PCW Hardware

John Elliott
October 24, 2012

Abstract

This document describes what | have found out about the tzaedef the Am-
strad PCW, in the course of writing JOYCE. Some of this haslleeluced by me;
a lot has come from other sources.



Contents

1 General principles 5
2 Boot ROM S
3 RAM and paging 5
3.1 PCW (“extended”) pagingmode . . . . ... ... .. ........ 5
3.2 CPC (“standard”)pagingmode . . . . . . .. ... ... ... ... 6
4 The screen 6
41 1OPOorts . . . . o 6
4.2 TheRoller-RAM . . . . . . . 7
5 Interrupts 7
5.1 Timerinterrupts . . . . . . . . 8
5.2 Floppy controllerinterrupts . . . . . . . ... ... ... ... . 8
5.3 Serialportinterrupts . . . .. ... oL 8
5.4 Daisywheelinterrupts . . . . . .. .. ... 8
6 Printer ports 8
6.1 PCW8256/8512/9256/10 printer controller . . . . . . .. .. ... 8
6.1.1 1/Oports . .. ... . . .. 8
6.1.2 Printercommands . ... ... ... ... ... ... 9
6.1.3 Examplecommandsequences . ... ... .......... 10
6.1.4 PCW matrix printerfonts. . . . ... .. ... ........ 10
6.2 PCWO9512printercontroller . . . .. ... ... .. ......... 11
6.3 PCWO512PARpOrt. . . . . . . o o 12
6.4 CPS8256 CENPOrt . . . . . . . . i 13
6.5 Standalone CENport . . ... ... ... . ... ... 13
7 Communications interfaces 13
7.1 CPS8256 . . . . . . e 13
7.1.1 ZB8O-DARTregisters . . . .. .. .. .. ... .. 14
7.1.2 CPS8256 Centronicsport. . . . . .. ... ... ... .... 15
7.1.3 CPS8256 Serialport . . . .. .. ... ... ... 15
7.2 SCAMark2Interface. . . . . .. ... ... ... ... ... 15
7.3 Locolinkinterface . . . ... .. ... . . . . 16
7.4 PCWLINKit . . . .. . . . e 17
7.5 Prototype serialinterface . . . . ... ... ... L. 17
8 Floppy drives 17
8.1 The floppy controllerand otherports . . . . . ... .. ... .... 17
8.2 Floppydrivesupport . . . . . .. ... 18
8.3 Floppycontrollerprobe . . . . . ... ... oo 18
8.3.1 Detect floppy controllertype . . . . . ... .. ... ... .. 18
8.3.2 Detectdrivetype . . . . ... ... 18



10

11

12

13

Hard drives 19
9.1 CirtechGem. . . . . . . . . 19
9.1.1 CirtechGem (ATA) . . . . . . . . . . it 19
9.1.2 CirtechInsyder/Hardpak . .. ... ............. 20
9.2 ASDPCWHD10/PCWHD20 . . ... ... ... ... .. ..... 20
9.3 Otherharddrives . . . . ... .. ... ... ... 21
Keyboard 21
10.1 Keyboardmatrix . . . . . . . . ... ... 22
10.2 KeyboardLinks . . . . .. ... ... 23
10.3 Keyboard Joystick(s) . . . . . . . . ... . 23
10.4 Physicalconnection . . . . . . . . ... Lo 23
10.4.1 Wireprotocol . . . . . . . . . ... .. 24
Pointing Devices 24
11.1 AMXMoUSE . . . . . 24
11.2 KempstonMouse . . . . . . . . .. 24
11.3 KEYMOUSE . . . . . o e e e 25
11.4 Electric Studio lightpen . . . . ... ... ... ... ... ... 52
Joysticks 25
12.1 Keyboardjoystick(s) . . ... ... ... ... . . 25
12.2 Kempstoninterface . . . . . . . . .. ..o oo 25
12.3 Spectravideointerface. . . . . . . .. ... oL 25
12.4 Cascadeinterface . . . . . . . . . . . ... ... 26
12.5 DKTronicsinterface . . . .. .. ... ... ... ... .. .. ... 26
Sound Generators 27
13.1 DKTronicssoundgenerator. . . . . . . . . . ... ... 7 2
Dot matrix printer fonts 27
A.1 Thecharacterwidthtable. . . . ... ... . ... .......... 27
A2 TheNLQfont . . . .. ... . . . . . . . . . . 27
A3 Thedraftfont . . ... .. ... ... ... 28
A4 Someworkedexamples . . . . . ... ... oo 29
A.4.1 NLQ: Character0 (a)usingBIOS1.15 ... ......... 29
A.4.2 Draft: Character0 (&) usingBIOS1.15 . .. ... ... ... 30
A.4.3 Repetition of columns: Character 62 ('=") using BIOg1. . 31
A5 Matrix fontsin LocoScript1.20. . . . . . . . . ... 31
A5.1 PSwidthstable . . . ... ... ... ... ....... ... 31
A52 NLQfont . . .. ... ... . .. 31
A5.3 Draftfont . .. .. ... ... 32
AS5.4 Z80code . .. ... . ... 32
A.6 Matrix fontsin LocoScriptvl.31 . . . ... .. ... ... ... ... 32
A.7 Matrix fontsin LocoScriptv1.40 . . . . . ... ... ... ... 33



B The LocoLink wire protocol 33

B.1 Basicconcepts . . . . . .. .. ... 33
B.1.1 BitmappingatthePCend . ... .. ... ... .. ..... 33
B.2 Linkidle. . . .. . . . . 33
B.3 Sending . . ... ... ... 33
B.3.1 Sendingabyte ... .... ... .. .. .. ... 33
B.3.2 Sendingapacket ... ... ... ... ... . 34
B.4 Receiving . . . . . . . . e 34
B.4.1 Receivingabyte ... ... ... ... . . . . 34
B.4.2 Receivingapacket . ... ... ... ... ... L. 35
B.5 Example . . . . . . . 35
B.6 Startupsequence . . . .. .. .. ... 36
B.7 Whilethelinkisrunning . . . ... ... ... .. .......... 36
C The Gem Drive System Track 37
C.1 Thebootprogramstable . .. ... ... ... ... ... ...... 38
C.2 TheHDRIVER.FIDimage . . .. ... ... ... ... ... .... 39
C.3 Thesplashscreen . . . . ... ... .. .. ... ... .. ..... 39



1 General principles

The PCW's I/O is (for the most part) conducted using the Z89'and OUT instruc-
tions, rather than memory-mapped I/O. In nearly all casely,the bottom 8 bits of the
port number are decoded, and so ports are specified withiRidimtifiers (eg: port
FOh, not port 0OFOh).

2 Boot ROM

Most of this information is derived from Jacob Nevins’ deégtion of the boot process
(with disassembly) at <http://www.chiark.greenend.oké~jacobn/cpm/pcwboot.html>.

The PCW has no separate boot ROM. Instead, on startup,étistndetches return
a stream of bytes irrespective of address. This stream i®y{8 long, and generates
a 256-byte boot program at the start of memory (addressezho@D01h). The last
two bytes of the instruction stream (D3 F8) write 0 ('end obbsequence’) to port
OF8h. The next instruction fetch will then be from addres82¥) the start of the boot
program.

There are two known boot programs; one for dot-matrix PC\Wd,ane for daisy-
wheel PCWs. They are identical except for two bytes: the ceéd to check if the boot
sector is valid, and another byte which has presumably bikered so the checksum
comes out the same.

3 RAM and paging

The PCW memory is divided into blocks of 16k. A PCW8256 has [bgks, while a
fully-upgraded 2Mb PCW has 128. The processor can only addiék at a time; the
I/O ports FOh-F3h are used to select which blocks it seesavher

FOh controls what the processor sees at 0000h-3FFFh.
F1h controls what the processor sees at 4000h-7FFFh.
F2h controls what the processor sees at 8000h-BFFFh.
F3h controls what the processor sees at CO00h-FFFFh.

3.1 PCW (“extended”) paging mode

Usually, values written to the memory management ports haviset and the other 7
bits set to the block number:

Bits
76|5|4|3|2|1|0
1 block number

- for example, block 4 could be selected into memory at 80§MOUT (0F2h),84h.
If the block number is out of range then the top bits will bedggd - so attempting to
select block 24 on a 256k computer would actually selectkb®c



3.2 CPC (“standard”) paging mode

This paging mode is not used by any CP/M or LocoScript sofweacept perhaps
the memory tester (RAMTEST.COM). It is present because &/Rvas based on a
never-built design for AN, a successor to the CPC range.

If CPC paging mode is used, then two blocks can be in one slo@; memory
writes go to one, and reads to the other.

Bits

615

| 4

3 [2[1] 0©

block to read

unused| block to write

This method only allows access to the first 128k of memoryctvis another good

reason why no PCW programs use it.

There is an additional port used in CPC paging: port F4h (@itpThe value
written to this is interpreted as follows:

Bits

7

6

5

4

3[2]1]0

lock C000..FFFF lock 8000..BFFF

lock 4000..7FFH lock 0..3FFF

unused

If a memory range is set as “locked”, then the “block to reai$ lre ignored,;
memory is read from the “block to write”.

4 The screen

The screen is a 720x256 array of pixels, each pixel twice gis &§ it is wide. The
video controller can fetch the screen data from anywherbedrbbttom 128k of RAM

- see port F5h below.

4.1 1/O ports

The following ports are used by the video controller:

F5h (output) sets the address of the “Roller-RAM” within thetioot 128k of memory.
The “Roller-RAM” is a 512-byte table whose format is giversection 4.2. The
value written to this port can be interpreted as follows:

Bits
7 | 6|54 | 3 | 2 | 1 | 0
block offset/ 512

- e.g, to move the Roller-RAM to offset 3200h in memory blockwtite the
value 10011001 binary (99h) to port F5h.

1Arnold Number Two




F6h (output) sets the vertical origin of the screen. The valuigtevr to it specifies
which line of the Roller-RAM corresponds to the top line oé ttreen. So OUT
OF6h, 8 means that the video controller will display pixaEl8 at the top of the
screen - essentially, scrolling up by 8 pixels.

F7h (output) Bits 6 and 7 of this port are used. If bit 7 is set, tittea screen will
display in inverse video (black on green/white). If bit 6 &,2hen the screen is
displayed; otherwise it will be blank.

F8h (output) This port is used for various purposes, but the tvickv are video-
related are:

OUT F8h, 8 Disable the video controller. External hardware (a TV matiui?)
must drive the screen.

OUT F8h, 7 Enable the video controller.
F8h (input) The bits that concern the video controller here are:
bit 6 Frame flyback; this is set while the screen is not being drawn.

bit 4 60Hz PCW; only the top 200 lines of the screen will be visible.

4.2 The Roller-RAM

The Roller-RAM is treated as an array of 256 little-endiamago Each word is a coded
pointer to the screen bitmap for this line, formed:

| Bits |
15]14]13]12]11]10[98]7[6]5]4][3]2]1]0
block offset/ 16 offset

The top 3 bits give the memory block number. Bits 0-12 givedfiget of the line
within the block. However, it would take 14 bits to span a 1éick, and there are
only 13 left. So to convert bits 0-12 into the address of aestiime, you have to use a
formula such as

address = (offset & 7) + 2 * (offset & Ox1FF8) ;

Once you have the address of a screen line, it consists of t8@,at intervals 8 apart
(so a line would be stored in bytes 0,8,16,24,32...). This 8 lines to be interleaved
for ease of printing text.

5 Interrupts

Various peripherals can generate interrupts. When chg¢kimsource of an interrupt,
PCW CP/M checks in the order FDC, timer, other peripherals.



5.1 Timer interrupts

The timer interrupts 300 times a second. It also incremeotaiater which can be read
from the bottom 4 bits of port F4h. The counter goes from Oahfl stays at 15 having
got there. Reading the counter resets it.

This allows PCW system software to compensate for misseet interrupts. On
interrupt, it reads the counter, and if it is more than 1 thdmbws some interrupts
have been missed. Ifitis 0, then the timer did not interrtip;interrupt must be from
a different source.

5.2 Floppy controller interrupts

The floppy controller can be programmed to send a normakungeor a non-maskable
interrupt (NMI) on completing a command. See Section 8.1.

If the floppy controller has tried to interrupt (regardle$swhether it is set to pro-
duce an NMI, a normal interrupt, or nothing at all) then bitf3tee value read from
port F8h will be 1. Otherwise it will be 0.

5.3 Serial port interrupts
The CPS8256 interface (see section 7.1) can be programngethéate interrupts.

5.4 Daisywheel interrupts

The daisywheel printer (see section 6.2) can be programmederrupt when it has
finished a command.

6 Printer ports

6.1 PCW8256/8512/9256/10 printer controller
6.1.1 1/O ports

The PCW uses two 1/O ports to communicate with the printetrodier - ports OFCh
and OFDh. OFCh appears to be used to initialise the contreliéle OFDh controls the
printer itself.

FCh (input) returns a controller error number. The PCW XBIOS only readswhen
the controller reports an error (see bit 0 of port FDh). Valtiet can be returned
are:

0 Underrun
1 Printer RAM fault
3 Bad command

5 Print error
OF8h Normal operation (no error).

If this port returns any other value, then “No printer” isglsyed as an error.



FCh (output) is used to send commands to the printer controller. Each amdris a
multiple of 2 bytes long. The meaning of the commands senbttsg-Ch and
FDh appears to be the same, but commands are only writterrté&-@Gb while
the printer is being reset.

FDh (input) returns the status of the printer. The meanings of the bésiafollows:

| Bit | Meaning |
7 Bail bar - 1 if it's in, O if out
6 If 0, printer is executing command. If 1, printer has finished

5 Always 0 (for daisywheel PCWs, it's 1 when the PCW is booted
so this bit can be used to test the printer type).
0 if print head is at left margin; else 1.
Sheet feeder present?
Paper sensor -1 if paper is present, else 0.
If 0, ready - commands can be sent to port FDh. If 1, busy - tlagytc
If 1, controller fault - see IN OFCh.

OR[N W

FDh (output) is used to send commands to the printer. All printer commanglsent
to this port except during a reset.

6.1.2 Printer commands

Printer commands are a multiple of 2 bytes long. Commandstwaiie longer than
two bytes end with the two bytes C0,00. Parameters use &&kemtisolution ofs—%oin;
the horizontal resolution depends on the speed the motamisimg at, but is either
7—%0in or ﬁ‘win. In the following descriptions, the unit of horizontal esere is called
the “tick”.

00,00 First initialisation command sent to port OFCh during bopt possibly does a
self-test.

A4,nn Line feed byggsinches. Used only for feeds %in and less (ie, n <=12). Not
followed by a C0,00 command.

A8,nn;A9,nn;AA,nn;AB,nn Move the print head and print a line. Bits 0 and 1 of the
command byte give the print head speed and direction:

bit 0 If set, print head moves to the right; else left.
bit 1 If set, print head moves at half speed. If not, full speed.

The second byte of the command says by how many ticks the heattsmove
in the direction of travel before the first output is print@the PCW matrix driver
assumes that the head will actually move by 9 fewer ticks; iy be because
the motor can't start instantly.

This command is then followed by a number of data commandssé lare of
two kinds - to print, or to move the head by a specified numbércks.

The command to print a column is treated as a 16-bit big-endiad with the
following bitfields:



* Bits 15-12 are 0.

* Bits 11-9 give the column spacing. 0 is 5 ticks, 1 is 6 ticks,.is 12 ticks.

* Bits 8-0 are 1 to fire the pins. Bit 8 is the bottom pin, bit Ohie top.
The other type of command moves the head. These are norméatg and (to
put the print head in the right place for the next row). Thephitern for this type
of command is:

* Bits 15-13 are 1,0,0 (so this command is between 80h and 9Fh)

* Bits 12-0 are the number. If the low 8 bits are 0, add 256. Tié=ans
the commands, in increasing numerical order, are: 80,00280, 80,FF,
80,00, 81,01 etc.

Finally, the command ends:

C0,00 End of command. This moves the head a further 11 ticks in treetibn
of travel, because the motor can't stop instantly either.

AC,nn Line feed by, inches. If nn is 0, feedbinches. To feed more than that,
pass further commands where bits 15-13 are 1,0,0 and bifsat@-the encoded
number to feed - eg: AC,30 92,00 C0,00

This command is also terminated by a C0,00 end sequence.
B8,00 Reset printer. Moves the print head to the left margin.

C0,00 end of command sequence.

6.1.3 Example command sequences

« 00,00 A4,01 {A9,C0 } B8,00 - sent to port OFCh as initialiset sequence. The
A9,CO pair is sent if the print head is against the left magdiar the initial reset;
this ensures that wherever the head was, its ability to magében tested.

« C0,00 B8,00 - sent to port OFCh as printer reset sequence.
« AC,3D C0,00 - line feed at 6 lines/inch

» AB,86,0E,data,0E,data,...,0E,data, 02,00, ... (214)me 80, 04, C0,00 - print
a line of graphics in the ESC L graphics mode. The AB,86 stanitsing and
moves the head 134 - 9 = 125 ticks to the right. The commandingt®E are
the graphics columns, spaced 12 ticks apart. The 21 02,0tnemiats and the
80,04 move the head 130 ticks to the right of the last column, the C0,00
moves it a further 11 ticks. Combined with the lead-in on tle&trine, this
leaves the head ready to print under the first unprinted colofthis line.

6.1.4 PCW matrix printer fonts

Although it is not strictly part of the hardware specificatithe memory layout used
by the dot-matrix printer fonts under CP/M and LocoScrips fiéscribed in Appendix
A.

10



6.2 PCW9512 printer controller

Unlike most of the other ports, the 9512 printer controllecades its I/O address as
more than just 8 bits, and is thus accessed at I/0O addresB&001FCh and 00FDh.
The bits returned by IN (OFDh) are:

| Bit | Meaning |
7 1 if the printer can accept commands

0 if commands can't be sent to it

6 Usually 0. The interrupt handler checks this bit,
but the significance of it is unclear.

5 | 1lifthe printerisidle, O if it's executing a command.
On dot-matrix PCWs, this bit is always 0.
Always seems to be 1

Unknown
1 if the printer has caused an interrupt.
0 if bytes can be sent to the controller, else 1.
1 if bytes can be read from the controller, else Q.

OR[N W &

The controller is accessed by sending two-byte commandsfifid byte specifies
the command, and the second contains any required datan@i@smmmand:

1. Wait until IN (OOFDh) bit 1 is zero.
2. OUT (01FCh),command_byte
3. OUT (00FCh),data_byte
If the command returns data, then to read back the data, do:
1. Wait until IN (OOFDh) bit O is 1.
2. Read data from IN (O0FCh).

To read the status of the printer, do an IN (01FCh) twice irceasion. If the values
read don't match, repeat until they do. The bits in the byterreed are:

| Bit | Meaning if set |
7 Printer failed
No printer
Ribbon present
Paper present
Cover down
Bail bar in

Controller failed
?

OR[N W oD

(The PCW9512 schematic shows printer signals for “SEL.HONMTAR.HOM”,
“SHIF” and “PSIF”, but whether any of these corresponds t®kor indeed bits 7, 6
and 1) of this port is not known).

11



Daisywheel commands should be treated as big-endian woFts. first 4 bits
define the command; the remaining 12 bits are the paramdténe first 4 bits are
0, then the next 4 bits define a different type of command aadast 8 bits are the

parameter.
First byte Second byte Effect Returns
High 4 bits | Low 4 bits
0 1 ribbon type Prepare to output character| nothing
3 for singlestrike, else OClh  Followed by 4xxx-7xxx
0 2 0 Get PAR port status status
0 3 lor3 Unknown nothing
0 4 value Write byte to PAR port nothing
0 5 0 Used to re-check paper sensgr?nothing
0 6 0 Used to re-check paper sensgr? byte
0 7 80h Enable daisywheel interrupts nothing
0 8 07Fh Disable daisywheel interrupts nothing
0 9 0 Reset interrupt flag nothing
(called from interrupt handler
0 0OAh 22h, 24h, 25h Unknown byte
0 0Bh 3 Unknown byte
1 2 0 Initialise controller. This is 0if OK
the first command sent. | else error

2 The PCW9512 BIOS does not
3 send these codes.
4
5 Bits 12-9 are impression Output specified character.
6 (2 for low, 5 for medium, 9 for high) Always preceded by a nothing
7 Bits 0-7 are pin number on wheel. 01xx command.
8 Not sent by the PCW9512 BIOS
9 Distance inggths of an inch Move left nothing
A unknown Unknown nothing
B Distance inﬁths of aninch Move right nothing
C Distance inl%zths of aninch Feed paper forwards nothing
D 0 Unknown nothing
E Distance inl%zths of aninch Feed paper backwards nothing
F 0 Unknown nothing

6.3 PCW9512 PAR port

The PAR portis part of the PCW9512 printer controller, anmbistrolled by commands
2 (get status) and 4 (write byte to PAR).
The status byte gives the values of the following Centrolines:

12




| Bit | Line |
7 ACK
BUSY
ERROR
SELECT
PAPER OUT
Always 0?
Always 07?
Always 1?

OR[N WUl O

So to do output, wait until bit 6 goes to 0 and then write thedesing command 4.
Since the 9512 hardware supports the Centronics ACK si@nalpossible for a
9512 to act as the master computer in a LocoLink conversasee section 7.3.

6.4 CPS8256 CEN port

The CPS8256 CEN port is at E3h.

To read its status, write 10h to port E3h. Then read port E&H s set if the
printer is ready.

To write data, write the character to port E8h. Then senddhevfing bytes to port
E3h: 5, E8h, 5, 68h. These will toggle the STROBE line.

6.5 Standalone CEN port

The standalone CEN port is at ports 84h-87h.

The status is read from IN (84h). Bit 0 is1 if the printer is auif it's ready.

To write a byte, write it to port 87h, then to port 85h, then tat@B7h again. The
two writes to port 87h toggle the STROBE line.

7 Communications interfaces

7.1 CPS8256
The CPS8256 is based on a Z80-DART and an 8253 timer. Porésdodows:

| Port | Meaning |
EO DART Channel A data
E1 | DART Channel A control
E2 DART Channel B data
E3 | DART Channel B control
E4 8253 counter O

E5 8253 counter 1

E7 8253 write mode word

To write a value to a DART register other than register 0, daedegister number
and then the value to the “control” port (E1h or E3h). To reaegister, send the
register number to the control port and then do an IN on thet po

13



To read / write DART register 0, just read or write the valugtot E1h or E3h.
When writing, the bottom 3 bits of the value must be 0; otheendne of the other
regsters would be selected.

7.1.1 Z80-DART registers

The Z80-DART registers are numbered 0 to 5. Many of the bith@se registers are
not used by the CPS8256.

| Register| Bit | Meaningwhenread |  Meaning when written |
0 0 | Receive character available Must be 0
1 Interrupt pending Must be 0
2 Transmit buffer empty Must be 0
3 DCD Command
4 Ring Indicator Command
5 CTS Command
6 Not used Not used
7 Break Not used
1 0 All sent Ext int enable
1 Not used Transmit int enable
2 Not used Status affects vectbr
3 Not used Receive int mode
4 Parity error Receive int mode
5 Receive overrun Wait/Ready on R/T
6 Framing error Wait/Ready function
7 Not used Wait/Ready enable
| 2 ] | Interrupt vecto? | Interrupt vecto? |
3 0 Receive enable
1-4 Must be setto 0
5 RTS/CTS set automatically
6-7 Receive bits (5,6,7,8)
4 0 Parity enabled
1 Parity even
2-3 Stop bits (1, 2, 3for 1, 1.5, 2
4-5 Not used
6-7 Clock multiplier(1,16,32,64)
5 0 Not used
1 RTS
2 Not used
3 Transmit enable
4 Send break
5-6 Transmit bits (5,6,7,8)
7 Not used

AOnly on channel A
BOnly on channel B

14



7.1.2 CPS8256 Centronics port

The Centronics port (described in section 6.4) returngattsis in register O of Channel
B. The STROBE signal is controlled by bit 7 of register 5 (witte DART thinks is
DTR) and the BUSY signal shows up in bit 5 (CTS) of register 0.

7.1.3 CPS8256 Serial port
The serial port is connected to Channel A of the DART.
» To check if the port can output, read register 0 of Channel A.

« If you are using software handshaking, check bit 2 (Trahboffer empty) and
wait until it's nonzero.

« If you are using hardware handshaking, check bit 5 (Cle&@end); when this
goes to 1, read register 1 until bit O (All Sent) is 1.

« Then, to output, write the correct byte to the data channel.
To read from the port in non-interrupt mode:

« If hardware handshaking is enabled, check bit 0 of regs{&X character avail-
able) and if it's 0, raise DTR (set bit 7 of register 5).

« Wait until bit 0 of register 0 becomes 1.
* Read the character from the DART data channel.
« If hardware handshaking is in use, drop DTR.

To set transmit baud rate, send 36h to port E7h, and two bytesied rate to port E4h.
To set the receive baud rate, send 76h to port E7h, and theyties to port E5Sh.

The encoded rate #22°- send the high byte first, then the low byte.

7.2 SCA Mark 2 Interface

The SCA interface is programmed in the same way as the CP$S82&pt that there’s
also a Real Time Clock fitted. The RTC is not emulated in JOYEE information
has not been verified; use it at your own risk.

To read a byte from the RTC:

e Setchannel A DTR.
* Reset channel B.

 For each bit: Unset channel A DTR, read the channel B Ringcatdr, and set
channel A DTR. The bit obtained should be complemented. Thetit read is
bit 7 of the byte; the last is bit 0.

To write a byte to the RTC:
» Setchannel A DTR.

* For each bit, if it's a 1 then reset channel B. If it's a zerb cleannel B RTS.
Then reset and set channel A DTR.

15



« Finally, unset channel A DTR, reset channel B, read a sibigfeom the channel
B Ring Indicator, and set channel A DTR again.

To send an RTC command:

* To start the command: Unset channel A DTR, reset channe¢B;tmnnel B
RTS then set channel A DTR.

» Send the command bytes using the write code above.

* Read any result bytes using the read code above. For alt lsges except the
last: Reset channel B, set channel B RTS, unset channel A BdtRhannel A
DTR and then reset channel B again.

* Finally, set channel B RTS, set channel A DTR, unset chaAri2TR and then
reset channel B.

To read the clock:
* Send the command DOh, 0.

e Send the command D1h; the next 4 bytes read will be hoursutesn days,
months (BCD).

* Send the command DOh, 5.

« The clock will return 3 bytes. The first is the year (BCD); kpect the others
are day and month again, which we ignore.

To write to the clock:

» Send the command DOh, 20h.

* Send the command DOh, hours, minutes, days, months (al)BCD
or:

* Send the command DOh, 5.

* Send the command DOh, year, day, month (BCD).

7.3 LocoLink interface

LocolLink is used to connect the PCW to the parallel port ofta@eocomputer. The
supplied software acts as a file server (“slave” in LocoLiekrtinology), so that the
other computer (the “master” - normally a PC, though sofenalso existed allowing
a PCW9512 to do it, and the PCW16 is supposed to have buile@oLink support)
could read or write files.

Although the LocoLink interface connects to the paralleitpioacts as a serial de-
vice, using only 4 wires (two each way). This is so that it capysort non-bidirectional
parallel ports.

On a PCW with the interface, the LocoLink appears at addréE&h0 The port
behaves as follows:

16



| Bit || Input meaning| Output meaning

0 Data 0 BUSY
1 Data 1 ACK

At the other end of the parallel cable, the two “Data” linesrespond to the first
two data lines in the parallel port. BUSY and ACK correspamthie Centronics pins
of the same name.

If a LocoLink interface is connected to both the expansiod parallel ports of
a PCW9512, and bytes are sent to port OFEh, the bits in thdlglgrart change as
follows:

Value written|| Value read
Bitl | BitO || Bit7 [ Bit6
0 0 1 1

0 1 1 0
1 0 0 1
1 1 0 0

JOYCE v2.1.0+ contains support for the “slave” end of a Ldo&lconnection.
The communications protocol used by the LocoLink interfacgescribed in Ap-
pendix B.

7.4 PCW Linkit

The PCW Linkit interface is a similar device to the LocoLirg&kZ-bit communication
channel) except that both ends connect to PCW expansios. pirappears at port
OFFh. The values are carried by the two low bits of the poe;whlue read by one
PCW is the binary inverse of the value written by the other PCW

The communications protocol used is not known.

7.5 Prototype serial interface

The original PCW specification mentions that the prototyp®¥had a serial interface
based on the Intersil IM6403 UART. Its data register was dtess OFEh for both input
and output, and its status register at OF9h (input only). BYloes not emulate this
interface.

8 Floppy drives

The PCW floppy controller is the uPD765A, run in non-DMA modde FDC main
status register is at I/0 port 00h; its data register is at 01h

8.1 The floppy controller and other ports

The System Control port (0F8h) has five commands which affiecioppy controller:
02 If the floppy controller interrupts, the Z80 gets an NMI.

03 If the floppy controller interrupts, the Z80 gets a normaéimupt. If the Z80 has
disabled interrupts, the interrupt line stays high ungl #80 enables them again.

17



04 Floppy controller interrupts are ignored.
05 Set the floppy controller's “Terminal count”, which abortdata transfer.

06 Clear the floppy controller’s terminal count.

8.2 Floppy drive support

PCW operating systems support two floppy drives, conneottgetcontroller as drives
0and 1.

On a PCW 8256, 8512 or 9512, commands for drives 2 and 3 arecsdrives 0
and 1 (ie, the drive number is not completely decoded).

On aPCW 9256, 9512+ or 10, commands for drive 2 appear to giviot except
that the drive is always “ready”, even when the motor isnrtrrimg. As far as | can see
from the schematic, selecting drive 3 selects both drivesisaneously.

8.3 Floppy controller probe

Versions of LocoScript and CP/M written after the PCW9256 waleased contain
code to discover what sort of PCW is in use - 8256/8512/958266/9512+/10. The
code then detects whether 3.5” disc drives are in use.

The test is done in two stages.

8.3.1 Detect floppy controller type

1. Stop disc motors.

2. Send SENSE DRIVE STATUS for drive 0 to the disc controllgtilit reports
drive 0 is not ready.

3. Send SENSE DRIVE STATUS for drive 2. On an 8256, 8512 or 9%1i3
returns the same status as drive O (ie: not ready). But on &, 9% 2+ or 10, it
returns a status of “ready”.

8.3.2 Detect drive type

If a 9256-style controller was found, separate checks ame done on each drive to see
whether they are 3.5” or not. The test is performed once ar@drand once on drive 2.
The test on drive 2 will return results that are valid for drly, for some strange reason.

1. Start disc motors.

2. Recalibrate the drive (ie, move the head to track 0).
3. Send SENSE DRIVE STATUS to the drive.
4

. If the “Track 0” bit is not set:

» For drive O: If the “read-only” bit is set, the drive is 3”. Hrwise it is
3.5

» For drive 2: The drive does not exist.

5. If the “Track 0" bit is set:

18



 Turn off the disc motors, and wait for them to stop.

» Send SENSE DRIVE STATUS to the drive again. If “Track 0” ig,dbe
drive is 3”. Otherwise it is 3.5".

9 Hard drives

JOYCE does not emulate real PCW hard drives, so this infoomé& not verified.

9.1 Cirtech Gem

Physically, the Gem drive (at least the one | have) is a Se&®§B851A/X IDE drive,

jumpered for XT mode. If the jumpers are set for AT mode it isgible to connect it

to a modern PC and access the data at a sector level. Juntpeystir the ST351A/X

can be found on Dell's website: <http://support.euro.deh/support/edocs/dta/18814/00000003.htm>.
In XTA mode the drive has four registers, mimicking an XT hdritve controller.

On the PCW they can be found at ports 0A8h to OABh. The infoionabelow is

adapted from the Interrupt List entry for ports 0320h-0328hich is where the reg-

isters appear on a PC. For full programming information, teeelBM PC technical

reference, pages 1-187 to 1-201.

0A8h Data register.
0A9h When read: controller status. When written: Reset cormroll

OAAh When read: controller DIP switches. When written: Genetatgroller-select
pulse.

O0OABh When written: DMA and interrupt mask (not used on the PCW)

In addition, the Gem interface has a 4k boot ROM. It would @ppbat on initial
startup, memory accesses with A7 reset go to the boot ROMewiemory accesses
with A7 set go to the PCW mainboard. So the 4k ROM is mappedrirgmory from
0000-007F, 0100-017F, 0200-027F, ..., 1F00-1F7F.

The first thing the GEM boot rom does is to mimic the normal PCalittprocess
by copying the standard boot image (section 2) into memargoés this by repeated
memory reads (from address 80h, so with A7 set) until the esecpi D3 F8 [OUT
(OF8h),A] is encountered. Then it executes its own writehat fport to switch to
normal execution, and copies itself into RAM.

While the ROM is paged in, all I/O port accesses use 16-bif0OT (C),A style],
with the top 8 bits of the address set to 80h. The first indoadfter the boot ROM
has been copied into RAM is IN A,(0A9h), with A=0. Presumathlis 1/0 read, with
the top 8 bits of the address all 0, pages the boot ROM out.

The format of the Gem drive boot track is documented in Appe@d

In a Gem-2 (mirrored) configuration, the 'main’ drive is d¥it (ie, jumpered as
slave) and the 'backup’ drive is drive O (ie, jumpered as Brast

9.1.1 Cirtech Gem (ATA)

I've also seen (but not really studied) a Gem drive based orm=n€& Peripherals
CP3024, which is ATA rather than XTA. The ATA registers woblEimapped at 0A8h-
OAFh:

19



0A8h Data

0A9h Error / Features
OAAh Sector count
0ABh Sector number
OACh Cylinder low
OADh Cylinder high
OAEh Drive / Head
OAFh Status / Command

with the interface presumably converting between the 1@&msfers expected by the
drive, and the 8-bit transfers done by the Z80.

9.1.2 Cirtech Insyder / Hardpak

These are pretty much Gem drives in different form factdne (hsyder is fitted in-
side a PCW9512, and the Hardpak includes a 2.5” hard drivhanriterface box).
Presumably they would use the same register interface &@3dhre

9.2 ASD PCWHD10/PCWHD20

| haven't seen one of these drives, so this information coimes disassembling the
driver (ASD.FID). The drive uses an ATA interface, and appéamake 8-bit transfers.
The registers are:

0AOh Data

OAlh Error/ Features
0A2h Sector count
0A3h Sector number
0A4h Cylinder low
0A5h Cylinder high
0A6h Drive / Head
0A7h Status / Command

The review in 8000 Plus’ says that the ASD drive can have Jafitons, but the
driver | have doesn’t support this.

20



9.3 Other hard drives

'8000 Plus’ has also reviewed several other hard drivesyfoch | have no program-
ming information:

Timatic Winchester Expansion Box: A Seagate ST225, connected through a SASI
interface.

ACC Hard Disc: No information available.
Vortex System 2000: A Miniscribe 8450 XT, connected through a SCSI interface.

Cirtech Diamond: An earlier version of the Gem, but based on a SCSI interfabera
than IDE. Among its features was the ability to connect upetees PCWs to a
single drive, taking advantage of the ability of the SCSI tausupport multiple
controllers.

Cirtech Flash Drive: A solid-state boot device which connects to the expansiot) po
and boots the PCW from a Flash ROM.

10 Keyboard

The keyboard appears as a memory-mapped device at 3FF@R3Fmemory block
3. The first 12 bytes give the status of pressed keys:

[ Address| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bitl | Bit0 |
3FFOh | Keypad 2| Keypad 3 Keypad 6 | Keypad 9| Paste F1/F2 | Keypad 0| F3/F4
3FF1lh | Keypad 1| Keypad5 Keypad4 | Keypad 8| Copy Cut PTR Exit
3FF2h [+] 12 Shift (both) | Keypad 7 > Return ] Del->
3FF3h . ? : < P [ - =
3FF4h , M K L I @) 9 0
3FF5h Space N J H Y U 7 8
3FF6h Y B F G T R S 6
3FF7h X C D S W E 3 4
3FF8h z Shift Lock A Tab Q Stop 2 1
3FF9h <-Del J1: Firel | J1: Fire2| J1: Right| J1: Left | J1:Down | J1:Up
3FFAh Alt Keypad . | Keypad Enter| F7/F8 [-] Cancel Extra F5/F6
3FFBh J2: Firel | J2: Fire2| J2: Right| J2: Left | J2: Down | J2: Up

Using the key numbering scheme in the PCW manual:

« Keys 0-71 correspond to bit (n mod 8) of byte (n / 8) of the map.

« Key 72 corresponds to bit 7 of byte 9.

« Keys 73-80 correspond to bits 0-7 of byte 10.

The entries marked J1 and J2 are for keyboard joysticks e/

The last four bytes contain controller status in bits 6 an@ifs 0-5 of each byte
are used (by analogy with the two joystick entries) to previdyboard combinations
that may be useful as joysticks.

21



| Address| Bit7 | Bit6 | Bits | Bit4 [ Bit3 | Bit2 | Bitl | Bit0 |
3FFCh | (KP Enter) | (Space)| (KP 0) (Exit) (F1/F2) | (F3/F4)
(with LK2 present) (Shift) (S) (D) (A) (X) (W)
3FFDh | ~LK2 | ShiftLock | (Space) | (KP2) | (KP3) | (KP1) | (KP.) | (KP5)
LED
3FFEh | LK3 LK1 (Shifty | (Space))l WRP]| QEO[|ZXCV | ASDF
>. 1 L<,/ BNM GHJ
3FFFh | Update| Ticker (Shift) (Space)l WRP[| QEO[| BNM | HJKL
flag SFXV|ADzZC | ,./M)2 ;<>
3FFCh gives an inverted T pattern centred on F1. If link LK2 is prasé will also
respond to a W/A/D/X diamond, with S as Fire 1 and Shift as Eire
3FFDh maps to the numeric keypad.
3FFDh bit 6 reports the state of the Shift Lock LED; 1 if lit, else 0.
3FFDh bit 7 is 0 if LK2 is present, 1 if not.
3FFEh maps ASDFGHJ to up, ZXCVBNM to down, QEOI[L</, to left, WRPLz
to right, Space to Fire 1, Shift to Fire 2.
3FFENh bit 6 is 1 if LK1 is present, 0O if not. However, if LK1 is present theyboard
enters a self-test mode and transmits test patterns ratethese flags.
3FFEh bit 7 is 1 if LK3 is present, O if not.
3FFFh maps HIKL;<>to up, BNM,¥2to down, QEO[ADZC to left, WRP[SFXV to
right, Space to Fire 1, Shift to Fire 2.
3FFFh bit 6 toggles with each update from the keyboard to the PCW.
3FFFh bit 7 is 1 if the keyboard is currently transmitting its state te #1CW, O if it
is scanning its keys.
If no keyboard is present, all 16 bytes of the memory map a® ze
10.1 Keyboard matrix
The physical layout of the keyboard matrix is given in thevBmr manual:
[Pin| DB7 | DB6 | DB5 DB4 DB3 | DB2 | DBl | DBO |
P10 | Keypad 2| Keypad 3 Keypad6 | Keypad 9| Paste F1/F2 | Keypad O| F3/F4
P11 | Keypad 1| Keypad5 Keypad4 | Keypad8| Copy Cut PTR Exit
P12 [+ 1/2 Shift (both) | Keypad 7 > Return ] Del->
P13 . ? : < P [ - =
P14 , M K L | (0] 9 0
P15| Space N J H Y U 7 8
P16 \Y B F G T R S 6
P17 X C D S w E 3 4
P24 z Shift Lock A Tab Q Stop 2 1
P25 | <-Del Keypad . | Keypad Enter| F7/F8 [-] Cancel Extra F5/F6
P26 Alt J1: Firel | J1: Fire 2| J1: Right| J1: Left | J1: Down | J1: Up
p27 J2: Fire1l | J2: Fire 2| J2: Right| J2: Left | J2: Down| J2: Up

22



10.2 Keyboard Links
The keyboard has three option links. By default they areiafi@hnected.

LK1: If connected, puts the keyboard into a test mode in whichpgeatedly sends
various patterns of data to the PCW. The Shift Lock LED willdmastantly lit
(or, more accurately, blinking faster than you can see).

LK2: If connected, pressing Shift does not cancel Shift LockoAdsables W/A/D/X
joystick, and resets bit 7 of byte 3FFDh.

LK3: If connected, sets bit 7 of byte 3FFEh. Has no other effects.

10.3 Keyboard Joystick(s)

The key numbering scheme on the PCW exactly matches the rgemagy until the
gap at key 72. It also exactly matches the keyboard matrigrselic in the PCW9512
service manual - until key 72.

As shown above, the keyboard schematic has entries in itéxnable for one
or two joysticks. (Existing PCWSs have no provision for coctirgg a joystick to the
keyboard, but the PC1512 does). This may have been how thigkfs) on ANT were
to have been implemented.

My guess is that in the original ANT design, the keyboard irand the table
in memory matched. When the PCW keyboard was created, thdbraemwas re-
designed to move the now-redundant joysticks to the endeofajout, and the key-
board controller microcode rewritten to swap bytes 9 anit® 0-6) so their positions
in the memory map didn’t change.

10.4 Physical connection

The pinout above shows the keyboard socket on the PCW, semrttfie outside of
the case. The voltages used for signalling appear to beHassTtTL normal, though
the PCW9512 (and probably the other models) can take sighdisL levels without
apparent harm.

23



10.4.1 Wire protocol

By default, the data and clock lines are high. To send a bét kébyboard drives the
data line low or high, pulls the clock line low, and then dditater returns them both
to high. Exact timings are unknown, though the PCW mothedsaems happy to
accept timings similar to those used by the PC1512 keybaatddata, wait for 5us,
set clock, wait for 5us, return both lines to high, wait fop4)

A keycode is 12 bits long, with the most significant bit firsheTfirst four bits are
the offset in the memory map (0-OFh), and the last eight bégfze value to be placed
into memory at that address. The PCW keyboard toggles theADiA€ twice before
sending each word, but the gate array at the PCW end doesnittgeneed this.

When transmitting its state, the controller sends a 17-&@ggacket. The first
word is byte OFh, with the top bit set to 1; then bytes 0-OE&nthyte OFh again, with
the top bit set to 0.

11 Pointing Devices

11.1 AMX Mouse
This mouse appears at ports 0AOh-0A3h. The interface is émdgund an 8255 PPI:

O0AOh (port A) gives vertical movement - low nibble = number of msue, high =
number of moves down

0Alh (port B) gives horizontal movement - low nibble = number ofv@®right, high
= number of moves left

0A2h (port C)
Input: gives button state in bottom 3 bits. These are 0 if ol is pressed,
else 1. Bit 0 is the left button; Bit 1 is middle; Bit 2 is right.
Output: Stop Press writes OFFh followed by 0, presumablgs$etthe counters.

0A3h (PPl mode). Stop Press writes 93h at startup (Basic I/O mualés A and B
input, port C low 4 bits input, high 4 bits output).

If at startup the value read from port 0A2h is 10h, Stop Pregielses to accessing the
AMX mouse through ports 80h-83h. Possibly this is to detecA8D hard drive and
avoid a conflict.

11.2 Kempston Mouse

This mouse appears at ports 0DOh-0D4h:

0DOh gives X position, 0-255. The same value can also be read fi2hn0

0D1h gives Y position, 0-255. The same value can also be read fi23mn0

0D4h gives button state in bottom 2 bits. Zero if the button is pegls else 1. Bit O is
left; bit 1 is right. Other bits are 1.

24



11.3 Keymouse

The Keymouse connects between the PCW and the keyboardslthus same mech-
anism as the keyboard to appear as a memory-mapped devita;ing four of the
keyboard joystick bytes:

3FFBh Bits 6-0: horizontal movement counter. Bit 7: Middle mousétbn pressed.
3FFCh Bits 7-6: high bits of vertical movement counter.
3FFDh Bits 4-0: low bits of vertical movement counter.

3FFEh Bit 7: Left button. Bit 6: Right button.

11.4 Electric Studio light pen

The lightpen appears at ports 0A6h and 0A7h. The methodsttesencode its position
is not known.

12 Joysticks
12.1 Keyboard joystick(s)

These are described in section 10.3.

12.2 Kempston interface

The Kempston interface is visible at port 9Fh. It appearsawelthe same bit assign-
ments as the Spectrum version of the interface:

Bits 7-5 Ignored.

Bit 4 1 if the fire button is pressed.
Bit 3 1 if the joystick is pushed down.
Bit 2 1 if the joystick is pushed up.
Bit 1 1 if the joystick is pushed left.
Bit 0 1 if the joystick is pushed right.

12.3 Spectravideo interface

The Spectravideo joystick interface appears at OEOh (sanihat be used at the same
time as a CPS8256 interface). The values it returns are:

Bit 7 Always 0. If nothing is present on this port, 1 is returned.
Bit 6 Ignored.
Bit5 Ignored.

Bit 4 1 if the joystick is pushed to the right.

25



Bit 3 1 if the joystick is pushed up.
Bit 2 1 if the joystick is pushed to the left.
Bit 1 1 if the fire button is depressed.

Bit 0 1 if the joystick is pushed down.

12.4 Cascade interface

The Cascade joystick interface also appears at OEOh. The'ldeer Heels’ driver for
this joystick doesn’t work with a Spectravideo interfadajses these bits:

Bit 7 0 if the fire button is pressed.

Bit 6 Ignored.

Bit 5 Ignored.

Bit 4 0 if the joystick is pushed up.

Bit 3 Ignored.

Bit 2 0 if the joystick is pushed down.

Bit 1 0 if the joystick is pushed to the right.
Bit 0 0 if the joystick is pushed to the left.

12.5 DKTronics interface

The DKTronics interface appears to be one register on adatgp. To read it, write
OEh to port 0AAh and then read port A9h. The use of register &fththe presence
of a “DKTronics sound” driver in Head Over Heels suggests tha chip may be an
AY-3-8912 or similar sound generator.

Head Over Heels uses these bits of the value that it reads:

Bit 7 Ignored.

Bit 6 O if the fire button is pressed.

Bit 5 0 if the joystick is pushed up.

Bit 4 0 if the joystick is pushed down.

Bit 3 0 if the joystick is pushed to the right.
Bit 2 0 if the joystick is pushed to the left.
Bit 1 Ignored.

Bit 0 Ignored.

26



13 Sound Generators

13.1 DKTronics sound generator

According to posts on www.amstrad.es, if | read Google Tedasright, this interface
is based on an AY-3-8912, accessed using the following ports

A9 Read currently selected register
AA Select register
AB Write currently selected register

As mentioned above, the joystick port is register OEh.

A Dot matrix printer fonts

The PCW dot-matrix fonts are stored in three tables in Bar2 addresses and sizes
of these tables differ from CP/M version to CP/M version; yam use LPTSFONZT
to discover where the fonts are for a given CP/M version. Kméant addresses are:

| CP/M version| Font starts af

1.1,1.2,14 5E28h
1.12,1.14,1.18 5EBDh

There are three consecutive tables of font data:

A.1 The character width table.

This is always 64 bytes long, and used for spacing the crersaethen proportional
mode is selected. To get the width for character <n>, read pbyn>/2); the high
nibble will be for the even-numbered character (0,2,4any the low nibble for the
odd-numbered one (1,3,5,...)

A.2 The NLQ font

The font starts with a table (the character offset table}aioing 129 words. Each
word has the following bitwise structure:

Bit 15: The character has a descender; print it on the bottom 8 pilnerrénan the top
8.

Bits 14-12: Space to put at the left of this character.
Bits 11-0: Offset of the specification of this character, from the stéthe font.

The last entry gives the offset of the first byte after the fdrttis means that for any
character, the size of its description can be found by taédffsgt(char+1) - offset(char).
In the standard fonts, offset(128) also gives the offsehefdtart of the draft font from
the start of the NLQ font.

2<http:/www.seasip.demon.co.uk/Cpm/software/amstiaul>

27



After the character offset table is a pattern table. Eactyénit is two bytes long;
the high byte is printed on the first pass, and the low byte erséitond (or vice versa?
The high byte is drawn slightly above the low one, anyway)e Tast significant bit
corresponds to the top pin.

The length of the pattern table isn’t that important, buthe standard fonts it can
be deduced simply by subtracting 258 from the offset of attara.

After that we have the character descriptions. As menti@exe, for each char-
acter, its description is from offset(char) to offset(ckigr An entry is a stream of
bytes. If the top bit is set, it means: Leave a blank columoigeprinting this column.
The values of the low 7 bits are:

00h-79h: Multiply by 2 to get an offset into the pattern table. Thengtdlke two bytes
at that offset for the first and second pass.

7Ah: The two bytes after this code are printed on the first and skpass.

7Bh-7Fh: Repeat the next pattern (byte - 79h) times, putting a blahkneo before
the second and subsequent repetitions.

A.3 The draft font

As with the NLQ font, the draft font starts with a charactdsef table, in which every
word is formed:

Bit 15: The character has a descender; print it on the bottom 8 pilnerrénan the top
8.

Bits 14-12: Space to put at the left of this character.
Bits 11-0: Offset of the specification of this character, from the stéthe font.

The last entry gives the offset of the first byte after the fénts can use memory up
to and including 6BFFh.

After the character offset table is a pattern table. Eactyentit is a single byte,
since draft mode only prints one pass. The least significambbresponds to the top
pin.

The length of the pattern table isn’t that important, buthe standard fonts it can
be deduced simply by subtracting 258 from the offset of attaraD.

After that we have the character descriptions. As menti@exe, for each char-
acter, its description is from offset(char) to offset(ctigr An entry is a stream of
bytes. If the top bit is set, it means: Leave a blank colummotaprinting this column.
The values of the low 7 bits are:

00h-79h: This is an offset into the pattern table. The bit pattern i@rnext column is
the byte at that offset.

7Ah-7Fh: Repeat the next pattern (byte - 78h) times, putting a blahkneo before
the second and subsequent repetitions.

(note that unlike the NLQ print, there is no literal bitmapey.

28



A.4 Some worked examples
A.4.1 NLQ: Character 0 (a) using BIOS 1.15

Looking in the NLQ table, the first 2 entries are 01F6h 0209he €haracter bytes
between those offsets (60F3h - 6106h) are (all values in hex)

2E 14 15 03 08 1A 08 7A 01 44 08 4C 08 36 20 OA 2B 02 82

| Byte(s) || First pattern| Second pattern

2E 30 20
14 04 40
15 00 10
03 00 44
08 08 00
1A 00 45
08 08 00
7A 01 44 01 44
08 08 00
4C 00 46
08 08 00
36 20 04
20 08 40
0A 04 00
2B 38 38
02 00 40
82 (gap) 00 (gap) 40

Which gives us the following two patterns - one from the fiettaf bytes:

3000000000020030 0
0400808180808480 0O

....... oo

# #
#HEHHEHRH

# #

# # #

and one from the second:

2414040404004034 4
0004050406040080 0

29



. # #
# # .
HHEHHEHR O# OH#H#

If we take a row from the second pattern, then the first, andrsatlen the letter
appears:

A.4.2 Draft: Character 0 (&) using BIOS 1.15

In the draft table, the first two words are 0157h 015Ch. Addirgge to the base of the
font gives 6948h and 694Dh; so the bytes between 6948h ardr6@lusive are the
pattern for character 0.

The bytes are: 05 OE 97 C7 92 01 and these expand to:

05 -> patt[ 5] = 0x20

OE -> patt[14] = 0x54

97 -> patt[23] = 0x55, blank column first
C7 -> patt[71] = 0x56, blank column first
92 -> patt[18] = 0x38, blank column first
01 -> patt[ 1] = 0x40

and, translated to a bitmap, these are:

30



A.4.3 Repetition of columns: Character 62 ('=") using BIOS 14

This character is number 62. So 124 bytes from the start afffset table, we find the
two words 02B3h, 02B5h. Thus we know the character desorigtis in 2 bytes, and
starts 02B3h bytes from the start of the font.

The two bytes found there are:

7Dh [repeat 5 times]
OAh [pattern]

Entry OAh in the pattern table is 14h, so the character is éatm

with the blank columns inserted automatically.

A.5 Matrix fonts in LocoScript 1.20

The fonts are stored in the file MATRIX.STD on the boot discthia same order as in
CP/M. The data start at an offset of 011Ah from the start offitke

LocoScript 1 is able to print 224 characters - numbers 0-12i71860-255. These
are stored as a single block of bitmaps in MATRIX.STD, whicibtsacts 32 from
character codes above 160 to create its internal charactex.i

The design of MATRIX.STD as a separate file seems to implydttar dot-matrix
fonts could be loaded in LocoScript 1. However the only ali¢ive LS1 fonts I've seen
(in Digita International’s Supertype) simply patch thestxig MATRIX.STD file.

Note that later versions of LocoScript 1 (v1.30+) use thees&omt format, but
different file formats - see below.

A.5.1 PSwidths table
There are 224 characters rather than 128, so the PS widled4di 2 bytes long.

A5.2 NLQ font

Since there are 224 characters, the offsets table is 225swong). The offsets to
characters start at O; ie, what must be added is the addré&ss dfiaracter description
table, not the address of the font itself. The offset tablt i58Ah in the file, and the
character description table is at 442h. The character igiser bytes are almost the
same as in CP/M, but the special values of the low 7 bits agatyfidifferent:

31



00h-7Ah: Multiply by 2 to get an offset into the pattern table. Thera#ite two bytes
at that offset for the first and second pass.

7Bh: The two bytes after this code are printed on the first and skpass.

7Ch-7Fh: Repeat the next pattern (byte - 79h) times, putting a blahkneo before
the second and subsequent repetitions.

A.5.3 Draftfont

The draft font is at offset 1181h in MATRIX.STD. Its offsetile is again 225 words

long; offsets are based on the font address, like in CP/M.

A.5.4 780 code

The first 11Ah bytes of MATRIX.STD are the Z80 code that getesdont bitmaps.
Again, this seems to suggest that alternative fonts werenpld; the people designing
the characters would have been able to use any code theytdikggherate them. Very
similar code is used under CP/M.

The entry point is at the beginning of MATRIX.STD, and takhks following pa-

rameters:
A = character
BC = address of this routine (MATRIX.STD must be prepared to be loaded anywhere in me
DE = address of a byte to which character width should be written.

On return, the registers should be:

A = character

BC = address of the code that generates the character bitmaps
PS width of character stored.

DE = 1 + entry DE.

HL corrupt.

A1l other registers and flags preserved.

The character bitmap generation code will then be called:wit

A = character
BC = address of this routine
DE = address of 24-byte buffer in which to store the generated character bitmap.

H = OFFh for NLQ, else draft.
Bit 0 of L is O for pass 1, 1 for pass 2 (or vice versa?)

On return, the registers should be:

BC IX corrupt.
DE incremented by number of bytes written to the buffer.
A1l other registers and flags preserved.

A.6 Matrix fonts in LocoScript v1.31

The MATRIX.STD file in this version of LocoScript has a 128tbyheader, so 80h
needs to be added to all offsets.

32



A.7 Matrix fonts in LocoScript v1.40

This version of LocoScript doesn’t have a MATRIX.STD filestaad it has a PRINTER.JOY.
The format of the data is the same, but 1D40h needs to be adadddffsets.

B The LocoLink wire protocol

The description of the LocoLink protocol is derived from eMaation of the “slave”
program (LLINK202.EMS). The protocol appears to be symivelr ie, the “master”
and the “slave” go through the same steps to transmit a patkatever, it's easier
to see what is going on at the “slave” end, where the LocoLmérface presents the
data directly to the CPU, than at the “master” end where thallehport interface gets
slightly in the way - see section B.1.1.

The PCW16 version of LocoLink appears to use a later protadoth works
slightly differently. These differences will be noted irettext.

B.1 Basic concepts

LocoLink works with two wires in each direction - each congutan control the
values of two, and read the values of the other two. The vdhlesn together form a
two-bit number (0-3) and it's most convenient to descrikes thotocol in these terms.
For PCW - to - parallel communications, ACK is the high bitleé thumber and BUSY
is the low bit.

B.1.1 Bit mapping at the PC end

On a PC parallel port, these lines are swapped over (BUSYaappa bit 7 and ACK
on bit 6) and the sense of ACK is inverted (it's 1 if the PCW isdiag 0, and vice
versa). Additionally, when output is being made, the STRAIBE must be raised and
then lowered; otherwise the LocoLink interface does no¢dahe changed values.

B.2 Linkidle

When the link initially starts, the slave sends 2 and the evasnds 3. In the protocol
described below, this means that the slave is listeningifitst packet.

B.3 Sending

B.3.1 Sending a byte

Note: Bytes must only be sent in packets - see below.

Wait until the value sent by the other end goes from 3 to 1.

Send 2 or 3, depending whether bit 7 of the byte is 1 or 0.

Wait until the value sent by the other end goes from 1 to 3.

Send 0 or 1, depending whether bit 6 of the byte is 1 or 0.

Wait until the value sent by the other end goes from 3 to 1.

33



* Send 2 or 3, depending whether bit 5 of the byte is 1 or 0.

... and so on until all the bits of the byte have been sent.

B.3.2 Sending a packet

Before sending a packet the value sent by the other end sheud It may also be 3;
if so, send 3 and wait for it to change to 2.

* Send 0.

< Wait until the value received goes from 2 to 3.

* Send 1.

» Send one byte: the packet type.

» Send one byte: number of following bytes (can be 0 for none).
» Send any following bytes.

« Send two bytes: the checksum (CRC?) of the packet.

« Wait until the value received goes from 3 to 1.

* Send 3.

« Wait until the value received goes from 1 to 3.

e Send 2.

B.4 Receiving
B.4.1 Receiving a byte
Note: Bytes are only received as part of packets - see below.

» Wait until the value sent by the other end becomes 2 or 3. ®hebit of the
value gives bit 7 of the byte being read.

* Send 3.
» Wait until the value sent becomes 0 or 1. This gives bit 6 eflifite being read.
* Send 1.
» Wait until the value sent becomes 2 or 3. This gives bit 5 eflilite being read.
* Send 3.

« ... and so on until all the bits have been read.

34



B.4.2 Receiving a packet

To receive a packet:

B.5

Wait until the value sent by the other end changes from 3 to 0.
Send 3.
Wait until the value sent by the other end changes from 0 to 1.
Send 1.

Receive two bytes (see above). The first is the packet typkthee second is the
number of additional bytes that follow.

Receive the additional bytes, if any.
Receive the 2-byte checksum/CRC.

Wait for the value sent by the other end to go from 0 or 1 (bif the last byte)
to 3.

Send 3.

Wait for the value sent by the other end to go from 3 to 2.

Example

Here the master sends a packet to the slave:

| Master value| Slave value]| Comment |

3 | 2 | Master not listening; Slave listening |

Master starts sending packet

Slave acknowledges

Master ready to transmit bytes

Slave ready to receive bytes

Bit 7 of first byte is O

Bit 7 acknowledged

Bit 6 of first byte is 0

Bit 6 acknowledged

Bit 5 of first byte is 1

W WOIONN|| PP OlOo
WP WWER|RPWWwN

Bit 5 acknowledged

.. skip a lot more bits like this ...

Bit O of last byte is 1

Bit 0 acknowledged

End of packet (slave deduces this from byte coynt)

End of packet acknowledged

N| W W[k
W Wl ||k W

Master listening; slave not listening

This would seem to imply that packets must strictly alteenaince at the end of a
conversation the other computer is now the one listening.

35



B.6 Startup sequence

The first packet exchange is as follows:

| Sender| Type | Length | Additional bytes |
Master| OBh | 02h-20h| 41h | 31h | Master program name, optional
Slave | C3h | 01h-1Fh| OBh Slave program name, optional

In both of these packets, the program name may or may not BemqreThe other
bytes must be exactly as given, or a “link failed to startbemvill occur.
The PCW16 version expects a different packet exchange:

| Sender| Type | Length | Additional bytes |

Master| 5Ah | 02h-20h| 46h 31h| Master program name
Slave | 18h | 01h-1Fh| 5Ah | Slave program name, optiong

B.7 While the link is running
The master now either:

< Hangs up the link. This is done by sending a packet of typet@2khich the
slave does not reply.

* Sends a command packet. This has a type of 39h, and is 1-2S loyig. It
represents a DOS function call; only a subset of calls arpaued. The data
bytes in the packet are:

| Byte | Meaning |
0 Function (AH)
1 Subfunction (AL)

2-3 BX
4-5 CX
6-7 DX

Presumably longer versions of this packet would also corg&iDI and BP. Most
function calls don't need to pass parameters and so justaénoyte packet. For ex-
ample, call OEh (log in drive) doesn't bother to send a drivenber, since a LocoLink
slave computer provides only one disc drive.

Once the command has been sent, the slave will send back dhe @dllowing
packets:

» Success: Type is 50h. Packet length is 0-8 bytes; its pdyibthe values for
AX, BX, CX, DX (low byte first).

 Error: Type is 67h. Packet length is 2 bytes; the first is tl@SDerror number
(see INT 21h function 59h) and the second is 0.

* Request data. Used where the corresponding DOS functiahdweass data
using a pointer or DMA. The packet type is 7Eh, and length igt2$ The first
byte is 11h to ask for an FCB, 80h to ask for a filename, and tberskis the
maximum number of bytes to transfer. The master will repihte with a packet
of type 95h containing the requested data.

36



» Return data. Used where the corresponding DOS functioragplata to be
passed to it by a pointer or DMA. The packet type is 0ACh; thet liyte may be
a type code, and the remainder contains the data. The mafitezply to this
with a 0C3h packet, the first byte of which is 0ACh.

The slave can also send a 0ADh packet, which must be ackngedely a 0C3h
packet, the first byte of which is OADh.

Once the slave has sent a “success” or “error” packet (50Tl #he master can
send another command packet or hangup packet.

Command packets supported by LocoLink PCW 2.02 are:

| Function numbet Meaning | Parameters in initial packet Additional transfers
0Dh reset none none
OEh login none none
10h close disc label
11h get disc label none Slave returns disc label if found
13h delete disc label
16h create disc label
17h rename disc label
36h get free space none none
39h create directory
3Ah remove directory
3Bh set current directory none Master sends new directory
3Ch create file
3Dh open file
3Eh close file
3Fh read file
40h write file
41h erase file
42h set file pointer
43h set/get attributes
44h ioctl
47h get current directory none Slave returns current directory
4Eh find first file AL = search attribute Master sends search path.
If successful slave returns find file d
4Fh find next file none none
56h rename file
57h set/get timestamp
5Bh create file

C The Gem Drive System Track

The first track of the Gem drive contains a bootimage, whitbeided and executed by
the 4k boot ROM. The hard drive setup program provided wighdtive will write this
when asked to repartition the drive or update the boot loa@arthe utilities diskette
it is stored in a file called HD.SYS.

The bootimage starts with a header, corresponding to the biah IBM-formatted
hard drive:

37



| Offset| Size | Description |

0 Word Offset to boot programs table

2 Word Offset to image of HDRIVER.FID

4 Word Offset to the splash screen

6 Word Total length of boot image

8 Byte Options byte

9 17 bytes| CP/M Plus DPB (used for all partitions)
1Ah Byte Sectors per track
1Bh Word First cylinder of partition 1
1Dh Word First cylinder of partition 2
1Fh Word First cylinder of partition 3, O if none
21h Word First cylinder of partition 4, O if none
23h Byte 8-bit checksum of bytes 0-22h

Note that the SPT field in the DPB at offset 9 gives sectorsylénder, while the
'Sectors per track’ at offset 1Ah really does give sectordgaek. For example, a Gem
drive with 5 heads and 17 sectors would have SPT =5 * 17 = 85evtheé field at
offset 1Ah would hold 17.

Three bits of the options byte are used:

Bit 7 Set to load CP/M by default, clear to load LocoScript by difddold the ALT
key when booting to load the other OS.

Bit 4 Set if this is a Gem-2 (mirrorred) system. In this configumatisectors are read
from drive 1 (the main drive) and written to both drive 1 (thaimdrive) and
drive O (the backup drive). Hold the B key when booting to disamirroring
and boot from the backup drive.

Bit 0 Set if a splash screen is present

Working through the fields in order:

C.1 The boot programs table

This table contains a list of boot programs. Each entry isliistes long:

| Offset | Size | Meaning |
0 Byte | 8-bit checksum of the first 512 bytes of the EMS/EMT fjle
1 Word Offset of boot program from start of table
3 Word Length of boot program

The end of the table is indicated by a boot program with offisdf the checksum
of the first 512 bytes of the EMS/EMT file does not match any ef éhntries in the
table, the boot ROM will give a single beep and refuse to eteeitu

If a matching boot program is found, it will be copied to 0DOGhd run with the
following parameters:

* HL =length of HDRIVER.FID. HDRIVER.FID will be in memory &1D000h +
length of boot program.

» C =boot program number (1-based).

e The selected EMS / EMT file will be in memory from 0000h up.

38



The task of the boot program is to inject the HDRIVER.FID iraagto the loaded
EMS / EMT file, so that it boots from the hard drive rather thamfloppy. The version
of the bootloader that | have studied can do this to six vésiahthe CP/M EMS file,
and 64 variants of the LocoScript EMS file.

C.2 The HDRIVER.FID image

This is an exact copy of the HDRIVER.FID used to access the thave when booting
from floppy.

C.3 The splash screen

This is a 720x146 bitmap. It is stored as 19 rows, each can®0 8x8 character
cells. The first row should be blank, because it is used to dnavb5 scanlines above
and below the picture.

39



