How To Program the

Z80 Periphery Tutorial

Doc. Version 2013-08-23-1
Author: Mario Blunk

Abstract: Guideline to program Z80 family devices in a tutorial like manner. Assembly
program code examples given.

Keywords: CPU, SIO, CTC, PIO, counter, timer, I2C, serial, terminal, null-modem, flow
control, baud rate, vector table, interrupt service routine, mainline program, loop,
instruction, execution time, mathematics, pulse width, jitter, oscilloscope, PWM,
modulation, equivalents table, minicom, hyper terminal, time constant

Blunk electronic at www.train-z.de

http://www.train-z.de/

Contents

T THE Z80 SO et e ettt e e e st e e e e s e bbe e e e e e nnee e e e e annnnes 5
L I =T g T g F= LY/ T L TP 5
1.1.1 Desired Communication MeChaniSM..........ccccuiiiiiiiiee i 5
1.1.2 SIO Device Structure and external WiriNg..........cccuceeeerieeiiieeseciieee e e esieeeee e 6

L P2 B L T T PP UPPPRPPP 6

1.1.3 Programiming.... ..o e e e e e e 8

LI TR I T T L= R 8
1.1.3.2 Interrupt Vector Table...........uiii e 8
1.1.3.3 Initializing the SIO.......eeeee e 9
1.1.3.4 Initializing the CTC.....oo e 10
1.1.3.5 Initializing the CPU....co e 10
1.1.3.6 Hardware FIOW CONtrol.........coouieiiiiieeiee et 11
1.1.3.7 Disabling SIO RX-Channel...........coooiiiiiiiie e 11
1.1.3.8 Interrupt Service ROULINES.........ooiiiiiiiie e 12
1.1.3.9 Transmission of a character to the host............cooeeei 14

1.2 File Transfer MOGE........cooiiii e e e e e e e e e e e e ennnnes 15
1.2.1 Desired Communication MechaniSmM..........ccuuviiiiiieiiiiiiceeeeeee e 15
LI o oTo = 10 011 1T T TR TSP PP 16
L2 T o =Y T L S 16
1.2.2.2 Interrupt VECtor TabIe.........ooiiiieee e 16
1.2.2.3 Initializing the CTC.... ..o e e 17
1.2.2.4 Initializing the CPU..... .o 17
1.2.2.5 X-Modem File TranSfer........uu ittt eeeeeeeeeeees 17
1.2.2.5.1 Host triggered transfer and SetUP........coocueeeiiiiiiiiii i 17
1.2.2.5.2 SUDIOULINES ... i a e e e e 21

2 ThE ZBO-CTC ...ttt e e e e e e e e e e e bbb n e e e e e e e e e eaeeeas 22
P2 I D 1= TS = To Y 1= o o F= U 1< o PP 22
2.2 CTC Device Structure and external WiriNg..........ccceerceeeriieeeeieeeeieee e eeeee e 22
P22 T T4 Vo P 22
P2 o oo | =101 00110 T FO TP RPN 24
2.3 HEAUEK ... 24
2.3.2 INterrupt taDIE.... ..o s 24
2.3.3 Initializing the CTC.. ... e e e 25
2.3.4 Initializing the CPU........oo e 26
2.3.5 INtErrUPE FOULINE. ... 26

R I8 L= <10 [SO RRRPR 27
3.1 What do we need for the 12C protoCol ?........cceeeeeiiiiiiiie e 27
3.2 The Open-Drain-Problem....... ...t 28
KR A 1] o TP PPPPPPRRR 29
K o (0T o =T a01 1011 oo TR PSP EEPUPP P 29
O I o 1= = o = 29
3.4.2 Initializing the PlO.......ooe e 30
3.4.3 Main ROULINES. ...ttt e e e et e e e e e e s e s nsnneeeeeennnnes 31
3.4.3.1 BUS RSBttt 31
3.4.3.2 BUS Start and STOP.....cuueiieiiiiiee e 31

Blunk electronic at www.train-z.de 2

http://www.train-z.de/

B.4.3.3 SENAING...ceiiiiiiiiei ettt e e e e e e e e e e e e e e e aaanas 32

3.4.3.4 RECEIVING. ...eeiiiiiitiiee ettt ettt e e e e e e e s nne e e e e eannns 33

3.4.4 SUDIOULINES......eeeeeee e e e e e aeas 34
I B I T O I 3 o] [YRR URPRRRR 34

3.4.4.2 Set SDA as input OF OULPUL......ceeiiiiiiiie e 35

3.4.4.3 Set SCL as outpUt OF INPUL.....ecveieiiee e seeee e e 36

3.4.4.4 SenNd @ DYLE.....ooo i 37

4 Programming Pulse Width Modulation (PWM)..........coe e 38
4.1 The Program AlQOrthm.. ...t 39
4.2 TNE MALN....ceeeee e e e e e e e e nne e e e e e e e e e aaas 42
4.3 The Z80 ASSEMDBIY COQE........uiiiiiiiiiii ettt 44
4.4 RESUITS. ..t e e e e e e e e e e e e 44
4.5 INtegrating CirCUIIYcee it e e 47
5780 IC equivalents table...........cooiueiiiiiee e 48
R (=] (=T =T o[- PP 49
7 USEIUI LINKS...e ettt ettt e e et e e et e e e e e nnne e e e e ennreeaaeaeeas 50
8 FUIrther REAING. .. .ot 53
S D E Tl = 11101 ST RPTPPPP 53

Blunk electronic at www.train-z.de 3

http://www.train-z.de/

Preface

This document aims to make the Z80 processor system popular again since a lot of
valuable literature and expertise has vanished from the public because of more
sophisticated processor architectures of the present.

This document does not aim to bring back “good old times”.

The official ZILOG-datasheets [1] and [2] give a good overall view of all the features of the
peripheral devices but lack a tutorial like approach and programming examples in
assembly language.

Remarkably ZiLOG still produces the ICs of the Z80 family — since the late seventies !

There is no special focus on hardware issues like device selection, pin characteristics or
ratings. Please refer to the official ZiLOG datasheets at www.zilog.com or www.z80.info .

Special thanks go to ZILOG for their datasheets | used for graphical illustrations within this
document.

The code examples shown here provide by far not the best performance and robustness.
Therefore | appreciate every hint or critics to improve the quality of this document.

Blunk electronic at www.train-z.de

http://www.train-z.de/
http://www.z80.info/
http://www.zilog.com/

1 The 280 SIO

The Z80 SIO is the most powerful I/O device of the Z80 product family. Part one of this
section describes how to program the SIO so that it communicates with a PC in
asynchronous terminal mode whereas part two focuses on the block transfer mode used
for file transmission. Also slightly touched in this document is the CTC programming and
implementation of an interrupt mechanism.

1.1 Terminal Mode

1.1.1 Desired Communication Mechanism

We want to program the SIO for asynchronous RS232 terminal mode with these
parameters:

Baudrate: 9600 Baud/sec
Stopbits: 1

Startbits: 1

Character length: 8 bit

Parity: none

In terminal mode the host computer (in our case the PC with any terminal program like
Minicom or Hyper Terminal and an RS232 interface) communicates with the client (the
Z80-SI0O) character based via a so called Null-Modem-Cable. The host transmits one or
more characters to the client, whereupon the client echoes this character back to the host
and processes it. The host displays the echoed character on its screen. If the host does
not “hear” the echoed character the communication is faulty.

Special attention is to be paid to the flow control scheme which is hardware based. In
general this is called “RTSCTS” or just “hardware flow control”. This method allows
transmission of all 8-bit-characters (so called binary mode) and prevents overrunning of
one of the peers in case on of them is to slow. In this document | assume the host PC is
much faster than the client.

Blunk electronic at www.train-z.de

http://www.train-z.de/

The wiring of the null modem cable used here has following connections between its
female 9 pin D-Sub connectors:

1—-4/4-1 cross wired DTR and DCD
2-3/3-2 cross wired TxD and RxD
5-5 signal ground (GND)
7-8/8-7 cross wird RTC and CTS
9-9 ring indicator (R, not used here)
1.1.2 SIO Device Structure and external wiring

Figure 1 (taken from [2]) shows the block diagram of the device with the blocks and signals
needed for our example outlined in red. Figure 2 (taken from [2]) shows the data paths
within the SIO. Marked in red are the blocks we need for asynchronous mode.

1.1.2.1 Wiring

Data and control:

Interrupt Control Lines:

Serial Data:
Channel Clocks:
Modem or other Controls:

miscellaneous:

These are the Z80 bus signals D[7:0], A[1:0], /RD, /IOREQ,
/RESET, /CE and CLK.

/M1, /INT connected to CPU, IEIl and IEO daisy chained to other
periphery

TxD and RxD going towards host computer’
TxCA and RxCA driven by CTC channel output TOO
CTS, RTS, DTR, DCD used for hardware flow control

/SYNC not used, pulled high by 10k resistor

/Wait/Ready comes out of the device. It is to be connected to
the WAIT-Input of the Z80-CPU. By asserting this signal the SIO
tells the CPU to wait until the SIO has completed a character
transfer. For this example we do not make use of this
connection.

1 Usually these signals are not connected directly to the host but via diver devices like MAX232, 1488, 1489

or similar level converters.

Blunk electronic at www.train-z.de 6

http://www.train-z.de/

Data

Control

Figure 1: Block Diagram

_’. E
> [Seria Data
__> Channel A “ |Channe| Clocks|
+5V GND @ International Channel A - SYNC
+ + * Control Read/\Write —® | Wait/Ready
Logic Registers .
Discrete
X :> Control and t gnrocﬂﬁg}
ol :: Controls
(Channel A)
CPU <
Bl Discrete
Control and t Mocﬂﬁg}
:: > Status ::
\/. (Channel B) Contrals
International Channel B
Control Read/Write > i
Logic Registers — Serial Data
-
+ * + _—> Channel B > Channel Clocks
Interrupt -t SYNC
ContrcF))I — Wait/Ready
Lines
CPU VO

Internal Data Bus

/O Data Buffer

i 1

4

J

<

Receive Receive WR7 f
= g SYNC SYNC T'?Dr;‘"'t
Data Error Register Register a
FIFO FIFO
X
| 20-Bit Transmit Shift Register + Start Bit |
Hunt Mode (BISYNC) Receive ASYNC Dt
LT mSmim st :> Error SYNC Data Transmit
i Logic Multiplexer
8 v SDLC Data - o _»_ T«DA
: A = 2-Bit
SYNC Receive oo | SYNC-cRC Delay
RxDA —J-| 1.gjt Register o3| 3 Bits || SR (5 Bits) — |
Delay and Zero (8 Bits)
Delete + + + * * SDLC-CRC
SYNC- [;
Transmit —
CRC CRC Clock Logic | TXCA
ASYNC Data Generator [~
. CRC Delay
RxCA —3| Clock Register
Logic (8 Bits)
—| CcRre
ST .
SDICCRC Checker | CRC Result

Figure 2: Data Path

Blunk electronic at www.train-z.de

http://www.train-z.de/

11.3 Programming

Tree problems have to be solved:

+ initializing the SIO

¥+ implementing the interrupt mechanism
+ echoing the received character

transmitting a character

turning on/off the SIO RX-channel in certain situations

1.1.3.1 Header

The header show below defines the hardware addresses of the data and control port of
your SIO and the address of your CTC channel 0. My hardware here uses the addresses
0x4, 0x6 and 0x0.

SIOAD equ 4h
SIOAC equ 6h
CHO equ Oh

Text 1: header

1.1.3.2 Interrupt Vector Table

Every time the SIO receives a character it requests an interrupt causing the CPU to jump
to the memory address specified by the term RX_CHA_AVAILABLE. Special receive
conditions like receiver buffer overrun cause a jump to location SPEC_RX_CONDITION.

INT_VEC:
org 0Ch
DEFW RX_CHA_AVAILABLE
org OEh
DEFW SPEC_RX_CONDITON

Text 2: SIO interrupt vector table

Blunk electronic at www.train-z.de

http://www.train-z.de/

1.1.3.3 Initializing the SIO

First we have to configure the SIO using the sequence shown in Text 3. For detailed
information on the purpose of certain registers and control bits please read the SIO

datasheet. We operate the SIO in interrupt mode “interrupt on all received characters”.

2

SIO_A _RESET:
;set up TX and RX:
Id a,00110000b ;write into WRO: error reset, select WR0
out (SIO_A_C),A

Id a,018h ;write into WRO: channel reset
out (SIO_A_C),A

Id a,004h :write into WRO: select WR4

out (SIO_A_C),A

Id a,44h ;44h write into WR4: clkx16,1 stop bit, no parity

out (SIO_A_C),A

Id a,005h :write into WRO: select WR5

out (SIO_A _C),A

Id a,0E8h :DTR active, TX 8bit, BREAK off, TX on, RTS inactive
out (SIO_A _C),A

Id a,01h ;write into WRO: select WR1

out (SIO_B_C),A

Id a,00000100b ;no interrupt in CH B, special RX condition affects vect
out (SIO_B _C),A

Id a,02h ;write into WRO: select WR2

out (SIO_B_C),A

Id a,0h ;write into WR2: cmd line int vect (see int vec table)

;bits D3,D2,D1 are changed according to RX condition
out (SIO_B_C),A

Id a,01h ;write into WRO: select WR1
out (SIO_A_C),A
Id a,00011000b ;interrupt on all RX characters, parity is not a spec RX condition

;buffer overrun is a spec RX condition
out (SIO_A_C),A

SIO_A_El:
;enable SIO channel A RX
Id a,003h :write into WRO: select WR3
out (SIO_A _C),A
Id a,0C1h :RX 8bit, auto enable off, RX on

out (SIO_A _C),A
:Channel A RX active
RET

Text 3: configure the SIO

Blunk electronic at www.train-z.de

http://www.train-z.de/

1.1.3.4 Initializing the CTC
The CTC channel 0 provides the receive and transmit clock for the SIO.

INI_CTC:

;init CHO
;CHO provides SIO A RX/TX clock

Id A,00000111b ; int off, timer on, prescaler=16, don't care ext. TRG edge,
; start timer on loading constant, time constant follows
; sw-rst active, this is a ctrl cmd

out (CHO0),A

Id A,2h ; time constant defined

out (CHO0),A ; and loaded into channel 0

; TOO outputs frequency=CLK/2/16/(time constant)/2
; which results in 9600 bits per sec

Text 4: configuring the CTC channel 0

1.1.3.5 Initializing the CPU

The CPU is to run in interrupt mode 2. See Text 5 below. This has to be done after
initializing SIO and CTC.

INT_INI:
Id A0
Id LA ;load | reg with zero
im 2 ;set int mode 2
ei ;enable interupt

Text 5: set up the CPU interrupt mode 2

Blunk electronic at www.train-z.de 10

http://www.train-z.de/

1.1.3.6 Hardware Flow Control

In order to signal the host whether the client is ready or not to receive a character the RTS
line coming out of the client (and driving towards the host) needs to be switched. As earlier
said | assume the host is much faster than the client, that why | do not implement a routine

to check the CTS-line coming from the host.

out (SIO_A _C),A
ret

A RTS_ON:
out (SIO_A_C),A

out (SIO_A_C),A
ret

A _RTS_OFF:
Id a,005h ;write into WRO: select WR5
out (SIO_A_C),A

Id a,0E8h ;DTR active, TX 8bit, BREAK off, TX on, RTS inactive

Id a,005h ;write into WRO: select WR5

Id a,0EAh ;DTR active, TX 8bit, BREAK off, TX on, RTS active

Text 6: signaling the host go or nogo for reception

1.1.3.7 Disabling SIO RX-channel

When certain conditions arise it might by important to disable the receive channel of the

SIO (see routine in Text 7).

SIO_A_Dl:
;disable SIO channel A RX

out (SIO_A_C),A
out (SIO_A_C),A

:Channel A RX inactive
ret

Text 7: Disabling the SIO

Id a,003h :write into WRO: select WR3

Id a,0C0h :RX 8bit, auto enable off, RX off

Blunk electronic at www.train-z.de

11

http://www.train-z.de/

1.1.3.8 Interrupt Service Routines

Upon reception of a character the routine RX_CHA_AVAILABLE shown in Text 8 is
executed. Here you get the character set by the host.

Note: In this example we backup only register AF. Depending on your application you
might be required to backup more registers like HL, DE, CD, ...

Routine SPEC_RX_CONDITION is executed upon a special receive condition like buffer
overrun. In my example the CPU is to jump at the warmstart location 0x0000.

RX_CHA_AVAILABLE:

push AF ;backup AF

call A RTS_OFF

in A,(SIO_A D) ;read RX character into A
;examine received character:

cp 0Dh ;was last RX chara CR ?
ip z,RX_CR

cp 08h ;was last RX char a BS ?
ip z,RX_BS

cp 7Fh ;was last RX char a DEL ?
ip z,RX_BS

;echo any other received character back to host
out (SIO_A_D),A

;do something useful with the received character here !

call TX_EMP
call RX_EMP ;flush receive buffer
ip EO_CH_AV

RX_CR:
;do something on carriage return reception here
ip EOQO_CH_AV

RX_BS:
;do something on backspace reception here
ip EO_CH_AV

EOQO_CH_AV:
ei ;see comments below
call A RTS ON ;see comments below
pop AF ;restore AF
Reti

SPEC_RX_CONDITON:
ip 0000h

Text 8: character received routine

Blunk electronic at www.train-z.de

http://www.train-z.de/

Note: The code written in red might be required if you want the CPU to be ready for

another interrupt (ei) and to give the host a go for another transmission (call A_RTS_ON).

| recommend to put these two lines not here but in your main program routine that
processes the characters received by the SIO. This way you process one character after
another and avoid overrunning your SIO RX buffer.

Text 9 shows the routine to flush the receive buffer. This is important if the host sends
more than one character upon pressing a key like ESC or cursor up/down keys. The
routine of Text 8 echoes just the first received character back to the host, but by calling
RX_EMP all characters following the first one get flushed into the void.

RX_EMP:
;check for RX buffer empty
;modifies A
sub a ;clear a, write into WRO: select RRO
out (SIO_A_C),A
in A,(SIO_A_C) ;read RRx
bit 0,A
ret z ;if any rx char left in rx buffer
in A,(SIO_A_D) ;read that char
ip RX_EMP
Text 9: flushing the receive buffer

Blunk electronic at www.train-z.de

13

http://www.train-z.de/

1.1.3.9 Transmission of a character to the host
In general transmitting of a character is done by the single command
out (SIOAD),A

as written in Text 8. To make sure the character has been sent completely the transmit
buffer needs to be checked if it is empty. The general routine to achieve this is shown in

Text 10.

TX_EMP:
; check for TX buffer empty
sub a ;clear a, write into WRO: select RRO
inc a ;select RR1
out (SIO_A_C),A
in A,(SIO_A C) ;read RRx
bit 0,A
ip z,TX_EMP

ret

Text 10: transmitting a character to host

Blunk electronic at www.train-z.de

14

http://www.train-z.de/

1.2 File Transfer Mode
1.21 Desired Communication Mechanism

We want to program the SIO for asynchronous RS232 X-Modem protocol with these
parameters:

Baudrate: 9600 Baud/sec

Stopbits: 1

Startbits: 1
Character length: 8 bit
Parity: none

In difference to the character based mode described in section 1.1 (Terminal Mode)
blocks of 128 byte size are to be transferred over the Null-Modem-Cable from the host PC
to the client, the Z80-machine. | choose the X-Modem protocol due to its robustness and
easy feasibility. Typical terminal programs like HyperTerminal, Kermit or Minicom do
support the X-Modem protocol.

Of course you can also transfer a file via character based mode but the transfer will take
much more time.

Regarding the device structure, Null-Modem-Cable, wiring and flow-control please refer to
section 1.1.1 on page 5 and 1.1.2 on page 6.

A web link to the description of the X-Modem protocol can be found in section 7on page
50.

Note: For this mode the connection of the CPU pin /WAIT and the SIO pin
/Wait/Ready is required. Please see section 1.1.2.1on page 6.

Blunk electronic at www.train-z.de 15

http://www.train-z.de/

1.2.2 Programming

Four problems have to be solved: initializing the SIO, implementing the interrupt
mechanism, requesting the host to start the X-Modem transfer and load the file to a certain
RAM location.

1.2.2.1 Header

The header show below defines the hardware addresses of the data and control port of
your SIO and the address of your CTC channel 0. My hardware here uses the addresses
0x4, 0x6 and 0x0. Further on there is a RAM locations defined for counting bad blocks
while the file is being transferred.

SIO_A_D equ 4h
SIO_A_C equ 6h
CHO equ Oh
temp0 equ 1015h ;holds number of

;unsuccessful block transfers/block during download

Text 11: header

1.2.2.2 Interrupt Vector Table

Every time the SIO receives the first byte of a block it requests an interrupt causing the

CPU to jump to the memory address specified by the term BYTE_AVAILABLE. This is the
interrupt mode: interrupt on first character. Special receive conditions like receiver buffer
overrun cause a jump to location SPEC_BYTE_COND. The latter case aborts the transfer.

INT_VEC:
org 1Ch
DEFW BYTE_AVAILABLE
org 1Eh
DEFW SPEC_BYTE_COND

Text 12: SIO interrupt vector table

Blunk electronic at www.train-z.de 16

http://www.train-z.de/

1.2.2.3 Initializing the CTC

Please read section 1.1.3.4 on page 10.

1.2.2.4 Initializing the CPU

Please read section 1.1.3.5 on page 10.

1.2.2.5 X-Modem File Transfer

The assembly code of this module is described in the following sections. Due to its
complexity | split it into parts shown in Text 13, 14 and 15 whose succession must not be
mixed. For detailed information on the purpose of certain registers and control bits please
read the SIO datasheet.

1.2.2.5.1 Host triggered transfer and setup

The host PC initiates the transfer. Using Minicom for example you press CTRL-A-S to get
into a menu where you select the x-modem protocol and afterward into the file menu to
select the file to be sent to the client. The procedure is similar with HyperTerminal.

After that the host waits for a NAK character sent by the client.

Now you should run the code shown below in Text 13 on your Z80-machine. This code
initializes the SIO for interrupt mode “interrupt on first received character’.

;set up TX and RX:

Id a,018h ;write into WRO: channel reset
out (SIO_A_C),A

Id a,004h :write into WRO: select WR4

out (SIO_A_C),A

Id a,44h ;44h write into WR4: clkx16,1 stop bit, no parity

out (SIO_A_C),A

Id a,005h ;write into WRO: select WR5

out (SIO_A_C),A

Id a,0E8h :DTR active, TX 8bit, BREAK off, TX on, RTS inactive
out (SIO_A _C),A

Id a,01h ;write into WRO: select WR1

out (SIO_B_C),A

Id a,00000100b ;no interrupt in CH B, special RX condition affects vect
out (SIO_B_C),A

Id a,02h ;write into WRO: select WR2

out (SIO_B_C),A

Id a,10h ;write into WR2: cmd line int vect (see int vec table)

out (SI0O_B_C),A ;bits D3,D2,D1 are changed according to RX condition

Text 13: setup 1

Blunk electronic at www.train-z.de

17

http://www.train-z.de/

Now we do some settings for bad block counting, the first block number to expect and the
RAM destination address of the file to receive from the host. See Text 14. The destination
address setting is red colored. From this RAM location onwards the file is to be stored. Im
my example | use address 0x8000. Depending on your application you should change this
value.

sub A

Id (temp0),A ;reset bad blocks counter

Id C,1h ;C holds first block nr to expect

Id HL,8000h ;set lower destination address of file

call SIO_A_El
call A_RTS_ON

call TX_NAK ;NAK indicates ready for transmission to host

Text 14: setup 2

Text 15 shows the code section that prepares the CPU for the reception of the first byte of
a data block. The line colored red makes the CPU waiting for an interrupt which is caused
by the SIO. The belonging interrupt service routine is shown in Text 16.

Once a block has been received, the checksum is verified and possible bad blocks
counted. The same data block is transferred maximal 10 times whereupon the transfer is
aborted.

Blunk electronic at www.train-z.de 18

http://www.train-z.de/

REC_BLOCK:

[_210:

| 211:

|_613:

I_612:

;set block transfer mode

Id
out
Id
out

ei

call
halt
call

Id
out
Id
out

a,21h
(SIO_A_C),A
a,10101000b
(SIO_A_C),A

A RTS ON
A RTS OFF
a,01h
(SIO_A C),A

a,00101000b
(SIO_A_C),A

:write into WRO cmd4 and select WR1

;wait active, interrupt on first RX character
;buffer overrun is a spec RX condition

;await first rx char

;write into WRO: select WR1

;wait function inactive

;check return code of block reception (e holds return code)

Id
cp
ip
cp
ip
cp
jp
d
ip

call
inc
sub
Id
ip
call
Id
ip
call
scf
ccf

Id
sbc

Id
inc
Id
cp
jp
ip

DLD_END:

ret

a,e
0

z,| 210
2

z,l 211
3

z,| 613
a,10h

| 612

TX_ACK

c

A

(temp0),A
REC_BLOCK

TX_ACK
A,01h
| 612

TX_NAK

DE,0080h
HL,DE

A,(temp0)

A

(temp0),A
09h

z,l_612
REC_BLOCK

Text 15: Receive Data Block

;block finished, no error
;eot found

;chk sum error

:when no error
;prepare next block to receive

;clear bad block counter

;:on eot

;on chk sum error

;clear carry flag

;subtract 80h

;from HL, so HL is reset to block start address

;count bad blocks in temp0

;abort download after 9 attempts to transfer a block
;repeat block reception

Blunk electronic at www.train-z.de

19

http://www.train-z.de/

BYTE_AVAILABLE:

EXP_SOH_EOT:

in
|_205: cp

ip

cp

ip

Id

reti

A,(SIO_A_D)
01h
z,EXP_BLK_NR
04h

nz,| 2020

e,2h

;await block number

EXP_BLK_NR:

in A,(SIO_A_D)

cp C

ip nz,|_2020

;await complement of block number

Id AC

CPL

Id EA
EXP_CPL_BLK_NR:

in A,(SIO_A_D)

cp E

ip nz,|_2020

;await data block

Id D,0h

Id B,80h
EXP_DATA:

in A,(SIO_A_D)

Id (HL),A

add AD

Id D,A

inc HL

djnz EXP_DATA
EXP_CHK_SUM:

in A,(SIO_A D)
; Id a,045h

cp D

ip z,l 2021

Id e,3h

reti
|_2020: Id E,1h

RETI
I_2021: Id E,Oh

RETI

SPEC_BYTE_COND:

Id
push
reti

HL,DLD_END
HL

Text 16: Interrupt Service Routine

;read RX byte into A
;check for SOH

;check for EOT

;read RX byte into A
;check for match of block nr

;copy block nr to expect into A
;and cpl A
;E holds cpl of block nr to expect

;read RX byte into A
;check for cpl of block nr

;start value of checksum
;defines block size 128byte

;read RX byte into A

;update

;checksum in D

;dest address +1

;loop until block finished

;read RX byte into A
;for debug only
;check for checksum match

;return when block received completely

;in case of RX overflow prepare abort of transfer

Blunk electronic at www.train-z.de

20

http://www.train-z.de/

1.2.2.5.2 Subroutines

Important for the X-Modem protocol is the sending of the Acknowledge and the Not-

Acknowledge character to the host machine. For all other routines used in the code above

please refer to sections 1.1.3.3 on page 9 and 1.1.3.6 on page 11.

TX_NAK:
Id a,15h ;send NAK 15h to host
out (SIO_A_D),A
call TX_EMP
RET
TX_ACK:
Id a,6h ;send AK to host
out (SIO_A D),A
call TX_EMP
RET

Text 17: Acknowledge / Not-Acknowledge

Blunk electronic at www.train-z.de

21

http://www.train-z.de/

2 The Z80-CTC

The Z80 CTC provides features to realize various counting and timing mechanisms within
the Z80 computer system. The datasheet gives a good overall view of all the features of
this device but lacks a tutorial like approach and programming examples in assembly
language.

This section describes how to program the CTC and the associated interrupt structure so
that a kind of heartbeat is generated. This beat can be used to make a display-less
embedded computer giving a life sign every couple of seconds. Furthermore the code
examples shown here can be improved to make a system clock.

2.1 Desired Mechanism

Imagine an embedded computer, based on the famous Z80 CPU, which has no display
means but a single LED. Immediately after power up the board has to give a life sign by
flashing the LED every t seconds as a kind of a heartbeat.

The main program running on the board shall not be affected by the heartbeat function,
except it's interruption every t seconds of course.

2.2 CTC Device Structure and external wiring

Figure 3 (taken from [2]) shows the block diagram of the CTC device with its 4
timer/counter channels and the two channels we need marked red. Figure 4 (taken from
[2]) shows the structure of a single channel.

Note: The output of channel 3 is not connected to any pin.

2.21 Wiring

Data and control: These are the Z80 bus signals D[7:0], A[1:0] or CS[1:0], /RD,
/IOREQ, /CE, /RESET and CLK.

Interrupt Control Lines: /M1, /INT connected to CPU, IElI and IEO daisy chained to other

periphery
Outputs: zero count signals TO[2:0], TO2 is wired to TRG3
Inputs: counter inputs TRG[3:0]

Blunk electronic at www.train-z.de 22

http://www.train-z.de/

4 INTERNAL
+SV GND ®

| 1]

DATA

CONTROL CLOCK/TRIGGER |

pemmmm—— 7 ERO COUNT/TIMEOUT ¢
CHANNEL ¢
j@emmmns CLOCK/TRIGGER
ZERO COUNT/TIMEOUT |
; CHANNEL |

CHANNEL 2
CHANNEL 3

s ZERO COUNT/TIMEOUT 2

CLOCK/TRIGGER 2

INTERRUPT CONTROL

LINES mssmsm CLOCK /TRIGGER 3

Figure 3: CTC Block Diagram

CHANNEL .

CONTROL) TIMI: »
REGISTER CONSTANT
AND LOGIC REGISTER

(8 BITS)

INTERNAL BUS

gD . —edv - T

RS h S 3 o F AR

ZERO COUNT/TIMEOUT

PRESCALER
(8 BITS)

COUNTER

EXTERNAL CLOCK/TIMER TRIGGER

Figure 4: Channel Structure

Blunk electronic at www.train-z.de 23

http://www.train-z.de/

2.3 Programming

Tree problems have to be solved:

¥ initializing the CTC
+ implementing the interrupt mechanism

< writing an interrupt service routine that handles the flashing of the LED

2.3.1 Header

The header shown below defines the hardware addresses of the control port of your four
CTC channels 0 to 3. In my case here the addresses equal the channel number.

CHO equ Oh
CH1 equ 1h
CH2 equ 2h
CHS3 equ 3h

Text 18: header

2.3.2 Interrupt table

Every time CTC channel 3 count equals zero an interrupt is triggered causing the CPU to
jump to the memory address specified by the term CT3_ZERO.

org 16h
DEFW CT3_ZERO

Text 19: CTC interrupt vector table

Blunk electronic at www.train-z.de 24

http://www.train-z.de/

2.3.3 Initializing the CTC

First we have to configure the CTC channels as shown in Text 20. We don't need channel
0 and 1. They are on hold. We operate the CTC channel 2 as frequency divider which
scales the CPU clock of 5 MHz down by factor 256*256. The output TO2 of channel 2
drives input TRGS of channel 3 which further divides by factor AFh. This causes channel 3
to zero count at a frequency of approximately 0.44Hz. So the interrupt occurs every 2.3
seconds.

For detailed information on the purpose of certain registers and control bits please read the
CTC datasheet.

INI_CTC:
;init CH O and 1
Id A,00000011b ; int off, timer on, prescaler=16, don't care ext. TRG edge,
; start timer on loading constant, no time constant follows
; sw-rst active, this is a ctrl cmd
out (CHO0),A ; CHO is on hold now
out (CH1),A ; CH1 is on hold now
;init CH2
;CH2 divides CPU CLK by (256*256) providing a clock signal at TO2. TO2 is connected to TRG3.
Id A,00100111b ; int off, timer on, prescaler=256, no ext. start,

; start upon loading time constant, time constant follows
; SW reset, this is a ctrl cmd

out (CH2),A

Id A,0FFh ; time constant 255d defined

out (CH2),A ; and loaded into channel 2
; TO2 outputs f= CPU_CLK/(256*256)

;init CH3
;input TRG of CHS is supplied by clock signal from TO2
;CHB divides TO2 clock by AFh
;CHS3 interupts CPU appr. every 2sec to service int routine CT3_ZERO (flashes LED)
Id A,11000111b ; int on, counter on, prescaler don't care, edge don't care,
; time trigger don't care, time constant follows
; Sw reset, this is a ctrl cmd

out (CH3),A

Id A,0AFh ; time constant AFh defined

out (CH3),A ; and loaded into channel 3

Id A,10h ; it vector defined in bit 7-3,bit 2-1 don't care, bit 0 =0
out (CHO0),A ; and loaded into channel 0

Text 20: configure the CTC

Blunk electronic at www.train-z.de 25

http://www.train-z.de/

2.3.4 Initializing the CPU

The CPU is to run in interrupt mode 2. See Text 21 below. This setting has to be done

after initializing the CTC.

INT_INI:
Id A0
Id I,A ;load | reg with zero
im 2 ;set int mode 2
ei ;enable interupt

Text 21: set up the CPU interrupt mode 2

2.3.5 Interrupt routine

Upon zero count of channel 3 the routine CT3_ZERO as shown in Text 18 is executed.

Here you put the code that switches the LED on and off.

Note: In this example we backup only register AF. Depending on your application you

might be required to backup more registers like HL, DE, CD, ...

CT3_ZERO:
;flashes LED
push AF ;backup registers A and F

; now address your periphery that turns the LED on/off e.g. a D-Flip-Flop
pop AF ;restore registers A and F

El ;re-enable interrups
reti

Text 22: CT3 zero count routine

Blunk electronic at www.train-z.de

http://www.train-z.de/

3 The Z80 PIO

The I12C protocol allows the communication of various devices like ADC, DAC, expanders,
memories and a lot more via a 2 wire bus which saves board space to a great extent. The
Z80 PIO device can be programmed so that it becomes the 12C bus master. The details of
the 12C protocol can be found at http://en.wikipedia.org/wiki/I2C.

Within this document there is no special focus on programming of the PIO nor on hardware
issues like device selection, pin characteristics or ratings. The Z80 PIO device and is well
documented by the official ZILOG datasheets at www.zilog.com or www.z80.info. Please
read also the datasheets provided by respective 12C device manufacturers.

3.1 What do we need for the I12C protocol ?

The aim are some major routines written in assembly code:

+ sending any byte onto the I12C bus
#+ receiving any byte from the bus
¥+ resetting the bus

starting and stopping the bus

The 12C bus is connected to PIO port B with BO driving SCL, and B1 driving and reading
SDA as shown in Figure 5.

Blunk electronic at www.train-z.de 27

http://www.train-z.de/
http://www.z80.info/
http://www.zilog.com/
http://en.wikipedia.org/wiki/I%C2%B2C

3.2 The Open-Drain-Problem

A typical I12C master has open-drain pins. The Z80 PIO does not have open-drain outputs
on its ports A and B. Instead they are of push-pull characteristic which requires two

additional series resistors R3 and R4 as shown in Figure 5. R1 and R2 are mandatory for

an 12C master?.

U1/s%

—

C1l

0B
o PIO
02
03
04
05
06
07

FORTSEL

U1 /1 CONTSEL

JCPURESET , [~ ¢ L

¢
JCRULML g | F ﬂ

&
+

CE
ML
10RQ

f

74L508

RO
74504

CLK
INT
IEI

IED

GHD

(8 (N (R M5 LT a2l 1 [[[e [2 (e (20 o |2 | [oo

LCC

AA
Al
A2
A3
4
A5
A
A7

AROY
ASTE

EA
E1
B2
B3
E4
ES
BE
E7

BROY
BSTE

R4
18k

+50)

RZ
—

—
18k

SCL

= [0 a0 [eo [et fEnd [|0 = (= [~ (e fer = (e e e |
" [= |3 [0 b = e e |~ x| o= [fa fea | Jem

288 PID

Figure 5: external resistors

30A

to the slave devices

R3 and R4 serve as overload protection for the PIO and the slaves in case both the master
and one of the slaves drive onto the SCL or SDA net. The values of 10k for R1/R2 and 160

Ohms for R3/R4 are only rough estimations and should be modified according to your

application.

2 Some I12C masters may have t

hese resistors built in.

Blunk electronic at www.train-z.de

28

http://www.train-z.de/

3.3 Wiring

The general rules of the Z80 bus system apply as follows:

Data and control: These are the Z80 bus signals D[7:0], A[1:0] or CONTSEL and
PORTSEL, /RD, /IOREQ, /CE and CLK.

Interrupt Control Lines: /INT connected to CPU, IEIl and IEO daisy chained to other

periphery

In/Outputs: A[7:0], B[7:0], /ASTRB, /BSTRB, ARDY, BRDY

Note 1: | recommend the AND-ing of the CPU Reset and the CPU M1 signal to form the
PIO M1 signal. This makes the PIO starting up properly upon system reset (please see

Figure 5).

Note 2: All unused pins of port A and B should be pulled up by 10k resistors to avoid them
floating when programmed as inputs.

3.4 Programming

3.441 Header

The header shown below defines the hardware addresses of the control and data port of
your PIO. In my case here they are 9 and Bh. Furthermore there are two RAM locations

reserved to store current mode

and I/O configuration.

PIO B D equ
PIO B C equ
PIO_B_MODE equ
PIO_B_IO_CONF equ

Text 23: header

9h
0Bh

1005h ;holds current PIO B mode
1006h ;holds current 10 configuration of PIO B

Blunk electronic at www.train-z.de

29

http://www.train-z.de/

3.4.2

Initializing the PIO

Text 24 shows the actions needed:

+ setting port B in bit mode.

+ setting pins BO and B1 in input mode.
¥+ loading the output register with FCh (a binary 11111100).

Later in the program we do the following:

Every time pin BO or B1 is set to output mode the values zero held by the output register is

passed through to the pin. This causes a hard low on the pin. If the pin BO or B1 is set to
input mode, it releases the line whereupon it is pulled high by the pull resistors R1 or R2.
So we control the logical level of the SDA or SCL lines only by the I/O configuration

register of the PIO port B.

INI_PIO:
;init PIO port B
Id A,0CFh
Id (PIO_B_MODE),A
out (PIO_B_C),A
Id a,0FFh
Id (PIO_B_IO_CONF),A
out (PIO_B_C),A
Id A,0FCh
out (PIO_B_D),A

Text 24: configure the PIO port B

; set P1O B to bit mode
; update global PIO B mode status variable

; set D7..0 to input mode
; update global PIO B IO status variable
; write 10 configuration into PIO B

; if direction of B1or BO changes to output
; the pin will drive L
; load PIO B output register

Blunk electronic at www.train-z.de

30

http://www.train-z.de/

3.4.3 Main Routines

3.4.3.1 Bus Reset

In order to get all slaves proper reset, the following code is recommended. SCL is clocked
10 times while SDA is held H.

RST _12C:

;modifies A, B, D

;leaves SDA =H and SCL = H

Id B,0Ah ; do 10 SCL cycles while SDA is H
| 77: call SCL_CYCLE

djnz | 77

call SCL_IN

ret

Text 25: bus reset

3.4.3.2 Bus Start and Stop
The I12C bus protocol requires a certain start and stop sequence. Text 26 shows the code.

I2C_START:

;starts 12C bus

call SDA OUT ;SDA =L
call SCL_OouUT ;SCL=L
ret

12C_STOP:

;stops 12C bus

call SDA_OUT
call SCL_IN
call SDA_IN

ret

Text 26: start and stop routines

Blunk electronic at www.train-z.de

http://www.train-z.de/

3.4.3.3 Sending

The code shown in Text 23 is the routine /12C_tx which sends a byte onto the bus. The byte

to send has to be in the accumulator (or CPU register A) prior to calling this routine. This
routine first sends the sata byte (by calling send byte), then checks for the acknowledge
bit sent by a slave. If no acknowledge bit is found the routine leaves the carry flag set.

12C_tx:
;byte to send provides accumulator
;returns with carry cleared if ackn bit not found
;modifies A,B,C,D,HL
call send_byte
bit 1,D ; test D register for acknowledge bit
scf
ret z ;return if akn bit = L with carry set

;when ACK error - stop bus

call 12C_STOP

scf

ccf

ret ;return if akn bit = H with carry cleared

Text 27: send routine

Blunk electronic at www.train-z.de

32

http://www.train-z.de/

3.4.3.4 Receiving

The routine to receive a byte from a slave is shown below. The byte received from the
slave is returned in the accumulator.

12C_RX:

;modifies A, B, D
;returns with slave data byte in A
;leaves SCL =L and SDA =H

Id B,8h
|_66: in A,(PIO_B D)
scf
bit 1,A
ip nz,H_found
L_found:ccf
H_found: rl C
call SCL_CYCLE
djnz |_66
call SCL_CYCLE ;send NAK to slave

;slave byte ready in C
Id AC
ret

Text 28: receive routine

Blunk electronic at www.train-z.de

33

http://www.train-z.de/

3.4.4

Subroutines

The main routines described above frequently call other code which we see in the following

sections. These routines are written with these primary objectives:

memory saving

¥+ modularity
¥ easy to understand (hopefully)

The execution speed is of secondary importance here.

3.4.4.1 SCL Cycle

Every bit transferred via the SDA line must be accompanied by a L-H-L sequence of the
SCL line. The following routine accomplishes that. After SCL going H the SDA line is

sampled®.
SCL_CYCLE:

;modifies A
;returns D wherein bit 1 represents status of SDA while SCL was H
;leaves SCL =L
call SCL_OouUT
call SCL_IN
;look for ackn bit
in A,(PIO_B_D)
Id DA

call SCL_OuUT
ret

Text 29: SCL cycle

3 Only the 9th sample of a byte transfer is important regarding the acknowledge bit.

Blunk electronic at www.train-z.de

34

http://www.train-z.de/

3.4.4.2 Set SDA as input or output

As mentioned earlier the direction setting of B1 determines whether a H or L is driven on
the line. So if you want a H on SDA run routine SDA_IN if you need an L run SDA_OUT.

SDA_IN:

;modifies A
;reloads PIO B mode

Id A,(PIO_B_MODE)
out (PIO_B_C),A
;change direction of SDA to input
Id A,(PIO_B_IO_CONF)
set 1,A
out (PIO_B_C),A
Id (PIO_B_IO_CONF),A
ret

SDA_OUT:
:modifies A

;reloads PIO B mode

Id A,(PIO_B_MODE)

out (PIO_B_C),A

;change direction of SDA to output
Id A,(PIO_B_IO_CONF)
res 1,A

out (PIO_B_C),A

Id (PIO_B_IO_CONF),A

ret

Text 30: set SDA as output or input

Note: If your SDA line is stuck at low or high for some reason, the routine shown here will
not detect this malfunction. An immediate reading back of SDA can be implemented easil

Blunk electronic at www.train-z.de

y.

35

http://www.train-z.de/

3.4.4.3 Set SCL as output or input

Similar to SDA the SCL line is controlled by the direction of pin BO. If you want a H on SCL

run routine SCL_IN if you need an L run SCL_OUT.

SCL_IN:

;modifies A
:reloads PIO B mode

Id A,(PIO_B_MODE)
out (PIO_B_C),A
;change direction of SCL to input
Id A,(PIO_B_IO_CONF)
set 0,A
out (PIO_B_C),A
Id (P1O_B_IO_CONF),A
ret

SCL_OUT:
;modifies A

;reloads PIO B mode

Id A,(PIO_B_MODE)

out (PIO_B_C),A

;change direction of SCL to output
Id A,(PIO_B_IO_CONF)
res 0,A

out (PIO_B_C),A

Id (PIO_B_IO_CONF),A

ret

Text 31: set SCL as output or input

Note: If your SCL line is stuck at low or high for some reason, the routine shown here will
not detect this malfunction. An immediate reading back of SCL can be implemented easily.

Blunk electronic at www.train-z.de

36

http://www.train-z.de/

3.4.4.4 Send a byte
This routine performs the clocking out of the data byte.

Note: Do not confuse this routine with the one shown in section 3.4.3.3. Send_byte is
called by 2C_tx.

send_byte:

;requires byte to be sentin A

;returns with bit 1 of D holding status of ACKN bit
:leaves SCL =L and SDA =H

;:modifies A, B, C, D

Id B.,8h ; 8 bits are to be clocked out
Id C,A ; copy to C reg
|_74: sla C ; shift MSB of C into carry
ip c,SDA_H ; when L
SDA_L: call SDA_OUT ; pull SDA low
iP I_75
SDA_H: call SDA_IN ; release SDA to let it go high
|_75: call SCL_CYCLE ; do SCL cycle (LHL)
djnz |_74 ; process next bit of C reg
call SDA_IN ; release SDA to let it go high
call SCL_CYCLE ; do SCL cycle (LHL), bit 1 of D holds ackn bit

ret

Text 32: send byte

Blunk electronic at www.train-z.de

http://www.train-z.de/

4 Programming Pulse Width Modulation (PWM)

Pulse width modulation (PWM) if based on a digital hardware in general can be regarded
as a Digital-Analog-Converter (DAC): A digital value, lets say a byte, is converted into a
PWM signal where the pulse width represents the byte being input.

Figure 6 depicts two examples, one for the value 32d/20h (dashed line) and another for
value 224d/EO0h (continuous line). The signal period ends (at T) where the sample count
reaches 256d (or 100h), whereupon the cycle starts all over again.

w

Figure 6: PWM output diagram

With an integrator circuitry this signal can easily be “smoothed” to a real analog voltage or

current (see section 4.5 on page 47).

The following discussion is more of theoretical nature with limited practical benefits as
there are smarter solutions available today to generate a PWM signal i.e. CPLDs
programmed in Verilog HDL . The basic questions of this discussion are:

#+ lIs it possible to generate a PWM entirely CPU based ?
¥+ Which accuracy can be achieved ?

The CPU used here is of course the famous Z80 processor together with its peripheral
CTC and PIO units.

Blunk electronic at www.train-z.de

38

http://www.train-z.de/

4.1 The Program Algorithm

As a program algorithm describes a procedure on a high level, it can be applied to every
hardware platform and every programming language. Here some examples to outline the
range:

— Z80 CPU programmed in assembly
— mid range processors/microcontrollers and programming languages

— TSC695F SPARC processor programmed in Ada

Table 1 lists the variables used for a CPU driven PWM. Figure 7 shows what to do to
initialize , Figure 8 shows the essential interrupt service routine (ISR).

But first the init sequence:

1) Upon CPU reset the peripherals and the CPU interrupt mode need to be initialized
(yellow box).

2) One pin of the PIO or GPIOs must be set as output.

3) The CTC must be set to request an interrupt at a constant rate every x milli- or
nanoseconds. Each requests represents a time slot wherein a sample counter gets
incremented (see Figure 6 on page 38).

4) Then the values belonging to the PWM need to be assigned with a init value. So we
have a safe starting point when the interrupt gets enabled (green box).

5) Usually the mainline program loop is to be entered afterward.

Variable Meaning Remarks
dac_chO value to be converted into an analog |integer (i.e. 8 bit)
pulse width

sample_counter counts the samples of a period modulus number, overflow
indicates a new period

buffer output buffer latches the output signal
between updates

out_port output port usually a real hardware
output like GPIO or PIO

Table 1: variables used for a PWM

Every time, the counter of the CTC unit reaches zero count, the ISR shown in Figure 8
gets executed. Usually the CTC signals this event by asserting an interrupt request signal,
whereupon the CPU starts executing the ISR.

Blunk electronic at www.train-z.de 39

http://www.train-z.de/

Important to point out:
1. The CTC must have the highest interrupt priority as possible.*
2. The ISR must finish before the next zero count of the CTC.

Figure 8:

1. The ISR execution time is not constant, as it contains branches depending on the
contents of some values being tested. So it is reasonable to update out _port right
at the beginning of the ISR (yellow box). The out _port signal is updated in real
time.

2. Now if the sanpl es_count er equals the dac_chO variable (red diamond) a bit x
is set in the buf f er . If there is no match, the buf f er bit is untouched. The
sanpl es_count er starts with zero, so the greater dac_chO is, the later the
buf f er bit will be set.

3. Next the sanpl es_count er is incremented (gray box). If the sanpl es_count er
overflows, means all its bits flip back to zero, the buf f er bit gets cleared. This is
the moment where the PWM signal period ends. Otherwise the buf f er bit is left as
itis.

4. Return from interrupt (RETI).

5. The next time the ISR gets executed, the out _port will be updated by the most
recent state of the buf f er bit. See action point 1.

4 A lower priority is possible, but decreases the output accuracy significantly.

Blunk electronic at www.train-z.de 40

http://www.train-z.de/

INIT PIO
INIT CTC
INIT Interrupts

¢

INIT VARIABLES:

dac_ch0=0
sample_counter = 0
buffer = 0
out_port=0

v

ENABLE INTERRUPTS

v

Main Line Program

Figure 7: general init
sequence

out_port := buffer

v

sample_counter =dac_ch0?

v

set bit x in buffer

k

samples_counter + 1

v

sample_counter =0 ?

v

clear bit x in buffer

7

return from interrupt

Figure 8: general ISR

Blunk electronic at www.train-z.de

41

http://www.train-z.de/

4.2 The Math

Life without mathematics is fuzzy and boring.

The most important constraints of the PWM output signal are:
1. Frequency f, and Period T,
2. Resolution R

3. Stability/Accuracy
In this example [, is given with 50 Hz. R is to be 256 steps (8 bit).

1. This yields a sampling frequency of
f.=50 Hz X256
f.=12.8kHz

2. Sothe CTC must be programmed to reach zero count at a rate of:
_1
fs
1
(=158 kM2
t,=78.1pus

L

So the ISR will be executed every 78.1 micro seconds. This implies that the total
ISR execution time itself must be less than 78.1 micro seconds.

3. Usually the time T, required to execute a machine instruction is expressed as a
multiple of the CPU clock period T, . For example the Z80 instruction

SET 0, (I X+0)
takes 23 CPU clocks. Hence T,, for this instruction is 23.

To express the maximum total execution time of the ISR these equations apply:

T_l

i f cpu

The ISR in worst case must require less than N, periods:

tS
N_.<
Tcpu
When programming the ISR, the sum of the individual T, values of the machine
instructions must not exceed N. .

4. The stability is impaired by the fact, that the CPU services an interrupt not
immediately but finishes the instruction of the mainline program being executed
currently first. So the delay t; between the interrupt requested (by the CTC) and

Blunk electronic at www.train-z.de

http://www.train-z.de/

the update of the PWM output (by the ISR) varies. The shortest instruction of the
CPU instruction set dictates the minimum delay, the longest instruction the
maximum delay. See the CPU instruction set for CPU specific ratings.

As far as the Z80 CPU is concerned, T, ranges from 4 (shortest instruction) to 23
(longest instruction).

4<T, <23
So the delay in seconds ranges:
4XT,<t;<23XT,

If the Z80 CPU clock is 5 Mhz the PWM signal update will jitter by 3.8us between
0.8 and 4.6us, indicated with a red arrows in Figure 9 and Figure 10.

= = &

Figure 9: PWM output jitter

Blunk electronic at www.train-z.de 43

http://www.train-z.de/

4.3 The Z80 Assembly Code

The program code used for this experiment can be found here:

http://www.train-z.de/train-z/sw/applications/pwm/dac 1 channel.asm

This tiny program has a main loop where the shortest and the longest machine instructions

of the Z80 are used in order to expand the stochastic jitter to its maximum.

The ISR requires tuning, in order to reduce the total execution time. The less N, gets,
the higher f, may become. In the current state of this small test program the total
execution time t;; of the ISR is 198 cycles, or in other words 198 times the CPU clock
period T, :

tisr= 198 X T by
L)
5MHz

tise =198 X(

152 =39.6115

which is well below the maximum allotted time t; of 78.8ps.

4.4 Results

Table 2 shows some results of the PWM experiment with the given parameters on light
blue background. The measurements of t,, confirm the expected jitter of about 3.8us
(see section 4.2, page 42, point 4). Noteworthy is that the pulse width ¢, is always a
multiple of t,=78.1us which is easy to see with very small pulse widths.

The measurements on gray background are of limited accuracy since the oscilloscope
used here rounds up to tenths of milliseconds. However, the achievable mean voltage
U,.an results are most accurate.

The PWM output frequency [, is 50.9 Hz.
The resolution R of this quasi DAC is 8 bit.

Blunk electronic at www.train-z.de

44

http://www.train-z.de/
http://www.train-z.de/train-z/sw/applications/pwm/dac_1_channel.asm

f epu=5MHz

f.=51Hz
U,=4.96V
dac_cho twidth.min twidth.max Umean.min Umean.max
hexadecimal |[ms] [ms] V] V]
1 0.0743 0.077 0.0084 0.022
2 0.152 0.155
3 0.23 0.233 0.053 0.068
20 2.45 2.5 0.727 0.734
40 4.9 4.95 1.46 1.475
80 9.8 9.85 2.48 2.49
Co 14.7 14.75 3.5 3.516
FE 19.5 19.55 4.93 4.94
FF 19.55 19.6 4.96 4.97

Table 2: Results

Figure 10 shows a scope screenshot with the jitter marked by red arrows. The yellow
pointers indicate the start of the signal period.

Blunk electronic at www.train-z.de

45

http://www.train-z.de/

T\\\v‘ VNN

I‘\ J l“
N WA e Sy e Nt ot Nl = Nt e At A e s S a1 Da

1

1.\

2013.07.12

Figure 10: Oscilloscope Screenshot (PWM input value 32d/20h)

For applications where accuracy and stability are no critical issues, this approach may
serve for control of:

== Brightness of LEDs or lamps
== Motors
Brakes

s
-+ Magnets
i

Blunk electronic at www.train-z.de 46

http://www.train-z.de/

4.5 Integrating Circuitry

The mean voltage U,... in Table 2 page 45 has been computed by the oscilloscope (see
also Figure 10 page 46). In order to obtain a real analog output signal from the PWM
signal, an integrator circuitry is required. This circuitry basically must have a switched
reference voltage and at least a simple RC-Low-Pass filter (or better an op-amp based
integrator) with a sufficient high time constant.

Figure 11 depicts a possible circuitry taken from [3]. The time constant here is
t=R7XC4
t=1MOhms X 680nF
t=0.68s

and applies for the application described in [3] :

- R=4096 , (12 bit)

- f,=70kHz

- T,=60ms

So as a rule of thumb, the filter time constant ¢ should be 10 times the PWM signal

period T, . To accommodate to our figures given in section 4.2 page 42, the R7 and C4
should be replaced by 1 MOhms and 0.2uF which equals a 0.2s time constant.

The greater the time constant, the greater the settle time for the output !

100k
v 7 o +Llg
4 8 22 u
22k IL723 87 M N! BO8SO
L3 3
680 g Unay
1
56k S_E;I—Is 680

Figure 11: Integrator Circuitry

The ICs used here are the classical voltage regulator pA723 and the FET op-amp TL0O80
(additional offset compensation may be required).

Blunk electronic at www.train-z.de 47

http://www.train-z.de/

5 Z80 IC equivalents table

An overview of ICs of the famous Z80 family gives Table 3.

device

equivalent type

Z80-CPU

BU18400A-PS (ROHM)
D780C-1(NEC)

KP1858BM1/2/3 / KR1858BM1/2/3 (USSR)
LH0080 (Sharp)

MK3880x (Mostek)

T34VM1 / T34BM1 (USSR)
TMPZ84C00AP-8 (Toshiba)
UA880 / UB880 / VB880D (MME)
70840004 (ZiLOG)

20840006 (ZiLOG)

Z80ACPUD1 (SGS-Ates)
Z84C00AB6 (SGS-Thomson)
Z84C00 (ZIiLOG)

Z8400A (Goldstar)

u84Co00 (MME)

Z80-SIO

UA8560 , UB8560 (MME)
70844004 (ZILOG)
Z8440AB1 (ST)
70844006 (ZILOG)
Z84C40 (ZILOG)
U84C40 (MME)

Z80-PIO

Z0842004/6 (ZILOG)
UA855 / UB855 (MME)
784C20 (ZILOG)
U84C20 (MME)

Z80-CTC

Z84C30 (ZILOG)
U84C30 (MME)
UA857 / UB857 (MME)

Table 3: Z80 equivalents

Blunk electronic at www.train-z.de

48

http://www.train-z.de/

6 References

1. ZILOG, Z80 Family CPU User Manual UM008005-0205
2. ZILOG, Z80 Family CPU Peripherals User Manual UM008101-0601

electronica

3. Kiihnel C, AD- und DA-Umsetzer flr den
Amateur, Berlin 1986, page 65, German,
ISBN 3-327-00097-2

[

Blunk electronic at www.train-z.de 49

http://www.train-z.de/

7 Useful Links

(1) Find updates of this tutorial at http:/www.train-z.de

(2) CadSoft EAGLE Training and Consulting — a reasonable way to

reasonable work at http://www.train-z.de

(3) An EAGLE configuration script eagle.scr . Units, grid, line with, text size, font, drills
and more — well defined and cleaned up ...

(4) EAGLE - an affordable and very efficient
schematics and layout tool at
http://www.cadsoftusa.com

(5) A Gerber Data Viewer and Editor at http:/www.pentalogix.com

German Sales and Support Office:
Helmut Mendritzki

Software-Beratung-Vertrieb
Dahlienhof 1 pentq|oqix>

25462 RELLINGEN
GERMANY

Tel.: +49 (0) 4101 - 20 60 51
Fax: +49 (0) 4101 - 20 60 53

Mobile: +49 (0) 171 - 2155852
eMail: mendritzki@aol.com

Blunk electronic at www.train-z.de

50

http://www.train-z.de/
mailto:mendritzki@aol.com
http://www.pentalogix.com/
http://www.cadsoftusa.com/
http://www.train-z.de/eagle/misc/eagle.scr
http://www.train-z.de/
http://www.train-z.de/
http://www.cadsoftusa.com/

(6) What is Boundary Scan ?

(7) Looking for a lean Boundary Scan Test System ? Please have a look here !

JTAG/Boundary Scan

System M-1

according to Sid. IEEE 1149.1

UUT access via IEEE1148.1 test bus

Fault diagnosis down to pin level
Interconnect Test (short/open detection)
Memory-Connect Test (RAM/ROM/FLASH)
Oacillator Test / Clock Test

LED, Display Test, Logic Test ...

UUT Power Switch and Monitoring up to 6A /48 ¥ DC
full galvanic separation of UUT from Scan Master in Mon-Test Mode
Operator Activity reduced to pushing START / STOP Button

PASS | FAIL display by just two front panel LEDs

Contack Marnio Blurik Blunk alscronic Buchfinkenweg § /98047 Enfurt / Germany

wfogFbiunmk-electranic.ae W frad -£.de Phone +43 361 518 3818 [+ 45 {78 200 45 855

(8) Debug SPI, I2C, Boundary Scan/JTAG and other hardware with the Logic Scanner
at http://www.train-z.de/logic _scanner/Logic _Scanner UM.pdf

Blunk electronic at www.train-z.de

51

http://www.train-z.de/
http://www.train-z.de/logic_scanner/Logic_Scanner_UM.pdf
http://www.train-z.de/bsm/BSM_Product_Brief_en.pdf
http://www.train-z.de/bsm/BSM_Product_Brief_en.pdf
http://www.train-z.de/bsm/Boundary_Scan_Basics_V1-0.pdf
http://www.train-z.de/bsm/BSM_Product_Brief_en.pdf

(9) The office alternative : LibreOffice at

http://www.libreoffice.org D Lipre Ofﬁce

The Document Foundation

(10) A complete embedded Z80 system plus assembler for Linux and UNIX can be
found at http://www.train-z.de/train-z

(11) The powerful communication tool Kermit at http://www.columbia.edu/kermit/

(12) Z80 Verilog and VHDL Cores at http://www.cast-inc.com and http://opencores.org

(13) The Z80 interrupt structure at

http://www.train-z.de/train-z/doc/z80-interrupts rewritten.pdf

(14) The X-Modem Protocol Reference by Chuck Forsberg at
http://www.train-z.de/train-z/pdf/xymodem.pdf

(15) More Z80 stuff at http://www.z80.info

Blunk electronic at www.train-z.de 52

http://www.train-z.de/
http://www.z80.info/
http://www.train-z.de/train-z/pdf/xymodem.pdf
http://www.train-z.de/train-z/doc/z80-interrupts_rewritten.pdf
http://opencores.org/
http://www.cast-inc.com/
http://www.columbia.edu/kermit/
http://www.train-z.de/train-z
http://www.libreoffice.org/

8 Further Reading

| recommend to read these books:

“Using C-Kermit” / Frank da Cruz, Christine M. Gianone /
ISBN 1-55558-108-0 (english)

“C-Kermit : Einfihrung und Referenz” / Frank da Cruz, Christine M. Gianone /
ISBN 3-88229-023-4 (german)

9 Disclaimer

This tutorial is believed to be accurate and reliable. | do not assume responsibility for any
errors which may appear in this document. | reserve the right to change it at any time
without notice, and do not make any commitment to update the information contained
herein.

My Boss is a Jewish Carpenter

Blunk electronic / Owner : Dipl. Ing. Mario Blunk / Buchfinkenweg 5 / 99097 Erfurt / Germany +49 176 2904 5855 / http.//www.train-z.de

© 2013 Mario Blunk Printed in Germany

Blunk electronic at www.train-z.de

53

http://www.train-z.de/
http://www.train-z.de/

	1 The Z80 SIO
	1.1 Terminal Mode
	1.1.1 Desired Communication Mechanism
	1.1.2 SIO Device Structure and external wiring
	1.1.2.1 Wiring

	1.1.3 Programming
	1.1.3.1 Header
	1.1.3.2 Interrupt Vector Table
	1.1.3.3 Initializing the SIO
	1.1.3.4 Initializing the CTC
	1.1.3.5 Initializing the CPU
	1.1.3.6 Hardware Flow Control
	1.1.3.7 Disabling SIO RX-channel
	1.1.3.8 Interrupt Service Routines
	1.1.3.9 Transmission of a character to the host

	1.2 File Transfer Mode
	1.2.1 Desired Communication Mechanism
	1.2.2 Programming
	1.2.2.1 Header
	1.2.2.2 Interrupt Vector Table
	1.2.2.3 Initializing the CTC
	1.2.2.4 Initializing the CPU
	1.2.2.5 X-Modem File Transfer
	1.2.2.5.1 Host triggered transfer and setup
	1.2.2.5.2 Subroutines

	2 The Z80-CTC
	2.1 Desired Mechanism
	2.2 CTC Device Structure and external wiring
	2.2.1 Wiring

	2.3 Programming
	2.3.1 Header
	2.3.2 Interrupt table
	2.3.3 Initializing the CTC
	2.3.4 Initializing the CPU
	2.3.5 Interrupt routine

	3 The Z80 PIO
	3.1 What do we need for the I²C protocol ?
	3.2 The Open-Drain-Problem
	3.3 Wiring
	3.4 Programming
	3.4.1 Header
	3.4.2 Initializing the PIO
	3.4.3 Main Routines
	3.4.3.1 Bus Reset
	3.4.3.2 Bus Start and Stop
	3.4.3.3 Sending
	3.4.3.4 Receiving

	3.4.4 Subroutines
	3.4.4.1 SCL Cycle
	3.4.4.2 Set SDA as input or output
	3.4.4.3 Set SCL as output or input
	3.4.4.4 Send a byte

	4 Programming Pulse Width Modulation (PWM)
	4.1 The Program Algorithm
	4.2 The Math
	4.3 The Z80 Assembly Code
	4.4 Results
	4.5 Integrating Circuitry

	5 Z80 IC equivalents table
	6 References
	7 Useful Links
	8 Further Reading
	9 Disclaimer

