or a list
of identifiers enclosed in parenthesis, and terminated by
one of the data types BYTE or ADDRESS. Thus, valid PL/M
declarations are:

DECLARE X BYTE;
DECLARE (Q,R,S) BYTE;
DECLARE (U,V,W) ADDRESS;
Thus, expressions involving only the variables X, Q, R, and
S produce single byte operations, while exXpressions
involving U, V, or W would produce double byte operations

and results.

Additional facilities are present in PL/M for declaring
vectors, macros, and data lists. These facilities are

discussed in later sections.

4.2, Byte and Double Byte Constants. Constants
representing single and double byte values can be expressed
in several different ways in PL/M. First, PL/M accepts
constants in the binary, octal, decimal, and hexadecimal
bases. 1In addition, ASCII strings of length one or twc are
translated tc single and double byte constants.

In general, the base of a constant is represented by

one of the letters
B OQDH
following a sequence of digits. The letter B represents a
binary constant, while the 1letters O and Q denote octal
constants. The letter D optionally follows decimal numbers.
Hexadecimal numbers consist of sequences of hexadecimal
digits (0,1, ... ,9,2,B,C,D,E,F) followed by the letter H.
Note that the leading digit of a hexadecimal number must be
a decimal digit to avoid confusion with a PL/M identifier (a
leading 0 is always sufficient). Any number not followed by
one of the letters B, 0, Q, D, or H 1is assumed to be
decimal. The numbers nust always be capable of
representation as a single or double byte value (a maximum
of 16 bits). Thus, the following are valid constants in
PL/M
2 33Q 110B 33FH 55D 55 OBF3H 65535

The dollar sign symbol may be freely inserted within
constants to improve readability. Thus, the binary constant
111101100118
could be expressed as
111$1011$0011B

ASCII strings are represented by PL/HM characters
enclosed within apostrophe symbols ('). Strings of length
one or two translate to byte and double byte values as
mentioned previously. Thus, the string

EAE

10

is the same as 65 decimal. A pair of apostrophes ('')
within a string results in a single apostrophe in the
internal representation of the string. Thus, the string

'1'Q9' Dbecomes a single apostrophe followed by the character
Q.

5. Well-Formed Expressions and Assignments.

PL/M expressions can now be more completely defined. A
well-formed expression consists of basic data elements
combined through the various arithmetic, 1logical, and
relational operators, in accordance with the usual algebraic
notation. Thus, an expression consists of a simple data
element, such as a number or variable, or an expression can
be two (sub)expressions separated by an operator:

expressionl operator expression2

Examples are
A+ B
A+ B -C
A* B+ C/ D
Operators in expressions have an assumed brecedence which
determines the order in which the operations in the
expression are evaluated. The valid PL/M operators are
listed below from highest to lowest precedence. Oferators
listed on the same line are of equal precedence and are
evaluated from left-to-right when they occur in an
expression.
* / MOD
+ - PLUS MINUS
K L= <> = >= >
NOT
AND
OR XOR
The expression
A+ B % C

for example, results first in the computation of B times C

1

since the multiplication (*) has a higher precedence than
the addition (+). The result of this computation 1s then
added to the value of A.

Parenthesis can be used to override the assumed
precedence Ly enclosing subexpressiotns which are to be
computed first. The expression

(A +B) *C
causes A + B to be evaluated first. The result is then
multiplied by C's value. Following are a number of

well-formed PL/M expressions

A+ B- C=x*D
A- (B+ C) *D
A/ (B+C) *D

A/ (B + C)

A OR B AND OFH

A+ B>C-0D

Each expression results in either a single or double
byte value. The number of bytes in the result is determined
by the number of bytes required by the subexpressions in the
result. Generally, if Dboth operands in an expression are
byte values, the result is a byte value. If either operand,
however, 1is a double byte, the result is a doulkle byte
value. In this case, the shorter operand 1is padded with

high-order zeroes.

Two exceptions to these rules occur in PL/M. The first
is in the <case of the *, /, and MOD operations. These
operators always result in a double byte value. The second
exception is the case of relational operators. A relational
test results in either a true or false condition. A true
condition is represented in PL/M by a byte value equal to
255 (all bits are 1's), and a false condition is represented
by the byte value 0.

12

Suppose the variables X, Y, and Z have been declared as
follows:
DECLARE X BYTE ;
DECLARE (Y,Z) ADDRESS;

given these declarations, the expressions below yield
results with the precision shown to the right c¢f the
expression:

X + 5 single byte result

X + 300 double byte result

X + Y double byte result

Y + Z double byte result

X / 5 double byte result

X+ (Y> 2Z) single byte result

The NOT operator is a unary operator, and thus PL/m
expressions involving NOT take the form
The effect of the NOT operator is that all the bits of the
expression are inverted (1,s become 0's, and O0's becone
1's). In particular, true conditions changeA to false
conditions, and false conditions revert to true. Examples
of the use of the NOT operator are
NOT A
NOT (A > B)
NOT A OR B

For convenience, a unary minus sign is also allowed in
PL/¥ expressions. The form of the wunary minus in an
expression is
The effect is exactly the same as the expression
0 - expression
where the "-" in this last case is the subtract operator.
The expression -1, for example, is equivalent to 0-1,

resulting in the byte value 255.

13

Recall that the assignment statement is used to store
the result of an expression into a variable. The declared
precision of the assigned variable affects the resulting
store operation. If the assigned variable is a single byte
variable, and the expression is a double byte result, the
high order byte is omitted in the store. Similarly, if the
expression yields a single byte result, and the receiving
variable is declared as type ADDRESS, the high order byte is

set to zero.

It is often convenient to assign the same expression to
several variables. This is accomplished in PL/M by 1listing
all the variables to the left of the equal sign, separated
by commas. The variables A, B, and C could all be set to
the expression X + Y with the single assignment

A, B, C=X + Y

A special form of the assignment is allowed within

expressions in PL/M. The form of an imbedded assignment is

and may appear anywhere an expression is allowed in PL/M.
The expression to the right of the assign symbol (:= is
evaluated and then stored into the variable on the left.
The value of the imbedded assignment is the same as the
expression on the right. The expression
A+ (B:=C+D) - (E=::=7F /G)
results in exactly the same value as
A+ (C+D) - (F /G)

except that the intermediate results C+D and F/C are stored
into B and E, respectively. These intermediate computations
can then be used at a later point in the program without

recomputation.
Note that the form

A= (Bz:= (C:=X+7Y))

has exactly the same effect as the multiple assignment to i,

14

B, and C given previously.

It is now possible to construct a simple program based

upon these expressions and assignments.

6. A Simrle Example.

The following PL/M sample program reads data from input
ports 0 and 1, and writes the larger of these two values at
output port 0. Note that the two pseudo-variables INPUT(O0),
and INPUT(1) act like PL/M single byte variables, Lut have
the effect of reading the values latched into input fports 0
and 1, respectively. Similarly, the pseudo-variable
OUTPUT(0) can be used in an assignment statement in order to

write values to output port 0.

The complete PL/M program for performing this simple
function is shown below

DECLARE (I,J,MAX) BYTE;

/* READ INPUT PORT O AND SAVE IN VARIABLE I */

100P:
I = INPUT(O);

/% NOW READ INPUT PORT 1 AND SAVE IN VARIABLE J */
J = INPUT(1);

/* SET MAX TO THE LARGER OF THESE TWO VALUES %/
IF I > J THEN MAX = I; ELSE MAX = J;

/¥ WRITE THE VALUE OF MAX AT OUTPUT PORT 0 */
OUTPUT (0) = MAX;

/¥ GO BACK AND READ THE INPUT PORTS AGAIN */

GO TO LOOP;

EQF

The symbol EOF (end-of-file) is required in PL/M to
indicate the end of the program. Note also that the GO TO
statement causes program control to restart at the point

labelled 'LOOP:' where input values are read again.

15

In crder to effectively construct more comprehensive
PL/M programs, it is necessary to consider the structure of

PL/M statement groups, including the locp control groups.

7. DO Groups.

As mentioned previously, statements can be grouped
together within the bracketing reserved words DO and END as
a DO-group. Recall that the simplest DO-group is of the
forn

DO;
statement-1;
statement-2;
statement-n;
END;
Several additional DO-groups are defined in PL/M which

control program flow. These groups are shown below.

7.1. The DO-WHILE Group. One form of the DO-group is

called a DO-WHILE. The DO-WHILE has the form

DO WHILE expression;

statement-1;

statement-2;

statement-n;

END;
In this case, the expression following the reserved word
WHILE is evaluated before the statements within the group
are executed. If the expression evaluates to true (i.e.,
the rightmost bit of the result is 1), the statements up to
the corresponding END are executed. At the end of the
group, program control is transferred to the top of the
DO-group and the expression is evaluated again. The group

is executed over and over until the expression results in a

16

false condition (the rightmost bit is 0). Consider the

following example}

A = 1;
DO WHILE A <= 3;
A=132+ 1;
END;
The statement A = A + 1 will be executed exactly three

times. The value of A at the end of execution of the group

is four.

7.2. The Iterative DO-group. An Iterative DO-group
allows a group of statements to be executed a fixed number
of times. The simplest form of the Iterative DO-group is

DO variable = expressionl TO expression2;
statement-1;
Statement-2;
statement-n;
END;
The effect of this group is to first store-.expressicnil into
the variakle following the DO. The group is executed with
this initial value once, and control returns to the top of
the DO. The value of the variable is incremented by 1 and
tested against expression2. If the incremented value
exceeds expression2, control +transfers to the statement
following the END; otherwise, the group is executed once
again. An example is
DO I =1 TO 10;
A = A+ I;
END;
Note that this DO-group has exactly the same effect as the
following DO-WHILE:
I=1;
DO WHILE I <= 10;
A= 12+ I;
I=1I+ 1;

17

END;

A slightly more complicated form of an Iterative
DO-group allows a stepping value other than 1. This second
form is

DO variable = expr1 TO expr2 BY expr3;
statement-1;
statement-2;
statement-n;
END;
In this case, the variable following the DO is steppedﬁ by

the value expr3 instead of by 1.

7.3. The DO-CASE. Another form of the DO-group is the

DO-CASE statement. The form of a DO-CASE group is

DO CASE expression;

statement-1;

statement-2;

statement—n;

END;
The effect of this group is the following. Upon entry to
the DO-CASE, the expression following the CASE is evaluated.
The result of this expression is a value k which m@must be
between O and n-1. This value k is used to select one of
the n statements of the DO-CASE to execute. The first case
corresponds to k = 0 (statement-1), the second case
corresponds to k = 1 (statement-2), and so-forth. Centrol
transfers to the selected statement, the statement is
executed, and control then passes to the statement following
the END.

An example of the DO-CASE is:

DO CASE X - 5;
X=X+ 5; /% CASE 0 */

18

DC; /* CASE 1 %/
X=X+ 10; Y = X - 3;
END;
/% CASE 2 %/
DOI =3 TO 10; A= 1A + I;
END;

END /% OF CASES */ ;

Before giving more comprehensive examples, it is useful
to define the notion of a subscripted variable and its use

in a PL/M program.

8. Subscripted Variables and the INITIAL Attribute.

It is often wuseful in PL/M to reference memory
locations with an "offset" from some base address. This

feature is allowed in PL/M through subscripting.

8.1. Subscript Declarations and Value References. A
subscripted variable is similar to a simple variable with
the addition of an expression enclosed within parentheses
following the variable name. The location referenced by the
subscripted variable is the sum of the base address of the
variable and the subscript expression. Any variable name
can be subscripted in PL/M.

Suppose a PL/M programmer declares the variables X, 7Y,
and Z as follows
DECLARE (X,Y,Z) BYTE;
The first memory location can be referenced simply as X or
as the subscripted variable X(0). Similarly, X(1) refers to
the location Y, and X (2) references Z's location.

PL/M also allows a fixed number of locations to be set

aside in the declaration statement. These fixed locations

start at the variable name specified in the declare

19

statement. For example, the statement

DECLARE X (100) BYTE;
provides a memory area of 100 bytes starting at X. 1In this
case, X is called a vector. Note that the size of a vector

must always be a constant.

Several vectors of the same length can be declared in

the same declare statement. The statement
DECLARE (U,V,W) (50) ADDRESS;

causes three vectors of length 50 (each) to be allocated in
contiguous memory locations. Note, however, that these
vectors are of type ADDRESS, and thus each element requires
two bytes; hence, U takes up the first 50 two-byte
locations, requiring 100 bytes altogether. The storage for
the second vector starts at V and requires the next 100
bytes. Similarly, W occupies the 100 byte area following V.

As mentioned previously, a subscript can be thought of
as a displacement from a base address. This displacenment,
however, is affected by the declared precision of the
variable. That is, if the declared precision is BYTE, then
the displacement is measured in single bytes. If, however,
the variable is type ADDRESS, the displacement is measured
in doukble bytes. Thus, given the declaration of U, V, and W
above, the first element of U is U(0), and the last element
is U(49). The f£first element of V is V(0), or U(50).
Storage is always arranged so that double byte variables are
at memory addresses which are even numbers; hence, there 1is
sometimes one extra word allocated between contigous byte

and double byte variables.

Before continuing, it should be noted that the
subscripts can be complicated expressions, and not
necessarily just the simple constants shown above. Note
also that subscripted variables can occur everywhere a

simgle variable is allowed, dincliuding expressions and

20

assignments. A single excepticn to this rule is that a
subscripted variable cannot be used as the indexing variable

in an Iterative DO group.

Two built in functions are provided in PL/M which are
based upon the declared size of a vector. These functions
take the forms)
LENGTH (identifier) and LAST(identifier)

where the 1identitifers correspond to variables declared
previously. These forms can appear anywhere an expression
is allowed in PL/M, and result in the declared 1length and
last element number of the specified variable, respectively.
The following program, for example, uses the LAST function
to set all the elements of a vector v to the constant 5.

DECLARE V(100) BYTE;

DECLARE I BYTE;

DO I =0 TO LAST(V);
V(I) = 5;
END;

EOF

8.2. The INITIAL Attribute. The values of variables
can be initialized in a declaration statement using the
INITIAL attribute. This attribute takes the form

INITIAL (constant-1,constant-2,...,constant-n);
and must directly follow the type (BYTE or ADDRESS) in the

declare statement.

The purpose of the INITIAL attribute is to preset the
values of memory lccations starting at the location named in
the declarations. The constants given in the INITIAL
attribute are placed into memory before the program starts
(these constants become a part of the object code and must
be loaded into random-access memory). The following are
valid variable declarations which use the INITIAL attribute.

DECLARE X BYTE INITIAL(10);

21

DECLARE Y(10) BYTE INITIAL (1,2,3,4,5,6,7,8,9,10);
DECLARE Z (100) BYTE INITIAL
(" SHORT', 'STRING' ,0FH,33) ;
DECLARE U (100) ADDRESS INITIAL (3,4,3330);
DECLARE (Q,R,S) BYTE INITIAL(O0,1,2);

Note that +the number of bytes required to hold the
constants given in the INITIAL attribute need not cocrrespond
to the length declared for the variable. The constants are
placed into memory without truncation starting at the first

byte allocated in the declare statement.

The use of subscripted variables 1is shown in the

exanmple which follows.

9. A Sorting Progran.

It is now possible to «construct a more complicated
program, given the expressions, DO-groups, and subscripted
variables which have been presented. In the program which
follows, a vector A is initialized to a set of constants in
unsorted order. The program below sorts the values of A
into ascending order.

/% FIRST DECLARE A VECTOR TO HOLD THE
VALUES TO SORT.
ASSUME THERE ARE NO MORE THAN 10 ELEMENTS TO BE
SORTED. EACH ELEMENT IS BETWEEN O AND 65535 */
DECLARE A (10) ADDRESS INITIAL
(33,10,2000,400,410,3,3,33,500,1999);
/% START THE 'BUBBLE SORT' AT THIS POINT
EXAMINE ADJACENT ELEMENTS OF 'A' AND SWITCH INTO
ASCENDING SEQUENCE. RECYCLE UNTIL NO MORE
SWITCHING OCCURS */
DECLARE (I,SWITCHED) BYTE,
TEMP ADDRESS;
SWITCHED = 1;
DO WHILE SWITCHED; SWITCHED = O0;

/% GO THROUGH 'A' ONCE AND LOOK FOR A PAIR
WHICH NEEDS TO BE REVERSED */
DCI=20TO 8;
IF A(I) > A(I+1) THEN
DO; SWITCHED = 1;
TEMP = A(I); A(I) = A(I+1);
A(I+1) = TEMP;
END;
END;
END;
/*¥ THE VALUES IN 'A' ARE NOW IN ASCENDING ORDER */
EOF

1C. Procedure Definitions and Procedure Calls.

The procedure capabilities of PL/M are discussed in
this section. A procedure, or subroutine, is a section of
PL/M source code which 1is declared, but not executed
immediately. Instead, the procedure is called from various
parts of the program. The call amounts to a transfer of
program ccntrol from the calling point to the procedure.
The procedure executes, and, upon completicn, returns to the

statement following the call.

The use of procedures in PL/M allows construction of
modular programs, allows construction and use of subroutine
libraries, eases programming and documentation, and reduces
generated code when similar program segments are used at

several points in the program.

Procedures are described in two parts: how to define

them, and how to use then.
10.1. Procedure Declarations. A procedure declaration

consists of four main parts: the procedure nanme,
specification of values which are sent to the procedure, the

23

type of the returned value (i.e., BYTE, ADDRESS, or no
returned value), and the description of the actions of the
procedure, called the procedure body. The procedure may be
invoked anywhere in the program after it is declared. The
form of a procedure declaration is
procedure-name: PROCEDURE argument-list procedure-type;
statement-1;
statement-2;
statement-n;

END procedure-name;

The procedure-name is any valid PL/M identifier, and is
used to name the procedure so that it can be called at a

later point in the progranm.

The argument-list takes the form
(argument-1,argument-2,...,argument-n)
where argument-1 through argument-n are valid PL/M
identifiers. These identifiers are called formal parameters

and are used to hold particular values which are sent to the
procedure from the point of invocation. Each of these
parameters must also appear 1in a declarations statement
within the procedure body (before the corresponding END).
Note that the argument-list can be omitted altogether if no

parameters are passed to the procedure.

The procedure-type is either BYTE, ADDRESS, or can be
omitted if the procedure does not return a value to the
calling point. The procedure-type defines the precisicn of
the value returned so that proper type conversion takes
place when the procedure is invoked as a part of an

expression.

The execution of a procedure 1is terminated with a
RETURN statement in the procedure body. The RETURN

24

statement takes the form
RETURN;
or
RETURN expression;

The first form is used if the procedure-type is omitted (no
value is returned to the calling point). The second form is
used 1if the procedure-type 1is BYTE or ADDRESS. The
expression following the RETURN is brought back to the

calling point in this case.

The statements within the procedure body can be any
valid PL/M statements, including nested procedure
definitions and invocations. A number of wvalid PL/M
procedure declarations are listed below.

NULL: PROCEDURE;
RETURN;
END NULL;

SUM: PROCEDURE (X,Y) ;
DECLARE (X,Y) ADDRESS:
/% ASSUME U IS PREVIOUSLY DECLARED *x/
U= X+ Y;
RETURN;
END SUM;

ZERO: PROCEDURE BYTE;
RETURN 0;
END ZERO;

JDENTITY: PROCEDURE (X) ADDRESS;
DECLARE X ADDRESS;

RETURN X;
END IDENTITY;

PLUSXY: PROCEDURE (X,Y) BYTE;
DECLARE (I,X,Y) BYTE;
I=X-1X;

RETURN X + Y;
END PLUSXY;

25

10.2. Procedure Calls. Procedures can be invoked
anywhere after their declaration. There are two possible
forms of the call, depending upon whether the procedure-type

is present or omitted in the procedure declaration.

If the procedure-type 1is omitted, then the procedure
does not return a value to the point of invocation. 1Imn this
case, the form of the call is

CALL procedure-name argument-list
where the procedure-name and argument-list correspond to
those defined above. The effect in PL/M is to assign the
actual values in the argument-list at the <call to the
identifiers given in the argument-list in the procedure
declaration. The elements of the arqument-list in the «call

are called actual parameters, and are not restricted to

simple PL/m identifiers. In fact, any valid PL/M expression
can be ©placed in the argument-list. These expressicns are
all evaluated in the actual parameter list before they are
assigned to the corresponding identifiers in the formal
parameter list. If the procedure is declared with an empty
formal parameter list then the actual parameter list is also
omitted. Control is then transferred to the beginning of

the procedure named by the procedure-nanme.

Thus, given the procedure definitions above, the

following are all valid procedure calls

CALL NULL;

CALL SUM (5,3);

CALL SUM(Q,R + Z);
In the last case, for example, the value of ¢ 1is first
placed into X in the procedure SUM. The value of R + 2 is
then computed and stored into the formal parameter Y.
Control then passes to the procedure SUM where the variable
U is set to the sum of these two values (it is assumed that
U has been declared ahead of the procedure SUM). Note that
automatic type conversion occurs between BYTE and ADDRESS

26

values when the actual parameters are assigned to the formal

parameters.

The second form of a procedure call occurs when the
procedure is declared with a procedure-type of BYTE or
ADDRESS. In this case, the procedure call results in a
value which can be used in an expression. The form of the
call is

procedure-name argument-list;
and may appear anywhere a PL/M expression is allowed. The
following calls demonstrate a number of valid PL/M procedure

invocations

I = IDENTITY (I);
X = PLUSXY(X,Y) ;
X = Q-PLUSXY (X+Y,Q)/ (X-Y);
DO I=PLUSXY (Q,R) TO PLUSXY (2+R,Q) +10; END;

As an example of a procedure declaration and call,
consider the sorting progranm given earlier. The segment of
the program which performs the sort can be redefined as a
procedure. Assume the procedure has a single formal
parameter which gives the upper bound of the sort loop. The
value returned by the procedure is the number of switches
required to sort the vector.

DECLARE A (10) ADDRESS INITIAL
(33,10,2000,400,410,3,3,33,500,1999) ;
SORT: PROCEDURE (N) ADDRESS;
/% SCRT THE VECTOR AT 'A' OF LENGTH
N + 2. RETURN THE NUMBER OF SWITCHES
REQUIRED TO PERFORM THE SORT */
DECLARE (N,I,SWITCHED) BYTE,
(T’1,T2,COUNT) ADDRESS;
SWITCHED = 1; COUNT = 0;
DO WHILE SWITCHED; SWITCHED=0;
DO I = 0 TO N;
T1 = A(I); T2=A(I+1);

27

IF T1 > T2 THEN
DO; A(I+1) = T1;
A(I) = T2; SWITCHED = 1;
COUNT = COUNT + 1;
END;
END;
END;
RETURN COUNT;
END SORT;
/*¥ THE SORT PROCEDURE IS DECLARED ABOVE.
CALL SORT WITH N -2 = 10 - 2 = 8 */
DECLARE NSWITCHES ADDRESS;
NSWITCHES = SORT (8);
EOF

The program shown above illustrates a difficulty in
parameter passing which has notvyet been considered. In
particular, the SORT procedure would be much more useful as
a library subroutine if several different vectors cculd be
processed by the same subroutine. As shown, the SORT
procedure is only capable of sorting the particular vector
A.

The next section introduces the notion of based

variables which overcome this difficulty.

11. Based Variables.

Based variable features of PL/M allow computation of

variable addresses during execution of a program. A based
variable is similar to the variables discussed previously,
except that no storage 1is allocated for the variable.
Instead, corresponding to each based variable is an address
variable, called the base, which determines the memory

address for the based variable during execution.

28

Based variables are declared using the BASED attribute
which specifies the base. The form of the BASED attribute
is

BASED identifier
where the identifier is a previously declared ADDRESS
variable name. The BASED attribute must immediately follow
the name c¢f the based variable in the declaration statement.
The following are examples of PL/M based variable
declarations
DECLARE X BASED A BYTE;
DECLARE (X BASED XA, Y BASED YA) ADDRESS;
DECLARE (Q BASED QA) (100) BYTE;

In the first case, a byte variable called X is declared.
The declaration implies that X will be found at the location
given by the address variable A (vhich must be declared as

an ADDRESS variable elsewhere).

The second declaration above defines two based
variables X and Y both of type ADDRESS which are located at
XA and YA, respectively.

The third declaration defines a vector based variable
called Q based at QA. Note that the vector size need not be
stated, however, since no storage is allocated to Q by the
PL/M compiler. The only wuse for the vector size is to
provide values for the LENGTH(Q) and LAST(Q) built-in

functions described previously.

In order to make effective use of based variables, it
is necessary to allow programmatic reference to the assigned
address of a non-based variable. The memory 1lccation
assigned to a variable is designated by preceding the
variable name with a dot symbol (.). Thus, the expressions

.A and .A(5)
yield the address of A and the address of A(5),

respectively. If A is a BYTE variable, the value of .A+5 is

the same as .A(5). Similarly, if A is of type ADDRESS, then
.A+10 is the same as .A(5). The address reference to a
based variable is allow and results simply in the value of

the base.

An address reference using the dot symbol can be used

anywhere an expression is valid in PL/MN.

As an 1illustration of the use of based variables,
consider the following loop which initializes the elements
of a vector to their respective element numbers

DECLARE A (100) ADDRESS;
CECLARE I BYTE;
DO I = 0 TO LAST (A4) ;

A(I) = I;
END;
EOF
This same function can be performed (rather

inefficiently) with the following loop using based variables
DECLARE A (100) ADDRESS,
QA ADDRESS, Q BASED QA ADDRESS;
/% SET QA TO THE BASE ADDRESS OF A=/
QA = .A;
DECLARE I BYTE;
DO I =0 TO 99;
Q = I; QA = QA + 23
END;
EGF

Note that QA starts at the base of A and moves up by
two bytes on each iteration since each element of A occupies

two bytes.

Based variables are. most commonly found in procedure

parameter passing. It is often necessary to return more

30

than one value from a procedure. In this case, the address
of an actual parameter can be passed to the procedure
instead of the value of the actual parameter. The
corresponding formal parameter is declared within the called
procedure as an address variable. This formal parameter is
then used as a base for a based variable whithin the
procedure. Any changes to the based variable then alter the

corresponding actual parameter.

In the <case of the SORT procedure, for example, the
address of a vector to be sorted can be sent as an actual
parameter. The SORT procedure then operates upon a locally
defined based variable. The revised SORT procedure is shown
below

SCRT: PROCEDURE (Q,N) ADDRESS;
DECLARE (N,I,SWITCHED) BYTE,
(Q,T1,T2,COUNT) ADDRESS;
/% AND THEN SET UP THE BASED
VARTABLE TO SORT %/
DECLARE A BASED Q ADDRESS;
SWITCHED = 1; COUNT = 0;
DO WHILE SWITCHED; SWITCHED=0;
DO I = 0 TO N;
T1 = A(I); T2=A(I+1);
IF T1 > T2 THEN
DO; A(I+1) = T1;

A(I) = T2; SWITCHED = 1;
COUNT = COUNT + 1;
END; END;END;
RETURN COUNT;
END SORT;

DECLARE B (10) ADDRESS INITIAL
(33,10,2000,400,410,3,3,33,500,1999) ;

DECLARE C(5) ADDRESS
INITIAL('A',32,0FFFH,22Q,2D);

/%* NOW SORT THE VECTORS B AND C */

31

DECLARE (N1,N2) ADDRESS;

N1 = SORT(.B,LAST(B)-1);
N2 = SORT (.C,LENGTH(C)-2);
EOF

The SORT procedure has two formal parameters Q and N.
0 is an ADDRESS variable which gives the base address of the
vector to be sorted. The parameter N gives the upper bound
in the sort 1loop, as before. The variable A is declared
inside SORT as an ADDRESS variable based at Q. Thus,
references to A inside SORT are actually references to

memory locations starting at the value of Q.

The SORT procedure is called twice. First, the vector
B is sorted bty sending the base address of B. The second
call sorts C by passing the base address of C as the first

actual parameter.

The section which follows introduces the concept of a
long constant. These long constants allow manipulation of

data which exceed two bytes in length.

12. Long Constants.

Recall that PL/M allows direct representation of
numeric and string constants which require a single or
double byte internal representation. It is often useful,
however, to manipulate constants of indefinite length. This
facility is provided in PL/M through the wuse of long

constants.

A PL/M 1long constant is a set of contiguous memory
locations represented by the address of the first byte. The
memory locations for long constants are allocated in the
same area as the program storage, and are initialized to the

string and numeric values specified in the constant (program

32

steps and long constants are normally a part of the Read
Only Memcry portion of storage, and thus cannot be altered
during execution). The first form of a long constant is
simply
. constant
where the constant is a string or numeric value. The result
of this expression is an address value providing the
location of the constant. The second form allows several
constants to be gathered together and based at the sanme
address. This form is
. (constant—1,constant—2,...,constant-n)

Again, the result of this expression is an address value

giving the starting position of the constants in memory.

Valid PI/M long constants are
. 335
- 'THIS IS A LONG CONSTANT STRING!
.('THREE','STRING','CONSTANTS')
- (3, 'CONSTANTS', OFFE2H)
These long constants can appear anywhere a PL/M expression
is allowed.

Another form of a long constant allows the constant to
be named and accessed as a subscripted variable. This
second form is a particular case of the declare statement
Called a LATA declaration. The form is

DECLARE identifier DATA (constant-1,...,constant-n) ;
The following are valid PL/M DATA declarations

DECLARE X DATA ('LONG STRING?') ;
DECLARE Y DATA (0,1,2,3,'STRING',4);
These two declarations have an effect similar to INITIAL
declarations except that new values cannot generally be
assigned to the elements of X and Y. 1In addition, there is
an automatic vector size assigned to elements declared in a
DATA declaration which is the number of bytes required to
hold the constants listed in the DATA attribute. In the

33

above <case, both X and Y are treated as BYTE variables with
vector size 11. As a result, the LENGTH and LAST built-in
procedures can be applied to DATA variables to determine the
length of the constant string.

Given the above DATA declaration, the expressions below

evaluate to the result shown on the right

X(0) = 'L*
X(10) = 'G°
Y(3) = 3

LENGTH(Y) = 11

As an example, consider the following PL/M procedure,
called EQUAL, which compares two long constants for
equality. EQUAL has two formal parameters which give the
base addresses of two long constants. The last byte of each
constant is 0ffh. EQUAL returmns a 1 if the constants match,
and 0 if not.

EQUAL: PROCEDURE (AS1,AS2) BYTE;
DECLARE (AS1,AS2,I) ADDRESS,
(S1 BASED AS1, S2 BASED AS2) BYTE,
(J1,32) BYTE;
/% COMPARE UNTIL A MISMATCH OR OFFH
IS FOUND IN BOTH STRINGS */
J1, Jd2, I = 0;
DO WHILE J1 = J2;
IF J1 = OFFH THEN RETURN 1;
J1 = S1(I); J2 = S2(I);
I =1I+1;
END;
RETURN 0;
END EQUAL;

Assume that the following declarations occur in the
progranm
DECLARE X DATA ('WALLAWALLAWASH',OFFH);

DECLAKE Y DATA ('WALLAWASH', OFFH);
The EQUAL procedure can be called by
I = EQUAL(.X,. ("WALLAWALLAWASH',OFFH)) ;
As a result, I is set to 1. The value of I in the case
I = EQUAL(.X,.Y)

is zero since the strings X and Y differ.

As a final comment, one should note that the
fundamental difference between DATA variables and BYTE
variables with the INITIAL attribute is in the allocation
of storage. DATA variables are stored in the same area as
program code, as mentioned previously, and cannot generally
be altered through a PL/M assignment. BYTE variables, on
the other hand, are allocated in alterable program stcrage.
The INITIAL attribute provides data which is preloaded into
these locations before the program executes (and hence is
volatile storage). In this case, these initial values can
always be <changed with assignment statements during

execution.

13. Scope gg Variables.

An important concept in any block-structured language,
such as PL/M, is the notion of variable scope. The scope of
a variable in PL/M is the range of statements where the
variabie can be used in expressions and assignments. The
scope of variables is controlled by the arrangement of
DO-groups and DECLARE statements. A variable is available
for wuse only within the DO-END statements in which the
DECLARE statement for the variable occurs. This range 1is

called the scope of the declared variable.

Consider the following PL/M program, for example:
1 DECLARE (A,B,C,D) BYTE;

2 EB,C = 10;

3 A =B+ C;

4 DO;

5 DECLARE (Q,R,S) BYTE;
€ Q, R = 20;

7 S =13k + Q + R;

8 END;

9 D= 2 + A;

10 EOF

The declaration on line 1 defines four variables A, B,
C, and D which can be used throughout the progranm. The
DO-group between lines 4 and 8 contains a declaration of
three variables Q, R, and S which are defined only within
the group; that is, although &, B, C, and D can be used
anywhere in the program, the variables Q, R, and S cannot be
referenced outside the range of statements beginning on line
4 and ending on line 8. These lines delimit the scope of Q,
R, and S.

A more complicated structure is given by the following
skeletal PL/M program
DECLARE (A,B,C,D) BYTE; /* BLOCK 1 */

DO; /* BLOCK 2 */

DECLARE (A,E,F,G) BYTE;
DO; /* BLOCK 3 */
DECLARE (B,H,I,J) BYTE;
END;/* OF BLOCK 3 */

END; ,* OF BLOCK 2 */

DO; /* BLOCK 4 */

DECLARE (A,E,K,L) BYTE;

END; /* OF BLOCK 4 %/

36

/* BLOCK 1 IS COMPLETED %/
ECF

The declaration of A, B, C, and D at the top of block 1
makes these variables global to any nested inner blocks in

the program. That is, they can be referenced anywhere in
the program where there is no conflicting declaration.

The variables A, E, F, and G at the top of block 2 are
said to be local to block 2 and global to block 3. These
variables cannot be referenced outside block 2. Note that
the variable A in block 2 conflicts with the declaration of
A in block 1. 1In this case, any reference to A within block
2 refers to the innermost declaration of A. Similarly, the
variables B, H, I, and J declared at the top of blcck 3
cannot be accessed outside block 3. Again, the declaration
of B in block 3 overrides the outer block declaration of

this variable name.

Block 4 is parallel to block 2 in this program. The
variables A, E, K, and L are local to block 4. Thus, the
variables E, K, and L are undefined outside block 4, and
references to A outside block 4 affect the variable A

declared on the first line.

The notion of scope of variable names extends to
procedure names and to formal parameters declared within
procedures. A procedure declaration is treated the same as
a8 DO-group in defining scope of variables. As an example,
consider the following program

/% BLOCK 1 %/
CECLARE (I,J,K) BYTE;
P1: PROCEDURE (I,Q) BYTE;
/% BLOCK 2 */
DECLARE (1,Q,J,R) ADDRESS;

37

END P1 /* AND BLOCK 2 */;
E2: PROCEDURE (J,Q,R) ADDRESS;
/% BLOCK 3 */
DECLARE (J,0Q,R,S,T) BYTE;
END P2 /* AND ALSO BLOCK 3 */
% BLOCK 1 IS FINISHED */
EOF

The variables I, J, and K are global to both the P1 and
P2 procedures. The procedures P1 and P2 constitute
independent parallel blocks, each with their own local
variables. Note that the 1local variable I declared in
procedure P1 is used in all references to I within block 2,
instead of the global variable declared in line 1. Note
alsc that the variable Q defined in P1 is completely
independent of the Q declared in P2.

The principal advantage to the scope of wvariable
concept in PL/M is that subroutines are independent of the
program in which they are imbedded, with no problems arising
from conflicting declarations. In particular, 1library
subroutines can be written as completely modular subprogranms
with no dependence upon the names used outside the

procedure.

14. Statement Labels and GO TO's.

PL/M allows program statements to be identified with a
statement label, and allows unconditional transfer of

———

program control to these labelled statements.

14.1. Label Names. A PL/M labelled statement takes
the form

label-1: label-2: ... label-n: statement;
where label-1 through label-n are valid PL/M identifiers or
constants. Any number of 1labels may precede a PL/M
statement. Valid labelled statements are
L1: X = X + 1;
LOOP: Y = 3;
L1: LOOP: X Y + 5;
30: Y X -5;
LOOP: 30: L1: Q9 =5 + Y,

The function of numeric labels is to specify an c¢rigin
for «code generation. The statement "30: Y = X - 5;" for
example, specifies that the object code for this statement
is to begin at location 30 in memory. The identifier form
of a statement label has no effect on the origin of the

code, but does provide a destination for GO TO statements.

14.2. GO TO Statements. PL/M allows three distinct
forms of an unconditional transfer. The first is
GO TO 1label;
In this case, the label is an identifier which appears as a
label in a 1labelled statement. Program control transfers
directly to the statement with this label.

The seccnd form of a GO TO is
GO TO constant;
The constant is any valid PL/M single or double byte number.
Program ccntrol transfers to the absolute location in memory

given by this number.

The last form is
GO TO variable;
where the variable contains a computed memory address.
Control transfers directly to this computed absolute

address.

39

The following program illustrates the use of latelled
statements and GO TO's.
DECLARE X ADDRESS;

10: GO TO KEYIN;

LOOP: Q = R + 3;

IF Q > Z GO TO LOOP;

GO TO EXIT;

/% COMPUTE AN ADDRESS AND BRANCH */
X = .MEMORY + 13;

GO TO X;

GC TO 30;

EXIT: HALT;

EOF

14.3. Scope of Labels. It should be noted that the
identifier fcrm of a label has an implied scope, similar to
variables and procedures. This implied scope can be made
explicit through the PL/M label declaration. The form of
the label declaration is

DECLARE identifier LABEL;

or
DECLARE (identifier-1,...,identifier-n) LABEL;

The label declaration informs the compiler that a label or
set of labels will occur at the same block 1level as the
declaration. The label declaration is only necessary,
however, when the implied declaration does not correspcnd to
the programmer's intention. 1In particular, any occurrence
of an undeclared label in either a GO TO statement, or as a
statement label results in an immediate automatic

declaration c¢f the label. This implied declaration is most

40

easily seen by example. The programs to the left below
contain wundeclared 1labels. The implied declarations
resulting from these labels are shown in the corresponding
programs to the right.

PROGRAM 1
.- .. | DECLARE LOOP LABEL;
LOOP: X = X + 1; | LOOP: X = X + 1;
GO TO LOOP; | GO TO LOOP;
EOF | EOF
PROGRAM 2

DECLARE LOOP LABEL;
LOOP: X=X+1;

LOCP: X=X+1;

|
|
DO; | DO;
.- . . i DECLARE Q1 LABEL;
GO TO Q1; | GO TO 0Q1;
g1: Y=Y+1; I Q1: Y = Y+1;
GO TO LOOP; | GO TO LOOP;
END; | END;
o o o | DECLARE EXIT LABEL;
GO TC EXIT; | GO TO EXIT;
EXIT: HALT; | EXIT: HALT;
EOF | EOF
PROGRAM 3
X=X+1; | X=X+1;
DO; | DO;
e o | DECLARE L1 LABEL;
GO TO L1; | GO TO L1;
I1: Y=Y+1; { L1: Y=Y+1;
END; | END;
o o | DECLARE L1 LABEL;
L1: Q=Q+3; | L1: Q=0Q0+3;
GO TO L1; | GO TO L1;
EOF | EOF

The only instance which requires explicit declaration
of a label is when a GO TO statement in an inner nested

41

block references a label in an outer block, and the label
follows the GO TO statement. Consider the fcllowing
program, for example.
/% BLOCK 1 %/
X =X + 1;
DO; /* BLOCK 2 */
GO TO EXIT;
END /% OF BLOCK 2 */;
EXIT: HALT,;
EOF
The implied label declaration created by the PL/M compiler
for the label EXIT results in the program
X=X+ 1;
DO;
DECLARE EXIT LABEL;

GO TO EXIT;

- . -

DECLARE EXIT LABEL;
EXIT: HALT,;
EOF

Note that the resulting program is in error since the
implied declaration of EXIT in block 2 indicates that the
scope of EXIT is only block 2, conflicting with 1its
occurrence in block 1. Thus, the label declaration can be
used to remedy the situation. The programmer overrides the
implied declaration with

DECLARE EXIT LABEL;

42

GO TO EXIT;

END;
EXIT: HALT;
EQF

As a final note, the PL/M programmer is encouraged to
use the IF-THEN-ELSE and DO-group constructs in the place of
labelled statements and GO TO's whenever possible. The
effect 1in most «cases is better object code and improved

readability of the source progran.

15. Compile-Time Macro Processing.

PL/M allows declaration and expansion of simple macros
at compile time. The LITERALLY declaration in PL/¥ allows
the programmer to define an identifier to represent a
sequence of arbitrary characters. The PL/M compiler
automatically substitutes the defining string at each
occurrence of the defined identifier. The form cf the
LITERALLY declaration is

DECLARE identifier LITERALLY string;
where the identifier is any valid PL/M name which does not
conflict with previous declarations, and the string 1is an
arbitrary PL/M string, not exceeding 255 characters in
length.

The following program illustrates the use of the PL/M
macro facility
DECLARE TRUE LITERALLY rie,
FALSE LITERALLY '0';

43

CECLARE DCL LITERALLY 'DECLARE',
LIT LITERALLY 'LITERALLY';
DCL FOREVER LIT 'WHILE TRUE';
DCL (X,Y,Z) BYTE;
X = TRUE;
DO FOREVER; ¥=Y+1;
IF Y > 10 THEN HALT;
END;
EOF
The declarations on lines 1 and 2 allow the programmer to
use the symbols TRUE and FALSE instead of 0 and 1, which
often makes the program more readable. The declarations for
DCL and LIT define abbreviations for DECLARE and LITERALLY,

respectively.

The DC FOREVER statement on line 8 first expands to DO
WHILE TRUE. The macro expansion of TRUE then results in a
loop headed by DO WHILE 1 (vhich executes indefinitely,

until the HALT statement is executed).

The LITERALLY declaration is also useful for declaring
fixed parameters for the particular compilation, but which
may change from one compilation to the next. Consider the
progranm below,‘for example:

DECLARE ASIZE LITERALLY '300°',
PBASE LITERALLY '4000°',
SUPERVISOR LITERALLY '200';

DECLARE (A (ASIZE) ,I) ADDRESS;

PBASE: A (ASIZE-10) = 50;

GO TO SUPERVISOR;

EOF

44

In this case, ASIZE defines the size of the vector A. The
value of ASIZE can be altered in the LITERALLY declaration
without affecting the remainder cf the program. Similariy,
the value of PBASE defines the starting location of the
program since it expands to a numeric label. The expansion
of the PBASE macro results in the statement

4000: A (ASIZE-1) = 50;
In the case of the SUPERVISOR macro, the statement "GO TO
SUPERVISOR" 1is replaced by "GO TO 200" resulting in a

transfer to absolute address 200 in memory.

16. Predeclared Variables and Procedures.

The LENGTH and LAST forms described previously are
called kuilt in procedures. A number of additional
predeclared variables and procedures are described in this

section, which are intended to ease the programming task.

It should be noted that these variables and procedures
are assumed to be declared at an ou%fglggggmgassing block
level which 1is invisible to the programmer. Thus,
declarations of variables and procedures with identical

names within the program override the predeclared names.

16.1. Condition Code Variables. There are four
variable names in PL/M which can be used to test the
condition codes in the MCS-8 CPU. These names are

CARRY ZERO SIGN PARITY
Any occurrence of one of +these variables generates an
immediate test of the corresponding condition code flip-flop
for a true condition (value is 1). The use of these
variables is somewhat iwmplementation-dependent, and is
described more completely in the section o¢n PL/M systen
notes. In any case, these variables cannot be used as the

destination ¢f an assignment.

45

16.2. The MEMORY Vector. It is often useful to
address the area c¢f memory following the 1last variable
allocated in a particular progran. PL/M provides this
facility by automatically inserting the declaration

DECLARE MEMORY (0) BYTE;

as the last declaration in every program.

As an example, consider the following program. This
program assumes it will execute on a machine -with 10 pages
(2560 bytes) of memory. The program initializes all
remaining space after the program variable storage to 1's.

DECLARE SIZE LITERALLY '2559¢',
I ADDRESS;
DO I = .MEMORY TO SIZE;
MEMORY (I - .MEMORY) = 1;
END;

EOF

16. 3. The TIME Procedure. A built-in procedure,
called TIME, is provided in PL/M for waiting a fixed amount
of time at a particular point in the program. The form of
the call is

CALL TIME (expression) ;
where the expression evaluates to a byte quantity n between
1 and 255. The wait time is measured in increments of 100
usec; hence, the total time-out for a value n is
n (100 usec).
Thus, the call to TIME shown below results in a 4500 usec
(4.5 msec) time-out
CALL TIME (45);

Since the maximum time-out is 255%100 usec = 25500 usec
= 25.5 msec, longer wait periods are affected by enclosing
the call in a loop. The following loop, for example, takes
1 second to execute

DO I = 1 T0 40;

46

CALL TIME (250) ;
END;

16. 4. Type Transfer Procedures. Two built-in
procedures are provided in PL/M to convert ADDRESS values to
BYTE values. The procedure calls take the forms

LOW (expression) and HIGH (expression)
The LOW procedure returns the low-order byte of a double
byte value, while the HIGH procedure returns the high-order
byte. [Either call can be used wherever a byte expression is
valid in PL/M.

16.5. Bit Manipulation Procedures. Four procedures
are provided in PL/M for shifting and rotating expressions.
These procedure calls take the forms -

SHL (expression1, expression2);

SHR (expressionl, expression?) ;

ROL (expression3,expression?2) ;

ROR (expression3, expression2);
In these «cases, expressionl can be either byte or double
byte, but expression2 and expression3 must be single byte
values.

‘The SHL and SHR procedures shift expressionl to the
left or right by an amount given by expression2,
respectively. The precision of the result is the same as
that of expressionl. Note that the value of expression?2
must be greater than zero.

The value of SHL(1000$0011B,2), for example, is the
byte value 00001100B. The call SHR(1$0000$1100B, 1) results
in the double byte value 0$1000$0110B.

The ROL and ROR procedures rotate the value of the byte

expressicn3 to the right or 1left by an amount given by

expression2, respectively. Again, expression2 must be

47

greater than zero. Both procedures always return a byte
value. The value of ROL(1011$000B,2) is 110030010B, and the
value of ROR (1111$0000B,8) is 1111$0000B.

The SHL, SHR, ROL, and ROR calls can appear anywhere a

PL/M expression is allowed.

16.6. 1I/0 Processing. The built-in procedure INPUT
and built-in variable OUTPUT were introduced earlier. In
general, the input call takes the form

INPUT (constant)
where the constant is in the range 0 to 7. The effect of
the call is to read the input port designated by the
constant. The result of the call is the byte value latched
into the port. The call to INPUT can appear as a part of

any valid PL/M expression.

The pseudo-variable OUTPUT can only be used as the
destination c¢f an assignment. The form is
OUTPUT (constant) = expression;
where the constant is in the range 0 to 23. The value of
the expression is latched into the output port designated by

the constant.

This section completes the tutorial introduction to
PL/M. The section which follows provides more detailed
discussion of the individual statements and constructs of
PL/M.

48

NNRNMNN N N 1 it ot o ot oot ot pos

o+

wm

ooy oo

ITI. A FORMAL APPROACH TO PL/M.

(Section III is currently incomplete. The BNF description of PL/M is included, however, for reference purposes.)

1 <PROGRAM> ::= <STATEMENT LIST>
2 <STATEMENT LIST> ::= <STATEMENT>
3 | <STATEMENT LIST> <STATEMENT>
4 <STATEMENT> i1:= <BASIC STATEMENT>
5 | <IF STATEMENT>
6 <BASIC STATEMENT> ::= <ASSIGNMENT>
7 <GRQOUP>
8 <PROCEDURE DEFINITION> ;
9 <RETURN STATEMENT> 3
0 SCALL STATEMENT> ;
1 <GO T8O STATEMENT> ;
2 <DECLARATION STATEMENT> 3
2 HALT ;
5 KLABEL DEFINITION> <BASIC STATEMENT>
6 <IF STATEMENT> ::= <IF CLAUSE> <STATEMENT>
7 t <IF CLAUSE> <TRUE PART> <STATEMENT>
8 <LABEL DEFINITION> <IF STATEMENT>
9 <IF CLAUSE> =::= IF <EXPRESSION> THEN
0 <TRUE PART> ::= <BASIC STATEMENT> ELSE
1 <GROUP> ::= <GROUP HEAD> <ENDING>
2 <GROUP HEAD> ::= DO ;
3 DO <STEP DEFINITION> ;
4 DO <WHILE CLAUSE> 3
5 DO <CASE SELECTOR> 3
6 <GROUP HEAD> <STATEMENT>
27 <STEP DEFINITION> ::= <VARIABLE> <REPLACE> <EXPRESSION> <ITERATION CONTROL>
28 <ITERATICN CCNTROL> ::= <T0> <EXPRESSIOND>
29 | <TO> <EXPRESSION> <BY> <EXPRESSICN>
<WHILE CLAUSE> ::= <WHILE> <EXPRESSION>
31 <CASE SELECTOR> ::= CASE <EXPRESSION>
32 <PROCEDURE DEFINITION> ::= <PROCEDURE HEAD> <STATEMENT LIST> <ENDING>
<PROCECURE HEAC> ::= <PROCEDURE NAME> ;
<PROCEDURE NAME> <TYPE> 3
<PROCEDURE NAME> <PARAMETER LIST> ;
<PROCEDURE NAME> <PARAMETER LIST> <TYPE> :

37 <PROCEDURE NAME> ::= <LABEL DEFINITION> PROCEDURE
38 <PARAMETER LIST> ::= <PARAMETER HEAD> <IDENTIFIERD)

AL DD DD DWW

i, vt i i

9 <PARAMETER HEAD> ::= (

0 | <PARAMETER HEAD> <IDENTIFIER> ,

1 <ENDING> =::= ENC

2 END <IDENTIFIER>

3 <LABEL DEFINITION> <ENDING>

4 <LABEL DEFINITION> ::= <IDENTIFIER> :

5 | <NUMBER> :

6 <RETURN STATEMENT> ::= RETURN

7 ! RETURN <EXPRESSION>

8 <CALL STATEMENT> ::= CALL <VARIABLE>

9 <GO TO STATEMENT> ::= <GO TO> <IDENTIFIER>

0 | <GO TO> <NUMBER>

1 <GO 10> ::= GO TO

2 | GOTC

3 <DECLARATION STATEMENT> ::= DECLARE <DECLARATION ELEMENT>
4 | <DECLARATION STATEMENT> 4 <CECLARATION ELEMENT>
5 <DECLARATION ELEMENT> ::= <TYPE DECLARATIOND

6 f <IDENTIFIER> LITERALLY <STRINGC>
7 <IDENTIFIER> <DATA LIST>.

8 <DATA LIST> =:z:= <DATA HEAD> <CONSTANT>)

9 <DATA HEAD> ::= DATA (

o} | <DATA HEAD> <CONSTANT> ,

1 <TYPE DECLARATION> ::= <IDENTIFIER SPECIFICATIOND <TYPE>
2 <BOUND HEAD> <NUMBER>) <TYPE>

3 <TYPE DECLARATIOND> <INITIAL LIST>

49

<TYPE> s:= BYTE

65 ADDRESS

66 LABEL

67 <BCUND HEAD> 1= <IDENTIFIER SPECIFICATION> (

68 KIDENTIFIER SPECIFICATIONS t:= <VARIABLE NAMED

69 | KIDENTIFIER LIST> <VARIABLE NAME>)
70 CIDENTIFIER LIST> HEE {

71 { KIDENTIFIER LIST> <VARIABLE NAME> ,

72 <VARTIABLE NAME> c:= <IDENTIFIERD

3 i <BASED VARIABLE> <IDENTIFIER>

14 <BASED VARIABLE> s:= <IDENTIFIER> BASED

75 INITIAL LISTS s:= <INITIAL HEAD> <CONSTANT> }

1€ <INITIAL HEAD> t:= INITIAL (

77 { CINITIAL HEAD> <CONSTANT> .

18 <ASSIGNMENT> ::= <VARIABLE> <REPLACE> <EXPRESSION>

79 | <LEFT PARTY> <ASSIGNMENT>

80 <REPLACE> ::= =

81 <LEFT PART> ::= <VARIABLE> .

82 <EXPRESSION> ::= <LOGICAL EXPRESSION>

83 | KVARIABLE> : = <LOGICAL EXPRESSION>

84 <LOGICAL EXPRESSIOND> ::= <LOGICAL FACTOR>

85 SLUOGICAL EXPRESSION> OR <LOGICAL FACTOR>
86 <LOGICAL EXPRESSION> XOR <LOGICAL FACTOR>
87 <LOGICAL FACTOR> =::= <LOGICAL SECONDARY>

88 | <LOGICAL FACTOR> AND <LOGICAL SECONDARY>
89 <LOGICAL SECONCARY> =:=:= <LOGICAL PRIMARY>

90 | NOT <LCOGICAL PRIMARY>

‘91 <LODGICAL PRIMARY> ::= <ARITHMETIC EXPRESSION>

92 { CARITHMETIC EXPRESSION> <RELATION> <ARITHMETIC EXPRESSION>
S3 <RELATION> 1= =

94 <

95 >

9¢€ < 2

97 < =

g8 > =

99 <ARITHMETIC EXPRESSION> s:= <KTERM>

100 ! CARITHMETIC EXPRESSION> + <TERM>
101 ‘ KARITHMETIC EXPRESSION> - <TERM>
102 KARITHMETIC EXPRESSION> PLUS <TERM>
103 l CARITHMETIC EXPRESSION> MINUS <TERM>
104 - <TERM>

105 KTERMY> ::= <PRIMARYD>

106 <TERM> * <PRIMARY>

107 <TERM> / <PRIMARY>
108 <TERM> MOD <PRIMARY>

109 <PRIMARY> =::= <CONSTANT>

110 « <CONSTANT> .

111 <CONSTANT HEAD> <CONSTANT>)

112 <VARIABLE>

113 . <VARTABLE>

114 { <EXPRESSIGN>)

115 <CONSTANT HEAD> HEE N |

116 | <CONSTANT HEAD> <CONSTANT> ,

117 <VARTABLE> t:= <IDENTIFIER>

118 | <SUBSCRIPT HEAD> <EXPRESSION>)

119 C<SUBSCRIPT HEAC> 3:= <IDENTIFIER> {

120 | <SUBSCRIPT HEAD> <EXPRESSION> ,

121 KCONSTANT> ::= <STRING>

122 | <NUMBER>

123 LT0> :::= 7O

124 <BY> t:= BY

125 CWHILE> :1:= WHILE

50

IVe COMPIIING AND LCEBUGGING PL/M PROGRAMSe

This section discusses procedures for compiling and
debugging PL/M programs. A complete compilation of a PL/M
program is performed in two distinct parts: the first
phase, referred to as PLM1, scans the source progranm, and
produces an intermediate form. The second phase, called
PLM2, accepts this intermediate form and produces the
machine code for the MNCS-8 CPU. All errors in frogranm

syntax are detected in PLM1.

The debugging process begins following successful
compilation of a PL/M progranm. This debugging phase
consists of an execution of INTERP/8 which accepts the
machine code produced by PLM2 and simulates the acticns of
the MCS-8 CPU. INTERP/S has a number of facilities which
allow monitoring of CPU action, allowing symbolic and
absolute reference to machine code and variable storage
locations (see Appendix III of the INTEL publication "MCS5-8
Micro Computer Set 8008 Users Manual") These three phases

are described in detail in the sections which follow.

1. PLM1 Operating Procedures.

The first pass of the PL/M compiler scans the source
program, and detects improperly formed declarations and
statements. A listing of the source program can be oltained
during this pass. Errors are listed by line number whether
the source 1listing 1is produced or not. An error message
produced ty PLM1 takes the form:

(nnnnn) ERROR m NEAR s
The number nnnnn corresponds to the line where the error
occurred, s is a symbol on the line near the error, and m

corresponds to the particular error message as given in

51

Before discussing the files referenced by PLM1, it is
necessary to present the file naming scheme used thrcughout
the three programs PLM1, PLM2, and INTERP/8. These three
programs are written in ANSI standard FORTKAN with the
intention of being as independent from the host computer as
possible. Thus, only a few assumptions can be made about
the physical input and output devices or FORTRAN logical
unit numbers and corresponding file names used in any
particular implementation. Instead, these three prcgrams
use an internal file numbering scheme which is consistent
between the three programs, but which may differ in terms of
FORTRAN logical units from installation to installation.
The machine-independent approach here is to give the file
numbering in terms of devices types, and allow any
particuiar implementation to assign the most convenient
FORTRAN units.

The file numbers used throughout ©PLM1, PLM2, and
INTERP/8, along with the corresponding device types, are
shown in Figure IV-2. Two examples of FORTRAN unit number
assignments for the PDP-10 and IBM System/360 computers are

shown in Figure IV-3.

A number of compiler control switches are used during
the execution of PLM1 to control I/0 based upon this file
nunbering schene. Additional switches are provided to
control other compile-time functions during this pass, as
given below. Compiler control switches come in two forms:
compiler toggles, and compiler parameters. Compiler toggles
can take on only the values 0 and 1 (generally specifying an
"on" or "off" condition), while compiler parameters can be

any non-negative value.

A compiler switch is specified to PLM1 by typing a line

52

ERROR
NUMRER

1

11

12

14

15

i6
17

19

29
21

22

Figure 1IV-1.

MESSAGE

THE SYMBOLS PRINTED BELOW HAVE BEEN USED IN THE CURREAJT 3LNCK
BUT DO NOT APPEAR IN A DECLARE STATEMENT, OR LASEL APFFARS [
A GO TO STATEMENT BUT DOES NOT APPEAR IN THE BLGCK,

PASS-1 COMPILER SYMBOL TABLE OVERFLOW. 7170 MANY SYMBOLS [N
THE SOURCE PROGRAM, EITHER REDUCE THE NUMBER OF VAR[ARLES Iy
THE PROGRAM, OR RE-COMPILE PASS-1 WITH A LARGER SYM3IL TA72Lf.

INVALID PL/M STATEMENT. THE PAIR GOF SYMBOLS PRINTED 304
CANNDT APPEAR TOGETHER IN A& VALID PL/M STATEMENT (TH]S ERR9R
MAY HAVE BEEN CAUSED BE 4 PREVIQUS ERROR [N THE PROGAAM).,

INVALID PL/M STATEMENT. THE STATEMENT 1S [MPROPERLY FoR7E0--
THE PARSE TO THIS POINT FOLLOWS (THIS MAY HAVE OCCUIRTH 2L~
CAUSE OF A& PREVIOUS PROGRAM ERROR),

PASS-1 PARSE STACK OVERFLOW. THE FROGRaM STATEMEMTS arc
REFURSIVELY NESTEN TOO DEEPLY: EITHER SIMPLIFY THE 22105504
STRUCTURE, OR RE~COMPILF PASS-1 WITH A L&RGIR PARIE STAUK,

NUMRER CONVERSTOM ERROR., THE NUMBER EITHER EXCEEDS 65535 0P
CONTAINS DIGITS WHICH CONFLICT WITH THE RABIX INDITATOR,

PASS-1 TABLE OVERFLOW. PROBABLE CAUSE 1S 1 CCHSTAMT 57140
WHICH IS TOD LONG. IF SO, THE STRING SHDUL O RE WRITTIN a5 ¢
SEQUJENCE OF SHORTER STRINGS, SEPARATED RY COMMAS, (0THE2UTSE,
RE-COMPILE PASS-1 WITH A LARGER VARC TaARLZ,

MACRD TASLE OVERFLOW. TOO MANY LITERALLY DECLARATODUS,
EITHER RENUCE THE NUMBER OF LITERALLY DFCLARATIONS, 7P RE-
CAMPILE PASS-1 WITH A LARGER *MACROS' TaRig.

INVALID CONSTANT [N INITIAL, DATA, 0OR Tw-LTVE CONSTaMT,
PRECISION OF CONSTANT EXCEEDS TWO BYTES (MaY BF INTEINAL
PASS-1 COMPILER ERROR).

INVALID PROGRAM, PROGRAM SYNTAX INCORRFCT FOR TERMINATIUM
OF PRQGRAM, MAaY BE DUE TO PREVIOUS ERRDAS wHICH QCO?RFD
WITHIN THE PROGRAM,

INVALTO PLACEMENT OF A PROCFDURE DECLARATION WITHIN THE PL/M
PROGRAM, PROCEDURES MAY ONLY BE DECLARED IN THE QUTER BLOCK
(MAIN PART OF THE PROGRAM) OR WITHIN DO-END GROUPS (NOT
ITERATIVE DO'S, DO=-WHILE'S, OR DO-CASE'S).

IMPROPER USE OF IDENTIFIER FOLLOWING AM END STATEMENT,
IDENTIFJERS CAN ONLY BE USED IN THIS WAY 79 CLOSE A PROCEDURE
DEFINITION,

INENTIFIER FOLLOWING AN END STATEMENT NOES NOT MATCH THE NAME
OF THE PRCCFDURE WHICH IT CLOSES.

DUPLICATE FORMAL PARAMETER NAME IN a PRNCEDURE HEAGING,

[DENTIFIER FOLLOWING AN END STATEMENT £ANNOT BE FOUND IN THE
PROGRAM,

PUPLTCATE LABEL DEFINITION AT THE SAME BLOCK LEVEL.
NUMERIC LABEL EXCEEDS CPU ADDRESSING SPACE.

INVALID CALL STATEMENT. THE NAME FCLLOWING THE CALL IS ROT
A PROCEDURE.

INVALID DESTINATION IN &4 GO TO, THE VALUE MUST BE A LABEL
OR SIMPLE VARIABLE,

MACRO TABLE OVERFLOMW (SEE ERROR £ ABOVE).
DUPLICATE VARIABLE OR LABEL DEFINITION,

VARIABLE WHICH APPEARS IN A DATA DECLARATION HAS BEEN PRE-
VIOUSLY DECLARED IN THIS BLOCK

PLM1 error messages issued during the
pass.

53

first

23
24
25
26

27

28

29

3p

31

32

33

34

35

37

38

PASS-1 SYMBOL TABLE OVERFLOW (SEE ERROR 2 ABOVE),
INVALID USE OF AN IDENTIFIER AS A VARIABLE NaME,
PASS-1 SYMBOL TABLE OVERFLOW (SEE ERROR 2 ABOVE),

IMPROPERLY FORMED BASED VARIARLE DECLARATION. THE FORM [S
I BASED J,» WHERE 1 IS AN IDENTIFIER NOT PREVIOUSLY DECLARED
IN THIS BLOCK, AND J IS AN ADDRESS VARJABLE.

SYMBOL TABLE OVERFLOW IN PaASS-1 (SEE ERROR 2 ABOVE).

INVALID ADDRESS REFERENCE, THE DOT OPERATOR MAY ONLY
PRECEDE SIMPLE AND SUBSCRIPTED VARIABLES IN THIS CONTEXT,

UNDECLARED VARIABLE, THE VARIABLE MUST APPEAR IN A DFECLARE
STATEMENT BEFORE 1TS USE,

SURSCRIPTED VARIABLE OR PROCEDURE CALL RETERENCES AN UN-
DECLARED IDENTIFIER, THE VARIABLE OR PROCEDURE MUST 3¢
DECLARED BEFORE IT IS USED,

THE IDENTIFIER IS IMPROPERLY USED AS & PROCEODURE OR SUR-
SCRIPTEN VARIABLE.

TO0 MANY SUBSCRIPYS IN A SUBSCRIPTEP VARTABLE REFERENCE.
PL/M ALLOWS ONLY ONE SUBSCRIPT,

ITERATIVE DO INDEX IS INVALID. IN ThE FORM '00] = E1 TO g2
THE VARIABLE I MUST BE SIMPLE (UNSUBSCRIFTED).

ATTEMPT TO COMPLEMENT A 3 CONTROL TOGGLE WWERE THE ToGGLE
CURRENTLY KAS A VALUE OTHER THAN % QR 1, 4 SE THE '= N!
OPTION FOLLOWING THE TOGGLE TO AVOID THIS fRROR.

INPUT FILE NUMBER STACK OVERFLOW. RE-COMPILE PASS-1 WITH
A LARGER INSTK TABLE.

TOO MaANY ELOCK LEVELS IN THE PL/M PROGRAM. £)THER SIMPLIFY
YOUR PROGRAM (37 BLOCK LEVELS ARE CURRENTLY ALLOWED) OR
RE-COMPILE PASS-1 WITH A LARGER BLOCK TARLE.

THE NUMBER OF ACTUAL PARAMETERS IN THE CALLING SEQUENCE

IS GREATER THAN THE NUMBER OF FORMAL PARAMETERS DECLARFC
FOR THIS PROCEDURE.

THE NUMBER OF ACTUAL PARAMETERS IN THE CALLING SEQUENCE

IS LESS THAN THE NUMBER OF FORMAL PARAMFTEXS DECLARED
FOR THIS PROCEDURE.

Figure IV-1 (Con't)

54

Input

Internal File Number Input Device

Interactive Console
Card Reader
Paper Tape

Magnetic Tape A
Magnetic Tape B
Sequential Disk A
Sequential Disk B

SO W

Output

Internal File Number Output Device

Interactive Console
Line Printer
Paper Tape
Magnetic Tape C
Magnetic Tape D
Sequential Disk C
Sequential Disk D

~Noaautds W

Figure IV-2. Symbolic Device Assignments for PLM1, PLM2,
and INTERP/S8.

55

PASS-1 FILE DEFINITICNS

POP-18
INPUT QUTPUT
NUM DEVICE UNIT NUM DEVICE UnlT
1 TTY 5 1 TTY s
2 COR 2 2 PTR 2
3 PAP 6 3 PAP 7
4 MAG 1€ 4 MAG 17
5 DEC 9 5 GEC 12
6 DISK 2¢ 6 DISK z2
7 NIsK 21 7 D1SK 23
IBM S/362 (CP/CMS)
INPYT cUTPUT
MUM NEVICE UNTIT NUM DEVICE UNTT
1 TTY 80 5 1 TTY 127 6
2 cnR 83 10 2 PTR 133 8
3 TAP 30 11 3 PUN BD 7
4 TAP 1480 9 4 TAF 133 12
5 nSK R”R2-Le 13 5 OSK 82-1.3 13
6 nSK 8% 1 6 DEk 8B 3
7 DSk 89 2 7 DSK 82 4
PASS-2 FILE DEFINITIONS
FOP-10
TNPUT OUTPUT
NUM DEVICE UNTT MyM DEVICE UNTT
1 TTY 5 1 TTY 5
2 CcORrR 2 2 PTR 3
3 PAP 6 3 PAP 7
4 MAG i€ 4 MAG 17
5 DF 9 5 DEC 3
6 Disk 2¢] DISK 22
7 BISK 23 7 P ISK 21
I18M S/36% (CP/CMS)
INPUT ouTPYT
NUM DEVICE UNIT NUM DEVICE UNTT
1 TTY 88 5 1 TTY 122 6
2 CrR 30 12 2 PTR 133 8
3 TAP RU 11 3 pUr 80 7
4 TAP 140 9 4 TAP 133 12
5 nSK 823-1L3 13 5 NSk 82-L¢ 13
6 DSK 82 2 6 DSk 8@ 1
7 DSK 88 4 7 DSk 82 2

AL INPUT RECORDS ARE 8@ CHARACTERS OR LESS. ALL
OUTPUT RECORDS ARE 128 CHARACTERS OR LESS.

THE FORTRAN UNI!T NUMBERS CAN BF CHANGED [N THE
SUBROUTINES GNC AND WRITEL (THESE ARE THE ONLY OC-
NTURRENCES OF REFERENCES TO THESE UNITS).

Figure IV-3. PDP-10 and IBM System/360 real device assignment.

56

of input with a "$" in column 1, and a switch name starting
in column 2 (only the first character of the switch name is
significant, and the remaining characters may be omitted).
In the case of compiler parameters (and, optionally compiler
toggles) , the switch name is followed by an equal sign (=)
and an integer value. A compiler toggle with the equal sign
and number omitted is complemented (a 0 becomes a 1, and a 1
changes to a 0). Compiler switches are not printed in the

source listing.

The most commonly used compiler switches for PLM1 are
listed in Figure IV-4, along with their default values.

Note that compiler toggles are listed in Figure IV-4 without

the "= n" option although it is understood that either "= 1"
or "= 0" is acceptable. Compiler paranmeters are listed in
the Figure with the "= n" part following the switch nanme.

The value of n 1is assumed to be 1in the proper range.
Finally, note that the default values shown here are those
provided by INTEL in the distribution version of the systenm
and assume a batch processing environment. Any particular
implementation may have differing default values (e.g.,
values may assume a time-sharing mode of processing), and

thus the local installation should be consulted.

The operation of the first pass can now be described.
PLM1 begins by reading the input file number which is
defaulted by the $INPUT switch. Normally, this switch
defaults to the card reader if operating in batch mnode, and
to the terminal if operating in interactive mode.
Subsequent switches in the primary file can be used to
change these default values, if necessary (e.g., reset the
left or right margin, or change to an alternate input file).
The first pass normally creates a listing file on output
file number 2, an intermediate symbol table on file 6, and

an intermediate code file on file 7.

57

Switch Name Use _ Default

SANALYZE Controls the PL/M syntax analysis 0
trace.

SCOUNT = 1 Start the line numbering at line n. 0

$DELETE = n Delete all trailing characters in 120
the output after position n.

$EOF End-of-file on this unit. 0

SGENERATE Interlist the intermediate language 0
generated by Pass 1.

$INPUT = n Switch to file n for subsequent 1

input (see PL/M file numbering).

$LEFTMARGIN=n Ignore all characters before column 1
n in the input lines.

$SMEMORY Include a symbol table in the ENPF 0
tape produced by Pass 2 showing the
memory address assignments for
variables, labels, and procedures.

$OUTPUT = n Write subsequent output lines to 1
file n (see PL/M file numbering).

$PRINT Print output lines (batch mode). 1
$RIGHTMARGIN=n Ignore all characters in the input 72
lines beyond position n.
$SYMBOLS Print a symbol table dump at the end 0
of Pass 1.

STERMINAL Interactive processing mode.

SWIDTH = n Set output line width to n charac- 72
ters.

NOTE: The input lines are a maximum of 80 characters,
and the output lines cannot exceed 120 characters.

Figure IV-4., PIM1 "$" compiler switches.

58

It should be noted that in an interactive mode, PLM1
starts by reading the progammer's console. At this point,
the programmer could type the program directly at the
console into PLM1. It is usually the case, however, that
the programmer first «composes his program using the
time-sharing system's text editor. When PLM1 reads the
console for the first 1line of input, the programmer
redirects the PLM1 input to the disk file «containing the
edited program using the $INPUT = n compiler switch, where n
is one of the input file numbers correspinding externally to

the edited program.

The output from PLM1 can be directed to the
programmer's console, or to another device such as a disk
file or line printer wusing the $0UTPUT compiler switch
placed in the input stream. If the programmer selects the
console as an output device, it 1is often useful to set
$TERMINAL = 1 which automatically 1lists only the error
messages at the terminal. The programmer then uses the line
numbers, along with the time-sharing system editor to locate
the errors and change the source program in preparation for
recompilation. In this way, a source listing of the progran
need never be generated during the first pass. The program
is 1listed as the compilation proceeds if the $TERMINAL

toggle is zZero.

A practical approach to development of large PL/M
programs is to write the program in terms of a number of
independent procedures. Each of these procedures can be
compiled and debugged separately, and, after all procedures

are checked-out, the entire program can be compiled.

As an example, consider the program shown in Figure
IV-5. In this <case, a procedure is shown, called INDEX,
which performs a ccmparison of two character strings to

determine if the second string occurs as a substring in the

59

$MEMORY = 1

{* THE INDEX PROCEDURE SEARCHES THE STRIMG STARTIMG AT
A' FOR AN OCCURRENCE OF THE STRING STARTING AT 'B',
INDEX RETURNS A ZERO IF THE SECOMD STRIMNG IS MOT A SUB-
STRING OF THE FIRST; OTHERWISE, THE POSITION OF THE
SECOND STRING 1S RETURNED, THE CHARACTER POSITIONS ARF
COUNTED STARTING FROM 1 AND ENDING AT 255, */

DECLARE EOS LITERALLY 'OFFH';

/* THE LABELS LO ... L5 AND C1 ... C3 ARE PRESENT FOR DERUCCINC
PURPOSES ONLY, AND CAN BE REMOVED WITHOUT AFFECTING THE PROCRAM
EXECUTION =/

INDEX: PROCEDURE (A,B) BYTE;

LO: DECLARE (A,B) ADDRESS,

(SA BASED A, SB BASED B, J,K,L,M) BYTE;

J = 0;
L1: DO WHILE SA(J) <> EOS:
K = 0;
L2: DO WHILE (L:=SA(J+K)) = (M:=SB(K));
L3: IF L = EOS THEN RETURN J+1;
K =K+ 1;
END;
J =dJd + 1;
Lb: IF M = EOS THEN RETURN J;
END;
L5: RETURN 0;
END INDEX;

/* TEST THE INDEX FUNCTION =*/
DECLAPE Q DATA ('WALLAWALLAWASH',EO0S),
(1,J) BYTE;

PO WHILE 1;

Cl: | = INDEX(.0,.('WALLA',EO0S));
C2: | = INDEX(.('"WALLA',E0S),.Q);
C3: 1 = INDEX(.0,.('WASH',E0S));
END;

EOF

Figure IV-5. A card-image listing of the INDEX procedure.

60

first string, as described in the comment preceding the
procedure declaration. The last part of +the progranm
(following the declaration of Q) is present omnly to test the
INDEX procedure and will be removed when INDEX is imbedded
within a 1larger progranm. Note that this test section
includes three sample calls on INDEX which are repeated
indefinitely. The labels LLO through L5 within INDEX are
used only during the debugging phase, and have no effect
upon program execution. In fact, these labels may be
removed after the INDEX procedure is checked-out to avoid

later confusion as to the purpose of the lakels.

Figure 1IV-6 shows a sample execution of PLM1 using the
above source program as input. The exact manner in which
PLM1 1is started on any particular computer is, of course,
implementation dependent. A number of particular systems
are considered, however, in Section IV-4. The particular
example shown in Figure IV-6 resulted from execution of PLM1
on an IBM System/360 under the CP/CMS time-sharing systen
using a 2741 console. Thus, all lines shown in 1lower case
in this example, and examples which follow, are typed by the
programmer, while upper case lines are output from the
program Leing executed. The PLM1 output shown in this
figure indicates that the program is syntactically correct,
the intermediate files have been written, and the second
pass can ke initiated.

2. PLM2 Operating Procedures.

As mentioned previously, PLM2 performs the second pass
of the PL/M compilation by reading the intermediate files
produced through execution of PLM1. PLM2 then generates
machine code for the MCS-8 CPU.

Error messages produced by PLM2 are of the form
{nnnnn) ERROR m

61

PASS~1

$1=2 (could use $0=2 for printer iisting, $t=1 for no listing)

06001 2 /* THE INDEX PROCEDURE SEARCHES THE STRIMG STAPTIHA AT
00002 2 'A' FOR AN OCCURRENCE OF THE STRING STAPTIMG AT 'pt,
00003 2 INDEX RETURMS A ZFRC IF THE SECOMD STRINMG IS MOT A SUR-
0000t 2 STRING OF THE FIRST; OTHERWISE, THE POSITION OF THF
00005 2 SECOND STRING 1S RETURNED, THF CHARACTEP POSITIOMS ARE
00006 2 COUNTED STARTING FROM 1 AND ENDIMG AT 255. */

00007 2 DECLARE EOS LITERALLY 'OFFH';

00008 2 /* THE LABELS LO ... L5 AND C1 ... C3 ARF PRESENT FOR NEBUGGI

33009 2 PURPOSES ONLY, AND CAN BE REMOVED WITHOUT AFFECTING THE PROG
ggglﬂ 2 EXECUTION x/

00011 2 INDEX: PROCEDURE (A,B) BYTE;

00012 3 LO: DECLARE (A,B) ADDRESS,

00013 3 (SA BASED A, SB BASED B, J,K,L,M) BRYTE;
00014 3 J = 0;

00015 3 L1: DO WHILE SA(J) <> EOS;

00016 3 K= 0;

00017 & L2: DO WHILE (L:=SA(J+K)) = (M:=SR(K));
00018 &4 L3: IF L = EOS THEN RETURN J+1;

00018 S K=K+ 1;

00020 5 END;

00021 &4 Jd =dJd + 1;

00022 &4 Li: IF M = EOS THEN RETURN J;

00023 4 END;

00024 3 LS: RETURN 0;

00025 3 END INDEX;

00026 2

00027 2 /+ TEST THE INDEX FUNCTION */

00028 2 DECLARE Q DATA ('WALLAWALLAWASH',EOS),
00028 2 (1,9) BYTE;

00030 2 DO WHILE 1;

00031 2 Cl: | = INDEX(.Q,.("WALLA',E0S));
00032 3 C2: 1 = INDEX(.('WALLA',E0S),.Q);.
00033 3 C3: | = INDEX(.0,.("WASH', E0S));
00034 3 END;

00035 2 EOF
NO PROGRAM ERRORS

Figure IV-6. Listing produced by PLMl for the INDEX procedure.

62

where nnnnn references the line in the source prograr where
the errcr occurs, and m is amn error message Dnumber,

corresponding to those given in Figure IV-7.

Operation of the second pass is particulariy simple.
PLNMN2 begins by reading the card reader (batch mode) or
console (time-sharing mode) and will accept any number of
ngn gsyitches as input. These switches set the second pass
compiling parameters shown in Figure IV-8. PLM2 continues

to read these switches until one blank line is enccuntered.

At this point, PLM2 reads the intermediate files produced by

PLM1 and generates the MCS-8 machine code.

ASs in the case of PLM1, the exact manner in which the
PLM2 program is initiated is implementation dependent, and
will be discussed for some particular systems in Section
IV-4.

Figure IV-9 shows the execution of PLH2Z using the
intermediate files produced by PLM1 for the INDEX procedure
given previously. Figure IV-10 lists the BNPF machine code
file which results from this execution of PLN2. ©Note that
the machine code file is headed by a symbol table (caused by
the $MEMCRY=1 entry during PLM1) which will be used by
INTERP/8 during the debugging phase which follows.

3. Program Check-Out.

program verification is accomplished through the use of
the MNCS-8 CPU software simulator, called INTERP/8. The
various commands available in INTERP/8 are described fully
in the MCS-8 Users Manual. The PL/M program being
checked-out is first compiled wusing PLM1 and PLM2, as
previously described. In order to quickly locate errors in
the source program, it is helpful to include the $MEMOERY=1
toggle in PLM1 so that a symbol table is prcduced fcr the

63

ERROR
NUMBER

104

195

196
1g7

108

1g9

11@

114

115

116
117
118
119

120

12¢
125
12¢
127

128

Figure IV-7.

MESSAGE

REFERENCE TO STCRAGE LOCATIONS OUTSIDE THE VIRTUAL MEMORY
OF PASS-2, RE-GOMPILE PASS-2 WITH LARGER 'MEMORY' ARRAY,

"

VIRTUAL MEMORY OVERFLCW, PROGRA¥ IS TOQ L ARGE 10 COMPILE
WITH PRESENT STZE OF 'MEMORY,' EITHER SHORTEN PROGRAM OR
RECOMPILE PASS-2 WITH A LARGER VIRTUAL MEMORY.

(SAME AS 183,

$TOGGLE USED IMPROPERLY IN PASS-2. ATTEMPT TO COMPLEMENT
A TOGGLE WHIGH HAS A VALUE OTHER THAN @ OR 1.

REGISTER ALLOCATION TABLE UNDERFLOW, MAY BE DUE TO A PRE-

REGISTER ALLOCATION ERRGR. NO REGISTERS AVAILABLE., Mav
8E CAUSED BY & PREVIOUS ERROR, OR PASS-2 CIMPILER ERROR,

PASS-2 SYMBOL TABLE OVERFLOW, PEDUCE NUMBER OF
SYMBOLS, OR RE-COMPILE PASS-2 WITH LARGER SYMBOL TABLE,

SYMBOL TABLE OVERFLOW (SEE ERROR 103).
MEMORY ALLOCATION ERROR. TOO MUCH STORAGE SPECIFIED IN

THE SOURCE PROGRAM (16K MAX ON 88Y8), REDUCE SOURCE PROGRAM
MEMORY REQUIREMENTS,

INLINE DATA FORMAT ERROR. MAY BE DUE TQ IMPROPER
RECORD SIZE IN SYMBOL TABLE FILE PASSED TO PASS-2.

(SAME AS ERROR 127).

REGISTER ALLOCATION STACK OVERFLOW, FEITHER SIMPLIFY THE
PROGRAM OR INCREASE THE SIZE OF THE ALLOGATION STACKS,

PASS-2 COMPILER ERROR IN 'LITADD! -= MAY BE DUE TO A
PREVIOUS ERROR.

(SAME AS 114),

(SAME AS 114),

LINE WIDTH SET TOD NARRQOK FOR CODE DIMP (USE SWIDTH=zN)
(SAME AS 187),

(SAME AS 112),

(SAME AS 119, BUT MAY BE A PASS-2 COMPILER ERROR),
(SAME AS 188) .

PROGRAM REGQUIRES TOO MUCH PROGRAM AMD VARIABLE STHRaGE,
(PROGRAM AND VARIABLES EXCEED 16K).

INITIALIZED STORAGE OVERLAPS PREVIOUSLY JINITIALIZF STGRAGE .
INITIALIZATION TABLE FORMAT ERROR. (SEE ERROR 1119,

INLINE DATA ERROR, MAY KAVE BEEN CAUSED BY PREVIGUS CRROF.
BUILT-IN FUNCTION IMPROPERLY CALLED,

INVALID INTERMENTATE LANGUAGE FORMAT. (SEE ERRCR 111).

(SAME AS ERROR 113),

PLM2 error messages issued during the
second pass.

64

141

142

INVALID USE OF BUILT-IN FUNCTION IN AM ASSIGMMENT,

PASS-2 COMPILER ERROR, INVALID VARTABLE PRECISION (w37
SINGLE BYTE OF DOUBLE BYTE), MAY BE QUE TO PREVICUS ERROK.

LABFEL RESOLUTION ERROR IN PASS-Z (MpY BE COMPILER ERROR).
(SAME AS 108).
(SAavE AS 113).

INVALID PROGRAM TRANSFER (ONLY COMPUTEL JUNMPS ARE ALLOWED
WITH & 'GO T0").

(SAME AS 134),

ERROR IN BUILT-IN FUNCTION CALL.

(NOT USED)

(SAME AS 187},

ERROR IN CHANGING VARIABLE TO ADDRESS REFERENCE. MAY
8F A PASS-2 COMPILER ERROR, QR MAY BE CAUSED BY PRE-
VOUS ERROR.

(SAME AS 1087).

INVALID ORIGIN., CODE HAS ALREADY BEFN GENERATED IN THE
SPERIFIED LOCATIONS.

A SYMBOL TABLE DUMP HAS BEEN SPECIFIfD (USING THE gMEMCRY
TOGGLE IN PASS~1), RUT N0 FILE HAS KFEN SPECIFIED TC kE=-
CEIVE THE BNPF TAPE (USE THE SBNPF=N CONTROL).,

INVALID FORMAT FOR THE SIMULATOR SYMBOL TABLE DUMP (SEE
FRROR 111).

Figure IV-7. (Con't)

65

Switch Namne Use , Default

SANALYZE = n Print a trace of the register allcca- 0
tion stack if n=1. 1Include assigned
registers if n = 2.

SBNPF = n Do not write a BNPF tape if n=0. Other- 0
wise, write a BNPF tape to file n (see
PL/M file numbering).

SCOUNT = n (Same as Pass 1)
SDELETE = n (Same as Pass 1)
$EOF (Ssame as Pass 1)
SFINISH Print a decoded dump of the generated 0

machine code at the finish of Pass 2.

SGENERATE = n Print a cross reference of source line 0
numbers verses machine code locations
if n=1. If n = 2, print a trace of
the intermediate language as it is read,

as well.

$SHEADER = n Start machine code generation at loca- C
tion n when producing a code dump or
BNPF tape.

S$INPUT = n (same as Pass 1)

SLEFTMARGIN=n (same as Pass 1)

$SMAP , Print a memory map showing symbol num- 0

bers and address assignments at the end
of Pass 2.

$OUTPUT = n (same as Pass 1)
SPRINT (same as Pass 1)
$RIGHTMARGIN=n (same as Pass 1)
STERMINAL (same as Pass 1, default value suppressas 0

the listing of the intermediate fileg as
they are read)

SVARIABLES = n The first page of Random-access Memory 0
(RAM) is page n (numbering 0, 1,...,63)
SWIDTH = n (same as Pass 1)

Figure IV-8. PLM2 "$" compiler switches.

66

PASS-2

$generate =
$Sbnpf = 6

12=0003H
19=0067H
25=0089H
35=00E6H

Figure IV-9.

1 (cross reference line numbers and locations in code)
(write bnpf tape to internal file number 6)

13=000EH 15=0011H 16=001EH 17=0026H 18=00L3H

20=006DH 21=0071H 22=0077H 23=008LH 24=0087H
26=008AH 29=009CH 32=00A5H 33=00BEH 34=00E1H

Sample output from PLM2 corresponding to the
INDEX procedure.

67

1 CARPY 00362
2 ZERO 00363
3 SIGN 00364
i PARITY 00365
5 MEMOPY 00400
19 INDFX 00003
20 A 00366

21 B 00370

23 L0 00016

26 J 00372

27 K 00373

28 L 00374

29 M 00375

31 L1 00021
35 L2 00054
38 13 00132
t1 L& 00170
43 LS5 00207
B4 0 00215

56 [00376

47 J 00377

50 C1 0023k
52 C2 00265
53 €3 00316

Figure IV-10.

*****t*t*t*******t*ti*i***********************************

khkkkkdkkk

i*tti****t*****i**i**k***************************i****

khhkkkbkk®

0
8
16

21

32
40
48
56
64
72
80
88
96
104
112
120
128
136
1y
152
160
168
176
184
192
200
208
216
224
232

BNPNMNPNNF
BIHHNNHNNE
RMMPPNHNNF
BHNPPNNNNE
BMNNMNMNNF
BPPPPPNPNF
RPHNNNPPPE
BNNNNNNNNF
BPPNNNPPPF
BPHNNNPPPE
BMMPPNPPNF
BNNPNPPPNF
BPPNNNPPPE
BPPPPNPPNF
BNNNNNPPNE
BPPPNPNNNF
BNNPPNPPNE
BPPNNPHNNF
BPNNNNPPPE
BMNMNNHNNE
BPPNNNPPPF
BPPPPPPNPF
BNPPPHNNPE
BNNNPNPNNF
BMNNNNNNNE
BMNNNPNNNF
BNNNNMNNNF
BNNNNPNNNF
BMNNNNNNNE
BPPPPPNPNF
BMNPPNPPNF
BPPPPPPPPF
RNNPPNPPNF
BMPNNNPNNF
BNNNNNPPPE
BNMNMNNNNF
BMPNNPPNNF
BNPNNPPNNF
BNPNNNNNPF
BNPNNMPNNF
BNPNHNNNPE
BPPPPPPPPF
BNMNNNMMNNF
BNNNNNNMNE
BNMPNPPPNF
BPPPPPNNNF
BMPNPNPPPF
BNPHNNNNPF
BNHNPNPPNF
BNMPHNPPNF
BNNNNNNNNF
BPPFPPPPNF
BMNNNNNNNF
BMPNNPNNNF
BNNNPNPPNF
BNNPNNPPNF
BHMNNNNMNNF
BPPPPPPPNF
BNNNNNNNNF

BPNNNPNPNF
RHUPPNPPLF
RPPPPPHPMF
BPPPPPPMNF
BMMPNPPPHF
BPPMIMPPPF
LR PPNTIPT
BPMNNPPPPF
EMNNPNPNNF
BMNNNNNMME
BPPPPPMPPF
BMHNNNNNNE
BMNPPMMNNF
BPNNMNPPPF
BMNNNNNNNF
BPPNNNPPPF
BEPPPPPPMNE
BPPNNNPPPF
BMNPPNNNNF
RPNNNPPPPF
BNNPNPPPNF
BPPPPPNNNF
BMMNNNNNNF
BPPPPPPPPF
BNMPPNPPNF
BPPNNNNNPF
BNNPPNPPNF
BPPPPPNNPF
BHNPNPPPNF
BPPNNPPPPF
BPPPPPPNPF
BMPNNPMNNE
BPPPPPNPNF
BNNNPNNMPF
BMHNNNPPPE
BMPNPNPPPF
BMPHMNNNPF
EMPNNPPHME
BMPMPNNPPF
BPNPNNPNPF
BNPNNPRINF
BMMNNPPPNF
BHNNPPPPHF
BMPNNNPPNF
BNNNNNNNNF
BMPNNNPNNF
BMPNNNNNPF
BPPPPPPPPF
BMNMNNNNNT
BMMNNNNNNF
BMNPNPPENF
BPPPPPNNNF
BMPNPNPPPF
BPPPPPPPPF
BNNNNNNNNF
BMNNHNNNNFE
PMNPNPPPNE
BPPPPPHNNE
RPPPPPPPPF

BNNMMNNMNF
BPPPPNPPNF
BMHPPMMNNE
BHMMPPMMHF
BNHNNMMMNE
BUNPPHPPME
TPPNERINNE
BPPPPNMNPF
BPPPPPPPPF
BMNPMPPPNE
RIMIPPPPPME
BMNPPNPPNF
BEPNMMNPPPF
BMNPPNNMNMF
BPMMNPPPPF
BMNPNPPPHF
EPPPPPMNNF
BMNPPNPPNF
BPPMPNNNNF
BPPPPMMNPNF
BMHMNNMANF
BPNNPNMNNPF
BMNPPNNMNPF
BMPNNPMNNF
BPPPPPNPNF
BMNNNNPPPF
BPPPPPMPPE
BMPNNMPHNF
BMNNNNNNMF
BNMNNPNNMF
BEPPNNHPPPE
BPMNNNPNMF
BPPMMNPPPF
BHNNMNMNNF
BMPNNMPNNE
BMPNMNMNPF
BUPNPMPPPF
BMPHMMMMPF
BMPNMNPNNNF
BHHNMNMMNE
EMPNNPPNNE
SPNNNPPMPE
RPMNPPPPPF
BMIMNNNNDPF
RMNPPNPPME
BPMPPPPPNF
SHPENNPPNNF
BMHMNPPPNF
BEMNMPPPPNF
BNPANNPPNF
EMHNNNNNNE
BMPMNNPNNF
ENPMNMMNPF
BNMNNPPPNE
BMNNPPPPMF
EMPNNNPPNF
RHNMMMMNNE
BHPNNNPMMF

BUNPNPPONFE
5PPPPPMNPE
RPPPPPMPDE
BINPPPPPNE
BHENPORDPNE
BPPPPMPRIE
BHMNNMPPNE
BPPPHPHNNE
BNPRNPNNNF
BHMNHMMMNE
BIMMMHMNNE
EPPPPPNPNE
BINMPPNPPNF
RPPNNPNMNE
BPPPPMNMPE
BHNMMMNNNE
RMNPPMMMPF
BPPPPPMNNF
BENNMMPPNF
EPPPHPHNNE
BENPPHPPNE
BMPNNPMENF
BPPNMNPPPF
BHMPPMMPPPF
BPPNNPPPPE
BLENPNPPPNF
BPPNMPPPPE
BHNPNPPNNF
BNHPPNPPNF
BPPPPPNMPE
BNNNPMPNNF
BNMHNHNMNE
BHNNMNMPPDE
BPNPNPMMNE
BPMNFBPNNE
BHPHMPPHNE
BMPNNHMNPF
BNPNPMPPPFE
EFPPPPPPPF
BHMPHPNPOPE
BN PHNMNENPE
BHNMPNDPNE
BMNPMMPPNE
BUNHNMMMNE
BPPPOPPPNF
PHHMNMMNNE
BHPHMPPNNE
RPMPPPNNNE
BPHNMPPNPE
DNNHHNNPPE
BHMNPPHPPNF
BPPNPNPPNF
BNPNPHNPPE
BPNNNPPNPF
BPPHPNNNPE
BINNMNMPPE
BFNPPMPPNE
BPMNPPPNNF

Symbol table and BNPF tape produced by PLM2
for the INDEX procedure.

68

simulation. In addition, key statements in the source
program should be labelled so that important points can be
referenced symbolically during program check-out (see the
use of the labels LO, ... L5, and C1, C2, and C3 in Figure
Iv-6, for example).

The generated symbol table and compiled object ccde is
loaded into INTERP/8. Simulated program execution can then
be monitored, the values of memory locations can be examined
and altered, and program errors are readily detected.
Program check-out is usually more effective if debugging is
carried-out at the symbolic rather than absolute level.
That is, INTERP/8 allows reference to memory through both
symtolic locations (using the generated symbol table) and
absolute addresses. As a result, it 1is generally much
easier to follow the execution using the symbolic features
of INTERP/8 than it is to trace the execution using absolute
memory addresses. Thus, it is well worth the effort to

beccme familiar with INTERP/8 symbolic debugging facilities.

L numnber of features have been added to the INTERP/8
program which enhances its use in debugging PL/M progranms.
These features augment the commands described in Appendix
IITI of +the MCS-8 Users Manual. These additions are given

below.

First, note that symbolic names can be duplicated in a
PL/M program. That is, a programmer could declare variables
Wwith the same name in block levels which do not ccnflict
with one another. Consider the two procedures below, for
example
P1: PROCEDURE (A) BYTE;
DECLARE (A,B) ADDRESS;
END P1;
P2: PRCCEDURE (Q) ADDRESS;

62

DECLARE (Q,A,B) BYTE;

END P2;
Recall that although there are variables in procedures P1
and P2 which have the same names (i.e., A and B), these
variables are all given separate storage locations. In
order to distinguish these variables, a construct c¢f the
form

st/ S2/ ... Sn

is allowed as a symbolic reference in INTERP/S. The
interpretation of this construct is as follows: INTERP/8
first searches for the symbol S1, then looks further to sz,
and so-forth until Sn is found. This new construct can
appear anywhere a "symbolic name" is allowed in the current
INTERP/8 command structure. Note that in particular, the
definition of a "range element" is extended to include this
new form. Thus, the command

DISPLAY MEMORY A TO B+1.
is the same as

DISP MEM P1/A TO P1/B+1.

The seccnd cccurrences of A and B can only be located by
first searching for the name P2. Thus, these two variables
could be disrlayed using the command

DI MEM P2/A TO P2/B.

A second change to the INTERP/8 commands allows
reference to a symbolic location when setting the value of
the program stack (PC, PS 0, ... PS 7) or the value of the
memory address register (HL). With this addition, the
following are valid commands

SET PC = P2, BPS 5 = P1.
SET HL = B.
SET HL = P2 / A + 1.

Two additional $ switches have been added to INTERP/S.
The first is of the form

70

$MAXCYCLE = n
When this switch has a non-zero value, the CPU simulation is
prevented from running more than n cycles tefore returning
to the card reader or console for more input (n is initially
zero) . The toggle

$GENLABELS
was added to cause INTERP/8 to print the <closest symbolic
name to the current program counter whenever a break point
is encountered. INTERP/8 prints

break AT n = label displacement

where "break" is one of +the break point types: CYCLE,
BLTER, or REFER, and n is an absolute location. The value
of "label" is the <closest symbolic name in the progranm,
while the displacement is a positive or negative distance

from the name to the location counter.

The last change to INTERP/8 allows imbedded dollar

signs within numbers and identifiers, as in PL/M.

These features are demonstrated in the example
described below. Figure 1IV-11 gives a sample run of
INTERP/8 using the symbol table and machine code produced by
PLM2 corresponding to the program containing the INDEX
procedure given previously. Again, the initiation of
INTERE/8 is system dependent and thus is not shown here.
The symbol table is first loaded from file 6, followed by
the machine code, also from file 6. Note that these file
nunbers must correspond to the BNPF tape file written by
PLM2 (see the $BNPF switch in PLM2). The listing produced
by PLM1 is used, along with the symbolic reference features
of INTERP/8 to follow the program execution.

71

INTERP/& VERS 1.0
/* first load the symbol table and bnpf tape from internal
file number 6 (corresponding to the $bnpf=6 in pass2) */

load 6 6.
234 1OAD 0K

/* then

display
0003620
000363n
0003640
0003650
0004000
0000030
0003660
000370N
0000150
0003720
000373Q
0003740
0003750
0000210
0000540
0001320
00017¢C0
0002070
000215qQ
0003760
0003770
0002340
0002650

look at the symbol table */

symbols,

00242
00243
0024k
00245
00256
00003
00246
002438
00014
00250
00251
00252
00253
00017
0004y
00090
00120
00135
00141
00254
00255
00156
00181

00F24
O0F3H
00F4H
00F5H
0100H
oeo3H
O0FEH
O0F3H
000 FH
O0GFAH
00FBH
00FCH
00FDH
0011H
002CH
005AH
0078H
0087H
008DH
O0FEH
O0CFFH
009CH
00B5H

CARRY
VAN
SI1GN
PARITY
MEMORY
IMDEX

A

B
L0
J
K
L
M
L1
L2
L3
Lh
L5
Q
I
J
Cl
c2

0003160 00206 ODOCEH €3

/* set break points at places in the index procedures

iabelled by 10, 11, cee 415 %/

refer 10,11,12,13,14,15,
REFER OK

/* it will probably be useful to examine the program

at the beginning and end of each call to index, so...%*/

ref cl,c2,c3.
REFER OK

/* now run the program to the first reference variable %/

go 1000,
GO 0K
REFER AT 156=C1

/* we are at location 156 decimal, or equivalently, label ¢l */

base hex.
HEX BASE 0K

display symbh *,
cl

/+* look at cpu registers ...%/
di cpu.

CYZSP A B C D E H L HL SP PSS
+0000*00H*COH*00H=0CH*0OCH*00H*00H*00C0H*0CH*00GCH

di sym 9ch.

C1

Figure IV-11. Sample execution of INTERP/S.

72

di memory g to q+10.
008DH S57H 41H 4CH LCH LIH 57H L1H 4CH 4LCH 41H 57H

/* that must be the hex representation of WALLAWALLAW */

di sy q.
0002150 00141 O0O8DH

/* now run the program to entry of the subroutine #*/
go 1000.

GO 0K

REFER AT EH=L0

/* now at label L0, so examine the value of a */

di mem a.
OOFB6H 8DH

di mem a to a+l.
00F6H 8DH 0OH

/* the first string is based at a, so look at it..*/

di mem 8dh to 90h.
008DH 57H 41H 4CH LCH

/* looks good, now examine b's value #*/

di mem b to b+l.,
Q00F8H 9FH 0OH

conv 9fh.
100111118 2370 159 9FH

di mem 159 to 165.
009FH 57H 41H LCH LCH BI1H FFH OEH

/* looks good too, so run the index procedure down to

label 12 (also, to save t¥ping go 1000, we can set maxcycle

to 1000 so the simulation will never run more than 1000 cycles
before stopping) */

$maxcycle = 1000

go0.

REFER AT 11H=L1

g0.
REFER AT 2CH=L2
/* examine the values of the local variables */

di mem index/j to index/m dec.
QOFAH 000 000 000 00D

di mem j to m,
COFAH O00OH OOH OOH OOH

di sy 0fah.
J

/* run the procedure to label 13 */

g0.
REFER AT 5AH=L3

/* both 1 and m should contain a 'w' */

di mem 1 to m.
QOFCH S7H S7H

73

/* we should get a match on characters W A L L A

and then return with the matching position 1 =/

go. di m 1 to m.

REFER AT 2CH=L2

00FCH 57H 57H

go. di m 1 to m.

REFER AT SAH=L3

00FCH L1H L1H

go . go. di m 1 to m.

REFER AT 2CH=L2

REFER AT SAH=L3

O00FCH 4LCH 4CH

/* so far we have matched W A L =%/

go. go. di m 1 to m.

REFER AT 2CH=L2

REFER AT B5AH=L3

OOFCH 4CH &4CH

/* turn off the break point at L2 since it is getting
in the way */

noref 12,
REFER 0K

go, di m 1 to m.,

REFER AT SAH=L3

O00FCH 41H 41H

/* this time we should return #/

g0,
REFER AT 78H=LL

di mem m.
OCFDH FFH

/* m = eos, so we should end up at label c2 */
ref 12. go.

REFER 0K

REFER AT BS5H=C2

/* the value of i should be 1 */

di m i.
O0FEH 01H

di m i dec.
00FEH 001

/* now try the second call */

go.
REFER AT EH=LO

di mem a to b+1l.
COFGH R3! COY 8D 00N

lbase dec.
NDEC BASE OK

di mem a to b+l,
00246 184 000 141 00O

74

di mem 184 to 190, mem 141 to 147,
ooley 0eg7 065 076 076 065 255 014
00141 087 065 076 076 0G5 087 0CS

/* strings are being sent properly, so we can continue.
we should return a 0 this time since the larger string
is not a substring of the smaller, so set reference
breakpoint only at 15 */

noref 10,11,12,13,14, go.

REFER 0K

REFER AT 135=L5S

/* looks good, so let the subroutine return */

o.
REFER AT 206=C3

di mem 1.
00254 000

noref 15. /* let the subroutine run, and see if
REFER 0K

it returns the proper value */

g0,

CYCLE AT 50=L2+6

/* we just ran over 1000 cycles, so let it continue */
go 5000,

GO CTK

REFER AT 156=C1

/* we are now back around the loop. i will be an 11

if all is well %/

di mem i.
00254 011

/* everything looks good, so we can now do a little
fooling around to show some of the other debugging

features -- first we will look at the operand break
point */

noref 0 to 256.
REFER 0K

/* all reference break points are reset. we will now
set a byeak point so that program execution stops when
the variables local to index are referenced. %/

refer j to k.
REFER 0K

£0.
REFER AT 15=1L0+1
/* we stopped at the first instruction in index...

look to see what instructions are there #*/

75

di mem * to *+10 code.
00015 LMI,00H LHI,00H LLI,FAH LAM LLI F6H ADM ML

di hl,
HL = 250

di sy 250,
J

/* thus program execution has stopped because there
was an attempt to store a zero into a variable set
in the refer command run the program further...*/

g0.
REFER AT 21=L1+4

di hl. di mem * code,

HL = 250

00021 LAM

di sy 250.

J

/* breakpoint now occurs because of the reference to
the variable j. reset the break points, and
break only if the variable is being altered */
noref j to m. alter j to m.

REFER 0K

ALTER OK

go.
ALTER AT 42=12-2

di hl., di m * code.
HL = 251

00042 LMI

di sy 251,

K

/* now stopped because of attempt to alter variable k#/

go.
ALTER AT 66=L2+22

di hl.
HL = 252

di sy 252,
L

di me * to * + 10 code.
00066 LMA DCL LBA LAM LL!,F8H ADM INL LCA LAI,O00H

di a.
A= 87

/* we are about to store the accumulator into the

variable 1., 1look to see what is currently in 1, and

then run one cycle, exanmine again., */

di mem 1.
00252 255
go 1.
GO 0K

CYCLE AT 67=L2+23

76

di mem 1,
00252 087

/* stored ok now reset all operand breakpoints,
and go back and try the call over again */

noalter j to m.
ALTER OK

di sy cl.

0002340 00156 009CH

di cpu.

CYZSP A B c n E H L HL. SP PSO PS1
«0101+087%141 000+159 000 000%252+00252*001*00176%00067

set pc = cl. di cpu.
SET 0K
CYZSP A B C D E H L HL SP PSO PS1

0101 087 141 000 159 000 000 252 00252 001 00176%00156

/* we had better get out of the subroutine
call, SO ... */

set sp = 0. set pc=cl. di cpu.

SET 0K

SET OK

cYZ

sP A B C D E H L HL SP PSO
0101 087 141 000 159 000 000 252 00252*000%0015

6

/* that looks a lot better. now try the call again #/
g0.

CYCLE AT 62=12+18

g0.

CYCLE AT 64=L2+20

ref cl,c2,c3.

REFER OK

£0.

REFER AT 181=C2

di mem i.
00254 001

/* same as before. now try some selective
program execution and tracing. we will set the

values of some local variables and execute only

the code between 12 and 13 */

set cpu, di cpu.
SET 0K

CYZSP A B C D E H L HL SP PSO
*0000%000%000 000x000 000 000+000+00000 000*00000

/* display the code between 12 and 13 #/

di mem 12 to 13 cod.

000LL LH!,00H LLI,FAH LAM INL ADM LLI,FB6H ADM INL LBA LAI,00H ACM LLR
00060 LHA LAM LHI,00H4 LLI,FCH LMA DCL LBA LAM LLI,F8H ADM ML LCA LAI
00076,00H ACM LLC LHA LAM LH1,00H LLI,FDH LMA SUB JFZ,71H,00H DCL

set mem j tom = 0. di mem j to m.
SET OK
00250 000 600 GOC 000

77

/* set the address pointers for a and b up in memory
somewhere =/

set mem a to b+l = 0 1h 10h 1h. di m a to b+1l,
SET 0K
00246 000 001 016 001

/* now place data into these locations */

set mem 100h to 120h =1 2 3 4 5 6 7.
SET 0K

di mem 100h to 120h.

00256 001 002 003 004 005 006 007 001 002 003 004 005 006 007 001

002

00272 003 004 005 006 007 0D1 0C2 003 0OL 005 006 007 001 002 003 004

/* set j to 3 and k to 2 */

set mem j=3, mem k=2. di m j t k,
SET 0K
00250 003 002

/* now trace this section of code %/

trace 12-3 to 1345,
TRACE OK

go 5.
GO 0K
REFER AT 156=C1

/* move the program counter up to this section #*/
di pc, sp.

PC 156
sP 0

di b.
B =20

di cpu.
CYZSP A B c D E H L HL SP PSO
0000 000 000 00O 000 00D 000 000 00000 000%00156

set ps 0 = 12, /* same as set pc=12+%/
SET 0K

go 5.
GO OK

0000 000 000 000 000 000 00C ODO 00000 000+000LY
LH! ©

0000 000 000 0N0 000 000 0OD 000 00000 000*00QL6
LLtr 250

0000 €00 000 000 000 000 000%250%00250 000*=0004L8
LAM

0000*003 000 000 000 000 000 250" 00250 000+*00049
INL

+0010 003 000 000 000 000 000%x251+00251 000+00050
ADM

CYCLE AT S51=L2+7

base hex.
HEX BASE 0K

go 30.
GO 0K

78

*0001+05H 004
LLI FBH

0001 05H OOH
ADM

0001 05H OOH
INL
+0010 05H OOH
LBA

CYZSP A B
0010 05H+D5H
LAt OH
0010+00H
ACM
*0000+01H
LLB

0000 D1H
LHA

0000 O1H
LAM
0000%06H
LHI OH
0000 06H
LL1 FCH
0000 06H
LMA

0000 O6H
DecL
+0010 O06H
LBA
CYZSP A B
0010 06H*06H
LAM
0010+02H
LL! F8H
0010 024
ADM:
*6001+121
INL

+0011 12H
LCA

0011 12H
LAl OH

0011%00H
ACH
*0000%01H
LLC

6000 O1H
LHA

0000 01H
LAM

CYZSP A B

0000+05H 06H
LH! OH

0000 O5H
LL! FDH
0000 054
LMA

0000 O5H
SUB
*1011*FFH
JFZ 71H

O05H
05H
05H
05H
05H
05H
05H
05H

O05H

06H
06H
0GH

06H

O06H
06H
oeH
06H

06H
06H
06H

CYCLE AT 73H=LL~5H

/+ that should be enough of a check-out, so retire...*/

$eof

00H
00H
00H
00H
c
00H
00H
DOH
00H
00H
0O0H
00H
00H
00H
00H

c
00H

00H
0OH
00H

00H

06H*12H

124
12H
124
12H

C
124

12H
124
12H

00H
00H
00oH
0CH

00H
0oH
0OH
00K
00H
0OH
00H
00H
00H

00H

00H
00H
0CH
00H
00H
CoH
OOH
ooH
CoH
00H
D
00H
ooH

00H
00H

064 12H 0OH

00H
00H
00H
ooH

E
00H

00H
00H
00H

00H FRBRH OOFBY
00H+*FE6H*00F6H
0OH FG6H OOFG6H
00H*F7H*00F 7H

H L HL
00H F7H O0OF7H

004 F7H 00F7H
00H F7H COF7H
00H*05H*0005H

00H*01H OS5H*0105H

00H

01H O05H 0105H

00H+*00H O05H*0005H

00H
00H
00H

E
00H

00H
00H
ooH

00H

OOH*FCH*0O0FCH
00H FCH OOFCH
00H*FBH*00FBH

H L HL
00H FBH OOFRH

00H FBH OO0FBH
OOH*F8H*NOF8H
00H F8H OGF8H
OOH*FOH*00F9H
O0H F9H OCFSH
0CH FSH COF9H
00t FOH OOFSH

00H+12H+0012H

00H+*01H 12H+0112H

E
00H

H L AL
01H 124 0112H

Q0H*00H 12H*0012H

00H

0CH

00H

OOH*FDH=Q0FDH
00H FDH OOFDH

O0H FDH 0O0FDH

79

00H*0033H
00H+*0035H
O0O0H*0036H
O00H*0037H

sp PSe
00H*0038H

00H*003AH
00H*003BH
00H*003CH
00H*003DH
00H+*003EH
00H*00LOH
00H*00L2H
00H*0043H
00H*00LL4H

SP PSO
O0H*00LSH

O0H*00LGH
00H*0CLSH
00H*00LIH
00H*00LAN
0noH+00LBY
O0O0H=0CLD"!
OOH*COLEY
00H*00LFH
0CH*0050H

Sp PSO
00H+*0051H

00H*0053H
00H*0055H
COH*0056H

00H*0057H

4. Implementation-Dependent COperating Procedures.

As mentioned previously, the exact manner in which PLM1
and PLM2 are initiated on any particular computer is
irplementation-dependent. Several sample implementations
are given, however, in Figures IV-12 through IV-15. These
figures rprovide a sample execution of both passes for the
INTEL PDPF-10, and the «commercial time-sharing services
Tymshare, Applied Logic, and General Electric, respectively.
In each case, the FORTRAN unit names are specified for each
of the major files accessed by PLM1 and PLM2.

When using the Tymshare version (Figure 1IV-13), for
example, the programmer places the PL/M source program into
a file named FOR20.DAT, which corresponds to the internal
file number 6. This file is read when the $I=6 switch is
encountered during the PLM1 execution. PLM1 produces the
intermediate files FOR22.DAT and FOR23.DAT, along with an
optional listing in FORO3.DAT (under control of the $C=2 and
$T=0 or $T=1 switches). ‘

PLM2 is then initiated and automatically reads the
intermediate files produced by PLM1. Output can be directed
to the disk file FOR0O7.DAT using the $0=3 switch during the
PLM2 execution. The $B=7 switch in PLM2 produces a BNPF

machine code tape during this second pass.

INTEKP/8 can then be intiated for the debugging run,
and the "IOAL 7 7." command can be used to read this tape.

80

SAMPLE RUN ON INTEL PDP-18

.COPY FOR22,DAT=MYPROG.PLM
LSET SPOOL LPY
R PLM1
$1=¢

PASS 1 OF COMPILER IS INVOKED HERE
.R PLM2
$B=7
(SPACE ,CARRIAGF RETURN)

PASS 2 OF COMPILER 1S INVOKED HERE

.PRINT =.LPT

INPUT
FILE (FOR2#.DAT)
y
OPTIONAL R
PLM1 LISTING (*.LPT)
[
NTER- «
- SYMBOL
(FOR22 ,DAT) MEDéﬁ:EE TABLE (FOR23.DAT)
ﬁgﬁg FILE
) 1
OPTIONAL
PLM2 LIsTiNg | (*-LPT)

(FOR21.. AT)

Figure IV-]12. The INTEL implementation of PLM1 and PLM2.

81

SAMPLE RUN ON TYMSHARE PDP=-19

.CTRPY MYPROG.PLM,FOR2Z.NDAT
SRUN (UPL)Y PIMY

$0=2

M=

$S=i’

$I=é

PASS 1 OF COMPILFR IS INVOKED HERE

-RUN (UPL) pPLM2
$F =)
6z
TR =7
Frzy
0=3
(SPALE.CARRIAGE RETURN)

PASS 2 oF COMPILER IS INVOKED HERE

INPUT
FILE (FOR2g.DAT)
|
OPTIONAL
PLM1 LISTING (FOR@3.DAT)
SYMBOL
(FOR22.DAT) TABLE (FOR23.DAT)
FILE
|
OPTIONAL (FOR@7.DAT)

PLM2 LISTING

(FOR21.DAT)

Figure IV-13. The Tymshare implementation of PLM1 and PLM2.

82

INTERNAL
FILE
NUMBER

NIONUtE DN

INTERNAL
FILE
NUMBER

1

N O BN

INTERNAL
FILE
NUMBER

NN U S D)

INTERNAL
FILE
NUMBER

1

R e W, B A o8

TYMSHARE FILE DEFINITIONS

INPUT
DEVICE

TTY
CDR
PTR
MTAf
DTAl
DSK@
DSK1

OUTPUT
DEVICE

TTY
LPT
PTP
MTA1l
DTA?2
DSK?2
DSK3

INPUT
DEVICE

TTY
CDR
PTR
MTAQ
DTA1
DSK2
DSK3

OUTPUT
DEVICE

TTY
LPT
PTP
MTA1l
DTAZ
DSK@

DSK1

PASS 1

PASS 2

83

FILENAME

FORMS5
FORp2
FORP6

FOR16.
.DAT
.DAT
.DAT

FOR@9
FOR2#
FORZ1

.DAT
.DAT
.DAT

DAT

FILENAME

FORPS

FORP7
FOR17
FOR1p

.DAT
FOR@3.
.DAT
.DAT
.DAT
FOR22.
FORZ3.

DAT

DAT
DAT

FILENAME

FORPS.
FORf@2Z.
.DAT
.DAT
FORf9.
FOR22.
FORZ3.

FOR@6
FOR16

DAT
DAT

DAT
DAT
DAT

FILENAME

FOR@5

FOR17
FOR14

FOR21

.DAT
FOR@3.
FORA7.
.DAT
.DAT
FOR28.

.DAT

DAT
DAT

DAT

FORTRAN
UNIT

c
2
6

16
9

20

21

FORTRAN
UNIT

5
3
7
17
1¢
22
23

FORTRAN
UNIT

5
2
6
16
9
22
23

FORTRAN
UNIT

5
3
7

17

1

20

21

SAMPLE RUN ON AL/COM PDP=18

.COPY FILE{2.,DAT=MYPROG,PLH
«APPLY PLM1

$022

$Ma)

$S:)

8I=g

PASS 1 OF COMPILER IS INVOKED HERE

JAPPLY PLM2

$F=y

$G=t

$B8=7

$SMzi

$0=3

(SPACE,CARRIAGE RETURN)

PASS 2 OF COMPILER IS INVOKED HERE

INPUT

FILE (FILE|l .DAT)
i
< OPTIONAL
pLM1 LISTING CALE|3- 08T
-an z P—
SYMBOL
(FrLELR. n.m ”‘D]’};(E;E TABLE | (FILEI8.DAT)
FILE FILE
|
OPTIONAL (FILE[4.0QT
PLM2 LISTING t)

(FILE12.DAT}

Figure IV-14. The ALCOM implementation of PLM1 and PLM2.

84

INTERNAL
FILE
NUMBER

1

~NOouThA N

INTERNAL
FILE
NUMBER

~NoOvUnT AN

INTERNAL
FILE
NUMBER

SO

INTERNAL
FILE
NUMBER

~NoOurtbs LN

AL/COM FILE DEFINITIONS

INPUT
DEVICE

TTY
DSK
DSK
DSK
DSK
DSK
DSK

OUTPUT
DEVICE

TTY
DSK
DSK
DSK
DSK
DSK
DSK

INPUT
DEVICE

TTY
DSK
DSK
DSK
DSK
DSK
DSK

OUTPUT
DEVICE

TTY
DSK
DSK
DSK
DSK
DSK
DSK

PASS 1

PASS 2

85

FILENAME

FILES.DAT
FILE7 .DAT
FILES8.DAT
FILE9.DAT
FILE1§.DAT
FILE11.DAT
FILE1Z2.DAT

FILENAME

FILE6.DAT
FILE13.DAT
FILE14 .DAT
FILE15.DAT
FILE16.DAT
FILE17.DAT
FILE18.DAT

FILENAME

FILES.DAT
FILE7.DAT
FILES.DAT
FILE9.DAT
FILE1§.DAT
FILE17.DAT
FILE18.DAT

FILENAME

FILE6.DAT

FILE13.DAT
FILE14.DAT
FILE15.DAT
FILE16.DAT
FILE11.DAT
FILE12.DAT

FORTRAN
UNIT

5
7
8
9

1¢

11

12

FORTRAN
UNIT

6
13
14
15
16
17
18

FORTRAN
UNIT

5
7
8

9
1
17
18

FORTRAN
UNIT

6
13
14
15
16
11
12

SAMPLE RUN ON GENERAL ELECTRIC TIMESHARE

OLD MYPROG
SAVE FILEIN
OLD PLM1
RUN

PASS 1 OF COMPILER IS INVOKED HERE

OLD PLM2

RUN

SF

$6

$8=7

M

$0=2

(SPACE,CARRIAGE RETURN)

PASS 2 OF COMPILER IS INVOKED HERE

INPUT
FILE (FILEIN)

-

OPTIONAL
LISTING

PLM1 (PTR 1)

[[

SYMBOL
TABLE

(INTFIL)

(SYMFIL)

OPTIONAL

PLM2 LISTING (PTR 2)

(LOGBIN)

Figure IV-15. The General Electric implementation of PIM1
and PLM2.

86

GENERAL ELECTRIC FILE DEFINITIONS

PASS 1
INTERNAL
FILE INPUT
NUMBER DEVICE FILENAME
1 TERMINAL -
2 DISK CDR
3 DISK PAPI
1 DISK MAGI1
5 DISK DECI1
6 DISK FILEIN
7 DISK LOGBIN
TNTERNAL
FILE OUTPUT
NUMBER DEVICE FILENAME
1 TERMINAL .
2 DISK PTR1
3 DISK PAPO . oy
4 DISK MAGO }D»ﬂabﬂhfk
5 DISK DECO
6 DISK DISKO1
7 DISK DISKO2
PASS 2
INTERNAL
FILE INPUT
NUMBER DEVICE FILENAME
1 TERMINAL -
2 DISK CDR
3 DISK PAPI
1 DISK MAGI1
5 DISK DECI1
6 DISK DISKO1 S o e Lt
7 DISK DISKO02 D
INTERNAL
FILE OUTPUT
NUMBER DEVICE FILENAME
1 TERMINAL -
2 DISK PTR2
3 DISK PAPO
A DISK MAGO
5 DISK DECO
6 DISK LOGOUT
7 DISK LOGBIN

87

V. PL/M RUN-TIME CONVENTIONS FOR THE 8(C08 CEPEU.

This section presents the run-time organization cf PL/M
progranms, including storage allocation and subrocutine
linkage. The discussion below assumes an 8008 CPU
environment, and thus programs which are intended to be
independent cf CPU architecture should not depend wupon the

conventions presented here.

1. Storage Allocation,

The overall organization of memory for the INTEL 8008
CPU is shown in Figure V-1. Memory is allocated 1in three
main sections: the Instruction Storage Area (ISA), the
Variatle Storage Area (VSA), and the Free Sterage Area
(FSA) . The beginning of the ISA 1is determined ty the
numeric label of the first statement within the PL/M
progran. If no numeric label is specified, the origin of
the ISA defaults to zero, and the segment marked "unused" in
Figure V-1 1is enpty. The "square rcot program given in
Appendix A contains a numeric label on the first statement
to force the ISA to start at location 2048.

A1l ccde generated by the PL/M compiler is ‘Ypure.™
That 1is, no object code modifications are made at run-time.
Thus, the ISA memory portion can be implemented in either

RAM (Random-—-Access Memory) or ROM (Read-Only Memory).

The VSA portion of memory holds values of variables
declared within. the PL/M program in address-order. The
first variable declared in the source program is at the
lowest address in the VSA, while the last variable declared
is at the highest address. It should bLe noted that
doukle-byte (ADDRESS) variables are always aligned on an

88

MCS-8 MEMORY

16383)
FREE MEMORY
STORAGE ? VECTOR
AREA
(FSA)
¢« MEMORY —» /
-— LAST
VARIABLE VARIABLE
STORAGE DECLARED
AREA
FIRST (VSA)
VARIABLE

DECLARED —&

INSTRUCTION
STORAGE
AREA
PROGRAM (IsA)
ORIGIN —™

7 ((7
00000 //// /A

Figure V-1. Run-Time Storage Organization for the 8008 CPU.

89

even address boundary; thus, contiguous BYTE and ALDRESS
declarations in the source program may or may not lead to
contiquous allocation of these variables in the VSA. In
addition, note that declarations with the DATA attribute
cause allocation of the corresponding value in the ISA, not
the VSA. Hence, DATA variables cannot be altered if the ISA

is implemented in ROM.

The VSA is placed after the 1ISA, but never kegins
befcre the page indicated by the $VARIABLES compiler switch
in PLM2 (the default value of this switch is zero).
Suppose, for example, that pages 0, 1, and 2 ¢f memcry are
irplemented in wunalterabie ROM (recall that there are 256
bytes per page). The programmer would then set the switch

SVARIABLES = 3

during PLM2 to indicate that page number 3 is the first page
in which wvariables can be allocated. If the ISA is
contained within pages 0, 1, and 2 then the VSi begins in
page 3. If the ISA extends past the first three pages into
RAM then the length of the ISA determines the begirning of
the VSA. The end of the VSA 1is always at an even page
boundary.

Recall that there 1s one predeclared BYTE vector,
called "MEMORY," which 1is automatically included in every
PL/M program. The MEMORY vector is started after the 1last
variable in the VSA, and thus represents the last area of
memory, called the FSA, shown in Figure V-1. The length of
the MEMORY vector is, of course, dependent upon the amount
of memory physically attached to the ©particular §008 CPU
being wused, and the length of the ISA and VSA. The length
of MEMORY can be effectively computed at run-time, however,
by attempting to read and write the first location in each
page of the FSA. A subroutine for this purpose is shown in

Figure V-2.

90

00001 2 /* THE MEM$LENGTH PROCEDURE RETURMS THE NUMBER OF

00002 2 BYTES IN THE FREE STORAGE AREA (FSA) #/

00003 2 DECLARE TEST$VALUE LITERALLY '1010$1010B';

00004 2 MEM$LENGTH: PROCEDURE ADDRESS;

00005 3 DECLARE (1,MAX) ADDRESS;

00006 3 | = 0; MAX = LOOOH - .MEMORY;

00007 3 /* MAX 1S THE LARGEST POSSIPLE SIZF FOR THF FSA
00008 3 IM A FULL 16K 8008 SYSTEM */

00009 3 IF .MEMORY <> 0 THEM /+ AT LEAST ONE FRFE PAGF #/
00010 3 LOOP: PO WHILE 1 < MAX;

00011 3 /* WRITE THE TEST VALUE INTO THE FIPST WOPD OF
00012 3 THE PAGE */

00013 3 MEMOPY (1) = TEST$VALUE;

00014 & IF MEMORY(1) = TEST$VALUE THEN

00015 & Il = 1 + 256; ELSE MAX = 0;

00016 4 END;

06017 3 RETURN I ;

00018 3 END MEM$LENGTH;

00019 2

00020 2 /* TEST THE ABOVE PROCENUPE */

00021 2 DECLARE RESULT ADPDRESS;

00022 2 START: RESULT = MEM$LENCTH;

00023 2 FIMISH: GO TO START;

ooo2s 2 EOF

MO PROGRAM ERRORS

Figure V-2. A PL/M Procedure for Determining MEMORY Length.

91

2. Subroutine Linkage Conventions.

The nmethods used for activating procedures and binding
actual parameters to formal parameters in PL/M 1is given
below. Again, note that the conventions given here are

dependent upon the 8008 CPU environment.

Subroutine parameter passing is performed as follows.
First, note that formal parameters declared in the prccedure
definiticn are treated the same as locally defined
variables. That is, each parameter is allocated storage
sequentially in memory as if it were a variable local to the
procedure. Formal parameters, however, are initialized to
their ccrresponding evaluated actual parameters at the time
the procedure is invoked. Thus, all parameters are "call by
value™ in PLyM. This initialization of formal parameters is
performed in two different ways, depending ugon the number
of arqguments declared in the procedurs. If there is only
one parameter, the low-order byte is passed in CPU register
B, while. the high-order byte is sent in register c. If
there are two parameters, the first is passed as abcve, and
the second is passed in CPU registers D (low-crder byte) and
E (high—-crder byte). When there are more than two
parameters, the last two are sent as described abcve, and
the cthers are sent by generating implied assignment
statements at the calling point which store the evaluated
actual parameters into the variables representing the formal

parameters.

The CPU registers are also used to hold values on
return frcm procedures which have +tae BRYTE or ALDRESS
attribute. In the case of a BYTE procedure, the value
returned 1is in the A register, while an ADDRESS procedure
returns the low-order byte in register A, and the high-crder
byte in register C.

92

The eight-level program counter stack mechanism c¢f the
800& CPU is used to hold return addresses when subroutines
are called. Although this stack size is sufficient fcr most
PL/M programming applications, the user should be aware that
the 8008 stack size limits nesting of subroutine <calls to

seven levels at run-time.

3. Use of Assembler Language Subroutines with PL/M.

Assenbler language subroutines can be incorporated into
PL/M programs if these subroutines account for the PL/M

procedure conventions discussed previously.

The assembly language subroutines are first assembled
into absolute 1locations, usually starting at low addresses
in memory, as shown in Figure V-3. Each subroutine should
end with a RET (return) operation <c¢ode. The beginning
address of each subroutine 1is obtained after asseakly,
dencted by S1, S2, ... ,Sn in Figqure V-3.

For each subroutine S1, S2, ... ,Sn, write dummy PL/M
interface procedures P11, P2, ... ,Pn where each Pi is a
procedure cortaining the single statement

GO TO Si;
The rrocedure Pi can have zero, one, or two parameters of
type BYTE or ADDRESS, and can return either a BYTE or
ADDRESS value, or simply return with no value at all. ©Note
that if more than two parameters are to be sent, or if more
than one value is to be returned, ADDRESS variables can be

used tc "pcint to" parameters or results.
The subroutine Si then obtains parameters from the CPU

registers B, C, D, and E, as given in the conventions abcve,

and returns values through registers A and C.

93

MCS-8 MEMORY

FSA

VSaA

I SA

Containing Procedures

Py, Py, ov. P

SUBROUTINE n

SUBROUTINE 2

SUBROUTINE 1

JMP to Origin

Figure V-3. Including Assembly Language Subroutines in
PL/M Programs.

94

Suppose, for example, a programmer codes three
subroutines in assenbly language for handling teletype I/0.
The subroutine S1 sends a line-feed-carriage-returan, and is
found at location 50 in memory. The subroutine S2 writes a
single character at the teletype and returmns. Assume S2
assembles starting at location 75. The subroutine S3 reads
one character from the teletype, and 1is 1located Letween
addresses 126 and 150 in memory. The foilowing PL/¥ progranm
then ©provides interface procedures for these assemnbly
language subroutines.

150: DECLARE CRLFS LITERALLY '50',

TTYOUTS LITERALLY '75¢,
TTYINS LITERALLY '120 ';

CRLF: PROCEDURE;
GO TO CRLFS;
END CRLF;

TTYOUT: PROCEDURE (CHAR);
DECLARE CHAR BYTE;
GO TO TTYOUTS;
END TTYOUT;

TTYIN: PROCEDURE BYTE;
GO TO TTYINS;
END TTYIN;

The CRLF, TTIYOUT, and TTYIN procedures can then be called

in the same manner as any intermnally-defined procedure.

If the assembly 1language subroutines are act fully
checked-out and thus are undergoing revisions, it may be
worthwhile ccnstructing a "jump vector"™ at the beginning of
DEemCry. The Jjump vector «contains Jjump instructions to
addresses of the currently assembled subroutines S1 through
Sn in 1lcwer memory. The corresponding PL/M interface
procedures then branch indirectly through this jump vector.
If +the subroutines are reassembled at different lccaticas,
only the jump vector need be changed, since it 1s not

necessary to recompile the PL/M progran.

95

As a final note, the programmer 1is reminded that
assembly language subroutines should be used only when
absolutely necessary. Changes to the PL/M system for future
machine architecture will necessitate changes in sukroutine
conventions, resulting in loss of upward scftware
compatibility in all programs which depend upon these

conventions.

96

Appendix A

A Sample Program in PL/M

PASS-1

eega; 2 2048: /» IS THE ORIGIN OF THIS PROGRAM #/

22082 2 JECLARE TTO LITERALLY '2', CR LITERALLY '150', LF LITERALLY 'BAH',
23AB3 2 TRUE LITERALLY '1', FALSE LITERALLY '2';

20984 2

odges 2 SQUARESROOT: PROCEDURE(X) BYTE}

2odBs 3 DECLARE (X,Y,Z) ADDRESS:

gona7 3 Y = X; 2 = SHR(X+1,1);

pepds 3 DO WHILE Y <> 2;

eagas 3 Y = 2; 2 = SHR(X/ZY + Y + 1, 1);

geg1e 4 END:

20011 3 RETURN Y3

23912 3 END SQUAREROOT:

pEP13 2

29914 2 PRINTSCHAR: PROCEDURE (CHAR);

20015 3 DECLARE BITSCELL LITERALLY '91',

%p816 3 (CHAR., 1) BYTE;

eps17 3 oUTPUT (TTO) = B:

00018 3 CALL TIME (BITSCELL):;

08219 3 DO I =12 710 7;

22028 3 OUTPUT(TTO) = CHAR3 /% DaTA PULSES #/

22221 4 CHAR = ROR(CHAR,1):

227A22 4 CALL TIME(BITSCELL);

29623 4 END:

22624 3 QUTBYT (TTO) = 13

eed2s 3 CALL TIME (BITSCELL+BITCELL):

peA2s 3 /% AUTOMATIC RETURN IS GENERATED =/

20027 3 END PRINTSCHAR;

28028 2

ABA29 2 PRINTSSTRING: PROCEDURE (NAME,LENGTH);

eep3a 3 DECLARE NAME ADDRESS,

990831 3 (LENGTH,I,CHAR BASED NAME) BYTE;

pee3> 3 00 I = @ TO LENGTH - 1;

80833 3 CALL PRINTSCHAR(CHAR(I));

22934 4 ENDS

pan3s 3 END PRINTSSTRING:

20036 2

@g@a37 2 PRINTSNUMBER: PROCENURE (NUMBER,BASE,CHARS,ZERQSSUPPRESS);
298338 3 DECLARE NUMBER ADDRESS, (RASE,CHARS,ZERQSSUPPRESS,!.J) 8YTE:
pep3g 3 DECLARE TEMP (16) RYTE:

eep4y 3 IF CHARS > LAST(TEMP) THEN CHARS = LAST(TEMP);

gers1 3 DO 1 = 1 TO CHARS;

gen42 3 J = NUMBER MOD BASE + '@';

20043 4 IF J > '9' THEN J = J + 73

20p4a 4 IF ZEROSSUPPRESS AND 1 <> & AND NUMBER = 2 THEN
20045 4 = '

0pR46 4 TEMP(LENGTH(TEMP)-1) = J;

p2a47 4 NUMBER = NUMBFR / BASE;

fepag 4 END:

nEas4y 3 fALL PRINTESTRING(.TEMP + LENGTH(TEMP) - CHARS, CHARS);
veese 3 END PRINTSNUMBER;

g905+ 2

7@@5> 2 DECILARE [ADDRESS,

pees53 2 CRLF LITERALLY 'CR,LF"',

80854 2 YEADING DATA (CRLF,LF,LF,

afpss 2 ' TARLE OF SQUARE ROQTS', CRLF,LF,
28056 2 ' VALUE ROOT VALUE ROOT VALUE ROOT VALUE RONT VALJE ROOT',
20857 2 CRLF,LF);

20058 2

2ease 2 /2 SILENCE TTY AMD PRINT COMPUTESL VALUES #/

28C69 2 QUTPUT(TTO) = 1:

eAp61 2 N0 1 =1 T0 1¢08@;

2262 2 IF 1 MOD 5 = 1 THEN

20863 3 DO; IF I MOD 25@ = 1 THEN

PeR64 4 CALL PRINTSSTRING(.HEADING, LENGTH(HEADING))
29065 4 END; ELSE

28065 3 CALL PRINTSTRING(,(CR,LF),2);

pEA67 3 CALL PRINTSNUMBER(1,1@,6,TRUE /e TRUE SUPPRESSES LEADING ZEROES #/);
2ea68 3 CALL PRINTSNUMBER(SQUARESROOT(1), 1M,6, TRUE):

00869 3 END;

fegrz 2

PAA71 2 DECLARE MONITGRSUSES (19) BYTE:

28872 2 EOF

NO PROGRAM ERRORS

(o]
~1

PASS-1 SYMBOL TABLE

SYMBOL
S@op78s
SA2877
SP0a7s
SPep7s
S@AB74
SPE373
S90072
S@eg71
SPPRA74
Sere69
SAAG6s
Seee6?
S@eRsss
S8R065
Sora64s
SAPRE3*
Spage?
SPeds1
SP2B68
S@nase
S@pps3
<eans?
Sees56
SBo855
Seaps4s
SAgRS53«
SAPB52+«
Seens1
SANgsGe
Se2B49s
SA0A48+
S@NR47 =
S@raasw

Sz 45
SOAA44
SpP@43s
SepP42«
Sgon41
SeAe4g»
SPPa39e
SA3338#
SpPB37
SPAB36
SPRe35
SARRz4g
Spagz3
SAAe32
SAPA3Lw
Spea3a
S@pgo9e
S@@praa
Sgenr
SPgn26
Seea2s
SPRP74n
Spepoie
senpz-
SepP21 s
SeAA2Ps
S@ag19
SOFA18
Sepa17
Sea216
See01S
Sper- 4
SAeR13
S@AG12
S8eR11
Seez1e
Saaeny
Sepdps
SEgenn7
sepeze
Spesas
Séedec4
Sa8823
Sapeg2
See8e1

ADDR WDS CHRS
8326 11
2322
02319
9316
8312
23029
e3a5
2332
0298
0295
0282
28268
8264
0269
8255
0251
@247
8244
0241
8237
28233
2239
8227
0224
8223
0216
#4212
g2e9
6223
2199
8195
21908
7184

[y

ANFPR WAL, OIRAHR P QAR VAR ONO P, RR RSO
o

-
POAUNSHHAIRRIMLHEIFRHF YNONURR AR O WS &

-

2181
178
8173
0169
2166
2163
2157
2151
0148
2144
2141
2137
0133
2129
2125
0122
2118
113
r110
0187
8103
2099
2095
8892
LKL}
2AR3
2879
2074
2072
2066
2961
2256
2252
2248
2044
Pe40
2236
2032
2828
2024
ge19
80814
oe1e
2026
0092

HERB O RR SR RERA VOSSR NNFP AR A H 3VVR DR AR AR RWE NN A QO
VEBOCUHUWUHUHWDPDBRWUOCO LA AR AR F PR OANHRBEPEPNEGR O LS A

VDIV VIVILDIDIVIDANDAIIIDDVDDDDODINDOOOD VO

TVVWVDDVNDDODVDVDIDVDIODVDIDVDITVTODUVODODIVDOVDDTODD DD OVO0DDDVDODU

LENGCTH PR Ty

20PP1@ 1 1 MONITORUSES
opoeRs 1 6 6

200080 4 4

220020 4 4

poe25¢ 1 6 250
000808 4 4

oneRAS 1 6 S

oPeeP8 4 4

pe10@e 2 6 1909
oooePe 4 4

#ePP08 3 5 ' VALUE ROOT VALUE
opagep 3 s

pP0P18 1 6 DA

902013 1 6 15

290115 3 1 HEADING
290081 2 1 1

goep32 1 5 '
P2P0R6 4 4

208008 4 4

peeas7 1 5 '9°
eper4as 1 5 'p°*
epoPPR 4 4

foeeRe 4 4

pEonP8 4 4

908216 1 1 TEMP
foeoB1 1 1 J

aepgelr 1 11

geegee 4 4

AEPEE1 1 1 ZERCSUPPRESS
200781 1 1 CHARS
2088@1 1 1 BASE
geeAPL 2 1 NUMBER
P2@pB4 @ 3 PRINTNUMBER
gaegee 4 4

pEOP0e 4 4

26PP81 1 1 CHAR @@206R27H
zeoe@t 1 11

208200 4 4

ppeeel 1 1 LENGTH
BE02s1 2 1 NAME
geees2 © 3 PRINTSTRING
pegoen 4 4

p0eBe7 1 6 7

200008 4 4

20091 1 6 91

azeese 1 6 @

200702 1 6 2

200801 1 1 |

poeeee 4 4

age@@1 1 1 CHAR
Pe00P1 2 3 PRINTCHAR
PORBOD 4 4

gegeee 4 4

PpPeBL 1 6 1

gopee1 2 1 2

PpoEe1 2 1Y

gooees 4 a4

200081 2 1 X

228221 1 3 SQUAREROOT
MZ2048 2 6 2046
goPeA1l 2 2 DOUBLE
2a08283 B 2 MOVE
@98eP1 1 2 LAST
PAPGEL L 2 LENGTH
¢0e081 1 2 OUTPUT
2@Pp81 1 2 INPUT
02ePB1 1 2 LOW
eePEBL 1 2 HIGH
peeent @ 2 TIME
28e882 1 2 SHR
poePg2 1 2 SHL
2gepe2 1 2 ROR
peeRB2 1 2 ROL
PePPBB 1 1 MEMORY
8ePBE1 1 1 PARITY
2peePL 1 1 SIGN
p2@6P1 1 1 ZERO
228001 1 1 CARRY

w
o]

ROOT VALUE ROOT VALUE R
TABLE OF SQUARE ROOTS

pASS~2

LINE NUMBER - ADDRESS CORRESPONDENCE

2=0800H 6=0893H 7=B80AH 82081DH 9=0838H 10=@890H
11=08A%H 12=08B1H 132088B2H 16=@8B5H 17=08BAH 18=08BCH
19=08C5H 28=08C8H 21=08D2H 22=08D7H 23=p8D8H 24=08E8H
25=08EBH 26=@8EFH 27=208F7H 28=p8F 8H 30=@8FBH 31=0994H
32=0907H 33=2908DH 34=0923H 363892DH 37=R92EH 38s0931H
39=08938H 49=093CH 41=093FH 42:=9952H 43=096FH 4488972H
45=0999H 46=899DH 47=09AFH 48=@9CCH 49:=99D1H 1=2BGFSH
52=09F6H
SP0764 82553 115
ADH BAH @AH @AH 28H 20H 20H 20H 28H 20H 2@H 20H 28H 2@H 20H 2@H 20H
20H 2@H 22H 20H 28H 20H 20H 2BH 28H 20H 28H 54H 41H 42H 4CH 45H 20H &FH
46M 284 534 51H 55H 41H S52H 45H 28H 52H 4FH 4FH 54H B53H BOH BAH JAH 28H
56H 41H 4CH 554 45H 2BH 20H 52H 4FH 4FH S4H 20H S6H 41H 4CH 55H 45H 2gH
28H 52H 4FH 4FH 544 20H 56K 41H 4CH 55H 45H 20H 2@8H 52H 4FH 4FH S54H 20H
56H 41H 4CH 55H 45H 28H 2@H 52H 4FH 4FH 54H 2BH 56H 41H 4CH 55H 45H 2gH

284 S2H 4FH 4FH 544 ODH BAH BAH
60=BA6CH 61=0A6FH 62=8A78H 63=0AAdH 64=@AC3H
65:z0AC6H 66=BACFH

Sgesmas1 P2773 2

@DH OAH
67=8A07H 68=0AF7H 69=0B@9H 79-0B28H

S8raA1l @BBCCH S@PVO2 BOBCOH SAB0A3 @4BCEH SPAAGP4 @OBCFH

Seea295 20c@BH SOPO21 PPBDAH SEEP23 2ABD2H $SARA24 PPBD4H

SPP229 868N6H SO02831 PBBDIH SBCD3I9 GVBDSH Se0P42 CABDAH

S@rA42 00BDBH SO@047 GPBDCH SOPP48 BOBOFH SPAPB49 DORERH

S@0350 PBRE1H SPAPS52 @PBE2H SP0PS3 PBBE3H SAPP54 PO@BE4H

SeApe3 BOBF4H SV@D78 BOBF6H SPAPE79 PERCAH SPBARA @PBCHH

BOABH HLT HLT HLT HLT HLT HLT HLT HLT HLT HLT HLT HLT HLT HLT HLT HLT

GENERATED OBJECT CODE

BBO2H JMP,B2H.B8H LHI,88H LL1,00H LMB INL LMC DCL LBM INL LCM INL LMB
8810H INL LMC LLI.D@H LAM INL LCM ADI.@1H LBA LAC ACI,88H ORA RAR LCA
8820H LAB RAR LLI:D4H LMA INL LMC LHI.®8BH LLI.D2H LAM INL LCM INL SUM

B830H INL LBA LAC SBM ORB JTZ,A9H,88H DCL LBM INL LCM LLI.D2H LMB INL
8840H LMC DCL LBM INL LCH LL1,CBH LMB INL LMC LLI.D@H LBM INL LCM LLI
BB85AH,CAH LMB INL LMC JMP,BAH,@8H LEM DCL LOM LMI,11H LBI,0AH LCB LAD
98684 RAL LOA LAE RAL LEM DCE LME LEA RTZ LAB RAL LBA LAC RAL LCA OCL
@870H DCL LAB SUM LBA INL LAC SBM LCA JFC,83H,@8H DCL LAB ADM LBa INL
@880H LAC ACM LCA INL SBA SBI,88H JMP,5FH,B8H CAL,57H,@8H LAD LLI,D2H
@892H ADM INL LDA LAE ACM LEA LAD ADI,B1H LDA LAE ACl.B8H ORA RAR LEa
@8A@H LAD RAR INL LMA INL LME JMP,27H,@8H LHI,@8H LL1,02H LAM INL LCM
@8BPH RET RET UMP.F8H,88H LHI,BBH LLI,D6H LMB XRA 01@ LBI,58H DCp JT2
88C2H,C5H,@8H JMP.BEH,B8H INL LMI,@8H LAI.@7H LHI,88H LLI,D7H SUM JTC
B800H, EBH,@8H DCL LAM 018 LAM RRC LMA LBI,5BH DCB JTZ:ELH,@8H JMP,DAN
BBEGH,P8H INL LBM INB LMB JMP,C8H,B8H LAI,31H 016 LA!,58H ADI,5BH LBA
BOFAH DCB JTZ,F7H,@8H JUMP,FOH,@8H RET UMP,2EH,@9H LHI,BBH LL1.D8H LM
8980H INL LMC INL LMD INL LM1,@8H LHI,®BH LLI.DAH LBM DCB LAB INL SUM
8918H JTC,20H,B9H LAM LLI.DBH ADM INL LBA LAI.A@H ACM LLB LHA LAM LBA
0920H CAL,BSH,B8H LHI,@2BH LLI,DEH LBM INB LMB JMP,B7H,B89H RET UMP,F&H
@938H,@9H LHI,BBH LLI,EBH LMB INL LMD LAI,@FH DCL SUM JFC,41H,B89H LMI
0948H,BFH LHI,2BH LL1,E2H LKI.@1H LHI.BBH LLI,E@H LAM LLI,E2H SUM JTC
8958H,09H,89H LL1,DFH LBM LLI,CBH LMB INL LMI,@@H LLI,DCH LBM INL LCM
B96@H LLI,CAH LMB INL LMC CAL.57H,@8H LAB ADI.3BH LBA LAC ACI,@@H LL!I
B97@H,E3H LMB LAT,39H SUM JFC,7CH,@9H LAM aDI,7A7H LMA LHI,@BH LLI,E2H
B960H LAM SUT.A@H ADI,FFH SBA DCL NOM LLI,DCH LBA LAM INL LOM SUI,@@H
8990H LCA LAD SBI.@BH ORC SUI,@1H SBA NDB RRC JFC,A1H,B9H LLI,E3H LMI
@9ABH,2@H LAL,18H LHI,@BH LLI,E2H SUM LLI,E4H ADL LBA LAH ACI,@@H DCL
A9RAH LOM LLB LHA LMD LHI,@BH LLI.DFH LBM LLI,CRH LMB INL LM].68H LLI
B9CBH,DCH LBM INL LCM LLI,CAH LMB INL LMC CAL,S7H,88H LLI,DCH LMD INL
@907H LME LLI,E2H LBM INB LMB JMP,47H,B9H LHI,ORH LLI,E4H LCH LAL ADI
@9EBH,18H LBA LAC ACI.BBH LCA LAB LLI,E@H SUM LEA LAC SBI.@GH LLI,ERH
B9FAH LDM LCA CAL.FBH,BBH RET JMP,6CH,BAH R@1 RRC RRC RRC INE INE INE
BABOH INE INE INE IME INE INE INE INE INE INE INE INE INE INE INE INE
AALZH INE INE TNE INE INE JMP.41H,424 JMP,45H,2CH 1@7 CAL,20H,53H 0P8
AA20H 018 138 CFS,45H,28H CFS,4FH,4FH JMP,53H,ADH RRC RRC INE CAL,41H
PASBH,4CH 01C 1A2 INE INE CFS,4FH,4FH JUMP,2@H,56H 12 JUMP,55H,45H INE
PA4OH INE CFS,4FH,4FH JMP,20H,56H 188 JUMP,55H,45H INE INE CFS,4FH, 4FH
BASOH JMP,20H,56H 18 JUMP,55H,45H INE INE CFS.4FH,4FH JUMP,28H,56H 180
BA6OH JUMP,55H,45H INE INE CFS,4FH,4FH JUMP,B0H,AAH RRC LA1,@81H 018 LHI
BA78H,@BH LLI,F4H LM1,@1H INL LMI,20H LAI,EBH LCT,O3H LHI,@BH LLI,F4n
248BBH SUM INL LBA LAC SBM JTC,28H,8BH LLI,CeH (MI,B5H INL LMI,@0H LLI
BA9PH, F4H LBM INL LCM LL1,CAH LMB INL LMC CAL.57H,@8H LAB SUI,21H LBA
BAABH LAC SB1,8@H ORB JFZ,D2H, AN LLI,CBH LMILFAH INL (MI,88H LL1,F4H
BABOH LBM INL LCHM LL1,CAH LMB INL LMC CAL,57H,M8H LAB SUI,B1H LBA LAC
BACAH SBI,@OH ORB JFZ,CFM,BAH LBI,F9H LCI,@9H LDI,73H CAL.FBH,B8H ‘UMP
BADPH,EPH, pAH UMP,D7H,@AK RB1 RRC LBI,DSH LCI,pAH LDI,@2H CAL,FBH, 8H
GAEOH LHI,08H LLI.F4H LBM INL LCM LLI,DCH LMB INL LMC LLI,DFH LM, @AM
@AFOH LBI.@6M LDI,@IH CAL,Z1H,89H LHI,88H LLI+F4H LBM INL LCM CAL.B3H
8B08H,@8H LH1,@BH LL1,DCH LMA INL LMI,2dH LLI,DFH LMI,PAH (B1,06H LDI
BB10H,B1H CAL,31H.B9H LHI,BBH LLI,F4H LAM INL LCM ADI,@1H LBA LAC ACI
BB2¢H, 88H DCL LMB INL LMA JMP,78H,8AH HLT

99

LI R RN Yo

2e
21
23
24
28
29
31
38
39
49
42
46
47
48
49
50
52
53
54
63
64
78

CARRY 05714

ZERO 25715

SIGN 85716

PARITY 85717
MEMORY 2523208
SQUAREROOT 28217
X 95729

Y 85722

2 85724

PRINTCHAR 21327
CHAR 05726

1 25727
PRINTSTRING 21757
NAME 75739

LENGTH 25732

1 #5733
PRINTNUMBER 22387
NUMBER #5734

BASE 25737

CHARS 05748
ZEROSUPPRESS 25741
1 085742

J 85743

TEMP 115744

1 85764

HEADING 34771
MONI TORUSES #5766

AR SRSR RO RN RN RRERNB BRI NS ORI A AR R REI R BRSNS IR BT

2248
2056
2064
2072
2880
2mA88

ENNPNPOPNE
RPPPPPNNOF
BPPNNPPPPF
BRPPPPEANPF
BPPNDPNNNNF
BNNNNNPNNF
ENNNMPPINF
BPPNONNNNF
RPPNPNPNNF
BNNF NP PPNF
PPPNNNPRPF
RPNNPNPPPF

BPNPPNNPNF
BNNPPNPPNF
BPPPPPNPNF
3P PNPNPPPF
BPPPPPNPNF
BNNP PNNNNF
BPPNNPNNNF
BPNPPNNNNF
BNNNPPNPNF
BNNPPNNNNF
BNNPPNPPNF
BPPNPNPPPF

BNNNNPNNNF
BPPNPNNNNF
BNNPPNNNPF
BNNPPNNNNF
ANNPPNPPNF
BPPNPNPPPF
BPPNNNNPNF
BNNNPPNPNF
BNNPPNPPNF
BPPPPPNPNF
BPPNPNNPNF
BNNPPNNNNF

BNPNNNPNNF
BNNNNPNPPF
BNNPPNNNNF
BNNPPNNNNF
BNNPPNNNNF
BPPNNNPPPF
BNNNNNNNPF
BNMNNNNNNF
BPPNNNNNPF
BPPPPPNNNF
BNNNNPNPRF
BNNPPNNNNF

2896 BNNPPNNNNF
BPNPPNNNPF
BNNPPNNNPF
BNNPPNPPNF
BPPPPPNPNF
BPPNPNPPPF
3N NP PN NN NF
BPPNNPPPPF
BPPNNPNPNF
BNPNNNPNNF
BNNPPNNNPF
BNNNNPPPAF
BNMNPNNPNF
dPPPNNPPAF
BNNPNPNPPF
BPPNNNNPNF
BNNPPNNNPF
BNNPPNNNNF
BNPNNNMNNF
BPPNNNNNPF

2104
2112
2120
2128
2136
2144
2152
2168
2168

2664 BNPNPNPNNF
BNNNNNPPNF
BNNNNPNPPF
BNNNNNNNPF
BNNNNNPPNF
RNNPNPPPNF
BPNNPNPPPF
3PNNPPPPPF
BNNPPNPPNF
BNNPPNANNF
BPPPPNPNNF
BNNPPNPPNF
BPPPPPNPNF
BPPNNNNNPF
BPPNNNNPNF
BNPNNPNNNF
BPPNNPNNNF
BNNPPPEPNF
BPPNNPRPPF
BPPNNPNPNF
BNPNMNNPPNF
BNNNPNPNNF
INMNPPPNNF
RPPNNPPPPF
BNNNPNOPNF
BNPNNNPPNF
BPPPNNNNNF
BNNNNPNPNF
BPPNPNPNPF
BNNNNNNPNF
BNNPNPPPNF
RPPNNPPPPF
BP PN PP PN NF
BNNPPNPPNF
BNNNNPPPNF
BNPNNNPPNF
BNANNPNPPF
RNMPPNNNNF
BNNNNPNNNF
BPPNPPPNNF
BNNNNNNNNF
BNNNNPNPNF
BNNNNNNNPF
BNNPNPPPNF
BPPNNNPPPF
BNNNNNNNPF
BNNNNNNNNF
BPPPPPNMNF
2856 BNNNNNNNNF

2672
2680
2688
26 96
2704
2712
2720
2728
2736
2744
2752
2760
2768
2776
2784
2792
2890
2808
2816
2824
2832
2842
2848

$
NO PROGRAM ERRORS

100

BPPNNPNNNF
BNPPNPNNNF
BPPNNPPRPF
BPPNPNNPNF
BNNPPNNNPF
BNNPPNPPNF
8PP PPPNPNF
BNNPPNNNNF
BPPPPENNPF
BPNNNPNPNF
BPPNPPPPPF
BNNNNNNNNF
BPPNPPNNNF
BNNPNNNNPF
BPPNNNNNPF
BNNNPNNPNF
BPPNNNNNPF
BPPNNNNPNF
BPNNNNNPPF
BP NNNNPPPF

BNNNNPPNPF
BNNNNNNNPF
BNNPPNPPNF
BNNPPNNNNF
BPPPNPNNNF
BNNNNPNPPF
BNNPPNNNNF
BNPPNNNNNF
BP PN NP NN NF
BNNPPPPPNF
BPPNNPPPPF
BPPNNPNPNF
BNPNNNPPNF
BNNNPNPNNF
BNNNPPPNNF
BPPNPNNPNF
BNNPPPPPNF
SNNNNNNNNF
BNNPPNNNNF
BPPPPPNNPF
BNPNPNPPPF
BNNNNNNNPF
SNNNNNNNNF
BNNNNPNPNF
BNNNNPNNPF
RPPPPPNPPF
BNNNNPNPNF
BNNNNPPNPF
BNNNPNPPNF
BNPNNNPPNF
BNNNNPNPPF
BNNPPNNNNF
BPPPPPNNPF
BPPNPPPPPF
BNNNNNPPNF
BNNPPNNNPF
BNNPPNPPNF
BPPNPNPPPF
SNNPNPPPNF
BPPPPPNNNF
BNNPPNPPNF
BNNNNPPPNF
BNPNNNPPNF
BNNNNPNPPF
BNNPPNNNNF
BPPNNPNNNF
BNNPPNNNPF
BNPNNNPNNF

BPPNNNNPNF
RPNPNPNNPF
BNNPPNNNNF
BPPPPPNNPF
BPPNNPPPPF
BPPNNPNNNF
BN NP PN PP NF
3PPNPNPPRF
RNNPPNNNNF
BNNNNPNNNF
BNNPPPPPNF
3PPNPNNNPF
RPPNNNPNNF
BPPPPPPNNF

'RNNNPNNPNF

BP PNPNNNNF
8P NNPNPP PF
SPNNPPPPPF
BNNNNPNNNF
BPPNNPNNNF

BNNNNPNPNF
BNPNPNPNPF
BPPPPNPNNF
BNNPPPPPNF
BNNNPNPPNF
BNNPPNPPNF
BPPNNPNNNF
BNNPNPNNNF
BNNPPPPPNF
BNNNNNNNNF
BNNPPNNNNF
BPPPPPNNPF
BNPNPNPPPF
BNNNNNNNPF
BNNNNNNNNF
BNNNNPNPNF
BPPPPPNPNF
BNNPPNPPNF
BPPNPNPPPF
ANNPENNNNF
BNNNNPNNNF
BPPNNPANNNF
RPNPPNNNPF
BNNNNPPPNF
BNNNPPPPNF
BNNNNPNNNF
BNPNNNPNNF
BNNNNPNPNF
RINNNNPNPNF
BPPPPPNPPF
BNNPPNPPNF
BPPNPNPPPF
BNNPPNNNNF
BNNPPPPPNF
SNNNPPPPNF
BNNNNPNNPF
BPPOPNPNNF
RNPNNNPPNF
BNNNNPNPPF
BNNPPNNNNF
BPPNPPPPPF
BNNNNNPPNF
BNNPPNNNPF
BNNPPNPPNF
BPPNPNPPPF
BPPNNNNPNF
BPPPPPNNPF
BNPPPPNNNF

RPNNPPPPRF
BMNNMPNNNF
RPPNPNPPPF
BNNPPNNNNF
BNNPPNNNNF
EPPPPPNNPF
BPPNPNNNNF
BNNPPNPPNF
RPPPPPNPNF
8PPPNNPPPF
BNNNPNNNPF
BPPNNNNPOF
BNNNPANPNF
BPPPNNNNNF
BPPNNPNNNF
BNNPPNNNPF
BPPNNPNNNF
BPPNPNNNNF
BNNPPNNNPF
BN NP PNNNNF

BNNNNPNPNF
RNNPNPPPNF
BNNPPPPPNF
BNNNNNNNNF
BNNNNNNPPF
BPPPPNPNNF
BPPNNNNPNF
BNNNNPNPPF
BN NN NN PN PF
BNNPPNPPNF
BPPNPNPPPF
BNNPPNNNNF
BNANNNPNNNF
BPPNNPNNNF
BPNPPNNNPF
BNNPPNPPNF
BNNPPNNNNF
3PPPPNPNNF
BNNPPNFPPNF
BPPPPPNPNF
BPPNNNNNPF
BPPNNNNPNF
BNPNNPNNNF
RPPPPPNNPF
RNPPPNNPFF
BNPNNNPNNF
BPPNPNPPPF
RNNNNPPPNF
BNNNPPPPNF
SNMNNPNNNF
BPPPPNPNNF
BNNPPNPPNF
BPPPPPNPNF
BNNNNPNPNF
BNNNNNNHPE
BNNPNPPPNF
BPPNNCPPPF
BNNNNNNPPF
BNNPPNPPNF
BNNPPPPPNF
BNNPPPPPNF
BNNNPPPPNF
BNNNNPNNPF
BPPPPNPNNF
BNNNNNPNNF
BNNNNPPNNF
BNNPPNNNNF
BNNNNPNPNF

	0000
	0001
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100

