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PREFACE 

This book has been designed as a complete self-contained text for 
learning programming, using the Z80. It can be used by a person who 
has never programmed before, and should also be of value to anyone 
using the Z80. 

For the person who has already programmed, this book will teach 
specific programming techniques using (or working around) the speci-
fic characteristics of the Z80. This text covers the elementary to inter-
mediate techniques required to start programming effectively. 

This text aims at providing a true level of competence to the person 
who wishes to program using this microprocessor. Naturally, no book 
will effectively teach how to program, unless one actually practices. 
However, it is hoped that this book will take the reader to the point 
where he feels that he can start programming by himself and can solve 
simple or even moderately complex problems using a microcomputer. 

This book is based on the author's experience in teaching more than 
1000 persons how to program microcomputers. As a result, it is strongly 
structured. Chapters normally go from the simple to the complex. For 
readers who have already learned elementary programming, the intro-
ductory chapter may be skipped. For others who have never program-
med, the final sections of some chapters may require a second reading. 
The book has been designed to take the reader systematically through 
all the basic concepts and techniques required to build increasingly, 
complex programs. It is, therefore, strongly suggested that the ordering -
of the chapters be followed. In addition, for effective results, it is 
important that the reader attempt to solve as many exercises as possible. 
The difficulty within the exercises has been carefully graduated. They 
are designed to verify that the material which has been presented is 
really understood. Without doing the programming exercises, it will 
not be possible to realize the full value of this book as an educational 
medium. Several of the exercises may require time, such as the multi-
plication exercise. However, by doing them, you will actually program 
and learn by doing. This is indispensable. 

For those who have acquired a taste for programming when reaching 
the end of this volume, a companion volume is planned: the Z80 Ap-
plications Book. 
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Other books in this series cover programming for other popular 
microprocessors. 

For those who wish to develop their hardware knowledge, it is sug-
gested that the reference books From Chips to Systems: an Introduction 
to Microprocessors (ref. C201A) and Microprocessor Interfacing 
Techniques (ref. C207) be consulted. 

The contents of this book have been checked carefully and are 
believed to be reliable. However, inevitably, some typographical or 
other errors will be found. The author will be grateful for any comments 
by alert readers so that future editions may benefit from their experience. 
Any other suggestions for improvements, such as other programs 
desired, developed, or found of value by readers, will be appreciated. 
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BASIC CONCEPTS 

INTRODUCTION 

This chapter will introduce the basic concepts and definitions re-
lating to computer programming. The reader already familiar with 
these concepts may want to glance quickly at the contents of this 
chapter and then move on to Chapter 2. It is suggested, however, 
that even the experienced reader look at the contents of this intro-
ductory chapter. Many significant concepts are presented here in-
cluding, for example, two's complement, BCD, and other represen-
tations. Some of these concepts may be new to the reader; others 
may improve the knowledge and skills of experienced programmers. 

WHAT IS PROGRAMMING? 

Given a problem, one must first devise a solution. This solution, 
expressed as a step-by-step procedure, is called an algorithm. An 
algorithm is a step-by-step specification of the solution to a given 
problem. It must terminate in a finite number of steps. This 
algorithm may be expressed in any language or symbolism. A sim-
ple example of an algorithm is: 

1—insert key in the keyhole 
2—turn key one full turn to the left 
3—seize doorknob 
4—turn doorknob left and push the door 
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PROGRAMMING THE Z80 

At this point, if the algorithm is correct for the type of lock in-
volved, the door will open. This four-step procedure qualifies as an 
algorithm for door opening. 

Once a solution to a problem has been expressed in the form of 
an algorithm, the algorithm must be executed by the computer. 
Unfortunately, it is now a well-established fact that computers 
cannot understand or execute ordinary spoken English (or any 
other human language). The reason lies in the syntactic ambiguity 
of all common human languages. Only a well-defined subset of 
natural language can be "understood" by the computer. This is 
called a programming language. 

Converting an algorithm into a sequence of instructions in a pro-
gramming language is called programming. To be more specific, 
the actual translation phase of the algorithm into the program-
ming language is called coding. Programming really refers not just 
to the coding but also to the overall design of the programs and 
"data structures" which will implement the algorithm. 

Effective programming requires not only understanding the 
possible implementation techniques for standard algorithms, but 
also the skillful use of all the computer hardware resources, such as 
internal registers, memory, and peripheral devices, plus a creative 
use of appropriate data structures. These techniques will be 
covered in the next chapters. 

Programming also requires a strict documentation discipline, so 
that the programs are understandable to others, as well as to the 
author. Documentation must be both internal and external to the 
program. 

Internal program documentation refers to the comments placed 
in the body of a program, which explain its operation. 

External documentation refers to the design documents which 
are separate from the program: written explanations, manuals, 
and flowcharts. 

FLOWCHARTING 

One intermediate step is almost always used between the 
algorithm and the program. It is called a flowchart. A flowchart is 
simply a symbolic representation of the algorithm expressed as a 
sequence of rectangles and diamonds containing the steps of the 
algorithm. Rectangles are used for commands, or "executable 
statements." Diamonds are used for tests such as: If information 
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BASIC CONCEPTS 

X is true, then take action A, else B. Instead of presenting a formal 
definition of flowcharts at this point, we will introduce and discuss 
flowcharts later on in the book when we present programs. 

Flowcharting is a highly recommended intermediate step be-
tween the algorithm specification and the actual coding of the solu-
tion. Remarkably, it has been observed that perhaps 10% of the 
programming population can write a program successfully with-
out having to flowchart. Unfortunately, it has also been observed 
that 90% of the population believes it belongs to this 10%! The 
result: 80% of these programs, on the average, will fail the first 
time they are run on a computer. (These percentages are naturally 
not meant to be accurate.) In short, most novice programmers sel-
dom see the necessity of drawing a flowchart. This usually results 
in "unclean" or erroneous programs. They must then spend a long 
time testing and correcting their program (this is called the 

START 

Fig. 1.1: A Flowchart for Keeping Room Temperature Constant 
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PROGRAMMING THE Z80 

debugging phase). The discipline of flowcharting is therefore 
highly recommended in all cases. It will require a small amount of 
additional time prior to the coding, but will usually result in a clear 
program which executes correctly and quickly. Once flowcharting 
is well understood, a small percentage of programmers will be able 
to perform this step mentally without having to do it on paper. Un-
fortunately, in such cases the programs that they write will usual-
ly be hard to understand for anybody else without the documenta-
tion provided by flowcharts. As a result, it is universally recom-
mended that flowcharting be used as a strict discipline for any 
significant program. Many examples will be provided throughout 
the book. 

INFORMATION REPRESENTATION 

All computers manipulate information in the form of numbers or 
in the form of characters. Let us examine here the external and 
internal representations of information in a computer. 

INTERNAL REPRESENTATION OF INFORMATION 

All information in a computer is stored as groups of bits. A bit 
stands for a binary digit("0" or "I"). Because of the limitations 
of conventional electronics, the only practical representation of infor-
mation uses two-state logic (the representation of the state "0" and 
"I"). The two states of the circuits used in digital electronics 
are generally "on" or "off", and these are represented logi-
cally by the symbols "0" or "I". Because these circuits are 
used to implement "logical" functions, they are called "binary 
logic." As a result, virtually all information-processing today is 
performed in binary format. In the case of microprocessors in 
general, and of the Z80 in particular, these bits are structured in 
groups of eight. A group of eight bits is called a byte. A group of 
four bits is called a nibble. 

Let us now examine how information is represented internally in 
this binary format. Two entities must be represented inside the 
computer. The first one is the program, which is a sequence of 
instructions. The second one is the data on which the program will 
operate, which may include numbers or alphanumeric text. We will 
discuss below three representations: program, numbers, and alpha-
numerics. 

18 



BASIC CONCEPTS 

Program Representation 

All instructions are represented internally as single or multiple 
bytes. A so-called "short instruction" is represented by a single 
byte. A longer instruction will be represented by two or more 
bytes. Because the Z80 is an eight-bit microprocessor, it fetches 
bytes successively from its memory. Therefore, a single-byte 
instruction always has a potential for executing faster than a two-
or three-byte instruction. It will be seen later that this is an impor-
tant feature of the instruction set of any microprocessor and in 
particular the Z80, where a special effort has been made to pro-
vide as many single-byte instructions as possible in order to im-
prove the efficiency of the program execution. However, the limita-
tion to 8 bits in length has resulted in important restrictions which 
will be outlined. This is a classic example of the compromise be-
tween speed and flexibility in programming. The binary code used 
to represent instructions is dictated by the manufacturer. The 
Z80, like any other microprocessor, comes equipped with a fixed 
instruction set. These instructions are defined by the manufac-
turer and are listed at the end of this book, with their code. Any 
program will be expressed as a sequence of these binary instruc-
tions. The Z80 instructions are presented in Chapter 4. 

Representing Numeric Data 

Representing numbers is not quite straightforward, and several 
cases must be distinguished. We must first represent integers, then 
signed numbers, i.e., positive and negative numbers, and finally we 
must be able to represent decimal numbers. Let us now address 
these requirements and possible solutions. 

Representing integers may be performed by using a direct 
binary representation. The direct binary representation is simply 
the representation of the decimal value of a number in the binary 
system. In the binary system, the right-most bit represents 2 to 
the power 0. The next one to the left represents 2 to the power 1, 
the next represents 2 to the power 2, and the left-most bit 
represents 2 to the power 7 = 128. 

b,b6b,b,bab2b,b„ 
represents 

b,2' + 1).26  + 13525  + b,2' + 6,21  + 6222  + b,2' + ba° 
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PROGRAMMING THE Z80 

The powers of 2 are: 

2° = 128, 26  = 64, 25  = 32, T = 16, T = 8, 2° = 4, 2' = 2, 2° = 1 

The binary representation is analogous to the decimal representa-
tion of numbers, where "123" represents: 

1 X 100 = 100 
+ 2 X 10= 20 
+ 3 X 1 = 3 

= 123 

Note that 100 = 102, 10 = 10', 1 = 10°.  
In this "positional notation," each digit represents a power of 10. 
In the binary system, each binary digit or "bit" represents a power 
of 2, instead of a power of 10 in the decimal system. 

Example: "00001001" in binary represents: 

1 X 1 = 1 (2°) 
0 X 2 = 0 (2') 
0 X 4 = 0 (29 
1 X 8 = 8 (29 
0 X 16 = 0 (21 
0 X 32 = 0 (29 
0 X 64 = 0 (2°) 
0 X 128 = 0 (21 

in decimal: = 9 

Let us examine some more examples: 

"10000001" represents: 

1 X 1 = 1 
0 X 2= 0 
0 X 4 = 0 
0 X 8 = 0 
0 X 16= 0 
0 X 32= 0 
0 X 64= 0 
1 X 128 = 128 

in decimal: = 129 

"10000001" represents, therefore, the decimal number 129. 
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BASIC CONCEPTS 

By examining the binary representation of numbers, you will 
understand why bits are numbered from 0 to 7, going from right to 
left. Bit 0 is "b." and corresponds to 2°. Bit 1 is "b," and cor-
responds to 2', and so on. 

Decimal Binary Decimal Binary 

0 00000000 32 00100000 
1 00000001 33 00100001 
2 00000010 • 
3 00000011  
4 00000100  
5 00000101 63 00111111 
6 00000110 64 01000000 
7 00000111 65 01000001 
8 00001000 
9 00001001 

10 00001010 127 01111111 
11 00001011 128 10000000 
12 00001100 129 10000001 
13 00001101 
14 00001110  
15 00001111 • 
16 00010000 
17 00010001 • 

• 
• 

254 11111110 
31 00011111 255 11111111 

Fig. 1.2: Decimal-Binary Table 

The binary equivalents of the numbers from 0 to 255 are shown 
in Fig. 1-2. 

Exercise 1.1: What is the decimal value of "11111100"? 
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Decimal to Binary 

Conversely, let us compute the binary equivalent of "11" 
decimal: 

	

11 .+.2 =5 remains 	1 —el 
	

(LSB) 
5-2=2 remains 1 --dol 
2+2=1 remains 0 —•.0 

	

1+2=0 remains 	1 —0.1 
	

(MSB) 

The binary equivalent is 1011 (read right-most column from bot-
tom to top). 
The binary equivalent of a decimal number may be obtained by 
dividing successively by 2 until a quotient of 0 is obtained. 

Exercise 1.2: What is the binary for 257? 

Exercise 1.3: Convert 19 to binary, then back to decimal. 

Operating on Binary Data 

The arithmetic rules for binary numbers are straightforward. 

	

The rules for addition are: 0+0= 
	0 

	

0+1= 	1 

	

1+0= 	1 
1+1=(I) 0 

where (1) denotes a "carry" of 1 (note that "10" is the binary 
equivalent of "2" decimal). Binary subtraction will be performed 
by "adding the complement" and will be explained once we learn 
how to represent negative numbers. 

Example: 

(2) 10 
+(1) +01 

=(3) 11 

Addition is performed just like in decimal, by adding columns, 
from right to left: 

Adding the right-most column: 

10 
+01 

(0 + 1 = 1. No carry.) 
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BASIC CONCEPTS 

Adding the next column: 

10 
+01 

11 	(1 + 0 =1. No carry.) 

Exercise 1.4: Compute 5 + 10 in binary. Verify that the result is 15. 

Some additional examples of binary addition: 

0010 (2)  0011 (3) 
+0001 (1) +0001 (1) 

=0011 (3)  =0100 (4)  

This last example illustrates the role of the carry. 

Looking at the right-most bits: 1 + 1 = (1) 0 
A carry of 1 is generated, which must be added to the next bits: 

001 — column 0 has just been added 
+000 — 
+ 1 (carry) 

= 	(1)0 — where (1) indicates a new 
carry into column 2. 

The final result is: 0100 

Another example: 

0111 (7) 
+0011 + (3) 

1010 =(10) 

In this example, a carry is again generated, up to the left-most co-
lumn. 

Exercise 1.5: Compute the result of 

1111 
+0001 
=9 
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PROGRAMMING THE Z80 

Does the result hold in four bits? 

With eight bits, it is therefore possible to represent directly the 
numbers "00000000" to "11111111," i.e., "0" to "255". Two 
obstacles should be visible immediately. First, we are only 
representing positive numbers. Second, the magnitude of these 
numbers is limited to 255 if we use only eight bits. Let us address 
each of these problems in turn. 

Signed Binary 

In a signed binary representation, the left-most bit is used to in-
dicate the sign of the number. Traditionally, "0" is used to denote 
a positive number while "1" is used to denote a negative number. 
Now "11111111" will represent —127, while "01111111" will 
represent +127. We can now represent positive and negative 
numbers, but we have reduced the maximum magnitude of these 
numbers to 127. 

Example: "0000 0001" represents +1 (the leading "0" is "+", 
followed by "000 0001" = 1). 

"1000 0001" is —1 (the leading "1" is "—"I. 

Exercise 1.6: What is the representation of "-5" in signed binary? 

Let us now address the magnitude problem: in order to represent 
larger numbers, it will be necessary to use a larger number of bits. 
For example, if we use sixteen bits (two bytes) to represent 
numbers, we will be able to represent numbers from —32K to 
+32K in signed binary (1K in computer jargon represents 1,024). 
Bit 15 is used for the sign, and the remaining 15 bits (bit 14 to bit 
0) are used for the magnitude: 2'5  = 32K. If this magnitude is still 
too small, we will use 3 bytes or more. If we wish to represent large 
integers, it will be necessary to use a larger number of bytes inter-
nally to represent them. This is why most simple BASICs, and 
other languages, provide only a limited precision for integers. This 
way, they can use a shorter internal format for the numbers which 
they manipulate. Better versions of BASIC, or of these other 
languages, provide a larger number of significant decimal digits at 
the expense of a large number of bytes for each number. 

Now let us solve another problem, the one of speed efficiency. 
We are going to attempt performing an addition in the signed 
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BASIC CONCEPTS 

binary representation which we have introduced. Let us add " —5" 
and "+7". 

+7 is represented by 00000111 
—5 is represented by 10000101 

The binary sum is: 	10001100, or —12 

This is not the correct result. The correct result should be +2. In 
order to use this representation, special actions must be taken, de-
pending on the sign. This results in increased complexity and re-
duced performance. In other words, the binary addition of signed 
numbers does not "work correctly." This is annoying. Clearly, the 
computer must not only represent information, but also perform 
arithmetic on it. 

The solution to this problem is called the two's complement 
representation, which will be used instead of the signed binary 
representation. In order to introduce two's complement let us first 
introduce an intermediate step: one's complement. 

One's Complement 

In the one's complement representation, all positive integers are 
represented in their correct binary format. For example " +3" is 
represented as usual by 00000011. However, its complement " —3" 
is obtained by complementing every bit in the original representa-
tion. Each 0 is transformed into a 1 and each 1 is transformed into 
a 0. In our example, the one's complement representation of " —3" 
will be 11111100. 

Another example: 

+2 is 00000010 
—2 is 11111101 

Note that, in this representation, positive numbers start with a 
"0" on the left, and negative ones with a "1" on the left. 

Exercise 1.7: The representation of "+6" is "00000110". What is 
the representation of "-6" in one's complement? 

As a test, let us add minus 4 and plus 6: 

25 



PROGRAMMING THE Z80 

—4 is 11111011 
+6 is 00000110 

the sum is: 	 (1) 00000001 where (1) indicates a 
carry 

The "correct result" should be "2", or "00000010". 

Let us try again: 

—3 is 11111100 
— 2 is 11111101 

The sum is: 	 (1) 11111.001 

or " — 6." plus a carry. The correct result should be " — ." The 
representation of " — 5" is 11111010. It did not work. 

This representation does represent positive and negative 
numbers. However the result of an ordinary addition does not 
always come out "correctly." We will use still another representa-
tion. It is evolved from the one's complement and is called the 
two's complement representation. 

Two's Complement Representation 

In the two's complement representation, positive numbers are 
still represented, as usual, in signed binary, just like in one's com-
plement. The difference lies in the representation of negative 
numbers. A negative number represented in two's complement is 
obtained by first computing the one's complement, and then ad-
ding one. Let us examine this in an example: 

+3 is represented in signed binary by 00000011. Its one's com-
plement representation is 11111100. The two's complement is ob-
tained by adding one. It is 11111101. 

Let us try an addition: 

(3) 00000011 
+(5) +00000101 

=(8) =00001000 

The result is correct 
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Let us try a subtraction: 

	

(3) 	00000011 

	

(-5) 	+11111011 

=11111110 

Let us identify the result by computing the two's complement: 

the one's complement of 11111110 is 	00000001 
Adding 1 + 	1 

therefore the two's complement is 	00000010 or +2 

Our result above, "11111110" represents "-2". It is correct. 

We have now tried addition and subtraction, and the results were correct 
(ignoring the carry). It seems that two's complement works! 

Exercise 1.8: What is the two's complement representation of 
"+127"? 

Exercise 1.9: What is the two's complement representation of 
'128"? 

Let us now add +4 and —3 (the subtraction is performed by add-
ing the two's complement): 

+4 is 00000100 
—3 is 11111101 

The result is: 	 (1) 00000001 

If we ignore the carry, the result is 00000001, i.e., "1" in decimal. 
This is the correct result. Without giving the complete mathe-
matical proof, let us simply state that this representation does 
work. In two's complement, it is possible to add or subtract signed 
numbers regardless of the sign. Using the usual rules of binary addi-
tion, the result comes out correctly, including the sign. The carry 
is ignored. This is a very significant advantage. If it were not the 
case, one would have to correct the result for sign every time, caus-
ing a much slower addition or subtraction time. 

For the sake of completeness, let us state that two's complement 
is simply the most convenient representation to use for simpler 
processors such as microprocessors. On complex processors, other 
representations may be used. For example, one's complement may 
be used, but it requires special circuitry to "correct the result." 
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From this point on, all signed integers will implicitly be represented 
internally in two's complement notation. See Fig. 1.3 for a table of 
two's complement numbers. 

Exercise 1.10: What are the smallest and the largest numbers 
which one may represent in two's complement notation, using only 
one byte? 

Exercise 1.11: Compute the two's complement of 20. Then com-
pute the two's complement of your result. Do you find 20 again? 

The following examples will serve to demonstrate the rules of two's 
complement. In particular, C denotes a possible carry (or borrow) 
condition. (It is bit 8 of the result.) 

V denotes a two's complement overflow, i.e., when the sign of the 
result is changed "accidentally" because the numbers are too 
large. It is an essentially internal carry from bit 6 into bit 7 (the 
sign bit). This will be clarified below. 

Let us now demonstrate the role of the carry "C" and the overflow 

The Carry C 

Here is an example of a carry: 

(128) 10000000 
+(129) +10000001 

(257) = (1) 00000001 

where (1) indicates a carry. 

The result requires a ninth bit (bit "8", since the right-most bit is 
"0"). It is the carry bit. 

If we assume that the carry is the ninth bit of the result, we 
recognize the result as being 100000001 = 257. 

However, the carry must be recognized and handled with care. 
Inside the microprocessor, the registers used to hold information 
are generally only eight-bit wide.When storing the result, only bits 0 to 
7 will be preserved. 

A carry, therefore, always requires special action: it must be 
detected by special instructions, then processed. Processing the 
carry means either storing it somewhere (with a special instruc-
tion), or ignoring it, or deciding that it is an error (if the largest 
authorized result is "11111111"). 
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+_ 2's complement 
code 

2's complement 
code 

+127 01111111 —128 10000000 
+126 01111110 —127 10000001 
+125 01111101 —126 10000010 

—125 10000011 

+65 01000001 —65 10111111 
+64 01000000 —64 11000000 
+63 00111111 —63 11000001 
. 	. 	. 
+33 00100001 —33 11011111 
+32 00100000 —32 11100000 
+31 00011111 —31 11100001 

+17 00010001 —17 11101111 

+16 00010000 —16 11110000 
+15 00001111 —15 11110001 
+14 00001110 —14 11110010 
+13 00001101 —13 11110011 
+12 00001100 —12 11110100 
+11 00001011 —11 11110101 
+10 00001010 —10 11110110 

+9 00001001 —9 11110111 
+8 00001000 —8 11111000 
+7 00000111 —7 11111001 

+6 00000110 —6 11111010 

+5 00000101 —3 11111011 
+4 00000100 —4 11111100 

+3 00000011 —3 11111101 
+2 00000010 —2 11111110 
+1 00000001 —1 11111111 
+0 00000000 

Fig. 1.3: 2's Complement Table 
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Overflow V 

Here is an example of overflow: 

bit 6 	 
bit 7H 

	

01000000 	(64) 

	

+01000001 	+(65) 

=10000001 =( —127) 

An internal carry has been generated from bit 6 into bit 7. This is 
called an overflow. 

The result is now negative, "by accident." This situation must 
be detected, so that it can be corrected. 

Let us examine another situation: 

11111111. 	(-1) 
+1111111.1 +(-1) 

=(1) 	11111110 =( —2) 

carry 

In this case, an internal carry has been generated from bit 6 into 
bit 7, and also from bit 7 into bit 8 (the formal "Carry" C we have 
examined in the preceding section). The rules of two's complement 
arithmetic specify that this carry should be ignored. The result is 
then correct. 

This is because the carry from bit 6 into bit 7 did not change the 
sign bit. 

This is not an overflow condition. When operating on negative 
numbers, the overflow is not simply a carry from bit 6 into bit 7. 
Let us examine one more example. 

11000000 (-64)  
+10111111 (-65)  

=(1) 01111111 (+127) 

carry 

This time, there has been no internal carry from bit 6 into bit 7, but 
there has been an external carry. The result is incorrect, as bit 7 
has been changed. An overflow condition should be indicated. 
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Overflow will occur in four situations: 

1—adding large positive numbers 
2—adding large negative numbers 
3—subtracting a large positive number from a large negative 

number 
4—subtracting a large negative number from a large positive 

number. 

Let us now improve our definition of the overflow: 

Technically, the overflow indicator, a special bit reserved for this 
purpose, ancrcalled a "flag," will be set when there is a carry from 
bit 6 into bit 7 and no external carry, or else when there is no carry 
from bit 6 into bit 7 but there is an external carry. This indicates 
that bit 7, i.e., the sign of the result, has been accidentally 
changed. For the technically-minded reader, the overflow flag is 
set by Exclusive ORing the carry-in and carry-out of bit 7 (the sign 
bit). Practically every microprocessor is supplied with a special 
overflow flag to automatically detect this condition, which re-
quires corrective action. 

Overflow indicates that the result of an addition or a subtraction 
requires more bits than are available in the standard eight-bit 
register used to contain the result. 

The Carry and the Overflow 

The carry and the overflow bits are called "flags." They are pro-
vided in every microprocessor, and in the next chapter we will 
learn to use them for effective programming. These two indicators 
are located in a special register called the flags or "status" 
register. This register also contains additional indicators whose 
function will be clarified in Chapter 4. 

Examples 

Let us now illustrate the operation of the carry and the overflow 
in actual examples. In each example, the symbol V denotes the 
overflow, and C the carry. 

If there has been no overflow, V = 0. If there has been an 
overflow, V = 1 (same for the carry C). Remember that the rules of 
two's complement specify that the carry be ignored. (The 
mathematical proof is not supplied here.) 
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Positive-Positive 

00000110 (+6) 
+ 00001000 (+8) 

= 00001110 (+14) V:0 	C:0 

(CORRECT) 

Positive-Positive with Overflow 

01111111 (+127) 
+ 00000001 (+1) 

= 10000000 (-128) V:1 	C:0 

The above is invalid because an overflow has occurred. 

(ERROR) 

Positive-Negative (result positive) 

00000100 (+4) 
+ 11111110 (-2) 

=(1)00000010 (+2) 	V:0 	C:1 (disregard) 

(CORRECT) 

Positive-Negative (result negatives 

00000010 (+2) 
+ 11111100 (-4) 

= 11111110 (-21 V:0 	C:0 

(CORRECT) 

Negative-Negative 

11111110 (-21 
+ 11111100 (-4) 

=(1)11111010 (-6) 	V:0 	C:1 (disregard) 

(CORRECT) 

Negative-Negative with Overflow 

10000001 (-127) 
+ 11000010 (-62) 

=(1)01000011 	(67) V:1 	C:1 

(ERROR) 
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This time an "underflow" has occurred, by adding two large 
negative numbers. The result would be —189, which is too large to 
reside in eight bits. 

Exercise 1.12: Complete the following additions. Indicate the 
result, the carry C, the overflow V, and whether the result is correct 
or not: 

10111111 	(_.) 
+11000001 

11111010 1_1 
+11111001 ( 

    

      

      

	 V•_ C: 	= 	 V• 	C• 
❑ CORRECT ❑ ERROR 	❑ CORRECT ❑ ERROR 

00010000 (__) 	 01111110 (_) 
+01000000 (__) 	 +00101010 (._) 

	 V•_ C: 	= 	 V• 	C•_  
❑ CORRECT ❑ ERROR 	❑ CORRECT ❑ ERROR 

Exercise 1.13: Can you show an example of overflow when adding a 
positive and a negative number? Why? 

Fixed Format Representation 

Now we know how to represent signed integers. However, we 
have not yet resolved the problem of magnitude. If we want to 
represent larger integers, we will need several bytes. In order to 
perform arithmetic operations efficiently, it is necessary to use a 
fixed number of bytes rather than a variable one. Therefore, once 
the number of bytes is chosen, the maximum magnitude of the 
number which can be represented is fixed. 

Exercise 1.14: What are the largest and the smallest numbers 
which may be represented in two bytes using two's complement? 

The Magnitude Problem 

When adding numbers we have restricted ourselves to eight bits 
because the processor we will use operates internally on eight bits 
at a time. However, this restricts us to the numbers in the range 
—128 to +127. Clearly, this is not sufficient for many applications. 

Multiple precision will be used to increase the number of digits 
which can be represented. A two-, three-, or N-byte format may 

33 



PROGRAMMING THE Z80 

then be used. For example, let us examine a 16-bit, "double-pre-
cision" format: 

00000000 	00000000 	is "0" 
00000000 	00000001 	is "1" 

01111111 	11111111 	is "32767" 
11111111 	11111111 	is " —1" 
11111111 	11111110 	is " —2" 

Exercise 1.15: What is the largest negative integer which can be 
represented in a two's complement triple-precision format? 

However, this method will result in disadvantages. When adding 
two numbers, for example, we will generally have to add them 
eight bits at a time. This will be explained in Chapter 3 (Basic Pro-
gramming Techniques). It results in slower processing. Also, this 
representation uses 16 bits for any number, even if it could be 
represented with only eight bits. It is, therefore, common to use 16 
or perhaps 32 bits, but seldom more. 

Let us consider the following important point: whatever the 
number of bits N chosen for the two's complement representation, 
it is fixed. If any result or intermediate computation should 
generate a number requiring more than N bits, some bits will be 
lost. The program normally retains the N left-most bits (the most 
significant) and drops the low-order ones. This is called truncating 
the result. 

Here is an example in the decimal system, using a six digit 
representation: 

123456 
X L2 

246912 
123456 

=148147.2 

The result requires 7 digits! The "2" after the decimal point will be 
dropped and the final result will be 148147. It has been truncated. 
Usually, as long as the position of the decimal point is not lost, this 
method is used to extend the range of the operations which may be 
performed, at the expense of precision. 

The problem is the same in binary. The details of a binary multi- 
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plication will be shown in Chapter 4. 
This fixed-format representation may cause a loss of precision, 

but it may be sufficient for usual computations or mathematical 
operations. 

Unfortunately, in the case of accounting, no loss of precision is 
tolerable. For example, if a customer rings up a large total on a 
cash register, it would not be acceptable to have a five figure 
amount to pay, which would be approximated to the dollar. 
Another representation must be used wherever precision in the 
result is essential. The solution normally used is BCD, or 
binary-coded decimal. 

BCD Representation 

The principle used in representing numbers in BCD is to encode 
each decimal digit separately, and to use as many bits as necessary 
to represent the complete number exactly. In order to encode each 
of the digits from 0 through 9, four bits are necessary. Three bits 
would only supply eight combinations, and can therefore not en-
code the ten digits. Four bits allow sixteen combinations and are 
therefore sufficient to encode the digits "0" through "9". It can 
also be noted that six of the possible codes will not be used in the 
BCD representation (see Fig. 1-4). This will result later on in a potential 
problem during additions and subtractions, which we will have to solve. 

CODE 
BCD 

SYMBOL CODE 
BCD 

SYMBOL 

0000 0 1000 8 
0001 1 1001 9 
0010 2 1010 unused 
0011 3 1011 unused 
0100 4 1100 unused 
0101 5 1101 unused 
0110 6 1110 unused 
0111 7 1111 unused 

Fig. 1.4: BCD Table 
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Since only four bits are needed to encode a BCD digit, two BCD digits 
may be encoded in every byte. This is called "packed BCD. " 

As an example, "00000000" will be "00" in BCD. "10011001" 
will be "99", 

A BCD code is read as follows: 

0010 	0001 

BCD digit "2" •411-1  
BCD digit "1" I 	 
BCD number "21" 

J 

Exercise 1.16: What is the BCD representation for "29"? "91" 2  

Exercise 1.17: Is "10100000" a valid BCD representation? Why? 

As many bytes as necessary will be used to represent all BCD 
digits. Typically, one or more nibbles will be used at the beginning 
of the representation to indicate the total number of nibbles, i.e., 
the total number of BCD digits used. Another nibble or byte will 
be used to denote the position of the decimal point. However, con-
ventions may vary. 

Here is an example of a representation for multibyte BCD in-
tegers: 

3 2 2 ( 3 bytes) 

number 
	 number "221" 

of digits 
(up to 255) sign 

This represents +221 
(The sign may be represented by 0000 for +, and 0001 for —, for 
example.) 

Exercise 1.18: Using the same convention, represent "-23123". 
Show it in BCD format, as above, then in binary. 

Exercise 1.19: Show the BCD for "222" and "111", then for the re-
sult of 222 X 111. (Compute the result by hand, then show it in the 
above representation.) 

The BCD representation can easily accommodate decimal 
numbers. 
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For example, +2.21 may be represented by: 

digit 3 	digit 2 digit 1 

3 2 2 2 

221 
3 digits 	" " is on the 

left of digit 2 

The advantage of BCD is that it yields absolutely correct 
results. Its disadvantage is that it uses a large amount of memory 
and results in slow arithmetic operations. This is acceptable only 
in an accounting environment and is normally not used in other 
cases. 

Exercise 1.20: How many bits are required to encode "9999" in 
BCD? And in two's complement? 

We have now solved the problems associated with the represen-
tation of integers, signed integers and even large integers. We 
have even already presented one possible method of representing 
decimal numbers, with BCD representation. Let us now examine 
the problem of representing decimal numbers in a fixed length for-
mat. 

Floating-Point Representation 

The basic principle is that decimal numbers must be represented 
with a fixed format. In order not to waste bits, the representation 
will normalize all the numbers. 

For example, "0.000123" wastes three zeros on the left of the 
number, which have no meaning except to indicate the position of 
the decimal point. Normalizing this number results in .123 X 104. 
".123" is called a normalized mantissa. " —3" is called the expo-
nent. We have normalized this number by eliminating all the meaning-
less zeros on the left of it and adjusting the exponent. 

Let us consider another example: 

22.1 is normalized as .221 x 102  

or M X 10E where M is the mantissa, and E is the exponent. 
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It can be readily seen that a normalized number is characterized 
by a mantissa less than 1 and greater or equal to .1 in all cases 
where the number is not zero. In other words, this can be repre-
sented mathematically by: 

.1 < M < 1 or 10-' M < 10° 

Similarly, in the binary representation: 

2-'4M<2° (or .54M<1) 

Where M is the absolute value of the mantissa (disregarding the 

For example: 

111.01 is normalized as: .11101 X V. 

The mantissa is 11101. 

The exponent is 3. 

Now that we have defined the principle of the representation, 
let us examine the actual format. A typical floating-point represen-
tation appears below. 

31 	 24 23 	 16 15 	 8 7 

5 	EXP S 	 MANTISSA 

1 	 I  

  

Fig. 1.5: Typical Floating-Point Representation 

In the representation used in this example, four bytes are used 
for a total of 32 bits. The first byte on the left of the illustration is 
used to represent the exponent. Both the exponent and the man-
tissa will be represented in two's complement. As a result, the 
maximum exponent will be — 128. "S" in Fig. 1-5 denotes the sign 
bit. 

Three bytes are used to represent the mantissa. Since the first 
bit in the two's complement representation indicates the sign, this 
leaves 23 bits for the representation of the magnitude of the man-
tissa. 
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Exercise 1.21: How many decimal digits can the mantissa repre-
sent with the 23 bits? 

This is only one example of a floating point representation. It is 
possible to use only three bytes, or it is possible to use more. The 
four-byte representation proposed above is just a common one 
which represents a reasonable compromise in terms of accuracy, 
magnitude of numbers, storage utilization, and efficiency in 
arithmetic operation. 

We have now explored the problems associated with the rep-
resentation of numbers and we know how to represent them in in-
teger form, with a sign, or in decimal form. Let us now examine 
how to represent alphanumeric data internally. 

Representing Alphanumeric Data 

The representation of alphanumeric data, i.e. characters, is com-
pletely straightforward: all characters are encoded in an eight-bit 
code. Only two codes are in general use in the computer world, the 
ASCII Code, and the EBCDIC Code. ASCII stands for "American 
Standard Code for Information Interchange," and is universally 
used in the world of microprocessors. EBCDIC is a variation of 
ASCII used by IBM, and therefore not used in the microcomputer 
world unless one interfaces to an IBM terminal. 

Let us briefly examine the ASCII encoding. We must encode 26 
letters of the alphabet for both upper and lower case, plus 10 
numeric symbols, plus perhaps 20 additional special symbols. This 
can be easily accomplished with 7 bits, which allow 128 possible 
codes. (See Fig.l-6.) All characters are therefore encoded in 7 bits. 
The eighth bit, when it is used, is the parity bit. Parity is a tech-
nique for verifying that the contents of a byte have not been ac-
cidentally changed. The number of 1's in the byte is counted and 
the eighth bit is set to one if the count was odd, thus making the 
total even. This is called even parity. One can also use odd parity, 
i.e. writing the eighth bit (the left-most) so that the total number of 
1's in the byte is odd. 

Example: let us compute the parity bit for "0010011" using even 
parity. The number of l's is 3. The parity bit must therefore be a 1 
so that the total number of bits is 4, i.e. even. The result is 
10010011, where the leading 1 is the parity bit and 0010011 iden-
tifies the character. 
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The table of 7-bit ASCII codes is shown in Fig. 1-6. In practice, it 
is used "as is," i.e. without parity, by adding a 0 in the left-most 
position, or else with parity, by adding the appropriate extra bit on 
the left. 

Exercise 1.22: Compute the 8-bit representation of the digits "0" 
through "9", using even parity. (This code will be used in applica-
tion examples of Chapter 8.) 

Exercise 1.23: Same for the letters "A" through "F". 

Exercise 1.24: Using a non-parity ASCII code (where the left-most 
bit is "0"), indicate the binary contents of the 4 characters below: 

HEX 
LSD 

M5D 0 
000 

1 
001 

2 
010 

3 
011 

4 
100 

5 
101 

6 
110 

7 
111  BITS 

0 0000 NUL DLE SPACE 0 @ P — p 

1 0001 SOH DC1 i 1 A Q a q 

2 0010 STX DC2 2 BR b r 

3 0011 ETX DC3 # 3 CS c s 

4 0100 EOT DC4 $ 	4 DT d 

5 0101 ENO NM % 5 E U e u 
6 0110 ACK SYN & 6F V f v 

7 0111 BEL ETB 7 G W g w 

8 1000 BS CAN ( 8 H X li x 
9 1001 HT EM 9 IY1 v 

A 1010 LF SUB J Z 1 z 
B 1011 VT ESC  K r k [ 

C 1100 FF FS < L \ I 

D 1101 CR GS — = M ] m 
E 1110 SO RS >N A n r,, 

F 1111 SI US ' 0 <— o DEL 

Fig. 1.6: ASCII Conversion Table 
(see Appendix B for abbreviations) 

In specialized situations such as telecommunications, other 
codings may be used such as error-correcting codes. However they 
are beyond the scope of this book. 
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We have examined the usual representations for both program 
and data inside the computer. Let us now examine the possible ex-
ternal representations. 

EXTERNAL REPRESENTATION OF INFORMATION 

The external representation refers to the way information is pre-
sented to the user, i.e. generally to the programmer. Information 
may be presented externally in essentially three formats: binary, 
octal or hexadecimal and symbolic. 

I. Binary 

It has been seen that information is stored internally in bytes, 
which are sequences of eight bits (0's or 1's).  It is sometimes 
desirable to display this internal information directly in its binary 
format and this is called binary representation. One simple exam-
ple is provided by Light Emitting Diodes (LEDs) which are essen-
tially miniature lights, on the front panel of the microcomputer. In 
the case of an eight-bit microprocessor, a front panel will typically 
be equipped with eight LEDs to display the contents of any inter-
nal register. (A register is used to hold eight bits of information 
and will be described in Chapter 2). A lighted LED indicates a one. 
A zero is indicated by an LED which is not lighted. Such a binary 
representation may be used for the fine debugging of a complex 
program, especially if it involves input/output, but is naturally 
impractical at the human level. This is because in most cases, one 
likes to look at information in symbolic form. Thus "9" is much 
easier to understand or remember than "1001". More convenient 
representations have been devised, which improve the person-
machine interface. 

2. Octal and Hexadecimal 

"Octal" and "hexadecimal" encode respectively three and four 
binary bits into a unique symbol. In the octal system, any 
combination of three binary bits is represented by a number be-
tween 0 and 7. 

"Octal" is a format using three bits, where each combination of 
three bits is represented by a symbol between 0 and 7: 
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binary octal 

000 0 
001 1 
010 2 
011 3 
100 4 
101 5 
110 6 
111 7 

Fig. 1.7: Octal Symbols 

For example, "00 100 100" binary is represented by: 
if 

0 4 4 
or "044" in octal. 

Another example: 11 111 111 is: 
I' 

3 7 7 

or "377" in octal. 

Conversely, the octal "211" represents: 

010 001 001 

or "10001001" binary. 

Octal has traditionally been used on older computers which were 
employing various numbers of bits ranging from 8 to perhaps 64. 
More recently, with the dominance of eight-bit microprocessors, 
the eight-bit format has become the standard, and another more 
practical representation is used. This is hexadecimal. 

In the hexdecimal representation, a group of four bits is en-
coded as one hexadecimal digit. Hexadecimal digits are 
represented by the symbols from 0 to 9, and by the letters A, B, C, 
D, E, F. For example, "0000" is represented by "0", "0001" is 
represented by "1" and "1111" is represented by the letter "F" 
(see Fig. 1-8). 
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DECIMAL BINARY HEX OCTAL 

0 0000 0 0 

1 0001 1 1 

2 0010 2 2 

3 0011 3 3 

4 0100 4 4 

5 0101 5 5 

6 0110 6 6 

7 0111 7 7 

8 1000 8 10 

9 1001 9 11 

10 1010 A 12 

11 1011 B 13 

12 1100 C 14 

13 1101 0 15 

14 1110 E 16 

15 1111 F 17 

Fig. 1.8: Hexadecimal Codes 

43 



PROGRAMMING THE Z80 

Example: 1010 0001 in binary is represented by 

A 	1 	in hexadecimal. 

Exercise 1.25: What is the hexadecimal representation of 
"10101010?' 

Exercise 1.26: Conversely, what is the binary equivalent of "FA" 
hexadecimal? 

Exercise 1.27: What is the octal of "01000001"P 

Hexadecimal offers the advantage of encoding eight bits into on-
ly two digits. This is easier to visualize or memorize and faster to 
type into a computer than its binary equivalent. Therefore, on 
most new microcomputers, hexadecimal is the preferred method of 
representation for groups of bits. 

Naturally, whenever the information present in the memory has 
a meaning, such as representing text or numbers, hexadecimal is 
not convenient for representing the meaning of this information 
when it is brought out for use by humans. 

Symbolic Representation 

Symbolic representation refers to the external representation of 
information in actual symbolic form. For example, decimal num-
bers are represented as decimal numbers, and not as sequences of 
hexadecimal symbols or bits. Similarly, text is represented as 
such. Naturally, symbolic representation is most practical to the 
user. It is used whenever an appropriate display device is 
available, such as a CRT display or a printer. (A CRT display is a 
television-type screen used to display text or graphics.) Unfortu-
nately, in smaller systems such as one-board microcomputers, it is 
uneconomical to provide such displays, and the user is restricted 
to hexadecimal communication with the computer. 

Summary of External Representations 

Symbolic representation of information is the most desirable 
since it is the most natural for a human user. However, it requires 
an expensive interface in the form of an alphanumeric keyboard, 
plus a printer or a CRT display. For this reason, it may not be 
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available on the less expensive systems. An alternative type of rep-
resentation is then used, and in this case hexadecimal is the domi-
nant representation. Only in rare cases relating to fine de-bugging 
at the hardware or the software level is the binary representation 
used. Binary directly displays the contents of registers of memory 
in binary format. 

(The utility of a direct binary display on a front panel has always 
been the subject of a heated emotional controversy, which will not 
be debated here.) 

We have seen how to represent information internally and exter-
nally. We will now examine the actual microprocessor which will 
manipulate this information. 

Additional Exercises 

Exercise 1.28: What is the advantage of two's complement over 
other representations used to represent signed numbers? 

Exercise 1.29: How would you represent "1024" in direct binary? 
Signed binary? Two's complement? 

Exercise 1.30: What is the V-bit? Should the programmer test it 
after an addition or subtraction? 

Exercise 1.31: Compute the two's complement of "+16", "+17", 

Exercise 1.32: Show the hexadecimal representation of the follow-
ing text, which has been stored internally in ASCII format, with 
no parity: = "MESSAGE". 
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Z80 HARDWARE ORGANIZATION 

INTRODUCTION 

In order to program at an elementary level, it is not necessary to 
understand in detail the internal structure of the processor that one is 
using. However, in order to do efficient programming, such an 
understanding is required. The purpose of this chapter is to present the 
basic hardware concepts necessary for understanding the operation of 
the Z80 system. The complete microcomputer system includes not only 
the microprocessor unit (here the Z80), but also other components. 
This chapter presents the Z80 proper, while the other devices (mainly 
input/output) will be presented in a separate chapter (Chapter 7). 

We will review here the basic architecture of the microcomputer 
system, then study more closely the internal organization of the Z80. 
We will examine, in particular, the various registers. We will then study 
the program execution and sequencing mechanism. From a hardware 
standpoint, this chapter is only a simplified presentation. The reader in-
terested in gaining detailed understanding is referred to our book ref. 
C201 ("Microprocessors," by the same author). 

The Z80 was designed as a replacement for the Intel 8080, and to of-
fer additional capabilities. A number of references will be made in this 
chapter to the 8080 design. 

SYSTEM ARCHITECTURE 

The architecture of the microcomputer system appears in Figure 2.1. 
The microprocessor unit (MPU), which will be a Z80 here, appears on 
the left of the illustration. It implements the functions of a central-
processing unit (CPU) within one chip: it includes an arithmetic-logical 
unit (ALU), plus its internal registers, and a control unit (CU), in 
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charge of sequencing the system. Its operation will be explained in this 
chapter. 

PORT A 

POW II 

Fig. 2.1: Standard Z80 System 

The MPU creates three buses: an 8-bit bidirectional data bus, which 
appears at the top of the illustration, a 16-bit unidirectional address 
bus, and a control bus, which appears at the bottom of the illustration. 
Let us describe the function of each of the buses. 

The data bus carries the data being exchanged by the various ele-
ments of the system. Typically, it will carry data from the memory to 
the MPU or from the MPU to the memory or from the MPU to an in-
put/output chip. (An input/output chip is a component in charge of 
communicating with an external device.) 

The address bus carries an address generated by the MPU, which will 
select one internal register within one of the chips attached to the 
system. This address specifies the source, or the destination, of the data 
which will transit along the data bus. 

The control bus carries the various synchronization signals required 
by the system. 

Having described the purpose of buses, let us now connect the addi-
tional components required for a complete system. 

Every MPU requires a precise timing reference, which is supplied by 
a clock and a crystal. In most "older" microprocessors, the clock-oscil-
lator is external to the MPU and requires an extra chip. In most recent 
microprocessors, the clock-oscillator is usually incorporated within the 
MPU. The quartz crystal, however, because of its bulk, is always exter- 
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nal to the system. The crystal and the clock appear on the left of the 
MPU box in Figure 2.1. 

Let us now turn our attention to the other elements of the system. 
Going from left to right on the illustration, we distinguish: 

The ROM is the read-only memory and contains the program for the 
system. The advantage of the ROM memory is that its contents are per-
manent and do not disappear whenever the system is turned off. The 
ROM, therefore, always contains a bootstrap or a monitor program 
(their function will be explained later) to permit initial system opera-
tion. In a process-control environment, nearly all the programs will 
reside in ROM. as they will probably never be changed. In such a case, 
the industrial user has to protect the system against power failures: pro-
grams must not be volatile. They must be in ROM. 

However, in a hobbyist environment, or in a program-development 
environment (when the programmer tests his program), most of the 
programs will reside in RAM so that they can be easily changed. Later, 
they may remain in RAM, or be transferred into ROM, if desired. 
RAM, however, is volatile. Its contents are lost when power is turned 
off. 

The RAM (random-access memory) is the read/write memory for the 
system. In the case of a control system, the amount of RAM will 
typically be small (for data only). On the other hand, in a program-
development environment, the amount of RAM will be large, as it will 
contain programs plus development software. All RAM contents must 
be loaded prior to use from an external device. 

Finally the system will contain one or more interface chips so that it 
may communicate with the external world. The most frequently used 
interface chip is the PIO or parallel input/output chip. It is the one 
shown on the illustration. This PIO, like all other chips in the system, 
connects to all three buses and provides at least two 8-bit ports for 
communication with the outside world. For more details on how an ac-
tual PIO works, refer to book C201 or, for specifics of the Z80 system, 
refer to Chapter 7 (Input/Output Devices). 

All the chips are connected to all three buses, including the control 
bus. 

The functional modules which have been described need not 
necessarily reside on a single LSI chip. In fact, we could use combina-
tion chips, which may include both PIO and a limited amount of ROM 
or RAM. 

Still more components will be required to build a real system. In par- 
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ticular, the buses usually need to be buffered. Also, decoding logic may 
be used for the memory RAM chips, and, finally, some signals may 
need to be amplified by drivers. These auxiliary circuits will not be 
described here as they are not relevant to programming. The reader in-
terested in specific assembly and interfacing techniques is referred to 
book C207 "Microprocessor Interfacing Techniques." 

INSIDE A MICROPROCESSOR 

The large majority of all microprocessor chips on the market today 
Implement the same architecture. This "standard" architecture will be 
described here. It is shown in Figure 2.2. The modules of this standard 
microprocessor will now be detailed, from right to left. 

EXTERNAL DATA BUS 

INTERNAL BUS 	(8 BITS) 

EXIE NAL 
ADDRESS BUS 

(I B T5) 

Fig. 2.2: "Standard" Microprocessor Architecture 

The control box on the right represents the control unit which syn-
chronizes the entire system. Its role will be clarified within the re-
mainder of this chapter. 
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The ALU performs arithmetic and logic operations. A special 
register equips one of the inputs of the ALU, the left input here. It is 
called the accumulator. (Several accumulators may be provided.) The 
accumulator may be referenced both as input and output (source and 
destination) within the same instruction. 

The ALU must also provide shift and rotate facilities. 
A shift operation consists of moving the contents of a byte by one or 

more positions to the left or to the right. This is illustrated in Figure 
2.3. Each bit has been moved to the left by one position. The details of 
shifts and rotations will be presented in the next chapter. 

SHIFT LEFT 

CARRY 

El 
ROTATE LEFT 

r-\ re> 

CARRY 

Note: Some Shift and Rotate instructions do not include the Carry. 

Fig. 2.3: Shift and Rotate 

The shifter may be on the ALU output, as illustrated in Figure 2.2, or 
may be on the accumulator input. 

To the left of the ALU, the flags or status register appear. Their role 
is to store exceptional conditions within the microprocessor. The con-
tents of the flags register may be tested by specialized instructions, or 

may be read on the internal data bus. A conditional instruction will 
cause the execution of a new program, depending on the value of one of 
these bits. 

The role of the status bits in the Z80 will be examined later in this 
chapter. 
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Setting Flags 

Most of the instructions executed by the processor will modify some 
or all of the flags. It is important to always refer to the chart provided 
by the manufacturer listing which bits will be modified by the instruc-
tions. This is essential in understanding the way a program is being ex-
ecuted. Such a chart for the Z80 is shown in Figure 4-17. 

The Registers 

Let us look now at Figure 2.2. On the left of the illustration, the reg-
isters of the microprocessor appear. Conceptually, one can distinguish 
the general purpose registers and the address registers. 

The General-Purpose Registers 

General-purpose registers must be provided in order for the ALU to 
manipulate data at high speed. Because of restrictions on the number of 
bits which it is reasonable to provide within an instruction, the number 
of (directly addressable) registers is usually limited to fewer than eight. 

Each of these registers is a set of eight flip-flops, connected to the 
bidirectional internal data bus. These eight bits can be transferred 
simultaneously to or from the data bus. The implementation of these 
registers in MOS flip-flops provides the fastest level of memory 
available, and their contents can be accessed within tens of 
nanoseconds. 

Internal registers are usually labelled from 0 to n. The role of these 
registers is not defined in advance: they are said to be "general 
purpose." They may contain any data used by the program. 

These general-purpose registers will normally be used to store eight-
bit data. On some microprocessors, facilities exist to manipulate two of 
these registers at a time. They are then called "register pairs." This ar-
rangement facilitates the storage of 16-bit quantities, whether data or 
addresses. 

The Address Registers 

Address registers are 16-bit registers intended for the storage of ad-
dresses..They are also often called data counters or pointers. They are 
double registers, i.e., two eight-bit registers. Their essential 
characteristic is to be connected to the address bus. The address 
registers create the address bus. The address bus appears on the left and 
the bottom part of the illustration in Figure 2.4. 
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The only way to load the contents of these 16-bit registers is via the 
data bus. Two transfers will be necessary along the data bus in order to 
transfer 16 bits. In order to differentiate between the lower half and the 
higher half of each register, they are usually labelled as L (low) or H 

(high), denoting bits 0 through 7, and 8 through 15 respectively. This 

label is used whenever it is necessary to differentiate the halves of these 
registers. At least two address registers are present within most 
microprocessors. "MUX" in Fig. 2.4 stands for multiplexer. 

DATA BUS (8) 

ACC 

INDEX I  REGISTER 

STACK I POINTER 

PROGRAM I COUNTER 

MU% 

16-BIT 

ADDRESS REGISTERS 

ADDRESS BUS (16) 

Fig. 2.4: The 16-bit Address Registers Create the Address Bus 

Program Counter (PC) 

The program counter must be present in any processor. It contains 
the address of the next instruction to be executed. The presence of the 
program counter is indispensable and fundamental to program execu-
tion. The mechanism of program execution and the automatic sequenc-
ing implemented with the program counter will be described in the next 
section. Briefly, execution of a program is normally sequential. In 
order to access the next instruction, it is necessary to bring it from the 
memory into the microprocessor. The contents of the PC will be 
deposited on the address bus, and transmitted towards the memory. 
The memory will then read the contents specified by this address and 
send back the corresponding word to the MPU. This is the instruction. 
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In a few exceptional microprocessors, such as the two-chip F8, there is 
no PC on the microprocessor. This does not mean that the system does 
not have a program counter. The PC happens to be implemented direct-
ly on the memory chip, for reasons of efficiency. 

Stack Pointer (SP) 

The stack has not been introduced yet and will be described in the 
next section. In most powerful, general-purpose microprocessors, the 
stack is implemented in "software," i.e., within the memory. In order 
to keep track of the top of this stack within the memory, a 16-bit 
register is dedicated to the stack pointer or .5/2. The SP contains the ad-
dress of the top of the stack within the memory. It will be shown that 
the stack is indispensable for interrupts and for subroutines. 

Index Register (IX) 

Indexing is a memory-addressing facility which is not always pro-
vided in microprocessors. The various memory-addressing techniques 
will be described in Chapter 5. Indexing is a facility for accessing blocks 
of data in the memory with a single instruction. An index register will 
typically contain a displacement which will be automatically added to a 
base (or it might contain a base which would be added to a displace-
ment). In short, indexing is used to access any word within a block of 
data. 

The Stack 

A stack is formally called an LIFO structure (last-in, first-out). A 
stack is a set of registers, or memory locations, allocated to this data 
structure. The essential characteristic of this structure is that it is a 
chronological structure. The first element introduced into the stack is 
always at the bottom of the stack. The element most recently deposited 
in the stack is on the top of the stack. The analogy can be drawn with a 
stack of plates on a restaurant counter. There is a hole in the counter 
with a spring in the bottom. Plates are piled up in the hole. With this 
organization, it is guaranteed that the plate which has been put first in 
the stack (the oldest) is always at the bottom. The one that has been 
placed most recently on the stack is the one which is on top of it. This 
example also illustrates another characteristic of the stack. In normal 
use, a stack is only accessible via two instructions: "push" and "pop" 
(or "pull"). The push operation results in depositing one element on 
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top of the stack (two in the case of the Z80). The pull operation consists 
of removing one element from the stack. In the case of a 
microprocessor, it is the accumulator that will be deposited on top of 
the stack. The pop will result in a transfer of the top element of the 
stack into the accumulator. Other specialized instructions may exist to 
transfer the top of the stack between other specialized registers, such as 
the status register. The Z80 is more versatile than most in this respect. 

The availability of a stack is required to implement three program-
ming facilities within the computer system: subroutines, interrupts, and 
temporary data storage. The role of the stack during subroutines will be 
explained in Chapter 3 (Basic Programming Techniques). The role of 
the stack during interrupts will be explained in Chapter 6 (Input/Out-
put Techniques). Finally, the role of the stack in saving data at high 
speed will be explained during specific application programs. 

We will simply assume at this point that the stack is a required facility 
in every computer system. A stack may be implemented in two ways: 

I. A fixed number of registers may be provided within the micro-
processor itself. This is a "hardware stack." It has the advantage of 
high speed. However, it has the disadvantage of a limited number of 
registers. 

2. Most general-purpose microprocessors choose another approach, 
the software stack, in order not to restrict the stack to a very small 
number of registers. This is the approach chosen in the Z80. In the soft-
ware approach, a dedicated register within the microprocessor, here 
register SP, stores the stack pointer, i.e., the address of the top element 
of the stack (or, sometimes, the address of the top element of the stack 
plus one). The stack is then implemented as an area of memory. The 
stack pointer will therefore require 16 bits to point anywhere in the 
memory. 

Fig. 2.5; The Two-Stack Manipulation Instructions 
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The Instruction Execution Cycle 

Let us refer now to Figure 2.6. The microprocessor unit appears on 
the left, and the memory appears on the right. The memory chip may be 
a ROM or a RAM, or any other chip which happens to contain 
memory. The memory is used to store instructions and data. Here, we 
will fetch one instruction from the memory to illustrate the role of the 
program counter. We assume that the program counter has valid con-
tents. It now holds a 16-bit address which is the address of the next in-
struction to fetch in the memory. Every processor proceeds in three 
cycles: 

1—fetch the next instruction 
2—decode the instruction 
3—execute the instruction 

Fetch 

Let us now follow the sequence. In the first cycle, the contents of the 
program counter are deposited on the address bus and gated to the 
memory (on the address bus). Simultaneously, a read signal may be 
issued on the control bus of the system, if required. The memory will 
receive the address. This address is used to specify one location within 
the memory. Upon receiving the read signal, the memory will decode 
the address it has received, through internal decoders, and will select 
the location specified by the address. A few hundred nanoseconds later, 
the memory will deposit the eight-bit data corresponding to the 
specified address on its data bus. This eight-bit word is the instruction 
that we want to fetch. In our illustration, this instruction will be 
deposited the data bus on top of the MPU box. 

Let us briefly summarize the sequencing: the contents of the program 
counter are output on the address bus. A read signal is generated. The 
memory cycles, and perhaps 300 nanoseconds later, the instruction at 
the specified address is deposited on the data bus (assuming a single 
byte instruction). The microprocessor then reads the data bus and 
deposits its contents into a specialized internal register, the IR register. 
The IR is the instruction register: it is eight-bits wide and is used to con-

tain the instruction just fetched from the memory. The fetch cycle is 
now completed. The 8 bits of the instruction are now physically in the 
special internal register of the MPU, the IR register. The IR appears on 
the left of Figure 2.7. It is not accessible to the programmer. 
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Fig. 2.6: Fetching an Instruction from the Memory 

Decoding and Execution 

Once the instruction is contained in IR, the control unit of the 
microprocessor will decode the contents and will be able to generate the 
correct sequence of internal and external signals for the execution of the 
specified instruction. There is, therefore, a short decoding delay fol-
lowed by an execution phase, the length of which depends on the nature 
of the instruction specified. Some instructions will execute entirely 
within the MPU. Other instructions will fetch or deposit data from or 
into the memory. This is why the various instructions of the MPU re-
quire various lengths of time to execute. This duration is expressed as a 
number of (clock) cycles. Refer to Chapter 4 for the number of 

Fig. 2.7: Automatic Sequencing 
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cycles required by each instruction. Since various clock rates may be 
used, speed of execution is normally expressed in number of cycles 
rather than in number of nanoseconds. 
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Fig. 2.8: Single-Bus Architecture 

Fetching the Next Instruction 

We have described how, using the program counter, an instruction 
can be fetched from the memory. During the execution of a program, 
instructions are fetched in sequence from the memory. An automatic 

mechanism must therefore be provided to fetch instructions in se-
quence. This task is performed by a simple incrementer attached to the 
program counter. This is illustrated in Figure 2.7. Every time that the 
contents of the program counter (at the bottom of the illustration) are 
placed on the address bus, its contents will be incremented and written 
back into the program counter. As an example, if the program counter 
contained the value "0", the value "0" would be output on the address 
bus. Then the contents of the program counter would be incremented 
and the value "1" would be written back into the program counter. In 
this way, the next time that the program counter is used, it is the in-

struction at address l that will be fetched. We have just implemented an 
automatic mechanism for sequencing instructions. 

It must be stressed that the above descriptions are simplified. In reali-

ty, some instructions may be two- or even three-bytes long, so that suc-
cessive bytes will be fetched in this manner from the memory. However, 
the mechanism is identical. The program counter is used to fetch 
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successive bytes of an instruction as well as to fetch successive instruc-
tions themselves. The program counter, together with its incrementer, 
provides an automatic mechanism for pointing to successive memory 

locations. 

INTERNAL DATA BUS 

Fig. 2.9: Execution of an Addition—RO into ACC 

INTERNAL DATA BUS 

••• 

R1 

REGISTERS 

Fig. 2.10: Addition—Second Register RI into ALU 
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We will now execute an instruction within the MPU (see Figure 2.8). 
A typical instruction will be, for example: RO = RO + RI. This means: 
"ADD the contents of RO and RI, and store the results in RO." To per-
form this operation, the contents of RO will be read from register RO, 
carried via the single bus to the left input of the ALU, and stored in the 
buffer register there. RI will then be selected and its contents will be 

read onto the bus, then transferred to the right input of the ALU. This 
sequence is illustrated in Figures 2.9 and 2.10. At this point, 
the right input of the ALU is conditioned by RI, and the left 
input of the ALU is conditioned by the buffer register, containing the 
previous value of RO. The operation can be performed. The addition is 
performed by the ALU, and the results appear on the ALU output, in 
the lower right-hand corner of Fig. 2.11. The results will be deposited 
on the single bus, and will be propagated back to RO. This means, in 
practice, that the input latch of RO will be enabled, so that data can be 
written into it. Execution of the instruction is now complete. The 

results of the addition are in RO. It should be noted that the contents of 
RI have not been modified by this operation. This is a general prin-
ciple: the contents of a register, or of any read/write memory, are not 
modified by a read operation. 

The buffer register on the left input of the ALU was necessary in 
order to memorize the contents of RO, so that the single bus could be 
used again for another transfer. However, a problem remains. 

Fig. 2.11: Result Is Generated and Goes into RO 
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The Critical Race Problem 

The simple organization shown in Figure 2.8 will not function cor-
rectly. 

Question: What is the timing problem? 

Answer: The problem is that the result which will be propagated out 
of the ALU will be deposited back on the single bus. It will not pro-

pagate just in the direction of RO, but along all of the bus. In particular, 
it will recondition the right input of the ALU, changing the result coming 
out of it a few nanoseconds later. This is a critical race. The output of 
the ALU must be isolated from its input (see Figure 2.12). 

Several solutions are possible which will isolate the input of the ALU 
from the output. A buffer register must be used. The buffer register 
could be placed on the output of the ALU, or on its input. It is usually 
placed on the input of the ALU. Here it would be placed on its right in-
put. The buffering of the system is now sufficient for a correct opera-
tion. It will be shown later in this chapter that if the left register which 
appears in this illustration is to be used as an accumulator (permitting 
the use of one-byte long instructions), then the accumulator will require 
a buffer too, as shown in Figure 2.13. 

Fig. 2.12: The Critical Race Problem 
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Fig. 2.13: Two Buffers Are Required (Temp Registers) 

INTERNAL ORGANIZATION OF THE 7,80 

The terms necessary in order to understand the internal elements of 
the microprocessor have been defined. We will now examine in more 
detail the Z80 itself, and describe its capabilities. The internal organiza-
tion of the Z80 is shown in Figure 2.14. This diagram presents a logical 
description of the device. Additional interconnections may exist but are 
not shown. Let us examine the diagram from right to left. 

On the right part of the illustration, the arithmetic-logical unit (the 
ALU) may be recognized by its characteristic "V" shape. The accumu-
lator register, which has been described in the previous section, is iden-
tified as A on the right input path of the ALU. It has been shown in the 
previous section that the accumulator should be equipped with a buffer 
register. This is the register labeled ACT (temporary accumulator). 
Here, the left input of the ALU is also equipped with a temporary 
register, called TMP. The operation of the ALU will become clear in the 
next section, where we will describe the execution of actual instructions. 
The flags register is.called"F" in the Z80,and is shown on the right of the 

accumulator register. The contents of the flags register are essentially 
conditioned by the ALU, but it will be shown that some of its bits may 
also be conditioned by other modules or events. 

The accumulator and the flags registers are shown as double registers 
labelled respectively A, A' and F, F'. This is because the Z80 is 
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equipped internally with two sets of registers: A + F, and A' + F'. 

However, only one set of these registers may be used at any one time. A 
special instruction is provided to exchange the contents of A and F with 
A' and F'. In order to simplify the explanations, only A and F will be 
shown on most of the diagrams which follow. The reader should 

remember that he has the option of switching to the alternate register 
set A' and F' if desired. 

The role of each flag in the flags register will be described in Chapter 
3 (Basic Programming Techniques). 

A large block of registers is shown at the center of the illustration. On 
top of the block of registers, two identical groups can be recognized. 
Each one includes six registers labeled B, C, D, E, H, L. These are the 
general-purpose eight-bit registers of the Z80. There are two peculiari-
ties of the Z80 with respect to the standard microprocessor which has 
been described at the beginning of this chapter. 

First, the Z80 is equipped with two banks of registers, i.e., two iden-
tical groups of 6 registers. Only six registers may be used at any one 
time. However, special instructions are provided to switch between the 

two banks of registers. One bank, therefore, behaves as an internal 
memory, while the other one behaves as a working set of internal 

registers. The possible uses of this special facility will be described in 
the next chapter. 

Conceptually, it will be assumed, for the time being, that there are 

only six working registers, B, C, D, E, H, and L, and the second 
register bank will temporarily be ignored, in order to avoid confusion. 

The MUX symbol which appears above the memory bank is an ab-
breviation for multiplexer. The data coming from the internal data bus 

will be gated through the multiplexer to the selected register. However, 
only one of these registers can be connected to the internal data bus at 
any one time. 

A second characteristic of these six registers, in addition to being 
general-purpose eight-bit registers, is that they are equipped with a con-
nection to the address bus. This is why they have been grouped in 
pairs. For example, the contents of B and C can be gated simultaneous-
ly onto the 16-bit address bus which appears at the bottom of the illustra-
tion. As a result, this group of 6 registers may be used to store either 
eight-bit data or else 16-bit pointers for memory addressing. 

The third group of registers, which appears below the two previous 

ones in the middle of Figure 2.14, contains four "pure" address 
registers. As in any microprocessor, we find the program counter (PC) 
and the stack pointer (SP). Recall that the program counter contains 
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the address of the next instruction to be executed. 
The stack pointer points to the top of the stack in the memory. In the 

case of the Z80, the stack pointer points to the last actual entry in the 

stack. (In other microprocessors, the stack pointer points just above the 
last entry.) Also, the stack grows "downwards. "i.e. towards the lower 

addresses. 
This means that the stack pointer must be decremented any time a 

new word is pushed on the stack. Conversely, whenever a word is 

removed (popped) from the stack, the stack pointer must be in-

cremented by one. In the case of the Z80, the "push" and "pop" 

always involve two words at the same time, so that the contents of the 

stack pointer will be decremented or incremented by two. 
Looking at the remaining two registers of this group of four registers, 

we find a new type of register which has not been described yet: two 
index-registers, labeled IX (Index Register X) and IY (Index Register 
Y). These two registers are equipped with a special adder shown as a 
miniature V-shaped ALU on the right of these registers in Figure 2.14. 
A byte brought along the internal data bus may be added to the con-
tents of IX or IY. This byte is called the displacement, when using an in-

dexed instruction. Special instructions are provided which will 
automatically add this displacement to the contents of IX or IY and 

generate an address. This is called indexing. It allows convenient access 
to any sequential block of data. This important facility will be des-
cribed in Chapter 5 on addressing techniques. 

Finally, a special box labeled" t 1" appears below and to the left of the 
block of registers. This is an increment/decrement. The contents of any 
of the register pairs SP, PC, BC, DE, HL (the "pure address" registers) 
may be automatically incremented or decremented every time they depos-
it an address on the internal address bus. This is an essential facility for 
implementing automated program loops which will be described in the 
next section. Using this feature it will be possible to access successive 
memory locations conveniently. 

Let us move now to the left of the illustration. One register pair is 

shown, isolated on the left: I and R. The I register is called the interrupt-

page address register. Its role will be described in the section on inter-
rupts of Chapter 6 (Input/Output Techniques). It is used only in a 
special mode where an indirect call to a memory location is generated in 
response to an interrupt. The I register is used to store the high-order 
part of the indirect address. The lower part of the address is supplied by 
the device which generated the interrupt. 
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The R register is the memory-refresh register. It is provided to refresh 
dynamic memories automatically. Such a register has traditionally been 
located outside the microprocessor, since it is associated with the 
dynamic memory. It is a convenient feature which minimizes the 
amount of external hardware for some types of dynamic memories. It will 
not be used here for any programming purposes, as it is essentially a 
hardware feature (see reference 0207 "Microprocessor Interfacing 
Techniques" for a detailed description of memory refresh techniques). 
However, it is possible to use it as a software clock, for example. 

Let us move now to the far left of the illustration. There the control 
section of the microprocessor is located. From top to bottom, we find 
first the Instruction register IR, which will contain the instruction to be 
executed. The IR register is totally distinct from the "I, R" register pair 
described above. The instruction is received from the memory via the 
data bus, is transmitted along the internal data bus and is finally 
deposited into the instruction register. Below the instruction register ap-
pears the decoder which will send signals to the controller-sequencer 
and cause the execution of the instruction within the microprocessor 
and outside it. The control section generates and manages the control 
bus which appears at the bottom part of the illustration. 

The three buses managed or generated by the system, i.e., the data 
bus, the address bus, and the control bus, propagate outside the 
microprocessor through its pins. The external connections are shown 
on the right-most part of the illustration. The buses are isolated from 
the outside through buffers shown in Figure 2.14. 

All the logical elements of the Z80 have now been described. It is not 
essential to understand the detailed operation of the Z80 in order to 
start writing programs. However, for the programmer who wishes to 
write efficient codes, the speed of a program and its size will depend 
upon the correct choice of registers as well as the correct choice of 
techniques. To make a correct choice, it is necessary to understand how 
instructions are executed within the microprocessor. We will therefore 
examine here the execution of typical instructions inside the Z80 to 
demonstrate the role and use of the internal registers and buses. 
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PROGRAMMING THE Z80 

INSTRUCTION FORMATS 

The Z80 instructions are listed in Chapter 4. Z80 instructions may 
be formated in one, two, three or four bytes. An instruction specifies 
the operation to be performed by the microprocessor. From a 
simplified standpoint, every instruction may be represented as an op-
code followed by an optional literal or address field, comprising one or 
two words. The opcode field specifies the operation to be carried out. 
In strict computer terminology, the opcode represents only those bits 
which specify the operation to be performed, exclusive of the register 
pointers that might be necessary. In the microprocessor world, it is con-
venient to call opcode the operation code itself, as well as any register 
pointers which it might incorporate. This "generalized opcode" must 
reside in an eight-bit word for efficiency (this is the limiting factor on 
the number of instructions available in a microprocessor). 

The 8080 uses instructions which may be one, two, three, bytes long 
(see Figure 2.15). However, the Z80 is equipped with additional indexed 
instructions, which require one more byte. In the case of the Z80, op-
codes are, in general, one byte long, except for special instructions 
which require a two-byte opcode. 

Some instructions require that one byte of data follow the opcode. In 
such a case, the instruction will be a two-byte instruction, the second 
byte of which is data (except for indexing, which adds an extra byte). 

In other cases, the instruction might require the specification of an 
address. An address requires 16 bits and, therefore, two bytes. In that 
case, the instruction will be a three-byte or a four-byte instruction. 

For each byte of the instruction, the control unit will have to perform 
a memory fetch, which will require four clock cycles. The shorter the 
instruction, the faster the execution. 

A One-Word Instruction 

One-word instructions are, in principle, fastest and are favored by 
the programmer. A typical such instruction for the Z80 is: 

LD r, r' 

This instruction means: "Transfer the contents of register r' into r." 
This is a typical "register-to-register" operation. Every microprocessor 
must be equipped with such instructions, which allow the programmer 
to transfer information from any of the machine's registers into 
another one. Instructions referencing special registers of the machine, 
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7 S 

GENERALIZED OPCODE 

OPTIONAL DATA OR 
ADDRESS 

OPTIONAL ADDRESS 

Fig. 2.15 Typical Instruction Formats 

such as the accumulator or other special-purpose registers, may have a 
special opcode. 

After execution of the above instruction, the contents of r will be 
equal to the contents of r', The contents of r' will not have been 

modified by the read operation. 
Every instruction must be represented internally in a binary format. 

The above representation "LD r,r' " is symbolic or mnemonic. It is 
called the assembly-language representation of an instruction. It is 
simply meant as a convenient symbolic representation of the actual 
binary encoding for that instruction. The binary code which will repre-

sent this instruction inside the memory is: OIDDOSSS (bits 0 to 7). 
This representation is still partially symbolic. Each of the letters S 

and D stands for a binary bit. The three D's, "D D D", represent the 
three bits pointing to the destination register. Three bits allow selection 
of one out of eight possible registers. The codes for these registers ap-
pear in Figure 2.16. For example, the code for register B is "0 0 0", the 
code for register C is "0 0 I", and so on. 

Similarly, "S S S" represents the three bits pointing to the source 

register. The convention here is that register r' is the source, and that 
register r is the destination. The placement of the bits in the binary 
representation of an instruction is not meant for the convenience of the 
programmer, but for the convenience of the control section of the 
microprocessor, which must decode and execute the instruction. The 

assembly-language representation, however, is meant for the conve-
nience of the programmer. It could be argued that LD r,r' should really 
mean: "Transfer contents of r into r ." However, the convention has 
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PROGRAMMING THE Z80 

been chosen in order to maintain compatibility with the binary 
representation in this case. It is naturally arbitrary. 

Exercise 23: Write below the binary code which will transfer the con-
tents of register C into register B. Consult Fig. 2.16 for the codes cor-
responding to C and B. 

Another simple example of a one-word instruction is: 

ADD A, r 

This instruction will result in adding the contents of a specified 
register (r) to the accumulator (A). Symbolically, this operation may be 
represented by: A = A + r. It can be verified in Chapter 4 that the 
binary representation of this instruction is: 

1 0 0 0 OSSS 

where S S S specifies the register to be added to the accumulator. Again, 
the register codes appear in Figure 2.16. 

Exercise 2.2: What is the binary code of the Instruction which will add 
the contents of register D to the accumulator? 

CODE REGISTER 

0 0 0 8 
0 0 	I C 
0 1 0 0 

0 1 1 E 

1 0 0 H 

1 0 1 l 
1 1 0 - (MEMORY) 

1 1 1 A 

Fig. 2.16: The Register Codes 

A Two-Word Instruction 

ADD A, n 

This simple two-word instruction will add the contents of the second 
byte of the instruction to the accumulator. The contents of the second 
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word of the instruction are said to be a "literal." They are data and are 
treated as eight bits without any particular significance. They could 
happen to be a character or numerical data. This is irrelevant to the 
operation. The code for this instruction is: 

1 1 0 0 0 1 1 0 followed by the 8-bit byte "n" 

This is an immediate operation. "Immediate," in most programming 
languages, means that the next word, or words, within the instruction 
contains a piece of data which should not be interpreted (the way an op-
code is). It means that the next one or two words are to be treated as a 
literal. 

The control unit is programmed to "know" how many words each 
instruction has. It will, therefore, always fetch and execute the right 
number of words for each instruction. However, the longer the possible 
number of words for the instruction, the more complex it is for the con-
trol unit to decode. 

A Three-Word Instruction 

LD A, (nn 

The instruction requires three words. It means: "Load the ac-
cumulator from the memory address specified in the next two bytes of 
the instruction." Since addresses are 16-bits long, they require two 
words. In binary, this instruction is represented by: 

8 bits for the opcode 
8 bits for the lower part of the address 
8 bits for the upper part of the address 

0 0 1 1 I 0 1 0: 
Low address: 
High address: 

EXECUTION OF INSTRUCTIONS WITHIN THE Z80 

We have seen that all instructions are executed in three phases: 
FETCH, DECODE, EXECUTE. We now need to introduce some 
definitions. Each of these phases will require several clock cycles. The 
Z80 executes each phase in one or more logical cycles, called a 
"machine cycle." The shortest machine cycle lasts three clock cycles. 

Accessing the memory requires three cycles for any operands, four 
clock cycles for the initial fetch. Since each instruction must be fetched 
first from the memory, the fastest instruction will require four clock 
cycles. Most instructions will require more. 

Each machine cycle is labeled as MI, M2, etc., and will require three 
or more clock cycles, or "states." labeled Tl, T2, etc. 
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The FETCH Phase 

The FETCH phase of an instruction is implemented during the first 
three states of machine cycle MI; they are called T1, T2, and T3. These 
three states are common to all instructions of the microprocessor, as all 
instructions must be fetched prior to execution. The FETCH 
mechanism is the following: 

T1 : PC OUT 

The first step is to present the address of the next instruction to the 
memory. This address is contained in the program counter (PC). As the • 
first step of any instruction fetch, the contents of the PC are placed on 
the address bus (see Figure 2.17). At this point, an address is presented 
to the memory, and the memory address decoders will decode this ad-
dress in order to select the appropriate location within the memory. 
Several hundred ns (a nanosecond is 10' second) will elapse before the 
contents of the selected memory location become available on the out- 

Fig. 2.17: Instruction Fetch—(PC) Is Sent to the Memory 
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put pins of the memory, which are connected to the data bus. It is standard 
computer design to use the memory read time to perform an operation 
within the microprocessor. This operation is the incrementation of the 
program counter: 

T2: PC = PC + 

While the memory is reading, the contents of the PC are incremented 
by 1 (see Figure 2.18). At the end of state T2, the contents of the 

memory are available and can be transferred within the micro-
processor: 

T3 	INST into I R 

Fig 2.18: PC Is Incremented 

The DECODE and EXECUTE Phases 

During state T3, the instruction which has been read out of the 
memory is deposited on the data bus and transferred into the instruc-
tion register of the Z80, from which point it is decoded. 
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Fig. 2.19: The Instruction Arrives from the Memory into IR 

It shoUld be noted that state T4 of MI will always be required. Once 
the instruction has been deposited into IR during T3, it is necessary to 
decode and execute it. This will require at least one machine state, T4. 

A few instructions require an extra state of MI (state T5). It will be 
skipped by the processor for most instructions. Whenever the execution 
of an instruction requires more than Ml, i.e., M1, M2 or more cycles, 
the transition will be directly from state T4 of MI into state T1 of M2. 
Let us examine an example. The detailed internal sequencing for each 
example is shown in the tables of Figure 2.27. As these tables have not been 
released for the Z80, the 8080 tables are used instead. They provide an in-
depth understanding of instruction execution. 

LD D, C 

This corresponds to MOV rl, r2 for the 8080. Refer to line 1 of Fig. 2.27. 
By coincidence, the destination register in this example happens to be 

named "D", The transfer is illustrated in Figure 2.20. 
This instruction has been described in the previous section. It 

transfers the contents of register C, denoted by "C", into register D. 
The first three states of cycle Ml are used to fetch the instruction 

from the memory. At the end of T3, the instruction is in IR, the In-
struction Register, from which point it can be decoded (see Figure 2.19). 

During T4: (S S S) ►  TMP. 

The contents of C are deposited into TMP (See Figure 2.21). 
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During T5: (TMP) ►  DDD. 

The contents of TMP are deposited into D. This is shown in Figure 2.22. 

00010001 I 10001000 

BEFORE 

D 

I 	1 o o 1 	 I 	10001000 

AFTER 

Fig. 2.20: Transferring C into D 

Fig. 2.21: The Contents of C Are Deposited into TMP 

73 



11151 - PEG. 

B=.7.Re nS 
._; 

16  
f)ADDRESS eus 

(WM 
S Wins 

Fig. 2.22: The Contents of TMP are Deposited into D 

Execution of the instruction is now complete. The contents of 
register C have been transferred into the specified destination register 
D. This terminates execution of the instruction. The other machine 
cycles M2, M3, M4, and M5 will not be necessary and execution stops 
with Ml. 

It is possible to compute the duration of this instruction easily. The 
duration of every state for the standard Z80 is the duration of the clock: 
500 ns. The duration of this instruction is the duration of five states, or 
5 x 500 = 2500 ns = 2.5 us. With a 400 ns clock, 5 x 400 = 2000 ns 

= 2.0 us. 

Question: Why does this instruction require two states, T4 and T5, 
in order to transfer the contents C into D. rather than just one? It 
transfers the contents of C into TMP, and then the contents of ThIP in-
to D. Wouldn't it be simpler to transfer the contents of C into D direct-
ly within a single state? 

Answer: This is not possible because of the implementation chosen 
for the internal registers. All the internal registers are, in fact, part of a 
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single RAM, a read/write memory internal to the microprocessor chip. 
Only one word may be addressed or selected at a time within an RAM 
(single-port). For this reason, it is not possible to both read and write 
into, or from, an RAM at two different locations. Two RAM cycles are 
required. It becomes necessary first to read the data out of the register 
RAM, and store it in a temporary register, TMP, then, to write it back 
into the final destination register, here D. This is a design inadequacy. 
However, this limitation is common to virtually all monolithic 
microprocessors. A dual-port RAM would be required to solve the 
problem. This limitation is not intrinsic to microprocessors and it normally 
does not exist in the case of bit-slice devices. It is a result of the constant 
search for logic density on the chip and may be eliminated in the future. 

Important Exercise: 

At this point, it is highly recommended that the user review by him-
self the sequencing of this simple instruction before we proceed to more 
complex ones. For this purpose, go back to Figure 2.14. Assemble a few 
small-sized "symbols" such as matches, paperclips, etc. Then move the 
symbols on Figure 2.14 to simulate the flow of data from the registers 
into the buses. For example, deposit a symbol into PC. TI will move 
the symbol contained in PC out on the address bus towards the 
memory. Continue simulated execution in this fashion until you feel 
comfortable with the transfers along the buses and between the 
registers. At this point, you should be ready to proceed. 

Progressively more complex instructions will now be studied: 

ADD A, r 

This instruction means: "Add the contents of register r (specified by 
a binary code S S S) to the accumulator (A), and deposit the result in 
the accumulator." This is an implicit instruction. It is called implicit as 
it does not explicitly reference a second register. The instruction expli-
citly refers only to register r. It implies that the other register involved 
in the operation is the accumulator. The accumulator, when used in 
such an implicit instruction, is referenced both as source and destina- 
tion. Data will be deposited in the accumulator as a result of this addi-
tion. The advantage of such an implicit instruction is that its complete 
opcode is only eight bits in length. It requires only a three-bit register 
field for the specification of r. This is a fast way to perform an addition 
operation. 

Other implicit instructions exist in the system which will reference 
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other specialized registers. More complex examples of such implicit in-
structions are, for example, the PUSH and POP operations, which will 
transfer information between the top of the stack and the accumulator, 
and will at the same time update the stack pointer (SP), decrementing it 
or incrementing it. They implicitly manipulate the SP register. 

The execution of the ADD A, r instruction will now be examined in 
detail. This instruction will require two machine cycles, MI and M2. As 
usual, during the first three states of MI, the instruction is fetched from 
the memory and deposited in the IR register. At the beginning of T4, it 
is decoded and can be executed. It will be assumed here that register B is 
added to the accumulator. The code for the instruction will then be: 
1 0 0 0 0 0 0 0 (the code for register B is 0 0 0). The 8080 equivalent is 
ADD r. 

Two transfers will be executed simultaneously. First, the contents of 
the specified source register (here B) are transferred into TMP, i.e., to 
the right input of the ALU (see Fig. 2.23). At the same time, the con-
tents of the accumulator are transferred to the temporary accumulator 
(ACT). By inspecting Fig. 2.23, you will ascertain that those transfers 
can occur in parallel. They use different paths within the system. The 
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transfer from B to TMP uses the internal data bus. The transfer from 
ACT uses a short internal path independent of this data bus. In order to 
gain time, both transfers are done simultaneously. At this point, both 
the left and the right input of the ALU are correctly conditioned. The 
left input of the ALU is now conditioned by the accumulator contents, 
and the right input of the ALU is conditioned by the contents of register 
B. We are ready to perform the addition. We would normally expect to 
see the addition take place during state T5 of MI. However, this state is 
simply not used. The addition is not performed! We will enter machine 
cycle M2. During state T I, nothing happens! It is only in state T2 of M2 
that the addition takes place (refer to ADD r in Figure 2.27): 

T2 of M2: (ACT) + (TMP) ►  A 

The contents of ACT are added to the contents of TMP, and the 
result is finally deposited in the accumulator. See Figure 2.24. The 
operation is now complete. 

\ \ DATA BUS 

* 
,E"`X 
brs.n 

k 
IIIST. PIG. 
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SP 

 

  

PC 

 

     

LSD 
\n‘k  

DRESS BUS 
-L.. 

MCC 
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Fig. 2.24: End of ADD r 

Question: Why was the completion of the addition deferred until 
state T2 of machine cycle M2, rather than taking place during state TS 
of MI? (This is a difficult question, which requires an understanding of 
CPU design. However, the technique involved is fundamental to clock-
synchronous CPU design. Try to see what happens.) 
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Answer: This is a standard design "trick" used in most CPU's. It is 
called "fetch/execute overlap." The basic idea is the following: looking 

back at Figure 2.23 it can be seen that the actual execution of the addi-
tion will only require the use of the ALU and of the data bus. In parti-
cular, it will not access the register RAM (register block). We (or the 
control unit) know that the next three states which will be executed after 
completion of any instruction will be TI, T2, T3 of machine cycle M1 
of the next instruction. Looking back at the execution of these three 
states, it can be seen that their execution will only require access to the 
program counter (PC) and use of the address bus. Access to the pro-
gram counter will require access to the register RAM. (This explains 
why the same trick could not be used in the instruction LD r,r1.) It is 
therefore possible to use simultaneously the shaded area in Figure 2.17 
and the shaded area in Figure 2.24. 

The data bus is used during state TI of M I to carry status informa-
tion out. It cannot be used for the addition that we wish to perform. 
For that reason, it becomes necessary to wait until state T2 before the 

addition can be effectively carried out. This is what occurred in the 
chart: the addition is completed during state T2 of M2. The mechanism 
has now been explained. The advantage of this approach should now be 
clear. Let us assume that we had implemented a straightforward 
scheme, and performed the addition during state T5 of machine cycle 

REAL 
INSTRUCTION N: 	Ti 	T2 	T3 	11I T2 ijr—  ENO 

I  
FETCH 	 EXECUTE-0'i 

T1 I T2 I T3 
; I  

r4--FETCH 	 EXECUTE — 
I 

L, (WHIP J 

Fig. 2.25: FETCH-EXECUTE Overlap during TI-T2 

MI. The duration of the ADD instruction would have been 5 x 500 = 
2500 ns. With the overlap approach which has been implemented, once 
state T4 has been executed, the next instruction is initiated. In a manner 

INSTRUCTION N + 
I T4  
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that is invisible to this next instruction, the "clever" control unit will 
use state T2 to carry out the end of the addition. On the chart T2 is 
shown as part of M2. Conceptually, M2 will be the second machine cy-
cle of the addition. In fact, this M2 will be overlapped, i.e., be identical 
to machine cycle Ml of the next instruction. For the programmer, the 
delay introduced by ADD will be only four states, i.e., 4 x 500 = 2000 
ns, instead of 2500 ns using the "straightforward" approach. The 
speed improvement is 500 ns, or 20%! 

The overlap technique is illustrated on Figure 2.25. It is used when-
ever possible to increase the apparent execution speed of the micropro-
cessor. Naturally, it it not possible to overlap in all cases. Required 
buses or facilities must be available without conflict. The control unit 
"knows" whether an overlap is possible. 

Fig. 2.26: Intel Abbreviations 
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Question: Would it be possible to go further using this scheme, and 
to also use state T3 of M2 if we have to execute a longer instruction? 

In order to clarify the internal sequencing mechanism, it is suggested 
that you examine Figure 2.27, which shows the detailed instruction 
execution for the 8080. The Z80 includes all 8080 instructions, and 
more. The information presented in Figure 2.27 is not available for the 
Z80. It is shown here for its educational value in understanding the in-
ternal operation of this microprocessor. The equivalence between Z80 and 
8080 instructions is shown in Appendices F and G. 

A more complex instruction will now be examined: 

ADD A, (HL) 

The opcode for this instruction is 10000110. This instruction means 
"add to the accumulator the contents of memory location (HL)." The 
memory location is specified through a rather strange system. It is the 
memory location whose address is contained in registers H and L. This 
instruction assumes that these two special registers (HL) have been 
loaded with contents prior to executing the instruction. The 16-bit con-
tents of these registers will now specify the address in the memory 
where data resides. This data will be added to the accumulator, and the 
result will be left in the accumulator. 

This instruction has a history. It has been supplied in order to pro-
vide compatibility between the early 8008, and its successor, the 8080. 
The early 8008 was not equipped with a direct-memory addressing 
capability! The procedure used to access the contents of the memory 
was to load the two registers H and L, and then execute an instruction 
referencing H and L. ADD A, (HL) is just such an instruction. It must 
be stressed that the 8080 and the Z80 are not limited in the same way as 
the 8008 in memory-addressing capability. They do have direct-memory 
addressing. The facility for using the H and L registers becomes an 
added advantage, not a drawback, as was the case with the 8008. 

Let us now follow the execution of this instruction (it is called 
ADD M for the 8080 and is the 16th instruction on Figure 2.27). States 
T1, T2, and T3 of MI will be used, as usual, to fetch the instruction. 
During state T4, the contents of the accumulator are transferred to its 
buffer register, ACT, and the left input of the ALU is conditioned. 

Memory must be accessed in order to provide the second byte of data 
which will be added to the accumulator. The address of this byte of 
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data is contained in H and L. The contents of H and L will therefore 
have to be transferred onto the address bus, where they will be gated to 
the memory. Let us do it. 

DATA NS 

TO MEMORY 
DRESS BUS 

	5 
ECEITROS 

SIGRASS 

Fig. 2.28: Transfer Contents of HI to Address Bus 

During machine cycle M2,we read: HL OUT. H and L are deposited on 
the address bus, in the same way PC used to be deposited there in 
previous instructions. As a remark, it has already been indicated 
that during state Ti status is output on the data bus, but no use of 
this will be made here. From a simplified standpoint, it will require two 
states: one for the memory to read its data, and one for the data to 
become available and transferred onto the right input of the ALU, 
TMP, 

Both inputs of the ALU are now conditioned. The situation is analo-
gous to the one we were in with the previous instruction ADDA, r: both 
inputs of the ALU are conditioned. We simply have to ADD as before. 
A fetch/execute overlap technique will be used, and, instead of exe-
cuting the addition within state T4 of M2, final execution is postponed 
until state T2 of M3. It can be seen in Figure 2.27 that during T2 we in-
deed have: ACT + TMP—A. The addition is finally performed, the 
contents of ACT are added to TMP, and the result deposited into the 
accumulator A. 
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Question: What is the apparent execution time (to the programmer) for 
this instruction? Using a 2.5 Mhz clock, is it 3.6 us? 2.8 us? 

Another more complex instruction will now be examined which is a 
direct-memory addressing instruction using two invisible W and Z 
registers: 

LD A,(nn) 

The opcode is 00111010. The 8080 equivalent is LDA addr. As usual, 
states T1, T2, T3 of MI will be used to fetch the instruction from the 
memory. T4 is used, but no visible result can be described. During state 
T4, the instruction is in fact decoded. The control unit then finds out 

that it has to fetch the next two bytes of this instruction in order to ob-
tain the address from which the accumulator will be loaded. The effect 
of this instruction is to load the accumulator from the memory contents 
whose address is specified in bytes 2 and 3 of the instruction. Note that 
state T4 is necessary to decode the instruction. It could be considered a 
waste of time since only part of the state is necessary to do the 
decoding. It is. However, this is the philosophy of clock-synchonous 
logic. Because micromstructsons are used internally to perform the 
decoding and execution, this is the penalty that has to be paid in return 
for the advantages of microprogramming. The structure of this instruc-
tion appears in Figure 2.29. 

m: ! 	LD A 	(131/ :DECODE 

w01: L 

	

	(132) 16-BIT 
ADDRESS 

'02: I 	 013/ ADDRESS 

Fig. 2.29: LD A. (ADDRESS) Is a 3-Word Instruction 

The next two bytes of instruction will now be fetched. They will 
specify an address (see Figure 2.30). 
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REGISTERS 
	

MEMORY 

Fig. 2.30: Before Execution of LD A 

Fig. 2.31: After Execution of LD A 

The effect of the instruction is shown in Figures 2.30 and 2.31 above. 
Two special registers are available to the control unit within the Z80 

(but not to the programmer). They are "W" and "Z", and are shown 
in Figure 2.28. 
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Second Machine Cycle M2: As usual, the first 2 states, T1 and T2, are 

used to fetch the contents of memory location PC. During T2, the pro-
gram counter, PC, is incremented. Sometime by the end of T2, data be-
comes available from the memory, and appears on the data bus. By the 
end of T3, the word which has been fetched from memory address PC 
(B2, second byte of the instruction) is available on the data bus. It must 
now be stored in a temporary register. It is deposited into Z: B2 low Z 

(see Figure 2.32). 

82 	Z 

DA A •U 

MPll 

../. 

4:1 4 

1 B3 
PC 

% 	//# ADDRESS / 
ABZW/ / ADDRESS DECODER 

Z80 —10-Z80 
	

MEMORY 

Fig. 2.32: Second Byte of Instruction Goes into Z 

Machine Cycle M3: Again, PC is deposited on the address bus, incre-
mented, and finally the third byte, B3, is read from the memory and de-
posited into register W of the microprocessor. At this point, i.e., by the 
end of state T3 of M3, registers W and Z inside the microprocessor con-
tain B2 and B3, i.e., the complete 16-bit address which was originally 
contained in the two words following the instruction in the memory. 
Execution can now be completed. W and Z contain an address. This ad-
dress will have to be sent to the memory, in order to extract the data. 
This is done in the next memory cycle: 

Machine Cycle M4: This time, W and Z are output on the address bus. 
The 16-bit address is sent to the memory, and by the end of state T2, 
data corresponding to the contents of the specified memory location 
becomes available. It is finally deposited in A at the end of state T3. 
This terminates execution of this instruction. 
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This illustrates the use of an immediate instruction. This instruction 
required three bytes in order to store a two-byte explicit address. This 
instruction also required four memory cycles, as it needed to go to the 
memory three times in order to extract the three bytes of this three-
word instruction, plus one more memory access in order to fetch the 
data specified by the address. It is a long instruction. However, it is also 
a basic one for loading the accumulator with specified contents residing 
at a known memory location. It can be noted that this instruction re-
quires the use of W and Z registers. 

Question: Could this instruction have used other registers than Fit, Z 
within the system? 

Answer: No. If this instruction had used other registers, for example 
the H and L registers, it would have modified their contents. After ex-
ecution of this instruction, the contents of H and L would have been 
lost. It is always assumed in a program that an instruction will not 
modify any registers other than those it is explicitly using. An instruc-
tion loading the accumulator should not destroy the contents of any 
other register. For this reason, it becomes necessary to supply the extra 
two registers, W and Z, for the internal use of the control unit. 

Question: Would it be possible to use PC instead of W and Z? 

Answer: Positively not. This would be suicidal. The reader should ana-
lyze this. 

One more type of instruction will be studied now: a branch or jump 
instruction, which modifies the sequence in which instructions are 
executed within the program. So far, we have assumed that instructions 
were executed sequentially. Instructions exist which allow the pro-
grammer to jump out of sequence to another instruction within the 
program, or in practical terms, to jump to another area of the memory 
containing the program, or to another address. One such instruction is: 

JP nn 

This instruction appears on Line 18 of Figure 2.27' as "JMP addr." 
Its execution will be described by following the horizontal line 
of the Table. This is again a three-word instruction. The first word 
is the opcode, and contains 11000011. The next two words contain the 
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16-bit address, to which the jump will be made. Conceptually, the ef-
fect of this instruction is to replace the contents of the program counter 
with the 16 bits following the "JUMP" opcode. In practice, a some-
what different approach will be implemented, for reasons of efficiency. 

As before, the first three states of MI correspond to the instruction-
fetch. During state T4 the instruction is decoded and no other event is 
recorded (X). The next two machine cycles are used to fetch bytes B2 
and B3 of the instruction. During M2, B2 is fetched and deposited into 
internal register Z. The next two steps will be implemented by the pro-
cessor during the next instruction-fetch, as was the case already with the 
addition. They will be executed instead of the usual steps for Ti and T2 
of the next instruction. Let us look at them. 

The next two steps will be: WZ OUT and (WZ) + I ►  PC. In other 
words, the contents of WZ will be used instead of the contents of PC 
during the next instruction-fetch. The control unit will have recorded 
the fact that a jump was being executed and will execute the beginning 
of the next instruction differently. 

The effect of these two extra states is the following: 
The address placed on the address bus of the system will be the ad-

dress contained in W and Z. In other words, the next instruction will be 
fetched from the address that was contained in W and Z. This is effec-
tively a jump. In addition, the contents of WZ will be incremented by 1 
and deposited in the program counter, so that the next instruction will 
be fetched correctly by using PC as usual. The effect is therefore cor-
rect. 

Question: Why have we not loaded the contents of PC directly? Why 
use the intermediate W and Z registers? 

Answer: It is not possible to use PC. If we had loaded the lower part 
of PC (PCL) with B2, instead of using Z, we would have destroyed PC! 
It would then have become impossible to fetch B3. 

Question: Would it be possible to use just Z, instead of W and Z? 

Answer: Yes, but it would be slower. We could have loaded Z with 
B2, then fetched B3, and deposited it into the high order half of PC 
(PCH). However, it would then have become necessary to transfer Z in-
to PCL, before using the contents of PC. This would slow down the 
process. For this reason, both W and Z should be used. Further, and in 
order to save time, W and Z are not transferred into PC. They are 
directly gated to the address bus in order to fetch the next instruction. 
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Understanding this point is crucial to the understanding of efficient ex-
ecution of instructions within the microprocessor. 

Question: (For the alert and informed reader only). What happens 
in the case of an interrupt at the end of M3? (If instruction execution is 
suspended at this point, the program counter points to the instruction 
following the jump, and the jump address, contained in W and Z, will 
be lost.) 

The answer is left as an interesting exercise for the alert reader. 

The detailed descriptions we have presented for the execution of 
typical instructions should clarify the role of the registers and of 
the internal buses. A second reading of the preceding section may 
help in gaining a detailed understanding of the internal operation 
of the Z80. 

CLOCK PI 6 —P. 
AO 

30 It, 40 N. ADDRESS 
BUS BUS 25 and 

CONTROL BUSAK•4--,  23 I 	To 	5 A15 

NMI —.... 17 
IRTI 16 —ft- 

MPU 
24 ‘,WCIT —0- 

CONTROL HALT 18 .4-- 

20 7 to 	15 DO Rti —b. DATA 
(except 	1 I I D7 BUS 

19 
MI MEMORY 

-4-- 
Cd4 20 
TO 

AND I/O 
21 -.41-- 

WA CONTROL 22 4—, 
28 

29 II 

GND 

	

	 +5V 
POWER 

Fig. 2.33: Z80 MPU Pinout 

The Z80 Chip 

For completeness, the signals of the Z80 microprocessor chip will be 
examined here. It is not indispensable to understand the functions of 
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the Z80 signals in order to be able to program it. The reader who is not 
interested in the details of hardware may therefore skip this section. 
The pinout of the Z80 appears on Fig. 2.33. On the right side of the 
illustration, the address bus and the data bus perform their usual role, 
as described at the beginning of this chapter. We will describe here the 
function of the signals on the control bus. They are shown on the left of 

Figure 2.33. 
The control signals have been partitioned in four groups. They will 

be described, going from the top of Figure 2.33 towards the bottom. 
The clock input is 4). The Z80 incorporates the clock oscillator within 

the microprocessor chip. Only a 330-ohm pull-up resistor is necessary 
externally. It is connected to the 0 input and to 5 volts. However, at 4 
MHz, an external clock driver is required. 

The two bus-control signals, BUSRQ and BUSAK, are used to dis-
connect the Z80 from its busses. They are mainly used by the DMA, but 
could also be used by another processor in the system. BUSRQ is the 
bus-request signal. It is issued to the Z80. In response, the Z80 will place 
its address bus, data bus, and tristate output control signals in the high-
impedance state, at the end of the current machine cycle. BUSAK is the 
acknowledge signal issued by the Z80 once the busses have been placed 
in the high-impedance state. 

Six Z80 control signals are related to its internal status or to its se-

quencing: 
INT and NMI are the two interrupt signals. INT is the usual interrupt 

request. Interrupts will be described in Chapter 6. A number of in-
put/output devices may be connected to the INT interrupt line. When-
ever an interrupt request is present on this line, and when the internal 
interrupt enable flip-flop (IFF) is enabled, the Z80 will accept the inter-
rupt (provided the BUSRQ is not active). It will then generate an 
acknowledge signal: IORQ (issued during the M I state). The rest of the 

sequence of events is described in Chapter 6. 
NMI is the non-maskable interrupt. It is always accepted by the Z80, 

and it forces the Z80 to jump to location 0066 hexadecimal. It too is 
described in Chapter 6. (It also assumes that BUSRQ is not active.) 

WAIT is a signal used to synchronize the Z80 with slow memory or 
input/output devices. When active, this signal indicates that the 
memory or the device is not yet ready for the data transfer. The Z80 

CPU will then enter a special wait state until the WAIT signal becomes 
inactive. It will then resume normal sequencing. 

HALT is the acknowledge signal supplied by the Z80 after it has ex- 
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ecuted the HALT instruction. In this state, the Z80 waits for an exter-
nal interrupt and keeps executing NOPs to continually refresh memory. 

RESET is the signal which usually initializes the MPU. It sets the 
program counter, register I and R to "0". It disables the interrupt 
enable flip-flop and sets the interrupt mode to "0", It is normally used 
after power is applied to the board. 

Memory and I/O Control 

Six memory and I/O control signals are generated by the Z80. They are: 
MREQ is the memory request signal. It indicates that the address pres-
ent on the address bus is valid. A read or write operation can then be 
performed on the memory. 

MI is machine cycle 1. This cycle corresponds to the fetch cycle of an 
instruction. 

IORQ is the input/output request. It indicates that the I/O address 
present on bits 0-7 of the address bus is valid. An I/O read or write 
operation can then be carried out. IORQ is also generated together with 
Ml when the Z80 acknowledges an interrupt. This information may be 
used by external chips to place the interrupt response vector on the data 
bus. (Normal I/O operations never occur during the MI state. The 
combination IORQ plus Ml indicates an interrupt-acknowledge situa-
tion.) 

RD is the read signal.* It indicates the Z80 is ready to read the con-
tents of the data bus into an internal register. It can be used by any ex-
ternal chip, whether memory or I/O, to deposit data onto the data bus. 

Wit. is the write signal.* It indicates that the data bus holds valid 
data, ready to be written into the specified device. 

RFSH is the refresh signal. When RFSH is active, the lower seven 
bits of the address bus contain a refresh address for dynamic memories. 
The MREQ signal is then used to perform the refresh by reading the 
memory. 

HARDWARE SUMMARY 

This completes our description of the internal organization of the 
Z80. The exact hardware details of the Z80 are not important here. 
However, the role of each of the registers is important and should be 
fully understood before proceeding to the next chapters. The actual in-
structions available on the Z80 will now be introduced, and basic pro-
gramming techniques for the Z80 will be presented. 

*used in conjunction with MREQ or IOREQ, 
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3 
BASIC PROGRAMMING 
TECHNIQUES 

INTRODUCTION 

The purpose of this chapter is to present the basic techniques neces-
sary in order to write a program using the Z80. This chapter will intro-
duce new concepts such as register management, loops, and sub-
routines. It will focus on programming techniques using only the inter-
nal Z80 resources, i.e., the registers. Actual programs will be de-
veloped, such as arithmetic programs. These programs will serve to il-
lustrate the various concepts presented so far and will use actual in-
structions. Thus, it will be seen how instructions may be used to 
manipulate the information between the memory and the MPU, as well 
as to manipulate information within the MPU itself. The next chapter 
will then discuss in complete detail the instructions available on the Z80. 
Chapter 5 will present Addressing Techniques, and Chapter 6 will pre-
sent the techniques available for manipulating information outside the 
Z80: the Input/Output Techniques. 

In this chapter, we will essentially learn by "doing." By examining 
programs of increasing complexity, we will learn the role of the various 
instructions, of the registers, and we will apply the concepts developed 
so far. However, one important concept will not be presented here; it is 
the concept of addressing techniques. Because of its apparent complexi-
ty, it will be presented separately in Chapter 5. 

Let us immediately start writing some programs for the Z80. We will 
start with arithmetic programs. The "programmer's model" of the Z80 
registers is shown in Figure 3.0. 
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BASIC PROGRAMMING TECHNIQUES 

MAIN SET 
	

ALTERNATE SET 

I 
(interrupt vector) 

R 
(mem refresh) 

IX 

IV 

SP 
(stack pointer) 

PC 
(program counter) 

INDEX 
REGISTERS 

Fig. 3.0: The Z80 Registers 

ARITHMETIC PROGRAMS 

Arithmetic programs include addition, subtraction, multiplication, 
and division. The programs presented here will operate on integers. 
These integers may be positive binary integers or may be expressed in 
two's complement notation, in which case the left-most bit is the sign 
bit (see Chapter 1 for a description of the two's complement notation). 

8-Bit Addition 

We will add two 8-bit operands called OP1 and OP2, respectively 
stored at memory address ADRI, and ADR2. The sum will be called 
RES and will be stored at memory address ADR3. This is illustrated in 
Figure 3.1. The program which will perform this addition is the follow-
ing: 

Instructions 	 Comments 

LD 	A, (ADR1) 
LD HL, (ADR 2) 
ADD A, (HL) 
LD 	(ADR 3), A 

LOAD OP1 INTO A 
LOAD ADDRESS OF OP2 INTO HL 
ADD OP2 TO OPI 
SAVE RESULT RES AT ADR3 
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MEMORY 

 

ADR I 

ADR2 

ADR3 

ADDRESSES 

(FIRST OPERAND ) 

(SECOND OPERAND) 

(RESULT) 

Fig. 3.1: Eight-Bit Addition RES = OP! + OP2 

This is our first program. The instructions are listed on the left and 
comments appear on the right. Let us now examine the program. It is a 
four-instruction program. Each line is called an instruction and is ex-
pressed here in symbolic form. Each such instruction will be translated 
by the assembler program into one, two, three or four binary bytes. We 
will not concern ourselves here with the translation and will only look at 
the symbolic representation. 

The first line specifies loading the contents of ADRI into the accu-
mulator A. Referring to Figure 3.1, the contents of ADR1 are the first 
operand. "OP1". This first instruction therefore results in transferring 
OP1 from the memory into the accumulator. This is shown in Figure 
3.2. "ADRI" is a symbolic representation for the actual 16-bit address 
in the memory. Somewhere else in the program, the ADR1 symbol will 
be defined. It could, for example, be defined as being equal to the ad-
dress "100", 

This load instruction will result in a read operation from address 100 
(see Figure 3.2), the contents of which will be transferred along the data 
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Fig. 3.2: LD A, (ADRI): OPI is I oaded from Memory 

bus and deposited inside the accumulator. You will recall from the pre-
vious chapter that arithmetic and logical operations operate on the 
accumulator as one of the source operands. (Refer to the previous 
chapter for more details.) Since we wish to add the two values OPI and 
OP2 together, we must first load OPI into the accumulator. Then, we 
will be able to add the contents of the accumulator, i.e., add OPI to 
OP2. The right-most field of this instruction is called a comment field. 
It is ignored by the assembler program at translation time, but is pro-
vided for program readability. In order to understand what the pro-
gram does, it is of paramount importance to use good comments. This 
is called documenung a program. 

Here the comment is self-explanatory: the value of OP1, which is 
located at address ADRI, is loaded into the accumulator A. 

The result of this first instruction is illustrated by Figure 3.2. The 
second instruction of our program is: 

LD HL, (ADR2) 

It specifies: "Load from (ADR2) into registers H and L." In order 
to read the second operand, OP2, from the memory, we must first place 
its address into a register pair of the Z80, such as H and L. Then, we 
can add the contents of the memory location whose address is in H and 
L to the accumulator. 

ADD A, (HL) 

Referring to Figure 3.1, the contents of memory location ADR2 are 
OP2, our second operand. The contents of the accumulator are now 
OPI, our first operand. As a result of the execution of this instruction, 
OP2 will be fetched from the memory and added to OPI. This is il-
lustrated in Figure 3.3 

97 



zoo 
OAIA PUS 

x-02 

^WI? 

ADDRESS SUS 

DATA BUS 

NS APR 

ADDOISS BUS 

PROGRAMMING THE Z80 

Fig. 3.3: ADD A, (HL) 

The sum will be deposited in the accumulator. The reader will 
remember that, in the case of the Z80, the results of the arithmetic oper-

ation are deposited back into the accumulator. In other processors, it 
may be possible to deposit these results in other registers, or back into 

the memory. 
The sum of OP1 and OP2 is now contained in the accumulator. To 

complete our program, we simply have to transfer the contents of the 
accumulator into memory location ADR3, in order to store the results 
at the specified location. This is performed by the fourth instruction of 

our program: 

LD (ADR3), A 

This instruction loads the contents of A into the specified address 
ADR3. The effect of this final instruction is illustrated by Figure 3.4. 

zoo 

Fig. 3.4: LD (ADR3), A (Save Accumulator in Memory) 
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Before execution of the ADD operation, the accumulator contained 
OP I (see Figure 3.3). After the addition, a new result has been written 
into the accumulator. It is "OP I + OPr . Recall that the contents of 
any register within the microprocessor, as well as any memory location, 
remain the same after a read operation has been performed on this 

register. In other words, reading the contents of a register or memory 
location does not change its contents. It is only, and exclusively, a write 
operation into this register location that will change its contents. In this 
example, the contents of memory locations ADRI and ADR2 remain 
unchanged throughout the program. However, after the ADD instruc-
tion, the contents of the accumulator will have been modified, because 
the output of the ALU has been written into the accumulator. The 
previous contents of A are then lost. 

Actual numerical addresses may be used instead of ADRI, ADR2, 
and ADR3. In order to keep symbolic addresses, it will be necessary to 
use so-called "pseudo-instructions" which specify the value of these 
symbolic addresses, so that the assembly program may, during transla-
tion, substitute the actual physical addresses. Such pseudo-instructions 
could be, for example: 

ADRI = 100H 
ADR2 = 120H 
ADR3 = 200H 

Exercise 3.1: Now close this book. Refer only to the list of instructions 
at the end of the book. Write a program which will add two numbers 
stored at memory locations LOCI and LOC2. Deposit the results at 
memory location LOC3. Then, compare your program to the one 
above. 

16-Bit Addition 

An 8-bit addition will only allow the addition of 8-bit numbers, i.e., 
numbers between 0 and 255, if absolute binary is used. For most prac-
tical applications it is necessary to add numbers having 16 bits or more, 
i.e., to use multiple precision. We will here present examples of arith-
metic on I6-bit numbers. They can be readily extended to 24, 32 bits or 
more (always multiples of 8 bits). We will assume that the first operand 
is stored at memory locations ADRI and ADRI-1. Since OP I is a 16-bit 
number this time, it will require two 8-bit memory locations. Similarly, 
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OP2 will be stored at ADR2 and ADR2-1. The result is to he deposited 
at memory addresses ADR3 and ADR3-I. This is illustrated in Figure 
3.5. H indicates the high hall (bits 8 through 15), while I. indicates the 
low half (bits 0 through 7). 

(OPI pi 

DPI It 

(0,11H 

(0•21t 

insw  

ins. 

Fig. 3.5: 16-Bit Addition—The Operands 

The logic of the program is exactly like the previous one. First, the 
lower half of the two operands will be added, since the microprocessor 
can only add on 8 bits at a time. Any carry generated by the addition of 
these low order bytes will automatically be stored in the internal carry 
bit ("C"). Then, the high order half of the two operands will be added 
together along with any carry, and the result will be saved in the 
memory. The program appears below: 

LD 	A, (ADR I) 
LD HL, ADR2 
ADD A, (HL), 
LD (ADR3), A 
LD 	A, (ADR I-I) 
DEC HL 
ADC A, (H L) 
LD (ADR3-I), A 

LOAD LOW HALF OF OPI 
ADDRESS OF LOW HALF OF OP2 
ADD OPI AND OP2 LOW 
STORE RESULT, LOW 
LOAD HIGH HALF OF OPI 
ADDRESS OF HIGH HALF OF OP2 
(OPI + OP2) HIGH + CARRY 
STORE RESULT, HIGH 

100 

MAI 

•D"-'  

ADO 

Pali- I 



BASIC PROGRAMMING TECHNIQUES 

The first four instructions of this program are identical to the ones 
used for the 8-bit addition in the previous section. They result in adding 
the least significant halves (bits 0-7) of OP1 and OP2. The sum, called 
"RES" is stored at memory location ADR3 (see Figure 3.5). 

Automatically, whenever an addition is performed, any resulting 
carry (whether "0" or "I") is saved in the carry bit C of the flags 
register (register F). If the two numbers do generate a carry, then the C 
bit will be equal to "I" (it will be set). If the two 8-bit numbers do not 
generate any carry, the value of the carry bit will be "0". 

The next four instructions of the program are essentially like those 
used in the previous 8-bit addition program. This time they add 
together the most significant half (or high half, i.e., bits 8-15) of OF! 
and OP2, plus any carry, and store the result at address ADR3-I. 

After execution of this 8-instruction program, the 16-bit result is 
stored at memory locations ADR3 and ADR3-1, as specified. Note, 
however, that there is one difference between the second half of this 
program and the first half. The "ADD" instruction which has been 
used is not the same as in the first half. In the first half of this program 
(the 3rd instruction), we had used the "ADD" instruction. This instruc-
tion adds the two operands, regardless of the carry. In the second half, 
we use the "ADC" instruction, which adds the two operands together, 
plus any carry that may have been generated. This is necessary in order 
to obtain the correct result. The addition initially performed on the low 
operands may result in a carry. Such a possible carry must be taken into 
account in the second half of the addition. 

The question which comes naturally then is: what if the addition of 
the high half of the operands also results in a carry? There are two pos-
sibilities: the first one is to assume that this is an error. This program is 
then designed to work for results of only up to 16 bits, but not 17: The 
other one is to include additional instructions to test explicitly for the 
possibility of a carry at the end of this program. This is a choice which 
the programmer must make, the first of many choices. 

Note: we have assumed here that the high part of the operand is 
stored "on top of" the lower part, i.e., at the lower memory address. 
This need not necessarily be the case. In fact, addresses are stored by 
the Z80 in the reverse manner: the low part is first saved in the memory, 
and the high part is saved in the next memory location. In order to use a 
common convention for both addresses and data, it is recommended 
that data also be kept with the low part on top of the high part. This is 
illustrated in Figure 3.6. 
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(OPT It 

HOPI IN 

(0P211 

(On pi 

InsR 

Fig. 3.6: Storing Operands in Reverse Order 

When operating on multibyte operand, it is important to keep in mind 
two essential conventions: 

—the order in which data is stored in the memory. 
—where data pointers are pointing: low byte or high byte. 
Exercises 3.2 and 3.3 are designed to clarify this point. 

Exercise 3.2: Rewrite the 16-bit addition program above with the 
memory layout indicated in Figure 3.6. 

Exercise 3.3: Assume now that ADR I does not point to the lower half 

of OPI (as in Figures 3.5 or 3.6), but points to the higher part of OPI. 
This is illustrated in Figure 3.7. Again, write the corresponding pro-
gram. 

MN I 

ADO' . 

ADO] 

AD42. I 

Aw] 

ADO .I 
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mIA*Cav 

Fig. 3.7: Pointing to the High Byte 

It is the programmer, i.e., you, who must decide how to store I6-bit 
numbers (i.e., low part or high part first) and also whether your address 
references point to the lower or to the higher half of such numbers. This 
is another choice which you will learn to make when designing 
algorithms or data structures. 

The programs presented above are traditional programs, using the 
accumulator. We will now present an alternative program for the 16-bit 
addition that does not use the accumulator, but instead uses some of 
the special 16-bit instructions available on the Z80. Operands will be 
assumed to be stored as indicated in Figure 3.5. The program is: 

LD 	HL, (ADRI) 
	

LOAD HL WITH OPI 
LD BC, (ADR2) 
	

LOAD BC WITH OP2 
ADD HL, BC 
	

ADD 16 BITS 
LD (ADR3), HL 
	

STORE RES INTO ADR3 

Note how much shorter this program is, compared to our previous ver-
sion. It is more "elegant." In et limited manner, the Z80 allows registers 
H and L to be used as a 16-bit accumulator. 
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Exercise 3.4: Using the 16-bit instructions which have just been intro-
duced, write an addition program for 32-bit operands, assuming that 
operands are stored as shown in Figure 3.8. (The answer appears 
below.) 

Answer : 

LD HL, (ADR1) 
LD BC, (ADR2) 
ADD HL, BC 
LD (ADR3) 
LD HL, (ADR1 + 2) 
LD BC, (ADR2+ 2) 
ADC HL, BC 
LD (ADR3 +2) 

MEMORY 

HIGH 

OPRI 

LOW 

HIGH 

On, 

LOW 

HIGH 

RES 

LOW 

Fig. 3.8: A 32-Bit Addition 
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Now that we have learned to perform a binary addition, let us turn to 
subtraction. 

Subtracting 16-Bit Numbers 

Doing an 8-bit subtract would be too simple. Let us keep it as an ex-
ercise and directly perform a 16-bit subtract. As usual, our two num-
bers, OP1 and OP2, are stored at addresses ADRI and ADR2. The 
memory layout will be assumed to be that of Figure 3.6. In order to 
subtract, we will use a subtract operation (SBC) instead of an add 
operation (ADD). 

Exercise 3.5: Now write a subtraction program. 

The program appears below. The data paths are shown in Figure 3.9. 

LD HL, (ADR1) 
LD DE, (ADR2) 
AND A 
SBC HL, DE 
LD (ADR3), HL  

OP1 INTO HL 
OP2 INTO DE 
CLEAR CARRY 
OPI — OP2 
RES INTO ADR3 

The program is essentially like the one developed for 16-bit addition. 
However, the Z80 instruction-set has two types of additions on double 
registers: ADD and ADC, but only one type of subtraction: SBC. 

As a result, two changes can be noted. 
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MEMORY 

ADRI 

ADRI f I 

Fig. 3.9: 16-Bil Load — LD HL, (ADRI) 

A first change is the use of SBC instead of ADD. 
The other change is the "AND A" instruction, used to clear the carry 

flag prior to the subtraction. This instruction does not modify the value 
of A. 

This precaution is necessary because the Z80 is equipped with two 
modes of addition, with and without carry on the H and L register, but 
with only one mode of subtraction, the SBC instruction of "subtract 
with carry" when operating on the HL register pair. Because SBC auto-
matically takes into account the value of the carry hit, it must beset too 
prior to starting the subtraction. This is the role of the "AND A" in-
struction. 

Exercise 3.6: Rewrite tire subtraction mograin without using the 
specialized I6-bit ucsuuctwit.  

Exercise 3.7: II }tie the subtract pmgrani for 8-bit operands. 

It must be remembered that in the case of two's complement arithme-
tic, the final value of the carry flag has no meaning. If an overflow con-
dition has occurred as a result of the subtraction, then the overflow bit 
(bit V) of the flags register will have been set. It can then be tested. 
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The examples just presented are simple binary additions or subtrac-
tions. However, another type of arithmetic may be necessary; it is BCD 
arithmetic. 

BCD ARITHMETIC 

8-Bit BCD Addition 

The concept of BCD arithmetic has been presented in Chapter I. Let 
us recall its features. It is essentially used for business applications 
where it is imperative to retain every significant digit in a result. In the 
BCD notation, a 4-bit nibble is used to store one decimal digit (0 
through 9). As a result, every 8-bit byte may store two BCD digits. 
(This is called packed BCD). Let us now add two bytes each containing 
two BCD digits. 

In order to identify the problems, let us try some numeric examples 
first. 

Let us add "01" and "02"; 

"1" is represented by: 0000 0001 
"2" is represented by: 0000 0010 

The result is: 	0000 0011 

This is the BCD representation for "03" (If you feel unsure of the 
BCD equivalent, refer to the conversion table at the end of the book.) 
Everything worked very simply in this case. Let us now try another ex-
ample. 

"08" is represented by 0000 1000 
"3" is represented by 0000 0011 

Exercise 3.8: Compute the sum of the two numbers above in the BCD 
representation. What do you obtain? (answer follows) 

If you obtain "0000 1011", you have computed the binary sum of 8 
and 3. You have indeed obtained 1I in binary. Unfortunately, "1011" 
is an illegal code in BCD. You should obtain the BCD representation of 
"I I", i.e., 0001 0001! 

The problem stems from the fact that the BCD representation uses 
only the first ten combinations of 4 digits in order to encode the decimal 
symbols 0 through 9. The remaining six possible combinations of 4 
digits are unused, and the illegal "1011" is one such combination. In 
other words, whenever the sum of two BCD digits is greater than 9, 

107 



PROGRAMMING THE Z80 

then one must add 6 to the result in order to skip over the 6 unused 

codes. 
Add the binary representation of "6" to 1011: 

	

1011 	(illegal binary result) 

	

+ 0110 	(+6) 

The result is: 	 0001 0001 

This is, indeed, "11" in the BCD notation! We now have the correct 

result. 
This example illustrates one of the basic difficulties of the BCD 

mode. One must compensate for the six missing codes. A special in-

struction, "DAA", called "decimal adjust," must be used to adjust the 
result of the binary addition. (Add 6 if the result is greater than 9.) 

The next problem is illustrated by the same example. In our example, 
the carry will be generated from the lower BCD digit (the right-most 
ones into the left-most one. This internal carry must be taken into ac-
count and added to the second BCD digit. The addition instruction 

takes care of this automatically. However, it is often convenient to 
detect this internal carry from bit 3 to bit 4 (the "half-carry"). The H 

flag is provided for this purpose. 
As an example, here is a program to add the BCD numbers "11" and 

"22": 

LD 	A, 1 IH 	 LOAD LITERAL BCD '1 1 ' 

ADD A, 22H 	 ADD LITERAL BCD '22' 

DAA 	 DECIMAL ADJUST RESULT 

LD (ADR), A 	STORE RESULT 

In this program, we are using a new symbol "H". The "H" sign 
within the operand field of the instruction specifies that the data it 
follows is expressed in hexadecimal notation. The hexadecimal and the 
BCD representations for digits "0" through "9" are identical. Here we 
wish to add the literals (or constants) "11" and "22". The result is 
stored at the address ADR. When the operand is specified as part of the 
instruction, as it is in the above example, this is called immediate ad-
dressing. (The various addressing modes will be discussed in detail in 
Chapter 5.) Storing the result at a specified address, such as LD (ADR), A 

is called absolute addressing when ADR represents a 16-bit address. 

108 



2 

(Minn 

BASIC PROGRAMMING TECHNIQUES 

MEMORY 

Fig. 3.10: Storing BCD Digits 

This program is analogous to the 8-bit binary addition, but uses a 
new instruction: "DAA". Let us illustrate its role in. an example. We 
will first add "II" and "22" in BCD: 

00010001 (11) 
+ 00100010 (22) 

= 00110011 (33) 
VV 

3 	3 

The result is correct, using the rules of binary addition. 
Let us now add "22" and "39", by using the rules of binary addi- 

tion: 
00100010 (22) 

+ 00111001 (39) 

= 01011011 
VV 

5 	? 

"1011" is an illegal BCD code. This is because BCD uses only the 
first 10 binary codes, and "skips over" the next 6. We must do the 
same, i.e. add 6 to the result: 

01011011 	(binary result) 
0110 (6) 

= 0110 0001 (61) 
•••••••••••••••••••••••• 

6 	I 

This is the correct BCD result. 
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Exercise 3.9: Could we move the DAA instruction to the program after 
the instruction LD (ADR), A? 

BCD Subtraction 

BCD subtraction is, in appearance, complex. In order to perform a 
BCD subtraction, one must add the ten's complement of the number, 
just as one adds the two's complement of a number to perform a binary 
subtract. The ten's complement is obtained by computing the comple-
ment to 9, then adding "I" This requires typically three to four opera-
tions on a standard microprocessor. However, the Z80 is equipped with 
a powerful DAA instruction which simplifies the program. 

The DAA instruction automatically adjusts the value of the result in 
the accumulator, depending on the value of the C, H and N flags before 
DAA, to the correct value. (See the next chapter for more details on 
DAAJ 

16-Bit BCD Addition 

16-bit addition is performed just as simply as in the binary case. The 
program for such an addition appears below: 

LD A, (ADR1) 
LD HL, (ADR2) 
ADD A, (HL) 
DAA 
LD (ADR3), A 
LD A, (ADRI + I) 
INC HL 
ADC A, (HL) 
DAA 
LD (ADR3 + I), A 

Packed BCD Subtract 

LOAD (OP I) L INTO A 
LOAD ADR2 INTO HL 
(OPI + OP2) LOW 
DECIMAL ADJUST 
STORE (RESULT) LOW 
LD (OPI) H INTO A 
POINT TO ADR2 + I 
(OPI + OP2) HIGH + CARRY 
DECIMAL ADJUST 
STORE (RESULT) HIGH 

Elementary BCD addition and subtraction have been described. 
However, in actual practice, BCD numbers include any number of 
bytes. As a simplified example of a packed BCD subtract, we will 
assume that the two numbers NI and N2 include the same number of 
BCD bytes. The number of bytes is called COUNT The register and 
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memory allocation is shown in 
below: 

BCDPAK LD B, COUNT 
LD 	DE, N2 
LD 	HL, N1 
AND A 

MINUS 	LD A, (DE) 
SBC 	A, (HL) 
DAA 
LD 	(HL), A 
INC DE 
INC HL 
DJNZ MINUS  

Figure 3.11. The program appears 

CLEAR CARRY 
N2 BYTE 
N2 — N1 

STORE RESULT 

DEC B, LOOP UNTIL B = 0. 

B COUNT 

              

                 

N2 

COUNT 

                 

                 

    

N2 

           

               

                 

                 

                   

    

NI 

             

                 

                   

                   

                   

              

              

              

            

NI 

            

              

              

              

                   

                   

Fig. 3.11: Packed BCD Subtract: N1-0-- N 2 - N1 

NI and N2 represent the addresses where the BCD numbers are stored. 
These addresses will be loaded in register pairs DE and HL: 

BCDPAK LD B, COUNT 
LD 
	

DE, N2 
LD 
	

HL, NI 
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Then, in anticipation of the first subtraction, the carry bit must be 
cleared. It has been pointed out that the carry bit can be cleared in a 
number of equivalent ways. Here, for example, we use: 

AND A 
The first byte of N2 is loaded into the accumulator, then the first byte 
of NI is subtracted from it. The DAA instruction is then used, to obtain 
the correct BCD value: 

MINUS LD 	A, (DE) 
SBC 	A, (HL) 
DAA 

The result is then stored into Ni: 

LD 	(HL), A 

Finally, the pointers io the current byte are incremented: 

INC DE 
INC HL 

The counter is decremented and the subtraction loop is executed until it 
reaches the value "0": 

DJNZ MINUS 

The DJNZ instruction is a special Z80 instruction which decrements 
register B and jumps if it is not zero, in a single instruction. 

Exercise 3. /0: Compare the program above to the one for the 16-bit 
Nita°,  addition. What is the difference? 

Exercise 3.11: Can you exchange the roles of DE and HL? (Hint: Be 
careful with SBC.1 

Exercise 3.12: Write the subtraction program for a 16-bit BCD. 

BCD Flags 

In BCD mode, the carry flag set as the result of an addition indicates 
the fact that the result is larger than 99. This is not like the two's com-
plement situation, since BCD digits are represented in true binary. Con-
versely, the presence of the carry flag after a subtraction indicates a 
borrow. 

Instruction Types 

We have now used two types of microprocessor instructions. We 
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have used LD, which loads the accumulator from the memory address, 
or stores its contents at the specified address. This is a data transfer in- 

struction. 
Next, we have used anthmetac instructions, such as ADD, SUB, 

ADC and SBC. They perform addition and subtraction operations. 
More ALU instructions will be introduced soon in this chapter. 

Still other types of instructions are available within the micropro-
cessor which we have not used yet. They arc in particular "jump" in-
structions, which will modify the order in which the program is being 
executed. This new type of instruction will be introduced in our next ex-
ample. Note that jump instructions are often called "branch" for con-
ditional situations, i.e. instances where there is a logical choice in the 
program. The "branch" derives its name from the analogy to a tree, 
and implies a fork in the representation of the program. 

MULTIPLICATION 

Let us now examine a more complex arithmetic problem: the multi-

plication of binary numbers. In order to introduce the algorithm for a 
binary multiplication, let us start by examining a usual decimal multi-

plication: We will multiply 12 by 23. 

12 (Multiplicand) 
x 23 (Multiplier) 

36 (Partial Product) 

+ 24 

= 276 (Final Result) 

The multiplication is performed by multiplying the right-most digit of 
the multiplier by the multiplicand, i.e., "3" x "12", The partial prod-
uct is "36". Then one multiplies the next digit of the multiplier, i.e., 

"2", by "12". "24" is then added to the partial product. 
But there is one more operation: 24 is offset to the left by one posi-

tion. We will say that 24 is shifted left by one position. Equivalently, we 
could have said that the partial product (36) had been shifted one post-
non to the right before adding. 

The two numbers, correctly shifted, are then added and the sum is 
276. This is simple. The binary multiplication is performed in exactly 
the same way. 
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Let us look at an example. We will multiply 5 x 3: 

(5) 	101 (MPD) 
(3) x 011 (MPR) 

101 (PP) 
10l 

000 

(15) 	01111 (RES) 

In order to perform the multiplication, we operate exactly as we did 
above. The formal representation of this algorithm appears in Figure 
3-12. It In flowchart for the algorithm, our first flowchart. Let us ex-
amine it more closely. 

SET RESULT TO ZERO 

RESULT = 

RESULT + MPD 

NO 

LEFT SHIFT (1 )MPO 

OR RIGHT SHIFT (1 ) RES 

NEXT L.513 (MPR) 

NO 

DONE 

Fig. 3.12: The Basic Multiplication Algorithm—Flowchart 

This flowchart is a symbolic representation of the algorithm we have 
Just presented. Every rectangle represents an order to be carried out. It 
will be translated into one or more program instructions. Every 
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diamond-shaped symbol represents a test being performed. This will be 
a branching point in the program. If the test succeeds, we will branch to 
a specified location. If the test does not succeed, we will branch to 
another location. The concept of branching will be explained later, in 
the program itself. The reader should now examine this flowchart and 
ascertain that it does indeed exactly represent the algorithm which has 
been presented. Note that there is an arrow coming out of the last dia-
mond at the bottom of the flowchart, back to the first diamond on top. 
This is because the same portion of the flowchart will be executed eight 
times, once for every bit of the multiplier. Such a situation, where ex-
ecution will restart at the same point, is called a program loop for ob-
vious reasons. 

Exercise 3.13: Multiply "4" by "7" in binary, using the flowchart, and 
verify that you obtain "28" If you do not, try again. It is only if you 
obtain the correct result that you are ready to translate this flowchart 
Into a program. 

8-By-8 Multiplication 

Let us now translate this flowchart into a program for the Z80. The 
complete program appears in Figure 3.13. We are going to study it in 
detail. As you will recall from Chapter I, programming consists here of 
translating the flowchart of Figure 3.12 into the program of Figure 
3.13. Each of the boxes in the flowchart will be translated by one or 
more instructions. 

It is assumed that MPR and MPD already have a value. 

MPY88 LD 
LD 
LD 
LD 
LD 

MULT SRL 

JR 
ADD 

NOADD SLA 
RL 
DEC 
JP 
LD 

BC, (MPRAD) 
B, 8 
DE, (MPDAD) 
D, 0 
HL, 0 
C 

NC, NOADD 
HL, DE 
E 
D 
B 
NZ, MULT 
(RESAD), HL  

LOAD MULTIPLIER INTO C 
B IS BIT COUNTER 
LOAD MULTIPLICAND INTO E 
CLEAR D 
SET RESULT TO 0 
SHIFT MULTIPLIER BIT INTO 
CARRY 
TEST CARRY 
ADD MPD TO RESULT 
SHIFT MPD LEFT 
SAVE BIT IN D 
DECREMENT SHIFT COUNTER 
DO IT AGAIN IF COUNTER # 0 
STORE RESULT 

Fig. 3.13: 8 x S Multiplication Program 
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The first box of the flowchart is an brilialization box. It is necessary 
to set a number of registers or memory locations to "0", as this pro-
gram will require their use. The registers which will be used by the 
multiplication program appear in Figure 3.14. 

PRAD) 

(MPDADI 

(RESAD) 

H 

        

         

         

         

         

Fig 3.14: 8 x 8 Multiplication—The Registers 

Three register pairs of the Z80 are used for the multiplication pro-
gram. The 8-bit multiplier is assumed to reside at memory address 
MPRAD. The multiplicand MPD is assumed to reside at memory ad-
dress MPDAD. The multiplier and the multiplicand respectively will be 
loaded into registers C and E (see Figure 3.14). Register B will be used 
as a counter. 

Registers D and E will hold the multiplicand as it is shifted left one 
bit at a time. 

Note that, even though only C and E need to be loaded initially, a 16-
bit load must be used, so that B and D will also be loaded from memory, 
and will have to be reset respectively to "8" and to "0". 
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Finally, the results of an 8-bit by 8-bit multiplication may require up 
to 16 bits. This is because 2' x 2' = 2". Two registers must therefore 
be reserved for the result. They are registers H and L, as indicated on 

Figure 3.14. 
The first step is to load registers B, C, and E with the appropriate 

contents, and to initialize the result (the partial product) to the value 

"0" as specified by the flowchart of Figure 3.12. This is accomplished 
by the following instructions: 

MPY88 LD BC, (MPRAD) 
LD B, 8 

LD DE, (MPDAD) 
LD 	D, 0 

LD HL, 0 

The first three instructions respectively load MPR into the register pair 
BC, the value "8" into register B, and MPD into the register pair DE. 
Since MPR and MPD are 8-bit words, they are, in fact, loaded into 
registers C and E respectively, while the next words in the memory after 
MPR and MPD get loaded into B and D. This is shown in Figure 3.15 

and 3.16. The next instruction will zero the contents of D. 
In this multiplication program, the multiplicand will be shifted left 

before being added to the result (remember that, optionally, it is pos-
sible to shift the result right instead, as indicated in the fourth box of 
the flowchart of Figure 3.12). The multiplicand MPD will be shifted in-
to register D at each step. This register D must therefore be initialized to 
the value "0". This is accomplished by the fourth instruction. Finally, 
the fifth instruction sets the contents of registers H and L to 0 in a single 

instruction. 

Fig. 3.15: LD BC, (MPRAD) 
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ORY 

L 
	 MPOAD 

Ii 

Fig. 3.16: LD DE, (MPDAD) 

Referring back to the flowchart of Figure 3.12, the next step is to test 
the least significant bit (the right-most bit)ol the multiplier MPR. If this 
bit is a "I", then the value of MPD must be added to the partial result, 
otherwise it will not be added. This is accomplished by the next three in-

structions: 

MULT SRL C 
JR NC, NOADD 
ADD HL, DE 

The first problem we must solve is how to test the least significant bit of 
the multiplier, contained in register C. We could here use the BIT in-
struction of the Z80, which allows testing any bit in any register. How-
ever, in this case, we would like to construct a program as simple as 
possible, using a loop. If we were using the BIT instruction here, we 
would first test bit 0, then later test bit I, and so on until we reached bit 

7. This would require a different instruction every time, and a simple 
loop could not be used. In order to shorten the length of the program. 
we must use a different instruction. Here we are using a shift instruc-
tion. 

Note: There is a way to use the BIT instruction and a loop, but this 
would require the program to modify itself, a practice we will avoid. 
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SRL is a new type of operation within the arithemetic and logical 
unit. It stands for "shift right logical." A logical shift to the right is 
characterized by the fact tnat a"0" comes into bit position 7. This can 
be contrasted to an arithemtic shift to the right, where the bit coming 
into position 7 is identical to the previous value of bit 7. The different 
types of shift operations will be described in the next chapter. The 
effect of the SRL C instruction is illustrated in Figure 3.14 by an arrow 
coming out of register C and into the square used to designate the carry 
bit (also called "C"). At this point, the right-most bit of the MPR will 
be in the carry bit C, where it can be tested. 

The next instruction, "JR NC, NOADD", is a jump operation. It 
means "jump on no carry" (NC) to the address (the label) NOADD. I f 
the contents of the carry bit are "0" (no carry), then the program will 
jump to the address NOADD. If the contents of C are "I" (the carry 
bit is set), then no branch will occur, and the next sequential instruction 
will be executed, i.e., the instruction "ADD HL, DE" will be executed. 

This instruction specifies that the contents of D and E be added to H 
and L, with the result in H and L. Since E contains the multiplicand 
MPD (see Figure 3.14), this adds the multiplicand to the partial result. 

At this point, regardless of whether MPD has been added to the 
result or not, the multiplicand must be shifted left (this is the fourth box 
in the flowchart of Figure 3.12). This is accomplished by: 

NOADD SLA E 

SLA stands for "shift left arithmetic." It has just been explained above 
that there are two types of shift operations, a logical shift and an arith-
metic shift. This is the arithmetic one. In the case of a left shift, an SLA 
specifies that the bit coming into the right part of the register (the least 
significant bit) be a "0" (just as in the case of an SRL before). 

As an example, let us assume that the initial contents of register E 
were 00001001. After the SLA instruction, the contents of E will be 
00010010. And the contents of the carry bit will be 0. 

However, looking back at Figure 3.14, we really want to shift the 
most significant bit (called the MSB) of E directly into D (this is il-
lustrated by the arrow on the illustration coming from E into D). 
However, there is no instruction which will shift a double register such 
as D and E in one operation. Once the contents of E have been shifted, 
the left-most bit has "fallen into" the carry bit. We must collect this bit 
from the carry bit and shift it into register D. This is accomplished by 
the next instruction: 

RL D 
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RL is still another type of shift operation. It stands for ••rotate left.•• 
In a rotation operation, as opposed to a shift operation, this bit coming 

into the register is the contents of the carry bit C (see Figure 3.17). This 

is exactly what we want. The contents of the carry bit C are loaded into 
the right-most part of D, and we have effectively transferred the left-
most bit of E. 

This sequence of two instructions is illustrated in Figure 3.18. It can 

be seen that the bit marked by an X in the most significant position of E 
will first be transferred into the carry bit, then into the least significant 
position of D. Effectively, it will have been shifted from E into D. 

At this point, referring back to the flowchart of Figure 3.12, we must 

point to the next bit of MPR and check for the eighth bit. This is ac-
complished by decrementing the byte counter, contained in register B 
(see Figure 3.14). The register is decremented by: 

DEC B 

This is a decrement instruction, which has the obvious effect. 
Finally, we must check whether the counter has decremented to the 

value zero. This is accomplished by checking the value of the Z bit. The 

reader will recall that the Z (zero) flag indicates whether the previous 
arithmetic operation (such as a DEC operation) has produced a zero 
result. However, note that DEC HL, DEC BC, DEC DE, DEC IX, 
DEC SP do not affect the Z flag. If the counter is not "0", the opera-
tion is not finished, and we must execute this program loop again. This 
is accomplished by the next instruction: 

JP NZ MULT 
SHIFT LEFT 

r> 
CARRY 

LJ 
ROTATE LEFT 

CARRY 

RLC instruction 

Fig. 3.17: Shift and Rotate 
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C 

D 	t 	 

Fig. 3.18: Shifting from E into D 

This is a jump instruction which specifies that whenever the Z bit is 
not set (NZ stands for non-zero), a Jump occurs to location MULT. This 
is the program loop, which will be executed repeatedly until B decre-
ments to the value 0. Whenever B decrements to the value 0, the Z bit 
will be set, and the JP NZ instruction will fail. This will result in the 
next sequential instruction being executed, namely: 

LD (RESAD), HL 

This instruction merely saves the contents of H and L, i.e., the result of 
the multiplication, at address RESAD, the address specified for the 

result. Note that this instruction will transfer the contents of both regis-
ters H and L into two consecutive memory locations, corresponding to 

addresses RESAD and RESAD + 1. It saves 16 bits at a time. 

Exercise 3.14: Could you write the same multiplication program using 
the BIT instruction (described in the next chapter) instead of the SRL C 

instruction? What would be the disadvantage? 

Let us now improve the program, if possible: 

Exercise 3.15: Can JR be substituted for JP at the end of the program? 
If so, what is the advantage? 

Exercise 3.16: Can you use DJNZ to shorten the end of the program? 
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Exercise 3.17: Examine the two instructions: LD D. 0 and LD HL, 0 at 
the beginning of the program. Can you substitute: 

XOR A 
LD D. A 
LD H, A 
LD L, A 

If so, what is the impact on size (number of bytes) and speed? 

Note that, in most cases, the program that we have just developed 
will be a subroutine and the final instruction in the subroutine will be 
RET (return). The subroutine mechanism will be explained later in this 
chapter. 

Important Self-Tell 

This is the first significant program we have encountered so far. It in-
cludes many different types of instructions, including transfer instruc-

tions (LD), arithmetic operations (ADD), logical operations (SRL, 
SLA, R1), and jump operations (JR, JP). It also implements a pro-
gram loop, in which the lower seven instructions, starting at address 
MULT, are executed repeatedly. In order to understand programming, 
it is essential to understand the operation of such a program in com-
plete detail. The program is much longer than the previous simple arith-
metic programs we have developed so far, and it should be studied in 
detail. An important exercise will now be proposed. The reader is 
strongly urged to do this exercise completely and correctly before pro-
ceeding. This will be the only real proof that the concepts presented so 
far have been understood. If a correct result is obtained, it will mean 
that you have really understood the mechanism by which instructions 
manipulate information in the microprocessor, transfer it between the 
memory and the registers, and process it. If you do not obtain the cor-
rect result, or if you do not do this exercse, it is likely that you will ex-
perience difficulties later in writing programs yourself. Learning to pro-

gram requires personal practice. Please pause now, take a piece of 
paper, or use the illustration of Figure 3.19, and do the following exer-
cise: 

Exercise 3.18: Every lime that a program is written, it should be verified 
by hand, in order to ascertain that its results will be correct. We are go-
ing to do just that: the goal of this exercise is to fill in the table of Figure 
3.19 completely and accurately. 
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LABEL INSTRUCTION BC C 
(CARRY) 

D E HL 

Fig. 3.19: Form for Multiplication Exercise 

You may want to write directly on Figure 3.19 or make a copy of it. 
You must determine the contents of every relevant register in the Z80 
after the execution of each instruction in the program, from beginning 

to end. All the registers used by the program of Figure 3.13 arc shown 
in Figure 3.19. From left to right, they are registers B and C, the carry 
C, registers D and E, and, finally, registers H and L. On the left part of 
this illustration, fill in the label, if applicable, and then the instructions 
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being executed. On the right of the instruction, fill in the contents of 
each register after execution of the instruction. Whenever the contents 
of a register are not known (indefinite), you may use dashes to repre-
sent its contents. Let us start filling in this table together. You will then 
have to fill it out by yourself until the end. The first line appears below: 

LABEL INSTRUCTION BC C D E HL 

MPY88 LD BC,(0200) 00 03 - -- -- -- -- 

Fig. 3.20: Multiplication: After One Instruction 

We will assume here that we are multiplying "3" (MPR) by "5" 
(MPD). 

The first instruction to be executed is "LD BC, (MPRAD)", The 
contents of memory location MPRAD is loaded into registers B and C. 
It has been assumed that MPR is equal to 3, i.e., "00000011". After ex-
ecution of this instruction, the contents of register C have been set to 
"3". Note that this instruction will also result in loading register B with 
whatever followed MPR in the memory. However, the next instruction 
in the program will take care of this by loading register B with "8", as 
shown in Figure 3.21. Note that, at this point, the contents of D and E 
and H and L are still undefined, and this is indicated by dashes. The LD 
instruction does not condition the carry bit, so that the contents of the 
carry bit C are undefined. This is also indicated by a dash. 

LABEL INSTRUCTION BC CD E HI 

MPY88 LD BC, (0200) 

LD 8,08 

-- 

00 

-- 

03 

- 

- 

.- 

-- 

-- 

-- 

-- 

-- -- 

Fig. 3.21: Multiplication: After Two Instructions 

The situation after the execution of the first five instructions of the 
program (just before the MULT) is shown in Figure 3.22. 
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LABEL INSTRUCTION BC C D E H I. 

.. .. - .. .. .. .. 

MPY88 LD BC, (0200) 00 03 - -- -- -- -- 
LD B.08 
LD DE, (0202) 08 03 - 00 05 -- -- 
LD D. 00 08 03 - 00 05 -- - - 
LD HL,0000 08 03 - 00 05 00 00 

Fig. 3.22: Mu tiplication: After Five Instructions 

The SRL instruction will perform a logical shift right, and the right-
most bit of MPR will fall into the carry bit. You can see in Figure 3.23 
that the contents of MPR after the shift is "0000 0001". The carry bit C 
is now set to "1". The other registers are unchanged by this operation. 
Please continue to fill out the chart by yourself. 

A second iteration is shown at the end of this chapter in Fig. 3.41. 

LABEL INSTRUCTION BC CD E H L 

MPY88 LD BC, (0200) 00 03 

0r
0

0
0

0
_.
_

  
	

 :  1
  :  8

  8
  8

  8
 8

 8
 8

  8
 8 8

  

-- -- -- 

LD B.08 08 03 -- -- -- 

08 03 LD DE, (0202) 

LD D.00 08 03 

LD HL.0000 08 03 05 00 00 

MULT SRL C 08 01 05 00 00 

JR NC.0114 08 01 05 00 00 

ADD HL.DE 08 01 05 00 05 

NOADD SlA E 08 01 OA 00 05 

RL D 08 01 OA 00 05 

DEC B 07 01 OA 00 05 

JP NZ,010F 07 01 OA 00 05 

Fig. 3.23: One Pass Through The Loop. 
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A complete listing showing the contents of all the Z80 registers and 
the flags is shown in Fig. 3.39 at the end of this chapter for the complete 
multiplication. A hex or decimal listing is shown in Fig. 3.40. 

Programming Alternatives 

The program that we have just developed could have been written.in 
many other ways. As a general rule, every programmer can usually find 
ways to modify, and often improve, a program. For example, we have 
shifted the multiplicand left before adding. It would have been mathe-
matically equivalent to shift the result one position to the right before 
adding it to the multiplicand. As a matter of fact, this is an interesting 
exercise! 

Exercise 3.19: Write an 8 x 8 multiplication program using the same 
algorithm, but shifting the result one position to the right instead of 
shifting the multiplicand by one position to the left. Compare it .to the 
previous program, and determine whether this different approach 
would be faster or slower than the preceding one. The speeds of the Z80 
instructions are given in the next chapter. 

Improved Multiplication Program 

The program that we have just developed is a straightforward trans-
lation of the algorithm to code. However, effective programming re-
quires close attention to detail, and the length of the program can often 
be reduced or its execution speed can be improved. We are now going to 
study alternatives designed to improve this basic program. 

Step I 

A first possible improvement lies in the better utilization of the Z80 
instruction set. The second-to-last instruction as well as the preceding 
one can be replaced by a single instruction: 

DJNZ LOOP 

This is a special Z80 "automated jump" which decrements the B register 
and branches to a specified location if it is not "0" To be absolutely 
correct, the instruction is not completely identical to the previous pair 

DEC B 
JP NZ, MULT 
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for it specifies a displacement, and one can only jump within the range 
of — 126 to + 129. However, we must here jump to a location which is 
only a few bytes away, and this improvement is legitimate. The 
resulting program is shown in Figure 3.24 below: 

MPY88B LD 	DE, (MPDAD) 
LD 	BC, (MPRAD) 

LD 	B, 8 
LD 	HL, 0 

MULT SRL C 
JR 	NC, NOADD 
ADD 	HL, DE 

NOADD SLA E 
RL 
DJNZ MULT 
LD 	(RESAD), HL 
RET 

BIT COUNTER 

Fig. 3.24: Improved Multiply, Step 1 

Step 2 

In order to improve this multiplication program further, we will 

observe that three different shift operations are used in the initial pro-
gram of Figure 3.13. The multiplier is shifted right, then the multipli-
cand MPD is shifted left, in two operations, by first shifting register E 
left, then rotating register D to the left. This is time-consuming. A stan-
dard programming "trick" used in the case of multiplication is based 
on the following observation: every time that the multiplier is shifted by 
one bit position, another bit position becomes available in the multi-
plier register. For example, assuming that the multiplier shifts right (in 
the previous example), a bit position becomes available on the left. 
Simultaneously, it can be observed that the first partial product (or 
"result") will use, at most, 9 bits. If a single register had been allocated 
to the result in the beginning of the program, we could then use the bit 
position that has been vacated by the multiplier to store the ninth bit of 
the result. 

After the next shift of the MPR, the size of the partial product will be 
increased by just one bit again. In other words, a single register can be 

reserved intially for the partial product, and the bit positions which are 
being freed by the multiplier can then be used as the MPR is being 
shifted. In order to improve the program, we are therefore going to 
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assign MPR and RES to a register pair. Ideally, they should be shifted 
together in a single operation. Unfortunately, the Z80 shifts only 8-bit 
registers at a time. Like most other 8-bit microprocessors, it has no in-
struction that allows shifting 16 bits at a time. 

However, another trick can be used. The Z80 (like the 8080) is 
equipped with special 16-bit add instructions that we have already used. 
Provided that the multiplier and the result are stored in the register pair 
H and L, we can use the instruction: 

ADD HL, HL 

which adds the contents of H and L to itself. Adding a number to 
itself is doubling it. Doubling a number in the binary system is equiva-
lent to a left shift. We have just obtained a 16-bit shift in a single in-

struction. Unfortunately, the shift occurs to the left when we would like 
it to occur to the right. This is not a problem. 

Conceptually, the MPR can be shifted either left or right. We have 
used a right shift algorithm because this is the one which is used in or-
dinary addition. However, it does not necessarily need to be so. The 
addition operation is commutative, and the order can be reversed: shif-
ting the MPR to the left is just as valid. 

In order to take advantage of this simulated 16-bit shift, we will have 
to shift the MPR to the left. Therefore, the MPR will reside in register 
H and the result in register L. The resulting register configuration is 
shown in Figure 3.25. 

 

B COUNTER 
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The rest of the program is essentially identical to the previous one. 
The resulting program appears below: 

MUL88C LD 	HL, (MPRAD-I) 
LD 	L, 0 
LD 	DE, (MPDAD) 
LD 	D.0 
LD 	B,8 	 COUNTER 

MULT ADD HL, HL 	 SHIFT LEFT 
JR 	NC, NOADD 
ADD 	HL, DE 

NOADD DJNZ MULT 
LD 	(RESAD), HL 
RET 

Fig. 3.26: Improved Multiply, Step 2 

When comparing this program to the previous one, it can be seen that 
the length of the multiplication loop (the number of instructions be-
tween MULT and the Jump) has been reduced. This program has been 
written in fewer instructions and this will usually result in faster execu-
tion. This shows the advantage of selecting the correct registers to con-
tain the information. 

A straightforward design will generally result in a program that 
works. It will not result in a program that is optimizer/. It is therefore 
important to understand and use the available registers and instructions 
in the best possible way. These examples illustrate a rational approach 
to register selection and instruction selection for maximum efficiency. 

Exercise 3.20: Compute the speed of a multiplication operation using 
this last program. Assume that a branch will occur in 50% of the cases. 
Look up the number of cycles required by every instruction in the index 
section. Assume a clock rate of 2 MHz (one cycle = 2 us). 

Exercise 3.21: Note that here we have used the register pair D and E to 
contain the multiplicand. How would the above program be changed tl 
we had used the register pair B and C instead? (Hint: this would re-
quire a modification at the end.) 

Exercise 3.22: Why did we have to bother zeroing register D when 
loading MPD into E? 

Finally, let us address a detail which may look immung to the pro-
grammer who is not yet familiar with the Z80. The reader will have 
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noticed that, in order to load MPD into E from the memory, we had to 
load both registers D and E at the same time from a memory address. 
This is because, unless the address is contained in registers H and L, 
there is no way to fetch a single byte directly and load it into register E. 
This is a feature carried over from the early 8008, which had no direct 
addressing mode. The feature was carried forward into the 8080, with 
some improvements, and improved still further in the Z80, where it is 
possible to fetch 16 bits directly from a given memory address (but not 
8 bits - except toward register A). 

Now, having solved this possible mystery, let us execute a more 
complex multiplication. 

A 16 X 16 Multiplication 

In order to put our newly acquired skills to a test, we Will multiply 
two 16-bit numbers. However, we will assume that the result requires 
only 16 bits, so that it can be contained in one of the register pairs. 

The result, as in our first multiplication example, is contained in 
registers H and L (see Figure 3.27). The multiplicand MPD is contained 
in registers D and E. 

COUNTER MPR, HIGH 

  

Fig. 3.27: 16 X 16 Multiply—The Registers 
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It would be tempting to deposit a multiplier into register B and C. 
However, if we want to take advantage of the DJNZ instruction, 
register B must be allocated to the counter. As a result, half of the 
multiplier will be in register C, and the other half in register A (see 
Figure 3.27). The multiplication program appears below: 

MULI6 LD 
LD 
LD 
LD 
LD 
LD 

MULT SRL 

RRA 

JR 
ADD 

NOADD EX 
ADD  

A, (MPRAD + 1) 
C, A 
A, (MPRAD) 
B, 16 
DE. (MPDAD) 
HL, 0 
C 

NC, NOADD 
HL, DE 
DE, HL 
HL, HL  

MPR, HIGH 

MPR, LOW 
COUNTER 
MPD 

RIGHT SHIFT MPR, 
HIGH 
ROTATE RIGHT MPR, 
LOW 
TEST CARRY 
ADD MPD TO RESULT 

DOUBLE — SHIFT MPD 
LEFT 

EX 	DE, HL 
DJNZ MULT 
RET 

Fig. 3.28: 16 X 16 Multiplication Program 

The program is analogous to those we have developed before. The 
first six instructions (from label MULI6 to label MULT) perform the 
initialization of registers with the appropriate contents. One complica-
tion is introduced here by the fact that the two halves of MPR must be 
loaded in separate operations. It is assumed that MPRAD points to the 
low part of the MPR in the memory, followed in the next sequential 
memory location by the high part. (Note that the reverse convention 
can be used.) Once the high part of MPR has been read into A, it must 
be transferred into C: 

LD 	A, (MPRAD + 1) 
LD 	C, A 

Finally, the low part of MPR can be read directly into the accumulator: 

LD 	A, (MPRAD) 
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The rest of the registers, B, D, E, H, and L are initialized as usual: 

	

LD 	B, 16 

	

LD 	DE, (MPDAD) 

	

LD 	HL, 0 

A 16-bit shift must be performed on the multiplier. It requires two 
separate shift or rotate operations on registers C and A: 

MULT SRL C 
RRA 

After the 16-bit shift, the right-most bit of the MPR, i.e., the LSB, is 
contained in the carry bit C where it can be tested: 

	

R 	NC, NOADD 

As usual, the multiplicand is not added to the result if the carry bit is 
"0", and is added to the result if the carry bit is "I": 

ADD HL, DE 

Next, the multiplicand MPD must be shifted by one position to the left. 
However, the Z80 does not have an instruction which will shift the 

contents of register D and E simultaneously to the left by one bit posi-
tion, and it can also not add the contents of D and E to itself. The con-
tents of D and E will therefore first be transferred into H and L, then 
doubled, and transferred back to D and E. This is accomplished by the 

next three instructions: 

NOADD EX DE, HL 
ADD HL, HL 
EX 	DE, HL 

Finally, the counter B is decremented and a jump occurs to the begin-
ning of the loop as long as it does not decrement to "0": 

DJNZ MULT 

As usual, it is possible to consider other register allocations which may 
(or may not) result in shorter codes: 

Exercise 3.23: Load the multiplier into registers B and C. Place the 
counter in A. Write the corresponding multiplication program and 

discuss the advantages or disadvantages of this register allocation. 
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Evercise 3.24: Referring to the original 16-bit multiplication program 
of Figure 3.28, can you propose a way to shift the MPD, contained in 
registers D and E, without transferring it into registers H and L? 

Exercise 3.25: Write a 16-by-/6 multiplication program ❑•loch detects 
the fact that the result has more than 16 bits. This is a simple improve-
ment of our basic program. 

Exercise 3.26: Write a 16-by-la multiplication program with a 32-ha 
result. The suggested register allocation appears in figure 3.29. 
Remember that the initial result after the first addition in the loop will 
require only 16 bus, and that the multiplier will free one ba fin' each 
subsequent aeration. 

B MPD C 

0 E MPR 
RESULT 
AFTER 

RES 
MULTIPLICATION 

Fig. 3.29: 16 x 16 Multip y with 32-Bit Result 

Let us now examine the last usual arithmetic operation, the division. 

BINARY DIVISION 

The algorithm for binary division is analogous to the one which has 
been used for the multiplication. The divisor is successively subtracted 
from the high order bits of the dividend. After each subtraction, the 
result is used instead of the initial dividend. The value of the quotient is 
simultaneously increased by I every time. Eventually, the result of the 
subtraction is negative. This is called an overdraw. One must then 
restore the partial result by adding the divisor back to it. Naturally, the 
quotient must be simultaneously decremented by I. Quotient and divi-
dend are then shifted by one bit position to the left and the algorithm is 
repeated. The flow-chart is shown in Figure 3.30. 

The method just described is called the restoring method. A variation 
of this method which yields an improved speed of execution is called the 
non-restoring method. 
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COUNTER = COUNTER— I 

END (REMAINDER IN LEFT (DIVIDEND) 

Fig. 3.30: 8-Bil Binary Division Flowchart 

COUNTER: 
	

C 

Fig. 3.31: 16/8 Division—The Registers 
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16-by-8 Division 

As an example, let us here examine a I6-by-8 division, which will 
yield an 8-bit quotient and an 8-bit remainder dividend. The register 
allocation is shown in Figure 3.31. 

The program appears below: 

DIVI68 LD 	A, (DVSAD) LOAD DIVISOR 
LD 	D, A 	 INTO D 
LD 	E, 0 
LD 	HL, (DVDAD) LOAD 16-BIT DIVIDEND 
LD 	B, 8 	 INITIALIZE COUNTER 

DIV 	XOR A 	 CLEAR C BIT 
SBC 	HL, DE 	DIVIDEND — DIVISOR 
INC 	HL 	 QUOTIENT = QUOTIENT + 

JP 	P, NOADD 	TEST IF REMAINDER 
POSITIVE 

ADD 	HL, DE 	RESTORE IF NECESSARY 
DEC 	HL 	 QUOTIENT = QUOTIENT — I 

NOADD ADD HL, HL 	SHIFT DIVIDEND LEFT 
DJNZ DIV 	 LOOP UNTIL B = 0 
RET 

Fig. 3.32: 16/8 Division Program 

The first five instructions in the program load the divisor and the divi-
dend respectively into the appropriate registers. They also initialize the 
counter, in register B, to the value 8. Note again that register B is a pre-
ferred location for a counter if the specialized Z80 instruction DJ NZ is 
to be used: 

	

DI V168 LD 	A, (DVSAD) 

	

LD 	D, A 

	

LD 	E, 0 

	

LD 	HL, (DVDAD) 

	

LD 	B, 8 

Next, the divisor is subtracted from the dividend. Since an SBC in-
struction must be used (there is no 16-bit subtract without carry), the 
carry must be set to the value "0" before subtracting. This can be ac-
complished in a number of ways. The carry can be cleared by perform- 
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ing instructions such as: 

XOR A 
AND A 
OR A 

Here, an XOR is used: 

DIV 	XOR A 

The subtraction can then be performed: 

SBC 	HL, DE 

It is anticipated that the subtraction will be successful, i.e., that the re-
mainder will be positive. This is called the "trial subtract" step (refer to 
the flowchart of Figure 3.30). The quotient is therefore incremented by 
one. If the subtraction has in fact failed (i.e., if the remainder is 
negative), the quotient will have to be decremented by one later on: 

INC HL 

The result of the subtraction is then tested: 

JP 	P, NOADD 

If the remainder is positive or zero, the subtraction has been successful, 
and it is not necessary to store it. The program jumps to address 
NOADD. Otherwise, the current dividend must be restored to its 
previous value, by adding the divisor back to it, and the quotient must 
be decremented by one. This is performed by the next instructions: 

ADD HL, DE 
DEC HL 

Finally, the resulting dividend is shifted left, in anticipation of the 
next trial subtract operation. Finally, the B counter is decremented and 
tested for the value "0". As long as B is not zero, this loop is executed: 

NOADD ADD HL, HL 
DJNZ DIV 
RET 

Exercise 3.27: Verify the operation of this division program by hand, 

by filling out the table of Figure 3.33, as in Exercise 3.18 for the multi-
plication. Note that the contents of D need not be entered on the form 
of Figure 3.33, since they are never modified. 

136 



BASIC PROGRAMMING TECHNIQUES 

LABEL 
	

INSTRUCTION 
	

B 

Fig. 3.33: Form for Division Program 

8-Bit Division 

The following program uses a restoring method, and leaves a com-
plemented quotient in A. It divides 8 bits by 8 bits (unsigned). 

E IS DIVIDEND 
C IS DIVISOR 
A IS QUOTIENT 
B IS REMAINDER 

DIV88 XOR A 	 CLEAR ACCUMULATOR 
LD 	B, 8 	 LOOP COUNTER 

LOOP88 RL 	E 	 ROTATE CY INTO ACC- 
DIVIDEND 

RLA 	 CY WILL BE OFF 
SUB 	C 	 TRIAL SUBTRACT DIVISOR 
JR 	NC, $ + 3 	SUBTRACT OK 
ADD 	A, C 	RESTORE ACCUM, SET CY 
DJNZ LOOP88 
LD 	B, A 	 PUT REMAINDER IN B 
LD 	A, E 	 GET QUOTIENT 
RLA 	 SHIFT IN LAST RESULT BIT 
CPL 	 COMPLEMENT BITS 
RET 

Note: the "S" symbol in the sixth instruction represents the value of the 
program counter. 
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Non Restoring Division 

The following program performs a 16-bit by 15-bit integer division, 
using a non-restoring technique. IX points to the dividend, IY to the 
divisor (not zero). (see Figure 3.34.). 

DVD,HI 

COUNTER DVD,L0 C 

DIVISOR 
	

E 

REM 
	

L 

DVD ADDRESS 

DVS ADDR 

Fig. 3.34: Non-Restoring Division—The Registers 

Register B is used as a counter, initially set to 16. 
A and C contain the dividend. 
D and E contain the divisor. 
H and L contain the result. 
The I6-bit dividend is shifted left by: 

RL C 
RLA 

The remainder is shifted left by: 
ADC HL, HL. 

The final quotient is left in B, C, with the remainder in HL. The 
program follows. 

A 

B 

D 

H 

IX 

IY 
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DIVI6 	LD 	B, (IX + 1) 
LD 	C, (IX) 
LD 	D,(IY + 1) 
LD 	E, (IY) 
LD 	A, D 
OR 	E 	 (DIVISOR) HIGH OR 

(DIVISOR) LOW 
JR 	Z, ERROR CHECK FOR DIVISOR = 

ZERO 
LD 	A, B 	GET (DVD) HI 
LD 	HL, 0 	CLEAR RESULT 
LD 	B, 16 	COUNTER 

TRIALSB RL 	C 	 ROTATE RESULT + ACC 
LEFT 

RLA 
ADC 	HL, HL 	LEFT SHIFT. NEVER SETS 

CARRY. 
SBC 	HL, DE 	MINUS DIVISOR 

NULL CCF 	 RESULT BIT 
JR 	NC, NGV 	ACCUMULATOR 

NEGATIVE? 
PTV 	DJNZ TRIALSB COUNTER ZERO? 

JP 	DONE 
RESTOR RL 	C 	 ROTATE RESULT + ACC 

LEFT 
RLA 
ADC 	HL, HL 	AS ABOVE 
AND A 
ADC 	HL, DE 	RESTORE BY ADDING DVSR 
JR 	C, PTV 	RESULT POSITIVE 
JR 	Z, NULL 	RESULT ZERO 

NGV 	DJNZ RESTOR 	COUNTER ZERO? 
DONE RL 	C 	 SHIFT IN RESULT BIT 

RLA 
ADD 	HL, DE 	CORRECT REMAINDER 
LD 	B, A 	QUOTIENT IS IN B, C 
RET 
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Exercise 3.28: Compare the previous program to the following one, us-
ing a restoring technique: 

DIVIDEND IN AC 
DIVISOR IN DE 
QUOTIENT IN AC 
REMAINDER IN HL 

DIV'S LD HL, 0 	CLEAR ACCUMULATOR 
LD 	B, 16 	 SET COUNTER 

LOOPI6 RL 	C 	 ROT ACC-RESULT LEFT 
RLA 
ADC 	HL, HL 	LEFT SHIFT 
SBC 	HL, DE 	TRIAL SUBTRACT DIVISOR 

JR 	NC, $ + 3 	SUB WAS OK 
ADD HL, DE 	RESTORE ACCUM 
CCF 	 CALC RESULT BIT 
DJNZ LOOPI6 	COUNTER NOT ZERO 
RL 	C 	 SHIFT IN LAST RESULT BIT 

RLA 
RET 

Note: The symbol "5" means "current location" (eighth instruction). 

LOGICAL OPERATIONS 

The other class of instructions which can be executed by the ALU in-
side the microprocessor is the set of logical instructions. They include: 
AND, OR and exclusive OR (XOR). In addition, one can also include 
here the shift and rotate operations which have already been utilized, 
and the comparison instruction, called CP for the Z80. The individual 
use of AND, OR, XOR, will be described in Chapter 4 on the instruc-
tion set. 

Let us now develop a brief program which will check whether a given 
memory location called LOC contains the value "0", the value "1", or 
something else. 

The program will introduce the comparison instruction, and perform 
a series of logical tests. Depending on the result of the comparison, one 
program segment or another will be executed. 
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The program appears below: 

LD 	A, (LOC) 	READ CHARACTER IN 
LOC 

CP 	00H 	COMPARE TO ZERO 
JP 	Z, ZERO 	IS IT A 0? 
CP 	0111 	COMPARE TO ONE 
JP 	Z, ONE 

NONEFOUND 

ZERO 

ONE 

The first instruction: "LD A, (LOC)" reads the contents of memory 
location LOC, and loads it into the accumulator. This is the character 
we want to test. It is compared to the value 0 by the following instruc-
tion: 

CP OOH 

This instruction compares the contents of the accumulator to the hex-
adecimal value "00", i.e., the bit pattern "0000 0000" This compari-
son instruction will set the Z bit in the flags register to the value "I", if 
it succeeds. This bit can then be tested by the next instruction: 

JP 	Z, ZERO 

The jump instruction tests the value of the Z bit. If the comparison suc-
ceeds, the Z bit has been set to one, and the Jump will succeed. The pro-
gram will then jump to the address ZERO. If the test fails, then the next 
sequential instruction will be executed: 

CP 01H 

Similarly, the following jump instruction will branch to location ONE 
if the comparison succeeds. If none of the comparisons succeed, then 
the instruction at location NONEFOUND will be executed. 

JP 	Z, ONE 
NONEFOUND 
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This program was introduced to demonstrate the value of the com-
parison instruction followed by a jump. This combination will be used 

in many or the following programs. 

Exercise 3.29: Refer to the definition of the LD A, (LOCI instruction in 
the next chapter. Evannne the effect of this instruction on the flags, if 
any. Is the second instruction of this program necessary (CP 0010? 

Exercise 3.30: Write the program which will read the contents of 
menuny location "24" and branch to an address called' STAR"if there 
was a "*" on memory location 24. The bit pattern for a "*" in binary 
notation will be assumed to be represented by "00101010". 

INSTRUCTION SUMMARY 

We have now studied most of the important instructions of the Z80 
by using them. We have transferred values between the memory and the 
registers. We have performed arithmetic and logical operations on such 
data. We have tested it, and depending on the results of these tests, 
have executed various portions or the program. In particular, special 
"automated" Z80 instructions such as DJNZ have been used to shorten 
programs. Other automated instructions: LDDR, CPIR, INIR will be 
introduced throughout the remainder of this book. 

Full use has been made of special Z80 features, such as 16-bit register 
instructions to simplify the programs, and the reader should be careful 
not to use these programs on an 8080: they have been optimized for the 
Z80. 

We have also introduced a structure called a loop. Another impor-
tant programming structure will be introduced now: the subroutine. 

SUBROUTINES 

In concept, a subroutine is simply a block of instructions which has 
been given a name by the programmer. From a practical standpoint, a 
subroutine must start with a special instruction called a subroutine 
declaration, which identifies it as such for the assembler. It is also ter-
minated by another special instruction called a return. Let us first il-
lustrate the use of a subroutine in a program in order to demonstrate its 
value. Then, we will examine how it is actually implemented. 
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MAIN PlitGli•A. 

SU5a0U1041 

Fig. 3.35: Subroutine Calls 

The use of a subroutine is illustrated in Figure 3.35. The main pro-
gram appears on the left of the illustration. The subroutine is shown 
symbolically on the right. Let us examine the subroutine mechanism. 
The lines of the main program are executed successively until a new in-
struction "CALL SUB" is met. This special instruction is the 
subroutine call and results in a transfer to the subroutine. This means 
that the next Instruction to be executed after the CALL SUB is the first 
instruction within the subroutine. This is illustrated by arrow I on the 
illustration. 

Then, the subprogram within the subroutine executes just like any 
other program. We will assume that the subroutine does not contain 
any other calls. The last instruction of this subroutine is a RETURN. 
This is a special instruction which will cause a return to the main pro-
gram. The next instruction to be executed after the RETURN is the one 
followina the CALL SUB in the main program. This is illustrated by ar-
row 3 on the illustration. Program execution continues then, as il-
lustrated by arrow 4. 

In the body of the main program a second CALL SUB appears. A 
new transfer occurs, shown by arrow 5. This means that the body of the 
subroutine is again executed following the CALL SUB instruction. 

Whenever the RETURN within the subroutine is encountered, a 
return occurs to the instruction following the CALL SUB in question. 
This is illustrated by arrow 7. Following the return to the main pro-
gram, program execution proceeds normally, as illustrated by arrow 8. 

The effect of the two special instructions CALL SUB and RETURN 
should now he clear. What is the value of the subroutine mechanism? 

The essential value of the subroutine is that it can be called from any 
number of points in the main program, and used repeatedly without 
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rewrsting u. A first advantage is that this approach saves memory 
space, since there is no need to rewrite the subroutine every time. A se-
cond advantage is that the programmer can design a specific subroutine 
only once and then use it repeatedly. This is a significant simplification 
in program design. 

Exercise 3.31: What is the main disadvantage of a subroutine? (Answer 

follows.) 

The disadvantage of the subroutine should be clear just by examining 
the now of execution between the main program and the subroutine. A 
subroutine results in a slower execution, since extra instructions must 
be executed: the CALL SUB and the RETURN. 

Implementation of the Subroutine Mechanism 

We will examine here how the two special instructions, CALL SUB 
and RETURN, are implemented internally within the processor. The 
effect of the CALL SUB instruction is to cause the next instruction to 
be letched at a new address. You will remember (or else read Chapter 
I again) that the address of the next instruction to be executed in a 
computer is contained in the program counter (PC). This means that 
the effect of the CALL SUB is to substitute new contents in register PC. 
Its effect is to load the start address of the subroutine in the program 
counter. Is that really sufficient? 

To answer this question, let us consider the other instruction which 
has to be Implemented: the RETURN. The RETURN must cause, as its 
name indicates, a return to the instruction that follows the CALL SUB. 
This is possible only if the address of this instruction has been preserved 
somewhere. This address happens to be the value of the program 
counter at the time that the CALL SUB was encountered. This is 
because the program counter is automatically incremented every time it 
is used (read Chapter I again). This is precisely the address that we want 
to preserve, so that we can later perform the RETURN. 

The next problem is: where can we save this return address? This ad-
dress must be saved in a location where it is guaranteed that it will not 
be erased. 

However, let us now consider the following situation, illustrated by 
Figure 3.36. In this example, subroutine I contains a call to SUB2. Our 
mechanism should work in this case as well. Naturally, there might even 
be more than two subroutines, say N "nested" calls. Whenever a new 
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CALL is encountered, the mechanism must therefore again store the 
program counter. This implies that we need at least 2N memory loca-
tions for this mechanism. Additionally, we will need to return from 
SUB2 first and SUBI next. In other words, we need a structure which 
can preserve the chronological ordering in which addresses have been 
saved. 

The structure has a name and has already been introduced. It is the 
stack. Figure 3.38 shows the actual contents of the stack during suc-
cessive subroutine calls. Let us look at the main program first. At ad-

dress 100, the first call is encountered: CALL SUBI. We will assume 
that, in this microprocessor, the subroutine call uses 3 bytes (RST is an 
exception). The next sequential address is therefore not "101", but 
"103". The CALL instruction uses addresses "100", "101", "102"-
Because the control unit of the Z80 "knows" that it is a 3-byte instruc-
tion, the value of the program counter, when the call has been com-
pletely decoded, will be "103". The effect of the call will be to load the 
value "280" in the program counter. "280" is the starting address of 
SUBI. 

Fig. 3.36: Nested Calls 

We are now ready to demonstrate the effect of the RETURN instruc-
tion and the correct operation of our stack mechanism. Execution pro-
ceeds within SUB2 until the RETURN instruction is encountered at 
time 3. The effect of the RETURN instruction is simply to pop the top 
of the stack into the program counter. In other words, the program 
counter is restored to its value prior to the entry into the subroutine. 
The top of the stack in our example is "303". Figure 3.38 shows that, at 
time 3, value "303" has been removed from the stack and has been put 
back into the program counter. As a result, instruction execution pro-
ceeds from address "303". At time 4, the RETURN of SUBI is encoun-
tered. The value on top of the stack is "103". It is popped and is in-

stalled in the program counter. As a result, program execution will pro-
ceed from location "103" on within the main program. This is, indeed, 
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the effect that we wanted. Figure 3.38 shows that at time 4 the stack is 
again empty. The mechanism works. 

The subroutine call mechanism works up to the maximum dimension 
of the stack. This is why early microprocessors which had a 4- or 
8-register stack were essentially limited to 4 or 8 levels of subroutine 
calls. 

Note that, on Figures 3.36 and 3.37, the subroutines have been 
shown to the right of the main program. This is only for the clarity of 
the diagram. In reality, the subroutines are typed by the user as regular 
instructions of the program. On a sheet of paper, when producing the 
listing of the complete program, the subroutines may be at the begin-
ning of the text, in its middle, or at the end. This is why they are pre-
ceded by a subroutine declaration: they must be identified. The special 
instructions tell the assembler that what follows should be treated as a 
subroutine. Such assembler directives will be discussed in Chapter 10. 

Fig. 3.38: Stack vs. Time 
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Z80 Subroutines 

The basic concepts relating to subroutines have now been presented. 
It has been shown that the stack is required in order to implement this 
mechanism. The Z80 is equipped with a 16-bit stack-pointer register. 
The stack can therefore reside anywhere within the memory and may 
have up to 64K (1K = 1024) bytes, assuming they are available for that 
purpose. In practice, the start address for the stack, as well as its max-
imum dimension, will be defined by the programmer before writing his 
program. A memory area will then be reserved for the stack. 

The subroutine-call instruction, in the case of the Z80, is called 
CALL, and comes in two versions; the direct or unconditional call, 
such as CALL ADDRESS, is the one we have already described. In ad-
dition, the Z80 is equipped with a conditional call instruction which will 
call a subroutine if a condition is met. For example: CALL NZ, SUBI 
will result in a call to subroutine 1 if the Z flag is zero at the time of the 
test. This is a powerful facility, since many subroutine calls are 
conditional, i.e., occur only if some specific condition is met. 

CALL CC, NN is executed only if the condition specified by "CC" 
is true. CC is a set of three bits (bits 3, 4, and 5 of the opcode) which 
may specify up to eight conditions. They correspond respectively to the 
four flags "Z", "C", "Ply", "S" being either zero or non-zero. 

Similarly, two types of return Instructions are provided: RET and 
RET CC. 

RET is the basic return instruction. It occupies one byte, and causes 
the top two bytes of the stack to be re-installed in the program counter. 
It is unconditional. 

RET CC has the same effect except that it is executed only if the con-
ditions specified by CC are true. The condition bits are the same as for 
the CALL instruction just described. 

Additionally, two specialized types of return are available which are 
used to terminate interrupt routines: RETI, RETN. They are described 
in the section on the Z80 instructions as well as in the section on inter-
rupts. 

Finally, one more specialized instruction is provided which is analo-
gous to a subroutine call, but allows the program to branch to only one 
of eight starting locations located in page zero. This is the RST P in-
struction. This is a one-byte instruction which automatically preserves 
the program counter in the stack, and causes a branch to the address 
specified by the three-bit P field. The P field corresponds to bits 3, 4 
and 5 of the insrtuction, multiplied by eight. 
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In other words, if bits 3, 4, 5 are "000", the jump will occur to loca-
tion 00H. If these bits are "001", the branch will occur to 08H, ctc. up 
to I I I, which will cause a branch to location 38H. The RST instruction 
is very efficient in terms of speed since it is a single-byte instruction. 
However, it can jump to only eight locations, in page 0. Additionally, 
these addresses in page 0 are only eight bytes apart. This instruction is a 
carry-over from the 8080 and was extensively used for interrupts. This 
will be described in the interrupt section. However, this instruction may 
be used for any other purpose by the programmer, and should be con-
sidered as a possible specialized subroutine call. 

Subroutine Examples 

Most of the programs that we have developed and are going to 

develop would usually be written as subroutines. For example, the 
multiplication program is likely to be used by many areas of the pro-
gram. In order to facilitate and clarify program development, it is 
therefore convenient to define a subroutine whose name would be, for 
example, MULT. At the end of this subroutine we would simply add 

the instruction RET. 

Exercise 3.32: If MULT is used as a subroutine, would it "damage" 
any internal flags or registers? 

Recursion 

Recursion is a word used to indicate that a subroutine is calling itself. 
If you have understood the implementation mechanism, you should 
now be able to answer the following question: 

Exercise 3.33: Is it legal to let a subroutine call itself? (In other words, 

will everything work even if a subroutine calls itself?) If you are not 
sure. drays; the slack and fill it with the successive addresses. Then, look 
at the registers and memory (see Exercise 3.18) and determine if a pro-
blem exists. 

Interrupts will be discussed in the input/output chapter (Chapter 6). 
All returns except returns from interrupts are one-byte instructions; all 
calls are 3-byte instructions (except RST). 

Exercise 3.34: Look at the execution tunes of the CALL and the RET 
instructions in the next chapter. Why is the return from a subroutine so 
much faster than the CALL? (Hint: if the answer is not obvious, look 
again at the stack implementation of the subroutine mechanism, and 
analyze the internal operations that must be performed.) 
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Subroutine Parameters 

When calling a subroutine, one normally expects the subroutine to 
work on some data. For example, in the case of multiplication, one 
wants to transmit two numbers to the subroutine which will perform 
the multiplication. We saw in the case of the multiplication routine that 
this subroutine expected to find the multiplier and the multiplicand in 
given memory locations. This illustrates one method of passing para-
meters: through memory. Two other techniques are used, so that we 
have three ways of passing parameters. 

I—through registers 
2—through memory 
3—through the stack 

Registers can be used to pass parameters. This is an advantageous 
solution, provided that registers are available, since one does not need 
to use a fixed memory location: the subroutine remains memory-inde-
pendent. If a fixed memory location is used, any other user of the sub-
routine must be very careful that he uses the same convention and that 
the memory location is indeed available (look at Exercise 3.19 above). 
This is why, in many cases, a block of memory locations is reserved 
simply to pass parameters among various subroutines. 

Using memory has the advantage of greater flexibility (more data), 
but results in poorer performance and also in tying the subroutine to a 
given memory area. 

Depositing parameters in the stack has the same advantage as using 
registers: it is memory-independent. The subroutine simply knows that 
it is supposed to receive, say, two parameters which are stored on top of 
the stack. Naturally, it has disadvantages: it clutters the stack with data 
and, therefore, reduces the number of possible levels of subroutine 
calls. It also significantly complicates the use of the stack, and may re-
quire multiple stacks. 

The choice is up to the programmer. In general, one wishes to remain 
independent from actual memory locations as long as possible. 

If registers are not available, a possible solution is the stack. How-
ever, if a large quantity of information should be passed to a sub-
routine, this information may have to reside directly in the memory. An 
elegant way around the problem of passing a block of data is simply to 
transmit a pointer to the information. A pointer is the address of the 
beginning of the block. A pointer can be transmitted in a register, or in 
the stack (two-stack locations can be used to store a 16-bit address), or 
in a given memory location(s). 
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Finally, if neither of the two solutions is applicable, then an agree-
ment may be made with the subroutine that the data will be at some 
fixed memory location (the "mail-box"). 

Exercise 135: Which of the three methods above is best for recursion? 

Subroutine Library 

There is a strong advantage to structuring portions of a program into 
identifiable subroutines: they can be debugged independently and can 
have a mnemonic name. Provided that they will be used in other areas 
of the program, they become shareable, and one can thus build a 
library of useful subroutines. However, there is no general panacea in 
computer programming. Using subroutines systematically for any 
group of instructions that can be grouped by function may also result in 
poor efficiency. The alert programmer will have to weigh the advan-
tages against the disadvantages. 

SUMMARY 

This chapter has presented the way information is manipulated inside 
the Z80 by instructions. Increasingly complex algorithms have been in-
troduced and translated into programs. The main types of instructions 
have been used and explained. 

Important structures such as loops, stacks and subroutines, have 
been defined. 

You should now have acquired a basic understanding of program-
ming, and of the major techniques used in standard applications. Let 
us study the instructions available. 
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A=00 DC=0000 DE=0000 HL=0000 5=0300 P=0100 0100' LD DC.(0200) 
A 1=00 B 1=0000 1l 1=0000 H 1=0000 X=0000 Y=0000 1=00 (0200') 

A=00 Dc=0003 0E-0000 HL=0000 S-0300 P=0104 0104' LD 0.00 
4'-00 D'=0000 D'=0000 H'=0000 X=0000 Y=0000 1=00 

A=00 BC=0803 DE=0000 HL=0000 5=0300 P=0106 0106' LD DE.(0202) 
A'=00 D'=0000 0'=0000 H'=0000 X=0000 1=0000 1=00 (0202' 1  

A=00 BC=0803 DE=0005 HL=0000 5=0300 P=010A 0104' LD Dr00 
A'=00 B'=0000 D'=0000 H'=0000 X=0000 1=0000 1=00 

A=00.BC=0803 DE=0005 HL=0000 S=0300 P=010C 010C' LD HLr0000 
A'=00 B'=0000 De=0000 H'=0000 X=0000 Y=0000 1=00 (0000') 
A=00 BC=0803 DE=0005 HL=0000 5=0300 P=010F 010F .  SRL C 

A'=00 D'=0000 0'=0000 H'=0000 X=0000 1=0000 1=00 
C A=00 BC=0801 DE=0005 HL=0000 5=0300 P=0111 0111' JR NC.0114 

AP=00 D'=0000 D'=0000 H'=0000 X=0000 1=0000 1=00 (0114') 
C A=00 DC=0801 DE=0005 HL=0000 5=0300 P=0113 0113' ADD HLrDE 

A'=00 B'=0000 D'=0000 H'=0000 X=0000 Y=0000 1=00 
A=00 BC=0801 DE=0005 HL=0005 5=0300 P=0114 0114' SLA E 

A'=00 D'=0000 D'=0000 H'=0000 X=0000 1=0000 1=00 
V A=00 BC=0801 DE=000A HL=0005 5=0300 P=0116 0116' RL 0 

A'=00 D'=0000 D'=0000 H'=0000 X=0000 1=0000 1=00 
Z V A=00 BC=0801 DE=0004 HL=0005 5=0300 P=0118 0118' DEC B 

A'=00 Er'=0000 0'=0000 H'=0000 X=0000 1=0000 1=00 
N A=00 BC=0701 DE=000A HL=0005 5=0300 P=0119 0119' JP NZ.010F 

A'=00 D'=0000 D'=0000 H'=0000 X=0000 1=0000 1=00 (010F.) 
N A=00 DC=0701 DE=000A HL=0005 5=0300 P=010F 010F' SRL C 

A'=00 D'=0000 D'=0000 H'=0000 X=0000 1=0000 1=00 
2 V C 4=00 BC=0700 DE=0004 HL=0005 5=0300 P=0111 0111' JR NCr0/14 

A'=00 B'=0000 D'=0000 H'=0000 X=0000 1=0000 1=00 (0114'1 
2 V C A=00 BC=0700 DE=000A HL=0005 5=0300 P=0113 0113' ADD HL.DE 

A'=00 D'=0000 D'=0000 H'=0000 X=0000 1=0000 1=00 
Z V 4=00 DC=0700 DE=000A HL=000F 5=0300 P=0114 0114' SLA C 

A'=00 W=0000 0'=0000 EV=0000 X=0000 1=0000 1=00 
V A=00 DC=0700 DE=0014 HL=000F 5=0300 P=0116 0116' RL D 

A'=00 B'=0000 D'=0000 H'=0000 X=0000 1=0000 1=00 
2 V 4=00 PC=0700 DE=0014 HL=000F 5=0300 P=0118 0118' DEC D 

A'=00 11=0000 1r=0000 H'=0000 X=0000 1=0000 1=00 
N 4=00 17=0600 0E=0014 FIL=000F 5=0300 P=0119 0119' JP 82.010F 

A'=00 D'=0000 D'=0000 H'=0000 X=0000 1=0000 1=00 (010F') 
N 4=00 DC=0600 DE=0014 HL=000F S=0300 P=010F 010F' SRL C 

A'=00 D'=0000 D'=0000 H'=0000 X=0000 1=0000 1=00 
Z V A=00 BC=0600 DE=0014 HL=000F 5=0300 P=0111 0111' JR NC.0114 

A'=00 P'=0000 D'=0000 H'=0000 X=0000 1=0000 1=00 !0114' 1  
2 V 4=00 DC=0600 DE=0014 HL=000F 5=0300 P=0114 0114' 5LA E 

A'=(10 D'=0000 D 1=0000 H'=0000 X=0000 1=0000 1=00 
V A=00 DC=0600 DE=0028 HL=000F 5=0300 P=0116 0116' RL Si 

A'=00 D'=0000 D'=0000 H'=0000 X=0000 1=0000 1=00 
Z V A=00 DC=0600 DE=0028 HL=000F 5=0300 P=0118 0110' DEC D 

A'=00 D'=0000 EP=0000 H'=0000 X=0000 1=0000 1=00 
N AN00 DC=0500 DE=0020 HL=000F 5=0300 P=0119 0119' JP AZ.010F 

A'=00 D'=0000 D'=0000 H'=0000 X=0000 1=0000 1=00 (010F .1  
N 4=00 BC=0500 DE=0028 HL=000F 5=0300 P=010F 010F' SRL C 

A'=00 B'=0000 D'=0000 W=0000 X=0000 1=0000 1=00 
Z V 4=00 DC=0500 DE=0020 HL=000F 5=0300 P=0111 0111' JR NC.0114 

A'=00 D'=0000 D'=0000 H'=0000 X=0000 1=0000 1=00 .0114') 
2 V A=00 DC=0500 DE=0028 HL=000F 5=0300 P-0114 0114' SLA 

A'=00 D'=0000 D'=0000 H'=0000 X=0000 1=0000 1=00 
V A=00 DC=0500 DE=0050 HL=000F S=0300 F'=0116 0116' RL D 

A'=00 D'=0000 D'=0000 H'=0000 X=0000 1=0000 1=00 
Z V 4=00 DC=0500 DE=0050 HL=000F 5=0300 P=0118 011B' DEC F. 

A'=00 D'=0000 D'=0000 11'=0000 X=0000 Y=0000 1=00 
N 4=00 DC=0400 DE=0050 HL=000F 5=0300 P=0117 0119' JP NZ.010F 

A'=00 p'=0000 0'-0000 14'-0000 X=0000 1=0000 1=00 .010F') 
N A=00 DC=0400 DE=0050 HL=000F 5=0300 P=010F 010F' SRL 

A'=00 B'=0000 D'=0000 H'=0000 X=0000 1=0000 1=00 

Fig. 3.39: Multiplication: A Complete Trace 
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Z V A=00 BC=0400 DE=0050 HL=000F 5=0300 P=0111 0111' JR HC.0114 
A'=00 D'-0000 D'=0000 H'=0000 Y-0000 Y-0000 1=00 (0114') 

Z V A=00 PC=0400 DE=0050 HL=000F 5=0300 P=0114 0114' SLA C 

A'=00 D'=0000 D'=0000 4'=0000 X=0000 Y=0000 1=00 

5 V A=00 BC=0400 DE=0040 HL=000F 5=0300 P=0116 0116' RL D 
A'=00 D'=0000 D'=0000 H'=0000 X=0000 Y=0000 1=00 

2 V A=00 BC=0400 DE=0000 HL=000F 5=0300 P=0118 0118' DEC B 
A'=00 D'=0000 D'=0000 H'=0000 X=0000 Y=0000 1=00 

N A=00 BC--0300 DE=0040 HL=000F 5=0300 P=0119 0119' JP NZ) 010I 
A'=00 D'=0000 D'=0000 H'=0000 X=0000 Y=0000 1=00 (0)01'') 

N A=00 DC=0300 DE=00A0 HL=000F S=0300 P=010F OlOr SRL C 
A'=00 ir-0000 D'=0000 H'=0000 X=0000 Y=0000 1=00 

Z V A=00 BC=0300 DE=0000 HL=000F 5=0300 P=0111 0111' JR NC,0114 
A'=00 Ec=0000 11'=0000 H'=0000 X=0000 Y,0000 e=00 (0111'1 

Z V A=00 BC=0300 DE=0000 HL=000F 5=0300 P-0114 0114' SLA 
A'=00 D'=0000 1I'=0000 11'=0000 X=0000 Y=0000 1=00 

C A=00 BC-0300 DE=0040 HL=000F 5=0300 P=0116 0116' RL P 
A'=00 11'=0000 D'=0000 H'=0000 X=0000 Y=0000 1=00 

A=00 BC=0300 DE=0140 HL=000F 5=0300 P=0118 0118' DEC 0 
A'=00 W=0000 D'=0000 H'=0000 X=0000 Y=0000 1=00 

N 4=00 DC=0200 DE=0140 HL=000F 5=0300 P=0119 0119' JP 142.010F 
A'=00 E0=0000 D'=0000 H'=0000 X=0000 Y=0000 I-00 (010F') 

N A=00 BC=0200 DE=0140 HL=000F 5=0300 P=010F 010F' SRL C 
4'=00 D'=0000 D'=0000 H'=0000 X=0000 Y=0000 1=00 

Z V A=00 DC=0200 DE=0140 HL=000F 5=0300 P=0111 0111' JR NC,0114 
A'=00 B'=0000 D'=0000 14'=0000 X=0000 Y=0000 1=00 (0114') 

Z V A=00 BC=0200 DE=0140 HL=000F 5=0300 P=0114 0114' SLA r 
A'=00 Ir=0000 0'=0000 H'=0000 X=0000 Y=0000 T=00 

S A=00 PC=0200 DE=0180 HL=000F 5=0300 P=0116 0116' RL D 
A'=00 11'=0000 D'=0000 H'=0000 X=0000 Y=0000 1=00 

A=00 DC=0200 0E=0280 0L=000F 5=0300 1-0118 0110' DEC 
A'=00 P'=0000 D'=0000 H'=0000 X=0000 Y=0000 1=00 

N 4=00 0C=0100 DE=0280 HL=000F 5=0300 P=0119 0119' JP 02.010F 
A'=00 D'=0000 D'=0000 H'=0000 X=0000 Y=0000 1=00 (010F') 

N 4=00 BC=0100 DE=0280 HL=000F 5=0300 P=010F 010F' SRL C 
A'=00 B'=0000 D'=0000 111=0000 X=0000 1=0000 1=00 

V A=00 BC=0100 DE=0280 HL=000F 5=0300 P=0111 0111' JR NC.0114 
A'=00 D'=0000 D'=0000 H'=0000 X=0000 Y=0000 I=00 (0114') 

Z V A=00 DC=0100 DE-0280 HL=000F 5=0300 P=0114 0114' SLA 
A'=00 D'=0000 D'=0000 H'=0000 X=0000 Y=0000 1=00 

Z V C A=00 BC=0100 DE-0200 HL=000F 5=0300 P=0116 0116' RL D 
A'=00 D'=0000 D'=0000 H'=0000 X=0000 Y=0000 1=00 

V A=00 DC=0100 DE=0500 HL=000F 5=0300 P=0118 0110' DEC B 
A'=00 D'=0000 D'=0000 H'=0000 X=0000 Y-0000 I-00 

Z N A=00 DC=0000 DE=0500 HL=000F 5=0300 P=0119 0117' JP N2)010F 
A'=00 D'=0000 D'=0000 H'=0000 X=0000 Y=0000 1-00 (0101'') 

Z N A=00 DC=0000 DE=0500 HL=000F 5=0300 P=011C 011C' LEI (0204)THL 
A'=00 11 1=0000 D'=0000 H'=0000 X=0000 Y=0000 1=00 (0204') 

Z N A=00 BC=0000 DE=0500 HL=000F 5=0300 P=01IF 01IF' NOP 
A'=00 D'=0000 D'=0000 0'=0000 x=0000 Y=0000 1=00 

Fig. 3.39: Multiplication: A Complete Trace (continued) 
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ANSWERS TO EXERCISE 3.18 (MULTIPLICATION): 
CROMEMCO COOS ZOO ASSIMPLEC verclo. 02.r0 PACT 000, 

0000' 0001 	 ORR 01001 
(02001 0002 mono° 	DI_ 020011 
(0202) 0003 MPDAD 	DL 020211 
(0204) 0004 RESAD 	01 0204H 

0005 
0100 E0400002 0006 MP400 	LD DC.(MPRATO ;LOAD MULTIMIER INTO 1: 
0104 0600 0007 	 LP 0.0 ;II 	IS PIT COUNTER 
0106 (05010203 0000 	 LP 01:F(011010 ;LOA0 muiumcnon Iwo E 
0100 1600 0009 	 LD 0,0 ;CLEAR 0 
0101 210000 0010 	 LI. nl..0 :611 	0E5111A 	TO 0 
010F CD39 0011 	MOLT 	SRL C ;SHIFI 	MOLITILIER 017 	107U CARRY 
0111 3001 0012 	 JR NC,NUAVO 17151 CARRY 
0113 19 0003 	 APT. HL.DE ;ATM 0110 TO RESULT 
0114 CD23 0014 NOADD 	SLA F 1510E1 	0110 LEFT 
0116 C012 0015 	 RL D ;SAVE BIT 	III 0 
0110 on 0016 	 KC D :1ECNEMEN1 	SHIFT COUNTER 
0119 020101 0017 	 JP NIrAULI :00 	11 	AGAIN 	IF COUNTER 	._ 0 
011C 220402 0010 	 LD IRESAD/tHL ;STORE PLaULp 
0111 100001 0019 	 CRP 

Errors 

Fig. 3.40: The Multiplication Program (Hex) 

LABEL INSTRUCTION BC C 
(CARRY) 

D E HL 

00 00 

r 0
 0
 0
 0
 0
 0
 ._

 _
 0

 0
 0
 0
 0
 ._

 _
 0

 0
 0
 0
 0 

00 00 00 00 

MP488 LD BC, (0200) 00 03 00 00 00 00 

LD B4 O8 08 03 00 00 00 00 

LD DE, (0202) 08 03 00 05 00 00 

LD D,00 08 03 00 05 00 00 

LD HL,0000 08 03 00 05 00 00 

MULT SRL C 08 01 00 05 00 00 

JR NC.0114 08 01 00 05 00 00 

ADD HL,DE 08 01 00 05 00 05 

NOADD SLA E 08 01 00 OA 00 05 

RL D 08 01 00 OA 00 05 

DEC B 07 01 00 OA 00 05 

JP NZ.010F 07 01 00 OA 00 05 

MULT SRL C 07 00 00 OA 00 05 

JR NC.0114 07 00 00 OA 00 05 

ADD HL,DE 07 00 00 OA 00 OF 

NOADD SLA E 07 00 00 14 00 OF 

RL D 07 00 00 14 00 OF 

DEC B 06 00 00 14 00 OF 

JP NZ,010F 06 00 00 14 00 OF 

Fig. 3.41: Two Iterations Through the Loop 
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THE Z80 INSTRUCTION SET 

INTRODUCTION 

This chapter will first analyze the various classes of instructions 
which should be available in a general-purpose computer. It will then 
analyze one by one all of the instructions available for the Z80, and ex-
plain in detail their purpose and the manner in which they affect flags 
or can be used in conjunction with various addressing modes. A de-

tailed discussion of addressing techniques will be presented in Chapter 
5. 

CLASSES OF INSTRUCTIONS 

Instructions may be classified in many ways, and there is no stan-
dard. We will here distinguish five main categories of instructions: 

I—data transfers 
2—data processing 
3—test and branch 
4—input/output 
5—control 

Let us now examine each of these classes of instructions in turn. 

Data Transfers 

Data transfer instructions will transfer data between registers, or be-
tween a register and memory, or between a register and an input/output 
device. Specialized transfer instructions may exist for registers which 

play a specific role. For example, push and pop operations 
are provided for efficient stack operation. They will move a word of 
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data between the top of the stack and the accumulator in a single in-
struction, while automatically updating the stack-pointer register. 

Data Processing 

Data processing instructions fall into five general categories: 

1—arithmetic operations (such as plus/minus) 
2—bit manipulation (set and reset) 
3—increment and decrement 
4—logical operations (such as AND, OR, exclusive OR) 
5—skew and shift operations (such as shift, rotate) 

It should be noted that, for efficient data processing, it is desirable to 

have powerful arithmetic instructions, such as multiply and divide. 
Unfortunately, they are not available on most microprocessors. It is 
also desirable to have powerful shift and skew instructions, such as 
shift n bits, or a nibble exchange, where the right half and the left half 
of the byte are exchanged. These are also usually unavailable on most 
microprocessors. 

Before examining the actual Z80 instructions, let us recall the dif-
ference between a shift and a rotation. The shift will move the contents 
of a register or a memory location by one bit location to the left or to 
the right. The bit falling out of the register will go into the carry bit. 
The bit coming in on the other side will be a "0" except in the case of an 
"arithmetic shift right," where the MSB will be duplicated. 

In the case of a rotation, the bit coming out still goes in the carry. 
However, the bit coming in is the previous value which was in the carry 
bit. This corresponds to a 9-bit rotation. It is often desirable to have a 
true 8-bit rotation where the bit coming in on one side is the one falling 

from the other side. This is not provided on most microprocessors 
but is available on the Z80 (see Figure 4.1). 

Finally, when shifting a word to the right, it is convenient to have one 
more type of shift, called a sign extension or an "arithmetic shift 
right." When doing operations on two's complement numbers, parti-
cularly when implementing floating-point routines, it is often necessary 
to shift a negative number to the right. When shifting a two's comple-
ment number to the right, the bit which must come in on the left side 
should be a "I" (the sign should get repeated as many times as needed 
by the successive shifts). This is the arithmetic shift right. 
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SHIFT LEFT 

CARRY 

ROTATE LEFT 

Test and Jump 

The test instructions will test bits in the specified register for "0" or 
"1", or combinations. At a minimum, it must be possible to test the 
flags register. It is, therefore, desirable to have as many flags as pos-
sible in this register. In addition, it is convenient to be able to test for 
combinations of such bits with a single instruction. Finally, it is 
desirable to be able to test any bit position in any register, and to test 
the value of a register compared to the value of any other register 
(greater than, less than, equal). Microprocessor test instructions are 
usually limited to testing single bits of the flags register. The Z80, how-
ever, offers better facilities than most. 

The jump instructions that may be available generally fall into 
three categories: 

I—the jump, which specifies a full 16-bit address 
2—the relative jump, which often is restricted to an 8-bit displace- 

ment field 
3—the call, which is used with subroutines 
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It is convenient to have two- or even three-way jumps, depending, for 
example, on whether the result of a comparison is "greater than," "less 
than," or "equal." It is also convenient to have skip operations, which 
will jump forward or backwards by a few instructions. However, a 
"skip" is equivalent to a "jump." Finally, in most loops, there is 
usually a decrement or increment operation ,at the end, followed by a 

test-and-branch. The availability of a single-instruction increment/ 
decrement plus test-and-branch is, therefore, a significant advan-
tage for efficient loop implementation. This is not available in most 
microprocessors. Only simple branches, combined with simple tests,are 
available. This, naturally, complicates programming and reduces effi-
ciency. In the case of the Z80, a "decrement and jump" instruction is 
available. However, it only tests a specific register (B) for zero. 

Input/Output 

Input/output instructions are specialized instructions for the hand-
ling of input/output devices. In practice, a majority of the 8-bit micro-
processors use memory-mapped I/O: input/output devices are con-
nected to the address bus just like memory chips, and addressed as 
such. They appear to the programmer as memory locations. All 
memory-type operations normally require 3 bytes and are, therefore, 
slow. For efficient input/output handling in such an environment, it is 
desirable to have a short addressing mechanism available so that I/O 
devices whose handling speed is crucial may reside in page 0. However, 
if page 0 addressing is available, it is usually used for RAM memory, 
which prevents its effective use for input/output devices. The 
Z80, like the 8080, is equipped with specialized I/O instructions. As a 
result, in the case of the Z80, the designer may use either method: in-
put/output devices may be addressed as memory devices, or else as in-
put/output devices, using the I/O instructions. 

They will be described later in this chapter. 

Control Instructions 

Control instructions supply synchronization signals and may suspend 
or interrupt a program. They can also function as a break or a simu-
lated interrupt. (Interrupts will be described in Chapter 6 on In-
put/Output Techniques.) 
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THE Z80 INSTRUCTION SET 

Introduction 

The Z80 microprocessor was designed to be a replacement for the 
8080, and to offer additional capabilities. As a result of this design 
philosophy, the Z80 offers all the instructions of the 8080, plus addi-
tional instructions. In view of the limited number of bits available in an 
8-bit opcode, one may wonder how the designers of the Z80 succeeded 
in implementing many additional ones. They did so by using a few 
unused 8080 opcodes and by adding an additional byte to the opcode 
for indexed operations. This is why some of the Z80 instructions oc-
cupy up to five bytes in the memory. 

It is important to remember that any program can be written in many 
different ways. A thorough knowledge and understanding of the in-
struction set is indispensable for achieving efficient programming. 
However, when learning how to program, it is not essential to write op-
timized programs. During a first reading of this chapter, it is therefore 
unimportant to remember all the various instructions. It is important to 
remember the categories of instructions and to study typical examples. 
Then, when writing programs, the reader should consult the Z80 
instruction-set description, and select the instructions best suited to his 
needs. The various instructions of the Z80 will therefore be reviewed in 
this section with the intent of simplifying them and grouping them in 
logical categories. The reader interested in exploring the capabilities of 
the various instructions is referred to the individual descriptions of the 
instructions. 

We will now examine the capabilities provided by the Z80 in terms of 
the five classes of instructions which have been defined at the beginning 
of this chapter. 

Data Transfer Instructions 

Data transfer instructions on the Z80 may be classified in four 
categories: 8-bit transfers, 16-bit transfers, stack operations, and 
block transfers. Let us examine them. 

Eight-Bit Data Transfers 

All eight-bit data transfers are accomplished by load instructions. 
The format is: 

LD destination, source 

158 



THE Z80 INSTRUCTION SET 

For example, the accumulator A may be loaded from register B by 
using the instructions: 

LD A,B 

Direct transfers may be accomplished between any two of the 
working registers (ABCDEHL). 

In order to load any of the working registers, except for the accu-
mulator, from a memory location, the address of this memory loca-
tion must first be loaded into the H-L register pair. 

For example, in order to load register C from memory location 1234, 
register H and L will first have to be loaded with the value "1234". (A 
load instruction operating on 16 bits will be used. This is described in 
the following section.) 

Then, the instruction LD C, (HL) will be used and will accomplish 
the desired result. 

The accumulator is an exception. It can be loaded directly from any 
specified memory location. This is called the extended addressing 
mode. For example, in order to load the accumulator with the contents 
of memory location 1234, the following instruction will be used: 

LD A, (1234H) (Note the use of "( )" to denote "contents of.") 

The instruction will be stored in the memory as follows: 

address PC :3A (opcodo 
PC + 1:34 	(low order half of the address) 
PC + 2:12 	(high order half of the address) 

Note that the address is stored in "reverse order" in the instruction 
itself: 

3A 
	

low addr high addr 

All the working registers may also be loaded with any specified eight-bit 
value, or "literal," contained in the second byte of the instruction (this 
is called immediate addressing). An example is: 

LD E, 12H 

which loads register E with the value 12 hexadecimal. 
In the memory, the instruction appears as: 

	

PC: 1E 	(opcode) 

	

PC + 1: 12 	(literal operand) 
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As a result of this instruction, the immediate operand, or literal value 
will be contained in register E. 

The indexed addressing mode is also available for loading register 
contents, and will be fully described in the next chapter on addressing 
techniques. Other miscellaneous possibilities exist for loading specific 
registers, and a table listing all the possibilities is shown in Figure 4.2 
( tables supplied by Zilog, Inc.). The grey areas show instructions 
common with the 8080A. 
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Fig. 4.2: Eight-Bit Load Group—'LD' 

16-Bit Data Transfers 

Basically, any of the 16-bit register pairs, BC, DE, HL, SP, IX, IY, 
may be loaded with a literal 16-bit operand, or from a specified 
memory address (extended addressing), or from the top of the stack, 
i.e., from the address contained in SP. Conversely, the contents of these 
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register pairs may be stored in the same manner at a specified memory 
address or on top of the stack. Additionally, the SP register may be 
loaded from HL, IX, and IY. This facilitates creating multiple stacks. 
The register pair AF may also be pushed on top of the stack. 

The table listing all the possibilities is shown in Figure 4.3. The stack 
push and pop operations are included as parts of the 16-bit data 
transfers. All stack operations transfer the contents of a register pair to 
or from the stack. Note that there are no single push and pop instruc-
tions for saving individual eight-bit registers. 
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EXT. 

EXT. 
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Imo  
ED 
43 

ED 
53 
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a • n 

f(
73 
ED 

n n 

00 
22 
II n 

FD 
22 
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REG. 
NO 

Iv, II CI Di . IS OD 
ES 

FD 
ES 

NOTE: The Push Pop In busmen /Slim 
On IP et t envy essaroa• 

	
POP 
INSTRUCTIONS 

Fig. 4.3: 16-Bit Load Group—'LLY, 'PUSH' and 'POP' 

A double-byte push or pop is always executed on a register pair: AF, 
BC. DE, HL. IX, IY (see the bottom row and right-most column in 
Figure: 4.3). 

When operating on AF, BC, DE, HL, a single-byte is required for the 
instruction, resulting in good efficiency. For example, assume that the 

161 



PROGRAMMING THE Z80 

stack pointer SP contains the value "0100". The following instruc-
tion is executed: 

PUSH AF 

When pushing the contents of the register pair on the stack, the stack 
pointer SP is first decremented, then the contents of register A are de-
posited on top of the stack. Then the SP is decremented again, and the 
contents of F are deposited on the stack. At the end of the stack trans-
fer, SP points to the top element of the stack, which in our example 
is the value of F. 

It is important to remember that, in the case of the Z80, the SP 
points to the top of the stack and the SP is decremented whenever a 
register pair is pushed. Other conventions are often used in other pro-
cessors, and this may be a source of confusion. 

IMPLIED ADDRESSING 

AF BC. DE & HL HL IX IV 

IMPLIED 

AF OB 

BC, 
DE 
& 
HL 

D9 

DE EB 

REG. 
INDIR. 

(SP) ES DD 
E3 

FD 
E3 

Fig. 4.4: Exchanges 'EX and 'EXX' 

Exchange Instructions 

Additionally, a specialized mnemonic EX has been reserved for ex-
change operations. EX is not a simple data transfer, but a dual data 
transfer. It actually changes the contents of two specified locations. EX 
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may be used to exchange the top of the stack with HL, IX, IY and also 
to swap the contents of DE and HL and AF and AF' (remember that 
AF' stands for the other AF register pair available in the Z80). 

Finally, a special EXX instruction is available to exchange the con-
tents of BC, DE, HL with the contents of the corresponding registers in 
the second register bank of the Z80. 

The possible exchanges are summarized in Figure 4.4. 

SOURCE 

REG. 
INDIA. 

(HL) 

DESTINATION 
REG.
INDI R. IDE/  

ED 
AO 

'LDI' — Load IDEkrt—IHL) 
Inc HL & DE, Dec BC 

ED 
BO 

'LDIR. — Load IDE/-aa—IHL) 
Inc HL & DE. Dec BC. Repeat until BC • 0 

ED 
AB 

'LDD' — Load (DEI-as—(11L) 
Dec HL & OE. Dec BC 

ED 
BB 

'LDDR' — Load IDE)-00—IHL) 
Dec HL & DE, Dec BC, Repeat until BC n0 

Reg HL points to source 
Reg DE points to destination 
Rag BC is byte counter 

Fig. 4.5: Block Transfer Group 

Block Transfer Instructions 

Block transfer instructions are instructions which will result in the 
transfer of a block of data rather than a single or double byte. Block 

transfer instructions are more complex for the manufacturer to imple-
ment than most instructions and are usually not provided on micropro-
cessors. They are convenient for programming, and may improve the 
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performance of a program, especially during input/output operation. 
Their use and advantages will be demonstrated throughout this book. 
Some automatic block transfer instructions are available in the case of 
the Z80. They use specific conventions. 

All block transfer instructions require the use of three pairs of 
registers: BC, DE, HL: 

BC is used as a I6-bit counter. This means that up to 216  = 64K bytes 
may be moved automatically. HL is used as the source pointer. It may 
point anywhere in the memory. DE is used as the destination pointer 
and may point anywhere in the memory. 

Four block transfer instructions are provided: 

LDD, LDDR, LDI, LDIR 

All of them decrement the counter register BC with each transfer. Two 
of them decrement the pointer registers DE and HL, LDD and LDDR, 
while the two others increment DE and HL, LDI and LDIR. For each 
of these two groups of instructions, the letter R at the end of the 
mnemonic indicates an automatic repeat. Let us examine these instruc-
tions. 

LDI stands for "load and increment." It transfers one byte from the 
memory location pointed to by H and L to the destination in the 
memory pointed to by D and E. It also decrements BC. It will automati-
cally increment H and L and D and E so that all register pairs are pro-
perly conditioned to perform the next byte transfer whenever required. 

LDIR stands for "load increment and repeat," i.e., execute LDI 
repeatedly until the counter registers BC reach the value "0", It is used 
to move a continuous block of data automatically from one memory 
area to another. 

LDD and LDDR operate in the same way except that the address 
pointer is decremented rather than incremented. The transfer therefore 
starts at the highest address in the block instead of the lowest. The ef-
fect of the four instructions is summarized in Figure 4,5. 

Similar automated instructions are available for CP (compare) and 
are summarized in Figure 4.6. 

Data Processing Instructions 

Arithmetic 

Two main arithmetic operations are provided: addition and subtrac-
tion. They have been used extensively in the previous chapter. There are 
two types of addition, with and without carry, ADC and ADD respec- 
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HL points to location in memory 
to be compared with accumulator 
contents 

BC is byte counter 

Fig. 4.6: Block Search Group 

Lively. Similarly, two types of subtraction are provided with and 
without carry. They are SEC and SUB. 

Additionally, three special instructions are provided: DAA, CPL, 
and NEG. The Decimalitdjust Accumulator instruction DAA has been 
used to implement BCD operations. It is normally used for each BCD 
add or subtract. Two complementation instructions also are available. 
CPL will compute the one's complement of the accumulator, and NEG 
will negate the accumulator into its complement format(two's comple-
ment). 

All the previous instructions operate on eight-bit data. 16-bit opera-
tions are more restricted. ADD, ADC, and SBC are available on 
specific registers, as described in Figure 4.8. 

Finally, increment and decrement instructions are available which 
operate on all the registers, both in an eight-bit and a 16-bit format. 
They are listed in Figure 4.7 (eight-bit operations) and 4.8 (16-bit opera-
tions). 
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SOURCE 

REGISTER ADDRESSING 
REG. 

INDIR. INDEXED IMMED. 

A B C 0 E H L IHLI 0X4111 IIY+d) n 

'ADD' 07 90 II ft ID 111 N N 
OD 
86 
d 

FO 
86 
d 

03 
n 

ADD w CARRY 
'ADC 

a a a SA SO SC SO BE 
DO 
BE 
d 

FO 
BE 
d 

CE 
• 

SUBTRACT 
CUB' 

PI 10 91 N. 93 99 N N 
OD 
96 
d 

FO 
96 
d 

04 
• . 

SUB w CARRY 
'SBC 

OP N' N IA'- . OB OE SO N' 
DO 
9E 
d 

ED 
9E 
d 

DE 
rt 

'AND' Al AO Al Al. AU Al AB Al 
DD 
AG 
d 

FD 
AB 
d 

Ea 
• 

%OR' AP Al AS M All AC AD Al 
OD 
AE 
d 

FO 
AE 
d 

EE 
• 

THY 117 BO 111 02 03 BE N N 
CD 
B6 
d 

FD 
a 
d 

Fl 
• 

COMPARE 
'CP 

BE N N BA N BC BO BE 
00 
BE 
d 

FD 
BE 
a 

WE 
it 

INCREMENT 
'INC 

3C OS OC 14 IC 24 EC 34 
DD 
34 
d 

FD 
34 
d 

DECREMENT 
'DEC' 

JD S OD 11 1D OS 2D 3P1 
DD 
35 

FO 
35 
d 

Fig. 4.7: Eight-Bit Arithmetic and Logic 

Note that, in general, all arithmetic operations modify some of the 
flags. Their effect is fully described in the instruction descriptions later 
in this chapter. However, it is important to note that the INC and DEC 
instructions which operate on register pairs do not modify any of the flags. 
This detail is important to keep in mind. This means that if you incre-
ment or decrement one of the register pairs to the value "0", the Z-bit 
in the flags register F will not be set. The value of the register must be 
explicitly tested for the value "0" in the program. 

Also, it is important to remember that the instructions ADC and SBC 
always affect all the flags. This does not mean that all the flags will 
necessarily be different after their execution. However, they might. 
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SOURCE 

BC DE HI. SP IX IV 

'ADD' 

HI. 09 19 29 39 

IX DO 
09 

130 
19 

DD 
39 

DD 
29 

IV FD 
09 

FD 
19 

FD 
39 

FD 
29 

ADD WITH CARRY AND 
SET FLAGS 	ADC' 

HL ED 
4A 

ED 
5A 

ED 
6A 

ED 
7A 

SUB WITH CARRY AND 
SET FLAGS 	'SBC' 

HL ED 
42 

ED 
52 

ED 
62 

ED 
72 

INCREMENT 	'INC' 03 13 23 33 DO 
23 

FD 
23 

DECREMENT 	•DEC' OB 18 2B 3B DD 
28 

FD 
26 

Fig. 4.8: Sixteen Bit Arithmetic and Logic 

Logical 

Three logical operations are provided: AND, OR (inclusive) and 
XOR (exclusive), plus a comparison instruction CP. They all operate 
exclusively on eight-bit data. Let us examine them in turn. (A table list-
ing all the possibilities and operation codes for these instructions is part 
of Figure 4.7.) 

AND 

Each logical operation is characterized by a truth table, which ex-
presses the logical value of the result in function of the inputs. The 
truth table for AND appears below: 

167 



0 AND 0 =0 
0 AND I =0 
I AND 0 = 0 
I AND 1 = 1 

Or 

AND 0 

0 
	

0 
	

0 

0 
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The AND operation is character zed by the fact that the output is 
"1" only if both inputs are "1". In other words, if one of the inputs is 
"0", it is guaranteed that the result is "0". This feature is used to zero 
a bit position in a word. This is called "masking." 

One of the important uses of the AND instruction is to clear or 
"mask out" one or more specified bit positions in a word. Assume for 
example that we want to zero the right-most four-bit positions in a 
word. This will be performed by the following program: 

	

LD 	A. WORD 	WORD CONTAINS '10101010' 

	

AND 	11110000B 	'11110000' IS MASK 

Let us assume that WORD is equal to '10101010'. The result of this 
program is to leave the value '10100000' in the accumulator. "B" is 
used to indicate a binary value. 

Exercise 4.1: Write a three-line program which will zero bits 1 and 6 of 
WORD. 

Exercise 4.2: What happens with a MASK = '11111111'? 

OR 

This instruction is the inclusive OR operation. It is characterized by 
the following truth table: 

0 OR 0 =0 
	

OR 
	

0 
0 OR 1 = 1 
1 OR 0 = I 
1 OR 1 = I 

The logical OR is characterized by the fact that if one of the operands 
is "I", then the result is always "I". The obvious use of OR is to set 
any bit in a word to "I". 

Let us set the right-most four bits of WORD to l's. The program is: 

LD A, WORD 
OR 	A, 00001111B 
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0 XOR 0 =0 
0 XOR 1 = 1 
1 XOR 0 = 1 
1 XOR I = 0 

XOR 0 1 

0 
	

0 
	

1 

1 
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Let us assume that WORD did contain '10101010'. The final value of 
the accumulator will be '10101111' 

Exercise 4.3: What would happen if we were to use the instruction 

OR 10101111B? 

Exercise 4.4: What is the effect of ORing with "FF" hexadecimal? 

XOR 

XOR stands for "exclusive OR." The exclusive OR differs from the 
inclusive OR that we have just described in one respect: the result is 
"1" only if one, and only one, of the operands is equal to "1". If both 
operands are equal to "1", the normal OR would give a "1" result. 
The exclusive OR gives a "0" result. The truth table is: 

The exclusive OR is used for comparisons. If any bit is different, the 
exclusive OR of two words will be non-zero. In addition, in the case of 
the Z80, the exclusive OR may be used to complement a word, since 
there is no complement instruction on anything but the accumulator. 
This is done by performing the XOR of a word with all ones. The pro-
gram appears below: 

LD r. WORD 
XOR, 11111111 B 
LD r, A 

where "r" designates the register. 
Let us assume that WORD contained "10101010". The final value of 

the register will be "01010101", You can verify that this is the comple- 
ment of the original value. 

XOR can be used to advantage as a "bit toggle." 

Exercise 4.5: What is the effect of XOR using a register with "00" hex-
adecimal? 

Skew Operations (Shift and Rotate) 

Let us first differentiate between the shift and the rotate operations, 
which are illustrated in Figure 4.9. In a shift operation, the contents of 
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the register are shifted to the left or to the right by one bit position. The 
bit which falls out of the register goes into the carry bit C, and the bit 
which comes in is zero. This was explained in the previous section. 

SHIFT LEFT 

n n (-1 

 

    

CARRY 

ROTATE tin 

Fig. 4.9: Shift and Rotate 

One exception exists: it is the shift-right-arithmetic. When perform-
ing operations on negative numbers in the two's complement format, 
the left-most bit is the sign bit. In the case of negative numbers it is 
"I". When dividing a negative number by "2" by shifting it to the 
right, it should remain negative, i.e., the left-most bit should remain a 
"1". This is performed automatically by the SRA instruction or Shift 
Right Arithmetic. In this arithmetic shift right, the bit which comes in 
on the left is identical to the sign bit. It is "0" if the left-most bit was a 

"0", and "1" if the left-most bit was a "1". This is illustrated on the 
right of Figure 4.10, which shows all the possible shift and rotate opera-
tions. 

Rotations 

A rotation differs from a shift by the fact that the bit coming into the 
register is the one which will fall from either the other end of the 
register or the carry bit. Two types of rotations are supplied in the case 
of the Z80: an eight-bit rotation and a nine-bit rotation. 

The nine-bit rotation is illustrated in Figure 4.11. For example, in the 
case of a right rotation, the eight bits of the register are shifted right by 
one bit position. The bit which falls off the right part of the register 
goes, as usual, into the carry bit. At this time the bit which comes in on 
the left end of the register is the previous value of the carry bit (before it 
is overwritten with the bit falling out.) In mathematics this is called a 

nine-bit rotation since the eight bits of the register plus the ninth bit (the 
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carry bit) are rotated to the right by one bit position. Conversely, the 
left rotation accomplishes the same result in the opposite direction. 

•••.•••.••••••••••••••. 

Fig. 4.10: Rotates and Shifts 

REGISTER 	0 

RIGHT ri 

7 

LEFT n 

REGISTER 	0 

Fig. 4.11: Nine-Bit Rotation 

The eight-bit rotation operates in a similar way. Bit 0 is copied into 
bit seven, or else bit seven is copied into bit 0, depending on the direc-
tion of the rotation. In addition, the bit coming out of the register is 
also copied in the carry bit. This is illustrated by Figure 4.12. 

7 
RIGHT 

LEFT 

Fig. 4.12: Eight-Bit Rotation 
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Special Digit Instructions 

Two special digit-rotate instructions are provided to facilitate BCD 
arithmetic. The result is a four-bit rotation between two digits con-
tained in the memory location pointed to by the HL registers and one 
digit in the lower half of the accumulator. This is illustrated by Figure 
4.13. 

RIGHT: 

ADDRESS 

A 

MEMORY 

	10END'e"".1 

MEMORY 

LEFT: 

Fig. 4.13: Digit Rotate Instructions (Rotate Decimal) 

Bit Manipulation 

It has been shown above how the logical operations may be used to 
set or reset bits or groups of bits in specific registers. However, it is con-
venient to set or reset any bit in any register or memory location with a 
single instruction. This facility requires a considerable number of op-
codes and is therefore usually not provided on most microprocessors. 
However, the Z80 is equipped with extensive bit-manipulation 
facilities. They are shown in Figure 4.14. This table also includes the 
test instructions which will be described only in the next section. 
,Two special instructions are also available for operating on the carry 

flag. They are CCF (Complement Carry Flag) and SCF (Set Carry 
Flag). They are shown in Figure 4.15. 

Test and Jump 

Since testing operations rely heavily on the use of the flags register, 
we will here describe in detail the role of each of the flags. The contents 
of the flags register appear in Figure 4.16. 
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Fig. 4.14: Bi Manipulation Group 

173 



PROGRAMMING THE Z80 

Decimal Adjust Ace. 'DAA' 27 

Complement Acc, 'CP L' 2F 

Negate Acc. 'NEG' ED 
(Ts complement) 04 

Complement Carry Flag, 'CCF' 3F 

Set Carry Flag, 'SCF' 37 

Fig. 4.15: General-Purpose AF Operations 

7 6 5 4 3 2 
	

0 

H 
	

P/V N C 

TI 	(T) 
	

(T) 
	

(1) 

Fig. 4.16: The Flags Register 

C is the carry, N is add or subtract, P/V is parity or overflow, H is half 
carry, Z is zero, S is sign. Bits 3 and 5 of the flags register are not used 

— "). The two flags H and N are used for BCD arithmetic and cannot 
be tested. The other four flags (C, P/V, Z, S) can be tested in conjunc-
tion with conditional jump or call instructions. 

The role of each flag will now be described. 

Carry (C) 

In the case of nearly all microprocessors, and of the Z80 in par-
ticular, the carry bit assumes a dual role. First, it is used to indicate 
whether an addition or subtraction operation has resulted in a carry (or 
borrow). Secondly, it is used as a ninth bit in the case of shift and rotate 
operations. Using a single bit to perform both roles facilitates some 
operations, such as a multiplication operation. This should be clear 
from the explanation of the multiplication which has been presented in 
the previous chapter. 
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When learning to use the carry bit, it is important to remember that 
all arithmetic operations will either set it or reset it. depending on the 
result of the instructions. Similarly, all shift and rotation operations use 
the carry bit and will either set it or reset it, depending on the value of 
the bit which comes out of the register. 

In the case of logical instructions (AND, OR, XOR), the carry bit 
will always be reset. They may be used to zero the carry explicitly. 

Instructions which affect the carry bit are: ADD A,s; ADC A,s; 
SUB s; SBC A,s; CP s: NEC: AND s; OR s; XOR s; ADD DD,ss; ADC 
HL,ss; SBC HL,ss; RLA; RLCA; RRA; RRCA; RL m; RLC m: RR m: 
RRC m; SLA m; SRA m; SRL m; DDA; SCE; CCF; NEG s: 

Subtract (N) 
This flag is normally not used by the programmer, and is used by the 

Z80 itself during BCD operations. The reader will remember from the 
previous chapter that, following a BCD add or subtract, a DAA 
(Decimal Adjust Accumulator) instruction is executed to obtain the 
valid BCD results. However, the "adjustment" operation is different 
after an addition and after a subtraction. The DAA therefore executes 
differently depending on the value of the N flag. The N flag is set to 
"0" after an addition and is set to a "1" after a subtraction. 

The symbol used for this flag, "N", may be confusing to program-
mers who have used other processors, since it may be mistaken for the 
sign bit. It is an internal operation sign bit. 

N is set to "0" by: ADD A,s; ADC A,s; AND s;ORs; XOR s; INC s; 
ADD DD,ss; ADC HL.ss; RLA; RLCA; RRA; RRCA; RL m: RLC m; 
RR m; RRC m; SLA m; SRA m; SRL m; RLD; RRD; SCF; CCF; IN r, 
(C); LDI; LDD; LDIR; LDDR; LD A, I; LD A, R; BIT b, s. 

N is set to "1" by: SUB s; SBC A,s; CP s; NEC; DEC m; SBC HL, ss; 
CPL; INI; IND; OUTI; OUTD; INIR; INDR; OTIR; OTDR; CPI: 

CPIR; CPD; CPDR. 

Parity/Overflow (13/ V) 
The parity/overflow flag performs two different functions. Specific 

instructions will set or reset this flag depending on the parity of the 
result; parity is determined by counting the total number of ones in the 
result. If this number is odd, the parity bit will be set to "0" (odd pari-
ty). If it is even, the parity bit will be set to "1" (even parity). Parity is 
most frequently used on blocks of characters (usually in the ASCII for-
mat). The parity bit is an additional bit which is added to the seven-bit 
code representing the character, in order to verify the integrity of data 
which has been stored in a memory device. For example, if one bit in 
the code representing the character has been changed by accident, due 
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to a malfunction in the memory device (such as a disk or RAM 
memory), or during transmission, then the total number of ones in the 
seven-bit code will have been changed. By checking the parity bit, the 
discrepancy will be detected, and an error will be flagged. In particular, 
the flag is used with logical and rotate instructions. Also, naturally, 
during an input operation from an I/O device, the parity flag will in-
dicate the parity of the data being read. 

For the reader familiar with the Intel 8080, note that the parity flag in 
the 8080 is used exclusively as such. In the case of the Z80, it is used for 
several additional functions. This flag should therefore be handled with 
care when going from one of the microprocessors to the other. 

In the case of the Z80, the second essential use of this flag is as an 
overflow flag (not available in the 8080). The overflow flag has been de-
scribed in Chapter 1, when the two's complement notation was intro-
duced. It detects the fact that, during an addition or subtraction, the 
sign of the result is "accidentally"changed due to the overflow of the 
result into the sign bit. (Recall that, using an eight-bit representation, 
the largest positive number is + 127, and the smallest negative number 
is —128 in two's complement.) 

Finally, this bit is also used, in the case of the Z80, for two unrelated 
functions. 

During the block transfer instructions (LDD, LDDR, LDI, LDIR), 
and during the search instructions (CPD, CPDR, CPI, CPIR), this flag 
is used to detect whether the counter register B has attained the value 
"0". With decrementing instructions, this flag is reset to "0" if the 
byte counter register pair is "0". When incrementing, it is reset if BC —
1 = 0 at the beginning of the instruction, i.e., if BC will be decremented 
to "0" by the instruction. 

Finally, when executing the two special instructions LD A, I and LD 
A.R. the P/V flag reflects the value of the interrupt enable flip-flop 
(IFF2). This feature can be used to preserve or test this value. 

The P flag is affected by: AND s; OR s; XOR s; RL m; RLC m; RR m; 
RRC m; SLA m; SRA m; SRL m; RLD; RRD; DAA; IN r,(C). 

The V flag is affected by: ADD A,s; ADC A,s; SUB s; SBC A,s; CP s; 
NEG; INC s; DEC m; ADC HL,ss; SBC HL,ss. 

It is also used by: LDIR; LDDR (set to "0"); LDI; LDD; CPI: 
CPIR; CPD; CPDR. 

The Half-Carry Flag (H) 

The half-carry flag indicates a possible carry from bit 3 into bit 4 dur-
ing an arithmetic operation. In other words, it represents the carry from 
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the low-order nibble (group of 4 bits) into the high order one. Clearly, it 
is primarily used for BCD operations. In particular, it is used internally 
within the microprocessor by the Decimal Adjust Accumulator (DAA1 
instruction in order to adjust the result to its correct value. 

This flag will be set during an addition when there is a carry from bit 
3 to bit 4 and reset when there is no carry. Conversely, during a subtract 
operation, it will be set if there is a borrow from bit 4 to bit 3, and reset 
if there is no borrow. 

The flag will be conditioned by addition, subtraction, increment, 
decrement, comparisons, and logical operations. 

Instructions which affect the H bit are: ADD A,r ; ADD A,s; SUB s; 
SBC A,s; CP s; NEG; AND s; OR s; XOR s; INC s; DEC m; RLA; 
RLCA; RRA; RRCA; RL in; RLC m; RR m; RRC in; SLA m; SR m; 
SRL m; RLD; RRD; DAA; CPL, SCF; IN r,(C) LDI; LLD; LDIR; 
LDDR; LD A: LD Air; BIT b,r. 

Note that the H bit is randomly affected by the 16-bit add and sub-
tract instructions, and by block input and output instructions. 

Zero (Z) 

The Z flag is used to indicate whether the value of a byte which has 
been computed, or is being transferred, is zero. It is also used with com-
parison instructions to indicate a match, and for other miscellaneous 
functions. 

In the case of an operation resulting in a zero result, or of a data 
transfer, the Z bit is set to "1" whenever the byte is zero. Z is reset to 
"0" otherwise. 

In the case of comparison instructions, the Z bit is set to "I" when-
ever the comparison succeeds and to "0" otherwise. 

Additionally, in the case of the Z80, it is used for three more functions: 
it is used with the BIT instruction to indicate the value of a bit being 
tested. It is set to "1" if the specified bit is "0" and reset otherwise. 

With the special "block input-output instructions" (INI, IND, 
OUTI, OUTD), the Z flag is set if D — I = 0, and reset otherwise; it is 
set if the byte counter will decrement to "0" (INIR, INDR, OTIR, 
OTDR). 

Finally, with the special instructions IN r,(C), the Z flag is set to "I" 
to indicate that the input byte has the value "0". 

In summary, the following instructions condition the value of the Z 
bit: ADD A,s; ADC A,s; SUB s; SBC A,s; CP s; NEG; AND s; OR s; 
XOR s; INC s; DEC in; ADC HL, ss; SBC HL,ss; RL in; RLC m; 
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RR m; RRC m; SLA m; SRA m; SRL m; RLD; RRD; DAA; IN r,(C); 
INI; IND; OUT!: OUTD; INIR; INDR; OTIR; OTDR; CPI; CPIR; 
CPD; CPDR; LD A, I; LD A, R; BIT b,s; NEG s. 

Usual instructions which do not affect the Z bit are: ADD DD,ss; 
RLA; RLCA; RRA; RRCA; CPL; SCF; CCF; LDI; LDD; LDIR; 
LDDR: INC DD; DEC DD. 

Sign (S) 

This flag reflects the value of the most significant bit of a result or of 
a byte being transferred (bit seven). In two's complement notation, the 
most significant bit is used to represent the sign. "0" indicates a posi-
tive number and a "1" indicates a negative number. As a result, bit 
seven is called the sign bit. 

In the case of most microprocessors, the sign bit plays an important 
role when communicating with input/output devices. Most micropro-
cessors are not equipped with a BIT instruction for testing the contents 
of any bits in a register or the memory. As a result, the sign bit is usual-
ly the most convenient bit to test. When examining the status of an in-
put/output device, reading the status register will automatically condi-
tion the sign bit, which will be set to the value of bit seven of the status 
register. It can then be tested conveniently by the program. This is why 
the status register of most input/output chips connected to micropro-
cessor systems have their most important indicator (usually ready/not 
ready) in bit position seven. 

A special BIT instruction is provided in the case of the Z80. 
However, in order to test a memory location (which may be the address 
of an I/O status register), the address must first be loaded into registers 
IX, IY or HL. There is no bit instruction provided to test a specified 
memory address directly (i.e., no direct addressing mode for this in-
struction). The value of positioning an input/output ready flag in bit 
position seven, therefore, remains intact, even in the case of the Z80. 

Finally, the sign flag is used by the special instruction IN, (C) to in-
dicate the sign of the data being read. 

Instructions which affect the sign bit are: ADD A,s; SUB s; SBC A,s; 
CP s; NEG; AND s; OR s; XOR s; INC s; DEC m; ADC HL, ss; SBC 
HL, ss; RL m; RLC m; RR m; RRC m; SLA m; SRA m; SRL m; RLD ; 
RRD; DAA; IN r,(C); CPR; CPIR; CPD; CPDR; LD A,I; LD A.r; 
NEG. 
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Summary of the Flags 

The flag bits are used to automatically detect special conditions with-
in the ALU of the microprocessor. They can be conveniently tested by 
specialized instructions, so that specific action can be taken in response 
to the condition detected. It is important to understand the role of the 
various indicators available, since most decisions taken within the pro-
gram will be taken in function of these flag bits. All jumps executed 
within a program will jump to specified locations depending on the 
status of these flags. The only exception involves the interrupt 
mechanism, which will be described in the chapter on input/output and 
may cause jumping to specific locations whenever a hardware signal is 
received on specialized pins of the Z80. 

At this point, it is only necessary to remember the main function of 
each of these bits. When programming, the reader can refer to the de-
scription of the instruction later in this chapter to verify the effect of 
every instruction of the various flags. Most flags can be ignored most of 
the time, and the reader who is not yet familiar with them should not 
feel intimidated by their apparent complexity. Their use will become 
clearer as we examine more application programs. 

A summary of the six flags and the way they are set or reset by the 
various instructions is shown in Figure 4.17. 

The Jump Instructions 

A branch instruction is an instruction which causes a forced bran-
ching to a specified program address. It changes the normal flow of 
execution of the program from a sequential mode into one where a dif-
ferent segment of the program is suddenly executed. Jumps may be 
conditional or unconditional. An unconditional jump is one in which 
the branching occurs to a specific address, regardless of any other con-
dition. 

A conditional jump is one which occurs to a specific address only if 
one or more conditions are met. This is the type of jump instruction 
used to make decisions based upon data or computed results. 

In order to explain the conditional jump instructions, it is necessary 
to understand the role of the flags register, since all branching decisions 
are based upon these flags. This was the purpose of the preceding sec-
tion. We can now examine in more detail the jump instructions pro-
vided by the Z80. 

Two main types of jump instructions are provided: jump instructions 
within the main program (they are called "jumps"), and the special 
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type of branch instructions used to jump to a subroutine and to return 
from it ("call" and "return"). As a result of any jump instruction, the 
program counter PC will be reloaded with a new address, and the usual 
program execution will resume from this point on. The full power of 
the various jump instructions can be understood only in the context of 
the various addressing modes provided by the microprocessor. This 
part of the discussion will be deferred until the next chapter, where the 
addressing modes are discussed. We will only consider here the other 
aspects of these instructions. 

Jumps may be unconditional (branching to a specified memory ad-
dress) or else conditional. In the case of a conditional jump, one of four 
flag bits may be tested. They are the Z, C, P/V, and S flags. Each of 
them may be tested for the value "0" or "1".  

The corresponding abbreviations are: 

Z = zero (Z = 1) 
NZ = non zero (Z = 0) 
C = carry (C = 1) 
NC = no carry (C = 0 ) 
P0= odd parity 
PE = even parity 
P = positive (S = 0) 
M = minus (S = 1) 

In addition, a special combination instruction is available in the Z80 
which will decrement the B register and jump to a specified memory ad-
dress as long as it is not zero. This is a powerful instruction used to ter-
minate a loop, and it has already been used several times in the previous 
chapter: it is the DJNZ instruction. 

Similarly, the CALL and the RET (return) instructions may be condi-
tional or unconditional. They test the same flags as the branch instruc-
tion which we have already described. 

The availability of conditional branches is a powerful resource in a 
computer and is generally not provided on other eight-bit micropro-
cessors. It improves the efficiency of programs by implementing in a 
single instruction what requires two instructions otherwise. 

Finally, two special return instructions have been provided in the case 
of interrupt routines. They are RETI and RETN. They will be described 
in the section of Chapter 6 on interrupts. 

The addressing modes and the opcodes for the various branches 
available are shown in Figure 4.18. 
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Fig. 4.18: Jump Instructions 

A detailed discussion of the various addressing modes is presented 
in Chapter 5. 

By examining Figure 4.18, it becomes apparent that many ad-
dressing modes are restricted. For example, the absolute jump JP nn 
can test four flags, while JR can only test two flags. 

Note an important observation: JR tends to be used whenever 
possible as it is shorter than JP (one less byte) and facilitates program 
relocation. However, JR and JP are not interchangeable: JR cannot 
test the parity or the sign flags. 
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One more type of specialized branch is available; this is the restart or 
RST instruction. It is a one-byte instruction which allows jumping to 
any one of eight starting addresses at the low end of the memory. Its 
starting addresses are, in decimal, 0. 8, 16, 24, 32, 40, 48 and 56. It is a 
powerful instruction because it is implemented in a single byte. It pro-
vides a fast branch, and for this reason is used essentially to respond to 
interrupts. However, it is also available to the programmer for other 
uses. A summary of the opcodes for this instruction is shown in Figure 
4.19. 

OP 
CODE 

A 

0000H  C7 'RST 0' 

'AST 8' 

'RST 16' 

0008H  

0010H 

L 

L 
0018H  'RST 24' 

0 
R 
E 

002°H E7 'RST 32' 
S 
S 

0028H 'RST 40' 

003°H 'RST 48' 

°°311H • FE 'RST 56' 

indicates a hexIdeclmal number. 

Fig. 4.19: Restart Group 

Input/Output Instructions 

Input/output techniques will be described in detail in Chapter 6. 
Simply, input/output devices may be addressed in two ways: as 
memory locations, using any one of the instructions that have already 
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been described, or using specific input/output instructions. Usual 
memory addressing instructions use three bytes: one byte for the op-
code and two bytes for the address. As a result, they are slow to ex-
ecute, since they require three memory accesses. The main purpose of 
specialized input/output instructions is to provide shorter and, 
therefore faster, instructions. However, input/output instructions have 

two disadvantages. 
First, they "waste" several of the precious few opcodes available 

(since usually only 8 bits are used to supply all opcodes necessary for a 
microprocessor). Secondly, they require the generation of one or more 
specialized input/output signals, and therefore "waste" one or more of 
the few pins available in the microprocessor. The number of pins is 

usually limited to 40. Because of these possible disadvantages, specific 

input/output instructions are not provided on most microprocessors. 
They are, however, provided on the original 8080 (the first powerful 
eight-bit general-purpose microprocessor introduced) and on the Z80, 
which we know is compatible with the 8080. 

The advantage of input/output instructions is to execute faster by re-
quiring only two bytes. However, a similar result can be obtained by 
supplying a special addressing mode called "page 0" addressing, where 
the address is limited to a field of eight bits. This solution is often 
chosen in other microprocessors. 

The two basic input/output instructions are IN and OUT. They 
transfer either the contents of the specified I/O locations into any of 
the working registers or the contents of the register into the I/O device. 
They are naturally two bytes long. The first byte is reserved for the op-
code, the second byte of the instruction forms the low part of the ad-
dress. The accumulator is used to supply the upper part of the address. 

It is therefore possible to select one of the 64K devices. However, this 
requires that the accumulator be loaded with the appropriate contents 
every time, and this may slow the execution. 

In the register-input mode, whose format is IN r. (C), the register 
pair B and C is used as a pointer to the I/O device. The contents of B 
are placed on the high-order part of the address bus. The contents of 
the specified I/O device are then loaded into the register designated by 
r. 

The same applies to the OUT instruction. 
Additionally, the Z80 provides a register-indirect mode, plus four 

specialized block-transfer instructions for input and output. 
The four block-transfer instructions on input are: INI, INIR 

(repeated INI), IND and INDR (repeated IND). Similarly, on output, 
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they are: OUTI, OTIR, OUTD, and OTDR. 
In this automated block transfer, the register pair H and L is used as 

a destination pointer. Register C is used as the I/O device selector (one 
out of 256 devices). In the case of the output instruction, H and L point 
to the source. Register B is used as a counter and can be incremented 
or decremented. The corresponding instructions on input are INI 
when incrementing and IND when decrementing. 

Ril is an automated single-byte transfer. Register C selects the input 
device. A byte is read from the device and is transferred to the memory 
address pointed to by H and L. H and L are then incremented by 1, and 
the counter B is decremented by I. 

INIR is the same instruction, automated. It is executed repeatedly 
until the counter decrements to "0". Thus, up to 256 bytes may be 
transferred automatically. Note that to achieve a total transfer of exact-
ly 256, register B should be set to the value "0" prior to executing this 
instruction. 	• 

The opcodes for the input and output instructions are summarized in 
Figures 4.20 and 4.21. 

Control Instructions 

Control instructions are instructions which modify the operating 
mode of the CPU or manipulate its internal status information. Seven 
such instructions are provided. 

The NOP instruction is a no-operation instruction which does 
nothing for one cycle. It is typically used either to introduce a deliberate 
delay (4 states = 2 microseconds with a 2MHz clock), or to fill the gaps 
created in a program during the debugging phase. In order to facilitate 
program debugging, the opcode for the NOP is traditionally all 0's. 
This is because, at execution time, the memory is often cleared, i.e., all 
0's. Executing NOP's is guaranteed to cause no damage and will not 
stop the program execution. 

The HALT instruction is used in conjunction with interrupts or a 
reset. It actually suspends the operation of the CPU. The CPU will then 
resume operation whenever either an interrupt or a reset signal is re-
ceived. In this mode, the CPU keeps executing NOP's. A halt is often 
placed at the end of programs during the debugging phase, as there is 
usually nothing else to be done by the main program. The program 
must then be explicitly restarted. 

Two specialized instructions are used to disable and enable the inter-
nal interrupt flag. They are El and DI. Interrupts will be described in 
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Chapter 6. The interrupt flag is used to authorize or not authorize the 
interruption of a program. To prevent interrupts from occurring during 
any specific portion of a program, the interrupt flip-flop (flag) may be 
disabled by this instruction. It will be used in Chapter 6. These in-
structions are shown in Figure 4.22. 

'NOP' 

-Tn 

'HALT' 

DISABLE INT 'IDII' F:5- - 

ENABLE INT 1E11' . • OB. -.: 

SET INT MODE 0 ED 
IMO' 46 

SET INT MODE 1 ED 
'IM1' 56 

SET INT MODE 2 ED 
'IM? SE 

8080A MODE 

CALL TO LOCATION 0038H  

INDIRECT CALL USING REGISTER 
I AND 8 BITS FROM INTERRUPTING 
DEVICE AS A POINTER. 

Fig. 4.22: Miscellaneous CPU Control 

Finally, three interrupt modes are provided in the Z80. (Only one is 
available on the 8080). Interrupt mode 0 is the 8080 mode, interrupt 1 is 
a call to location 038H, and interrupt mode 2 is an indirect call which 
uses the contents of the special register I, plus 8 bits provided by the in-
terrupting device as a pointer to the memory location whose contents 
are the address of the interrupt routine. These modes will be explained 
in Chapter 6. 
which will also be explained in Chapter 6. They are the IRQ and the 
NMI pins. 
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PROGRAMMING THE Z80 

SUMMARY 

The five categories of instructions available on the Z80 have now 
been described. The details on individual instructions are supplied in 
the following section of the book. It is not necessary to understand the 
role of each instruction in order to start to program. The knowledge of 
a few essential instructions of each type is sufficient at the beginning. 
However, as you begin to write programs by yourself, you should learn 
about all the instructions of the Z80 if you want to write good pro-
grams. Naturally, at the beginning, efficiency is not important, and this 
is why most instructions can be ignored. 

One important aspect has not yet been described. This is the set of 
addressing techniques implemented on the Z80 to facilitate the retrieval 
of data within the memory space. These addressing techniques will be 
studied in the next chapter. 
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THE Z80 INSTRUCTION SET 

THE Z80 INSTRUCTIONS: INDIVIDUAL DESCRIPTION 

ABBREVIATIONS 

FLAG ON OFF 

Carry 
Sign 
Zero 
Parity 

C (carry) 
M (minus) 
Z (zero) 
PE (even) 

NC (no carry) 
P (plus) 
NZ (non zero) 
PO (odd) 

changed functionally according to operation 
0 	flag is set to zero 

flag is set to one 
flag is set randomly by operation 

X 	special case, see accompanying note on that page 

bit positions 3 and 5 are always random 
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PROGRAMMING THE Z80 

ADC A, s 

Function: 

Formal: 

Add accumulator and specified operand with 
carry. 

A.—A+s+C 

s: may be r, n, (HL),(IX + d), or (IY + d) 

I 	1 

r 

n 

 

byte I: CE 

byte 2: immediate 
data 

 

0 0 0 

LI  0 

 

0 

I 	I 	I 

(IY + d) 
	

0 

0 

I 	T 

111.111 

8E 

byte I: DD 

byte 2: 8E 

byte 3: offset value 

byte I: FD 

byte 2: 8E 

byte 3: offset value 

(HL) 

(IX + d) 

r may be any one of: 

190 

A — Ill 
B — 000 
C — 001 
D — 010 

E — 011 
H — 100 
L — 101 



Byte Codes: 

Flags: 

Example: 

ADC A,r r: A B C 

ADC A, IA 

E H 

8F BB 89 BA BB 8C 80 

5 Z 
	

H 	 N C 

• • • • 0 • 

06 	1 	13 
	

F 	A 0 
	

F A 

OBJECT CODE 

 

THE Z80 INSTRUCTION SET 

Description: 

Data Flow: 

The operand s and the carry flag C from the status 
register are added to the accumulator, and the 
result is stored in the accumulator. s is defined in 
the description of the similar ADD instructions. 

B 
D 

Ar 

AIM E 

Timing: 
M cycles: T states: 

usec 
@ 2 MHz. 

r 1 4 2 
n 2 7 3.5 
(HL) 2 7 3.5 
(IX + d) 5 19 9.5 
(IY + d) 5 19 9.5 

Addressing Mode: r: implicit; n: immediate• (HL): indirect; (IX + 
d), (IY + d): indexed. 

Before: After: 
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SP 

fc 

,4r A 

PROGRAMMING THE Z80 

ADC HL, ss 	Add with carry HL and register pair ss. 

Function: 	 HL HL + ss + C 

Format: 
byte 1: ED 

0 	3 	5 
	 0 
	

0 
	

byte 2 

Description: 
	

The contents of the HL register pair are added to 
the contents of the specified register pair, and then 
the contents of the carry flag are added. The final 
result is stored back in HL. ss may be any one of: 

BC — 00 
	

HL — 10 
DE — 01 
	

SP— II 

Data Flow: 

Timing: 	 4 M cycles; 15 T states: 75 usec @ 2 MHz 

Addressing Mode: Implicit. 

Byte Codes: 
	

ss: 
	BC DE Hl SP 

ED- 4A 5A 6A 7A 
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S Z N C Flags: 
• • • 0 • 

After: 

H is set if there is a carry from bit 11. 

ADC HL, DE 

Before: 

THE Z80 INSTRUCTION SET 

F 41 fSSIAi,  

E D 3291 D 3291 

H OF18 L H Attr/ 

193 

OBJECT 
CODE 

Example: 



PROGRAMMING THE Z80 

ADD A, (HL) Add accumulator with indirectly addressed 
memory location (HL). 

Function: 

Formai: 

 

A A + (HL) 

 

   

0 0 0 0 0 86 

Description: The contents of the accumulator are added to the 
contents of the memory location addressed by the 
HL register pair. The result is stored in the ac-
cumulator. 

Data Flow: 

           

DATA 

            

            

            

      

AU) 

    

          

  

E 

          

             

             

            

MEMORY 

             

             

             

             

Timing: 	 2 M cycles; 7 T states: 3.5 usec @ 2 MHz 

Addressing Mode: Indirect. 

Flags: 5 Z H 	P/0 N C 

  

• • • • 0 
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H 
	

9620 H 
	

9620 

9620 9620 

THE Z80 INSTRUCTION SET 

Example: 	 ADD A, (HL) 

Before: 
	

After: 

A 02 A 

     

OBJECT CODE 
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byte I: DD 

byte 2: 86 

byte 3: offset value 

0 
	 0 

0 0 0 0 
	0 

I 	I 	IT
d I  

II 

PROGRAMMING THE Z80 

ADD A, (IX + d) Add accumulator with indexed addressed 

memory location (IX + d) 

Function: 	 A 4—  A + (IX + d) 

Format: 

Description: 	The contents of the accumulator are added to the 
contents of the memory location addressed by the 
contents of the IX register plus the immediate off-
set value. The result is stored in the accumulator. 

Data Flow: 

Timing: 
	

5 M cycles; 19 T states: 9.5 usec @ 2 MHz 

Addressing Mode: Indexed. 

Flags: 5 Z H 	PeCDNC 

  

• • • 0 • 
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',AT A 
0861 

A II  I 

IX 
	

01361 

0861 

0862 

0863 

0864 

OBJECT CODE 

 

A 

IX 

OB61 

0862 

0863 

0864 

THE Z80 INSTRUCTION SET 

Example: 	 ADD A, (IX + 3) 

Before: 
	

After: 
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1 	1 	1 	1 	1 	1 	_I 

byte I: FD 

byte 2: 86 

byte 3: offset value 

0 

0 a 0 0 

Data Flow: 

DATA 

ALU 

PROGRAMMING THE Z80 

ADD A, (IY + d) Add accumulator with indexed addressed 

memory location (IY + d) 

Function: 	 A 4--  A + (IY + d) 

Format: 

Description: 
	

The contents of the accumulator are added to the 
contents of the memory location addressed by the 
contents of the IY register plus the given offset 
value. The result is stored in the accumulator. 

          

          

          

          

Iv 

         

         

          

         

ADD 

Timing: 	 5 M cycles; 19 T states; 9.5 usec @ 2 MHz 

Addressing Mode: Indexed. 

Flags: S Z 1-1 	Plq) N C 

   

• • • • 0 • 
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THE Z80 INSTRUCTION SET 

Example: 	 ADD A, (IY + I 

Before: 
	

After: 

A 31 A ii 

   

IX 
	

002B  IX 
	

0026 

0026 

002C 

072B 

002C 

OBJECT 
CODE 
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Data Flow: 

— _ 
ADD 

n 

MEMORY 

E 

B 

D ALU 

PROGRAMMING THE Z80 

ADD A, n 	Add accumulator with immediate data n. 

Function: 	 A 4—  A + n 

Format: 
0 0 0 
	

byte I: C6 

byte 2: immediate 
data 

   

n 
111111  

Description: 
	

The contents of the accumulator are added to the 
contents of the memory location immediately 
following the op code. The result is stored in the 
accumulator. 

Timing: 	 2 M cycles; 7 T states: 3.5 usec @ 2 MHz 

Addressing Mode: Immediate. 

Flags: S Z H 	Pi® N C 

  

• • • • 0 • 

Example: 
	

ADD A. E2 

Before: 
	

After: 

    

A 43 A Alr A 

    

OBJECT CODE 

200 

    



ig 
Data Flow: 

B 

ADD A, r 

Function: 

Format: 

THE Z80 INSTRUCTION SET 

Add accumulator with register r. 

A A + r 

   

0 0 0 

Description: The contents of the accumulator are added with 
the contents of the specified register. The result is 
placed in the accumulator. r may be any one of: 

A — 1 I I 	 E — 011 
B — 000 	 H — 100 
C — 001 	 L — 101 

D — 010 

Timing: 	 1 M cycle; 4 T states: 2 usec @ 2 MHz. 

Addressing Mode: Implicit. 

Byte Codes: 	r: 

Flags: S Z H 	P/0 N C 

  

• • • S 0 

ABC  C D E HL 

87 BO  1 81  82 83 84 85 
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PROGRAMMING THE Z80 

Example: 	ADD A, B 

Before: 
	

After: 

A 3D A 

 

tcialm 

 

02 e 02 

OBJECT CODE 
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S Z H 	PA/ N C Flags: 
• 0 

THE Z80 INSTRUCTION SET 

ADD HL, SS 	Add HL and register pair ss. 

Function: 	HL HL + ss 

Format: 
0 0 S S 0 0 

Description: The contents of the specified register pair are 
added to the contents of the HL register pair and 
the result is stored in HL. ss may be any one of: 

BC — 00 
DE — 01 

HL — 10 
SP — 11 

Data Flow: 

     

A 

B 

D 

    

   

C 

E 

   

     

     

     

SP 

Timing: 	 3 M cycles; 11 T states: 5.5 usec @ 2 MHz 

Addressing Mode: Implicit. 

Byte Codes: 	ss: BC DE HI. SP 

 

09 19 29 39 

C is set by carry from bit 15, reset otherwise. 

H is set by a carry from bit 11 
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PROGRAMMING THE Z80 

Example: 	ADD HL, HL 

Before: 
	

After: 

0681 
	

L H OD62 H 

OBJECT 
CODE 
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THE Z80 INSTRUCTION SET 

ADD IX, rr 	Add IX with register pair rr. 

Function: 	 IX 4—  IX + rr 

Format: 
0 
	

0 
	

byte 1: DD 

0 0 
	 0 0 
	

byte 2 

Description: 
	The contents of the IX register are added to the 

contents of the specified register pair and the 
result is stored back in IX. rr may be anyone of: 

BC — 00 
	

IX—   t0 
DE — 01 
	

SP — 11 

( SP 

Timing: 	 4 M cycles: 15 T states: 7.5 usec @ 2 MI-1z 

Addressing Mode: Implicit. 

Byte Codes: 	rr• 	BC DE Ix SP 

DD- of; 19 29 39 

205 

Data Flow: 



0000 

3021 SP 

Before: 

ix 

SP 

After: 

i x 

3021 

PROGRAMMING THE Z80 

Flags: 5 z H 	P/V N C 

  

0 • 

H is set by carry out of bit 11. 
C is set by carry from bit 15. 

Example: 	 ADD IX, SP 

OBJECT 
CODE 
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THE ZOO INSTRUCTION SET 

ADD IY, rr 	Add IY and register pair rr. 

Function: 	 IY 	IY + rr 

Format: 
byte 1: FD 

0 0 
	

0 
	

byte 2 

Description: 
	

The contents of the IY register are added to the 
contents of the specified register pair and the 
result is stored back in 1Y. rr may be any one of: 

BC — 00 
	

IY — 10 
DE — 01 
	

SP — 11 

Datg Flow: 

          

         

         

          

          

  

A 
IB 

H 

       

         

         

         

          

  

IIY 

SP 

   

g OA 

   

         

          

          

Timing: 	 4 M cycles; 15 T states: 7.5 usec @ 2 MHz 

Addressing Mode: Implicit. 

Byte Codes: rr: BC DE IY SP 

  

FD- o; 19 29 39 
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E 	D 6122 

3051 

Before: 

D 

 

After: 

6122 

9173 

PROGRAMMING THE Z80 

Flags: 5 2 H 	P/V N C 

  

0 • 

H is set by carry out of bit 11. 
C is set by carry out of bit 15. 

Example: 	 ADD IY, DE 

OBJECT 
CODE 
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byte 1: E6 

byte 2: immediate 
data 

n 1 1 1 0 0 1 1 0 

IIIII 	r 
	 n 	  
III 	i 	1  

THE Z80 INSTRUCTION SET 

AND s 

Function: 

Format: 

Logical AND accumulator with operand s. 

 

A'—AAs 

 

 

s: may be r, n, (HL), (IX + d), or (IY + d) 

    

1 	i 
r 	0 1 0 0 

I 	I 

(IY + d) 

1 

0 i 0 0 i i 0 

1 
	

1 
	

0 
	

1 
	

1 
	

0 
	

1 

0 1 , 
	

0 
	

0 
	

1 
	

1 
	

0 

1 
	

I 
	

:i 
III  

     

1 
	

1 
	

t 
	

i 
	

0 

1 
	

0 

I 	I 	L_I
d  
iii 

A6 

byte 1: DD 

byte 2: A6 

byte 3: offset value 

byte I: FD 

byte 2: A6 

byte 3: offset value 

(HL) 

(IX + d) 

0 0 0 i 

r may be any one of: 

A — Ill 
B — 000 
C — 001 
D — 010 

E — 011 
H — 100 
L — 101 

Description: 
	

The accumulator and the specified operand are 
logically 'and'ed and the result is stored in the ac-
cumulator. s is defined in the description of the 
similar ADD instructions. 
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PROGRAMMING THE Z80 

Data Flow: 

A 

B 

H 

C 

E 

Timing: 
M cycles: T states: 

usec 
@ 2 MHz: 

r I 4 2 
n 2 7 3.5 
(HL) 2 7 3.5 
(IX + d) 5 19 9.5 
(IY + d) 5 19 9.5 

Addressing Mode: 

Byte Codes: 

r: 	implicit; 
d), (IY + 

AND r 

n: immediate; (HLI: indirect; (IX + 
d): indexed. 

, ABCDE 	HI 

A7 AO Al A2 A3 Ad A5 

Flags: 5 	Z N C 

• • • 0 0 

Example: AND 4B 

Before: After: 

A 36 ;"v 

   

OBJECT 
CODE 
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Data Flow: 

A 

B 

D 

H 

DATA 

E 

THE Z80 INSTRUCTION SET 

BIT b, (HL) 	Test bit b of indirectly addressed memory location 

(HL) 

Function: 

Format: 

Z (FIL)b 

 

0 
	0 	0 
	

byte 1: CB • 

0 
	

0 
	

byte 2 

Description: The specified bit of the memory location address-
ed by the contents of the HL register pair is tested 
and the Z flag is set according to the result. b may 
be any one of: 

0 — 000 	 4 — 100 
1 — 001 	 5 — 101 
2 — 010 	 6 — 110 
3 — 011 	 7 	111 

Timing: 	 3 M cycles; 12 T states; 6 usec GO 2 MHz 

Addressing Mode: Indirect. 

Flags: S Z H 	Ply N C 

• 0 
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H 
	

6A42 I H 
	

6A42 

6A42 6A42 

PROGRAMMING THE Z80 

Byte Codes: b: 0 I 2 3 4 5 6 7  

  

CB- 46 4E 56 5E 66 6E 76 7E 

Example: 	 BIT 3, (HL) 

Before: 	 After: 

CO F F 

OBJECT CODE 
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byte 1: DD 

byte 2: CB 

byte 3: offset value 

byte 4 

0 
	 0 

0 0 
	

0 

d 

0 
I 

•—• b 0 

THE Z80 INSTRUCTION SET 

BIT b, (IX + d) Test bit b of indexed addressed memory location 
(IX + d) 

Function: 	Z 4—  (IX + d)b 

Format: 

Description: 
	

The specified bit of the memory location address- 
ed by the contents of the IX register plus the given 
offset value is tested and the Z flag is set according 
to the result. b may be any one of: 

0 — 000 
1 — 001 

2 — 010 
3 — 011 
4 — 100 

5 — 101 
6 — 110 

7 — 111 

213 



Ix 
	

AAII IX 
	

AAII 

AA! I AAII 

OBJECT CODE 

PROGRAMMING THE Z80 

Timing: 	 5 M cycles; 20 T states: 10 usec @ 2 MHz 

Addressing Mode: Indexed. 

Byte Codes: 	b: 0 I 2 3 4 5 6 7 

OD-CB-d- 46 4E 56 SE 66 6E 76 7E 

Flags: S Z P/V N C 

  

Example: BIT 6, (IX + 0) 

Before: 
	 After: 

    

CI F t.:11/4  F 
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0 0 0 

0 0 

byte 1: FD 

byte 2: CB 

byte 3: offset value 

byte 4 6-'- I  
1 	I  

Data Flow: 
A 

B  

H 

F 

	C 

E ATLI 
DATA 

THE Z80 INSTRUCTION SET 

BIT b, (IY + d) Test bit b of the indexed addressed memory loca-
tion (IY + d) 

Function: 	 Z 4-- (IY + d)b 

Format: 

Description: 	The specified bit of the memory location ad- 
dressed by the contents of the IY register plus the 
given offset value is tested and the Z flag is set ac-
cording to the result. b may be any one of: 

0 — 000 
	

4 — 100 
1 — 001 
	

5 — 101 
2 — 010 
	

6 — 110 
3 — 011 
	

7 — I 1 1 

BIT 

IY 
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IY 
	

FF12 Y 
	

FF12  

FF12 

FF13 

FF12 

FF13 

OBJECT CODE 

PROGRAMMING THE Z80 

Timing: 	 5 M cycles: 20 T states: 10 usec @ 2 MHz 

Addressing Mode: Indexed. 

Byte Coder b 
FD-CB-d- 

0 I 2 3 4 5 6 7  

46 4ETS6 SE 66 6E 76 7E 

Flags: s z H 	P/V N C 

  

• 
	

7 

Example: 	 BIT 0, (IY + 1) 

Before: 	 After: 

    

92 F EA,[202;a1 F 
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F 

C 

E 

L 

THE Z80 INSTRUCTION SET 

BIT b, r 	Test bit b of register r. 

Function: 

Format: 

Z rb 

   

  

0 0 byte I: CB 

0 
I 

b- 
I  

I 	I byte 2 

  

Description: 
	The specified bit of the given register is tested and 

the zero flag is set according to the results. b and r 
may be any one of: 

b: 
	

0 — 000 	4 — 100 
1 — 001 	5 — 101 
2 	010 	6 — 110 
3 — 011 	7 — 1 1 1 

r: 
	

A 	I 1 1 	E — 011 
B-000 	H— 100 
C — 001 	L — 101 
D 010 

Data Flow: 
A 

B 

H 

Timing: 	 2 M cycles; 8 T states; 4 usec © 2 MHz 

Addressing Mode: Implicit. 
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B C 
	

E H 

47 40 41 42 43 44 45 

4F a 49 dA 4B 4C 4D 

57 50 51 52 53 54 55 

5F 58 59 5A 58 5C 5D 

67 60 61 62 63 64 65 

6F 68 69 6A bB 6C 6D 

77 70 71 72 73 74 75 

7F 7B 79 7A 78 7C 7D 

Byte Codes: b: r: A 

CB- 0 

1 

2 

3 

4 

5 

6 

B 61 

OBJECT CODE 

01 F 
	

8 
	

61 1551 

PROGRAMMING THE Z80 

Flags: Z H 	PA/ N C 

  

 

• 0 

Example: 
	

BIT 4, B 

Before: 	 After: 
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CALL cc, pq 	Call subroutine on condition. 

Function: 
	

if cc true: (SP — I1 	PChigh, (SP — 2) .— 
PCiow; SP — SP — 2; PC pq 

If cc false: PC — PC + 3 

Format: 

     

 

I 	I 

I 	I  
0 0 byte I 

byte 2: address, 
low order 
byte 3: address, 
high order 

 

I 	I 

   

     

  

I  

  

Description: If the condition is met, the contents of the pro-
gram counter are pushed onto the stack as de-
scribed for the PUSH instructions. Then, the con-
tents of the memory location immediately follow-
ing the opcode are loaded into the low order of the 
PC and the contents of the second memory loca-
tion after the the opcode are loaded into the high 
order half of the PC. The next instruction fetched 
will be from this new address. If the condition is 
not met, the address pq is ignored and the follow-
ing instruction is executed. cc  may be any one of: 

	

NZ — 000 
	

PO — 100 

	

Z — 001 
	

PE — 101 

	

NC — 010 
	

P — 100 

	

C — 011 
	

M — Ill 

An RET instruction can be used at the end of the 
subroutine being called to restore the PC. 
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a rc 

 

D 
	

E 

PC 

MIS 5P 

CC. NZ . Z NC C PO 

Cd I CCI Dd Ed DC 

PE P M 

E-a-v7F-1  -4-13  
Byte Codes: 

PROGRAMMING THE Z80 

Data Flow: 

°FORM 
LOGIC 

- - a 
a 

CALL 

Timing: 
M cycles: T slates: 

usec 
© 2 MHz 

condition 
true: 5 17 8.5 
condition 
not true: 3 10 5 

Addressing Mode: Immediate. 

Flags: s z PA/ N C 

  

(no effect) 
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After: 

F F 

0801 

85 

PC 

SP BB12 

Before: 

PC 

SP 

F 85 

OB04 

131312 

THE Z80 INSTRUCTION SET 

Example: 	CALL Z, B042 

BBI 0 

BB11 

131312 

0010 

NI 1 

8812 

OBJECT CODE 
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CALL 

q 

p E 

":71./15;• 
P•41111111 

A 

B 

D 

PC 

SP 

PROGRAMMING THE Z80 

CALL pq 

Function: 

Format: 

Description: 

Data Flow: 

Call subroutine at location pq. 

(SP — I) PChigh; (SP — 2) 4—  PClow; SP 4—  SP 
— 2; PC 4—  pq 

0 0 

The contents of the program counter are pushed 
onto the stack as described for the PUSH instruc-
tions. The contents of the memory location im-
mediately following the opcode are then loaded in-
to the low order half of the PC and the contents of 
the second memory location after the opcode are 
loaded in the high order half of the PC. The next 
Instruction will be fetched from this new address. 

byte I: CD 1.4 1.1)‘ 

byte 2: address, low order 

byte 3: address, high order 

Timing: 	 5 M cycles; 17 T states: 8.5 usec @ 2 MHz 

Addressing Mode: Immediate. 

222 



PC 

SP 

THE Z80 INSTRUCTION SET 

Flags: P/V N C 

 

 

(no effect) 

Example: 	 CALL 4061 

Before: 
	

After: 

AA40 

0914 

PC 

SP 

     

OBI2 

OBI3 

0814 

OBI2 

01313 

OB14 

 

ISM 

Faro 

  

 

F4 

  

Pm11111111 

    

OBJECT CODE 
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Data Flow: 
A 

B 

D 

H 

PROGRAMMING THE Z80 

CCF 

Function: 

Format: 

Complement carry flag. 

 

C C 

  

0 
	

3F 

Description: 	The carry flag is complemented. 

Timing: 	 I M cycle; 4 T states: 2 usec @ 2 MHz 

Addressing Mode: Implicit. 

Flags: H 	PN N C 

 

0 • 
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n 
	 0 

(HL) 
	

0 	 0 

(IX + d) 
	

0 	 0 

0 
	 0 

(IY + d) 

0 	 0 

d 

0 

CP s 

Function: 

Format: 

THE Z80 INSTRUCTION SET 

Compare operand s to accumulator. 

A — s 

s: may be r, n, (HL), (IX + d), or (IY + d). 

    

IT 

r 
	0 

FE 

byte 2: immediate 
data 

byte 1: BE 

byte 1: DD 

byte 2: BE 

byte 3: offset value 

byte 1: FD 

byte 2: BE 

byte 3: offset value 

r may be any one of: 

A — 111 
B — 000 
C — 001 
D — 010 

E — 01 l 
H — 100 
L — 101 

Description: 
	

The specified operand is subtracted from the ac- 
cumulator, and the result is discarded. s is defined 
in the description of the similar ADD instructions. 
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PROGRAMMING THE ZOO 

Data Flow: 	

Wri  

Timing: 
M cycles: T states: 

usec 
@ 2 MHz: 

r 1 4 2 
n 2 7 3.5 
(HL) 2 7 3.5 
(IX + d) 5 19 9.5 
(IY + d) 5 19 9.5 

Addressing Modes: r: implicit; n: immediate; (HL): indirect; 
(IX + d), (IY + d): indexed 

Byte Codes: 	CP r: r: A B C D E 

  

BF  BB  B9  BA  BB  BC  BD 

Flags: 

 

Z 

  

N C 

 

• • • • • 

      

Example: CP (HL) 

Before: After: 

F 	AI 96 Ini,r6,40  P A 
	

96 
	

36 

H 
	

5203  H 
	

9203 

B203 9203 

OBJECT 
CODE 
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CPD 	 Compare with decrement. 

Function: 	 A — [HL]; HL'--HL—   1; BC --BC— 1 

Format: 
0 0 byte ED 

   

[ I 
	0 	0 	0 0 
	

byte 2: A9 

Description: The contents of the memory location addressed by 
the HL register pair are subtracted from the con-
tents of the accumulator and the result is discarded. 
Then both the HL register pair and the BC register 
pair are decremented. 

Data Flow: 

4 M cycles; 16 T states: 8 usec @ 2 MHz 

Addressing Mode: indirect. 

Flags: 

s z 

1'

x  

H 
x 

P/V N C 

V II 	In Reset if BC = 0 after execution; set otherwise 
	 r Set if A = [HL] 

• 
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8665 6665 

OBJECT CODE 

PROGRAMMING THE Z80 

Example: 	 CPD 

Before: 
	

After: 

F 

C 

L 

A 2A 06 A 2A 	 6 

3154 B 

H 8665 H AS 7 
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a 

0 

• 
S Z 	H 	P/V N C 	ri Set if A = [HL] 

Reset if BC = 0 after 
execution; set otherwise 

THE Z80 INSTRUCTION SET 

CPDR 

Function: 

Format:  

Block compare with decrement. 

A — [HL]; 	HL — 1: BC •—• BC — 1: 
Repeat until BC = 0 or A = [HL] 

0 0 byte 1: ED 

  

0 0 0 byte 2: B9 

    

Description: The contents of the memory location addressed by 
the HL register pair are subtracted from the con-
tents of the accumulator and the result is discard-
ed. Then both the BC register pair and the HL 
register pair are decremented. If BC # 0 and A 
[HL], the program counter is decremented by two 
and the instruction is re-executed. 

Data Flow: 

Timing: 
	

BC = 0 or A = [1-IL]: 4 M cycles; 16 T states: 
8 usec @ 2 MHz 
BC 0 and A * [HL]: 5 M cycles; 21 T states: 
10.5 usec @ 2 MHz 

Flags: 
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60FE 

60FF 

6100 

OBJECT CODE 

 

60FE 

60FF 

6100 

PROGRAMMING THE Z80 

Example: 
	

CPDR 

Before: 
	

After: 

A 9A 00 F 

C 

L 

A 

H 

9A 	r,"47, F 

C B 0002 

H 6100 
OsvifyvAeffeS /it /// 

/. I 
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/ , 
A C 

E 

DATA 

S Z 	H P/V N C 

• ]x 
 • X I Reset if BC = 0 after execution set otherwise 

Set if A = [1-1L] 

THE 280 INSTRUCTION SET 

CPI 	 Compare with increment. 

Function: 	A — 11-111; HL 	HL + 1; BC ^ BC — 1 

Format: 
a a byte 1: ED 

   

I 1 0 I a o 1 o  a 
	

byte 2: Al 

Description: The contents of the memory location addressed by 
the HL register pair are subtracted from the con-
tents of the accumulator and the result is discarded. 
The HL register pair is incremented and the BC 
register pair is decremented. 

Data Flow: 

a 
D 

Timing: 
	

4 M cycles; 16 T states: 8 usec @ 2 MHz 

Addressing Mode: indirect. 

Flags: 
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PROGRAMMING THE Z80 

Example: 	 CPI 

Before: 
	

After: 

A 

B 

H 

F A 

C B 

09 
	

00 

0510 

96B9 

09 F 

C 

136B9 86B9 

OBJECT CODE 

232 



O%/2 /2/7 ./ 
/ 	 / / 

CPIR 

Function: 

THE Z80 INSTRUCTION SET 

Block compare with increment. 

A — [HL]; HL HL + I; BC BC — 1; 
Repeat until BC = 0 or A = [HL] 

   

0 	0 
	

byte 1: ED 

a 
	

0(0 
	

byte 2: B1 

Description: The contents of the memory location addressed by 
the HL register pair are subtracted from the con-
tents of the accumulator and the result is discarded. 
Then the HL register pair is incremented and the 
BC register pair is decremented. If BC # 0 and A 

[HL], then the program counter is decremented 
by 2 and the instruction is re-executed. 

Data Flow: 

Timing: 
	

BC = 0 or A = [HL] : 4 M cycles; 16 T states: 
8 usec © 2 MHz 
BC # 0 and A # [HL] : 5 M cycles; 21 T states: 
10.5 usec @ 2 MHz 

Addressing Mode: indirect. 
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S Z 

SI X 

H 	Pr/ N C 

I X Ii i  r  Reset if BC = 0 after execution; set otherwise 

	I [ Set if A = [HL] 

After: 

Example: 	CP IR 

Before: 

039B 

039C 

0390 

PROGRAMMING THE Z80 

Flags: 

A 96 OD A 

B 0051 B 

H 039B 

234 

OBJECT CODE 

0398 

039C 

039D 

039D 

46 90 

004 

2A 

9B 

06 



E 

Data Flow: 

A 3D 

After: 

r 	A 

235 

Example: 

OBJECT 
CODE 

CPL 

Before: 

A 

THE Z80 INSTRUCTION SET 

CPL 

Function: 

Format: 

Complement accumulator. 

 

A 4-  A 

   

0 0 	0 
	

2F 

Description: 
	

The contents of the accumulator are com- 
plemented, or inverted, and the result is stored 

back in the accumulator (one's complement). 

1 M cycle; 4 T states; 2 usec @ 2 MHz 

Addressing Mode: Implicit. 

Flags: S Z H 	P/V N C 

  



PROGRAMMING THE Z80 

DAA 	Decimal adjust accumulator. 

Function: 	See below. 

Format: 
0 
	

0 0 
	 27 

Description: 	The instruction conditionally adds "6" to the right 
and/or left nibble of the accumulator, based on the 
status register, for BCD conversion after arithmetic 
operations. 

N C 
value of 

high nibble H 
value of 

low nibble 
ft added 

to A 
C after 

execution 

0 0 
o
h
 c
c
 pc
;
 ta.
 

4. 4.
 

e
q
 r?
 

rn 
6
  CS  

0
  ..:;(
 

ck  
<lc
 
6
  0
 
0
 

0 0-9 00 0 
(ADD, 0 0 A-F 06 0 
ADC, 0 1 0-3 06 0 
1NC) 0 0 0-9 60 1 

0 0 A-F 66 1 
0 1 0-3 66 1 
1 0 0-9 60 1 
1 0 A-F 66 1 
1 1 0-3 66 I 

1 0 0-9 0 0-9 00 0 
(SUB, 0 0-8 1 6-F FA 0 
SBC, 1 7-F 0 0-9 AO 1 
DEC. 1 6-F 1 6-F 9A 1 
NEG) 

Data Flow: 

B szrwr  
MI MI 
El III 
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A F B2 	I 	94 F A 

THE Z80 INSTRUCTION SET 

Timing: 	 1 M cycle; 4 T states; 2 usec • 2 MHz 

Addressing Mode: Implicit. 

Flags: 5  

  

N C  

• • • • • 

Example: 
	

DAA 

Before: 
	 After: 

OBJECT 
CODE 

237 



Data Flow. 
A 

8 
	

C 

D 
	

E 

H 

n 

PROGRAMMING THE Z80 

DEC m 	Decrement operand m. 

Function: 

Format: 

m-m - 

 

m: may be r, (HL), (IX+d), (IY+d ) 

    

r 0 

0 
	 0 

0 

0 0 	0 

/ 

0 0 

d 

r may be any one of:  

35 

byte 1: DD 

byte 2: 35 

byte 3: offset value 

byte 1: FD 

byte 2: 35 

byte 3: offset value 

(HL) 

(IX + d) 

(IY + d) 

A - 111 E - 011 
B - 000 H - 100 
C - 001 L - 101 
D - 010 

Description: 	The contents of the location addressed by the 
specific operand are decremented and stored back 
at that Iocation.mis defined in the description of 
the similar INC instructions. 
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T:ABCOE 111. 

25 ID OD OS 20 15 3D 

N C 

• • 

DEC C 

Byte Codes: 

Flags: 

Example: 

DEC r 

5 Z 

THE Z80 INSTRUCTION SET 

Tuning: 
M cycles: T stales: 

uses 
@ 2 MHz: 

r 
(HLI 
(IX + d) 
(IY + d) 

I 
3 
6 
6 

4 
II 
23 
23 

2 
5.5 

11.5 
11.5 

Addressing Mode: r: 	(El LI: indirect; (IX + d), (IY + d): in- 
dexed. 

 

Before: After: 

 

OF • ar  

 

   

OBJECT 
CODE 
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PROGRAMMING THE Z80 

DEC rr 	Decrement register pair rr. 

Function: 	 rr rr — 

Format: 
0 0 
	

0 

Description:. 	The contents of the specified register pair are 
decremented and the result is stored back in the 
register pair. rr may be any one of: 

BC — 00 
	

HL — 10 
DE — 01 
	

SP — 11 

Data Flow: 

Timing: 	 1 M cycle; 6 T states; 3 usec @ 2 MHz 

Addressing Mode: Implicit. 

Byte Codes: 	rr- BC DE HI SP 

OB1181 28 38 
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After: 

3810 / 

Example: 

OBJECT CODE 

DEC BC 

Before: 

en 	3811 lc 	B 

THE Z80 INSTRUCTION SET 

Flags: S Z H 	P/V N C 

  

(no effect). 
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IX 6114 

PROGRAMMING THE Z80 

DEC IX 	Decrement IX. 

Function: 	 IX •— IX — I 

Format: 
byte I: DD 

byte 2: 2B 

Description: 	The contents of the IX register are decremented 
and the result is stored back in IX. 

0 
	 0 

0 0 	0 
	

0 

Data Flow: 
A 

B 

H 

IX 

2 M cycles; 10 T states; 5 usec @ 2 MHz 

Addressing Modes: implicit. 

Flags: S Z H 	P/V N C 

 

  

(no effect). 

Example: 
	

DEC IX 

Before: 
	

After: 
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THE Z80 INSTRUCTION SET 

DEC IY 	Decrement IY. 

Function: 	IY 	IY — 1 

  

Format: 

   

 

0 byte FD 

    

    

0 1 0 
	C 	0 	byte 2: 2B 

Description: 	The contents of the IY register are decrementea 
and the result is stored back in IY. 

Data Flow: 
A 

B 

H 

IY 

Timing: 	 2 M cycles; 10 T states; 5 usec @a 2 MHz 

Addressing Mode: Implicit. 

Flags: 

Example: 

 

5 Z 	H 	P/V N C 

 

  

(no effect). 

DEC IY 

 

Before: 

IY 900F 

OBJECT CODE 

After: 

900E 
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PROGRAMMING THE Z80 

DI 	 Disable interrupts. 

Function: 

Format: 

Description: 	The interrupt flip-flops are reset, thereby disabling 
all maskable interrupts. It is reenabled by an El 
instruction. 

Timing: 	 1 M cycle; 4 T states; 2 usec @ 2 MHz 

Addressing Mode: Implicit. 

Flags: 5 Z H 	PN N C 

 

  

(no effect). 

IFF 4-  0 

F3 
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THE Z80 INSTRUCTION SET 

DJNZ e 	Decrement B and jump e relative on no zero. 

Function: 	 B —B — 1 : if B # 0: PC 	PC +e 

Format: 
0 	0 	0 	0 	0 0 	0 byte 1: 10 

byte 2: offset value e-2 

Description: The B register is decremented. If the result is not 
zero, the immediate offset value is added to the 
program counter using two's complement 
arithmetic so as to enable both forward and 
backward jumps. The offset value is added to the 
value of PC + 2 (after the jump). As a result. the 
effective offset is -126 to +129 bytes. The as-
sembler automatically subtracts from the source 
offset value to generate the hex code. 

Data Flow: 

Timing: 
	

B # 0: 3 M cycles; 13 T states; 6.5 usec @ 2 MHz. 
B= 0: 2 M cycles; 8 T states; 4 usec @ 2 MHz 

Addressing Modes: Immediate. 
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PROGRAMMING THE Z80 

Flags: 5 Z H 	P/V N C 

 

  

(no effect) 

Example: 	 DJNZ $ — 5 ($ = current PC) 

Before: 
	

After: 

 

51 B 

 

     

PC 00E1 

 

PC 

 

OBJECT CODE 
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THE Z80 INSTRUCTION SET 

EI 

Function: 

Format: 

Enable interrupts. 

 

1FF 	1 

  

0 
	

FB 

Description: The interrupt flip-flops are set, thereby enabling 
maskable interrupts after the execution of the in-
struction following the El instruction. In the mean-
time maskable interrupts are disabled. 

Timing: 	 1 M cycle; 4 T states; 2 usec @ 2 MHz 

Addressing Mode: Implicit. 

Flags: s z H 	P/V N C 

  

(no effect). 

Example: A usual sequence at the end of an interrupt routine is: 
EI 
RET1 
The maskable interrupt is re-enabled following 
completion of RET1. 
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PROGRAMMING THE Z80 

EX AF, AF' 	Exchange accumulator and flags with alternate 
registers. 

Function: 	 AF-•••-•-AF' 

Format: 
08 

Description: 	The contents of the accumulator and status 
register are exchanged with the contents of the 
alternate accumulator and status register. 

0 0 0 0 Ito 0 0 

F© A 

B' 

D' 

Data Flow: 
A 

B 

0 

H 

F' 

C' 

E' 

Timing: 	 1 M cycle; 4 T states; 2 usec @ 2 MHz 

Addressing Mode: Implicit. 

Flags: S Z H 	P/V N C 

  

• • • • • • • • 

Example: 
	

EX AF, AF' 

Before: 
	

After: 

       

A 04 81 

 

F A 90 1 3A F 

     

04 	I 	81  

 

A 90 3A 

 

F' 	A F '  

      

OBJECT CODE 
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OBJECT CODE 

THE Z80 INSTRUCTION SET 

EX DE, HL 	Exchange the HL and DE registers. 

DE 	HL 

110 	0 	EB 

The contents of the register pairs DE and HL are 
exchanged. 

A 

H 

C 

EEL  

Timing: I M cycle; 4 T states; 2 usec @ 2 MHz 

Addressing Mode: 	Implicit. 

Flags: 5 	Z 	H 	P/V N 	C 

(no effect). 

Example: EX DE, HL 

Before: 	 After: 

Function: 

Format: 

Description: 

Data Flow: 

D 9604 

R 
A4E6 

HI
D
H  9604 

 

AAE6 L 
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5 Z P/V N C Flags: 

L  (no effect). 

PROGRAMMING THE Z80 

EX (SP), HL Exchange HL with top of stack. 

Function: 	 (SP) 4--L; (SP + I) • H 

Format: 	 0 0 0 
	

E3 

Description: 

Data Flow: 

The contents of the L register are exchanged with 
the contents of the memory location addressed by 
the stack pointer. The contents of the H register 
are exchanged with the contents of the memory 
location immediately following the one addressed 
by the stack pointer. 

  

  

esa  

A-41  

/ 
5P 

  

  

5 M cycles; 19 T states; 9.5 usec © 2 MHz 

Addressing Mode: Indirect. 
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THE Z80 INSTRUCTION SET 

Example: 	EX (SP), HL 

L 	H 

Before: 

8290 

8409 

After 

vAr 

spr 
	

B409 

H 

SP 

8409 

840A 

8409 

B40A 

OBJECT CODE 
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PROGRAMMING THE Z80 

EX 	(SP), IX 	Exchange IX with top of stack. 

Function: 	 (SP) —•IXiow; (SP + I) 4-• IXhigh 

Format: 
0 0 byte I: DD 

0 0 0 byte 2: E3 

The contents of the low order of the IX register 
are exchanged with the contents of the memory 
location addressed by the stack pointer. The con-

tents of the high order of the IX register are ex-
changed with the contents of the memory location 
immediately following the one addressed by the 
stack pointer. 

Description: 

Data Flow: 

C 

A 

B 

H 

IX 

SP 

Timing: 	 6 M cycles; 23 T states; 11.5 usec @ 2 MHz 

Addressing Mode: Indirect. 

Flags: 5 Z H P/V N C 

  

(no effect). 
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THE Z80 INSTRUCTION SET 

Example: 	 EX (SP), IX 

Before: After: 

i 
	

016B 

5P 0402 SP 0402 

IX 	 9234 	 1 	IX 

OBJECT CODE 

0402 

0403 

0402 	34 

0403 	92 	I 

_......, J 

253 



Timing: 

Addressing Mode: 

Flags: 

6 M cycles; 23 T states; 11.5 usec @ 2 MHz 

Indirect. 

5 Z 
	

P/V N C 

PROGRAMMING THE Z80 

EX 	(SP), IY 	Exchange IY with top of stack. 

Function: 	 (SP) —1Y10w; (S13  + I) •- IYhigh 

Format: 
byte FD 

byte 2: E3 

0 

0 0 0 

Description: 

Data Flow: 

The contents of the low order of the IY register 
are exchanged with the contents of the memory 
location addressed by the stack pointer. The con-
tents of the high order of the IY register are ex-
changed with the contents of the memory location 
immediately following the one addressed by the 
stack pointer. 

c 
E 

(no effect). 
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SP 
	

6211 SP 
	

6211 

6211 

6212 

6211 

6212 

THE Z80 INSTRUCTION SET 

Example: 	 EX (SP), IY 

Before: 
	

After: 

IY 	 BF03 	 IY 41P,; 

   

OBJECT CODE 
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B 

H 

B' 

DI  

H' OBJECT 
CODE 

PROGRAMMING THE Z80 

EXX 	 Exchange alternate registers. 

Function: 	 BC —BC': DE --DE'; HL 4—HL' 

Format: 
0 0 
	

D9 

Description: 
	

The contents of the general purpose registers are 
exchanged with the contents of the corresponding 
alternate registers. 

Data Flow: 
A 

B 

H 

D 

      

     

     

     

     

     

      

Timing: 	 1 M cycle; 4 T states; 2 usec @ 2 MHz 

Addressing Mode: Implicit. 

Flags: s 2 H 	P/V N C 

  

  

(no effect). 

Example: EXX 

 

Before:  

04 28 

39 26 

54 02 

Fl DO 

3F 2A 

8C 00 

93 DO 

4F E3 

After: 

04 28 

8C 00 

93 DO 

4F E3 

3F 2A 

39 26 

54 02 

Fl DO 

F 
	

A 

C 

H 

F' 

C' Bo 

E' 	DI 

12 

C 

F' 
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HALT 
	

Halt CPU. 

Function: 
	

CPU suspended. 

THE Z80 INSTRUCTION SET 

Format: 
0 	0 76 

Description: CPU suspends operation and executes NOP's so 
as to continue memory refresh cycles, until in-
terrupt or reset is received. 

Timing: 	 1 M cycle; 4 T states; 2 usec @ 2 MHz + inde- 
finite Nop's. 

Addressing Mode: Implicit. 

Flags: S Z H 	P/V N C 

  

(no effect). 
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PROGRAMMING THE Z80 

IM 0 	 Set interrupt mode 0 condition. 

Function: 	 Internal interrupt control. 

Format: 
byte I: ED 

byte 2: 46 

Description: 
	

Sets interrupt mode 0. In this condition, the in-
terrupting device may insert one instruction onto 
the data bus for execution, the first byte of which 
must occur during the interrupt acknowledge cycle. 

Timing: 	 2 M cycle; 8 T states; 4 usec @ 2 MHz 

Addressing Mode: Implicit. 

Flags: 5 Z H 	P/V N C 

  

(no effect). 

0 	0 

0 	0 0 0 	0 
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Data Flow: 00 	38 

(at time of interrupt) 

   

0038 I NT 

ROUTINE 

 

   

THE Z80 INSTRUCTION SET 

IM1 

Function: 

Format: 

Set interrupt mode 1 condition. 

Internal interrupt control. 

 

   

byte 1: ED 

byte 2: 56 

Description: 	Sets interrupt mode 1. A RST 0038H instruction 
will be executed when an interrupt occurs. 

0 
	

0 

0 
	

0 
	

0 
	

0 

STACK 

Timing: 	 2 M cycles; 8 T states; 4 usec @ 2 MHz 

Addressing Mode: Implicit. 

Flags: S Z H 	PN N C 

  

(no effect). 
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PROGRAMMING THE Z80 

IM 2 	 Set interrupt mode 2 condition. 

Function: 
	

Internal interrupt control. 

Format: 

 

0 0 

 

byte I: ED 

byte 2: 5E 

    

0 

  

a 

     

Description: Set interrupt mode 2. When an interrupt occurs, 
one byte of data must be provided by the peripheral 
which is used as the low order of an address. The 
high order of this vector address is taken from the 
contents of the I register. This points to a second 
address stored in memory,which is loaded into the 
program counter and begins execution. 

Timing: 	 2 M cycles; 8 T states; 4 usec @ 2 MHz 

Addressing Mode: Implicit. 

Flags: S Z H 	PA/ N C 

  

(no effect) 
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THE Z80 INSTRUCTION SET 

IN r, (C) 	Load register r [torn port(C) 

Function: 	 r (C) 

Format: 

   

1_1 Jo 1 I  121°I1 I byte l: ED 
I 

O 0 01  byte 2 

 

0 	I 

Description: The peripheral device addressed by the contents of 
the C register is read and the result is loaded into 
the specified register. 
C provides bits AO to A7 of the address bus. 
B provides bits A8 to A15. 

Data Flow: 
A 
	

PORT  
C 

E 

H 

r may be any one of: 

A — 111 
	

E — 011 
B — 000 
	

H — 100 
C — 001 
	

L — 101 
D — 010 

Tinting: 	 3 M cycles; 12 T states; 6 usec @ 2 MHz 

Addressing Mode: External. 

Byte Codes: 	 r: A 0 COE HI.  

ED 78 40 48 501 58  1601 68 
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A5 

A5 

A5 

A5 

PORT PORT D A 6A 6A 09 

PROGRAMMING THE Z80 

Flags: S Z H 	(EVV N C 

  

• • • • 0 

It is important to note that INA,(N) does not have 
any effect on the flags, while IN r. (C) does. 

Example: 	IN D, (C) 

Before: 
	 After: 

OBJECT CODE 
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THE Z80 INSTRUCTION SET 

IN A, (N) 	Load accumulator from input port N. 

Function: 	A — (N) 

Format: 

   

0 

 

byte I: DB 

byte 2: port address 

     

   

I 	I 	I 

 

 

I 	I 	I 

 

I 	I 	I 

 

Description: 

Data Flow: 

The peripheral device N. is read and the result is 
loaded into the accumulator. 
The literal N is placed on lines AO to A7 of the 
address bus. A supplies bits A8 to A15. 

Tinting: 	 3 M cycles; I I T states; 5.5 usec @ 2 MHz 

Addressing Mode: External. 

Flags: 5 Z 	H 	P/V N C 

 

(no effect). 

Example: 	IN A, (B2) 

Before: 	 After: 

84 Fl PORT A Afr Fl PORT 

 

B2 

  

B2 

 

OBJECT CODE 
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PROGRAMMING THE Z60 

INC r 
	

Increment register r. 

Function: 
	 r r + I 

Format: 	 0 0 
I 	

0 0 

Description: 	The contents of the specified register are in-
cremented. r may be any one of: 

	

A — Ill 
	

E — 011 
B — 000 
	

H — 100 

	

C — 001 
	

L — 101 
D — 010 

Data Flow: 
A 

B 

  

  

Timing: 	 I M cycle; 4 T states; 2 usec @ 2 MHz 

Addressing Mode: Implicit. 

Byte Codes: 	r: A B 

3C 04 DC 14 1C 24 

• • 0 

After: 

Flags: 

Example: 

S Z 	 

•  

INC D 

Before: 

• 

CDE HL 

2C 

N C 

  

06 

  

OBJECT 
CODE 
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	1 

C 

THE Z80 INSTRUCTION SET 

INC rr 	Increment register pair rr. 

Function: 

Format: 

Description: 

rr 	rr + I 

0 0 
	

0 0 

The contents of the specified register pair are in-
cremented and the result is stored back in the 
register pair. rr may be any one of: 

BC — 00 	HL— 10 
DE — 01 	SP — 11 

Data Flow: 

AB  

0 

H 

SP 

Timing: 	 1 M cycle; 6 T states; 3 usec @ 2 MHz 

Addressing Mode: Implicit. 

Byte Codes: IT: BC DE HL SP 

  

03 13 23 33 
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PROGRAMMING THE Z80 

Flags: S Z H 	P/V N C 

 

  

(no effect). 

Example: 	INC HL 

Before: 	 After: 

 

0014 

  

H H ,c. ';;OB15 % 

    

OBJECT 
CODE 
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THE Z80 INSTRUCTION SET 

INC (HL) 

Function: 

Format: 

Description: 

Increment indirectly addressed memory location 
(HU. 

(HL) 	(HL) + I 

0 	 0 	0 0 34 

The contents of the memory location addressed by 
the HL register pair are incremented and stored 
back at that location. 

Data Flo w: 

A 

8 
D 

H 

  

  

  

  

   

Timing: 	 3 M cycles: I I T states; 5.5 usec © 2 MHz 

Addressing Mode: Indirect. 

Flags: 5 Z N C 

  

• • • • 0 

Example: 
	

INC (HL) 

Before: 

H 
	

06131 

After: 

0661 

0681 0661 

OBJECT 
CODE 
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PROGRAMMING THE Z80 

INC (IX + d) Increment indexed addressed memory location 
(IX + d). 

Function: 	(IX + d) 	(IX + d) + I 

Format: 
0 	 0 byte 1: DD 

byte 2: 34 

byte 3: offset value 

   

0 0 	0 
	0 0 

 

T 

 

   

Description: 
	

The contents of the memory location addressed by 
the contents of the IX register plus the given offset 
value are incremented and stored back at that 
location. 

Data Flow: 
A 

B C 
DATA 

D E 

H 

INC 

IX 

d 
O 

Timing: 	 6 M cycles; 23 T states; 11.5 usec @ 2 MHz 

Addressing Mode: Indexed. 

Flags: 5 z N C 

  

• • 
	

• 0 
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IX 

After: 

0381 

THE Z80 INSTRUCTION SET 

Example: 	 INC (IX + 2) 

Before: 

IX 
	

0381 

  

0391 

0352 

0383 

0381 

0382 

0383 

81 

85 

ff; A 
PRIM 

   

OBJECT 
CODE 
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byte 1: FD 

byte 2: 34 

byte 3: offset value 

0 

0 0 
	

0 0 

d 

Data Flow: 
A 

B  

D 

H 

   

   

C 

E 

 

ALU 

 

INC 

PROGRAMMING THE Z80 

INC (IY + d) Increment indexed addressed memory location (IY 

+ d). 

Function: 	 (IY +d) (IY + d) + 1 

Format: 

Description: 
	

The contents of the memory location addressed by 
the contents of the IY register plus the given offset 
value are incremented and stored back at that 
location. 

Timing: 
	

6 M cycles; 23 T states; 11.5 usec © 2 MHz 

Addressing Mode: Indexed. 

Flags: 	 5 Z 
	

H 	PAg N C 

• • • 0 

270 



THE Z80 INSTRUCTION SET 

Example: 	 INC (IY + 0) 

Before: 
	

After: 

IV 	0601 	 IY 0601 

   

0601 

0602 

OBJECT 
CODE 
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Before: 

8150 Ix 

OBJECT CODE 

 

After: 

Ix 8101 // A 

PROGRAMMING THE Z80 

INC IX 

Function: 

Format: 

Increment IX. 

1X 4-  IX + 

   

byte 1: DD 

byte 2: 23 

Description: 	The contents of the IX register are incremented 
and the result is stored back in IX. 

0 

0 0 	0 0 0 

Data Flow: 
A 

B 

D E All) 
H 

IX A 41NEImi 

Timing: 	 2 M cycles; 10 T states; 5 usec @ 2 MHz 

Addressing Mode: Implicit. 

Flags: s Z H 	P/V N C 

  

(no effect). 

Example: 
	

INC IX 

272 



E 

Data Flow: 
A 

B 

D 

H 

Iv 

THE Z80 INSTRUCTION SET 

INC IY 

Function: 

Format: 

Increment IY 

IY 1Y + 1 

 

  

byte I: FD 

    

    

0 0 	0 0 0 
	

byte 2: 23 

Description: 	The contents of the IY register are incremented 
and the result is stored back in IY. 

Timing: 	 2 M cycles; 10 T states; 5 usec @ 2 MHz 

Addressing Mode: Implicit. 

Flags: 5 Z H 	P/V N C 

  

(no effect). 

Example: 
	

INC IY 

Before: 
	

After: 

IY 36B1 IY 

OBJECT CODE 
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IND 

Function: 

Format:  

Input with decrement. 

(111,) 4-  (C); B 	B — 1; HL 	HL — 1 

  

0 

 

byte I: ED 

byte 2: AA 

    

0 0 

 

0 

     

Description: 

Data Flow: 

The peripheral device addressed by the C register 
is read and the result is loaded into the memory 

location addressed by the HL register pair. The B 
register and the HL register pair are then each 

decremented. 

Timing: 	 4 M cycles; 16 T states; 8 usec @ 2 MHz 

Addressing Mode: External. 

Set if B = 0 after execution 
Reset otherwise 

Flags: 	S Z 
	

H 	P/V N C 
7 x 
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Example: 

After: 

AO A B5 B5 AI C 

PORT 

06BA 

26 

IND 

Before: 

B 

H 

C 

H 

PORT 26 

THE Z80 INSTRUCTION SET 

B5 
	

135 

  

06BA 06BA 26 / 

roll111111 

OBJECT CODE 
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Block input with decrement. 

(HL)• (C); B B — I; HL 4—  HL — 1 

Repeat until B = 0 

0 	, t 0 

 

o 
	 0 
	

0 

INDR 

Function: 

Format: 
byte 1: ED 

byte 2: BA 

COUNTER 

A 

PROGRAMMING THE Z80 

Description: 

Data Flow: 

The peripheral device addressed by the C register 

is read and the result is loaded into the memory 

location addressed by the HL register pair. Then 
the B register and the HL register pair are 
decremented. If B is not zero, the program 
counter is decremented by 2 and the instruction is 
re-executed. 

DATA 

C 
PORT 	

.11111111111  

A 
rr_c3 47 	

A 

B = 0:4 M cycles; 16 T states; 8 usec @ 2 MHz. 
B A 0:5 M cycles; 21 T states; 10.5 usec @ 2 MHz. 

Addressing Mode: External 

Flags: H 	P/V N C 

 

7 
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THE Z80 INSTRUCTION SET 

Example: 	INDR 

	

Before: 
	

After: 

 

03 	I 	56 

   

B C 	B P 400/  56 

    

 

09F2 

    

H 

 

H 	 09EF 	 t 

     

     

86 PORT BF PORT 

56 
	

56 

09EF 

09F0 

09F1 

09F2 

09EF 

09F0 

09F1 

09F2 

6A 

OBJECT CODE 
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PROGRAMMING THE Z80 

INI 	 Input with increment. 

Function: 	(HL) (C); B B — 1; HL HL + 1 

Formal: 
byte 1: ED 

byte 2: A2 

Description: The peripheral device addressed by the C register 
is read and the result is loaded into the memory 
location addressed by the HL register pair. The B 
register is decremented and the HL register pair is 
incremented. 

The contents of C are placed on the low half of the 
address bus. The contents of B are placed on the 
high half. I/O selection is generally made by C, 
i.e., by AO to A7. B is a byte counter. 

Timing: 	 4 M cycles; 16 T states; 8 usec @ 2 MHz 

Addressing Mode: External. 

Flags: S Z H 	P/V N C 

  

 

7 

 

Z is set if B = 0 after execution, 
Reset otherwise 

278 
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, Before: 

B 
	

09 
	

21 

H 
	

Al 12 

86 	i 

After: 

ra 	21 

86 

C 	B 

H 

PORT 

C 

PORT 

THE Z80 INSTRUCTION SET 

Example: 	 INI 

21 
	

21 

Al 12 A112 

OBJECT CODE 
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Data Flow: 
A 

B 

          

DATA 

 

           

 

/counte,  

         

          

          

           

   

E 

    

PORT 

 

2 

 

fn /Az' a 

        

         

           

           

            

PROGRAMMING THE Z80 

INIR 	 Block input with increment. 

Function: 	 (HD (C); B B — 	HL HL + I; Repeat 
until B = 0 

Format: 
byte ED 

byte 2: B2 

Description: The peripheral device addressed by the C register 
is read and the result is loaded into the memory 
location addressed by the HL register pair. The B 
register is decremented and the HL register pair is 
incremented. I f B is not zero, the program counter 
is decremented by 2 and the instruction is re-
executed. 

0 	0 

0 
	 0 0 	0 

Timing: 	 B= 0: 4 M cycles; 16 T states; 8 used @ 2 MHz. 
B 0 0: 5 M cycles; 21 T states; 10.5 usec @ 2 MHz. 

Addressing Mode: External. 

Flags: s z H 	P/V N C 
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Before: After: 

B 51 C 	B ta,99ra 	 IC 

PORT W/A IF 51 
MPORT 

51 

91A5 
91A6 
91A7 

91A5 
91 AE 
9IA7 

OBJECT CODE 

H 	9I A5 	 ar A 

THE Z80 INSTRUCTION SET 

Example: 	 INIR 
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byte I 

byte 2: address, 
low order 

byte 3: address, 
high order 

0 	0 

	p 	  

PROGRAMMING THE Z80 

JP CC, pq 	Jump on condition to location pq. 

Function: 

Format: 

if cc true: PC 	pq 

 

Description: If the specified condition is true, the two-byte ad-
dress immediately following the opcode will be 
loaded into the program counter with the first byte 
following the opcode being loaded into the low 
order of the PC. If the condition is not met, the 
address is ignored. cc  may be any one of: 

NZ — 000 
Z —001 

NC — 010 
C — 011 

PO — 100 
PE — 101 

P — 110 
M — Ill  

no zero 
zero 

no carry 
carry 

parity odd 
parity even 
plus 
minus 

• / 2 / 

Duia Flow: 

A ■ 
B 

CONTROL 
LOGIC 

E 
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Byte Codes: C C 	NZ Z NC C PO PE P M 

C2 CA D2 DA E2 EA F2 I FA 

F 

PC 0032 

51 

THE Z80 INSTRUCTION SET 

Tuning: 	 3 M cycles; 10 T states; 5 usec @ 2 MHz 

Addressing Mode: Immediate. 

Flags: Z 12/1/ N C 

  

Evaniple: 
	

JP C, 3824 

(no effect) 

Before: 
	

After: 

OBJECT CODE 

283 

  

51 F 

PC 

  



Data Flow: 
A 

B 

H 

PC 

JP 

Tuning: 

Addressing Mode: 

Flags: 

3 M cycles; 10 T states; 5 usec @ 2 MHz 

Immediate. 

s Z 
	

PA/ N C 

(No effect) 

OBJECT CODE 

284 

PROGRAMMING THE Z80 

JP pq 
	

Jump to location pq. 

Function: 
	

PC — pq 

Format: 	 0 0 0 0 
	

byte 1: C3 

11111 

111111 

byte 2: address, 
low order 

byte 3: address, 
high order 

Description: The contents of the memory location immediately 
following the opcode are loaded into the low order 
half of the program counter and the contents of 
the second memory location immediately follow-
ing the opcode are loaded into the high order of 
the program counter. The next instruction will be 
fetched from this new address. 

Example: 
	

JP 3025 

Before: 
	

After: 

PC 	 5520 	 PC /302 
	

VA 



(no effect). 

Example: JP (HLI 

0411 we E9 

OBJECT CODE 

0411 

8001 

0411 H 

PC 

L 	H 

PC 

THE Z80 INSTRUCTION SET 

JP (HL) 

Function: 

Format: 

Description: 

Data How: 
A 

B 

0 

H 

Jump to HL. 

PC—HL 

  

 

TO 
-  0 E9 

The contents of the HL register pair are loaded in-
to the program counter. The next instruction is 
fetched from this new address. 

C 

C 

I M cycle; 4 T states; 2 uses @ 2 MHz 

Addressing Mode: Implicit. 

Flags: s z H 	P/V N C 

  

Before: After: 
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Addressing Mode: 

Flags: 

2 M cycles; 8 T states: 4 usec @ 2 MHz 

Implicit. 

5 Z 
	

PN N C 

Before: 

130F1 

3B4A 

After: 

IX 

PC 

IX 

PC 

OBJECT CODE 

 

80F I 

B0 F1 

PROGRAMMING THE Z80 

JP (IX) 	Jump to IX. 

Function: 	 PC 4.-  IX 

Format: 

   

    

byte DD 

byte 2: E9 

    

  

0 0 

     

Description: 

Data Flow:  

The contents of the IX register are loaded into the 
program counter. The next instruction is fetched 
from this new address. 

C 

A 

B 

H 

IX 

Q 
PC 

(no effect). 

Example: JP (IX) 
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THE Z80 INSTRUCTION SET 

JP (IV) 	Jump to IY 

Function: 	 PC — IY 

Format: 

     

byte I: FD 

byte 2: E9 

      

 

1111 

    

  

o 

  

     

       

Descripoon: 
	

The contents of the IY register arc moved into the 
program counter. The next instruction will be fet- 
ched from this new address. 

Data How: A 

B 

D 

C 

E 

IY 

PC 

Timing: 	 2 M cycles; 8 T states; 4 usec @ 2 MHz 

Athkessing Mode: Implicit. 

s 2 	H 	P/N/ N C 

(no effect). 

Example: 	 JP (IV) 

Before: 

AA4B 

E410 

OBJECT CODE 

After: 

AA4B 

O6Brf  

IY 

PC 

IY 

PC 
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PROGRAMMING THE Z80 

JR cc, e 
	Jump e relative on condition. 

Function: 	if cc true. PC 4—  PC + e 

Format: 
0 0 
	

C C 0 0 0 
	

byte 1 

   

	  e 
III 	

-2 	
 byte 2: offset value 

Description: If the specified condition is met, the given offset 
value is added to the program counter using two's 
complement arithmetic so as to enable both for-

ward and backward jumps. The offset value is 

added to the value of PC + 2 (after the jump). As 

a result, the effective offset is -126 to +129 bytes. 
The assembler automatically subtracts 2 from the 

source offset value to generate the hex code. If the 

condition is not met, the offset value is ignored 
and instruction execution continues in sequence. 
cc  may any one of: 

	

NZ — 00 
	

NC — 10 

	

Z — 01 
	

C — II 

Data Flow: 
A 

B 

D 

H 

JR 

E 

CONTROL rl 
LOGIC  i; 

Timing: 
M cycles: T states: 

user 
@ 2 MHz: 

condition 
met: 3 12 6 
condition 
not met: 2 L 7 3.5 
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THE Z80 INSTRUCTION SET 

Addressing Mode: Relative. 

Byte Codes: 	cc: NZ Z NC C 

20 28 30 38 

Flags: 
	

S Z 
	

H 	P/V N C 

(no effect). 

Example: 
	

JR NC, $ — 3 
	

$ = current PC 

Before: 
	

After: 

     

F 

 

00 

        

PC 13000 

 

PC A FD 

       

OBJECT CODE 
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0 0 0 0 0 

Jump e relative. 

PC <— PC + e 

byte 1: 18 

JR e 

Function: 

Format: 

e 
I  

Data Flow: 

A 

B 

H 

JR 

e -2 E 

Tinnng: 

Addressing Mode: 

Flags: 

3 M cycles; 12 T states; 6 usec @ 2 MHz 

Relative. 

S Z 
	

P/V N C 

(no effect) 

After: 

PC 	 6100 	 PC 8004 

(This is a backwards jump.) 

Example: 

ISE 
is 
D2 

OBJECT CODE 

290 

JR D4 

Before: 

PROGRAMMING THE Z80 

byte 2: offset value 

Description: The given offset value is added to the program 
counter using two's complement arithmetic so as to 
enable both forward and backward jumps. The off-
set value is added to the value of PC + 2 (after the 
jump). As a result, the effective offset is -126 to 
+ 129 bytes. The assembler automatically subtracts 
2 from the source offset value to generate the hex 
code. 

PC 



THE Z80 INSTRUCTION SET 

LD dd, (nn) 

Function: 

Format: 

Load register pair dd from memory locations ad-
dressed by nn. 

d dhow 	(nn); ddhigh 	(nn +1) 

    

byte I: ED 

Oi rid 	ell  11  0 I 	1 byte 2 

	 byte 3: address, 
	 low order 

	 byte 4: address, 
	 high order 

     

     

     

     

     

     

Description: The contents of the memory location addressed by 
the memory locations immediately following the 
opcode are loaded into the low order of the 
specified register pair. The contents of the 
memory location immediately following the one 
previously loaded are then loaded into the 
high order of the register pair. The low order byte 
of the nn address immediately follows the opcode. 
dd may be any one of: 

BC — 00 
	

HL — 10 
DE — 01 
	

SP — 11 

Data Flow: 

 

 

A 

a 
0 

H 

SP 
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PROGRAMMING THE Z80 

Timing: 	 6 M cycles; 20 T states; 10 usec @ 2 MHz 

Addressing Mode: Direct. 

Byte Codes: dd. BC DE HL. SP 

ED- 4B 58 6B 7B 

Flags: S Z N C 

 

  

(no effect) 

Example: 	 LD DE, (5021) 

Before: 
	

After: 

D DBE2  ,30F4 
	

VA 

5021 

5022 

5021 

5022 

OBJECT CODE 
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0 d d 0 

I 	I 	I 	A 	I 	I 	I 
1 	1 	1 	1 	1 	1 	1 

byte I 

byte 2: immediate 
data, low order 

byte 3: immediate 
data, high order 

Format: 
Di_0_1 1 I 

C  

E 

L 

A 

B 

H 

SP 

THE Z80 INSTRUCTION SET 

LD dd, nn 	Load register pair dd with immediate data nn. 

Function: 
	

dd nn 

Description: 

Data Flow: 

The contents of the two memory locations im-
mediately following the opcode are loaded into the 
specified register pair. The lower order byte of the 
data occurs immediately after the opcode. dd may 
be any one of: 

BC — 00 	HL — 10 
DE — 01 
	

SP— II 

Timing: 	 3 M cycles; 10 T states; 5 usec @ 2 MHz 

Addressing Mode: Immediate. 

Byte Codes: dd: BC DE HL 5P 

  

01 11 21 31 

Flags: 5 Z H 	PA/ N C 

  

(no effect) 
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PROGRAMMING THE Z80 

Example: 	 LD DE, 4131 

Before: 	 After: 

0394 E D 4131 	 E 

    

OBJECT CODE 
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THE Z80 INSTRUCTION SET 

LD r, n 	 Load register r with immediate data n. 

Function: 

Forman: 

r n 

 

0 0 

   

0 byte I 

   

      

     

byte 2: immediate data 

     

      

Description: 
	

The contents of the memory location immediately 
following the opcode location are loaded into the 
specified register. r may be any one of: 

	

A — Ill 
	

E — 011 
B —000 
	

H — 100 

	

C — 001 
	

L — 101 
D — 010 

Data Flow: 

    

A 

B 
0 

H 

   

    

    

    

     

Tinting: 	 2 M cycles; 7 T states; 3.5 usec @ 2 MHz 

Addressing Mode: Immediate. 

Byte Codes: 

Flags: 

rA BCD EH!. 

3E 06 10E 16 IE 1 26 1 2E 

S z 
	

H 	P/V N C 

(no effect). 
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PROGRAMMING THE Z80 

Exantple: 
	

LD C, 3B 

Before: 
	

After: 

C 01 C Ar 

    

OBJECT CODE 
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Data Flow: 
A 

B 

H 

A BC OEH L (source) 

7F 78 79 7A 7B 7C 7D 

47 40 41 42 43 44 45 

4F 48 49 4A 4ES 4C 4D 

57 50 51 52 53 54 55 

5F 58 59 5A 58 5C 5D 

67 60 61 62 63 64 65 

6F 68 69 6A 6B 6C 6D 

Byte Codes: 
A 

B 

C 

D 

E 
H 

(dest. I 

THE Z80 INSTRUCTION SET 

LD r, 	Load register r from register r'. 

Function: 

Format: 

r 4-  r 

   

 

a 
I 	I I 	I 

    

Description: 	The contents of the specified source register are 
loaded into the specified destination register. r and 
r' may be any one of: 

A — III 
B — 000 
C — 001 
D — 010 

E — 011 
H — 100 
L — 101 

Timing: 	 I M cycle; 4 T states; 2 usec @ 2 MHz 

Addressing Mode: Implicit. 

Flags: Z 	H 	P/V N C 

 

(no effect). 
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PROGRAMMING THE Z80 

Example: 	 LD H, A 

Before: 	After: 

A BC A 	BC 

67 
H BD 'Sr A 

OBJECT CODE 
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0 02 0 1 0 0   
I 

010 0 

THE Z80 INSTRUCTION SET 

LD (BC), A 	Load indirectly addressed memory location (BC) 
from the accumulator. 

Function: 

Format: 

Description: 

Data Flow:  

(BC) 4-  A 

The contents of the accumulator are loaded into 
the memory location addressed by the contents of 
the BC register pair. 

Timing: 	 2 M cycles; 7 T states; 3.5 usec @ 2 MHz 

Addressing Mode: Indirect. 

Flags: 5 	Z 	H 	PA,  N C 

 

Ell 	I 11-11J (no effect). 

Example: 	 LD (BC), A 

Before: 

    

After: 

   

         

3F 

   

A 3F 

   

 

4109 	 C 

  

4109 C 

4109 4109 

OBJECT CODE 
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The contents of the accumulator are loaded into 
the memory location addressed by the contents of 
the DE register pair. 

        

A 

B 

H 

       

       

    

   

E 

    

        

PROGRAMMING THE Z80 

LD (DE), A 	Load indirectly addressed memory location (DE) 
from the accumulator. 

Function: 	 (DE) 4-  A 

Format: 	 0 0 0 
	

0 0 
	

0 12 

Description: 

Data Flow: 

DATA 

Timing: 

Addressing Mode: 

Flags: 

Example:  

2 M cycles; 7 T states; 3.5 usec @ 2 MHz 

Indirect. 

S Z 
	

H 	P/V N C 

(no effect) 

LD (DE), A 

Before: 
	

After: 

ED A ED 

0392 E D 
	

0392 

0392 0392 

OBJECT CODE 
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ID 

C 

E 

n 

THE Z80 INSTRUCTION SET 

Load immediate data n into the Indirectly ad-
dressed memory location (HL). 

(HL) n 

[ 	rirroITT7 EDI byte I: 36 

I, 	I 	I 	r 	  byte 2: immediate 
	 L _1_1_ 	L  data 

The contents of the memory location immediately 
following the opcode are loaded into the memory 
location indirectly addressed by the HL data 
pointer 

LD (HL), n 

Function: 

Format: 

Description: 

Data Flow: 
A 

B 

D 

H 

DATA 

r.1111161/ 	A  

Timing: 	 3 M cycles; 10 T states; 5 usec @ 2 MHz 

Addressing Mode: Immediate/indirect. 

Flags: 5 z H 	P/V N C 

  

(no effect). 
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PROGRAMMING THE Z80 

Example: 	 LD (HL), SA 

Before: 

H 
	

A342 

After: 

H 
	

A342 

  

A342 A342 y*SA SY/''JA,;,; ,,,, 

 

    

OBJECT CODE 

302 



Data Flow: 
A 

B 
	

C 
D 
	

E 
H 

A — Ill 
B — 000 
C — 001 
D — 010 

E — 011 
H — 100 
L — 101 

DATA 

tea 
NMI 

THE Z80 INSTRUCTION SET 

LD (HL), r 	Load indirectly addressed memory location (HL) 
from register r. 

Function: 	(HL) 4-  r 

Format: 

Description: The contents of the specified register are loaded 
into the memory location addressed by the HL 
register pair. r may be any one of: 

Timing: 

Addressing Mode: 

Byte Codes: 

2 M cycles; 7 T states; 3.5 usec @ 2 MHz 

Indirect. 

r:ABCDE HL 

   

77 70 71 72 73 74 75 

I 	I j 

I 	I 
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After: 

B 81 

PROGRAMMING THE Z80 

Flags: Z H 	E/V N C 

  

(no effect). 

Example: 	LD (HL), B 

Before: 

B 	81 

H 0501 L 	H 	 C501 

  

C501 0501 

OBJECT CODE 
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THE Z80 INSTRUCTION SET 

LD r, (IX + d) Load register r indirect from indexed memory 

location (IX + d) 

Function: 	 r 	(IX + d) 

Format: 

0 

Description: 
	The contents of the memory location addressed by 

the IX index register plus the given offset value, 
are loaded into the specified register. r may be any 

one of: 

	

A — III 
	

E — 011 

B — 000 
	

H— 100 

	

C — 001 
	

L — 101 

D — 010 

0 	 o 

0 

byte 1: DD 

byte 2 

byte 3: offset value 

Data Flow: 
A 

H 

ix 

B 

Timing: 	 5 M cycles; 19 T states; 9.5 usec @ 2 MHz 

Addressing Mode: Indexed. 

Byte Codes: A B C E H 

   

DO. 7E 46 4E 56 5E 66 6E -d 
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PROGRAMMING THE Z80 

Flags: $ z H 	P/V N C 

  

(no effect). 

Example: 
	

LD E, (IX + 5) 

Before: 

03 

IX 
	

3020 

After: 

E 
	

5 

IX 
	

3020 

3020 

3025 

3020 

3025 

OBJECT CODE 
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a 

a 

THE Z80 INSTRUCTION SET 

LD r, (IY + d) Load register r indirect from indexed memory 
location (IY + d) 

Function: 	 r (IY + d) 

Format: 
byte 1: FD 

byte 2 

byte 3: offset value 

Description: 
	

The contents of the memory location addressed by 
the IY index register plus the given offset value, 
are loaded into the specified register. r may be any 
one of: 

	

A — 111 
	

E — 011 
B — 000 
	

H — 100 

	

C — 001 
	

L — 101 
D — 010 

Data Flow: 
A 

B 

H 

IY 

Timing: 	 5 M cycles, 19 T states; 9.5 usec @ 2 MHz 

Addressing Mode: Indexed. 
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A E3 

IT 6005 

Before: 

A 

IT 

After: 

r F9 

6005 

PROGRAMMING THE Z80 

Byte Codes: r:ABCDE HI 

  

FD - 7E 46 4E 56 56 66 6E -d 

Flags: S Z H 	P/V N C 

  

(no effect). 

Example: 	 LD A, (IY + 2) 

6005 

6007 

6005 

6007 

OBJECT CODE 
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0 I  I  I 

0 D I  I 0 0 

d 
Al l  1.11 

T 	V 	T T 	TIT 

lit 	A 

byte I: DD 

byte 2: 36 

byte 3: offset value 

byte 4: immediate 
data 

Data Flow: 
DATA 

A 

B 

H 

ix 

r, 
P"'1111 

THE Z80 INSTRUCTION SET 

LD (IX + d), n Load indexed addressed memory location (IX + 
d) with immediate data n. 

Function: 	 (IX + d) n 

Format: 

Description: 
	

The contents of the memory location immediately 
following the offset are transferred into the 

memory location addressed by the contents of the 
index register plus the given offset value. 

Timing: 	 5 M cycles; 19 T states; 9.5 usec @ 2 MHz 

Addressing Mode: Indexed/immediate. 

Flags: s z H 	P/V N C 

  

(no effect). 
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PROGRAMMING THE Z80 

Example: 	 LD (IX + 4), FF 

Before: 

IX 
	

8109 

After: 

IX 
	

8109 

8109 

8100 

8109 

1310D 

OBJECT CODE 
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0 

0 0 	0 
	0 

111113 

111111 

byte 1: FD 

byte 2: 36 

byte 3: offset value 

byte 4: immediate 
data 

THE Z80 INSTRUCTION SET 

LD (IY + d), n Load indexed addressed memory location (IY + 
d) with immediate data n . 

Function: 	(IY + d) 	n 

Format: 

Description: The contents of the memory location immediately 
following the offset are transferred into the me-
mory location addressed by the contents of the 

index register plus the given offset value. 

es. Data Flow: 
LD 

d 

C 

E 

n 

A 

B 

D 

H 

IY 	 

O DATA 

 

Timing: 5 M cycles; 19 T states; 9.5 usec @ 2 MHz 

Addressing Mode: Indexed/immediate. 

Flags: $ Z H 	P/V N C 

  

(no effect). 
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PROGRAMMING THE Z80 

Example: 	 LD (IY + 3), BA 

Before: 

IV 
	

0100 

After: 

IY 
	

0100 

0100 

0103 

0100 

0103 

OBJECT CODE 

312 



byte 1: DD 

byte 2 

byte 3: offset value 

0 	I 	I 

0 I 
I  

d 

THE Z80 INSTRUCTION SET 

LD (IX + d),r 	Load indexed addressed memory location (IX + 
d) from register r. 

Function: 	(IX + 

Format: 

Description: 
	

The contents of specified register are loaded into 
the memory location addressed by the contents of 
the index register plus the given offset value. r may 
be any one of: 

	

A — 111 
	

E — 011 
B — 000 
	

H— 100 
C — 001 
	

L — 101 
D — 010 

Data Flow: 

DATA 

A 

B 

E 

H 

IX 

O LD 

d 

WWI 

Timing: 	 5 M cycles; 19 T states; 9.5 usec @ 2 MHz 
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Byte Codes: 

Flags: 

Example: 

A B C D E 1-1 

LD (IX + 1), C 

(no effect). 

OD- 77 70 71 72 73 74 75 -d 

2 
	

H 	P/V N C 

IX 4462 IX 4462 

4462 

4463 

OBJECT CODE 

PROGRAMMING THE Z80 

Addressing Mode: Indexed. 

Before: 
	

After: 

6B C 66 
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0 

0 

	d 

E 

Data Flow: 
A 

B 

H 

IY 

°WO 

THE Z80 INSTRUCTION SET 

LD (IY + d), r Load indexed addressed memory location (IY + 
d) from register r. 

Function: 	 (IY + d) 	r 

Format: 

byte 1: FD 

byte 2 

byte 3: offset value 

Description: The contents of the specified register are loaded 
into the memory location addressed by the con-
tents of the index register plus the given offset 
value. r may be any one of: 

A — 111 	 E — 011 
B — 000 	 H — 100 
C — 001 	 L— 101 
D — 010 

DATA 

Timing: 	 5 M cycles; 19 T states; 9.5 usec @ 2 MHz 

Addressing Mode: Indexed. 

Byte Codes: r: A B C D E 

  

FD- 77 70 71 72 73 74 75 -d 
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PROGRAMMING THE Z80 

5A134 5AB4 

5AB7 5AB7 

ISE 
21 

OBJECT CODE 

Before: 

3E 

5AB4 

A 

1 Y 

After: 

A 

1Y 

3E 

5AB4 

H 	PN N C 5 Z 

LD (111 + 3), A 

Flags: 

Example: 

(no effect). 
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0 	 0 

n 
I 	I 	I 

	  n 	  

byte 1: 3A 

byte 2: address, low 
order byte 
byte 3: address, high 
order byte 

THE Z80 INSTRUCTION SET 

LD A, (nn) 	Load accumulator from the memory location 

Function: 	A 4—  (nil) 

Format: 

Description: The contents of the memory location addressed by 
the contents of the 2 memory locations immediate-
ly following the opcode are loaded into the ac-
cumulator. The low byte of the address occurs im-
mediately after the opcode. 

Data Flow: 

    

A 

a 
D 

H 

rze- 

 

    

     

Timing: 	 4 M cycles; 13 T states; 6.5 usec @ 2 MHz 

Addressing Mode: Direct. 
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A OA A 

3301 3301 

OBJECT CODE 

PROGRAMMING THE Z80 

Flags: S Z H 	P/V N C 

I (no effect). 

 

Example: 
	

LD A, (3301) 

Before: After: 
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byte 1: 32 

byte 2: address, low 
order 
byte 3: address, high 
order 

0 0 	0 0 
	0 

lIf 

THE Z80 INSTRUCTION SET 

LD (nn), A 	Load directly addressed memory location (nn) 
from accumulator. 

Function: 	 (nal I—  A 

Format: 

Description: The contents of the accumulator are loaded into 
the memory location addressed by the contents of 
the memory locations immediately following the 
opcode. The low byte of the address immediately 
follows the opcode. 

Data Flow: 

 

 

A 

B 

0 

H 

  

4 M cycles; 13 T states; 6.5 usec @ 2 MHz 

Addressing Mode: Direct. 
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PROGRAMMING THE Z80 

Flags: 5 Z P/V N C 

  

(no effect) 

Example.• 
	

LD (0321), A 

Before: 
	

After: 

A l 	A4  A Al 

    

0321 0321 

OBJECT CODE 
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THE Z80 INSTRUCTION SET 

LD (nn), dd 	Load memory locations addressed by nn from 
register pair rr. 

Function: 	 (nn) 4—ddiow, (nn + 1) I—ddhigh 

Format: 
ri I 
	0 
	

0 
	

byte 1: ED 

byte 2 

byte 3: address, 
low order 

byte 4: address, 
high order 

Descriptions: 	The contents of the low order of the specified 
register pair are loaded into the memory location 

addressed by the memory locations immediately 
following the opcode. The contents of the high 
order of the register pair are loaded into the 
memory location immediately following the one 
loaded from the low order. The low order of the 
nn address occurs immediately after the opcode.dd 
may be anyone of: 

BC — 00 
	

HL — 10 
DE — 01 
	

SP — II 

0 
	

d d 0 0 

n 

Data Flo iv: 

             

           

LD 

dd 

 

A 

B 

SP 

           

          

C 

E 

 

            

           

n 
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PROGRAMMING THE Z80 

Timing: 	 6 M cycles; 20 T states; 10 usec @ 2 MHz 

Addressing Mode: Direct. 

Byte Codes: dd: BC DE HL SP 

ED- 43 53 63 73 

Flags: 5 2 H 	P/V N C 

  

(no effect). 

Example: 	 LD (040B), BC 

Before: 	 After: 

B 0221 C Bit 	0221 

 

  

040B 

040C 

0408 

040C 

OBJECT 
CODE 

322 



n 

n 

THE Z80 INSTRUCTION SET 

LD (nn), HL 	Load the memory locations addressed by nn from 
HL. 

Function: 	(nn) — L. (nn + 1) 	H 

Format: 

L1 L I I 

byte 1: 22 

byte 2. address, 
low order 

0 0 	0 0 0 	0 

r 

Description: 

	 1 byte 3: address, 
" 	-L 	-I  high order 

The contents of the L register are loaded into the 
memory location addressed by the memory loca-
tions immediately following the opcode. The con-
tents of the H register are loaded into the memory 
location immediately following the location 
loaded from the L register. The low order of the 
tin address occurs immediately after the opcode. 

Data Flow: 

 

LD 

Timing: 	5 M cycles; 16 T states; 8 usec @ 2 MHz 

Addressing Mode: Direct. 
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PROGRAMMING THE Z80 

Flags: 5 Z H 	P/V N C 

 

  

(no effect). 

Example: 	 LD (40B9), HL 

Before: 	 After: 

HE 	304A 	L HE-  304A  

4089 

408A 

OBJECT 
CODE 

324 



n 

w 

DATA 

8 

H 

E 

0 0 	0 
	

0 
	o  I , 1 o 

I 	I 
	 n 	

 

THE Z80 INSTRUCTION SET 

LD (nn), IX 	Load memory locations addressed by nn from IX. 

Function: 	 (nn) •- !Now; (nn + 1) I-  IXhigh 

Format: 
0 	I 0 
	

byte I: DD 

byte 2: 22 

byte 3: address, 
low order 

byte 4: address, 
high order 

Description: The contents of the low order of the IX register 
are loaded into the memory location addressed by 
the contents of the memory location immediately 
following the opcode. The contents of the high 
order of the IX register are loaded into the 
memory location immediately following the one 
loaded from the low order. The low order of the 
nn address occurs immediately after the op code. 

Data Flow: 

 

LO 

Timing: 	 6 M cycles; 20 T states; 10 usec @ 2 MHz 

Addressing Mode: Direct. 
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PROGRAMMING THE Z80 

Flags: 5 Z 

 

L 	ETNtl (no effect). 

  

    

Example: 	 LD (012B), IX 

 

 

Before: 

 

After: 

0406 IX [ 	0406 

      

0128 

012C 

012B 

012C 

OBJECT 
CODE 

326 



A 

B 

D 

H 

n C 

E 

s 
L.D 

Data Flow: 

THE Z80 INSTRUCTION SET 

LD (nn), W 	Load memory locations addressed by nn from IY. 

Function: 

Format: 

(nnI 	Pliow; (nn + 1) 4—  Whigh 

   

17-Ti  

0 	0 	
I  I °  

n 

byte 1: FD 

byte 2: 22 

byte 3: address. 
low order 

byte 4: address, 
high order 

o h 

	

0 

0 

I 

0 

Description: The contents of the low order of the IY register are 
loaded into the memory location addressed by the 
contents of the memory locations immediately 
following the opcode. The contents of the high 
order of the IY register are loaded into the 
memory location immediately following the one 
loaded from the low order. The low order of the 
nn address occurs immediately after the opcode. 

DATA 

Tinting: 	 6 M cycles; 20 T states; 10 usec @ 2 MHz 

Addressing Mode: Direct. 
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PROGRAMMING THE Z80 

Flags: S Z H 	P/V N C 

 

  

(no effect) 

Example: 	 LD (BD04), IY 

Before: 

IV 
	

D204 

After: 

IY 
	

D204 

9004 

9005  

9004 

BDO5 /D2 

OBJECT CODE 

328 



Tuning: 

Addressing Mode: 

Flags: 

2 M cycles; 7 T states; 3.5 usec @ 2 MHz 

Indirect. 

S Z 
	

P/V N C 

3201 32D1 

A 7.12VA  

C B 

A 

 

AB 

  

B 

  

32D1 32DI 

THE Z80 INSTRUCTION SET 

LD A, (BC) 	Load accumulator from the memory location in-
directly addressed by the BC register pair. 

Function: 	 A — (BC) 

Format: 

Description: 

 

The contents of the memory location addressed 
by the contents of the BC register pair are loaded 

into the accumulator. 

Data Flow: 
A 	 < 	 

a 	 C 

1E DATA 

 

 

         

         

         

         

         

1 ,10J 
	

OA 

(no effect). 

Example: 
	

LD A, (BC) 

Before: 
	

After: 

OBJECT CODE 
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A7/10(1/  	 
I  7\i  B 

H 

D 
	

6051 E 	D 
	

6051 
	

E 

6051 6051 

PROGRAMMING THE Z80 

LD A. (DE) 	Load the accumulator from the memory location 
indirectly addressed by the DE register pair. 

Function: 

Format: 

Description: 

Data Flow: 

A 4-  (DE) 

C 
	

0 
	

IA 

The contents of the memory location addressed by 
the contents of the DE register pair are loaded into 
the accumulator. 

Timing: 	 2 M cycles; 7 T states; 3.5 usec @ 2 MHz 

Addressing Mode: Indirect. 

Flags: 
$ Z 	H 	P/V N C 

 

 

(No effect). 

Example: LD A, (DE) 

 

Before: 
	

After: 

A D2 
	

A icc 

OBJECT CODE 
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THE Z80 INSTRUCTION SET 

LD A, I 	Load accumulator from interrupt vector register I. 

Function: 	A -- 

Format: 

     

LL 1_1;1 

 

byte I: ED 

E-0-[ 	 byte 2: 57 1-1  PITT; _ 	_ _ 	_ _ _ _ 

Description: 	The contents of the interrupt vector register are 
loaded into the accumulator. 

Data How: 

2 M cycles; 9 T states; 4.5 usec @ 2 MHz 

Addressing Mode: Implicit. 

Flags: s z 
rilT)  

 

P/V N C 

	Set to the contents 
of IFF2 

  

 

0 x  

  

A 	 

Example: LD A,1 

Before: 

A 	30 	i ij 	dB  

After: 

 

    

7 4 

 

4B 

  

        

OBJECT CODE 
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E 

Description: 

Data Flow: 	A 

H 

The contents of the accumulator are loaded into 
the Interrupt Vector register. 

PROGRAMMING THE Z80 

LD L A 

Function: 

Format:  

Load Interrupt Vector register I from the ac-
cumulator. 

I 4-  A 

byte I: ED 

byte 2: 47 

0 	0 

0 	0 0 0 

Timing: 	 2 M cycles; 9 T states; 4.5 usec @ 2 MHz 

Addressing Mode: Implicit. 

Flags: S Z H 	P/V N C 

  

(no effect) 

Example: LD I, A 

Before: 

AI 	06 

   

After: 

 

      

 

D2 	I  A 	06  

 

       

OBJECT CODE 

332 

       



0 0 byte I: ED% 

0 byte 2: 5F 

Before: After: 

A RI 4A dA 

OBJECT CODE 

Al 	62 	.R 

THE Z80 INSTRUCTION SET 

LD A, R 	Load accumulator from Memory Refresh register 
R. 

ASR 

The contents of the Memory Refresh register are 
loaded into the accumulator. 

A 

B 
"i":":27/-  

E 

R 

Tinting: 	 2 M cycles; 9 T states; 4.5 usec @ 2 MHz 

Addressing Mode: 	Implicit. 

Flags: $ 	2 	H 	P/V N 	C 

• • x 0 
4 	set to contents of IFF2 

Example: 	 LD 	A, R 

Function: 

Format: 

Description: 

Data Flow: 
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PROGRAMMING THE Z80 

LD HL, (nn) 	Load HL register from memory locations addres-

sed by nn. 

Function: 	 L 	(nn): H 	(nn + I) 

Format: 
0 0 
	0 
	

0 
	0 
	

byte I: 2A 

byte 2: address, low 
order 

byte 3: address, high 
order 

Description: The contents of the memory location addressed by 

the memory locations immediately after the op-
code are loaded into the L register. The contents 
of the memory location after the one loaded into 
the L register are loaded into the H register. The 
low byte of the nn address occurs immediately 
after the opcode. 

  

Data Flow: 

 

LD 

   

B 

D 

WS A/  ra 

immLW4.1 

w 

Tuning: 
	

5 M cycles, 16 T states; 8 usec @ 2 MHz 

Addressing Mode: Direct. 

Flags: 	

fi 
	H 	P/V N C 

(no effect) 
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ONE 

Before: 

H 

0024 

0025 

After: 

L H17.5 6691/7, L 

0024 

0025 

THE Z80 INSTRUCTION SET 

Evample: 	 LD HL, (00241 

OBJECT CODE 

335 



I 

byte 2: 21 

byte 3. immediate 
data, low order 

byte 4: immediate 
data, high order 

0 0 	0 0 0 0 

IIIAIII 
Mil I 

Addressing Mode: Immediate. 

Flags: 
	

S Z 

(no effect) 
H 	P/V N C 

PROGRAMMING THE Z80 

LD IX, nn 	Load IX register with immediate data nn. 

Function: 	IX nn 

Format: 
0 byte I: DD 

  

  

Description: The contents of the memory locations immediate-
ly following the opcode are loaded into the IX 
register. The low order byte occurs immediately 
after the opcode. 

Data Flow: 
A 

B 

H 

C 

t 

IX LD 

4 M cycles; 14 T states; 7 usec @ 2 MHz 

336 



IX BOBI 

OBJECT CODE 

IX 306F 

THE Z80 INSTRUCTION SET 

Example: 	LD IX, BOB 1 

Before: 	 After: 

337 



6 M cycles; 20 T states; 10 usec @ 2 MHz Timing: 

Data Flow: 

A n 
B 	 

DH  

IX 

c 

/41,M-5-7  

PROGRAMMING THE 780 

LD IX, (nn) 	Load IX register from memory locations ad- 

dressed by nn. 

Function: 

Format: 

Descriptions: 

ET,10 Etiflo 

EDT c7-1 	. -1;Trfol 
I 	I T 

Ti 
1 

1 / 

1 I 	T -T 

I 
Ti 

 

byte I: DD 

byte 2: 2A 

byte 3. address, 
low order 

byte 4: address, 
high order 

'Now 	(nn); IXhigh 	(nn + 1) 

The contents of the memory location addressed by 
the memory locations immediately following the 
opcode are loaded into the low order of the IX 
register. The contents of the memory location im-
mediately following the one loaded into the low 
order are loaded into the high order of the IX reg-
ister. The low order of the nn address immediately 

follows the opcode. 

Addressing Mode: Direct. 
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THE Z80 INSTRUCTION SET 

Flags: 5 Z 

 

P/V N C 

    

    

(no effect). 

Example: 	 LD IX, (010B) 

Before: 
	

After: 

010B 

0100 
0108 

0100 

OBJECT CODE 
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IY 

PROGRAMMING THE ZEIO 

LD IY, nn 

Function: 

Format:  

Load IY register with immediate data nn. 

IY 	nn 

byte I: FD 

byte 2: 21 

0 

byte 3: immediate 
data, low order 
byte 4: immediate 
data, high order 

Description: 	The contents of the memory locations immediate- 
ly following the opcode are loaded into the IY 
register. The low order byte occurs immediately 
after the opcode. 

Data Flow: 

LI) 

A 

B 
	

C 

D 
	

E 

4 M cycles; 14 T states; 7 usec @ 2 MHz 

Addressing Mode: Immediate. 
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THE Z80 INSTRUCTION SET 

Flags: 
	

S z 
	

II 	P/V N C 

(no effect) 

Example: 
	

LD IY, 21 

Before: 	 After: 

 

0698 

     

it 

 

e /S665 

  

IV 

 

40 

       

OBJECT CODE 
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A 

B 

H 

Iv was 

PROGRAMMING THE Z80 

LD IV, (nn) 	Load register IY from memory locations addressed 
by nn. 

Function: 

Format: 

Description: 

Data Flow: 

lYlow 	(nn); IYhigh 4-  (nn + 1) 

'byte I: FD 

o 1 	11 j byte 2: 2A 

byte 3: address, 
low order 

byte 4: address, 
high order 

The contents of the memory location addressed by 
the memory locations immediately following the 
opcode are loaded into the low order of the IY 
register. The contents of the memory location im-
mediately following the one loaded into the low 
order are loaded into the high order of the IY 
register. The low order of the nn address im-
mediately follows the opcode. 

0 0 
	0 

	0 
	i 	•  

1 
0 	

t 	t 	I 
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IT 

THE Z80 INSTRUCTION SET 

Timing: 	 6 M cycles; 20 T states; 10 usec @ 2 MHz 

Addressing Mode: Direct. 

Flags: S z P/V N C 

  

(no effect). 

Example: 	 LD 1Y, (500D) 

Before: 	 After: 

IY 
	

6002 

500D 

500E 

500D 

500E 

OBJECT 
CODE 

343 



LD 

Function: 

Format: 

Load Memory Refresh register R from the ac-
cumulator. 

R 4—  A 

0 	0 
	

byte I: ED 

PROGRAMMING THE Z80 

0 0 0 byte 2: 4F 

Description: 

Data Flow: 

The contents of the accumulator are loaded into 
the Memory Refresh register. 

A 

B 

0 

H 

C 

E 

R 

Timing: 	 2 M cycles; 9 T states; 4.5 usec @ 2 MHz 

Addressing Mode: Implicit. 

Flags: S z H 	P/V N C 

 

  

(no effect) 

Example: 
	

LD R, A 

Before: 
	

After: 

       

AI 	OF 	I R 40 A Al 	R 

    

       

OBJECT CODE 
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Example: LD SP, HL 

Before: 

4 
SP 
	

OBOE 

After: 

06AF 

SP r f  

06AF 
	

1L  H 

THE Z80 INSTRUCTION SET 

LD SP, HL 	Load stack pointer from HL. 

Function: 	SP HL 

Format: 

Description: 

Data Flow: 

F9 

The contents of the HL register pair are loaded in-
to the stack pointer. 

A 
B 	 C 

SP  /V a< 

Timing: 	 I NI cycles; 6 T states; 3 usec @ 2 MHz 

Addressing Mode: Implicit. 

Flags: s z H 	PIV N C 

 

 

L (no effect) 

OBJECT 
CODE 

345 



PROGRAMMING THE ZBO 

LD SP, IX 	Load stack pointer from IX register. 

Function: 

Forman: 

Description: 

Data Flow: 

SP IX 

byte 1: DID 

1 0  N ti byte 2: F9 
The contents of the IX register are loaded into the 

stack pointer. 

211 
	 0 

ix 

SP 

Timing: 	 2 M cycles; 10 T states; 5 usec @ 2 MHz 

Addressing Mode: Implicit. 

Flags: S Z 	H 	P/V N C 

EMI LIM Thno effect) 

Example: 	 LD SP, IX 

B  

H 

C 
E 

  

Before: 

 

After: 

ix L 	0902 	 1 

SP OPCn 

    

IX 

 

0902 

 

SP 

 

54A0 

OBJECT 
CODE 

346 



It 
	

09AB 	 i IT I 
	

09AB 

       

SP 6004 P  aC P9 34-A  

THE Z80 INSTRUCTION SET 

LD SP, IY 	Load stack pointer from IY register. 

Function: 	 SP 4—  IY 

Format: 

 

byte 1: FD 

0 byte 2: F9 

  

Description: 	The contents of the IY register are loaded into the 
stack pointer. 

Data Flow: 

C 

E 

A 

H 

IT 

SP 

Timing: 	 2 M cycles; 10 T states; 5 usec @ 2 MHz 

Addressing Mode: Implicit. 

Flags: 5 Z P/V N C 

  

(no effect) 

347 

Example: 
	

LD SP, IY 

Before: 
	

After: 

OBJECT CODE 



Data Flow: 

a 
E 

DATA 

DATA 

PROGRAMMING THE Z80 

LDD 	 Block load with decrement. 

Function: 	 (DE) — (HL); DE 4—  DE — I; HL'—  HL — I; 

BC .0—  BC — 1 

Format: 
0 	0 	byte I: ED 

0 0 	byte 2: A8 

Description: The contents of the memory location addressed by 
HL are loaded into the memory location address-
ed by DE. Then BC, DE, and I-IL are all 
decremented. 

Timing: 	 4 M cycles; 16 T states; 8 usec @ 2 MHz 

Addressing Modes: Indirect. 

Flags.• S Z H 	P/V N C 

  

0 X 0 

t-- Reset if BC = 0 after 
execution, set otherwise. 
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6211 

OBJECT CODE 

8438 

6211 

6436 

THE Z80 INSTRUCTION SET 

Example: 	LDD 

Before: 
	

After: 

B 013041 C 0503 A C 
6211 E 0 / A E 

H 843B L H S A 

349 



(init./Arran; 
sbuiCia 

A 

B 

D 

„j: 

PROGRAMMING THE Z80 

LDDR Repeating block load with decrement. 

Function: 

Format: 

 

(DE) 4—  (1414; DE — DE — 1; HL HL — I; 
BC 4—  BC — 1; Repeat until BC = 0 

  

byte 1: ED 

    

    

0 
	 0 0 0 
	

byte 2: B8 

Description: The contents of the memory location addressed by 
HL are loaded into the memory location address-
ed by DE. Then DE, HL, and BC are all 
decremented. If BC * 0, then the program counter 
is decremented by 2 and the instruction re-
executed. 

Data Flow: 

Tinting: 
	 BC * 0: 5 M cycles; 21 T states; 10.5 usec @ 2 

MHz. 
BC = 0: 4 M cycles; 16 T states; 8 usec @ 2 MHz 

Addressing Mode: Indirect. 

Flags: PN N C  

00  j 

5 Z 

350 



THE Z80 INSTRUCTION SET 

351 

LDDR 

Before: 

Example: 

9032 

9033 

9034 

9035 

9032 

9033 

9034 

9035 

After: 

C B 

E D 

H 

06AF 

0660 
0691 

0692 

BI r  DE/a 
r AW/ 
r AirtA 

B 

H 

06AF 

0660 

06131 

0662 

r /  
Sa 
%"7 /405r a 

/ coo37  

OBJECT CODE 

C 

E 

0003 

0692 

9035 



Data Flow: 

B 

E 

DATA 

COUNTER 

SOURCE 

A 
S 

,", 
DESTINATION 

X 0 

5 Z 	H 	P/V N C 

01  
Flags: 

PROGRAMMING THE Z80 

LDI 	 Block load with increment. 

Function: 	 (DE) (HL); DE DE + 1; HL HL + 1; 
BC 4-  BC - I 

Format: 
0 byte 1: ED 

  

  

0 0 
	

0 0 0 byte 2: AO 

Description: 	The contents of the memory location addressed by 
HL are loaded into the memory location addressed 
by DE. Then both DE and HL are incremented, 
and the register pair BC is decremented. 

Timing: 	 4 M cycles; 16 T states; 8 usec @ 2 MHz 

Addressing Mode: Indirect. 

I 	 Reset if BC = 0 after 
execution, set otherwise. 
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346B1 

OBJECT CODE 

34B1 

3902 

THE Z80 INSTRUCTION SET 

Example: 	 LDI 

Before: 
	

After: 

B CCO6 C B C005 C 
34B1 E D 34B2 

H 3902 3903 
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2 
'a -• 

Data Flow: 
A 

D 

DATA 

	-J 
J 

Pm11111111 

E 

,COUNTER 

DESTINATION / 
re/ 	SOURCE 

PROGRAMMING THE Z80 

LDIR 

Function: 

Format: 

Repeating block load with Increment. 

(DE) (HL); DE 4—  DE + 1; HL HL + I; 
BC 	BC — 1; Repeat until BC = 0 

    

 

0 

 

0 

 

byte I: ED 

byte 2: BO 

     

0 

 

0 0 0 

      

Description: The contents of the memory location addressed by 
HL are loaded into the memory location ad-
dressed by DE. Then both DE and HL are in-
cremented. BC is decremented. If BC # 0 then 
the program counter is decremented by 2 and the 
instruction is re-executed. 

Timing: 	 For BC # 0: 5M cycles; 21 T states; 10.5 usec @ 2 
MHz. 
For BC = 0: 4 M cycles; 16 T states; 8 usec @ 2 
MHz 

Addressing Mode: Indirect. 
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THE Z80 INSTRUCTION SET 

Flags: 
	

Z 
	

H 	P/V N C 

0 0 0 

Example: 
	

LD1R 

Before: 
	

After: 

0002 

4A03 

962A 

B 

D 

H 

C B 
E 

4A03 

4A04 

4A05 

4A03 

4A04 

4A05 

OBJECT CODE 

  

962A 

9628 

962C 

962A 

962B 

962C 
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PROGRAMMING THE Z80 

LD r, (HL) 

Function: 

Format: 

Load register r indirect from memory location 
(HL). 

r (HL) 

 

   

0 
	 0 

Description: 	The contents of the memory location addressed by 
HL are loaded into the specified register. r 
may be any one of: 

A —Ill 	E — 011 
B — 000 	H— 
C — 001 	L — 101 
D — 010 

Data Flow: 
A 

B 
	

C 

D 

H 
	

DATA 

Timing: 	 2 M cycles; 7 T states; 3.5 usec @ 2 MHz 

Addressing Mode: Indirect. 

Byte Codes: 	r:  A B C DE HI 

7E 46 4E 56 5E 66 6E 
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3A 

OC 

gar, 4 
32 L H OC 32 

0C32 0C32 

OBJECT CODE 

THE Z80 INSTRUCTION SET 

Flags: S Z N C 

 

  

(no effect). 

Example: 
	 LD D, (HL) 

Before: 
	

After: 
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Data Flow: 

B 

D 

Example: 

OBJECT 
CODE 

PROGRAMMING THE Z80 

NEG 	 Negate accumulator. 

Function: 	 A 4-  0 - A 

  

Format: 

   

   

 

0 0 byte : ED 

0 	0 0 0 	0 0 
	

byte 2: 44 

Description: The contents of the accumulator are subtracted 
from zero (two's complement) and the result is 
stored back in the accumulator. 

Timing: 	2 M cycles; 8 T states; 4 usec @ 2 MHz 

Addressing Mode: Implicit. 

Flags: S z H 	 N C 

  

• • • • • 

C will be set if A was 0 before the instruction. 
P will be set if A was 80H. 

NEG 

Before: 	 After: 

A 	 A 32 414,4"I''o 
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No action 
C 

Function: 

Format: 

Description: 

Data Flow: 

Delay. 

1 0 0 0 0 0 010 	00 

Nothing is done for I M cycle. 

A 

B 

THE Z80 INSTRUCTION SET 

NOP 	 No operation. 

Timing: 	 I M cycle; 4 T states; 2 usec © 2 MHz 

Addressing Mode: Implicit 

Flags: 

 

S Z H 	P/V N C 

 

L 	 

  

(no effect). 
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PROGRAMMING THE Z80 

OR s 
	

Logical or accumulator and operand s. 

Function: 
	

A.—A Vs 

Format: 	 s: may be r, n, (HL), (IX+ d), or (1Y+ d) 

(IX + d) 

(IY + d) 

0 0 
TT 

0 0 

0 
IT 

1 I 0 0 

0 0 

, 	I 	0 0 

IF T 

I  

    

0 

0 
	

0 

r 

n byte 1: F6 

byte 2: immediate 
data 

byte 1: B6 

byte 1: DD 

byte 2: B6 

byte 3: offset value 

byte 1: FD 

byte 2: B6 

byte 3: offset value 

r may be any one of: 

A — Ill 
B — 000 
C — 001 
D — 010 

E — 011 
H — 100 
L — 101 

Description: 
	

The accumulator and the specified operand are 
logically tor'ed, and the result is stored in the ac-
cumulator. s is defined in the description of the 
similar ADD instructions. 
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AID 
V 

THE Z80 INSTRUCTION SET 

Data Flow: 

Al';117 4<r-- 
B 
D E 

Timing: 
M cycles: T states: 

usec 
@ 2 MHz: 

r 1 4 4 
n 2 7 3.5 

(HL) 2 7 3.5 
(IX + d) 5 19 9.5 
(IY + d) 5 19 9.5 

Addressing Mode. r: implicit; n: immediate; (Ht.): ind rect; (IX + 
d), (IY + dl: indexed. 

Byte Codes: 	OR r rABCDE HE 

  

B7 BO BI B2 B3 Bd B5 

Flags: S Z H 	edV N C 

  

• • 0 • 0 0 

Example: OR B 

OBJECT 
CODE 

Before: After: 

A 	06 A :"K A 
B 	B9 B B9 
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PROGRAMMING THE Z80 

OTDR Block output with decrement 

Function: 	 (C)e(HL); B c-B — 1; HL e HL — I; 

Repeat until B = 0. 

Format: 
0 byte 1: ED 

  

  

0 0 byte 2: BB 

Description: The contents of the memory location addressed by 
the HL register pair are output to the peripheral 
device addressed by the contents of the C register. 
Both the B register and the HL register pair are 
then decremented. If B * 0, the program counter 
is decremented by 2 and the instruction is re-
executed. C supplies bits AO to A7 of the address 
bus. B supplies (after decrementation) bits A8 to 
A15. 

Data Flow: 

A 

B 
	

C 

H 

Timing: 	 B = 0: 4 M cycles; 16 T states; 8 usec @ 2 MHz. 
B # 0: 5 M cycles: 21 T states; 10.5 usec @ 2 MHz 

Addressing Mode: External. 

Flags: S Z H 	P/V N C 
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02 ES 

0051 

THE Z80 INSTRUCTION SET 

Example: 	 OTDR 

Before: 

B 

H 

After: 

c Br 	E5  

L 	H 	/720.01K: -47  	I 

32 PORT 	 V PORT 

   

ES E5 

004F 

0050 

0051 

000 

0050 

0051 

OBJECT CODE 
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PROGRAMMING THE Z80 

OTIR 
	

Block output with increment. 

Function: 	(C1'—  (HL); B 	B — I; HL HL + I; Repeat 
until B = 0 

Format: 

1 I T0 	 byteLED  

     

     

FT° 	0 0 
	

byte 2: B3 

Description: The contents of the memory location addressed by 
the HL register pair are output to the peripheral 
device addressed by the contents of the C register. 
The B register is decremented and the HL register 
pair is incremented. If B # 0. the program counter 
is decremented by 2 and the instruction is re-
executed. C supplies bits AO to A7 of the address 
bus. B supplies (after decrementationi bits A8 to 
A15. 

Data Flow. 

      

A 

B 

D 

H 

     

     

 

';'4Counler 

  

     

  

/%•  

 

      

B = 0: 4 IVI cycles; 16 T states; 8 usec @ 2 MHz. 
B # 0: 5 M cycles; 21 T states; 10.5 usec @ 2 MHz 

Addressing Mode: External. 

Flags: 5 z H 	P/V N C 
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03 AO 

PORT 

L H /1/ 15145"! // 

PORT 
	

9 

AO AO 

Example: OTIR 

Before: 

B 

H 

85 

5550 

5551 

5552 

5553 

5550 

5551 

5552 

5553 OBJECT CODE 

5550 

After: 

C B re'r A AO  
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PROGRAMMING THE Z80 

OUT (C), r 	Output register r to port C. 

Function: 	 (C) r 

Format: 
0 
	

0 
	

byte 1: ED 

0 
	

0 0 I byte 2 

Description: 
	

The contents of the specified register are output to 
the peripheral device addressed by the contents of 
the C register. r may be any one of: 

	

A — 111 
	

E — 011 
B — 000 
	

H — 100 

	

C — 001 
	

L — 101 
D — 010 

Register C supplies bits AO to A7 of the address 
bus. Register B supplies bits A8 to A15. 

Data Flow: 
PORT  
	16k , 

Timing: 	 3 M cycles; 12 T states; 6 usec @ 2 MHz 

A 

B 

H 
E 

Addressing Mode: External. 

Flags: 5 Z H 	P/V N C 

  

(no effect). 

Byte Codes: 
ED- 

366 

ABCDEHL. 

79 41 49 51 59 61 69 



Fl B C 	B 	09 	 F I 09 

PORT 09 PORT 

F I F I 

B8 

THE Z80 INSTRUCTION SET 

Example: 	 OUT (C), B 

Before: 
	

After: 

OBJECT CODE 
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OA OA 

PORT PORT A 51 V SO 51 FF 

PROGRAMMING THE Z80 

OUT (N), A 	Output accumulator to peripheral port N. 

Function: 	 (N).- A 

Format: 
0 

 

byte 1: D3 

byte 2: port address 

  

1 	1 	1 	' 	1 	1 	1 
1 	I 	I 	i 	I 	1 	1 

Description: 
	

The contents of the accumulator are output to the 
peripheral device addressed by the contents of the 
memory location immediately following the op-
code. 

Data Flow: 

 

C 
	

OUT  
E 
	

N 

1. 	PORT 

 

A 

B 

H 

Timing: 	 3 M cycles, 11 T states; 5.5 usec @ 2 MHz 

Addressing Mode: External. 

Flags: Z H 	P/V N C 

  

(no effect). 

Example: 	 OUT (OA), A 

Before: 
	

After: 

OBJECT CODE 
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Flags: 
5Z H 	P/VNC 

x 

1 	 

THE Z80 INSTRUCTION SET 

OUTD 	Output with decrement. 

Function: 	(C) (HL); BC 4—  B — HL HL — 1 

Format: 
I 	101101 	byte 1: ED 

0 	0 
	0 
	

byte 2: AB 

Description: The contents of the memory location addressed by 
the HL register pair are output to the peripheral 
device addressed by the contents of the C register. 
Then both the B register and the HL register pair 
are decremented. C supplies bits AO to A7 of the 
address bus. B supplies (after decrementation) A8 

to A15. 

Timing: 	 4 M cycles; 16 T states; 8 usec @ 2 MHz 

Addressing Mode: External. 

Set if B = 0 after execution, 
reset otherwise. 
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30 9A 

228E 

PROGRAMMING THE Z80 

Example: 	 OUTD 

C B 

L H 

PORT 

Before: 

B 

H 

06 
9A 

After: 

WA EVA 9A 

'6"1/ A 

C 

PORT 

228F 228F 

OBJECT CODE 
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Data Flo w: 

A 

B 

D 

re9upIr // 

E 

DATA 

PORT 

THE Z80 INSTRUCTION SET 

OUTI 	Output with increment. 

Function: 	 (C) (HL); B — B — 1 ; HL HL + 1 

Format: 
0 byte 1: ED 

  

  

0 0 0 0 byte 2: A3 

Description: The contents of the memory location addressed by 
the HL register pair are output to the peripheral 
device addressed by the C register. The B register 
is decremented and the HL register pair is incre-
mented. 

C supplies bits AO to A7 of the address bus. 
B (after decrementationi supplies bits A8 to A15. 

Time ng: 	 4 M cycles; 16 T states; 8 usec @ 2 MHz 

Addressing Mode: External. 

Flags: 
5 z  P/V N C 

Set if B = 0 after execution, 
reset otherwise. 
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C B/09ea Be  

H '   	L ',.0F913z9  

PORT 	 PORT 

B 9A 
	

BB 

H OF9A 

 

02 

PROGRAMMING THE Z80 

Example: 	 OUTI 

	

Before: 
	

After: 

BB 
	

BB 

OF9A OF9A 

OBJECT CODE 
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THE Z80 INSTRUCTION SET 

POP qq 	Pop register pair qq from stack. 

Function: 	qqlow 	(SP); cighigh' (SP + I); SP•-  SP + 2 

Format: 

°J E 

Description: The contents of the memory location addressed by 
the stack pointer are loaded into the low order of 
the specified register pair and then the stack 
pointer is incremented. The contents of the 
memory location now addressed by the stack 
pointer are loaded into the high order of the 
register pair, and the stack pointer is again in-
cremented. qq may be any one of: 

BC — 00 
DE — 01 

HL — 10 
AF — 1 I 

Data Flow: 
A 

B 

D 

H 

F 

C 

E 

SP 

Timing: 	 3 M cycles; 10 T states; 5 usec @ 2 MHz 

Addressing Mode: Indirect. 

Byte Codes: qq: BC DE HL AF 

  

CI DI El Fl 
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890A 

0156 

Before: 

B 

SP 

After: 

C Br.  a 

SP 

PROGRAMMING THE Z80 

Flags: S 2 	H 	P/V N C 

[-- [ [ I 1 I r -f_-] (no effect). 

Example: 	 POP BC 

0156 

015C 

0150 

015B 

015C 

015D OBJECT CODE 
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DATA 

THE Z80 INSTRUCTION SET 

POP IX 	POP IX register from stack. 

Function: 
IX  low (SP); IX high 	(SP + I); SP —SP + 2 

Format: 

 

byte I: DD 

   

   

D I D j 
	

j byte 2: El 

Description: 

Data Flow: 

The contents of the memory location addressed by 
the stack pointer are loaded into the low order of 
the IX register, and the stack pointer is in-
cremented. The contents of the memory location 
now addressed by the stack pointer are loaded in-
to the high order of the IX register, and the stack 
pointer is again incremented. 

Timing: 	 4 M cycles; 14 T states; 7 usec @ 2 MHz 

Addressing Mode: Indirect. 

375 



Flags: 	
S Z I 	I 	II (no effect). 

H 	P/V N C 

PROGRAMMING THE Z80 

Example: 
	

POP IX 

Before: 

0001 

0906 

After: 

IX WIAA,W,vfci-711 

SP 	74'  lvfi5%%/ial 

IX 

SP 

09013 

0900 

090D 

0906 

0900 

090D 

OBJECT CODE 
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THE Z80 INSTRUCTION SET 

POP IY 	POP IY register from stack. 

Function• 	 IY 
low

— (SP); IY high 
(SP + I); SP SP + 2 

Format: 
0 byte I: FD 

  

  

0 0 	0 
	

byte 2: El 

Description: 

Data Flow: 

The contents of the memory location addressed by 

the stack pointer are loaded into the low order of 
the IV register, and then the stack pointer is incre-
mented. The contents of the memory location now 
addressed by the stack pointer are loaded into the 
high order of the IY register, and the stack pointer 
is again incremented. 

Tuning: 	 4 M cycles; 14 T states; 2 usec @ 2 MHz 

Addressing .Mode: Indirect. 

Flags: 5 Z H 	P/V N C 

  

(no effect). 
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.___ 	• 
FD 3004 

El 3005 

3006 

OBJECT CODE 

3004 

3005 

3006 

PROGRAMMING THE Z80 

Example: 	POP IY 

Before: 	 After: 

IY 	 032A 	IY reera rera 

   

SP 3004 sPrepReyS  
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A 

B 

H 

Pr 

SS/ / 

3 M cycles; 11 T states 6.5 usec @ 2 MHz Timing: 

SP 

Addressing Mode: Indirect. 

Bite Codes: qq: BC DE HI AF 

C5 I 05 I  ES 1.  F5 

THE Z80 INSTRUCTION SET 

PUSH qq 	Push register pair onto stack. 

Description: 

(SP — 	—clqhigh,  (SP — 	qq low; 
SP 	SP — 2 

!tot' 

The stack pointer is decremented and the contents 
of the high order of the specified register pair are 
then loaded into the memory location addressed 
by the stack pointer. The stack pointer is again 
decremented and the contents of the low order of 
the register pair are loaded into the memory loca-
tion currently addressed by the stack pointer. qq 
may be any one of: 

Function: 

Format: 

BC — 00 
	

HL — 10 
DE —01 
	

AF — II 

Data Flow: 
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PROGRAMMING THE Z80 

Flags: 5 Z H 	P/V N C 

 

  

(no effect). 

Example: 
	

PUSH DE 

 

Before: After: 

OA03 D 	OA03 

   

   

SP 1--- 30131-1 	SP 

00AF 

00130 

0081 

00AF 

0060 

00131 

OBJECT CODE 
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DATA 

C B 

0 
H 

IX 

w 
SP r 

THE Z80 INSTRUCTION SET 

PUSH IX 	Push IX onto stack. 

antlion: 	 (SP — 11 2  IXhigh; (SP — 2) — 
SP 	SP — 2 

Format: 
0 byte I: DD 

  

  

oi o 	0 	byte 2: E5 

Description: 

Data Flow: 

The stack pointer is decremented, and the contents 
of the high order of the IX register are loaded into 
the memory location addressed by the stack 
pointer. The stack pointer is again decremented 
and then the contents of the low order of the IX 
register are loaded into the memory location ad-
dressed by the stack pointer. 

Tinting: 	 4 M cycles; 15 T states; 7.5 usec @ 2 MHz 

Addressing Mode Indirect. 

Flags: S Z 	H 	PA/ N C 

I. 	I 	(no effect)  
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0094 

0095 

0096 

DD 	 0094 

ES 	 0095 

0096 
_ / 

OBJECT CODE 

PROGRAMMING THE Z80 

Example: 	 PUSH IX 

Before: 

F 04A2 

After: 

Ix 	 04A2 

r 01294' SP 

382 



A / 

D.

B  

Data )'low: 

C 

THE Z80 INSTRUCTION SET 

PUSH 111 	Push IY onto stack. 

Function: 	(SP — 1 I — IY high; (SP — 2) — IY10„.; 
SP —SP — 2 

Format: 

ELL I it L. to 	byte I: FD 

  

tii 	I 	byte 2: E5 

Description: The stack pointer is decremented and the contents 
of the high order of the I Y register are loaded Into 
the memory location addressed by the stack 
pointer. The slack pointer Is again decremented 
and the contents of the low order of the I Y register 
are loaded into the memory location addressed by 
the stack pointer. 

Tuning: 	 3 M cycles; 15 T states; 7.5 uses @ 2 MHz 

Addressing Mode: Indirect. 

Flags: 5 Z P/V N C 

 

I 	I 	I 

 

(no effect) 

383 



PROGRAMMING THE Z80 

Example: 	 PUSH IY 

0064 

0085 

00136 

0084 

0085 

00136 

OBJECT CODE 

  

384 

Before: 

90BF 

0066 

IV 

SP 

After: 

IY 

SP 

908F 

00 



THE Z80 INSTRUCTION SET 

RES b, s 

Function: 

Reset bit b of operands. 

sb 4- 0 

Format: 	s: 

r 0 0 0 

0 

(HL) 0 0 

0 b 0 

(IX + d) 0 0 

0 0 0 

d 

0 b 

(IY + d) 

0 

I 

d 
I 	I 	I 

b 	
0 

0 

byte 1: CB 

byte 2 

byte 1: CB 

byte 2 

byte 1: DD 

byte 2: CB 

byte 3: offset value 

byte 4 

byte I: FD 

byte 2: CB 

byte 3: offset value 

byte 4 

b may be any one of: 

0 — 000 4 — 100 
1 — 001 5 — 101 
2 — 010 6 — 110 
3 — 011 7 — 	Ill 

r may be any one of: 

A — Ill 
B — 000 
C — 001 
D — 010 

E — 011 
H — 100 
L — 10] 
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H 

87 80 81 82 83 84 85 

BF BB 89 BA BB BC BD 

97 90 91 92 93 94 95 

9F 98 99 9A 9B 9C 910 

A7 AO Al A2 A3 A4 A5 

AF A8 A9 AA AB AC AD 

B7 BO 1111 B2 B3 B4 135 

BF B8 89 BA BB BC BD 

Byte Codes: 	RES b, r 

CB— 

b r. A B C D E 

2 

3 

4 

5 

6 

7 

PROGRAMMING THE Z80 

Description: 
	

The specified bit of the location determined by s is 
reset. s is defined in the description of the similar 
BIT instructions. 

Data Flow: 
A 

C 

D 
	

E 

H 

ATA 

Timing: 
M cycles: T states: 

usec 
@ 2 MHz: 

r 2 8 4 
(HL) 4 15 7.5 
(IX + d) 6 23 11.5 
(IY + d) 6  23 11.5 

Addressing Mode: r: implicit; 	indirec (IX + d), (IY + d): in- 
dexed. 

b: 0 I 2 3 4 5 6 7  

RES b, (HL) 	CB- 86 BE 96 9E A6 AE B6 BE 
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A6 AE 

S Z Flags: H 	P/V N C 

Examples: RES 1, H 

H 42 

THE Z80 INSTRUCTION SET 

(No effect) 

Before: 

OBJECT CODE 

387 

RES 	b, (IX + d) DDCB — 
RES r/ (HL) 	CB — 
RES b, (IY + d) 	EDCB — 

b: 0 I 2 3 4 

I 86 I 8E 96 1 9E 

5 6 7  

B6 I BE 

After: 

H 



Function: 

Format: 

PClow (SR); PChigh4--  (SP + I); SP SP + 2 

0 0 
	

0 
	

C9 

Data Flow: 

C 

E 

A 

B 

H 

PC 

SP 

STACK 

PCL 

PCH 

PROGRAMMING THE Z80 

RET 	 Return from subroutine 

Description: The program counter is popped off the stack as 
described for the POP instructions. The next in-
struction fetched is from the location pointed to 
by PC. 

Timing: 	 3 M cycles; 10 T states; 5 usec @ 2 MHz 

Addressing Mode: Indirect. 

Flags: H 	PIV N C 

 

(no effect) 
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THE Z80 INSTRUCTION SET 

Example: 	RET 

3310 

3311 

3310 

3311 

OBJECT CODE 

  

389 

PC 0881 

SP 3310 

Before: 

PC 

SP 

After: 

arl 



B 

0 
C 
E 

Data Flow: 

WIESSISSM 

IMS 

CONTROL 
LOGIC 

SP A 

PROGRAMMING THE Z80 

RET cc 	Return from subroutine on condition. 

Function: 	 If cc true: PClow 	(SP); PChigh 	(SP + 1); 

SP—SP + 2 
Format: 

    

I 	I 

I 	I  
0 0 0 

Description: If the condition is met, the contents of the pro-
gram counter are popped off the stack as described 
for the POP instructions. The next instruction is 
fetched from the address in PC. If the condition is 
not met, instruction execution continues in 
sequence. 

cc may be any one of: 

	

NZ — 000 
	

PO — 100 

	

Z — 001 
	

PE — 101 

	

NC — 010 
	

P — 110 

	

C — 011 
	

M — III 

Tinung: 
	

Condition met: 3 M cycles; II T 	states; 6.5 usec @ 

2 MHz. 
Condition not met: 1 M cycle; 5 T states; 2.5 usec 
@ 2 MHz 

Addressing Mode: Indirect. 
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Example: RET NC 

Before: After: 

F co 

SP 8511 

F 00 

8511 

8512 

8511 

8512 

OBJECT CODE 

PC 	 0124 	 PC 

SP 

THE Z80 INSTRUCTION SET 

Byte Codes: CC. NZ Z NC C PO PE P M 

  

CO C8 DO D8 E0 ES FO F8 

Flags: $  H N C 

   

(no effect) 
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0 	0 0 	0 

RETI 

Function: 

Format: 

Return from interrupt. 

4—  (SP + I); SP 4—  SP + 2 PClow 4—  (SP); PChigh 

0 	0 

 

byte 1: ED 

byte 2: 4D 

Data Flow: 

C 

E 

A 

B 

H 

PC 

STACK 

PCL 

PCH 

PROGRAMMING THE Z80 

Description: The program counter is popped off the stack as 
described for the POP instructions. This instruc-
tion is recognized by Zilog peripheral devices as 
the end of a peripheral service routine so as to 
allow proper control of nested priority interrupts. 
An EI instruction must be executed prior to RETI 
in order to re-enable interrupts. 

SP 
	 ea 1̂1° 

Timing: 	 4 M cycles; 14 T states; 7 usec @ 2 MHz 

Addressing Modes: Indirect. 

Flags: S Z 	H 	P/V N C 

 

 

(no effect). 

392 

  



THE Z80 INSTRUCTION SET 

Example: 	RETI 

PC 

SP 

84E1 

89B2 89:4 / 	A 

Before: After: 

r 

OBJECT CODE 

PC 

9 
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PROGRAMMING THE 2E0 

RETN 

Function: 

Format: 

Description: 

Return from non-maskable interrupt. 

PClow (SP); PChigh 4—  (SP + 1); SP SP + 
2; IFF'l 	IFF2 

byte I: ED 

byte 2: 45 

The program counter is popped off the stack as 
described for the POP instructions. Then the con-
tents of the IFF2 (storage flip-flop) is copied back 
into the IFF1 to restore the state of the interrupt 
flag before the non-maskable interrupt. 

C 
	

0 

0 
	

0 0 0 
	

0 

Data Flow: 
A 

B 
	

C 

E 

PC 

     

     

      

      

      

      

          

STACK 

   

             

          

PCL 

   

             

             

              

  

PCH 

WINE 

   

 

SP 

   

              

Tinting: 	 4 M cycles; 14 T states; 7 usec (0 2 MHz 

Addressing Mode: Indirect. 
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RETN 

Before: 

PC 

SP 

Example: 

After: 

PC A5F 1 

SP 8B4C 

884C 

BB4D 

8B4C 

884D 

OBJECT CODE 

THE Z80 INSTRUCTION SET 

Flags: 	 S Z 
	

H 	P/V N C 

(no effect). 
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0 0 
	

0 

0 0 

0 0 0 

0 10 

0 0 

0 0 0 
	0 

r 

(HL) 

(IX + d) 

(IY + d) 

0 

0 

I 	I 	1 	' 	I 	1  
1 	I 	1 	I 	I 	1 

0 

0 

r may be any one of: 

PROGRAMMING THE Z80 

RL S 	 Rotate left through carry operand s. 

Function: 

Format: 

7 	0 

byte 1: CB 

byte 2 

byte 1: CB 

byte 2: 16 

byte 1: DD 

byte 2: CB 

byte 3. offset value 

byte 4: 16 

byte I: FD 

byte 2: CB 

byte 3: offset value 

byte 4: 16 

	

A — Ill 
	

E — 011 
B — 000 
	

H — 100 

	

C — 001 
	

L — 101 
D — 010 

Description: The contents of the location of the specific 
operand are shifted left one bit place. The con-
tents of the carry flag are moved to bit 0 and the 
contents of bit 7 are moved to the carry flag. The 
final result is stored back in the original location. s 
is defined in the description of the similar RLC in-
structions. 
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Data Flow: 

A 

B 

H 

11 10 12 13 15 14 CBI 17 

S Z Flags: H 	e'V N C 

• 0 • 0 • 

Example: 

C is set by bit 7 of source. 

RL E 

E 

After: 

E 

F triiia  

AV 4 

Before: 

41 

6E 

THE Z80 INSTRUCTION SET 

s: M cycles: T states: 
usec 

@ 2 MHz: 

r 2 8 4 
(HL) 4 15 7.5 
(IX + d) 6 23 11.5 
(IY + d) 6 23 11.5 

Timing: 

Addressing Mode. r: 	(HL): indirect (IX + d), IY + d): in- 
dexed. 

Byte Codes: 	RL r r: A B C D E Lit 

397 

OBJECT CODE 



r 

ME IM 

jf• ran md 
MI 1M 

I MI 

Ar/ ft 00 
A A OF 01 F 	A 

    

OBJECT CODE 

    

F 

PROGRAMMING THE Z80 

RLA 	Rotate accumulator left through• carry flag. 

Function: 
74-- 0 

A 

Format: 
0 0 0 
	

0 
	

17 

Description: 	The contents of the accumulator are shifted left 
one bit position. The contents of the carry flag are 
moved into bit 0 and the original contents of bit 7 
are moved into the carry flag. (9 bit rotation.) 

Data Flow: 

B 

Timing: 	 1 M cycle: 4 T states: 2 usec @ 2 MHz 

Addressing Mode: Implicit. 

5 Z 
	

H 	P/V N C 
Flags: 
	

0 
	

0 • 

C is set by bit 7 of A. 

Example: 
	

RLA 

Before: 
	

After: 
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0 

THE Z80 INSTRUCTION SET 

RLCA 	Rotate accumulator left with branch carry. 

Function: 

   

C-1-17.-  0  -*I 

Format: 

 

A 

 

    

0 0 0 0 07 

Description: 	The contents of the accumulator are rotated left 
one bit position. The original contents of bit 7 is 
moved to the carry flag as well as to bit 0. 

Data Flow: 

	 F 
	 C 

E 

Timing: 	 1 M cycle; 4 T states; 2 usec @ 2 MHz 

Addressing Mode: Implicit. 

Flags: Z H 	P/V N C 

  

0 0 • 

Example: 

C is set by bit 7 of A. 

RLCA 

Before: After: 

A 65 01 F AD6Ai00A F 

Note: This instruction is identical to RLC A, ex-
cept for the flags. It is provided for compat-
ibility with the 8080. OBJECT CODE 
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NT A 

B 

0 

H 

A — Ill 
B — 000 
C — 001 
D — 010 

Data Flow: 

E — 011 
H — 100 
L — 101 

Timing: 	 2 M cycles; 8 T states; 4 usec @ 2 MHz 

PROGRAMMING THE Z80 

RLC r 

Function: 

Format: 

Rotate register r left with branch carry. 

  

     

0 0 
	

0 
	

byte 1: CB 

I 	I 
0 
	

0 
	

0 0 -0- I 
	

byte 2 

Description: The contents of the specified register are rotated 
left. The original contents of bit 7 are moved to 
the carry flag as well as bit 0. r may be any one of: 

Addressing Mode: Implicit. 

Byte Codes: r: ABCDEHL 

 

CB- 07 00 01 02 03 04 05 
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Example: 

B 

OBJECT CODE 

 

THE Z80 INSTRUCTION SET 

Flags: S 2 N C 

  

• • 0 • 0 • 
C is set by bit 7 of source register. 

RLC B 

Before: 

62 

  

After: 

   

       

 

F 

 

Cir,A 

  

      

401 



PROGRAMMING THE Z80 

RLC (HL) 

Function: 

Format: 

Rotate left with branch carry memory location 
(HL). 

n-41_17.-- 0 
(HL) 

0 0 0 byte 1: CB 

   

0 0 0 0 byte 2: 06 

    

Description: The contents of the memory location addressed by 
the contents of the HL register pair are rotated left 
one bit position and the result is stored back at 
that location. The contents of bit 7 are moved to 
the carry flag as well as to bit 0. 

Data Flow: 

   

     

A 
8 
D 

H 

    

   

E 

   

    

     

4 M cycles; 15 T states; 7.5 usec @ 2 MHz 

Addressing Mode: Indirect. 

Flags: S Z H 	N C 

  

• 0 • 0 • 

C is set by bit 7 of the memory location. 
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THE Z80 INSTRUCTION SET 

Example: 	 RLC (HL) 

Before: 
	

After: 

I- D3  

 

F 	 '1rArr,A F 

  

H 6114 L 	H 	 6114 

   

6114 6114 

OBJECT CODE 
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byte I: DD 

byte 2: CB 

byte 3: offset value 

byte 4: 06 

0 
	 0 

0 0 	0 

r 
	 d 	 

0 0 0 0 0 
	

0 

PROGRAMMING THE Z80 

RLC (IX + d) Rotate left with branch carry memory location (IX 
+ d) 

Function: 

F-1-4-17 	0 

ct 	(1X+d) 

Format: 

Description: The contents of the memory location addressed by 
the contents of the IX register plus the given offset 
value are rotated left and the result is stored back 
at that location. The contents of bit 7 are moved 
to the carry flag as well as to bit 0. 

Data Flow: 

A 

B 

0 

H 

  

 

C 

  

  

  

    

    

    

C 

E 

L 
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Ix 
	

0461 0461 IX 

0461 

0462 

THE Z80 INSTRUCTION SET 

Timing: 	 6 M cycles; 23 T states; 11.5 usec @ 2 MHz 

Addressing Mode: Indexed. 

Flags: S Z H 	(Pry N C 

  

• • O • 0 • 

C is set by bit 7 of memory location. 

Example: 	 RLC (IX + I) 

Before: 
	

After: 

42 F 0 F 

   

OBJECT CODE 
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Data Flow: 

A 

B 

H 

PROGRAMMING THE Z80 

RLC (IY + d) Rotate left with carry memory location (IY + d). 

Function: 

C 
	

IV + di 

	o FJ 

Format: 

Description: 

byte I: FD 

byte 2: CB 

byte 3: offset value 

byte 4: 06 

The contents of the memory location addressed by 
the contents of the IY register plus the given offset 
value are rotated left and the result is stored back 
at the location. The contents of bit 7 are moved to 
the carry flag as well as bit 0. 

0 

0 0 
	

0 

0 0 0 0 0 	0 
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THE Z80 INSTRUCTION SET 

Tinting: 	 6 M cycles; 23 T states; 11.5 usec @ 2 MHz 

Addressing Mode: Indexed. 

Flags: S 2 H 	 N C 

  

• • 
	

0 
	

0 • 

C is set by bit 7 of memory location. 

Example: 	 RLC (IY + 2) 

Before: 
	

After: 

C4 F /50 % F 

Iv 
	

0021  Iv 
	

0021 

  

FD  

CB  

02 

06  

0021 

0022 

0023 

    

OBJECT CODE 

407 



Function: 4 3 	0 DI Li 

   

Formai: 

 

0 

 

0 

 

PROGRAMMING THE Z80 

RLD Rotate left decimal. 

   

Description: 

byte I: ED 

byte 2: 6F 

The 4 low order bits of the memory location ad-
dressed by the contents of HL are moved to the 
high order bit positions of that same location. The 
4 high order bits are moved to the 4 low order bits 
of the accumulator. The low order of the ac-
cumulator is moved to the 4 low order bits of the 

memory location originally specified. All of these 

operations occur simultaneously. 

Data Flotv: 

                         

                         

                            

A V  

8 

0 	 E 

                     

                     

                     

                     

                     

         

ALU 

           

                           

                            

                            

                            

                        

DATA 

 

                         

                            

                            

                            

                            

Timing: 	 5 M cycles; 18 T states; 9 usec @ 2 MHz 

Addressing Mode: Indirect. 
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A 	61 	 A 

H 	 8412 

8412 

64 

B4F2 

8412 

OBJECT CODE 

THE Z80 INSTRUCTION SET 

Flags: 

  

H 	cry N C 

0 • 0 

  

    

Examples: 	RLD 

 

 

Before: After: 
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PROGRAMMING THE Z80 

RR s 

Function: 

Rotate right s through carry. 

11•••{ 7 -6"-  0 

Format: 

r 0 	0 0 

0 0 	0 
1...„H 

(HL) 0 	0 0 

0 0 	0 0 

(IX + d) 0 0 

0 	0 0 

I I 	I I 	I 

I II d

I 

I 	I 

0 0 	0 0 

(IY + d) 0 

0 	0 0 

I 	I I 	I 	I 
-6-- 

1 I 	I 1 	I 	I 

0 0 	0 0 

byte 1: CB 

byte 2 

byte 1: CB 

byte 2: 1E 

byte I: DD 

byte 2: CB 

byte 3: offset value 

byte 4: 1E 

byte I: FD 

byte 2: CB 

byte 3: offset value 

byte 4: 1E 

r may be any one of: 

	

A — Ill 
	

E — 011 
B — 000 
	

H — 100 

	

C — 001 
	

L — 101 
D — 010 

Description: The contents of the location determined by the 
specific operand are shifted right. The contents of 
the carry flag are moved to bit 7 and the contents 
of bit 0 are moved to the carry flag. The final 
result is stored back in the original location. s is 
defined in the description of the similar RLC in-
structions. 
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THE Z80 INSTRUCTION SET 

Data Flo w: 

A 

B 

    

 

Lc.  IF 

    

    

    

    

Tinting: 
M cycles: T states: 

usec 
@ 2 MHz: 

r 2 8 4 
(HD 4 15 7.5 
(IX + d) 6 23 11.5 
(IY + d) 6 23 11.5 

Addressing Mode r: 	(H1.1: indirect; (IX + d), IY + d): in- 
dexed. 

Byte Codes: 	RR r: r:ABCDE HL 

  

CB. IF 18 19 IA 1B 1C ID 

Flags:  
•  • 0 •  0  • 
S Z 
	

H 	P/V N C 

C is set by bit 0 of source data. 

Example: 
	

RR H 

Before: 
	 After: 

H 6B Ii F 	H 

OBJECT CODE 
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D E 
	

ALU 

Data Flow: 

A ,ffiX„;  

B 

Timing: 	 1 M cycle; 4 T states; 2 usec @ MHz 

A Fa I 95 F A 
	 Ar 

Note: This instruction is almost identical to RR A. It 
is provided for 8080 compatibility. OBJECT CODE 

PROGRAMMING THE Z80 

RRA 	 Rotate accumulator right through carry. 

Function: 

       

L 

      

       

       

A 	 Cf 

Format: 

Description: 	The contents of the accumulator are shifted right- 
one bit position. The contents of the carry flag 
are moved to bit 7 and the contents of bit 0 are 
moved to the carry flag (9-bit rotation). 

Addressing Mode: Implicit. 

IF 

N C Flags: 5 Z 

0  0  • 
C is set by bit 0 of A 

Example: 
	

RRA 

Before: 
	

After: 
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1 	1 	1 	1 	1 	1 	1 

THE Z80 INSTRUCTION SET 

RRC s 	Rotate right with branch carry s. 

Function: 

     

 

LH' 	 

  

Format: s: 	s is any of r, (HL), (IX + d), (IY + 

r 

(HL) 

(IX + d) 

0 0 
	

0 

     

0 0l0  0 

 

1 	1 

 

I  

     

 

0 0 0 

 

     

     

     

I 	
I0 

0 0 
	

0 

I 
	

1 	I 
1  

0 

0 

o l o 0 0 
	

0 

r may be any one of: 

byte I: CB 

byte 2 

byte 1: CB 

byte 2: OE 

byte 1: DD 

byte 2: CB 

byte 3: offset value 

byte 4: OE 

byte 1: FD 

byte 2: CB 

byte 3: offset value 

byte 4: OE 

(IY + d) 

A — III 
	

E — 011 
B — 000 
	

H — 100 
C — 001 
	

L — 101 
D — 010 

Description: 	The contents of the location determined by the 
specified operand are rotated right and the result 
is stored back in the original location. The con-
tents of bit 0 are moved to the carry flag as well as 
to bit 7. s is defined in the description of the 
similar RLC instructions. 
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RRC 

5 Z 

• • 
H 	a11N  N C  

1-c -  To-  o • 
C is set by bit 0 of source data. 

RRC (HL) 

Byte codes: 

Flags: 

Example: 

r r.ABCDE HL 

CB-I OF 08 09 173A 11)B1 OC 10D1 

PROGRAMMING THE Z80 

Data Flow: 

   

 

A 

B 

D 

H 

 

c. 

   

   

   

    

Timing: 
NI cycles: T strifes: 

wee 
@ 2 MHz: 

r 2 8 4 

(HL) 4 15 7.5 

(IX + d) 6 23 11.5 

(IY 	+ ci) 6 23 11.5 

Addressing Mode: r: implicit; (HL): indirect; (IX + d), (IY + d): in-
dexed. 

Before: 
	

After: 

81 
	

F 

H 
	

3FF2 3FF2 
	 I L  

F 

3FF2 3FF2 

OBJECT CODE 
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Example: 

51 D4 

RRCA 

Before: 

A 

After: 

F AFT7H1BAy:24: 	F 

THE Z80 INSTRUCTION SET 

RRCA 

Function: 

Format: 

Description: 

Rotate accumulator right with branch carry. 

L. 7 --•01-1-2.-1-1 
A 

0 0 01 o 
	

OF 

The contents of the accumulator are rotated right 
one bit position. The contents of bit 0 are moved 
to the carry flag as well as to bit 7. 

Data Flow: 

AfP 
B 

0 la a E 

Timing: 	 I M cycle; 4 T states; 2 usec @ 2 MHz 

Addressing Mode: Implicit. 

Flags: Z H 	P/V N C 

  

0 
	

0 • 
C is set by bit 0 of A. 

OBJECT CODE 
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PROGRAMMING THE Z80 

RRD 	 Rotate right decimal. 

    

Function: 	AL 413 o  [HLI 

    

Format: 

Description: 

Data Flow: 

8 
0 

byte I: ED 

byte 2: 67 

The 4 high order bits of the memory location ad-
dressed by the contents of the HL register pair are 
moved to the low order 4 bits of that location. The 
4 low order bits are moved to the 4 low order bits 
of the accumulator. The low order bits of the ac-
cumulator are moved to the 4 high order bit posi-
tions of the memory location originally specified. 
All of the above operations occur simultaneously. 

0 

0 1 0 

Timing: 	 5 M cycles; 18 T states; 9 usec @ 2 MHz 

Addressing Mode: Indirect. 
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THE Z80 INSTRUCTION SET 

S Z 	 

• • 

RRD 

Before: 

A 

H  

®VH 	N C 

A 

Flags: 

Example: 

0 • 0 

After: 

417 

FEBI 

92 

FEBI 

Vvra  
FEBI 

FEBI 

OBJECT CODE 



C 

A 

B 

0 

H 

Data Flow: 

1.1S.7.1711 

VS'IONSA lairea 
FS'S 

MN= 

STACK 

P 

0 

SP ry/ 

PROGRAMMING THE Z80 

RST p 

Function: 

Format: 

Restart at p. 

 

(SP — 11— PChigh; (SP — 21— PCiow; SP — SP 
— 2; PChigh — 0; PClow 	P 

    

II 
p 

 

      

Description: The contents of the program counter are pushed 
onto the stack as described for the PUSH instruc-
tions. The specified value for p is then loaded into 
the PC and the next instruction is fetched from 
this new address. p may be any one of: 

OOH — 000 20H — 100 
08H — 001 28H — 101 
10H — 010 30H — 110 
18H — 011 381-1 	— 	111 

This instruction performs a jump to any of eight 
starting addresses in low memory and requires only 
a single byte. ft may be used as a fast response to 
an interrupt. 
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Before: After: 

SP SP 
	

0268 

0269 

026A 

026B 

0269 

026A 

0268 OBJECT CODE 

PC 	 ARIA 	 PC 

p: 	00 08 10 18 20 28 30 38 

C7 FF DF D7 CF E7 F7 EF 

s z P/V N C 

RST 38H 

Byte Codes: 

Flags: 

Example: 

(no effect). 

THE Z80 INSTRUCTION SET 

Tinting: 	 3 M cycles; I I T states; 5.5 usec Cu 2 MHz 

Addressing Mode: Indirect. 
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n 0 0 

(HL) 0 0 

(IX + 0 0 

0 0 0 

0 0 0 

(IY + d) 0 

d 	 
III  

I 

1111.111 

PROGRAMMING THE Z80 

SBC A, s 	 Subtract with borrow accumulator and specified 
operand. 

Function: 
	

A—A—s—C 

Format: 	 .5: may be r, n, (HL), (IX + d), or (IY + d) 

r 0 0 

 

 

byte I: DE 

byte 2: immediate 

data 

byte 9E 

byte I: DD 

9E 

byte 3: offset value 

byte I: FD 

byte 2: 9E 

byte 3: offset value 

r may be any one of: 

A — Ill 
B — 000 
C — 001 
D — 010 

E — 011 
H — 100 
L — 101 

Description: The specified operand s, summed with the con-
tents of the carry flag, is subtracted from the con-
tents of the accumulator, and the result is placed 
in the accumulator. s is defined in the description 
of the similar ADD instructions. 
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E 

Byte Codes: 

Flags: 

Example: 

SBC A r 	B C D E H 

9F 98 99 9A 

5 Z 
	

H 	PAY) N C 

• • • • • 

SBC A, (HL) 

98' 9C 9D 

THE Z80 INSTRUCTION SET 

Data Flow: 

B 

Timing: 
M cycles: T states: 

&see 
@ 2 MHz: 

r 1 4 2 
n 2 7 3.5 
(11L) 2 7 3.5 
(IX + d) 5 19 9.5 
(IY + d) 5 19 9.5 

Addressing Mode: r: implicit; n: immediate; (HL): indirect; (IX + 
d), (IY + d): indexed. 

Before: 
	

After: 

A B2 51 F A gr% ZEITiM F 

     

H 
	

3600  L 	H 
	

3600 

3600 

OBJECT CODE 
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C 
	4 

A 

B 

H 

F 

E 

PROGRAMMING THE Z80 

SBC 	HL, ss 	Subtract with borrow HL and register pair ss. 

Function: 	 HL HL — ss — C 

Forniat: 
byte I: ED 

s 	s 
	

byte 2 

Description: The contents of the specified register pair plus the 
contents of the carry flag are subtracted From the 
contents of the HL register pair and the result is 
stored back in HL. ss may be any one of: 

BC — 00 
	

HL — 10 
DE — 01 
	

SP— II 

sP 

Tinting: 	 4 M cycles; 15 T states; 7.5 usec @ 2 MHz 

Addressing Mode: Implicit. 

Byte Codes: SS: BC DE HI. SP 

  

ED--  42 52 62 72 

422 

Data Flow: 



D 

H 

OBJECT 
CODE 

THE Z80 INSTRUCTION SET 

Flags: S Z H 	pAg N C 

  

• • 
	

7 • • 

H is set if borrow from bit 12. 
C is set if borrow. 

Example: 	SBC HL, DE 

Before: 

66 F 

0689 

3142 

After: 

WOO F 

E 	D 
	

0699 
	

E 

L 	H 
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PROGRAMMING THE ZOO 

SCF 
	

Set carry flag. 

Function: 
	

C I 

Format: 
a 
	

37 

Description: 	The carry flag is set. 

Timing: 	 1 M cycle; 4 T states; 2 usec @ 2 MHz 

Addressing Mode: Implicit. 

Flags: S Z H 	P/V N C 

  

0 0 
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0 0 

I r  I 

0 0 0 
T 	I 

ti  

0 0 

0 0 0 

THE Z80 INSTRUCTION SET 

SET b, s 
	

Set bit b of operand s 

Function: 	 sb 

Format: 	s: 

(IY + d) 

a 

0 

0 	0 

b I 

byte 1: CB 

byte 2 

byte 1: CB 

byte 2 

byte 1: DD 

byte 2: CB 

byte 3: offset value 

byte 4 

byte 1: FD 

byte 2: CB 

byte 3: offset value 

byte 4 

r 

(HL) 

(IX + d) 

r may be any one of: 

A — Ill 
B — 000 
C — 001 
D — 010 

b may be any one of: 

0 —000 
— OW 

2 — 010 
3 — 011 

E — 011 
H— 100 
L — 101 

4— 100 
5 — 101 
6 — 110 
7 — 11I 

Description: 
	

The specified bit of the location determined by s is 
set. s is defined in the description of the similar 
BIT instructions. 
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A B C D E H 

CO CE D6 DE E6 EE FO FE 

h: 

CB-  0 

2 

3 

4 

5 

SET b, (HL) 

7 

b: 

SET 

SET 

b, (IX + d) 

b, (IY + d) 

C7 CO CI C2 C3 C4 C5 

CF CB C9 CA CB CC CD 

07 DO DI D1 D3 D9 05 

DF DB 09 DA DB DC DD 

E7 ED El E2 E3 E4 E5 

EF EB E9 EA EB EC ED 

F7 FO El F2 F3 F4 F5 

FF FB F9 FA FB FC ED 

0 I 2 3 4 5 6 7 

PROGRAMMING THE Z80 

Data Flow: 

   

A 

B 

H 

    

   

C 

E 

   

    

     

Timing: 
M cycles: T states: 

usec 

@ 2 MHz: 

r 2 8 4 

(HL) 4 15 7.5 
(IX + d) 6 23 11.5 
(IY + d) 6 23 11.5 

Addressing Mode: r: implicit; (HL): indirect (IX + d), (1Y + d): in-
dexed. 

Byte Codes: 	SET b, r 
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Evainple: SET 7, A 

Before: 

A 
	

61 

After: 

A 

THE Z80 INSTRUCTION SET 

427 

Flags: 
H 	P/V N C 

 

(no effect) 

OBJECT CODE 



PROGRAMMING THE Z80 

SLA s 
	

Arithmetic shift left operand s. 

Function: 

Format: 	S.' 

E..e-{7 .41-- 0 le- 0 

r 0 0 0 

0 	0 0 a 

(HL) 0 0 0 

0 	0 0 a 0 

(IX + d) 0 0 

0 0 0 

I 	I I 
I 

11111 

00 0 0 a 

(IY + d) 

0 0 

0 	0 0 0 

byte I: CB 

byte 2 

byte 1: CB 

byte 2: 26 

byte 1: DD 

byte 2: CB 

byte 3: offset value 

byte 4: 26 

byte 1: FD 

byte 2: CB 

byte 3: offset value 

byte 4: 26 

r may be any one of: 

A — 111 E — 011 
B — 000 H — 100 
C — 001 L — 101 
D — 010 

Description: 	The contents of the location determined by the 
specific operand are arithmetically shifted left with 
the contents of bit 7 being moved to the carry flag 
and a 0 being forced into bit 0. The final result is 
stored back in the original location. s is defined in 
the description of the similar RLC instructions. 
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THE Z80 INSTRUCTION SET 

Data Hou•: 
A 

B 

H 

 

 

  

Ad cycles: T slates: 
user 

la 2 MHz: 

r 2 8 4 
(HL) 4 15 7.5 
(IX + d) 6 23 11.5 
(IY 	+ d) 6 23 11.5 

Addressing 	r: 	(H 	indirect; (IX + d), IY + d): in- 
dexed. 

Byte Codes: 	SLA r ABCDF 

CB127T20 1_21F2 [23 24 21 

      

N C Flags: S Z 

of • 0  • 

C is set by bit 7 of source data. 

Example: 
	

SLA (HL) 

Before: 
	

After: 

10 F ",/a/3 F 

H 
	

OFF2  L 	H 
	

OFF2 

OFF2 OFF2 

OBJECT CODE 
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0 0 0 
I 	I 
I 	I  

0 0 

0 0 0  

01 I 0 0 0 

0 0 

0 0 0 

I 	I 	1 

0 0 

0 

0 0 0 
I 	I 

I 	I 	I 

0 I 0  0 0 

Format: 
r 

(H L) 

(IX + d)  

(IY + d) 

byte I: CB 

byte 2 

byte 1: CB 

byte 2: 2E 

byte I: DD 

byte 2: CB 

byte 3: offset value 

byte 4: 2E 

byte I: FD 

byte 2: CB 

byte 3: offset value 

byte 4: 2E 

PROGRAMMING THE Z80 

SRA s 	Shift right arithmetic s. 

Function: 

   

rri 	0  -11.-E.  
	' 	s 

r may be any one of: 

	

A — Ill 
	

E — 011 
B — 000 
	

H— 100 

	

C — 001 
	

L — 101 
D — 010 

Description: The contents of the location determined by the 
specific operand are arithmetically shifted right. 
The contents of bit 0 are moved to the carry flag 
and the contents of bit 7 remain unchanged. The 
final result is stored at the original location. s is 
defined in the description of the similar RLC in-
structions. 
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Data How: 

Al 

B I 

D 

  

  

  

  

  

H 

   

    

    

Timing: 
M evcles: T states: 

"sec 
@ 2 MHz: 

r 2 8 4 
(HL) 4 15 7.5 
(IX + d) 6 23 I1.5 
(IY + d) 6 23 11.5 

Addressing Mode: r: implicit; HL): indirec ; (IX + d), (IY + d): in-
dexed. 

Byte Codes: SRA r rABCDE 

CB 	 2917A1 26 1-2-aY2
I  

Flags: 5 Z 	H GT N  C 

• • 	01 •  

 

   

C is set by bit 0 of source data. 

Example: 
	

SRA A 

Before: 	 After: 

      

A BB 04 F 	A rialleSSAr F 

   

OBJECT CODE 
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SRL S 	 Logical shift right s. 

Function: 

Format: 

0 

0 

0 
	 0 

0 	0 
I 	I 	I 	 I 	 I 

1111111  

0 

byte I: CB 

byte 2 

byte I: CB 

byte 2: 3E 

byte I: DD 

byte 2: CB 

byte 3: offset value 

byte 4: 3E 

byte I: FD 

byte 2: CB 

byte 3: offset value 

byte 4: 3E 

r 0 

0 

(HL) 0 0 0 

0 0 

(IX + d) 0 

0 0 0 

0 

(IY + d) 

r may be any one of: 

A — Ill 	 E — 011 
B — 000 	H — 100 
C — 001 	 L — 101 
ID — 010 

Description: The contents of the location determined by the 
specific operand are logically shifted right. A zero 
is moved into bit 7 and the contents of bit 0 are 
moved into the carry flag. The final result is stored 
back in the original location. 
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Data Flo w: 

A 

B 

D 

H 

C 
C 

Byte Codes: 

Flags: 

Example: 

• • 	C • 0 • 
C is set by bit 0 of source data. 

SRL E 

Before: 
	

After: 

SRL r 	 AB C D E HL 

CB 1 3F 30 39 3A 36 3C 3D 

5 Z 
	

H 	Ceyv N C 

THE Z80 INSTRUCTION SET 

Tuning: 
A4 cycles: T states: 

usec 
@ 2 MHz: 

r 2 8 4 
(HLi 4 15 7.5 
(IX + d) 6 23 11.5 
(IY + d) 6 23 11.5 

Addressing Mode: r: implicit; HLi: indirect; (IX + d), (1Y + d): In-
dexed. 

01 

02 

F VAarA4 F 

 

E 

  

E 

 

      

OBJECT CODE 
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a 	0 
	

0 

(HL) 

(IX + d) 

(IY + d) 

0 

0 

0 

	

111'1 	r 

	

I 	II 

     

0 

0 0 
	

0 
	

0 

r may be any one of: 

	

A — Ill 
	

E — 011 

B — 000 
	

H — 100 

	

C — 001 
	

L — 101 
D — 010 

PROGRAMMING THE Z80 

SUB s 	Subtract operand s from accumulator. 

Function: 	 A 4—  A — s 

Format: 	 s: may be r, n, (HL), (IX + d) or (IY + d) 

r 
L 

a 

	

II 	1 

	

r 
I 	I 

    

byte 1: D6 

byte 2: immediate 
data 

96 

byte 1: DD 

byte 2: 96 

byte 3: offset value 

byte 1: FD 

byte 2: 96 

byte 3: offset value 

Description: 
	

The specified operand s is subtracted from the ac- 
cumulator and the result is stored in the ac-
cumulator. The operand s is defined in the 
description of the similar ADD instructions. 
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fr91,7 Ar%:' Ad://it:WA A 

Data Flow: 

B 

D E ALU 

	1 

fej,4FW.,, 
31 

A 

B 

A B0 

 

31 

OBJECT CODE 

THE Z80 INSTRUCTION SET 

Timing: 
M cycles: T stales: 

"sec 
@ 2 MHz: 

r 1 4 2 
n 2 7 3.5 
(HL) 2 7 3.5 
(IX + d) 5 19 9.5 
(IX + d) 5 19 9.5 

Addressing Mode: r: implicit; n: immediate; (HL): ind'rect; (IX + 
d), (IY + d): indexed 

Byte Codes: 	SUB r r. A B C D E HI 

  

97 90 91 92 93 94 95 

Flags: 5 Z H 	PO N C 

  

• • • • • 

Example: 
	

SUB B 

Before: 
	

After: 
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0 0 

0 0 a 

0 0 

0 0 
	0 

(IX + d) 

(IY + d) 

n 

(HL) 

0 

0 

111 

PROGRAMMING THE Z80 

XOR s 

Function: 

Format: 

Exclusive or accumulator and s. 

A 	A -V—  s 

 

may be r, n, (HL), (IX + d), or (IY + d) 

   

r 
	a 	0 

byte 1: EE 

byte 2: immediate 
data 

AE 

byte 1: DD 

byte 2: AE 

byte 3: offset value 

byte 1: FD 

byte 2: AE 

byte 3: offset value 

r may be any one of: 

A — Ill 
B — 000 
C — 001 
D — 010 

E — 011 

H — 100 
L — 101 

Description: 
	

The accumulator and the specified operand s are 
exclusive 'or'ed, and the result is stored in the ac-
cumulator. s is defined in the description of the 
similar ADD instructions. 
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XOR r 

AF AD AA AC AB A9 AB 

H 	cpyv N C 5 Z 

• • • 0 0 0 

XOR 13111 

Byte Codes: 

Flags: 

Example: 

r:ABCDE HL 

OBJECT CODE 

A A 36 

THE Z80 INSTRUCTION SET 

Date Flow: 

B 
E 
	

ALU 

Timing: 
M cycles: T states: 

usec 
@ 2 MHz: 

r 1 4 2 
n 2 7 3.5 
(I-IL) 2 7 3.5 
(IX + d) 5 19 9.5 
(IY + d) 5 19 9.5 

Addressing Modes: r: implicit; n: immedia e; (HL): indirect; (IX + 
d), (IY + d): indexed 

Before: 
	

After: 
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ADDRESSING TECHNIQUES 

INTRODUCTION 

This chapter will present the general theory of addressing and the 
various techniques which have been developed to facilitate the retrieval 
of data. In a second section, the specific addressing modes available in 
the Z80 will be reviewed, along with their advantages and limitations. 
Finally, in order to familiarize the reader with the various trade-offs 
possible, an applications section will demonstrate possible trade-offs 
between the various addressing techniques by studying specific applica-
tion programs. 

Because the Z80 has several 16-bit registers, in addition to the pro-
gram counter, which can be used to specify an address, it is important 
that the Z80 user understand the various addressing modes, and in par-
ticular, the use of the index registers. Complex retrieval modes may be 
omitted at the beginning stage. However, all the addressing modes are 
useful in developing programs far this microprocessor. Let us now 
study the various alternatives available. 

POSSIBLE ADDRESSING MODES 

Addressing refers to the specification, within an instruction, of the 
location of the operand on which the instruction will operate. The main 
addressing methods will now be examined. They are all illustrated in 
Figure 5.1. 

Implicit Addressing (or "Implied," or "Register") 

Instructions which operate exclusively on registers normally use 1111-

pilot addressing. This is illustrated in Figure 5.1. An implicit instruc- 
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tion derives its name from the fact that it does not specifically contain 
the address of the operand on which it operates. Instead, its opcode 
specifies one or more registers, usually the accumulator, or else any 
other register(s). Since internal registers are usually few in number 
(commcrily eight), this will require a small number of bits. As an exam-
ple, three bits within the instruction will point to one out of eight inter-
nal registers. Such instructions can, therefore, normally be encoded 
within eight bits. This is an important advantage, since an eight-bit In-
struction normally executes faster than any two- or three-byte instruc-
tion. 

An example of an implicit instruction is: 

LD A, B 

which specifies "transfer the contents of B into A" (Load A from B.) 

Immediate Addressing 

Immediate addressing is illustrated in Figure 5.1. The eight-bit op-
code is followed by an 8- or 16-bit literal (a constant). This type of 
instruction is needed, for example, to load an eight-bit value in an 
eight-bit register. Since the microprocessor is equipped with 16-bit reg-
isters, it may also be necessary to load 16-bit literals. An example of an 
immediate instruction is: 

ADD A, OH 

The second word of this instruction contains the literal "0", which is 
added to the accumulator. 

Absolute Addressing 

Absolute addressing usually refers to the way in which data is retrieved 

from or placed in memory, in which an opcode is followed by a 16-bit 
address. Absolute addressing, therefore, requires three-byte instruc-
tions. An example of absolute addressing is: 

LD (I234H), A 

It specifies that the contents of the accumulator are to be stored at 

memory location "1234" hexadecimal. 
The disadvantage of absolute addressing is to require a three-byte in-

struction. In order to improve the efficiency of the microprocessor, 
another addressing mode may be made available, whereby only one 
word is used for the address: direct addressing. 
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7 0 

IMPLICIT/IMPLIED 

IMMEDIATE 

EXTENDED/ABSOLUTE 

OPCODE A 	I R  

OPCODE 

LITERAL 

LITERAL 
L 	  

OPCODE 

FULL 16-BIT 

ADDRESS 

DIRECT/SHORT OPCODE 

SHORT ADDRESS 

OPCODE 

X REG INDEXED 
	

OPCODE 

DISPLACEMENT 

OR ADDRESS 
	 J 

Fig. 5.1: Basic Addressing Modes 
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Direct Addressing (or "Short," or "Relative") 

In this addressing mode, the opcode is followed by an eight-bit ad-
dress. This is also illustrated in Figure 5.1. The advantage of this ap-
proach is to require only two bytes instead of three for absolute ad-
dressing. The disadvantage is to limit all addressing within this mode to 
addresses 0 to 255 or else — 128 to + 127. When using 0 to 255 ("page 
zero"), this is also called short addressing, or 0-page addressing. When-
ever short addressing is available, absolute addressing is often called ex-
tended addressing by contrast. The range — 128 to + 127 is used with 
branch instructions. This is called relative addressing. 

Relative Addressing 

Normal jump or branch instructions require eight bits for the op-
code, plus the I6-bit address to which the program has to jump. Just as 
in the preceding example, this mode has the disadvantage of requiring 
three words, i.e., three memory cycles. To provide more efficient 
branching, relative addressing uses only a two-word format. The first 
word is the branch specification, usually along with the test it is imple-
menting. The second word is a displacement. Since the displacement 
must be positive or negative, a relative branching instruction allows a 
branch forward to 127 locations (seven-bits) or a branch backwards to 
128 locations (usually + 129 or — 126, since PC will have been incre-
cremented by 2). Because most loops tend to be short, relative branch-
ing can be used most of the time and results in significantly improved 
performance for such short routines. As an example, we have already 
used the instruction JR NC, which specifies a "jump if no carry" to a 
location within 127 words of the branch instruction (more precisely 
+ 129 to — 126). 

The two advantages of relative addressing are improved performance 

(fewer bytes used) and program relocatability (independence from ab-
solute addresses). 

Indexed Addressing 

Indexed addressing is a technique used to access the elements of a 
block or of a table successively. This will be illustrated by examples 

later in this chapter. The principle of indexed addressing is that the in-
struction specifies both an index register and an address. The contents 
of the register are added to the address to provide the final address. In 
this way, the address could be the beginning of a table in the memory. 
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OPCODE INDEX REGISTER 

BASE —✓ 

BASE 

displacemeni 7 41/27 
/DATA I 	 

final address 

DISPLACEMENT 

TABLE 

PROGRAMMING THE Z80 

The index register would then be used to access all the elements of a 
table successively in an efficient way. (This requires the availability of 
increment/decrement instructions for the index register). In practice, 
restrictions often exist which may limit the size of the index register, or 
the size of the address or displacement field. 

MEMORY 

Fig. 5.2: Addressing (Pre-indexing) 

Pre-Indexing and Post-Indexing 

Two modes of indexing may be distinguished. Pre-indexing is the 
usual indexing mode in which the final address is the sum of a displace-
ment or address and of the contents of the index register. It is shown in 
Figure 5.2, assuming an 8-bit displacement field and a 16-bit index 
register. 

Post-indexing treats the contents of the displacement field like the 
address of the actual displacement, rather than the displacement itself. 
This is illustrated in Figure 5.3. In post-indexing, the final address is the 
sum of the contents of the index register plus the contents of the mem-
ory word designated by the displacement field. This feature utilizes, in 
fact, a combination of indirect addressing and pre-indexing. But we 
have not defined indirect addressing yet. Let us do that. 
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ADDRESS 

POiNtER 

POINTER= DATA N 

FINAL 
10 DIE 

ADDRESS 

MOR' 

ADDRESSING TECHNIQUES 

Fry 	 Y(index) 

Fig. 5.3: Indirect Indexed Addressing (Post-Indexing) 

Indirect Addressing 

We have already seen that two subroutines may wish to exchange a 
large quantity of data stored in the memory. More generally, several 
programs, or several subroutines, may need to access a common block 
of information. To preserve the generality of the program, it is desira-
ble not to keep such a block at a fixed memory location. In particular, 
the size of this block might grow or shrink dynamically, and it may 
have to reside in various areas of the memory, depending on its size. It 
would, therefore, be impractical to try to access this block using abso-
lute addresses, that is without rewriting the program every time. 

The solution to this problem lies in depositing the starting address of 

the block at a fixed memory location. This is analogous to a situation in 
which several persons need to get into a house, and only one key exists. 
By convention, the key to the house will be hidden under the mat. Every 
user will then know where to look (under the mat) to find the key to the 
house (or, perhaps, to find the address of the scheduled meeting, to 
propose a stricter analogy). Indirect addressing, therefore, normally 
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uses an opcode followed by a 16-bit address. This address is used to 
retrieve a word from the memory. Usually, it will be a 16-bit word (in 
our case, two bytes) within the memory since it is an address. This is il-
lustrated by Figure 5.4. The two bytes at the specified address Al con-
tain "A2". A2 is then interpreted as the actual address of the data that 

one wishes to access. 

INSTRUCTION 	 MEMORY 

OPCODE 

INDIRECT 

ADDRESS A.  

(A.) 
	

FINAL 

ADDRESS (A1) 

DATA 

Fig. 5.4: Indirect Addressing 

Indirect addressing is particularly useful any time that pointers are 
used. Various areas of the program can then refer to these pointers to 
access a word or a block of data conveniently and elegantly. The final 
address may also be obtained by pointing within the instruction to a 
16-bit register in which it is contained. This is called "register indirect." 

Combinations of Modes 

The above addressing modes may be combined. In particular, it 
should be possible in a completely general addressing scheme to use 
many levels of indirection. The address A2 could be interpreted as an 
indirect address again, and so on. 

Indexed addressing can also be combined with indirect access. This 
allows the efficient access to word n of a block of data, provided one 

knows where the pointer to the starting address is (see figure 5.2). 
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We have now become familiar with all usual addressing modes that 
can be provided in a system. Most microprocessor systems, because of 
the limitation on the complexity of an MPU, which must be realized 
within a single chip, do not provide all possible modes but only a small 
subset of these. The Z80 provides a good subset of possibilities. Let us 
examine them now. 

Z80 ADDRESSING MODES 

Implied Addressing (Z80) 

Implied addressing is essentially used by single-byte instructions 
which operate on internal registers. Whenever implicit instructions 
operate exclusively on internal registers, they require only one machine 
cycle to execute. 

Examples of instructions using implied (or "register") addressing 
are: LD r,r'; ADD Air; ADC A,s; SUB s; SBC A,s; AND s; OR s; 

XOR s; CPs; INC r. 
Zilog further distinguishes between "register addressing" and "im-

plied addressing." Implied addressing is then limited, in that definition, 
to instructions that do not have a specific field to point to an internal 
register. This introduces one more addressing mode. This is one reason 
why the number of addressing modes is insufficient to characterize the 
capabilities of a microprocessor. 

Immediate Addressing (Z80) 

Since the Z80 has both single-length registers (eight bits), and double-
length register pairs (16 bits), it provides two types of immediate ad-
dressing, both with 8-bit and 16-bit literals. Instructions are then 
either two or three bytes long. The second (and sometimes the third) 
byte contains the opcode, followed by the constant, or literal, to be 
loaded in a register or used for an operation. Exceptions are LD IX and 
LD IY, which require 16-bit opcodes. 

Examples of instructions using the immediate addressing mode are: 

LD r,n (two bytes) 
LD dd,nn (three bytes) 

and 
ADD A,n (two bytes' 

When the literal is two bytes long, the mode is called "immediate ex-

tended," in the case of the Z80. 
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Absolute or "Extended" Addressing (Z80) 

By definition, absolute addressing requires three bytes. The first byte 
is the opcode and the next two bytes are the 16-bit address specifying 
the memory location (the "absolute address"). 

By contrast with "short addressing" (eight-bit address), this mode is 

also called "extended addressing." 
Examples of instructions using extended addressing are: 

LD HL, (nn) and JP nn 

where nn represents the I6-bit memory address, and (nn) represents the 
contents of the specified location. 

Modified Zero-Page Addressing (180) 

Zero-page addressing is not available in the Z80, except through the 
RST instruction. The special addressing mode used by this instruction 
is called "modified zero-page addresing." 

The RST instruction contains a 3-bit field in bit position b, b, b, us-
ed to pint to one of 8 locations in page 0 memory. The effective 
address is b5 b4b3000 and is loaded into PC. Since it requires only a 
single byte, this instruction executes rapidly, and is easily generated in 
hardware. It was generally used to respond to multiple interrupts (up to 
8.) Its disadvantage is either to limit the execution sequence to 8 loca-
tions, or to require a jump eliminating the speed advantage. This is 
because each of the 8 branch addresses are 8-bytes apart. 

Relative Addressing (Z80) 

By definition, relative addressing requires two bytes. The first one is 
the "jump relative" opcode, whereas the second one specifies the dis-
placement and its sign. 

In order to differentiate this mode from the absolute jump Instruc-
tion, it is labeled "JR" 

From a timing standpoint, this instruction should be examined with 
caution. Whenever a test fails, i.e., whenever there is no branch, this in- 
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struction requires only seven "T cycles." This is because the next 
instruction to oe executed is already pointed to by the program counter. 

However, when the test succeeds, i.e., whenever the jump takes 
place, this instruction requires 12 "T-states"; a new effective address 
must be computed and loaded into the program counter. 

When computing the duration of the execution of a program seg-
ment, caution must be exercised. Whenever one is not sure whether or 

not the jump will succeed, one must take into consideration the fact 
that sometimes the jump will require 11 T-states. (condition met), 
sometimes 7 (condition not mei). 

When designing a loop, execution will, therefore, be faster using a 
JR(Jump Relative) testing a condition usually not met, such as a non-
zero condition for the counter. 

When JR's are used outside of loops, and the condition under test is 
unknown, an average timing value is often used for the duration 
ofJR. 

This timing problem does not apply to the unconditional jump JR e. It 
does not test any condition, and always lasts 12 T-states. 

Indexed Addressing (Z80) 

This addressing mode did not exist in the 8080, and was added to the 

Z80 (as well as the two index registers). As a result, it became necessary 
to add an extra byte to the opcode, making it a 16-bit opcode in the Z80 

instruction set (LDIR is another example of a I6-bit opcode). The 
structure of an indexed instruction is shown on Figure 5.5. 

OPCODE 

OPCODE 

DISPLACEMENT 

LITERAL 
	

BYTE 4 

—J 

Fig. 5.5: Indexed Addressing Has 2-byte Opcode 
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Instructions allowing indexed addressing are: 

LD, ADD, INC, RLC, BIT, SET, CP, and others. 

This mode will be used extensively in the programs operating on 
blocks of data, tables or lists. 

Indirect Addressing (280) 

The Z80 provides a limited indirect addressing capability called 
"Register Indirect Addressing." In this mode, each of the 16-bit regis-
ter pairs BC, DE, HL may be used as a memory address. 

Whenever they point to 16-bit data, they point to the lower part. The 
higher part resides at the next (higher) sequential address. 

Combinations of Modes 

Combinations of modes are essentially non-existent, except that in-
structions referring to two operands may use a different type of ad-
dressing for each. 

Thus, a load or an arithmetic instruction may access one operand in 
the immediate mode, and the other one through an indexed access. 

Also, the bit addressing mechanism may access the eight-bit byte 
through one of the three addressing modes, as explained in the follow-
ing paragraph. The specific addressing modes available for each in-
struction are indicated in the tables of the preceding chapter. 

Bit Addressing 

Bit addressing is generally not considered an addressing mode if ad-
dressing is defined as accessing a byte. However, whether defined as a 
mode or a group of instructions, it is a valuable facility. Since it is de-
fined as an "addressing mode" in Zilog nomenclature, it will be so de-
scribed here. It is specific to the Z80 and was not provided on the 8080. 

Bit addressing refers to the access mechanism to specified bits. The 
Z80 is equipped with special instructions for setting, resetting and test-
ing specified bits in a memory location or a register. The specified byte 
may be accessed through one of three addressing modes: register, regis-
ter-indirect, and indexed. Three bits are used within the opcode to select 
one of eight bits. 
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USING THE Z80 ADDRESSING MODES 

Long and Short Addressing 

We have already used relative jump instructions in various programs 
that we have developed. They are self-explanatory. One interesting 
question is: What can we do if the permissible range for branching is 
not sufficient for our needs? On many microprocessors, the solution is 
to use a so called long jump. This is simply a jump to a location which 
contains an absolute or "long" jump specification: 

JR NC, $ + 3 
	

BRANCH TO CURRENT ADDRESS 
+3 IF C CLEAR 

JP FAR 
	

OTHERWISE JUMP TO FAR 

(NEXT INSTRUCTION) 

The two-line program above will result in branching to location FAR 
whenever the carry is set. In the case of the Z80, JP may be used instead 
of JR to test all conditions and removes this problem. 

Use of Indexing for Sequential Block Accesses 

Indexing is primarily used to address successive locations within a 
table. The restriction is that the maximum length must be less than 256 
so that the displacement can reside in an eight-bit index register. 

We have learned to check for a character. Now we will search a table 
of 100 elements for the presence of a '•'. The starting address for this 
table is called BASE. The table has only 100 elements. The program ap-
pears below: (see flowchart on Figure 5.6): 

SEARCH LD IX, BASE 
LD 	A, '•' 
LD 	B, COUNT 

TEST 	CP (IX) 
JR 	Z, FOUND 
INC IX 
DEC B 
JR 	NZ, TEST 

NOTFND 

An improved program will be presented below in the section on 
Block Transfer, using DJ NZ. 
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INITIALIZE 
TO ELEMENT 0 

	I 	1 
READ NEXT 

ELEMENT 

YES 

NO 

POINT TO 
NEXT ELEMENT 

 

 

 

STAR FOUND 

 

  

 

NOT FOUND 

  

Fig. 5.6: Character Search Flowchart 

A Block Transfer Routine for Fewer Than 256 Elements 

We will call "COUNT" the number of elements in the block to be 
moved. The number is assumed to be less than 256. FROM is the base 
address of the block. TO is the base of the memory area where it should 
be moved. The algorithm is quite simple: we will move a ward at a time, 
keeping track of which word we are moving by storing its position in 
the counter C. The program appears below: 

BLKMOV LD IX, FROM 
LD 	IY, TO 
LD BC. COUNT 

NEXT 	LD A, (IX) 	GET WORD 
LD 	(IY), A 
INC IX 
INC IY 
DEC C 
JR 	NZ, NEXT 

Let us examine it: 

BLKMOV LD IX, FROM 
LD IY,TO 
LD 	C, COUNT 

These three instructionsinitialize'registers IX, 1Y, and C respectively, as 
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I I 
MEMORY 

C COUNT I 

 

    

    

    

IX SOURCE 

   

FROM 

   

      

      

IY I 	DESTINATION 

   

  

Fig. 5.7: Block Transfer: Initializing the Register 

illustrated in Figure 5.7. Index register IX is used as the source pointer, 
and will be incremented regularly. Index register IY is used as the desti-
nation pointer, and would be incremented regularly. Register C is load-
ed with the maximum number of elements to be transferred (limited to 
256 since this is an eight-bit register) and will be decremented regularly. 
Whenever C decrements to zero, all elements have been transferred. 
The next two instructions: 

NEXT 	LD A, (IX) 
LD 	(IY), A 

load the contents of the memory location pointed to by IX into the ac-
cumulator, then transfer it into the memory location pointed to by reg-
ister IY. In other words, these two instructions transfer an element of 
the source block into the destination block. The two index registers are 
then incremented: 

INC IX 
INC IY 

And the counter register is decremented: 

DEC C 

Finally, as long as the counter is not 0, the program loops back to the 
label NEXT: 

JR 	NZ, NEXT 
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This is an example of the possible utilization of index registers. How-
ever, let us compare it to the same program written for another micro-
processor, the MOS Technology 6502, which is also equipped with an 

indexing capability, but uses different conventions (i.e., has different 
limitations on a general-purpose indexing facility).The program appears 
below: 

LD X #NUMBER 

NEXT 	LD A 	FROM, X 

STA 	TO, X 

DEX 
BNE NEXT 

Without going into the details of the above program, the reader will 
immediately notice how much shorter it is than the previous one. This is 
because the index register X is used as a variable displacement, whereas 
FROM and TO are used as the fixed source and destination addresses. 

This example should point out that although in theory indexing is a 
powerful facility, it does not necessarily lead to efficient coding, due to 
the addressing limitations imposed on it in the case of various micro-
processors. Truly general-purpose indexing requires the possibility of a 
I6-bit displacement or address field as well as a 16-bit index register. 

However, it should be noted that this specific problem is solved, in 
the Z80 by the presence of specialized instructions. A general-purpose 
block transfer will now be described which can be implemented in just 
four instructions. However, to be fair to the Z80, let us suggest addi-

tional exercises for the reader: 

Exercise 5.1: Write the block transfer program for the Z80 in the style 
of the above program for the 6502, i.e., assuming that the index register 
contains a displacement. Assume that the source and the destination 
block are located in page 0, i.e., at addresses 0 to 256. Naturally, it will 
be assumed that the number of elements within each block is small 
enough that they do not overlap. 

Exercise 5.2: Assume now that the source and the destination blocks are 

located anywhere in the memory, except that they are both within the 

same page. Rewrite the above program in that case. (Is there a dif-
ference, i.e., does page zero play any role for the Z80?) 

Generalized Block Transfer Routine (More Than 256 Elements) 

The register allocation and the memory map are shown in Figure 5.8. 
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The program is shown below: 

LD BC, COUNT 	NUMBER OF BYTES 
LD DE, TO 	 DESTINATION ADDRESS 
LD HL, FROM 	START ADDRESS 
LDIR 	 TRANSFER ALL BYTES 

Memory used: 11 bytes 
Timing: 21 cycles/byte transferred 

The first instruction is: 

LD 	BC, COUNT 

It loads the number of elements to be transferred (a 16-bit value) into 
the register pair BC. The next two instructions initialize the register pair 
DE and the register pair HL respectively: 

LD 	DE, TO 
LD 	HL, FROM 

Finally the fourth instruction: 

LDIR 

performs the complete transfer. 
LDIR is an autonzated block-transfer instruction. Its power should 

be obvious from this example. LDIR results in the following sequence: 
The contents of the memory location pointed to by H and L are trans-
ferred into the memory location pointed to by DE: (DE) =(HL). Next, 
DE is incremented: DE = DE + 1. Then, HL is incremented: HL = 
HL + 1. Next, BC is decremented: BC = BC —1. If BC becomes 0, the 
instruction is terminated. Otherwise, the instruction is repeated. 

B 

D 

H 

REGISTERS 

Ellisd 	 FROM 

COUNT 

Lye 	 TO 

A 

COUNTER  

DESTINATION 

SOURCE 

MEMORY 

Fig. 5.8: A Block Transfer-Memory Map 
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The value and power of the LDIR instruction should be apparent at 
this point without further comments. Similarly, our search for the char-
acter "star"can be improved by the use of an automated instruction, 
CPIR, special to the Z80. The corresponding program appears below: 

LD A. "" 
LD BC, COUNT 
LD HL, STRING 

STAR 	CPIR 
JR Z, STAR 

NOSTAR 

The first instruction loads the accumulator with the code for the 
character star. Next, the register pair BC is initialized to the count of 
the number of words to be searched within the block: 

LD BC, COUNT 

The register pair H and L is set to the starting address of the block to 
be searched (STRING). The automated instruction is then executed: 

LD HL, STRING 

CPIR 

The CPIR instruction is an automated compare instruction. The con-
tents of the memory location specified by the address contained in H 
and L is compared to the contents of the accumulator. If the compari-
son succeeds, then Z of the flags register will be set to I. Then, the reg-
ister pair H and L is Incremented and the register pair BC is 
decremented. The instruction is repeated until either the pair BC goes to 
0 or else the comparison succeeds. After the instruction CPIR is ex-
ecuted, it is therefore necessary to test the Z flag to determine whether 
the comparison has succeeded (the CPIR might have looped through 
64K words without success in the extreme case). This is the purpose of 
the last instruction of the program: 

JR Z, STAR 

Exercise 5.3: Rewrite the above program so that a search proceeds 
backwards. (Hint Use the CPDR instruction) Continue the block 
transfer until "1  is found. 

Let us now develop a program combining the features of the two pre-
vious ones. We will implement the block transfer from location FROM 
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to location TO, which shall stop automatically whenever an escape 
character, "star", is found. The program appears below: 

LD BC, COUNT 
LD HL, FROM 
LD DE, TO 
LD A,'•' 	DELIMITER (ESCAPE CHAR) 

TEST CP (HL) 	 COMPARE WITH MEMORY 
CHARACTER 

JR 	Z, END 	END IF SUCCESS 
LDI 	 TRANSFER CHARACTER AND 

UPDATE POINTERS AND 
COUNT 

JP 	PE, TEST 	KEEP TESTING UNLESS DONE 
P/V INDICATES WHETHER BC = 0 

The first three Instructions of the program perform the usual initiali-
zation, setting up the counter registers and the source and destination 
pointers: 

LD BC, COUNT 
LD HL, FROM 
LD DE, TO 

The star character is deposited, "as usual" into the accumulator, so 
that it can be compared to the character read from a memory location. 

LD A,'•'  

This is exactly what is done by the next instruction: 

TEST CP (HL) 

The success or failure of the comparison is determined by testing the Z 
bit. The Z bit will have been set if the comparison has succeeded. This is 
performed by the next instruction: 

JR Z, END 

The next instruction is an automated transfer instruction: 

LDI 

This instruction transfers the character, and updates the pointers and 
the count in a single instruction. LDI transfers the contents pointed to 
by H and L into the memory location pointed to by D and E: (DE) = 
(HL). It increments DE and HL: 

DE = DE + I 
HL = HL + I 
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Finally, it decrements BC BC becomes BC — I. The particularity or 
this instruction is that the P/V flag is cleared if BC decrements to "0" 
and set otherwise. This will be explicitly tested by the last instruction in 
the program to determine whether exit should occur: 

JP PE, TEST 

Adding Two Blocks 

A program will be developed here to add element! by element two 
blocks starting respectively at addresies BLK1, and BLK2, and having 
equal numbers of elements, COUNT. The program is shown below: 

	

BLKADD LD 	IX, BLK1 

	

LD 	IY, BLK2 

	

LD 	B, COUNT 
XOR A 

LOOP 	LD 	A, (IX + 0) 
ADC A, (IY + 0) 

	

LD 	(IX), A 
DEC IX 
DEC 1Y 
DEC B 

	

JR 	NZ, LOOP 

COUNTER 

IX 

IY 

BLK I 

BLK 2 

REGISTERS 

  

1////  BLK 2 

        

        

MEMORY 

Fig. 5.9: Adding Two Blocks: BLKI =BLKI + BLK2 
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The memory layout is shown in Figure 5.9. The program is straightfor-
ward. The number of elements to be added is loaded into the counter 
register B, and the two index registers IX and IY are initialized to their 
values BLKI and BLK2: 

BLK ADD LD IX, BLKI 
LD IY, BLK2 
LD B, COUNT 

The carry bit is then cleared in anticipation of the first addition: 

XOR A 

The first element is loaded into the accumulator: 

LOOP 	LD A, (IX + 0) 

The corresponding element of BLK2 is then added to it: 

ADC A, (IY +0) 

and finally saved into the element of BLKI: 

LD (IX), A 

The two pointer registers X and Y are decremented: 

DEC IX 
DEC IY 

as well as the counter register: 

DEC B 

As long as the counter register is not 0, the addition loop is executed: 

JR NZ, LOOP 

Exercise 5.4: Can you use the above program to perform a 32-bit addi-
tion? 

Exercise 5.5: Can you use the above program to perform a 64-bit addi-
tion? 

Exercise 5.6: Modify the above program so that the result is stored in a 
separate block start mg at address BLK3. 

Exercise 5.7: Modify the above program to perform a subtraction 
rather than an addition. 
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Exercise 5.8: Modify the original program above so that BLit'/ and 
BLK2 are at the top of each block rather than the bottom (see Fig.5.10). 

FROM 

COUNT = N  
SOURCE BLOC' 

TRANSIER 

A x 

ELEMENT 
	

COUNTER 

TO --E.

ry  

- 

IINATION BLOCK 

Fig. 5.10: Memory Organization for Block Transfer 

SUMMARY 

A complete description of addressing modes has been presented. It. 
has been shown that the Z80 offers many possible mechanisms, and the 
specific addressing modes available on the Z80 have been analyzed. 
Finally, several application programs have been presented to demon-
strate the value of the various addressing mechanisms. Programming 

the Z80 efficiently requires an understanding of these mechanisms. 
They will be used throughout the programs in the remainder of this 
book. 

EXERCISES 

5.9: Write a program to add the first 10 bytes of a table stored at loca-
tion "BASE". The result will have 16 bits. (Pus is a checksum com-
putation). 
5.10: Can you solve the same problem without using the Indexing 
mode? 
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5.11: Reverse the order of the 10 bytes of this table. Store the result 
at address "REVER". 

5.12: Search the same table for us largest element. Store it at memory 
address "LARGE". 

5.13: Add together the corresponding elements of three tables, whose 
bases are BASE!, BASE2, BASES. The length of these tables is stored 
at address "LENGTH" 
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INPUT/OUTPUT TECHNIQUES 

INTRODUCTION 

We have learned so far how to exchange information between the 
memory and the various registers of the processor. We have learned to 
manage the registers and to use a variety of instructions to manipulate 
the data. We must now learn to communicate with the external world. 
This is called input/output. 

Input refers to the capture of data from outside peripherals (key-

board, disk, or physical sensor). Output refers to the transfer of data 
from the microprocessor or the memory to external devices such as a 
printer, a CRT. a disk, or actual sensors and relays. 

We will proceed in two steps. First, we will learn to perform the input / 
output operations required by common devices. Secondly, we will 
learn to manage several input/output devices simultaneously, i.e., to 

schedule them. This second part will cover, in particular, polling vs. in-
terrupts. 

INPUT/OUTPUT 

In this section we will learn to sense or to generate simple signals, 
such as pulses. Then we will study techniques for enforcing or measur-
ing correct timing. We will then be ready for more complex types of in-
put/output, such as high-speed serial and parallel transfers. 

The Z80 Input/Output Instructions 

The Z80 is equipped with a special set of input and output instruc-
tions. Most eight-bit microprocessors are not equipped with a special 
set of input and output instructions, and use the general instruction set 
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on input/output devices. The Z80, like the 8080, is equipped with basic 
input and output instructions. However, the Z80 is also equipped with 
additional I/O instructions. These will be described in more detail here 
in order to facilitate understanding of the programs that will be pre-
sented throughout this section. 

The basic input and output instructions are respectively: IN A, (n) 
and OUT (n),A. These two instructions are inherited from the 8080. 
They will respectively read or write one byte between the selected port 
and the accumulator. The actual addressing process is such that the 1,0 
device address "n" is gated on lines AO through A7 of the address bus, 
while the contents of the accumulator appear on address lines A8 through 
A15. When only 256 devices are addressed, it may be necessary to zero 
the contents of the accumulator explicitly if any of the address lines A8 
through A15 may be decoded by an I/O device. In the simple examples 
that follow, we will assume that fewer than 256 devices are present and 
that they are not connected to addresses A8 through A15, so that it will 
not be necessary to zero the contents of the accumulator explicitly, for 
example prior to using the IN instruction. 

A special input instruction: IN r, (C), allows using the contents of 
register C as the I/O device address. When using this instruction, the 
contents of register B automatically provide the top part of the address 
(A8 through A15). The specified register r is loaded from the specified 
address. "r" may be any of the usual seven general-purpose registers. 

Generate a Signal 

In the simplest case, an output device will be turned off (or on) from 
the computer. In order to change the state of the output device, the pro-
grammer will merely change a level from a logical "0" to a logical "I", 
or from "1" to "0". Let us assume that an external relay is connected 
to bit "0" of a register called "OUTI". In order to turn it on, we will 
simply write a "1" into the appropriate bit position of the register. We 
assume here that OUT1 represents the address of this output register 
within our system. A program which will turn the relay on is: 

TURNON LD A, 0000000IB 	LOAD PATTERN INTO A 
OUT (OUTI), A 	OUTPUT IT TO DEVICE 

where OUT is the output instruction. 
We have assumed that the state of the other seven bits of the register 

OUTI is irrelevant. However, this is often not the case. These bits 
might be connected to other relays. Let us, therefore, improve this sim-
ple program. We want to turn the relay on, without changing the state 
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Fig. 6.1: Turning on a Relay 
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of any other bit within this register. We will assume that it is possible to 
read and write the contents of this register. Our improved program now 
becomes: 

	

TURNON IN A, (OUTI) 	READ CONTENTS OF OUT I 
OR 	0000000 I B 	FORCE BIT "0" TO "I" IN A 
OUT (OUT!), A 

The program first reads the contents of location OUT!, then per-
forms an inclusive OR on its contents. This only changes bit position 0 
to "1", and leaves the rest of the register intact. (For more details on 
the OR operation, refer to Chapter 44 This is illustrated by Figure 6.1. 

ON 

Pulses 

Generating a pulse is accomplished exactly as in the case of the level 
above. An output bit is first turned on, then later turned off. This re-
sults in a pulse. This is illustrated in Figure 6.2. This time, however, an 
additional problem must be solved: one must generate the pulse for the 
correct length of time. Let us, therefore, study the generation of a com-
puted delay. 

ON 	OUTPUT PORT 
REGISTER 

0 

0 

0 

0 

0  

SIGNAL 

N uSEC --FLA 

Oi l 

INEPROGRAhs SOT I OUTPUT POW 
tOALICNONT PORT LONER NAN ?ASTERN 
WAIT BOOR OR N SECT 
LOAD OUTPUT F011 MTH ZERO 
?[TURN 

Fig. 6.2: A Programmed Pulse 

462 



INPUT/OUTPUT TECHNIQUES 

Delay Generation and Measurement 

A delay may be generated by software or by hardware methods. We 
will here study the way to perform it by program, and later show how it 
can also be accomplished with a hardware counter, called a program-
mable interval timer (PIT). 

Programmed delays are achieved by counting. A counter register is 
loaded with a value, then is decremented. The program loops on itself 
and keeps decrementing until the counter reaches the value "0" The 
total length of time used by this process will implement the required 

delay. As an example, let us generate a delay of 82 clock cycles: 

DELAY LD A, 5 	 A IS COUNTER 
NEXT DEC A 	 DECREMENT 

JR 	NZ, NEXT 	NEXT TEST 

This program loads A with the value 5. The next instruction decre-
ments A and the following instruction will cause a branch to NEXT to 
occur as long as A does not decrement to "0". When A finally decre-
ments to zero, the program will exit from this loop and execute what-
ever instruction follows. The logic of the program is simple and appears 
in the flowchart of Figure 6.3. 

Let us now compute the effective delay which will be implemented by 
the program. In Chapter 4 of the book, we will look up the number of 
cycles required by each of these instructions: 

LD in the immediate mode requires seven clock cycles. DEC will use 

four cycles. Finally, JR will use 12 cycles except during the last itera-
tion, where it will use 7 cycles. When looking up the number of cycles 
for JR in the table, verify that two possibilities exist: if the branch does 
not occur, JR will only require seven cycles. If the branch does succeed, 
which will usually be the case during the loop, then 12 cycles are re-
quired. 

The timing is, therefore, seven cycles for the first instruction, plus 11 
cycles for the next two, multiplied by the number of times the loop will 

be executed, minus an extra five-cycle delay for the last unsuccessful JR: 

Delay = 7 + 16 x 5 — 5 = 82 cycles. 

Assuming a .5 microsecond cycle, this programming delay will be 41 
microseconds. 
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COUNTER = VALUE 

DECREMENT COUNTER 

NO 	
0? 

YES 

OUT 

Fig. 6.3: Basic Delay Flowchart 

The delay loop which has been described is used by most input/output 
programs. It should be well understood. Try to do the following exercises: 

Exercise 6.1: What are the maximum and the minimum delays which 
can be Implemented milt these three mstruct tons? 

Exercise 6.2: Modify the program to obtain a delay of about 100 Micro-
seconds. 

If one wishes to implement a longer delay, a simple solution is to add 
extra instructions in the program, before DEC. The simplest way to do 
so is to add NOP instruction. (The NOP does nothing for four cycles.) 

Longer Delays 

Generating longer delays by software can be achieved through using 

a wider counter. A register pair can be used to hold a 16-bit count. To 
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simplify, let us assume that the lower count is "0". The lower byte 
will be loaded with "0", the maximum count, then go through a 
decrementation loop. Since the first decrementation results in 00-s-FE 
and does not affect the Z flag whenever it is decremented to "0", the 
upper byte of the counter will be decremented by 1. Whenever the up-
per byte is decremented to the value "0", the program terminates. If 
more precision is required in the delay generation, the lower count can 
have a non-null value. In this case, we would write the program just as 
explained and add at the end the three-line delay generation program, 
which has been described above. 

A 24-bit delay program appears below: 
DEL24 LD B, COUNTH COUNTER HIGH (8 BITS) 
DEL I6 LD DE, — I 
LOOPA LD HL, COUNTL COUNTER LOW 
LOOPS ADD HL, DE DECREMENT IT 

JR C, LOOPS GO ON UNTIL NULL 
DJNZ LOOPA DECREMENT B AND JUMP 

Note that DE is loaded with " — I", and used to decrement the 16-bit 
counter HL. 

Naturally, still longer delays could be generated by using more than 
three words. This is analogous to the way an odometer works on a car. 
When the right-most wheel goes from "9" to "0", the next wheel to the 
left is incremented by 1. This is the general principle when counting 
with multiple discrete units. 

However, the main disadvantage of this method is that when one is 
counting delays, the microprocessor will be doing nothing else for hun-
dreds of milliseconds or even seconds. If the computer has nothing else 
to do, this is perfectly acceptable. However, in general the microcom-
puter should be available for other tasks, so that longer delays are nor-
mally not implemented by software. In fact, even short delays may be 
objectionable in a system if it is to provide some guaranteed response 
time in given situations. Hardware delays must then be used. In addi-
tion, if interrupts are used, timing accuracy may be lost if the counting 
loop can be interrupted. 

Exercise 6.3: Write a program to implement a 100 ins delay (typical of a 
Teletype). 

Hardware Delays 

Hardware delays are implemented by using a programmable interval 

timer or "timer" in short. A register of the timer is loaded with a value. 
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The difference is that the timer will automatically decrement the 
counter periodically. The period can usually be adjusted or selected by 
the programmer. Whenever the timer has decremented to "0", it will 
normally send an interrupt io the microprocessor. It may also set a 
status bit which can be sensed periodically by the computer. The use of 
interrupts will be explained later in this chapter. 

Other timer operating modes may include starting From "0" and 
counting the duration of the signal, or, counting the number of pulses 
received. When functioning as an interval timer, the tinier is said to 

operate in a one-shot mode. When counting pulses, it is said to operate 

in a pulse counting mode. Some timer devices may even include mul-
tiple registers and a number of optional facilities which the programmer 

can select. 

Sensing Pulses 

The problem with sensing pulses is the reverse of that of generating 
pulses, and includes one more difficulty: whereas an output pulse is 
generated under program control, input pulses occur asynchronously 

with the program. In order to detect a pulse, two methods may be used: 
polling and interrupts. Interrupts will be discussed later in this chapter. 

Let us now consider the polling technique. Using this technique, the 
program reads the value of a given input register continuously, testing a 

bit position, perhaps bit 0. It will be assumed that bit 0 is originally 
"0". Whenever a pulse is received, this bit will take the value "1" The 
program continuously monitors bit 0 until it takes the value "I". When 
a "I" is found, the pulse has been detected. The program appears 
below: 

POLL 	IN 	A, (INPUT) 	READ INPUT REGISTER 
ON 	BIT 0, A 	 TEST FOR 0 

JR 	Z, POLL 	KEEP POLLING IF 0 

Conversely, let us assume that the input line is normally "I" and that 
we wish to detect a "0". This is the usual case for detecting a START 
bit, when monitoring a line connected to a Teletype. The program ap-
pears below: 

POLL 	IN 	A, (INPUT) 	READ INPUT REGISTER 
BIT 	0, A 	 SET Z FLAG 
JR 	NZ, POLL 	TEST IS REVERSED 

START ... 
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Monitoring the Duration 

Monitoring the duration of the pulse may be accomplished in the 
same way as computing the duration of an output pulse. Either a hard-
ware or a software technique may be used. When monitoring a pulse by 
software, a counter is regularly incremented by 1, then the presence of 
the pulse is verified. If the pulse is still present, the program loops upon 
itself. Whenever the pulse disappears, the count contained in the 
counter register is used to compute the effective duration of the pulse. 
The program appears below: 

DURTN LD B, 0 CLEAR COUNTER 
AGAIN IN A, (INPUT) READ INPUT 

BIT 0, A MONITOR BIT 0 
JR Z, AGAIN WAIT FOR A "I" 

LONGER INC B INCREMENT COUNTER 
IN A, (INPUT) CHECK BIT 0 
BIT 0, A 
JR NZ, LONGER WAIT FOR A "0" 

Naturally, we assume that the maximum duration of the pulse will 
not cause register B to overflow. If this were the case, the program 
would have to be changed to take that into account (or else it would be a 
programming error!). 

Since we now know how to sense and generate pulses, let us capture 
or transfer larger amounts of data. Two cases will be distinguished: 
serial data and parallel data. Then we will apply this knowledge to ac-
tual input/output devices. 

PARALLEL WORD TRANSFER 

It is assumed here that eight bits of transfer data are available in par-
allel at address "INPUT" (see Fig. 6.4). The microprocessor must read 
the data word at this location whenever a status word indicates that it is 
valid. The status information will be assumed to be contained in bit 7 of 
address "STATUS". We will here write a program which will read and 
automatically save each word of data as it comes in. To simplify, we 
will assume that the number of words to be read is known in advance 
and is contained in location "COUNT". If this information were not 
available, we would test for a so-called break character, such as a 
rubout, or perhaps the character "•". We have learned to do this al-
ready. 
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Fig. 6.4: Parallel Word Transfer-The Memory 

The flowchart appears in Figure 6.5. It is quite straightforward. We 
test the status information until it becomes "I", indicating that a word 
is ready. When the word is ready, we read it and save it at, an appropri-
ate memory location. We then decrement the counter and test whether 
it has decremented to "0". If so, we are finished; if not, we read the 
next word. A simple program which implements this algorithm appears 
below: 

PARAL LD 
LD 

WATCH IN 

BIT 
JR 
IN 
PUSH  

A, (COUNT) 
B, A 
A, (STATUS) 

7, A 
Z, WATCH 
A, (INPUT) 
AF 

READ COUNT INTO A 
B IS COUNTER 
LOOK FOR 'DATA READY' 
TRUE 
BIT 7 IS "1" IF DATA READY 
DATA VALID? 
READ DATA 
SAVE DATA INTO STACK 
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DEC 	B 	 DECREMENT COUNT 
JR 	NZ, WATCH DO IT UNTIL ZERO 

It is assumed that the "data ready" flag is automatically cleared when 
STATUS is read. 

The first two instructions initialize the counter register B: 

PARAL 	LD A, (COUNT) 
LD 	B, A 

Note that there is no easy way to load B only from memory. One must 
either load A, then transfer its contents to B, or load B and C 
simultaneously. 

POLLING OR SERVICE REQUEST 

READ COUNT 

  

NO 

 

  

TRANSFER 
WORD 

DECREMENT 

COUNTER 

NO 

OUT 

Fig. 6.5: Parallel Word Transfer: Flowchart 
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The next three instructions of the program read the status informa-
tion and cause a loop to occur as long as bit seven of the status register 

is "0". (It is the sign bit, i.e., bit N.) 

IN 	A, (STATUS) 

BIT 	7, A 	"IN" DOES NOT SET THE FLAGS 
JR 	Z, WATCH 

When JP fails, data is valid and we can read it: 

IN 	A, (INPUT) 

The word has now been read from address INPUT where it was, and 
must be saved. Assuming that a sufficient stack area is available, we 

can use: 

PUSH AF 

which saves A (and F) in the stack. If the stack is full, or the number of 
words to be transferred is large, we could not push them on the stack 
and we would have to transfer them to a designated memory area, us-
ing, for example, an indexed instruction. However, this would require 

an extra instruction to increment or decrement the index register. 
PUSH is faster (only 11 clock cycles). 

The word of data has now been read and saved. We will simply decre-
ment the word counter and test whether we are finished: 

DEC 

JR 	NZ,WATCH 

This nine-instruction program can be called a benchmark. A benchmark 
program is a carefully optimized program designed to test the capabilities 
of a given processor in a specific situation. Parallel transfers are one such 
typical situation. This program has been designed for maximum speed and 
efficiency. Let us now compute the maximum transfer speed of this pro-
gram. We will assume that COUNT is contained in memory. The duration 
of every instruction is determined by inspecting the tables in Chapter Four 
and is found to be the following: 

PARAL LD 	A, (COUNT) 13 
LD 	B, A 	4 

WATCH IN 	A, (STATUS) 11 
BIT 	7, A 	8 
JR 	Z, WATCH 7/12 

470 



INPUT/OUTPUT TECHNIQUES 

IN 	A, (INPUT) 	I I 
PUSH AF 	 II 

DEC B 	 4 
JR 	NZ, WATCH 7/12 

The minimum execution time is obtained by assuming that data is 
available every time that we sample STATUS. In other words, the first 
JP will be assumed to fail every time. Timing is then: 

13 + 4 + (11 +8+7+ 11 +4+ 12) • COUNT 

Neglecting the first 17 cycles necessary to initialize the counter regis-
ter, the time used to transfer one word is 64 clock cycles or 32 
microseconds with a 2 MHz clock. 

The maximum data transfer rate is, therefore: 

= 31 K bytes per second 
32 (1O') 

Exercise 6.4: Assume thus the number of words to be transferred is 
greater than 256. Modify the program accordingly and determine the 
impact un the maximum data transfer rate. 

Exercise 6.5: Modify this program in order to trim improve its speed: 
I—using JR instead of JP 
2—using DJNZ 
3—using INI or IND 

fibs the above program truly optimal? 

We have now learned to perform high-speed parallel transfers. Let us 
consider a more complex case. 

BIT SERIAL TRANSFER 

A serial input is one in which the bits of information (0's or l's) come 
in successively on a line. These bits may come in at regular intervals. 
This is normally called synchronous transmission. Or, they may come 
as bursts of data at random intervals. This is called asynchronous trans-
mission. We will develop a program which can work in both cases. The 
principle of the capture of sequential data is simple: we will watch an 
input line, which will be assumed to be line 0. When a bit of data is de-
tected on this line, we will read the bit in, and shift it into a holding reg-
ister. Whenever eight bits have been assembled, we will preserve the 
byte of data into the memory and assemble the next one. In order to 
simplify, we will assume that the number of bytes to be received is 
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known in advance. Otherwise, we might, for example, have to watch 
for a special break character, and stop the bit-serial transfer at this 
point. We have learned to do that. The flowchart for this program ap-
pears in Figure 6.6. The program appears below: 

SERIAL LD C, 0 	CLEAR INPUT WORD 
LD 	A, (COUNT) LOAD B WITH BYTE COUNT 
LD 	B, A 

LOOP IN 	A, (INPUT) READ PORT 
BIT 	7, A 	BIT 7 IS STATUS, BIT 0 IS DATA 

JR 	Z, LOOP 	WAIT FOR A "I" 

SRL 	A 	 SHIFT DATA BIT INTO CARRY 
RL 	C 	 SAVE INPUT B INTO C 
JR 	NC, LOOP CONTINUE UNTIL 8 BITS IN 

POLLING OR SERVICE REQUEST 

READ WORD COUNT 

NO 

STORE BIT 
INCREMENT COUNTER 

NO 

STORE WORD 
RESET BIT COUNTER 

DECREMENT WORD COUNT 

DONE 

Fig. 6.6: Bit Serial Transfer—Flowchart 
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PUSH BC 
	

SAVE WORD IN STACK 
LD 	C, 01H 
	

RESET MARKER BIT 
DEC 	B 
	

DECREMENT BYTE COUNTER 
JR 	NZ, LOOP ASSEMBLE NEXT WORD 

This program has been designed for efficiency and will use new tech-
niques which we will explain (see Fig. 6.71. 

The conventions are the following: memory location COUNT is as-
sumed to contain a count of the number of words to be transferred. 
Register C will be used to assemble eight consecutive bits coming in. 
Address INPUT refers to an input register. It is assumed that bit posi-
tion 7 of this register is a status flag, or a clock bit. When ins "0", data 
is not valid. When it is "I", the data is valid. The data itself will be as-
sumed to appear in bit position 0 of this same address. in many in-
stances, the status information will appear on a different register than 
the data register. It should be a simple task, then, to modify this pro-
gram accordingly. in addition, we will assume that the first bit of data 
to be received by this program is guaranteed to be a "I". It indicates 
that the real data follows. If this were not the case, we will later see an 
obvious modification to take care of it. The program corresponds ex-
actly to the flowchart of Fig. 6.6. The first few lines of the program im-
plement a waiting loop which tests whether a bit is ready. To determine 
whether a bit is ready, we read the input register, then test the zero bit 
(Z). As long as this bit is "0", the instruction JR will succeed, and we 
will branch back to the loop. Whenever the status (or clock) bit 
becomes true ("I"), then JR willfail and the next instruction will be 
executed. 

This initial sequence of instructions corresponds to arrow I in Fig. 
6.7. 

At this point, the accumulator contains a "I" in bit position 7 and 
the actual data bit in bit position 0. The first data bit to arrive is going 
to be a "I". However, the following bits may be either "0" or "I". We 
now wish to preserve the data bit which has been collected in position 0. 
The instruction: 

SRL A 

shifts the contents of the accumulator right by one position. This causes 
the right-most bit of A, which is our data bit, to fall into the carry bit. 
We will now preserve this data bit into register C (this process is illus-
trated by arrows 2 and 3 in Fig. 6.7): 

RL C 

473 



COUNT 	tilti 

 

0 

 

x x 

   

PROGRAMMING THE Z80 

COUNT 

STATUS 
OR 

CLOCK 

SERIAL 
DATA 

IN 
INPUT 

Fig. 6.7: Serial-to-Parallel: The Registers 

The effect of this instruction is to read the carry bit into the right-most 
bit position of C. At the same time, the left-most bit of C falls into the 
carry bit. (If you have any doubts about the rotation operation, refer to 
Chapter 4!) 

It is important to remember that a rotation with carry operation will 
both save the carry bit, here into the right-most bit position, and also 
recondition the carry bit with the value of bit 7 (or bit 0). 

Here, a "0" will fall into the carry. The next instruction: 

JR NC, LOOP 

tests the carry and branches back to address LOOP as long as the carry 
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is "0". This is our automatic bit counter. It can readily be seen that, as a 
result of the first RL, C will contain "00000001" Eight shifts later, the 
"1" will finally fall into the carry bit and stop the branching. This is an 
ingenious way to implement an automatic loop counter without having 
to waste an instruction to decrement the contents of an index register. 
This technique is used in order to shorten the program and improve its 
performance. 

When JR NC finally fails, 8 bits will have been assembled into C. 
This value should be preserved in the memory. This is accomplished by 
the next instruction (arrow 4 on Fig. 6.7): 

PUSH BC 

We are here saving the contents of B and C into the stack. Saving into 
the stack is possible only if there is enough room in the stack. Provided 
that this condition is met, it is usually the fastest way to preserve a word 
in the memory, even though we save an unnecessary register (B). The 
stack pointer is updated automatically. If we were not pushing a word 
in the stack, we would have to use one more instruction to update a 
memory pointer. We could equivalently perform an indexed addressing 
operation, but that would also involve decrementing or incrementing 
the index, using extra time. 

After the first word of data has been saved, there is no longer any 
guarantee that the first data bit to come in will be a "1". It can be any-
thing. We must, therefore, reset the contents to "00000001" so that we 
can keep using it as a bit counter. This is performed by the next instruc-
tion: 

LD C, 01H 

Finally, we will decrement the word counter, since a word has been 
assembled, and test whether we have reached the end of the transfer. 
This is accomplished by the next two instructions: 

DEC B 
JR NZ, LOOP 

The above program has been designed for speed, so that one may 
capture a fast input stream of data bits. Once the program terminates, 
it is naturally advisable to immediately read away from the stack the 
words that have been saved there and transfer them elsewhere into the 
memory. We have already learned to perform such a block transfer in 
Chapter 2. 
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Exercise 6.6: Compute the maximum speed at which this program will 
be able to read serial bus. Look up the number of cycles required by 
every IIISMI01011 in the table at the end of this book, then compute the 
time which trill elapse during execution of this program. To compute 
the length of time which will be used by a loop, simply multiply the 
total duration of this loop, expressed in microseconds, by the number 
of tunes it will be executed. Also, when computing the maximum speed, 
assume that a data bit trill be ready even' tune that the input location is 

sensed. 

This program is more difficult to understand than the previous ones. 
Let us look at it again (refer to Fig. 6.6) in more detail, examining some 

trade-offs. 
A bit of data comes into bit position 0 of "INPUT" from time to 

time. There might be, for example, three "Is" in succession. We must, 

therefore, differentiate between the successive bits coming in. This is 
the function of the "clock" signal. 

The clock (or STATUS) signal tells us that the input bit is now valid. 
Before reading a bit, we will therefore first test the status bit. If the 
status is "0", we must wait. If it is "I", then the data bit is good. 

We assume here that the status sianal is connected to bit 7 of register 
INPUT. 

Exercise 6.7: Can you explain why bit 7 is used for status, and but 0 f or 
data? Does it matter? 

Once we have captured a data bit, we want to preserve it in a safe 
location, then shift it left, so that we can get the next bit. 

Unfortunately, the accumulator is used to read and test both data 
and status in this program. If we were to accumulate data in the accu-
mulator, bit position 7 would be erased by the status bit. 

Exercise 6.8: Can you suggest a war to test status without erasing the 
contents p/ the accumulator (a special instruction/? //'this can be done, 
could we use the accumulator to accumukite the successive bits coining 
in? Can you improve speed by using an "automated lump"? 

Exercise 6.9: Rewrite the program, using the accumulator to store the 
bits coming in. Compare it to the previous one in terms of speed and 
number of instructions. 

Let us address two more possible variations. 
We have assumed that, in our particular example, the very first bit to 

come in would be a special signal, guaranteed to be "I". However, in 
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eeneral, it may be anything. 

Exercise 6. /0: Modify the program above, assuming that the very first 
bit to come in is valid data Owl to be discarded), and can be "0" or 
"I" Hint: our "bit counter" should still work correct Iv, ii/ you iitial-
ize it n•uli the correct value. 

Finally, we have been saving the assembled word in the stack, to gain 
time. We could naturally save it in a specified memory area. 

Exercise 6. /1: Madill' the pMMIT1111 above, and save die assembled word 
ui the memoir area starting at BASE. 

Exercise 6. /2: illochtv the program above so that the ownsfer 	stop 
when the character "S" is detected in the input strewn. 

The Hardware Alternative 

As usual for most standard input/output algorithms, it is possible to 
implement this procedure by hardware. The chip is called a UART, It 
will aulornancallv accumulate the bits. However, whin one wishes to 

reduce the component count, this program, or a variation of it, will be 
used instead. 

Exercise 6.13: Modify the program, assummg that data is available m Int 

position 0 of location INPUT, while the status Infornialion is available 
in bit position 0 of address INPUT + I. 

BASIC I/O SUMMARY 

We have now learned to perform elementary input/output opera-
tions as well as to manage a stream of parallel data or serial bits. We are 
now ready to communicate with real input/output devices. 

COMMUNICATING WITH INPUT/OUTPUT DEVICES 

In order to exchange data with input/output devices, we will first 
have to ascertain whether data is available, if we want to read it; or 
whether the device is ready to accept data, if we want to send it. Two 
procedures may be used: handshaking and interrupts. Let us study 

handshaking first. 

Handshaking 

Handshaking is generally used to communicate between any two 
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MPU 

SI 

'IS NO 

DATA 

OUTPUT 

DEVICE 

I 	( 
outrui 

Fig. 6.8: Handshaking (Output) 

asynchronous devices, i.e., between any two devices which are not syn-
chronized. For example, if we want to send a word to a parallel printer, 
we must first make sure that the input buffer of this printer is available. 
We will, therefore, ask the printer: Are you ready? The printer will say 
"yes" or "no." If it is not ready we will wait. If it is ready, we will send 
the data (see Fig. 6.8). 

INNUI 
ttcrsna 

MPU 

IAM. 
al .1, 

1(0151(1 

NIS 10 

DATA 

INPUT 

DEVICE 

Fig. 6.8a: Handshaking (Input) 

Conversely, before reading data from an input device, we will verify 
whether the data is valid. We will ask: "Is data valid?" And the device 
will tell us "yes" or "no." The "yes or no" may be indicated by status 
bits, or by other means (see Fig. 6.8a). 

As an analogy, whenever you wish to exchange information with 
someone who is independent and might be doing something else at the 
time, you should ascertain that he is ready to communicate with you. 
The usual rule of courtesy is to shake his hand. Data exchange may then 
follow. This is the procedure normally used in communicating with in- 
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put/output devices. 
Let us now illustrate this procedure with a simple example. 

Sending a Character To The Printer 

The character will be assumed to be contained in memory location 
CHAR. The program to print it appears below: 

WAIT 	IN 	A, (STATUS) 
BIT 	7, A 	 TEST IF READY 
JR 	Z, WAIT 	OTHERWISE WAIT 
LD 	A, (CHAR) GET CHARACTER 
OUT 	(1312NTD), A PRINT IT 

JR 	WAIT 	CO FOR NEXT 

The print program is straightforward and uses the handshaking pro-

cedure which has been described above. The data paths are shown in 
Figure 6.9 

DATA 

STATUS 

PRNTD 

PRINTER 

MEMORY 
	

Z80 

Fig. 6.9: Printer—Data Paths 

The character (called DATAI is located at memory location CHAR. 
First, the status of the printer is checked. Whenever bit 7 of the status 
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register becomes I it indicates that the printer ready for input, i.e., its 
input buffer is available. At this point, the character is loaded into 
the accumulator, then output to the printer, via the accumulator. As 
long as the status bit remains 0, the program will remain in a loop, 
called WAIT in the program. 

Exercise 6.14: How many instructions would be saved in the above pro-
gram by loading data directly into register C as well as outputing the con-
tents of register C directly? 

Exercise 6.15: When using an actual printer, it is usually necessary to 
send a start order before using the device. Modify this program to gen-
erate such an order, assuming that the start command is obtained by 
writing a I in bit position 0 of the STATUS register. which is assumed 
to be bidirectional. 

Exercise 6.16: If the BIT instruction were not available, could you use 
another instruction instead, in line 2 of the program? If so, explain the 
advantage of using the BIT instruction, if any. 

Exercise 6.17: Modify the program above to print a string of n charac-
ters, where n will he assumed to be less than 255. 

Exercise 6.18: Modify the above program to print a string of characters 
until a "carriage-return" code is encountered. 

Let us now complicate the output procedure by requiring a code con-
version and by outputting to several devices at a time: 

Output To a Seven-Segment LED 

A traditional seven-segment light-emitting diode (LED) may display 
the digits "0" through "9", or even "0" through "F" hexadecimal by 
lighting combinations of its 7 segments. A seven-segment LED is shown 
in Figure 6.10. The characters that may be generated with this LED 
appear in Figure 6.1 I. 

The segments of an LED are labeled "a" through "g" in Figure 6.10. 
For example, "0" will he displayed by lighting the segments abcdef. 

Let us assume, now, that bit "0" of an output port is connected to seg-
ment "a", that "I" is connected to segment "b", and so on. Bit 7 is 
not used. The binary code required to light up fedcba (to display "0") 
/s, therefore, "011111I" In hexadecimal this is "3F". Do the follow-
ing exercise. 
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A 

"If "if 

D 

Fig. 6.10: Seven-Segment LED 

/-- 
/ 

D 6/ 
/ 

1 
1 
/ 

1 
I 	

17 
// / I 

CI I / 
/ 

I I / 
1 	1 1_1 11 1_ l  / 

Fig. 6.11: Hexadecimal Characters Generated 
with a Seven-Segment LED 
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Exercise 6.19: Compute the seven-segment equivalent for the hexadeci-
mal digits "0" through "F". Fill out the table below: 

Hex LED code Hex LED code Hex LED code Hex LED code 
0 3F 4 8 C 
1 5 9 D 
2 6 A E 
3 7 B F 

Let us now display hexadecimal values on several LED's. 

Driving Multiple LED's 

An LED has no memory. It will display the data only as long as its 
segment lines are active. In order to keep the cost of an LED display 
low, the microprocessor will display information on each of the LED's 
in turn. The rotation between the LED's must be fast enough so that 
there is no apparent blinking. This implies that the time spent from one 
LED to the next is less than 100 milliseconds. Let us design a program 
which will accomplish this. Register C will be used to point to the LED 
on which we want to display a digit. The accumulator is assumed to 
contain the hexadecimal value to be displayed on the LED. Our first 
concern is to convert the hexadecimal value into its seven-segment rep-
resentation. In the preceding section, we have built the equivalence 
table. Since we are accessing a table, we will use the indexed addressing 
mode, where the displacement index will be provided by the hexadeci-
mal value. This means that the seven-segment code for hexadecimal 
digit "3" is obtained by looking up the third element of the table after 
the base. The address of the base will be called SEGBAS. The program 
appears below: 

LEDS LD 
LD 
LD 
ADD 
LD 
LD 

DELAY OUT 
DEC  

E, A 
D, 0 
HL, SEGBAS 
HL, DE 
A, (HL) 
B, 50H 

(C), A 
B 

A CONTAINS HEX DIGIT 
USE "DE" AS DISPLACEMENT 
USE "HL" AS INDEX 
TABLE ADDRESS 
READ CODE FROM TABLE 
DELAY VALUE = ANY 
LARGE NBR 
OUTPUT FOR SET DURATION 
DELAY COUNTER 
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JR 
	

NZ, DELAY KEEP LOOPING 

	

LD 
	

A, C 
	

C IS PORT NUMBER 
DEC C 

	

CP 
	

MINLED 
	

DONE FOR LAST LED? 

	

JR 
	

NZ, OUT 

	

LD 
	

BC, (MAXLED) IF SO, RESET C TO TOP LED 
OUT RET 

The program assumes that register C contains the address of the LED 
to be illuminated next, and that the accumulator A contains the digit to 
be displayed. 

The program first looks up the seven-segment code corresponding to 
the hexadecimal value contained in the accumulator. Registers D and E 
are used as a displacement field, and registers H and L are used as a 
16-bit index register. The hexadecimal digit is added to the base address 
of the table: 

	

LEDS LD 
	

E, A 
	

7-SEGMENT CODE 

	

LD 
	

D, 0 

	

LD 
	

HL, SEGBAS 
ADD HL, DE 

A delay loop is then implemented, so that the code obtained from the 
table is displayed for an appropriate duration. Here the constant "50" 
hexadecimal has been arbitrarily chosen: 

	

LD 	A, (HL) 	READ CODE FROM TABLE 

	

LD 	B, 50H 	DELAY VALUE 

The delay is accomplished using a classic delay loop. The first instruc-
tion: 

DELAY OUT 	(C), A 

outputs the contents of the accumulator at the I/O port pointed to by 
register C (the LED number). The next two instructions implement the 
delay loop: 

DEC B 

	

JR 	NZ, DELAY 

Once the delay has been implemented, we must simply decrement the 
LED pointer, and make sure that we loop around to the highest LED 
address if the smallest LED address has been reached: 

LD A,C 
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DEC C 
CP MINLED 

JR 	NZ, OUT 

LD 	BC, (MAXLED) 
OUT RET 

It is assumed here that the above program has been written as a sub-

routine, and the last instruction is then RET:" return from subroutine" 

Exercise 6.20: It is usually necessary to turn off the segment drivers for 
the LED prior to displaying the digit. Modify the above program by 
adding the necessary instructions (output "00" as the character code 

prior to outputting the character). 

Exercise 6.21: What would happen to the display if the DELAY label 
were moved up by one line position? Would thus change the tuning? 
Would this change the appearance of the display? 

Exercise 6.22: You will notice that the first four instructions of the pro-

gram are, in fact, performing a 16-1M indexed memory access. How-
ever, it seems clumsy, without using the indexing mechanism. Assume 
that the SEGBAS address is known in advance. Call SEGBSH the 

high-order part of this address, and SEGBSL the low part of this ad-
dress. Store SEGBSH in the high-order part of the IX register. Now 
write the above program, using the Z80 index-addressing mechanism, 
and using SEGBSL as the displacement field of the instrucion. What 
are the advantages and disadvantages of this approach? 

Exercise 6.23: Assuming that the above program is a subroutine, you 
will notice that it uses registers B, D. E, H and L internally, and modi-
fies their contents. If the subroutine may freely use the memory area 
designated by address Ti, T2, T3. T4, T5, could you add instructions at 
the beginning and at the end of this program which will guarantee that. 
when the subroutine returns, the contents of registers B, D, E, H and L, 
will be the same as when the subroutine was entered? 

Exercise 6.24: Same exercise as above, but assume that the memory 
area Ti. etc., is not available to the subroutine. (Hint: remember that 

there is a built-in mechanism in every computer for preserving informa-
tion m a chronological order.) 

We have now solved common input/output problems. Let us con-
sider the case of a common peripheral: the Teletype. 
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Teletype Input-Output 

The Teletype is a serial device. It both sends and receives words of in-
formation in a serial format. Each character is encoded in an 8-bit 
ASCII format (the ASCII table appears at the end of this book). In ad-
dition, every character is preceded by a "start" bit, and terminated by 
two "stop" bits. In the so-called 20-milliamp current loop interface, 
which is most frequently used, the state of the line is normally a "I". 
This is used to indicate to the processor that the line has not been cut. A 
start is a "1"-to-"0" transition. It indicates to the receiving device that 
data bits follow. The standard Teletype is a 10-characters-per-second 
device. We have just established that each character requires II bits. 
This means that the Teletype will transmit 110 bits per second. It is said 
to be a 110-baud device. We will design a program to serialize bits out 
to the Teletype at the correct speed. 

MARK 

SPACE 

9.09m5 -b•-1--1 

Fig. 6.12: Format of a Teletype Word 

One-hundred-and-ten bits per second implies that bits are separated 
by 9.09 milliseconds. This will have to be the duration of the delay loop 
to be implemented between successive bits. The format of a Teletype 
word appears in Figure 6.12. The flowchart for bit input appears in 
Figure 6.13. The program follows: 

TTY1N IN 
BIT 
JR 
CALL 
IN 
OUT 
CALL 
LD 

NEXT IN 
OUT 
SRL 

A, (STATUS) 
7, A 
Z, TTYIN 
DELAY1 
A, (TTYBIT) 
(TTYBIT), A 
DELAY9 
B, 08H 
A, (TTYBIT) 
(TTYBIT), A 
A 

DATA READY^  
OTHERWISE WAIT 
CENTER OF PULSE 
START BIT 
ECHO IT 
NEXT PULSE (9 MS) 
BIT COUNT 
READ DATA BIT 
ECHO IT 
SAVE IT IN CARRY 
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TTYIN 

WAIT 4.5 ms 

ECHO START BIT 

WAIT 9.09 ms 

SHIFT IN DATA BIT 

ECHO IT 

NO 	CHARACTER 
ASSEMBLED? 

I YES 

WAIT 9.09 an 

OUTPUT STOP BIT 

WAIT 13.59 ms 

Fig. 6.13: TTY Input with Echo 
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RR 
CALL 
DEC 
JR 
IN 
OUT 
CALL 
RET 

C 
DELAY9 
B 
NZ, NEXT 
A, (TTYBIT) 
(TTYBIT), A 
DELAY9 

PRESERVE IT INTO C 
NEXT PULSE (9 MS) 
DECREMENT BIT COUNT 

READ STOP BIT 
ECHO IT 
SKIP SECOND STOP 

Fig. 6.14: Teletype Program 

Let us examine the program in detail. First, the status of the Teletype 
must be tested to determine if a character is available: 

TTYIN 	IN 	A, (STATUS) 
BIT 	7, A 
JR 	Z, TTYIN 

The "BIT" instruction is a useful Z80 facility which allows testing 
any bit in any data register. It does not modify the contents of the regis-
ter under test. The Z flag is set if the specified bit is 0, and reset other-
wise. 

This program will, therefore, loop until the status finally becomes 
"1". It is a classic polling loop. 

Note also that, since the STATUS does not need to be preserved, we 
could advantageously use 

AND 10000000B 
instead of 

BIT 	7, A 

However, using the AND instruction destroys the contents of A 
(acceptable here). 

When optimizing a program, remember that each new instruction 
may introduce side-effects. 

Next, a 4.5 ms delay is implemented in order to sense the start bit in 
the middle of the pulse. 

CALL DELAYI 

where DELAYI is the delay subroutine implementing the required 
delay. The first bit to come is the start bit. It should be echoed to the 
Teletype, but otherwise ignored. This is done by the next instructions: 

TTYIN IN 	A, (TTYBIT) 
OUT (TTYBIT), A 
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We must then wait for the first data bit. The necessary delay is equal to 
9.09 milliseconds and is implemented by a subroutine: 

CALL DELAY9 

Register B is used as a counter and is loaded with the value 8 in order to 
capture the 8 data bits: 

LD 	B, 08H 

Next, each data bit will be read in turn into the accumulator, then 
echoed. It is assumed to arrive in bit position 0 of the accumulator. The 
data bit will then be preserved into register C, where it will be shifted in. 
The transfer from A to C is performed through the carry bit: 
NEXT 	IN 	A, (TTYBIT) 

OUT (TTYBIT), A 
SRL A 
RR C 

This sequence is illustrated in Figure 6.15. 

A 	 I/O SPACE 

Fig. 6.15: Teletype Input 

Next, the usual 9 millisecond delay is implemented, the bit-counter is dec-
remented, and the loop is entered again as long as the eight bits have 
not been captured: 

CALL DELAY9 
DEC B 
JR 	NZ, NEXT 

Finally, the STOP bit is captured, and echoed. It is usually sufficient to 
send a single STOP bit, however both could be sent back using two 
more instructions: 

IN 	A, (TTYBIT) 
OUT (TTYBIT), A 
CALL DELAY9 
RET 
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SEND START 

BIT  

 

  

  

 

SEND DATA 
BITS 

SEND STOP 
BIT 

EXIT 
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The program should be examined with attention. The logic is quite 
simple. The new fact is that whenever a bit is read from the Teletype (at 
address TTYBIT), it is echoed back to the Teletype. This is a standard 
feature of the Teletype. Whenever a user presses a key, the information 
is transmitted to the processor and then back to the printing mechanism 
of the Teletype. This verifies that the transmission lines are working 
and that the processor is operating when a character is, indeed, printing 
correctly on the paper. 

Fig. 6.16: Teletype Output 

Exercise 6.25: Write the delay routine which results in the 9.09 millisec-
ond delay. (DELAY subroutine) 

Exercise 6.26: Using the example of the program developed above, 
write a PR1NTC program which will print on the Teletype the contents 
of memory location CHAR (see Fig. 6. /5). 

The answer appears below: 

PRINTC LD 	B, II 	 COUNTER = II BITS 
LD 	A, (CHAR) GET CHARACTER 
OR 	A 	 CLEAR CARRY = START BIT 
RLA 	 CARRY INTO A 
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NEXT OUT (TTYBIT), A OUTPUT 
CALL DELAY 

	

RRA 	 NEXT BIT 

	

SCF 	 CARRY = 1 (STOP BIT) 

	

DEC 	B 	 BIT COUNT 

JR 	NZ, NEXT 
RET 

Register B is used as a bit counter for the transmission. The contents 
of bit 0 of A will be sent to the Teletype line ("TTYBIT"). Note how 
the carry is used to provide a ninth bit (the START bit). Also, note that 
the carry is cleared by: 

OR A 

At the end of the program, the carry is set to one by: 

SCF 

in order to generate a stop bit. 

Exercise 6.27: Modify the program so that it waits for a START bit in-

stead of a STATUS bit. 

Printing a String of Characters 

We will assume that the PRINTC routine (see Exercise 6.26) takes 
care of printing a character on our printer, or display,or any output de-
vice. We will here print the contents of memory locations (START) to 
(START + N). 

The program is straightforward (see Figure 6.17): 

	

PSTRING LD 	B, NBR 	LENGTH OF STRING 

	

LD 	HL, START BASE ADDRESS 
NEXT 	LD A, (HL) 	GET CHARACTER 

CALL PRINTC 	PRINT IT 
INC 	HL 	 NEXT ELEMENT 
DEC B 

	

JR 	NZ, NEXT 	DO IT AGAIN 
RET 
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START 

START +N 

OUTPUT REGISTER 

  

COUNTER 

  

   

 

N 

 

  

TO PRINTER 

   

Fig. 6.17: Printing a Memory Block 

PERIPHERAL SUMMARY 

We have now described the basic programming techniques used to 
communicate with typical input/output devices. In addition to the data 
transfer, it will be necessary to condition one or more control registers 
within each I/O device in order to condition the transfer speeds, the in-
terrupt mechanism, and the various other options correctly. The man-

ual for each device should be consulted. (For more details on the spe-
cific algorithms for exchanging information with all the usual peripher-

als, the reader is referred to our book, C207, Microprocessor Interfac-
ing Techniques.) 

We have now learned to manage single devices. However, in a real 
system, all peripherals are connected to the buses , and may request 
service simultaneously. How are we going to schedule the processor's 
time? 

INPUT/OUTPUT SCHEDULING 

Since input/output requests may occur simultaneously, a scheduling 
mechanism must be implemented in every system to determine in which 
order service will be granted. Three basic input/output techniques are 
used, which can be combined with each other. They are: polling, inter-
rupt, DMA. Polling and interrupts will be described here. DMA is 

purely a hardware technique, and as such will not be described here. (It 
is covered in the reference books C201 and C207.) 
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Polling 

Conceptually, polling is the simplest method for managing multiple 
peripherals. With this strategy, the processor interrogates the devices 
connected to the buses in turn. If a device requests service, the service 
is granted. If it does not request service, the next peripheral is exam-
ined. Polling is used not just for the devices, but for any device service 

routine. 
As an example, if the system is equipped with a Teletype, a tape re-

corder, and a CRT display, the polling routine would interrogate the 
Teletype: "Do you have a character to transmit?" It would interrogate 

the Teletype output routine, asking: "Do you have a character to 
send?" Then, assuming that the answers are negative so far, it would 
interrogate the tape-recorder routines, and finally the CRT display. If 

only one device is connected to a system, polling will be used as well to 
determine whether it needs service. As an example, the flowcharts for 

reading a paper-tape reader and for printing on a printer appear in Fig-
ures 6.20 and 6.21. 

MEMORY 

   

DATA BUS 

   

     

	) POLLING MPU 

      

      

    

I/O 

  

      

       

MEMORY 

Fig. 6.18: Three Methods of I/O Control 
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Example: a polling loop for devices I. 2, 3, 4 (see Fig. 6.19): 

POLL4 IN 
BIT 
CALL 
IN 
BIT 

CALL 
IN 

BIT 
CALL 
IN 
BIT 
CALL 
JR 

A, (STATUS 1) 
7,A 
NZ, ONE 
A, (STATUS2) 
7, A 

NZ, TWO 
A, (STATUS3) 

7, A 
NZ, THREE 
A, (STATUS4) 
7, A 
NZ, FOUR 
POLL4  

GET STATUS OF DEVICE I 
SERVICE REQUEST? 
BIT 7 = I? 

DEVICE 2 

DEVICE 3 

DEVICE 4 

NO REQUEST, TRY AGAIN 

Bit 7 of the status register for each device is "I" when it wants serv-
ice. When a request is sensed, this program branches to the device 
handler, at address ONE for device I, TWO for device 2, etc. 

A fine point is worth noting here. For each instruction, it is impor-
tant to verify carefully the way in which it affects the condition codes. 
It should be noted that the IN A instruction does not change the flags. 
If an IN r instruction has been used instead of an IN A instruction, bit 7 
of the input would automatically be reflected as the SIGN bit in the 
flags register. The special instruction "BIT 7,A" would become un-
necessary. However, because the IN A instruction does not change the 
flags, this extra test must be included in the program. 

In some hardware implementations, input/output devices may be 
treated as memory devices for purposes of addressing. This is called 
memory-mapped input/output. In this case, the IN instruction would 
be replaced by an LD instruction and the rest of the program would be 
as above, since LD does not affect the flags. 

The advantages of polling are obvious: it is simple, does not require 
any hardware assistance, and keeps all input/output synchronous with 
the program operation. Its disadvantage is just as obvious: most of the 
processor's time is wasted looking at devices that do not need service. 
In addition, by wasting so much time, the processor might give service 
to a device too late. 

Another mechanism is, therefore, desirable in order to guarantee that 
the processor's time can be used to perform useful computations rather 
than polling devices needlessly all the time. However, let us stress that 
polling is used extensively whenever a microprocessor has nothing bet- 
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Fig. 6.19: Polling Loop Flowchart 

Fig. 6.20: Reading from a Paper-Tape Reader 
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Fig. 6.21: Printing on a Punch or Printer 

ter to do, as it keeps the overall organization simple. Let us examine the 
essential alternative to polling: interrupts. 

Interrupts 

The concept of interrupts is illustrated in Figure 6.18. A special hard-
ware line, the interrupt line, is connected to a specialized pin of the mi-
croprocessor. Multiple input/output devices may be connected to this 
interrupt line. When any one of them needs service, it sends a level or a 
pulse on this line. An interrupt signal is the service request from an in-
put/output device to the processor. Let us examine the response of the 
processor to this interrupt. 

In any case, the processor completes the instruction that it was cur-
rently executing; otherwise, this would create chaos inside the micro-
processor. Next, the microprocessor should branch to an interrupt-han-
dling routine which will process the interrupt. Branching to such a sub-
routine implies that the contents of the program counter must be saved 
on the stack. An interrupt must, therefore, cause the automatic preser-
vation of the program counter on the stack. In addition, the flag regis-
ter F should be also preserved automatically, as its contents will be 
altered by any subsequent instruction. Finally, if the interrupt-handling 
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routine should modify any internal registers, these internal registers 

should also be preserved on the stack (see Figures 6.22 and 6.23). 

PCL 

PCH 

Fig. 6.22: Z80 Stack After Interruption 

Fig. 6.23: Saving Some Working Registers 

After all these registers have been preserved, one can branch to the 
appropriate interrupt-handling address. At the end of this routine, all 
the registers should be restored, and a special interrupt return should be 
executed so that the main program will resume execution. Let us exam-

ine in more detail the interrupt lines of the Z80. 

Z80 Interrupts 

An interrupt is a signal sent to the microprocessor, which may re-
quest service at any time and is asynchronous to the program. When-
ever a program branches to a subroutine, such branching is synchron-
ous to program execution, i.e., scheduled by the program. An inter-
rupt, however, may occur at any time, and will generally suspend the 
execution of the current program (without the program knowing it). 
Because it may happen at any time relative to program execution, it is 
called asynchronous. 

Three interruption mechanisms are provided on the Z80: the bus re-
quest (BUSRQ), the non-maskable interrupt (NMI) and the usual inter-
rupt (INT). 

Let us examine these three types. 

SP 
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The Bus Request 

The bus request is the highest priority interrupt mechanism on the 
Z80. The interrupt sequence for the Z80 is shown in Figure 6.24. As a 

general rule, no interrupt will be sensed by the Z80 until the current 
machine cycle is completed. The NMI and INT interrupts will not be 
taken into account until the current instruction is finished. However, 
the BUSRQ will be handled at the end of the current machine cycle, 
without necessarily waiting for the end of the instruction. It is used for 
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a direct memory access (DMA), and will cause the Z80 to go into DMA 
mode (see ref. C201 for an explanation of the DMA mechanism). If the 
end of an instruction has been reached, and if any NMI or INT were 
pending, they would be memorizedinternally in the Z80 by setting spe-
cialized flip-flops: the NMI flip-flop, and the INT flip-flop. In DMA 
mode, the Z80 suspends operation and releases its data-bus and 
address-bus in the high-impedance state. This mode is normally used by 
a DMA controller to perform transfers between a high-speed input-
output device and the memory, using the microprocessor data-bus and 
address-bus. The end of a DMA operation is indicated to the Z80 by 
BUSRQ changing levels. At this point, the Z80 will resume normal 
operation. In particular, it will first check whether its internal NMI or 
INT flip-flops had been set and, if so, execute the corresponding inter-
rupts. 

The DMA should normally not be of concern to the programmer, un-
less timing is important. If a DMA controller is present in the system, 
the programmer must understand that the DMA may delay the 
response to an NMI or an INT. 

The Non-Mnskable Interrupt 

This type of interrupt cannot be inhibited by the programmer. It is 
therefore said to be non-maskable, hence its name. It will always be ac- 
cepted by the Z80 upon completion of the current instruction, assuming 
no bus request was received. (If an NMI is received during a BUSRQ, 
it will set the internal NMI flip-flop, and will be processed at the end of 
the instruction following the end of the BUSRQ.) 

The NMI will cause an automatic push of the program counter into 
the stack and branch to address 0066H: the two bytes representing the 
address 0066H will be installed in the program counter. They represent 
the start address of the handling routine for the NMI (see figure 6.25). 

This interrupt mechanism has been designed for speed, as it is used in 
case of "emergencies". Therefore, it does not offer the flexibility of the 
maskable interrupt mode, described below. 

Note also that an interrupt routine must have been loaded at address 
0066H prior to using the NMI. 

NMI will first cause: 

	

SP 	SP — I 

	

(SP) 	PCH 	push PC 

	

SP 	SP — I 

	

(SP) 	PCL 
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Fig. 6.25: NMI Forces Automatic Vectoring 

Then, NMI causes an automatic restart at location 0066H. The com-
plete sequence of events is the following: 

PC 	-0- STACK 	 (preserve program counter) 
IFFI 	 IFF2 	 (preserve IFF) 
0 	 IFFI 	 (reset 1FF) 
JUMP TO 1306614 	 (execute interrupt handler) 

Also, the status of interrupt-mask-bit flip-flop (IFFI) at the time that 
NMI was received is preserved automatically into IFF2. Then, IFFI is re-
set in order to prevent any further interrupts. This feature is important to 
prevent the loss of lower-priority INT's and simplifies the external hard-
ware: the status of a pending INT is preserved internally in the Z80. 

The NMI interrupt is normally used for high priority events such as a 
real-time clock or a power failure. 

The return from an NMI is accomplished by a special instruction, RETN: 
"return from non-maskable interrupt." The contents of IFFI are restored 
from IFF2, and the contents of the program counter PC are restored from 
their location in the stack. Since IFF1 had been reset during execution 
of the NMI. no external INT's could be accepted during the NMI 
(unless the programmer uses an El instruction within the NMI routine): 
there has been no loss of information. 
Upon termination of the interrupt handler, the sequence is: 

IFF2 	 IFFI 	 (restore 1FF) 
STACK -01".  PC 	 (restore program counter) 

Note that, once IFFI is restored, maskable interrupt enable status is 
restored. 
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Interrupt 

The ordinary. maskable,,interrupt INT may operate in one of three 
modes. They are specific to the Z80, as the 8080 is equipped with only a 
single interrupt mode. The ordinary interrupt INT may also be masked 
selectively by the programmer. Setting the interrupt flip-flops IFFI and 
IFF2 to a "1" will authorize interruptions. Setting them to a "0" 
(masking them) will prevent detection of INT. The El instruction is 
used to set them, and the DI instruction is used to reset them. IFFI and 
IFF2 are set or reset simultaneously. During execution of the El and DI 
instructions, INT's are disabled in order to prevent any loss of informa-
tion. 

Let us now examine the three interrupt modes: 

Interrupt Mode 0 

This mode is identical to the 8080 interrupt mode. The Z80 will 
operate in interrupt mode 0 either when initially started (when the RE-
SET signal has been applied) or else when an IMO instruction has been 
executed. Once mode 0 has been set, an interrupt will be recognized if 
the interrupt enable flip-flop IFFI is set to 1, provided no bus-request 
or non-maskable interrupt occurs at the same time. The interrupt will 
be detected only at the end of an instruction. Essentially, the Z80 will 
respond to the interrupt by generating an IORQ (and an Ml signal), 
and then do nothing, except wait. 

It is the responsibility of an external device to recognize the IORQ 
and MI (this is called an interrupt acknowledge or INTA) and to place 
an instruction on the data-bus. The Z80 expects an instruction to be 
placed on its data bus by the external device within the next cycle. Typi-
cally, an RST or a CALL instruction is placed on the bus. Both of these 
instructions automatically preserve the program-counter in the stack, 
and cause branching to a specific address. The advantage of the RST in-
struction is that it resides within a single byte, i.e., it executes rapidly. 
Its disadvantage is to branch to only one of eight possible locations in 
page zero (addresses 0 through 255). The advantage of the CALL in-
struction is that it is a general-purpose branch instruction which speci-
fies a full 16-bit address. However, it requires three bytes and therefore 
executes less rapidly. 

Note that once the interrupt processing starts, all further interrupts 
are disabled. IFFI and IFF2 are automatically set to "0". It is then the 
responsibility of the programmer to insert an El instruction (Enable In- 
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terrupts) at the appropriate location within his program if he wishes to 
enable interrupts, and, in any case, before returning from the interrupt. 

The detailed sequence corresponding to the mode 0 interrupt is 
shown in Figure 6.26. 

Ex/CUTE1 T 

   

PET 

STACK-0K 

  

It nun( 

 

   

 

GU 

STACK-7K 

 

    

Fig. 6.26: Interrupt Modes 

The return from the interrupt is accomplished by an RETI instruc-
tion. Let us remind the programmer at this point that he/she is usually 
responsible for explicitly clearing the interrupt which has been serviced 
on the I/O device, and always for restoring the interrupt disable flag in-
side the Z80. However, the peripheral controller may use the INTA sig-
nal to clear the INT request, thus freeing the programmer of this chore. 

In addition, should the interrupt-handling routine modify the con-
tents of any of the internal registers, the programmer is specifically re-
sponsible for preserving these registers in the stack prior to executing 
the interrupt-handling routine. Otherwise, the contents of these regis-
ters will be destroyed, and when the interrupted program resumes exe- 
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cution, it will fail. For example, assuming that registers A, B, C, D, E, 
H and L will be used within the interrupt handler, they will have to be 
saved (see Figure 6.27). 

     

S 

    

 

H 

   

 

E 

   

 

D 

 

DECREASING 

ADDRESSES 

 

C 

 

 

B 

   

     

 

F 

   

 

A 

   

 

PCL 

   

 

PCH 

   

STACK 

Fig. 6.27: Saving the Registers 

The corresponding program is: 

SAVREG PUSH AF 
PUSH BC 
PUSH DE 
PUSH HL 

Upon completion of the interrupt-handling routine, these registers must 
be restored. The interrupt handler will terminate with the following se-
quence of instructions: 

POP HL 
POP DE 
POP BC 
POP AF 
El 	 (unless El was used earlier in 

the routine) 

Additionally, if registers IX and lY are used by the routine they must 
also be preserved, then restored. 
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Interrupt Mode I 

This interrupt mode is set by executing the IM I instruction. It is an 
automated interrupt handler which causes an automatic branch to loca-
tion 0038H. It is therefore essentially analogous to the NMI interrupt 
mechanism except that it may be masked. The Z80 automatically pre-
serves the contents of PC into the stack (see Figure 6.28). 

PC 

INTERRUPT 
ROUTINE 

LOCATION OF 
INTERRUPTION 

MEMORY 

Fig. 6.28: Mode 1 Interrupt 

This automated interrupt response, which "vectors" all interrupts to 
memory location 38H, stems from the early 8080's requirement to 
minimize the amount of external hardward necessary for using inter-
rupts. Its possible disadvantage is to cause a branch to a single memory 
location. In case several devices are connected to the INT line, the pro-
gram starting at location 38H will be responsible for determining which 
device requested service. This problem will be addressed below. 

One precaution must be taken with respect to the timing of this inter-
rupt: when performing programmed input/output transfers, the Z80 
will ignore any data that may be present in the data bus during the cycle 
which follows the interrupt (the interrupt acknowledge cycle). 
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Interrupt Mode 2 (Vectored Interrupts) 

This mode is set by executing an IM2 instruction. It is a powerful 
mode which allows automatic vectoring of interrupts. The interrupt 
vector is an address supplied by the peripheral device which generated 
the interrupt, and used as a memory pointer to the start address of the 
interrupt-handling routine. The addresssing mechanism provided by 
the Z80 in mode 2 is indirect, rather than direct. Each peripheral sup-
plies a seven-bit branching address which is appended to the 8-bit ad-
dress contained in the special I register in the Z80. The right-most bit of 

the final I6-bit address bit 0 is set to "0". This resulting address points 
to an entry in a table anywhere in the memory. This table may contain 

up to 128 double-word entries. Each of these double words is the ad-
dress of the interrupt handler for the corresponding device. This is il-
lustrated in Figures 6.29 and 6.30. 

MEMORY 

2X VECTOR 

Fig. 6.29: Mode 2 Interrupt 

The interrupt table may have up to 128 double-word entries. 
In this mode, the Z80 also automatically pushes the contents of the 

program counter into the stack. This is obviously necessary, since PC 
will be reloaded with the contents of the interrupt table entry corre-
sponding to the vector provided by the device. 

Interrupt Overhead 

For a graphic comparison of the polling process vs. the interrupt 
process, refer to Figure 6.18, where the polling process is illustrated on 
the top, and the interrupt process underneath. It can be seen that in the 
polling technique the program wastes a lot of time waiting. 
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Fig. 6.30: Mode 2- A Practical Example 

Using interrupts, the program is interrupted, the interrupt is serviced, 
then the program resumes. However, the obvious disadvantage of an 
interrupt is to introduce several additional instructions at the beginning 
and at the end, resulting in a delay before the first instruction of the de-
vice handler can be executed. This is additional overhead. 

Exercise 6.28: Using the tables indicating the number of cycles per in-
struction, in Chapter 4, compute how much time will be lost to save and 
then restore registers A, B, D, H. 

Having clarified the operation of the interrupt lines, let us now con-
sider two important remaining problems: 

I—How do we resolve the problem of multiple devices triggering an 
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interrupt at the same time? 
2—How do we resolve the problem of an interrupt occurring while 

another interrupt is being serviced? 

Multiple Devices Connected to a Single Interrupt Line 

Whenever an interrupt occurs, the processor branches to a specified 
address. Before it can do any effective processing, the interrupt han-
dling routine must determine which device triggered the interrupt. Two 
methods are available to identify the device, as usual: a software 
method and a hardware method. 

In the software method, polling is used: the microprocessor interro-
gates each of the devices in turn and asks them, "Did you trigger the in-
terrupt?" If the answer is negative, it interrogates the next one. This 
process is illustrated in Figure 6.31. A sample program is: 

POLINT IN 	A, (STATUSI) READ STATUS 
BIT 	7, A 	 DID DEVICE REQUEST INT? 
JP 	NZ, ONE 	HANDLE IT IF SO 
IN 	A, (STATUS2) 

BIT 	7, A 
JP 	NZ, TWO 
etc. 

The hardward method provides the address of the interrupting device 
simultaneously with the interrupt request. 

INT 1 POLLING 	 INTERRUPT 	VECTORED 

WHICH 
DEVICE] 

SERVICE 
ROUTINE P 

Fig. 6.31: Polled vs. Vectored Interrupt 
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To be more precise, when operating in mode 0, the peripheral device 
controller will supply a one-byte RST or a three-byte CALL on the data 
bus in response to the interrupt acknowledge, thus automating the in-
terrupt vectoring, and minimizing the overhead. 

Note that a subroutine call instruction is required as the Z80 does not 
save the PC when operating in mode 0. 

In most cases, the speed of reaction to an interrupt is not crucial, and 
a polling approach is used. If response time is a primary consideration, 
a hardware approach must be used. 

Simultaneous Interrupts 

The next problem which may occur is that a new interrupt can be trig-
gered during the execution of an interrupt-handling routine. Let us 
examine what happens and how the stack is used to solve the problem. 
We have indicated in Chapter 2 that this was another essential role of 
the stack, and the time has come now to demonstrate its use. We will 
refer to Figure 6.33 to illustrate multiple interrupts. Time elapses from 
left to right in the illustration. The contents of the stack are shown at 
the bottom of the illustration. Looking at the left, at time TO, program 
P is in execution. Moving to the right, at time T1, interrupt II occurs. 
We will assume that the interrupt mask was enabled, authorizing II. 
Program P will be suspended. This is shown at the bottom of the illus-
tration. The stack will contain the program counter and the status reg-
ister of program P, at least, plus any optional registers that might be 
saved by the interrupt handler or II itself. 

••••••-•••-.0".. 
MPU 	 I/O  
INT 	

INTERFACE 

ITM 

I/0 
INTERFACE  

Ni k 

Fig. 6.32: Several Devices May Use the Same Interrupt Line 

At time T1, interrupt 11 starts executing until time T2. At time T2, in-
terrupt 12 occurs. We will assume that interrupt 12 has a higher priority 
than interrupt 11. If it had a lower priority, it would be ignored until 11 
had been completed. At time T2, the registers for II are stacked, and 
this appears at the bottom of the illustration. Again, the contents of the 
program counter and AF are pushed into the stack. In addition, the 
routine for 12 might decide to save an additional few registers. 12 will 
now execute to completion at time T3. 
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When 12 terminates (with an RETI), the contents of the stack are 
automatically popped back into the Z80. and this is illustrated at the 
bottom of Figure 6.33. Thus, automatically II resumes execution. Un-
fortunately, at time T4, an interrupt 13 of higher priority occurs again. 
We can see at the bottom of the illustration that again the registers for 
11 are pushed into the stack. Interrupt 13 executes from T4 to T5 and 

TIME 

PROGRAM P 

INTERRUPT I, 

INTERRUPT I. 

INTERRUPT 

STACK 

Fig. 6.33: Stack Contents During Multiple Interrupts 

terminates at T5. At that time, the contents of the stack are popped into 
Z80, and interrupt II resumes execution. This time it runs to comple-
tion and terminates at T6. At T6. the remaining registers that have been 
saved in the stack are popped into Z80, and progam P may resume ex-
ecution. The reader will verify that the stack is empty at this point. In 
fact, the number of dashed lines indicating program suspension in-
dicates at the same time how many levels there are in the stack. 

Exercise 6.19: Assume that the area available to the stack is limited to 
300 locations in a specific program. Assume that all the registers must 
always be saved and that the programmer allows interrupts to be nest-
ed, i.e., to interrupt each other. Which is the maximum number of 
simultaneous interrupts that can be handled? Will any other factor con-
tribute to still reduce further the 1110X111111111 number of simultaneous in-
terrupts? 

It must be stressed, however, that, in practice, microprocessor sys-
tems are normally connected to a small number of devices using inter-
rupts. It is, therefore, unlikely that a high number of simultaneous in-
terrupts will occur in such a system. 

We have now solved all the problems usually associated with inter-
rupts. Their use is, in fact, simple and they should be employed to ad-
vantage even by the novice programmer. 
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SUMMARY 

In this chapter we have presented the range of techniques used to 
communicate with the outside world. From elementary input/output 

routines to more complex programs for communication with actual 
peripherals, we have learned to develop all the usual programs and have 
even examined the efficiency of benchmark programs in the case of a 
parallel transfer and a parallel-to-serial conversion. Finally, we have 
learned to schedule the operation of multiple peripherals by using poll-
ing and interrupts. Naturally, many other exotic input/output devices 
might be connected to a system. With the array of techniques which 
have been presented so far, and with an understanding of the peripher-
als involved, it should be possible to solve most common problems. 

In the next chapter, we will examine the actual characteristics of the 
input/output interface chips usually connected to a Z80. Then, we will 
consider the basic data structures that the programmer may use. 

Exercise 6.30: Compute the overhead when operating in mode 0, as-
suming that all registers are saved, and that an RST is received in re-
sponse to the interrupt acknowledge. The overhead is defined as the 

total delay incurred, exclusive of the instructions required to implement 
the interrupt processing proper. 

Exercise 6.31: A 7-segment LED display can also display digits other 
than the hex alphabet. Compute the codes for: H, I. J. L. O. P, S. U. 
Y. g, h. r. J, 1, n, 0, p. r, t. u, y. 

Exercise 6.32: The flowchart for interrupt management appears in Fig- 
ure 6.34 Answer the following questions: 

a—What is done by hardware, what is done by software? 
b—What is the use of the mask? 
c—How many registers should be preserved? 
d—How is the interrupting device identified? 
e—What does the RETI instruction do? How does it differ from a 

subroutine return? 
f—Suggest a way to handle a stack overflow situation. 
g—What is the overhead ("lost lime") introduced by the interrupt 

mechanism? 
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EXECUTE 
ANSI REACTION 

NEXT INSTRUCTION 

SET MMK 

PRESERVE REGISTERS 
Id neat...city) 

UNSET MASK 

IDENTIFY DEVICE 
yl nocestary) 

EXECUTE ROUTING 

RESTORE REGISTERS 

RETURN 

Fig. 6.34: Interrupt Logic 
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INPUT/OUTPUT DEVICES 

INTRODUCTION 

We have learned how to program the Z80 microprocessor in most 

usual situations. However, we should make a special mention of the 
input/output chips normally connected to the microprocessor. Be-

cause of the progress in LSI integration, new chips have been intro-
duced which did not exist before. As a result, programming a system 
requires, naturally, first to program a microprocessor itself, and then 
to program the input/output chips. In fact, it is often more difficult 
to remember how to program the various control options of an input/ 
output chip than to program the microprocessor itself! This is not be-
cause the programming in itself is more difficult, but because each of 
these devices has its own idiosyncrasies. We are going to examine here 
first the most general input/output device, the programmable input/ 
output chip (in short a "P10"), then some Zilog I/O devices. 

The "Standard PIO" 

There is no "standard PIO". However, each PIO device is essentially 
analogous in function to all similar PIO's produced by other 
manufacturers for the same purpose. The purpose of a PIO is to 
provide a multiport connection for input/output devices. (A "port" is 
simply a set of 8 input/output lines.) Each PIO provides at least 
two sets of 8-bit lines for I/O devices. Each I/O device needs a data 
buffer in order to stabilize the contents of the data bus on output at 
least. Our PIO will, therefore, be equipped at a minimum with a 
buffer for each port. 

In addition, we have established that the microcomputer will use 
a handshaking procedure, or else interrupts to communicate with the 
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I/O device. The PIO will also use a similar procedure to communicate 
with the peripheral. Each PIO must, therefore, be equipped with at 

least two control lines per port to implement the handshaking 

function. 
The microprocessor will also need to be able to read the status of 

each port. Each port must be equipped with one or more status bits. 
Finally, a number of options will exist within each PIO to configure its 
resources. The programmer must be able to access a special register 
within the PIO to specify the programming options. This is the 
control-register. In some cases the status information is part of the 
control register. 

CRA 
	

DDRA 	PDRA CAI 
CA2 

IF 
	> PORT A DATA Kr 	 

REGISTER I —0- RS0 
SELECT I 	RSI 

IRQA 

IRQB 

CRB  DORE 	'DRB  

	> PORT B 

	 CB2 
	 CBI 

Fig. 7.1: Typical PIO 

One essential faculty of the PIO is the fact that each line may be 
configured as either an input or an output line. The diagram of 
a PIO appears in illustration 7.1. The programmer may specify 
whether any line will be input or output. In order to program the 
direction of the lines, a data-direction register is provided for each 
port. On many PIO's, "0" in a bit position of the data-direction 
register specifies an input. A "1" specifies an output. Zilog uses the 
reverse convention. 

It may be surprising to see that a "0" is used for input and a "1" 
for output when really "0" should correspond to output and "1" to 
input. This is quite deliberate: whenever power is applied to the 
system, it is of great importance that all the I/O lines be configured as 
input. Otherwise, if the microcomputer is connected to some 
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dangerous peripheral, it might activate it by accident. When a reset is 
applied, all registers are normally zeroed and that will result in con-
figuring all input lines of the PIO as inputs. The connection to the 
microprocessor appears on the left of the illustration. The PIO 
naturally connects to the 8-bit data bus, the microprocessor address 
bus, and the microprocessor control-bus. The programmer will simply 
specify the address of any register that it wishes to access within the 
P10. 

The Internal Control Register 

The Control Register of the PIO provides a number of options for 
generating or sensing interrupts, or for implementing automatic hand-
shake functions. The complete description of the facilities provided is 
not necessary here. Simply, the user of any practical system which uses 
a PIO will have to refer to the data-sheet showing the effect of setting 
the various bits of the control register. Whenever the system is 
initialized, the programmer will have to load the control register of the 
PIO with the correct contents for the expected application. 

Fig. 7.2: Using a PIO—Load Control Register 
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Fig. 7.4: Using a P1O-Read Status 
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Fig. 7.5: Using a PIO Read INPUT 

Programming a PIO 

A typical sequence, when using a PIO channel, is the following (as-
suming an input): 

Load the control register 

This is accomplished by a programmed transfer between a Z80 re-
gister (usually the accumulator) and the PIO control register. This sets 
the options and operating mode of the PIO (see Figure 7.2). It is nor-
mally done only once at the beginning of a program. 

Load the direction register 
This specifies the direction in which the I/O lines will be used. (See 

Figure 7.3.) 

Read the status 
The status register indicates whether a valid byte is available on in- 

put. (See Figure 7.4). 

Read the port 

The byte is read into the Z80. (See Figure 7.5). 
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POWER + 5V 76 B ROY 

BSTB 17 GND 

Fig. 7.6: Z80 PIO pinout 

The Zilog Z80 PIO 

The Z80 PIO is a two-port PIO whose architecture is essentially 
compatible with the standard model we have described. The actual 
pinout is shown in Figure 7.6, and a block diagram is shown in Figure 
7.7. 

Each PIO port has six registers: an 8-bit input register, an 8-bit out-
put register, a 2-bit mode-control register, an 8-bit mask register, an 
8-bit input/output select (direction register), and a 2-bit mask-control 
register. The last three registers are used only when the port is program-
med to operate in the bit mode. 

Each port may operate in one of four modes, as selected by the con-
tents of the mode-control registers (2 bits). They are: byte output, byte 
input, byte bidirectional bus, and bit mode. 

The two bits of the mask control register are loaded by the program-
mer, and specify the high or low state of a peripheral device which is to 
be monitored, and conditions for which an interrupt can be generated. 
generated. 

The 8-bit input/output select register allows any pin to be either an 
input or an output when operating in the bit mode. 
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Programming the Zilog PIO 

A typical sequence for using a PIO, say in bit mode, would be the 
following: 

Load the mode control register to specify the bit mode. 
Load the input/output select register of port A to specify that 

lines 0-5 are inputs and lines 6 and 7 are outputs. 
Then a word would be read by reading the contents of the input 

buffer. 
Additionally, the mask register could be used to specify the status 

conditions. 
For a detailed description of the operation of the PIO, the reader is 

referred to the companion volume in this series, the Z80 Applications 

Book. 

The Z80 SIO 

The SIO (Serial Input/Output) is a dual-channel peripheral chip de-
signed to facilitate asynchronous communications in serial form. It in-
cludes a UART, i.e., a universal asynchronous receiver-transmitter. 
Its essential function is serial-to-parallel and parallel-to-serial conver-
sion. However, this chip is equipped with sophisticated capabilities, 
like automatic handling of complex byte-oriented protocols, such as 
IBM bisync as well as HDLC and SDLC, two bit-oriented protocols. 

Additionally, it can operate in synchronous mode like a USRT, and 
generate and check CRC codes. It offers a choice of polling, interrupt, 
and block-transfer modes. The complete description of this device is 
beyond the scope of this introductory book and appears in the Z80 Ap-

plications Book. 

Other I/O Chips 

Because the Z80 is commonly used as a replacement for the 8080, it 
has been designed so that it can be associated with almost any of the 
usual 8080 input/output chips, as well as the specific I/O chips manu-
factured by Zilog. All the 8080 input/output chips may be considered 
for use in a Z80 system. 
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SUMMARY 

In order to make effective use of input/output components it is 
necessary to understand in detail the function of every bit, or group of bits, 
within the various control registers. These complex new chips automate a 
number of procedures that had to be carried out by software or special 
logic before. In particular, a good deal of the handshaking procedures are 
automated within components such as an SIO. Also, interrupt handling 
and detection may be internal. With the information that has been pre-
sented in the preceding chapter, the reader should be able to understand 
what the functions of the basic signals and registers are. Naturally, still 
newer components are going to be introduced which will offer a hardware 
implementation of still more complex algorithms. 
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APPLICATION EXAMPLES 

INTRODUCTION 

This chapter is designed to test your new programming skills by pre-

senting a collection of utility programs. These programs or "routines" 
are frequently encountered in applications, and are generally called 

"utility routines." They will require a synthesis of the knowledge and 
techniques presented so far. 

We are going to fetch characters from an I/O device and process 
them in various ways. But first, let us clear an area of the memory (this 
may not be necessary—each of these programs is only presented as a 
programming example). 

CLEARING A SECTION OF MEMORY 

We want to clear (zero) the contents of the memory from address 

BASE to address BASE ± LENGTH, where LENGTH is less than 256. 

The program is: 

ZEROM LD 
LD 
LD 

CLEAR LD 
INC 
DEC 
JR 
RET 

B, LENGTH 
A,0 
HL, BASE 
(HL), A 
HL 
B 
NZ, CLEAR 

LOAD B WITH LENGTH 
CLEAR A 
POINT TO BASE 
CLEAR A LOCATION 
POINT TO NEXT 
DECREMENT COUNTER 
END OF SECTION? 

In the above program, the length of the section of memory is as-
sumed to be equal to LENGTH. The register pair HL is used as a point-
er to the current word which will be cleared. Register B is used, as 
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usual, as a counter. 
The accumulator A is loaded only once with the value 0 (all zeros), 

then copied into the successive memory locations. 
In a memory test program, for example, this utility routine could be 

used to zero the contents of a block. Then the memory test program 
would usually verify that its contents remained 0. 

The above was a straightforward implementation of a clearing rou- 

tine. Let us improve on it. 
The improved program appears below. 

	

ZEROTA LD 	B, LENGTH 

	

LD 	HL, BASE 
LOOP 	LD 	(HL), 0 

INC HL 
DJNZ LOOP 
RET 

The two improvements were obtained by eliminating the LD A. 0 in-
struction and loading a "zero" directly into the location pointed to by H 
and L, and also by using the special Z80 instruction DJNZ. 

This improvement example should demonstrate that every time a 
program is written, even though it may be correct, it can usually be im-
proved by examining it carefully. Familiarity with the complete instruc-
tion set is essential for bringing about such improvements. These im-
provements are not just cosmetic. They improve the execution time of 
the program, require fewer instructions and therefore less memory 
space, and also generally improve the readability of the program and, 
therefore, its chances of being correct. 

Exercise 8.1: Write a memory test program which zeroes a 256-word 
block. then verifies that each location is 0. Then, it will write all l's and 
verify the contents of the block. Then it will write 01010101 and verify 
the contents. Finally. it will write 10101010, and verify the contents. 

Exercise 8.2: Modify the above program so that it will fill the memory 
section with alternating 0's and l's 	O's. then all I's). 

Let us now poll our I/O devices to find which one needs service. 

POLLING I/O DEVICES 

We will assume that those I/O devices are connected to our sys-
tem. Their status registers are located at addresses STATUS1, 
STATUS2, STATUS3. The program is: 
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TEST 	IN 
BIT 
JP 
IN 
BIT 
JP 
IN 

A, (STATUSI) 
7. A 
NZ, FOUND1 
A, (STATUS2) 
7, A 
NZ, FOUND2 
A, (STATUS3)  

READ 10 STATUSI 
TEST "READY" BIT (BIT 7) 
JUMP TO HANDLER 1 
SAME FOR DEVICE 2 

SAME FOR DEVICE 3 
BIT 	7, A 
JP 	NZ, FOUNDS 
(failure exit) 

The MASK will contain, for example, "10000000" if we test bit posi-
tion 7. As a result of the BIT instruction, the Z bit of the status flags 
will be set to 1 if "MASK AND STATUS" is zero, i.e., if the cor-
responding bit of STATUS matches the one in MASK. The JP NZ in-
struction (jump if non-equal to zero) will then result in a branch to the 
appropriate FOUND routine. 

GETTING CHARACTERS IN 

Assume we have just found that a character is ready at the keyboard. 
Let us accumulate characters in a memoryareacalled BUFFER until we 
encounter a special character called SPC, whose code has been previ-
ously defined. 

The subroutine GETCHAR will fetch one character from the key-
board (see Chapter 6 for more details) and leave it in the accumulator. 
We assume that 256 characters maximum will be fetched before an SPC 
character is found. 

STRING LD 
NEXT CALL 

CP 
JR 
LD 
INC 
JR 

OUT RET 

HL, BUFFER 
GETCHAR 
SPC 
Z, OUT 
(HL), A 
HL 
NEXT 

POINT TO BUFFER 
GET A CHARACTER 
CHECK FOR SPECIAL CHAR 
FOUND IT? 
STORE CHAR IN BUFFER 
NEXT BUFFER LOCATION 
GET NEXT CHAR 

Exercise 8.3: Let us Improve this basic routine: 

a—Echo the character back to the device (for a Teletype, for example). 

b—Check that the input string is no longer than 256 characters. 

We now have a string of characters in a memory buffer. Let us proc- 
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ess them in various ways. 

TESTING A CHARACTER 

Let us determine if the character at memory location LOC is equal to 
0, 1, or 2: 

ZOT 	LD 
CP 
JP 
CP 
JP 
CP 
JP 
JP  

A. (LOC) 
00 
Z, ZERO 
01 
Z, ONE 
02 
Z, TWO 
NOTFND  

GET CHARACTER 
IS IT A ZERO? 
JUMP TO ROUTINE 
A ONE? 

A TWO? 

FAILURE 

We simply read the character, then use the CP instruction to check its 
value. 

Let us run a different test now. 

BRACKET TESTING 

Let us determine if the ASCII character at memory location LOC is a 
digit between 0 and 9: 

BRACK LD 
AND 
CP 
JR 
CP 
JR 
CP 

OUT RET 

A. (LOC) 
7FH 
30H 
C, OUT 
39H 
NC, OUT 
A 
EXIT 

GET CHARACTER 
MASK OUT PARITY BIT 
ASCII 0 
CHAR TOO LOW? 
ASCII 9 
CHAR TOO HIGH? 
FORCE ZERO FLAG 

ASCII "0" is represented in hexadecimal by "30" or by "BO", 
depending upon whether the parity bit is used or not. Similarly, ASCII 
"9" is represented in hexadecimal by "39" or by "B9". 

The purpose of the second instruction of the program is to delete bit 
7, the parity bit, in case it was used, so that the program is applicable to 
both cases. The value of the character is then compared to the ASCII 
values for "0" and "9". When using a comparison instruction, the Z 
flag is set if the comparison succeeds. The carry bit is set in the case of 
borrow, and reset otherwise. In other words, when using the CP In-
struction, the carry bit will be set if the value of the literal that appears 

523 



PROGRAMMING THE Z80 

in the instruction is greater than the value contained in the accumu-
lator. It will be reset ("0") if less than or equal. 

The last instruction. CP A, forces a "1" into the Z flag. The Z flag is 
used to indicate to the calling routine that the character in CHAR was 
indeed in the interval (0, 9). Other conventions can be used, such as 
loading a digit in the accumulator in order to indicate the result of the 
test. 

Exercise 8.4: Is the following program equivalent to the one above?: 

LD 	A. (CHAR) 
SUB 30H 
JP 	M, OUT 
SUB 10 
JP 	P, OUT 
ADD 10 

Exercise 8.5: Determine if an ASCII character contained in the accumu-
lator is a letter of the alphabet. 

When using an ASCII table, you will notice that parity is often used. 
For example, the ASCII for "0" is "0110000", a 7-bit code. However, 
if we use odd parity, for example, we guarantee that the total number 
of ones in a word is odd; then the code becomes: "10110000". An extra 
"1" is added to the left. This is " BO " in hexadecimal. Let us therefore 
develop a program to generate parity. 

PARITY GENERATION 

This program will generate an even parity with bit position 7: 

PARITY LD A, (CHAR) GET CHARACTER 
AND 7FH 	CLEAR PARITY BIT 
IP 	PE, OUT 	CHECK IF PARITY 

ALREADY EVEN 
OR 	8014 	SET PARITY BIT 

OUT 	LID (LOC), A 	STORE RESULT 

The program uses the internal parity detection circuit available in the 
Z80. 

The third instruction: JP PE, OUT checks whether parity of the 
word in the accumulator is already even. This instruction will succeed if 
the parity is even, "PE", and will exit. 

If the parity is not even. i.e., if the jump instruction failed, then the 
parity is odd, and a "1" must be written in bit position 7. This is the 
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purpose of the fourth instruction: 

OR 80H 

Finally, the resulting value is saved in memory location LOC. 

Exercise 8.6: The above problem was too simple to solve, using the in-
ternal parity detection circuitry. As an exercise, you are requested to 
solve the same problem without using this circuitry. Shift the contents 
of the accumulator, and count the number of I 's in order to determine 
which bit should be written into the parity position. 

Exercise 8.7: Using the above program as an example, verify the parity 
of a word. You must compute tire correct parity, then compare it to the 
one expected. 

CODE CONVERSION: ASCII TO BCD 

Converting ASCII to BCD is very simple. We will observe that the 
hexadecimal representation of ASCII characters 0 to 9 is 30 to 39 or BO 
to B9, depending on parity. The BCD representation is simply obtained 
by dropping the "3" or the "B", 1.e., masking off the left nibble (4 
bits): 

ASCBCD CALL BRACK 	CHECK THAT CHAR IS 0 TO 9 
JP 	NZ, ILLEGAL EXIT IF ILLEGAL CHAR 
AND OFH 	 MASK HIGH NIBBLE 
LD 	(BCDCHAR), A STORE RESULT 

Exercise 8.8: Write a program to convert BCD to ASCII. 

Exercise 8.9: Write a program to convert BCD to binary (more diffi-
cult). 

HinuN, N, N, N. in BCD is (((N, x 10) + N,) x 10 + 	x 10 + No  in 
binary. 

To multiply by 10, use a left shift ( = x 2), another left shift ( = x4), 
an ADC (= x 5), another left shift ( = x 10). 

In full BCD notation, the first word may contain the count of BCD 
digits, the next nibble contain the sign, and every successive nibble con-
tain a BCD digit (we assume no decimal point). The last nibble of the 
block may be unused. 

CONVERT HEX TO ASCII 

"A ( contains one hexadecimal digit. We simply need to add a "3" (or a 
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"B") into the left nibble: 

AND 	OFH 	ZERO LEFT NIBBLE (optional) 
ADD A, 30H 	ASCII 
CP 	A, 3AH 	CORRECTION NECESSARY? 
JP 	M, OUT 
ADD A, 7 	CORRECTION FOR A TO F 

Exercise 8.10: Convert HEX to ASCII, assuming a packed format (two 

hex digits in A). 

FINDING THE LARGEST ELEMENT OF A TABLE 

The beginning address of the table is contained at memory address 
BASE. The first entry of the table is the number of bytes it contains. 
This program will search for the largest element of the table. Its value 
will be left in A. and its position will be stored in memory location IN-
DEX. 

This program uses registers A, F, B, H and L, and will use indirect 
addressing, so that it can search a table anywhere in the memory (see 
Figure 8.1). 

MAX 	LD HL, BASE 	TABLE ADDRESS 
LD B, (HL) 	NBR OF BYTES IN TABLE 
LD A, 0 	 CLEAR MAXIMUM VALUE 
INC HL 	 INITIALIZE INDEX 
LD (INDEX), HL NEXT ENTRY 

LOOP 	CP (HL) 	 COMPARE ENTRY 
JR 	NC, NOSWITCH JUMP IF LESS THAN MAX 
LD A, (HL) 	LOAD NEW MAX VALUE 
LD (INDEX), HL LOAD NEW MAX VALUE 

NOSWITCH INC HL 	 POINT TO NEXT ENTRY 
DEC B 	 DECREMENT COUNTER 
JR 	NZ, LOOP 	KEEP GOING IF NOT ZERO 
RET 

This program tests the nth entry first. If it is greater than 0, the entry 
goes in A, and its location is remembered into INDEX. The (n-1)st en-
try is then tested, etc. 

This program works for positive integers. 

Exercise 8.11: Modify the program so that it works also for negative 
numbers in two's complement. 

Exercise 8.12: Will this program also work for ASCII characters? 

Exercise 8.13: Write a program which will sort n numbers in ascending 
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Fig. 8.1: Largest Element in a Table 

order. 

Exercise 8.14: Write a program which will sort n names (3 characters 
each) to alphabetical order. 

SUM OF N ELEMENTS 

This program will compute the 16-bit sum of N positive entries of a 
table. The starting address of the table is contained at memory address 
BASE. The first entry of the table contains the number of elements N. 
The 16-bit sum will be left in memoy locations SUMLO and SUMHI. If 
the sum should require more than 16 bits, only the lower 16 will be 
kept. (The high order bits are said to be truncated.) 

This program will modify registers A, F, B, H. L, IX. It assumes 256 
elements maximum (see Figure 8.2). 

SUMN 	LD HL, BASE 
LD 	B, (HL) 

SUMIG 	INC HL 
LD 	IX, SUMLO 

POINT TO TABLE BASE 
READ LENGTH INTO 
COUNTER 
POINT TO FIRST ENTRY 
POINT TO RESULT, LOW 
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LD 	(IX+ 0), 0 
LD 	(IX+ 1), 0 

ADLOOP LD A, (HL) 
ADD A, (IX + 0) 
LD 	(IX +0), A 
JR NC, NOCARRY 
INC 	(IX + I) 

NOCARRY INC HL 
DEC B 
JR NZ, ADLOOP 
RET  

CLEAR RESULT LOW 
AND HIGH 
GET TABLE ENTRY 
COMPUTE PARTIAL SUM 
STORE IT AWAY 
CHECK FOR CARRY 
ADD CARRY TO HIGH BYTE 
POINT TO NEXT ENTRY 
DECREMENT BYTE COUNT 
KEEP ADDING TILL END 

B 

HL 

IX 

BASE 

SUMLO 

SUMH I 

Fig. 8.2: Sum of N Elements 

This program is straightforward and should be self-explanatory. 

Exercise 8.15: Modify this prograin to: 
a—compute a 24-bit sum 
Et—compute a 32-bit suet 
c —detect any overflow. 

A CHECKSUM COMPUTATION 

A checksum is a digit or set of digits computed from a block of suc-
cessive characters. The checksum is computed at the time the data is 
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stored and put at the end. In order to verify the Integrity of the data, the 
data is read, then the checksum is recomputed and compared against 
the stored value. A discrepancy indicates an error or a failure. 

Several algorithms are used. Here, we will exclusive-OR all bytes in a 
table of N elements, and leave the result in the accumulator. As usual, 
the base of the table is stored at address BASE. The first entry of the 
table is its number of elements N. The program modifies A, F, B, H, L. 
N must be less than 256 

CHKSUM LD HL, BASE 	LOAD ADDRESS OF TABLE 
INTO HL 

LD B, (HL) 	GET N = LENGTH 
XOR A 	 CLEAR CHECKSUM 
INC HL 	 POINT TO FIRST ELEMENT 

CHLOOP XOR (HLI 	 COMPUTE CHECKSUM 
INC HL 	 POINT TO NEXT ELEMENT 
DEC B 	 DECREMENT COUNTER 
JR 	NZ, CHLOOP DO IT AGAIN IF NOT END 
LD (CHECKSUM),A PRESERVE CHECKSUM 
RET 

COUNT THE ZEROES 

This program will count the number of zeroes in our usual table, and 
leave it in location TOTAL. It modifies A, B, C, H, L, F. 

ZEROS LD HL, BASE POINT TO TABLE 
LD 	B, (HL) 	READ LENGTH INTO COUNTER 
LD 	C, 0 	ZERO TOTAL 
INC HL 	 POINT TO FIRST ENTRY 

ZLOOP LD A, (HL) 	GET ELEMENT 
OR 	0 	 SET ZERO FLAG 
JR 	NZ, NOTZ IS IT A ZERO? 
INC C 	 IF SO, INCREMENT ZERO COUNT 

NOTZ INC HL 	 POINT TO NEXT ENTRY 
DEC B 	 DECREMENT LENGTH COUNTER 
JR 	NZ, ZLOOP 

LD A,C 
LD 	(TOTAL), A SAVE IT 

Exercise 8.16: Modify this program to count 
a—the number of stars (the character "•") 
b—the number of letters of the alphabet 
c—the number of digits between "0" and "9" 
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BLOCK TRANSFER 

Let us pick up every third entry in the source block at address FROM 
and store it into a block at address TO: 

FER3 LD 	HL, FROM 
LD 	DE, TO 	SET UP POINTERS 
LD 	BC, SIZE 

LOOP LDI 	 AUTOMATED TRANSFER 
INC HL 
INC 	HL 	 SKIP 2 ENTRIES 
JP 	PE, LOOP 

BCD BLOCK TRANSFER 

We will push up BCD digits in the memory, i.e, shift 4-bit nibbles 
(see Figure 8 .3). The program appears below: 

COUNT 

I 
BLOCK 
I 

zato: 
A • 

V Axe 
Ayzez-9 

einzairmatorz. 

Fig. 8.3: BCD Block Transfer -The Memory 

DMOV LD B, COUNT 
LD 	HL, BLOCK 
XOR A 	 A = 0 

LOOP RLD 
DEC 	HL 	POINT TO NEXT BYTE 
DJNZ LOOP 	DEC COUNT LOOP UNTIL ZERO 
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The program uses the RLD instruction, which we have not used yet. 
RLD rotates a BCD digit left between A and (HL). (HL) or M designate 
the contents of the memory location pointed to by H and L. 

M LOW goes into M HIGH 
M HIGH goes into A LOW 
A LOW goes into M LOW 

Here, "low" and "high" refer to a 4-bit nibble. 
In order to use the powerful DJNZ instruction, register B is used as 

the digit counter. HL is set to point to the beginning of the block. 
A is used to store the left digit displaced by each rotation between 

two successive accesses to the block. 
By convention, "0" will be entered at the bottom of the block. 

COMPARE TWO SIGNED 16-BIT NUMBERS 

IX points to the first number NI. 
IY points to N2 (see Figure 8.4). 

The program sets the carry bit if NI< N2, and the Z bit if NI = N2. 
COMP LD 	B, (IX +1) GET SIGN OF NI 

LD 	A, B 
AND 80H 	TEST SIGN, CLEAR CY 
JR 	NZ, NEGM1 NI IS NEG 
BIT 	7, (IY + I) 
RET 	NZ 	 N2 IS NEG 
LD 	A, B 
CP 	(IY + I) 	SIGNS ARE BOTH POS 
RET NZ 
LD 	A, (IX) 
CP 	(IY) 
RET 

NEGMI XOR (IY + I) 

RLA 	 SIGN BIT INTO CY 
RET 	C 	 SIGNS DIFFERENT 
LD 	A, B 
CP 	(IY + I) 	BOTH SIGNS NEG 
RET NZ 
LD 	A, (IX) 
CP 	(IY) 
RET 

The program first tests the signs of Ni and N2. If Ni is negative, a 
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jump occurs to NEGMI. Otherwise, the top of the program is executed. 

MEMORY 

IX 

IY 

/ HIGH ADDRESSES 

Fig. 8.4: Comparing Two Signed Numbers 

Note that the BIT instruction is used in the 5th line to test directly the 
sign bit of N2 in the memory: 

BIT 	7, (IY + 

The same could have been done for NI, except that we will need the 
value of NI shortly. It is therefore simpler to read NI from memory 
and preserve it into B: 

COMP LD 	B, (IX + 1) 

It is necessary to preserve NI into B because the AND may destroy the 
contents of A: 

LD 	A, B 

AND 80H 

Note also that a conditional return is used (line 6): 

RET NZ 
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This is a powerful feature of the Z80 which simplifies programming. 
Note that the comparison instruction executes directly on the con-

tents of memory, in indexed mode: 

CP 	(IY + 1) 

When comparing the two numbers, the most significant byte is com-
pared first, the least significant one second. 

Note the extensive use of the indexing mechanism in this program, 
which results in efficient code. 

BUBBLE-SORT 

Bubble-sort is a sorting technique used to arrange the elements of a 
table in ascending or descending order. The bubble-sort technique de-
rives its name from the fact that the smallest element "bubbles up" to 
the top of the table. Every time it "collides" with a "heavier" element, 
it jumps over it. 

A practical example of a bubble-sort is shown on Figure 8.5 The list 
to be sorted contains: (10, 5, 0, 2, 100), and must be sorted in descend-
ing order ("0" on top). The algorithm is simple, and the flowchart is 
shown on Figure 8.7 

The top two (or else bottom two)elements are compared. If the lower 
one is less ("lighter") than the top one, they are exchanged. Otherwise 
not. For practical purposes, the exchange, if it occurs, will be remem-
bered in a flag called "EXCHANGED". The process is then repeated 
on the next pair of elements, etc., until all elements have been com-
pared two by two. 

This first pass is illustrated by steps 1, 2, 3, 4, 5, 6 on Figure 8.5, go-
ing from the bottom up. (Equivalently we could go from the top down.) 

If no elements have been exchanged, the sort is complete. If an ex-
change has occurred, we start all over again. 

Looking at Figure 8.6, it can be seen that four passes are necessary in 
this example. 

The process is simple, and is widely used. 
One additional complication resides in the actual mechanism of the 

exchange. 
When exchanging A and B, one may not write 

A = 13 
B = A 

as this would result in the loss of the previous value of A (try it on an 
example). 
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0 
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2 
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EXCHANGE 0 
END OF PASS 

O 

END OF PASS I 

2) 0  
NO CHANGE 

0 

0< 10 
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I0 

5 

ICE 

100) 2: 
NO CHANGE 

O 

1=5 

0 

10 10 

5 5 

2 2 

ICE TOO 

1=4 

1=5 

V-1=2 

10 

2 

5 

103 

IC002: 
NO CHANGE 

2< 5: 
EXCHANGE! 

EXCHANGED 

0 0 0 

0 0 0 1=1 

10 1=2 2 2 1=2 

2 1=3 10 10 

5 5 5 

100 100 100 

2<10: 2)0: 
EXCHANGE 	 EXCHANGED NO CHANGE 

10 	 12 a 
END OF PASS 2 

Fig. 8.5: Bubble-Sort Example: Phases 1 to 12 
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GET NUMBER OF 
ELEMENTS N 

I =N 

R AD ELEMENT 
E(I) 

DECREMENT I 

READ F(1) 

YES 

EXCHANGE E AND F. 
TEMP = E(I) 
E(I) 

= TEMP 

EXCHANGED = I 

DONE 
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EXCHANGED = 0 

Fig. 8.7: Bubble-Sort Flowchart 
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BUBBLE LD 
AGAIN LD 

RES 
LD 
DEC 

NEXT 	LD 
LD 
LD 
CP 
IR 

(TEMP), HL 
IX, (TEMP) 
FLAG, H 
B, C 
B 
A, (IX) 
D, A 
E, (IX + I) 
E 
NC, NOSWITCH 

XCHANGE LD (IX), E 

LD 	(IX+1), D 

SET FLAG, H 

EXCHANGE/NOT 

IN H 

TEMP 

A FLAG 

B PTR COUNT 	C 

D NEXT r CURRENT 

IX 

Fig. 8.8: Bubble-Sort 

The register and memory assignments are shown on Figure 8.8, and 
the program is: 

APPLICATION EXAMPLES 

LIST 

	 LIST 

ICOUNT 

TEMP = (HL) 
IX = (HL) 
EXCHANGED FLAG =0 

D =CURRENT ENTRY 
E =NEXT ENTRY 
COMPARE 
GO TO NOSWITCH IF 
CURRENT 3 NEXT 
STORE NEXT INTO 
CURRENT 
STORE CURRENT INTO 
NEXT 
EXCHANGED FLAG = I 
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NOSWITCH INC IX 
DJNZ NEXT 

BIT FLAG, H 
JR NZ, AGAIN 
RET 

NEXT ENTRY 
DEC B, CONTINUE UNTIL 
ZERO 
EXCHANGED =1? 
RESTART IF FLAG =1 

SUMMARY 

Common utility routines have been presented in this chapter which 
use combinations of the techniques we have described in the previous 
chapters. They should allow you to start designing your own programs 
now. Many of these routines have used a special data structure, the 
table. Other possibilities exist for structuring data, and will now be re-
viewed. 
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DATA STRUCTURES 

PART I — THEORY 

INTRODUCTION 

The design of a good program involves two tasks: algorithm design 
and data structures design. In most simple programs, no significant 
data structures are involved, so the main objective in learning program-
ming is designing algorithms and coding them efficiently in a given 
machine language. This is what we have accomplished here. However, 
designing more complex programs also requires an understanding of 
data structures. Two data structures have already been used through-
out the book: the table and the stack. The purpose of this chapter is to 
present other, more general, data structures that you may want 
to use. This chapter is completely independent of the microprocessor, 
or even the computer, selected. It is theoretical and involves the logical 
organization of data in the system. Specialized books exist on the topic 
of data structures, just as specialized books exist on the subject of 
efficient multiplication, division or other usual algorithms. This 
chapter, therefore, will be limited to essentials only. It does not claim 
to be complete. The most common data structures will now be reviewed. 

POINTERS 

A pointer is a number which is used to designate the location of the 
actual data. Every pointer is an address. However, every address is not 
necessarily called a pointer. An address is a pointer only if it points at 
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some type of data or at structured information. We have already en-
countered a typical pointer: the stack pointer, which points to the top 
of the stack (or usually just over the top of the stack). We will see that 
the stack is a common data structure, called an LIFO structure. 

As another example, when using indirect addressing, the indirect ad-
dress is always a pointer to the data that one wishes to retrieve. 

Exercise 9.1: Examine Fig. 9.1. At address 15 in the memory, there is a 
pointer to Table T. Table T starts at address 500. What are the actual 

contents of the pointer to T? 

POINTER TO T 

TABLE T 

Fig. 9.1: An Indirection Pointer 

LISTS 

Almost all data structures are organized as lists of various kinds. 

Sequential Lists 

A sequential list, or table, or block, is probably the simplest data 
structure, and is one that we have already used. Tables are normally 
ordered in Function of a specific criterion, such as alphabetical ordering 
or numerical ordering. It is then easy to retrieve an element in a table, 
using, for example, indexed addressing, as we have done. A block nor-
mally refers to a group of data which has definite limits but whose con-
tents are not ordered. It may contain a string of characters; it may 
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be a sector on a disk; or it may be some logical area (called segment) of 
the memory. In such cases, it may not be easy to access a random ele-
ment of the block. 

In order to facilitate the retrieval of blocks of information, directo-
ries are used. 

Directories 

A directory is a list of tables or blocks. For example, the file system 
will normally use a directory structure. As a simple example, the master 
directory of the system may include a list of the users' names. This is il-
lustrated in Figure 9.2. The entry for user "John" points to John's file 
directory. The file directory is a table which contains the names of all of 
John's files and their location. This is, again, a table of pointers. In this 
case, we have just designed a two-level directory. A flexible directory 
system will allow the inclusion of additional intermediate directories, as 
may be found convenient by the user. 

USER DN[CAY• 

XAMil 
HUNITICMAY 

KMWSDIE 

ALMA 

ATRIA 

DATA 

GMA 

Fig. 9.2: A Directory Structure 

Linked List 

In a system there are often blocks of information which represent 
data, events, or other structures which cannot be moved around eas- 
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ily. If they could, we would probably assemble them in a table in order 
to sort or structure them. The problem now is that we wish to leave 
them where they are and still establish an ordering among them such as 
first, second, third, fourth. A linked list will be used to solve this prob-
lem. The concept of a linked list is illustrated by Figure 9.3. On the il-
lustration, we see that a list pointer, called FIRSTBLOCK, points to the 
beginning of the first block. A dedicated location within Block I such 
as, perhaps, the first or the last word in it, contains a pointer to Block 
2, called PTRI. The process is then repeated for Block 2 and Block 3. 
Since Block 3 is the last entry in the list, PTR3, by convention, either 
contains a special "nil" value, or points to itself, so that the end of the 
list can be detected. This structure is economical, as it requires only a 

few pointers (one per block) and frees the user from having to physi-

cally move the blocks in the memory. 

EROCK1 
	

11100C 2 
	

BLOCK 3 

Fig. 9.3: A Linked List 

Let us examine, for example, how a new block will be inserted. This 
is illustrated by Figure 9.4. Let us assume that the new block is at ad-
dress NEWBLOCK, and is to be inserted between Block I and Block 2. 
Pointer PTRI is simply changed to the value NEWBLOCK, so that it 
now points to Block X. PTRX will contain the former value of PTRI, 
i.e., it will point to Block 2. The other pointers in the structure are left 

unchanged. We can see that the insertion of a new block has simply re-
quired updating two pointers in the structure. This is clearly efficient. 

Exercise 9.2: Draw a diagram showing how Block 1 would be removed 
from this structure. 

NEW BLOCK —a- 
BLOCK X 

   

       

        

        

        

        

        

BLOCK I 

   

BLOCK2 

  

BLOCK 3 

     

       

Fig. 9.4: Inserting a New Block 

FIRST 

BLOCK 

FIRST 

BLOCK 
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Several types of lists have been developed to facilitate specific types 
of access, insertions, and deletions to and from the list. Let us examine 

some of the most frequently used types of linked lists. 

Queue 

A queue is formally called a FIFO, or first-in-first-out list. A queue 
is illustrated in Figure 9.5. To clarify the diagram, we can assume, for 
example, that the block on the left is a service routine for an output 
device, such as a printer. The blocks appearing on the right are the re-
quest blocks from various programs or routines, to print characters. 
The order in which they will be serviced is the order established by the 
waiting queue. It can be seen that the first event which will obtain serv-
ice is Block 1, the next one is Block 2, and the following one is Block 3. 
In a queue, the convention is that any new event arriving in the queue 
will be inserted at the end. Here it will be inserted after PTR3. This 
guarantees that the first block to be inserted in the queue will be the 
first one to be serviced. It is quite common in a computer system to 
have queues for a number of events whenever they must wait for a 
scarce resource, such as the processor or some input/output device. 

Fig. 93: A Queue 
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Stack 

The stack structure has already been studied in detail throughout the 
book. It is a last-in-first-out structure (LIFO). The last element depos-
ited on top is the first one to be removed. A stack may either be im-
plemented as a sorted block, or it may be implemented as a list. Because 
most stacks in microprocessors are used for high-speed events, such as 
subroutines and interrupts, a continuous block is usually allocated to 
the stack instead of using a linked list. 

Linked List vs. Block 

Similarly, the queue could be implemented as a block of reserved 
locations. The advantage of using a continuous block is fast retrieval 

and the elimination of the pointers. The disadvantage is that it is usu-
ally necessary to dedicate a fairly large block to accommodate the 
worst-case size of the structure. Also, it makes it difficult or impractical 
to insert or remove elements from within the block. Since memory is 
traditionally a scarce resource, blocks have usually been reserved for 
fixed-size structures or structures requiring the maximum speed of re-
trieval, such as the stack. 

Circular List 

"Round robin" is a common name for a circular list. A circular list is 
a linked list in which the last entry points back to the first one. This is il-
lustrated in Figure 9.6. In the case of a circular list, a current-block 
pointer is often kept. In the case of events, or programs, waiting for 
service, the current-event pointer will be moved by one position to the 
left or to the right every time. A round robin usually corresponds to a 

structure in which all blocks are assumed to have the same priority. 
However, a circular list may also be used as a subcase of other struc-
tures simply to facilitate the retrieval of the first block after the last 
one, when performing a search. 

As an example of a circular list, a polling program usually goes in a 
round robin fashion, interrogating all peripherals and then coming 
back to the first one. 

Trees 

Whenever a logical relationship exists among all elements of a struc-
ture (this is usually called a syntax), a tree structure may be used. A sim-
ple example of a tree structure is a descendant, or genealogical, tree. 
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EVENT i 

 

EVENT 2 

 

EVEN N 

     

CURRENT EVENT 

Fig. 9.6: Round Robin is Circular List 

This is illustrated in Figure 9.7. It can be seen that Smith has two chil-
dren: a son, Robert, and a daughter, Jane. Jane, in turn, has three 
children: Liz, Tom and Phil. Tom, in turn, has two more children: Max 
and Chris. However, Robert, on the left of the illustration, has no de-
scendants. 

This is a structured tree. We have, in fact, already encountered an ex-
ample of a simple tree in Figure 9.2. The directory structure is a two-
level tree. Trees are used to advantage whenever elements may be classi-
fied according to a fixed structure. This facilitates insertion and re-
trieval. In addition, they may establish groups of information in a 
structured way which may be required for later processing, such as in a 
compiler or interpreter design. 

Fig. 9.7: Genealogical Tree 

Doubly-Linked Lists 

Additional links may be established between elements of a list. The 
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simplest example is the doubly-linked list. This is illustrated in Figure 
9.8. We can see that we have the usual sequence of links from left to 
right, plus another sequence of links from right to left. The goal is to 
allow easy retrieval of the element just before the one which is being 
processed, as well as just after it. This costs an extra pointer per block. 

BLOCK I 
	

BLOCK 2 
	

BLOCK 3 

Fig. 9.8: Doubly-Linked List 

SEARCHING AND SORTING 

Searching and sorting elements of a list depends directly on the type 
of structure which has been used for the list. Many searching algo-
rithms have been developed for the most frequently used data struc-
tures. We have already used indexed addressing. This is possible when-
ever the elements of a table are ordered in function of a known 
criterion. Such elements may then be retrieved by their numbers. 

Sequential searching refers to the linear scanning of an entire block. 
This is clearly inefficient but may have to be used when no better tech-

nique is available, for lack of ordering of the elements. 
Binary, or logarithmic, searching attempts to find an element in a 

sorted list by dividing the search interval in half at every step. Assum-
ing that we are searching an alphabetical list, one might start, for exam-
ple, in the middle of a table and determine if the name we are looking 
for is before or after this point. If it is after this point, we will eliminate 
the first half of the table and look at the middle element of the second 
half. We compare this entry again to the one we are looking for, and we 
restrict our search to one of the two halves, and so on. The maximum 
length of a search is then guaranteed to be log2n, where n is the number 
of elements in the table. 

Many other search techniques exist. 

SECTION SUMMARY 

This section was intended as only a brief presentation of usual data 

structures which may be used by a programmer. Although most com- 
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mon data structures have been organized in types and given a name, the 
overall organization of data in a complex system may use any combina-
tion of them, or require the programmer to invent more appropriate 
structures. The array of possibilities is only limited by the imagination 
of the programmer. Similarly, a number of well-known sorting and 
searching techniques have been developed for coping with the usual 
data structures. A comprehensive description is beyond the scope of 
this book. The contents of this section were intended to stress the im-
portance of designing appropriate section structures for the data to be 
manipulated and to provide the basic tools to that effect. 

Actual programming examples will now be presented in detail. 
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PART II — DESIGN EXAMPLES 

INTRODUCTION 

Actual design examples will be presented here for typical data struc-
tures: table, sorted list, linked list. Practical searching and insertion and 
deletion algorithms will be programmed for these structures. 

The reader interested in these advanced programming techniques is 
encouraged to analyze in detail the programs presented in this section. 

However, the beginning programmer may skip this section initially, 

and come back to it when he feels ready for it. 
A good understanding of the concepts presented in the first part of 

this chapter is necessary to follow the design examples. Also, the pro-

grams will use all of the addressing modes of the Z80, and integrate 
many of the concepts and techniques presented in the previous chapters. 

Three structures will now be introduced: a simple list, an alphabetical 
list and a linked-list plus directory. For each structure, three programs 
will be developed: search, enter and delete. 

DATA REPRESENTATION FOR THE LIST 

Both the simple list and the alphabetic list will use a common repre-
sentation for each list element: 

3-byte label 
	

Data 
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ENTLEN 

TABUN 

LENG TH OF ENTRY 

NUMBER OF ENTRIES 

TAB BASE 

ENTRY 

   

   

  

M BYTES 

  

.4---- ENTER NEW ELEMENT 

Fig. 9.9: The Table 5 ructure 

ENTLEN 

ENTLEN 

 

Fig 9.10: Typical List Entries in the Memory 
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Each element, or "entry", includes a 3-byte label, and an n-byte block 
of data, with n between 1 and 253. Thus, at most, each entry uses one 
page (256 bytes). Within each list, all elements have the same length (see 
Figure 9.10). The programs operating on these two simple lists use some 
common variable conventions: 

ENTLEN is the length of an element. For example, if each element 
has 10 bytes of data, ENTLEN = 3 + 10 = 13 

TABASE is the base of the list or table in the memory 
POINTR is a running pointer to the current element 
OBJECT is the current entry to be located, inserted or deleted 
TABLEN is the number of entries. 

All labels are assumed to be distinct. Changing this convention would 
require a minor change in the programs. 

I • 

IRE SP.CI 

Fig. 9.11: The Simple List 
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COUNTER = 
NUMBER OF ENTRIES 

READ ENTRY 
3 LETTERSI 

COUNTER = COUNTER - I 

POINT TO NEXT ENTRY 

FOUND 
(SET A TOFF"I 

FAILURE EXIT 

Fig. 9.12: Table Search Flowchart 

COUNTER = 
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A SIMPLE LIST 

The simple list is organized as a table of n elements. The elements are 
not sorted (see Figure 9.11). When searching, one must scan through 

the list until an entry is found or the end of the table is reached. When 
inserting, new entries are appended to the existing ones. When an entry 
is deleted, the entries in higher memory locations, if any, will be shifted 

up to keep the table continuous. 

Searching 

A serial search technique is used. Each entry's label field is compared 
in turn to the OBJECT's label, letter by letter. 

The running pointer POINTR is initialized to the value of TABASE. 

SEARCH 
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The search proceeds in the obvious way, and the corresponding flow-
chart is shown on Figure 9.12. The program appears on Figure 9.16 
at the end of this section (program "SEARCH"). A sample run of the 

program is shown in Figure 9.17. 

Inserting 

When inserting a new element, the first available memory block of 

(ENTLEN) bytes at the end of the list is used (see Figure 9.11). 
The program first checks that the new entry is not already in the list 

(all labels are assumed to be distinct in this example). If not, it incre-
ments the list length TABLEN, and moves the OBJECT to the end of 
the list. The corresponding flowchart is shown in Figure 9.13. 

The program is shown in Figure 9.16. It is called "NEW" and resides 

at memory locations 0135 to 015E. 

The index register IY points to the source. HL and DE are destina-

tion pointers. 

XII 

INCREMENT TABLE LENGTH 

POINT AFTER 
END OF TABLE 

INSERT OBJECT 

ENO 

Fig. 9.13: Table Insertion Flowchart 
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Deleting 

In order to delete an element from the list, the elements following it 
in the list at higher addresses are merely moved up by one element posi-
tion. The length of the list is decremented. This is illustrated on Figure 
9.14. 

The corresponding program is straightforward and appears on Fig-
ure 9.16. It is called "DELETE", and resides at memory addresses 
015F to 0187. The flowchart is shown in Figure 9.15. 

Memory location TEMPTR is used as a temporary pointer pointing 
to the element to be moved up. 

During the transfer, POINTR always points to the "hole" in the list, 
i.e., the destination of the next block transfer. 

The Z flag is used to indicate a successful deletion upon exit. 
Note how the LDIR instruction is used for efficient automated block 

transfer (refer to address 0178 in Figure 9.16). 

LD 	A, B 	 BLOCK COUNTER 
NEWBLOC LD BC, (ENTLEN ) BLOCK LENGTH 

LDIR 
DEC A 
JP 	NZ, NEWBLOC 

BEFORE 

O 
0 
0 
0 
0 
0 

AFTER 

0 
0 
0 
O 
0 

DELETE 

TEMPTR 

MOVE 

MOVE 

Fig. 9.14: Deleting an Entry (Simple List) 
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FIND ENTRY 

SHIFT ONE ENTRY UP 

NO 
FOUND? OUT 

YES 

DECREMENT TABLE LENGTH 

FIND NBR OF ENTRIES 
AFTER OBJECT IN TABLE 

YES 
EXIT 

DECREASE COUNT OF 
ENTRIES REMAINING 
AFTER THE ONE SHIFTED 

NO 
COUNT = 0? OUT 

PROGRAMMING THE Z80 

Fig. 9.15: Table Deletion Flowchart 
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0000 ORG 0100H 

DATA STRUCTURES 

1011371 ENTLEN DL ENDER 
10109/ TADLEN DL ENDER-12 
10113A1 TADASE DL ENDER+3 
10IBC1 TEMP DL ENDERI5 

0100 1600 SEARCH LD 11.0 ;CLEAR 0 
0102 JAB901 LD 111.1TABLEN1 /CHECK FOR A ZERO TABLE LENGTH 
0105 A7 AND A MET FLAGS 
0106 CB RET Z 
0107 47 LD Bra (STORE TABLE LENGTH 
0100 DD2A0A01 LD 1%11701105E1 ;PUT BASE ADDR. IN IX 
010C D07E00 LOOP LD ArLIX+01 :CHECK FIRST LETTER OF ENTRY 
010F FDBE00 CF fIY+01 
0112 C2270I JP NZ.NEXTONE 
0113 1D7C01 LD A.II%Ill !CHECK 2110 LETTER 
0118 FDDE01 CP 119111 
011B C22701 JF NZ,NEXTONE 
011E m7E02 LD ApCIX421 /CHECK 3RD LETTER 
0121 FDBE02 CP 119421 
0124 CA3201 JF ZrFOUND ;EXIT IF ALL LETTERS MATCH 
0127 05 NEXTONE DEC 11 /DECREMENT TABLE LENGTH COUNTER 
0120 CB RET Z (EXIT IF AT END OF TABLE 
0129 ED5P0701 LD DE.(EHTLENI ;SET IX TO NEXT ENTRY ADDR. 
012D DD19 ADD IXrDE 
012F C30001 JP LOOP /TRY AGAIN 
0132 16FF FOUND LD DrOFFH ;SET D TO SNOW TX CONTAINS AIMR. 
0134 C9 RET r..OF ENTRY IN TABLE 

0135 CD0001 HEW CALL SEARCH /SEE IF OBJECT IS THERE 
0138 II INC n 
0139 cnsEos JP ZpOUTE IIF D WAS FF. EXIT 
013C 3A0901 LD ArlTABLEN1 
013F SF LD ErA ;LOAD E WITH TABLE LENOTH 
0140 3C INC A 
0141 328901 LD (TABLENI.A /INCREMENT TABLE LENGTH 
0144 1600 LD 0.0 
0146 2A8A01 LD HLr/TABASE/ 
0149 ED4118701 LO BCr1ENTLEN1 ;SET B TO LENGTH OF AN ENTRY 
01411 41 LO B.0 
014E 19 LOOPE ADD HL.BE 
014F !OFD 1UNZ LOOPE ;ADD HL TO CENTLENnTABLEN1 
0151 £1400701 LD Kr/ENT/in/ 
0155 FDE5 PUSH IY MOUE IY TO DE 
0157 DI POP DE 
0150 EP EX DE.HL 
0159 EDBO LDIR MOUE MEMORY FROM OBJECT TO END 
015P OIFFFF LB BC.OFFFFH 1..OF TABLE 
015E C9 OUTE RET 

• 

015F C00001 DELETE CALL SEARCH iFIND ENTRY TO BE DELETED 
0162 14 INC D ;SEE IF IT WAS FOUND 
0163 020601 JP 117rOWT 
0166 3A0901 LD ApITABLEN1 :DECREMENT TABLE LENGTH 
0169 3D DEC A 
016A 328901 LD 1TABLEP-OrA 
016D 05 DEC ID NOUNS OF ENTRIES LEFT IN TABLE 
016E CA8301 JP ZrEXIT i..AFTER ONE TO BE DELETED 
0171 DIES PUSH IX ;NINE IX TO DE 
0173 DI POP DE 
0174 2A870I LD IlLrIENTLEN; ;SET It ONE ENTRY AHEAD OF DE 
0177 19 ADD HL,DE 
0178 70 LD ArB /SET BLOCh COUNTER 
0179 ED4BE1701 NEOPLOC LD DCr1ENTLE111 ;SET BLOCK LENGTH COUNTER 
0170 EDBO LAIR ISHIFT 1 ENTRY OF TABLE 
017F 3D DEC A 
0100 C27901 JP tarNELIBLOC ;SHIFT ANOTHER BLOCK 
0103 OIFFFF EXIT LP BCrOFFFFH ;SHOW THAT IT WAS DONE 
0186 C9 OUT WET 

0107 (00001 ENDER END 

Fig. 9.16: Simple List—The Programs 
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PROGRAMMING THE Z80 

SYMBOL TABLE 

DELETE 015F ENDER 01R7 ENTLEN 0187 EXIT 0103 FOUND 0132 
LOOP 010E LOUPE 011E NEU 0135 NEUBLO 0179 NEXTON 0127 

OUT 0186 OUTE 015E SEARCH 0100 TABASE 018A TAKEN 0189 
TEMP 010C 

Fig. 9.16: Simple List— The Programs (cont.) 

Display Memory lining of Objects 

with their location 

In memory 
-0M300  
0300 53 IF 4E 31 31 31 31 31-31 31 31 31 31 00 00 00 SON 	  
0310 44 41 44 32 32 32 32 32-32 32 32 32 32 00 00 00 DAD 	
0320 40 4F 4D 33 33 33 33 33-33 33 33 33 33 00 00 00 H0113333333333- 
0330 55 4E 43 34 34 34 34 34-34 34 34 34 34 00 00 00 UN 	  
0340 41 4E 54 35 35 35 35 35-35 35 35 35 35 00 00 00 ANT5555555555... 
0350 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 	  
0360 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 	  
0370 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 	  

-ST 
V.0000 300 

-0193/196 

P.0196 0196 • 

-011400 

Set IV to 030011 (pointer to OBJECT) 

Run 'INSERT' 

Dale coal ginsiion 

eta program run 

0100 53 4F 4E 31 	31 	31 	31 	31-31 31 	31 31 31 00 00 00 SON1111111111 	 
0410 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 	  
0420 DO 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 	  
0430 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 	  
0440 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 	  
0450 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 	  
0460 00 00 CO 00 00 00 00 00-00 00 CO 00 00 00 00 00 	  
0470 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 	  

V.
S
0300 310 Set IY to 031011 (next OBJECT) 

-0193/196 

P..0196 

-DM400 

o176 • Run 'INSERT' 

Table configuration 
slier second lawn 

0100 53 4F 4E 31 31 31 31 31-31 31 31 31 31 44 41 44 SON1111111111DAD 
0410 32 32 32 32 32 32 32 32-32 32 00 00 00 00 00 00 	  
0420 00 00 DO 00 00 00 00 00-00 00 00 00 00 00 00 00 
0430 00 CC CC 00 00 00 00 00-00 00 00 00 00 00 00 00 
0440 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 	  
0450 00 OD 00 00 00 00 00 00-00 00 00 00 00 00 00 00 	  
0460 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 	  
0470 OD 00 00 00 00 00 00 00-00 00 00 DO 00 00 00 00 	  

• • • 	 • 	• • 
(Moreinsertionsl TRW coal/under' 

.)ter 'ever.) Inert. 
-011400 
0400 53 4F 4E 31 31 31 31 31-31 31 31 31 31 44 41 44 SON11111111110A8 
0410 32 32 32 32 32 32 32 32-32 32 55 4E 43 34 34 34 	  	 UNC444 
0420 34 34 34 34 34 34 34 40-4F 40 33 33 33 33 33 33 4 444444 MO11333333 
0430 33 33 33 33 41 4E 54 35-35 35 35 35 35 35 35 35 33331017555555555 
0440 35 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 5 	  
0450 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 	  
0460 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 DO 	  
0470 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 	  

Fig. 9.17: Simple List—A Sample Run 
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DATA STRUCTURES 

- SY 
Y.0340 320 
- 0190/193 

P.0173 0193' Run 'SEARCH' 

Reg D shows that Object was found 

Neahicrcumen0 -DR 
N 	0.40 DC=02FF DE=FFOO HL=0341. S=0100 P-0193 0193' CALL 0135 

A'=00 10.0000 10=0000 10.0000 2=0427 Y.0320 (.00 	10135'1 

-0196/199 

P=0199 0199' 

-DM400 

Run 'DELETE' 

Address of Object 

Takconftgur41100 

aficrdrkllo0 

0400 	53 4F 4E 31 31 31 31 31-31 31 31 AI 	31 44 41 44 SONI111111111DAD 
0410 	32 32 32 32 32 32 32 32-32 32 55 4E 43 34 34 34 	  	 UNC444 
0420 	34 34 34 34 34 34 34 41-4E 54 35 35 35 35 35 35 	  555555 
0430 	35 35 35 35 41 4E 54 35-35 35 35 35 35 35 35 35 5555010555555555 
0440 	35 00 DO 00 00 00 00 00-00 00 00 00 00 00 00 00 5 	  
0450 	00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 	  
0460 	00 OD 00 00 00 00 00 00-00 00 00 00 00 00 00 00 	  
0470 	00 00 00 00 Oa 00 00 00-00 00 00 00 00 00 00 00 	  

-SY 
A=0240 340 
-6196/199 

P.0199 0199' 

-00400 

Delete last entry In table 

0400 	53 4F 4E 31 31 31 31 31-31 31 31 31 31 44 41 44 
0410 	32 32 32 32 32 32 32 32-32 32 55 4E 43 34 34 34 
0420 	34 34 34 34 34 34 34 41-4E 54 35 35 35 35 35 35 
0430 	35 35 35 35 41 4E 54 35-35 35 35 35 35 35 35 35 
0440 	35 00 00 00 00 00 00 00-00 00 00 00 OD 00 00 00 
0450 	00 00 00 00 00 00 00 00-00 00 00 00 00 OD DO 00 
0460 	00 00 OD 00 00 00 00 00-00 00 00 00 00 00 00 00 
0470 	00 00 00 00 00 DO 00 00-00 00 00 00 00 00 00 DO 

Noir: no nppnrenl 

change In lable 

ronllgurailon 

SON1111111111DAD 
----- --0/4[444 
4444444007555555 
5555ANT555555555 
5 	  

-DM10951 
0107 03 	 Memory location 'TABLEN' — shows true length of table 
-0170/193 

P=0193 0193' 	Run 'SEARCH' for deleted Object 

	Dshows that Object was not found 
- IM 
Z N A.55 DC.00FF 

0..00 D'.0000 
DE=00 D MA=0441 S=0100 P=0193 0193' CALL 0135 
11'=0000 10-0000 2.041A Y.0340 1=00 (0135'1 

Fig. 9.17: Simple List— A Sample Run (cant.) 
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PROGRAMMING THE Z80 

ALPHABETIC LIST 

The alphabetic list, or "table," unlike the previous one, keeps all 
its elements sorted in alphabetic order. This allows the use of fast-
er search techniques than the linear one. A binary search is used here. 

Searching 
The search algorithm is a classic binary search. Let us recall that 

the technique is essentially analogous to the one used to find a name in 
a telephone book. One usually starts somewhere in the middle of the 
book, and then, depending on the entries found there, goes either back-
wards or forward to find the desired entry. This method is fast and 
reasonably simple to implement. 

The binary seach flowchart is shown in Fig. 9.18, and the program is 
shown in Fig. 9.23. 

This list keeps the entries in alphabetical order and retrieves them by 
using a binary or "logarithmic" search. An example is shown in Figure 
9.19. The search is somewhat complicated by the need to keep track of 
several conditions. The major problem to be avoided is searching for an 
object that is not there. In such a case, the entries with immediately 
higher and lower alphabetic values could be alternately tested forever. 
To avoid this, a flag is maintained in the program to preserve the value 
of the carry flag after an unsuccessful comparison. When the INCMNT 
value, which shows by how much the pointer will next be incremented 
reaches a value of "1", another flag called "CLOSENOW", which we 
will abbreviate to "CLOSE", is set to the value of the COMPRES 
flag Thus, since all further increments will be "1", if the pointer goes 
past the point where the object should be, COMPRES will no longer 
equal CLOSE and the search will terminate. This feature also enables 
the NEW routine to determine where the logical and physical pointers 
are located, relative to where the object will go. 

Thus, if the OBJECT searched for is not in the table, and the running 
pointer is incremented by one, the CLOSE flag will be set. On the next 
pass of the routine, the result of the comparison will be opposite to the 
previous one. The two flags will no longer match, and the program will 
exit indicating "not found". 
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(ENTRY) f  
INCREMENT VALUE = INCREMENT VALUE/2 

FOUND 

ADD ONE IF IT WAS ODD 

COMPARE OBJECT TO ENTRY 

PRESERVE CARRY (SIGN OF COMPARISON) 
IN COMPRES FLAG 

DATA STRUCTURES 

3  

FLAGS .. 0 

3  
POINT TO TABLE BASE 

3 

LOGICAL POSITION = 
INCREMENT VALUE 
TABLE LENGTH / 2 
(ADD I IF IT WAS ODD) 

POINT TO MIDDLE OF TABLE 

Fig. 9.18: Binary Search Flowchart 
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CLOSEPKW/ - 
COMPINS 

NOT 'Our° 

RS 

ADO IF 

NOT 
FORME 

NO 

'MOHR 

.ES 

MOVE POINTIRS 
DOWN BY I 

tE00l01 

PROGRAMMING THE Z80 

(NEXT TEST) LUST °NEI 

UPOATF pONIERS 

ti 

/ACNE POINTERS 
uP Iv I 

'EMIR VI 

Tq 

NTOATL TVINil 

'ENTRE) 

INCREMENT 
CIOSINOW = COMET/15 

Fig. 9.18: Binary Search Flowchart (cont.) 
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INOI 
IND) 

TES 

%YE 

DATA STRUCTURES 

The other major problem that must be dealt with is the possibility of 
running off one end of the table when adding or subtracting the incre-
ment value. This is solved by performing a test "add" or "subtract" 
using the logical pointer and length value which record the actual num-
ber of entries, not the physical positions in memory used by the physical 
pointers. 

In summary, two flags are used by the program to memorize infor- 

(0121) 	LD 	A, C 

SRL 	A 

ADC 	0 

LD 	C, A 

OBJECT 

TABASE 

FIRST TRY 
SEARCH INTERVAL 5 

SECOND TRY 
SEARCH INTERVAL = 2 

Fig. 9.19: A Binary Search 

561 



PROGRAMMING THE ZBO 

mation: COMPRES and CLOSE. The COMPRES flag is used to preserve 
the fact that the carry was either "0" or "1" after the most recent com-
parison. This determines if the element under test was larger or smaller 
than the one with which it was compared. The C indicates the relation. 
Whenever the carry C was "1", and the element was smaller than the 
object COMPRES is set to "1". Whenever the carry C was "0", indi-
cating that the element was greater than the object, COMPRES will be 
set to "FF". 

The second flag used by the program is CLOSE. This flag is set equal 

to COMPRESS when the search increment INCMNT becomes equal to 
"I". It will detect the fact that the element has not been found if 
COMPRES is not equal to CLOSE the next time around. 

Other variables used by the program are: 

LOGPOS which indicates the logical position in the table 
(element number) 

INCMNT which represents the value by which the running 
pointer will be incremented or decremented if 
the next comparison fails 

TABLEN represents as usual the total length of the list. 

LOGPOS and INCMNT will be compared to TABLEN in order to 
assure that the limits of the list are not exceeded. 

The program called "SEARCH" is shown on Figure 9.23. It resides 
at memory locations 0100 to OICF, and deserves to be studied with care, 
as it is much more complex than in the case of a linear search. 

An additional complication is due to the fact that the search interval 
may at times be either even or odd. When it is odd, a correction must 
be introduced. (It cannot, for instance, point to the middle element of a 
four-element list.) When it is odd, a "trick" is used to point to the 
middle element: the division by 2 is accomplished by a right shift. The 
bit "falling off" into the carry after the SRL instruction will be "1" if 
the interval was odd. It is merely added to the pointer. 

The OBJECT is then matched against the entry in the middle of the 
new search interval. If the comparison succeeds, the program exits. 
Otherwise ("NOGOOD"), the carry is set to "0" if the OBJECT is less 
than the entry. Whenever the INCMNT becomes "I", the CLOSE flag 
(which had been initialized to "0") is then checked to see if it was set. If 
it was not, it gets set. If it was set, a check is run to determine whether we 
passed the location where the OBJECT should have been but is not. 
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DATA STRUCTURES 

Also note that when the carry was "1", the running pointer will point 
to the entry below the OBJECT. 

Element Insertion 

In order to insert a new element, a binary search is conducted. If the 
element is found in the table, it does not need to be inserted. (We 
assume here that all elements are distinct). If the element was not found 
in the table, it must be inserted immediately before or immediately after 
the last element to which it was compared. The value of the COMPRES 
flag after the search indicates whether it should be inserted immediately 
before or immediately afterwards. All the elements following the new 
location where it is going to be placed are moved down by one block 
position, and the new element is inserted. 

TABASE-- 

BEFORE AFTER 

AAA AAA 

ABC ABC 

BAT BAC .411 	NEW 
ELEMENT 

TAR BAT 

ZAP TAR 

ZAP 

BAC MOVE DOWN OBJECT H 

Fig. 9.20: Insert: "BAC" 
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PROGRAMMING THE Z80 

The insertion process is illustrated in Figure 9.20, and the corre-
sponding program appears in Figure 9.23. 

The program is called NEW, and starts at memory location OIDO. 
Note that the automated Z80 instructions LDDR and LDIR are used for 

efficient block transfers. 

Element Deletion 

Similarly, a binary search is conducted to find the object. If the 
search fails, it does not need to be deleted. If the search succeeds, the 

element is deleted, and all the following elements are moved up by one 
block position. A corresponding example is shown in Figure 9.21, and 
the program appears in Figure 9.23. The flowchart is shown in Fig. 
9.22. 

The program is called "DELETE" and resides at address 0221. 

A sample run of the above programs is shown in Fig. 9.24. 

MOVE UP 

BEFORE 

111, 

AFTER 

AAA AAA 

ABC ABC 

BAC BAT 

BAT TAR 

TAR ZAP 

ZAP 

DELETE 

Fig. 9.21: Delete "BAC" 
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.0 

POINT TO NEXT ENTRY 
POINTER = TIMP !SOURCE 

TRANSFER IT UP ONE BLOCK 

DECREMENT LOGPOS 

(DOWNTAB) 

POINT TO NEXT ENTRY 
POINTER = POINTER !DESTINATION, 

TES 

RESULT = COUNTER 
(LOG P051 

SET 2 FLAGS 

COUNT HOW MANY 
ELEMENTS FOLLOW THE 

ONE TO BE DELETED 

DATA STRUCTURES 

DELETE 

RTS 

Fig. 9.22: Deletion Flowchart (Alphabetic List) 
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PROGRAMMING THE Z80 

0000 Mai 010011 
4021A) CLOS1How M mMED 
1024DI CHAPRES M ENAFAII 
1024C1 
107410 

TAD. Ell 
TmlinSF 

IN 
M 

MOWN, 
ENDE103 

1024F1 INTLFA Al ENDIA15 

0100 3E00 SEARCH ID 0.0 
0102 324012 Lp 11:1.ORENow..0 IFENO ni AG LOCAMORS 

0105 324P02 LD (COMPRFSMA 
0108 57 LD ArA 
0109 2041102 ID AMMAPASE/ ;INITIALIZE OL 

010C 304CO2 in n.ITAPICII, 

0101 CD3F S141 n ;DIVIDE 	DT 

0111 CE00 ADC 0 :ADD 	I'S PIT HAM, 	IN 

0113 IF LA c.A :STORE AS INCREMFHT vAmil 
0114 47 LD MA ;STORE AS LOGICAL rMilinin VALUE 

0115 CRIMOI Z.NOTFOUND ;CHECK IF LENGTH IS ZERO 

01111 5F in F.A ;NUMMI 11-11mENTLEN 
0119 1p AEC E 
01111 CD111101 EAU MILT 
01ID 19 ADD KL.DF ;SET AL TO MIDDLE OF TABLE 
0111 E5 ENTRY FUSA AL HIM HL INTO IX 

011F WWI IX 
0121 27 LD ...r. IDIV(DE 	INCREMENT VALUE DT TWO 
0122 CB3F SRL A 
0121 CE00 nn[ a 
01.6 IF LD CrA 
0127 11117(00 LI. MIIX101 :COMPARE FIRST LEITER 

0120 FIME00 CP (MO) 
01211 C24201 Jr /12,110000D 
0130 DA7101 U. ArlIXIII ;COMPARE 21111 lEITER 

0133 FI*E01 CP (TM/ 
0136 C24201 JP 7/.NOG004 
0137 1102102 LT. 6.111+21 ICEME/wE 3RD LETTER 

013C F01.102 CP erm21 
013F cADC01 z.FnuND 
0142 3E01 N00000 LI' n./ ISFI COMPARE RESULT FLAG 10 

0144 1104901 Jr [.TESTS ...RESULT OF COMPARE 	IlrFF/ 

0147 3EFF LA A.OFFH 
0149 3241102 TESTS LI. IMIMPRESMA 
014C 79 LA A.C. :15 	INCREMENT 	VALUE 	1• 
014D 30 DEC A 
0I4E [26901 N7rNEXTF5t 
0151 304002 Lli Ar(CLOSENOU1 :YES. 	IS CLOSE FLAG SETT 

0154 07 mu, A 
0155 CA6301 Jr ZrAOTCLOSE 
0158 57 LD MA IVES. SEE IF NENE PASSED WHERE 

0159 304002 LD M(COMPRES) ...ENTRY SHOULD NE BUT 	ISN'T 

015C 92 SUP A 
0154 CA6901 JF ZrAEXTESI 
0160 C3BA0I JP NOTFOUND 
0163 304002 NOICLOSE LD 0rICOMPRES1 /SET CLOSE FLAG TO DIRECTION OF 
0166 324002 Lb (CLOSENISM.A r..SEARCH TO ITEVEN1 REPETITION 
0169 DOES IIEXTEST NMI IX ;PREPARE HL AND IW FOR Ma. nR 
01611 El FOE HL ...SOD OF INCREMENT VALUE 
016C 59 Mt E.I. 
016D C1111001 CALL MILT 
0170 3A41402 LD MICOMPRES1 /TEST 	IF WANT 	TO 01111 OR SUB 
0173 3C INC A 
0174 C29601 Jr A7rADOIT 
0177 78 LP 11.11 ;TEST TO SEE IF SIM WILL MIN 
0178 91 SuP C ...air Miriam OF TABLE 
0179 CA8501 JP 2,TOOLIM 
017C 1108501 JP C. TOOLOW 
017F 47 LA 'R.I1 ;SET NEW LOGICAL POSITION VALUE 
0180 ED52 SAC ALOE ;CHANGE ADDREss ITSELF 
0102 C31E01 Jr ENTRY 
0185 78 TOOLOW LA A.', MEE IF POSITION IS 	I 
0106 3I. DEC n 
0187 CA0101 Jr Z.NO1FOUND Ill 	SO. 	EXIT 
010A 10504E02 LD DEv(ENTLEN) IJUST SUP 	I ENTRY POSITION 
018E 37 SCF 
018F 3F [CF 
0190 E052 SIC AMDE 
0192 05 DEC P ;CHANGE LOGICAL POSITION 
0193 C3AFOI JP REALCLOS 

Fig. 9.23: Binary Search Program 
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DATA STRUCTURES 

0196 30400? A1101 I 1_1. A.( I A01.1.111 LI IL. I 	IN SEI 	It 	C11ICRE111 	MS11MM 
0199 90 111/11 PI • • AIM?: 	IND:1 /11111 	WI I 	lilt 	PAST 
019A 
0190 

91 
rinnn01 

MID r 
C. 1110111011 

• ...101. 	(IP 	1111 	1 AIN 1 

1119E 19 ADD IlL • PI :IS Ilk. 	CHANGE 	AC MAI 	ADDRESS 
0191 7B LI. A.I. 11.11(1/11i1 	1111311.0 	POS. 	VALIT1 
0160 B1 API. C 
11161 47 III ii.n 
0162 1.31E01 11111;7 
01AS VI 111111110H nil' C 1.:11. 	II 	11151111111 	15 	AT 	101 	111 
01A6 CA10101 ....111111' HUM. • . .16101. 	15nrir 	AS 	TAM EN-14 I 
0109 FIISI.4102 LP 1,1•11.1411.1/11 :(11.1. 	i 	EI/1RY 	111S 1 111111 
01Ali 19 API. HI 	•1.1 
Or AE 04 I NCpi :1141.1:1141 Ni 	I 110 ICA1 	'051111111 
01AF 0E01 REAl 1:1 (IS LI. C.. I :ST 1 	1 /JERI 1.111.11 	III 	I 
011.1 3114002 10 A..1:11/1110 n I :III 	I 	1:1 111:1 	n 	fili 	III 	1:11111 	Ala 
011,4 324.102 IM ICI Ilti111111J1 .A • ..10 5111 	i 
1107 011101 Jr 1/111:7 
°IDA 
011.1 

1611 
C9 

Nor/ (110111 
FlIMI. 

1 	I,  
m. 1 

ii.0/111 

011.1. 1!. 11011 rural In :mtii 	1111 	II 	•: 	1.Y 	II II II 1-11 I. 
ni riF CS I111:11 1.1: ....owl,- 	IN 	1.1 	1111 	r IT I 
0 I DF 1600 I 	0 1.10 
OICI 210000 1.0 111 	.00011 
01C4 
0101 

11.404102 
41 

11, 
I 	II 

DC • • I 11111 NI 
ii.1. 

01E9 19 1401 PI Alili In air 
A ICA 1010 NMI? 61101/1 
OICC 11 1111 Or 
"ICI. I7. r. LT .111 
IICF II 1 III 
0I CI C9 1.1 	I 

N11'0 C00001 OF LI P.M' SF rtIo711 :SI 1 	II 	OH II ..1 	IS 	AI 1.1 APT 	111110 
°IPS 14 I Ill 
0104 I:7200? Jr II! •Iiil 1 
°11.7 1/14r.112 LP A., TAN 1 III ;171111:1, 	I /IP 	0 	I AM 1 
°IDA A7 Ain. 
01 VD CA01702 / . I P.SEIL I 
01 PE 
01E! 

:MOM, LI' 
1111: 

el. crilM1 REID 
n 

nIE:' CA11.01 Jr 7.111S101 
0117. 11.,71.007 I 	1. OF • 111911 I NI 11:1111114.: 	i. 	.:11 	111 	Allow 	IJKI lel 
01E9 19 Min 111...1.1 • -I/P.1111 	Slin111 II 	011 
01111 C.11101 SF 1111 
0110 05 IIISI0F 1.11. Pr 11.11MPRLS-0• 	Sr 1 	1, 	1-nk 	1:11/.1RACI 
01E1 11141:02 !V HIP 1 0 A...1AM1 id i ;nil 	HOU 	MrstlY 	I 141k1.: 	nFl 	I 111 
011 i 90 OIII. Pi 
DIF 2 CA0102 / 'INS! III 
OILS Sr 1.I. Firs L511 	III_ 	III 	I nnI 	'(1511 ION 	IN 	Lfin I 
0116 001.1.01 CAI I MIN 1 
0119 19 ADP 111_ ... 01 
01111 20 1.11: HI 
(TIFF' EH EX 1.1.111 15r F 	li1 	. 	111110. 	AMID/1 	H1 
01117 27.4107.  1 	li HI 	...1.1111//i 
OIFF 19 API' 111 OE 
0200 III EX lir • HI 
0901 F044102 MOVES I0 DC . I ENTI / FIT ISHII 1 UP Our ENTRY Or ni.NORT 
0205 Frain 1.101k 
0207 3t licr. A 
0700 120102 Jr N7./.1111.11/1  IREPFAI 	II 	?IF CCESIierRY 
02011 21 INC HI PIO 	in FRONT 111 NOY [MCI Y SPACE 
020C Flirt I fISF:k I PUSH IT I LOAD 0.0.11-CT 	INTO EMPTY SPACE 
0201 DI LIE 
020F 11. Cx 0/.111. 
0210 10404102 Lb DI: . 11.1111 [II I 
0214 10.00 1 0IR 
0216 304107 LM ri. ( TAPLEN I :F NI:R1MENT 	1/11.11: 	I FIIIITI1 
0219 3C INC A 
071A 324E02 L0 I FAHI FOP .0 
0211' 011111 IO liC.0111111 :SHOW THAT 	I1 LIAS DONE 
0220 C9 III/I RF1 

Fig. 9.23: Binary Search Program (cont.) 
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0271 	CD0001 DELETE CALL SEARCH ;GET ADDRESS OF OBJECT 

0224 	14 INC D ISEE IF OBJECT IS THERE 

0225 	CA4907 JP Z.OUTE 
0220 	EDSP4F02 LP DE.CENTLEN; 
022C 	EP EX DE.NL 
022D 	19 ADD HL.DE IDE IS LOC. OF OBJECT. HL IS 

022E 	3A4CO2 LD ArCTABLEN; ..ONE ENTRY OBOVE 

0231 	90 SUB B ISEE HOU MANY ENTRIES ARE LEFT 

0232 	CA3F02 JP Z.DOWNTAD 
0235 	ED4B4F02 SHIFTIN LD BC.IENTLEN) 
0239 	EDBO LDIR ;SHIFT DOWN / ENTRY LENGTH 

0238 	30 DEC A 
023C 	C23502 JP NZ,SHIFTIN 
023F 	3A4CO2 DOWNTAB LD Ar1TABLEN; ;DECREMENT TABLE LENGTH 
0242 	3D DEC A 
0243 	324002 LD ITABLENIIA 
0246 	OIFFFF LD BCrOFFFFH ;SHOW THAT ACTION WAS TAKEN 
0249 	C9 OUTE RET 

024A 	(0000) ENDED END 

SYMBOL TABLE 

ADDER 	01C9 ADDIT 0196 CLOSEN 	024A COMPRE 	02411 	DELETE 0221 

DOWNTA 	023F ENDED 024A ENTLEN 	024F ENTRY 	011E 	FOUND 01BC 

MISIDE 	OIED INSERT 020C MOVED 	0201 /JULY 	011141 	NEW 0100 

NEXTES 	0169 N00000 0142 HOTEL° 	0163 NOTFOU 	01BA 	OUT 0220 

OUTS 	0249 REALCL 01AF SEARCH 	0100 SETUP 	0/EE 	SHIFT! 0235 

TABASE 	0244 TABLED 024C TESTS 	0149 TOOHIG 	0165 	TOOLOW 0105 

Fig. 9.23: Binary Search Program (cont.) 

LINKED LIST 

The linked list is assumed to contain, as usual, the three alphanu-
meric characters for the label, followed by one to 250 bytes of data, fol-
lowed by a two-byte pointer which contains the starting address of the 
next entry, and lastly followed by a one-byte marker. Whenever this 
one-byte marker is set to "1", it will prevent the insert-routine from 
substituting a new entry in the place of the existing one. 

Further, a directory contains a pointer to the first entry for each let-
ter of the alphabet, in order to facilitate retrieval. It is assumed in the 
program that the labels are ASCII alphabetic characters. All pointers at 

the end of the list are set to a NIL value which has been chosen here to 
be equal to the table base, as this value should never occur within the 

linked list. 

The insertion and the deletion programs perform the obvious pointer 
manipulations. They use the flag INDEXED to indicate if a pointer 

pointing to an object came from a previous entry in the list or from the 
directory table. The corresponding programs are shown in Figure 9.29. 

The data structure is shown in Figure 9.25. 
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DATA STRUCTURES 

401400 	 WOW /9W 
0400 00 00 00 00 00 00 00 00-00 00 00 00 00 00 OD as 	  
0410 00 00 00 00 00 an 00 00-00 00 00 00 00 00 00 OD 	  
0420 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 	  
0430 00 00 00 00 00 00 00 00-00 00 00 00 CO 00 00 CO 	  
0440 00 DO 00 CC 00 00 00 00-00 00 00 00 00 00 00 00 	  
0450 00 00 Oa 00 00 OD 00 00-00 00 00 00 00 00 00 00 	  
0460 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 DO 	  
0470 00 00 00 00 On 00 00 00-00 Oa 00 00 00 00 00 00 	  

1.19Ungarablech 
mildlheirlormilonf 

in merno11 
-10300 
0300 53 4F IE 31 31 31 31 31-3I 31 31 31 31 00 00 00 SON 	  • • 
0310 44 41 44 3? 37 37 3? 37-37 3? 32 37 32 00 00 an DAD 	 • • • 
0370 45 IF 45 33 33 33 33 33-33 33 33 33 .13 00 00 00 /10113333333333... 
0330 55 IE 43 34 34 34 34 34-34 34 34 34 34 00 00 00 I/ . . 
0340 41 4E 51 35 35 35 35 35-35 35 35 35 35 00 00 00 ANT5555555555 ... 
0350 00 00 00 00 DO 00 00 00-00 00 00 00 00 00 00 00 	  
0360 00 00 00 00 00 as 00 00-00 00 00 00 00 00 00 00 	  
0370 00 00 00 na oo nn 00 00-00 00 00 On 00 00 00 00 	  

-54 
Y.0000 320 
-G2634200 

3-11266 0266' 

Run 'INSERT 

-1m400 	 Tshle ..... InserlIon 
0400 ID 4F D 33 33 33 33 33-33 33 33 33 13 00 00 00 11003333333333- 
0410 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 	  
0420 00 00 00 00 00 00 00 00-00 00 00 Oa 00 00 00 00 	  
0430 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 OD 	  
0440 00 00 00 OD 00 00 00 00-00 00 00 00 00 00 00 00 	  
0450 00 DO 00 00 00 00 00 00-00 00 00 00 00 00 00 00 	  
0440 On co 00 00 Oa On na 00-00 00 00 00 00 00 00 00 	  
0470 00 00 00 00 On 00 00 00-00 00 00 CO 00 00 00 00 	  

0.0320 310 
-02631266 	Run 'INSERT' on another Object 
.'=0.166 0266' 	 4.1mInsof14bIcafler 

hurrUni5N49.:10k 

K ke11101phabelk -5/1400 
0400 44 41 44 32 32 32 32 32-32 32 32 32 32 40 IF 45 OAD 	  
0410 3] 33 33 33 33 33 33 33-33 33 00 00 00 00 00 00 3333333333 	 
0420 00 CO 00 DO 00 00 00 00-00 00 00 00 00 00 00 00 	  
0430 CO On 00 00 an 00 nn 00-00 00 00 00 00 00 00 Oa 	  
0440 00 00 00 nn 00 00 00 00-00 00 00 00 00 00 00 00 	  
0450 00 00 00 00 00 00 no 00-00 00 Oa 00 00 00 00 00 	  
0440 00 00 On 00 00 00 00 00-00 00 00 00 00 00 00 00 	  
0470 00 00 on 00 00 00 no 00-00 na 00 00 On 00 00 00 	  

' (additional Inserts) " • 

Fig. 9.24: Alphabetic List—A Sample Run 
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Z N 	A=4E DC-0401 01:1100D 
01'=00 Ir=0000 DP=0000 

14L=0427 5=0100 P=0263 0263' CALL OIDO 
14'=0000 X=0427 1=0300 1=00 COIDO'l 

- DR 	 Found 

PROGRAMMING THE Z80 

-011400 
0400 41 4E 54 35 35 35 35 35-35 35 35 35 35 44 41 44 
0410 32 32 32 32 32 32 32 32-32 32 40 4F 411  33 33 33 
0420 33 33 33 33 33 33 33 53-4F 4E 31 31 31 31 31 31 
0430 31 31 31 31 55 4E 43 34-34 34 34 34 34 34 34 34 
0440 34 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
0450 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
0460 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
0470 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

Tabkconfigurafion 
atier all Objects 

have beep lnnnled 

ANT55555555550AD 
	 14014333 
33333335014 	 
11111H1C444444444 
4 	  

- 5Y 
Y.0340 300 
- 0260/263 	Run 'SEARCH' for "SON" (at address 0300) 
P.0263 0263' 

"----Address of Object in table 

(verify in Table above that it Is "SON") 

-0266/269 

Run 'DELETE' on "SON" 
P=0269 0269' 

-DM400 
0400 41 4E 54 35 35 35 35 
0410 32 32 32 32 32 32 32 
0420 33 33 33 33 33 33 33 
0430 34 34 34 34 55.  4E 43 
0440 34 00 00 00 00 00 00 
0450 DO 00 00 00 CO OD 00 
0460 00 OD 00 00 OD 00 00 
0470 00 00 00 00 00 00 00 

Table configuration 

after deletion. Note: 

but UNC via Wheel 
up. The last UNC 

entry nut be 

dbregarded 

35-35 35 35 35 35 44 41 44 ANT55555555.550AD 
32-32 32 40 4F ID 33 33 33 	 11011333 
55-4E 43 34 34 34 34 34 34 3333333UNE 444444 
34-34 34 34 34 34 34 34 34 4444UNE 444444444 
00-00 00 00 00 00 00 OD 00 4 	  
00-00 00 00 00 00 00 00 00 	  
00-00 00 00 00 00 00 00 00 	  
00-00 00 00 00 00 00 00 00 	  

- 02601263 
Try run of "SEARCH" again (on "SON") 

P=0263 0263' 

-DR  
S N A=FE 

A'=00 
-0263/266 

P=0266 0266' 

Not found 
DE=0401 DE=FFOD NL=0427 5=0100 P=0263 0263' CALL 0100 
0'=0000 0'=0000 H'=0000 X=0427 1=0300 1=00 101/10'/ 

Re-insert Object ("SON") 

Carrenilable 
configwrallen. 

Compretothcone 

prlorinthe 

DELETE 

41 	4E 54 35 35 35 35 35-35 35 35 35 35 44 41 /4 ANT55555555551A11 
32 32 32 32 32 32 32 32-32 32 ID 4F 40 33 33 33 	  	  014333 
33 33 33 33 33 33 33 53-4F 4E 31 31 31 31 31 31 33333335014111111 
31 31 31 31 55 4E 43 34-34 34 34 34 34 34 34 34 11/1UNE 444444 444 
34 00 00 00 00 00 00 00-00 00 Oa 00 00 00 00 00 4 	  
00 00 00 00 00 00 00 00-00 Oa 00 00 00 00 00 00 	  
00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 	  
00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 	  

z— Shows that action was executed 

A.05 DE=FEFF DE=0434 NL=03011 5=0100 P=0266 0266' CALL 0221 
A'=00 0P=0000 0'.0000 N'0000 X=0427 Y=0300 1=00 10221'/ 

Fig. 9.24: Alphabetic List—A Sample Run (cont.) 

-D11400 
0400 
0410 
0420 
0430 
0440 
0450 
0460 
0470 

- OR 
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A 

NIL 

POINTER 

POINTER 

POINTER 

R 

NIL 

DATA STRUCTURES 

DIRECTORY 

Fig. 9.25: Linked List Structure 

An application for this data structure would be a computerized ad-
dress book, where each person is represented by a unique three-letter 
code (perhaps the usual initials) and the data field contains a simplified 
address, plus the telephone number (up to 250 characters). Let us exam-
ine the structure in more detail. The entry format is: 

C C C D D 5 D P P 0 

unique label 	data (1 to 250 by es) 
(ASCII) 

occupied 

N•si•••••yaair• 

poin er to 
next 

As usual the conventions are: 

ENTLEN: total element length (in bytes) 
TABASE: address of base of list 

The address of the OBJECT is always assumed to reside in the IY register 
prior to entering the program. Here, REFBASE points to the base ad-
dress of the directory, or "reference table." 

Each two-byte address within this directory points to the first occur-
rence of the letter to which it corresponds in the list. Thus, each group 
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of entries with an identical first letter in their labels actually forms a sep-

arate list within the whole structure. This feature facilitates searching 
and is analogous to an address book. Note that no data are moved dur-
ing an insert or delete. Only pointers are changed, as in every well-

behaved linked list structure. 
If no entry starting with a specific letter is found, or if there is no en-

try alphabetically Following an existing one, their pointers will point to 
the beginning of the table ( = "NIL"). At the bottom of the table, by 
convention a value is stored such that the absolute value of the differ-
ence between it and "Z" is greater than the difference between "A" 
and "Z". This represents an End Of Table (EOT) marker. The EOT 
value is assumed here to occupy the same amount of memory as a nor-
mal entry but could be just one byte if desired. The letters are assumed 
to be alphabetic letters in ASCII code. Changing this would re-

quire changing the constant in the PRETAB routine. 
The end-of-table marker is set to the value of the beginning of the 

table ("NIL"). 
By convention, the "NIL pointers", found at the end of a string, or 

within a directory location which does not point to a string, are set to 
the value of the table base to provide a unique identification. Another 
convention could be used. In particular, a different marker for EOT 
results in some space savings, as no NIL entries need be kept for non-
existing entries. 

Insertion and deletion are performed in the usual way (see Part I of 
this chapter) by merely modifying the required pointers. The 
INDEXED flag is used to indicate if the pointer to the object is in the 
reference table or another string element. 

Searching 

The SEARCH program resides at memory locations 0100 to 0155 
an uses subroutine PRETAB at address 01D2. 

The search principle is straightforward: 

I—Get the directory entry corresponding to the letter of the alphabet 
in the first position of the OBJECT's label. 

2—Get the pointer. Access the element. If NIL, the entry does not 
exist. 

3—If not NIL, match the element against the OBJECT. If a match is 
found, the search has succeeded. If not, get the pointer to the next entry 
down the list. 

4—Go back to 2. 
An example is shown in Figure 9.26. 
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DATA STRUCTURES 

A.POINTER 

B.POINTER 

Q STEPS REQUIREDI 

OBJECT -61 	AUG 

Fig. 9.26: Linked List—A Search 

Inserting 

The insertion is essentially a search followed by an insertion once a 
"NIL" has been found. 

A block of storage for the new entry is allocated past the EOT 
marker by looking for an occupancy marker set at "available" - 

The program is called "NEW" in Figure 9.29 and resides at ad-
dresses 0156 to 1A3. An example is shown in Figure 9.27. 

BOOR! 

► CAI 

ABC 	L°1- AZC 

NIL 

IFOUNDI 

11601.NTER 

[-POINTER 

CRS 

NIL 

NA 

OBACI 

A.POINTER 

6BCDP11111 

AFTER 

CAB AP. 

NIL 

- C-POINOR 

C 

Fig. 9.27: Linked List: Example of Insertion 
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o  - 

DAF NINIER 

t 

DOC POINTER 

ft 

DOC PO IIR 

NR 
r DAf 

MI ORE 

A 

NIL 

PROGRAMMING THE Z80 

Deleting 

The element is deleted by setting its occupancy marker to "available" 
and adjusting the pointer to it From the directory or else the previous 
element. 

The program is called "DELETE", and resides at addresses 01A4 to 

OIDI. 
An example of a deletion is shown in Figure 9.28. 

NON CM IS NOT ERASED. SERE 	!ERE 

Fig. 9.28: Example of Deletion (Linked List) 

574 



0000 
101/ 	• . ling 	b 14 

to•Itt 
• 014 I.-  

DATA STRUCTURES 

• 0 11 	/ 1A1•41•. 14 .1111 L II 
101( AI 1.1110SI 14141:11 
10111'. 1111110 111 10141 	1'• 

0100 1110. •.101-1011 1 •••••• :10111/N 
010/ 47 1 
0103 It 101 
0104 It 1014 	•I 1...r\ 
0107 1110:011 r AI 1 1•1.1- 1/11. 1141 	41.14.' 	III 	1001 v 	11111.111. 
0104 IA 0 A• 	/4 	I I1117.0 	.1.10140, 	1:111111 	lei 	IR 
01111. .sr I 	1,  I .4 
.11111: 1 	IL on 44 
•.1101. IA 1 	1. 
X101 6: II. 11.4 
010F tr, 111001 111 
0110 144 I t I,  
ni OP 4 00 1:11.10  .1.1•.1..1 11. 0.• At 	111011 	11'1111 	14.11.- Y 
0117. 1E71' It 011 1.0-1 	/I 	Pi 	Flit 	11111.141,  
<11 1 	' fint•Ol 11,1•111111 0001. 
1111A 144 -4 on 1-0 As. 1•I0 1  0:11111.41.-1 	I 	110:1 	I f 111114!: 
0110 F1.1400 1:1 II10110 
017'0 1.41101 11' 4 -  •001-41111. 
01'/1 r7..%01 N .411111 01100 
JI IA 41.71.01 1 leA.11411) /oft/ /WI 	74/1. 	11 III Id: 
011" F1.14 01 • ell i 
01:If 1.0.140 DI -  1,111411/411. 
0/ 7.4 11:•1014141.101. 
014: len /1 07 t A••Ive:I. ;1:1•NrA1r 	:WO I'll/ 
i 1-11' 

01741 1- AI/1101 1 ;'.1 Horn. 
"I 711-  •1.411114 00 
01 IF 1014 % 110611111. 1.11741 11 
0140 41 '0 
0141 2041:0e III on 	•4114111 mini 	/I/ 	1-1-11/41/k 	IN 	111141  
0144 II 41.1. 111 .14 
014.; 41 III I 	.1111 	I 0011 	/1111.111- 1, 	VA1 IN 	111 	11: 
0141. 71 .III IN 
0147 46 1 •111 	• 

11004 14: 14 111d. 	II 	114 	I-11101F1 
0440 1.141 i 
0141 41 00 Ile A.0 
.1141• 1:1.011 1.0 • 11414 .1 ik1 .11 	I 	• 1 AI. 
/11140 4.11201 Jl 1.11111-A/0- 
017.1 1041 I 11111.11. 1. I II 

1.1111 111/111. 1.4 	I 

0 1.00001 010 104 41.1.11 I 	WM II 	1111.111.1 	•011/1111. 	III 
017..../ 04 114. 
01 SA CA0.10 I 11• 7.01/1 

1160 /4 0•1111.1' 	411144. 	IN 	IN v1111).• 	18/141 
.'41 1101 14 144 IF 101, 	lirnel 	IU 	111,101 	111F 	11F1J 

..11.1 I 	1. 01 • intsi • 14 .IN :merit 	III 	0 140 Is 	/ I 	1014. 
/. .0 14111 O. 

•' Ilk In ;Mole 	1 	FOC 	CI A/ 	1101.111 	11. 	I1111.1 
01 An Pi 1101 
'1167 11.1: Hi 
'1141' 10 1,110 IA .01 
1111.0  / I• A. 1III 	• 
.11741 10 /4 • A 

1.04101 N all- 411101 I 10 	yin/ 111104. 	1/0 LI • 	IP/ AGAIN 
0141 II III, 14 

IF. 11041 14 • • 40/1 	111011/110 rii 	P11 I I 	1 4 net 
01/4 : 14., • r onsi I 	• :norm 	11 	Irr 	IN 

0 	III III 
01/1 111401 cos t 	I. 04,0 /41110. I1.0.6 	11001:1 	111111 	14/111 
017/ :0101 101F 
41 NW':  	1 • II .11 	AI•14 	IN 	111111 	AF IF. 	/Ili N/-1 
01/1,  E ...no 	• 011111.4 	111..111.0.1 
I/1 /1 IP 1 I 14.111 
'11)1• '4 I.I. ,•. 
01)1 irk. III 
01 )1' 1. 1111 	.0. 
0/00 1 11/1 111. 
0101 1601 14 I IN 	1 • . 

Fig. 9.29: Linked List-The Programs 
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0103 El 	 POT' M. 
0104 36E701 	 LI' 	A. ( IMAXED / 
011.1) 30 	 0EC A 
0 OM CAMM I 	 2.0111UX 
0101' E3 	 EX 	(SP 1 .TIL 
010C EDSDECOI 	 LI' 	IT . IFNTLEIII 
0190 19 	 nvv 	IA .197 
0191 DI 	 Poo DE 
0192 73 	 1.0 	OIL) .1: 
0193 2] 	 INC HL 
0194 72 	 LI' 	OIL 1 . 0 
0195 730001 	 JP FINISH 
0190 CI 	Sr TINS 	 PC 
0199 C1'D201 	 CMA PRETAD 
0190 EP 	 EX 	DE .RL 
0190 73 	 LP 111L1.1 
0191 23 	 INC HI 
019E 72 	 LI' 	I HL 1.A 
0160 011/1-1 F 	r INTIM 	L0 	PC . OFFFFH 
01A3 C9 	MO 	HE I 

01A4 [MAO I 	DELETE 	CALL SEARCH 
0107 04 	 (NC k 
0100 C7Ir10 I 	 JP 	N2. CUTE 
01AD O0E5 	 PUSH IX 
01.10 El 	 POP HL 
OIAE EMI1ECO1 	 L 11 	PE. I ERTL EN 1 
0102 09 	 ADD 	HL . I'll 
0103 4E 	 L 0 	C. 1111.)   
0104 23 	 INC M 
HIPS 46 	 IA 	P. c HL 1 
11106 23 	 INC M. 
0107 3600 	 1.11 (HLI.0 
01119 30E701 	 L D 	A. I I NDEXE 01 
01PE 31' 	 vrr n 
0 1 BD C2C70 I 	 IF 	flz . COWMEN 
oicn 1:11701 	 CALL PRET/11. 
OICJ ER 	 17X MOIL 
mu 1.311101 	 JP MDV 
0107 -MEMO 	CHANGEM L0 11L.(EAREN1  
own 	19 	 AD HL .IF 
0111' 71 	HOW I u 	LP 	011 1.c 
v 1 rs 23 	 INC 	III 
OICD '0 	 LII 	OIL 1. 0 
01 CT 0 IFFFF 	 L 0 	DC .0111FFH 
OHO C9 	MOE 	GET 

:GET MUT OF WHERE THIS SPACE 15 
/SEE WHAT PREVIOUS POINTERS 111151 

OAT ODOR OF ENTRY PREVIOUS TO 
...OBJECT S HOVE TO MINTER AREA 

411111:1MT AMA OF ODJEC1 
IMO I/ nr MINT ER IMS 11 um 

;CLEAR OUT nPACh 
MET INDEX AIRGASS 
L OM. M. INTO IT 

I SHrip THAT II WAS IMRE 

10E1 ADDRESS OF nvJEcT 
ispp IT IT in THERE 

15E1 HL TO PO In ITU AREA OF 00JEC I 

;NFL 1.11271 MORTFR 

oT PMnVE mourn/my HARAER 
:SEE IF INDEX NEEDS EHAN011111 

y Fn .PIII ADTT 111111 HI 

:sr T III 10 MIMED III PREVIIIIIS 

11411 ADM: OF 11151 I IJIII PRAT V /AR 
...1111HER I NDE1i ON ENTRY 

011c2 Ln 	PRET AD 	111511 III. 
0103 F07E00 	 LIP 	A.( 19101 	1011 F FPS1 LEI TEN IIF Loup r.v 
co vo 30 	 TIEC 	A 	 muinvp ASCII LEADER 
ril D / 	1e.411 	 !RIP 	4011 
n 1 VP I:027 	 SEA 	A 	 1/1111 !IM 1( BY • 
0 IM. 	2(1E001 	 1.1' 	III • (III 111/ASE I 
°IDE as 	 ADD I. 
01)1 	611 	 I.0 	I . A 
01E0 D21:41/1 	 Jr 	HE' F 111A 
01E3 	24 	 I NC 	II 
n114 	Fl. 	1114011 	Ex 	DE. HI 
nit', El 	 POE' III 
0116 CY 	 Fir T 

01E7 10000) 1:141.111 [NI! 

SWUM! 1AM F 

CHANGE OIC 7 	CORPAR 0112 	MI FM DIA4 	MMER 	01E7 	EMI LEN €1 EC 
1 101 SR 0100 	F MUT' 	01E4 	mop 	0153 	INDEX1 DIE' 	MOWN Di CP 
NEW 	0156 	NEXT ON 0161 	unsnap O1 3F 	worm' DIPS 	M 1 	Pi AG 
MITE 	0101 	FREI 01. 0107 	RrEPAS Di En 	SEARCH 01 On 	SETINY 11 )^11 
10005E otro 

Fig. 9.29: Linked List—The Programs (cont., 
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DATA STRUCTURES 

The Objects in memory 

1.6ungnrOblev“ 

i heir Intmonn. 

In Inman 
Irri.100 
0300 51 41 11. 31 11 II 11 AI 11 AI 31 11 11 00 00 on nouirttlitill... 
nAin 44 41 44 17 A7 1' 17 17 A? 17 17 17 A, 00 00 1111 nnrc—  . 	  
'1ti'0 41,  41 417 AA A3 IA AA 11 11 11 11 11 AA 00 00 110 01101113313331... 
0110 55 41 41 14 14 14 14 14 14 14 14 in 14 00 nn on 11111. 	  

'3340 41 4e  54 A% 35 35 35 An-A!. 35 3r. 35 in no no on ... 
akin 41 41 41 16 AA 13 A6 36-1A 36 16 36 .In 00 00 00 RARAAAAAAAAAA... 
0300 41 50 54 3? 1? 1? 17 17 31 17 17 1: 12 00 00 00 077.7777777726... 
01:0 53 49 44 10 111 311 1/1 AR AR AR 311 10 AR 00 00 no n1InninnogB11H0... 

r--E0Tchlimarrm 

Intact leble 
Ninon 

(non 	ou on nn nn on on on oo no on an an no on no 
0.110 on an nn nn no on nn on on no on on on nn un no 	  
0470 on nu nu nu nu on nn 00-no on on on nu no on on 	  
ncin no on on 00 00 00 00 on-an on no no an on oo on 	  
0440 on no an no on no on n0 -nn no on on no on no an 	  
0450 no oo an nn on no no on-on no an no no on on oo 	  
oann on op or. 00 no on nn on 00 on an no on on nn no 	  
nano on no no an no nn no on no 00 00 on on no on no 	  

-('0500 
0500 an 04 an on on 04 on 04-00 
onto no 04 00 on no 04 on 04-00 
rt.:rn 00 04 no 04 no n4 nn 04 nn 
0530 on no an nn on on no no no 
0540 oo oo on no no no no oo-no 
0550 On On 00 DO on nn on on-no 
0560 on on no nu nn no no on-on 

nn on nn on no on on no-oo 

InItralllimmn 
04 00 04 00 04 00 04 
04 00 nn on 04 un 04 
04 an on no 04 no no 
nn on on on no 00 00 
on an on oo oo oo on 
no au no oo 00 00 00 
no no on on on oo 00 
on no on oo on no 00 

Occupancymarkers — 

63400 
anon nn on on nn no nn on nn 

0420 44 41 44 A7 A7 A7 .4? A:, 	17 
0410 41 41 41 13 .06 15 36 3', 	in 
0440 51 4r 41" 31 :11 31 31 11.11 
7,450 41,  41 41, 31 10 I3 33 3.1 	13 
.3430 53 49 44 30 111 Ail 111 30 111 
0470 41 511 NA 17 12 A! 11 31-3: 

Se 

0.1.40 
1'27317771 	} Delete an entry 

Pointers-- 	Table cuallgaration 

ther News! 

Mwelhm. 

no no on nn no no-  'no 	 .......... 

3' 17 17 nn nn ni 
N. lh V. 36 ta un ar AAAA67.6667A1d.... 
11 31 31 11 OD 04 or snutirritrill... 
31 1.1 33 33 no nn 03 onnAl33333111... 
An in in AR 40 04 01 cronormnnnonne.. 
11 11 11 17 nn nn nr 0:711?7????7/... 

131400 	Unitchange 
on 	o no 	n an no nn un I 	  

	

1r. .45 15 "10 04 01 AUT557555555550 	 
.0:' 	.17 3? on 04 CB.. lifelP:!:`,":777:!7?• • 	 
16 16 :06 ln 10 04 01 nonnosAnnAni.e 	 
.11 11 .11 11 00 04 0/ 	onoilm 
.1.1 A1 .11 11 00 04 nl 31111111.113833 	 
111 in lir ar 40 04 01 nroonnoonormno 	 
1? 17 .1? -17 00 04 n1 1371717777,763 	 

Fig. 9.30: Linked List—A Sample Run 

0400 no 00 no o0 an 00 00 no 
0416 41 41: .45 
11470 44 41 44 17 37 .12 .17 37 
0430 41 41 91 13 AA 13 13 16-13 
.3440 53 41 41 11 	11 31 11 11 	31 
0450 41, nr 41, 11 	13 1.1 11 Al 	11 
3430 1,1 49 .14 in 10 In 311 111 - 111 
0470 41 511 %A 	11 	11 1? 1/ 1? -.1 
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-0720/223 
Run 'SEARCH' for deleted entry 

1=0223 0223' 

—Not found 
nrs 

	

H 	A-37 BC-0011 DE-0400 1iL-0000 5=0100 170223 0223' CALL. 0171 

0'700 14'70000 D'-0000 1C70000 Xv0400 170310 1700 	(01711 

- 5Y 
Y-0310 340 

-5220:273 	Run "SEARCH" for an existent entry 

1-0223 0723' 
rcEntry found 

-DU 

	

7. 0 	0=54 PC=F110 1IE70430 HL-0431 5-0100 1,-0721 0223' CALL 0171 
W=00 10=0000 1I 70000 11.-0000 X=0410 Y-0340 1-00 	10171'1 

- 0226/279 

	

	 11—Address of entry in table 
Delete 

1-0229 0229' 

Nolcamognin 

-05400 painien• 

0400 711 00 00 00 00 00 00 00-00 00 00 00 On 00 00 00 
0410 41 41 54 35 35 35 an 35-35 35 35 35 35 70 04 no 
0420 44 41 44 17 32 37 37 32-37 37 32 37 32 00 On 00 DAD-- .... 2 ... 
0430 41 41 43 In 36 36 36 36-36 36 36 36 36 70 04 01 0006666666666p.. 
04,10 53 41 41 11 	31 31 31 31-31 31 31 31 31 00 04 ni snumm1111• • . 
0450 411 IF 40 43 	.13 33 33 13-33 33 33 33 33 00 04 01 110/13333333333... 
0460 53 49 44 30 3E1 30 30 30-30 38 30 30 30 40 04 0! srunnnnonennon•. 
0470 II 50 50 37 37 37 37 37-37 37 3? 37 37 00 04 01 111.777777777?7... 

Fig. 9.30: Linked List— A Sample Run (cont.) 

SUMMARY 

The beginning programmer need not concern himself yet with the 
details of data structures implementation and management. However, 
efficient programming of non-trivial algorithms requires a good under-
standing of data structures. The actual examples presented in this 
chapter should help the reader achieve such an understanding and solve 
all the common problems encountered with reasonable data structures. 
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PROGRAM DEVELOPMENT 

INTRODUCTION 

All the programs we have studied and developed so Far have been 
developed by hand without the aid of any software or hardware re-
source. The only improvement over straight binary coding has been the 
use of mnemonic symbols, those of the assembly language. For effec-
tive software development, it is necessary to understand the range of 
hardware and software development aids. It is the purpose of this chap-
ter to present and evaluate these aids. 

BASIC PROGRAMMING CHOICES 

Three basic alternatives exist: writing a program in binary or hexa-
decimal, writing it in assembly-level language, or writing it in a high-
level language. Let us review these alternatives. 

Hexadecimal Coding 

The program will normally be written using assembly language mne-
monics. However, most low-cost, one-board computer systems do not 
provide an assembler. The assembler is the program which will auto-
matically translate the mnemonics used for the program into the re-
quired binary codes. When no assembler is available, this translation 
From mnemonics into binary must be performed by hand. Binary is 
unpleasant to use and error-prone, so that hexadecimal is normally 
used. It has been shown in Chapter 1 that one hexadecimal digit will 

represent Four binary bits. Two hexadecimal digits will, therefore, be 
used to represent the contents of every byte. As an example, the table 
showing the hexadecimal equivalent of the Z80 instructions appears in 
the Appendix. 
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In short, whenever the resources of the user are limited and no assem-
bler is available, he will have to translate the program by hand into hex-
adecimal. This can reasonably be done for a small number of instruc-
tions, such as, perhaps, 10 to 100. For larger programs, this process is 
tedious and error-prone, so that it tends not to be used. However, near-
ly all single-board microcomputers require the entry of programs in 
hexadecimal mode. They are not equipped with an assembler and a full 
alphanumeric keyboard, in order to limit their cost. 

In summary, hexadecimal coding is not a desirable way to enter a 
program in a computer. It is simply an economical one. The cost of an 
assembler and the required alphanumeric keyboard is traded-off 
against increased labor required to enter the program in the memory. 

However, this does not change the way the program itself is written. 
The program is still written in assembly-level language so that it can be 

examined by the human programmer and be meaningful. 

Assembly Language Programming 

Assembly-level programming covers both programs that may be 
entered in hexadecimal and those that may be entered in symbolic 
assembly-level form in the system. Let us now examine the entry of a 
program directly in its assembly language representation. An assembler 
program must be available. The assembler will read each of the mne-
monic instructions of the program and translate it into the required bit 
pattern using 1 to 5 bytes, as specified by the encoding of the instruc-
tions. In addition, a good assembler will offer a number of additional 
facilities for writing the program. These will be reviewed in the section 
on the assembler below. In particular, directives are available which 
will modify the value of symbols. Symbolic addressing may be used and 
a branch to a symbolic location may be specified. During the debugging 
phase, when a user may remove or add instructions, it will not be neces-
sary to rewrite the enure program if an extra instruction is inserted be-
tween a branch and the point to which it branches, as long as symbolic 
labels are used. The assembler will take care of automatically adjusting 
all the labels during the translation process. In addition, an assembler 
allows the user to debug his program in symbolic form. A disassembler 
may be used to examine the contents of a memory location and recon-
struct the assembly-level instruction that it represents. The various soft-
ware resources normally available on a system will be reviewed below. 
Let us now examine the third alternative. 
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POWER OF 
THE 

LANGUAGE 

APE 

COBOL 

FORTRAN 	 HIGH-LEVEL 

PASCAL 

BASIC 

MACRO 
SYMBOLIC 	CONDITIONAL 	ASSEMBLY-LEVEL 

ASSEMBLY 

HEXADECIMAL/ 
OCTAL 

MACHINE-LEVEL 

BINARY 

Fig. 10.1: Programming Levels 

High-Level Language 

A program may be written in a high-level language such as BASIC, 
APL, PASCAL, or others. Techniques for programming in these vari-
ous languages are covered by specific books and will not be reviewed 
here. We will, therefore, only briefly review this mode of program-
ming. A high-level language offers powerful instructions which make 
programming much easier and faster. These instructions must then be 
translated by a complex program into the final binary representation 
that a microcomputer can execute. Typically, each high-level instruc-
tion will be translated into a large number of individual binary instruc-
tions. The program which performs this automatic translation is called 

a compiler or an interpreter. A compiler will translate all the instruc-
tions of a program in sequence into object code. In a separate phase, 
the resulting code will then be executed. By contrast, an interpreter will 
interpret a single instruction, then execute it, then "translate" the next 
one, then execute it. An interpreter offers the advantage of interactive 
response, but results in low efficiency compared to a compiler. These 
topics will not be studied further here. Let us revert to the programming 
of an actual microprocessor in the assembly-level language. 
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SOFTWARE SUPPORT 

We will review here the main software facilities which are (or should 
be) available in the complete system for convenient software develop-
ment. Some of the definitions have already been introduced. They will 
be summarized here and the rest of the important programs will be de-

fined before we proceed. 
The assembler is the program which translates the mnemonic repre-

sentation of instructions into their binary equivalent. It normally trans-
lates one symbolic instruction into one binary instruction (which may 

occupy I, 2 or 3 bytes). The resulting binary code is called object code. 
It is directly executable by the microcomputer. As a side effect, the 
assembler will also produce a complete symbolic listing of the program, 
as well as the equivalence tables to be used by the programmer and the 
symbol occurrence list in the program. Examples will be presented later 

in this chapter. 
In addition, the assembler will list syntax errors such as instructions 

misspelled or illegal, branching errors, duplicate labels or missing 
labels. 

It will not delete logical errors (this is your problem). 

A compiler is the program which translates high-level language in-
structions into their binary form. 

An interpreter is a program similar to a compiler, which also trans-
lates high-level instructions into their binary form but does not keep the 

intermediate representation and executes them immediately. In fact, it 
often does not even generate any intermediate code, but rather executes 

the high-level instructions directly. 
A monitor is the basic program which is indispensable for using the 

hardware resources of this system. It continuously monitors the input 
devices for input and manages the rest of the devices. As an example, a 
minimal monitor for a single-board microcomputer, equipped with a 
keyboard and with LED's, must continuously scan the keyboard for a 
user input and display the specified contents on the light-emitting 
diodes. In addition, it must be capable of understanding a number of 
limited commands from the keyboard, such as START, STOP, CON-
TINUE, LOAD MEMORY, EXAMINE MEMORY. On a large sys-
tem, the monitor is often qualified as the executive program, when 

complex file management or task scheduling is also provided. The over-
all set of facilities is called an operating system. If files are residing on a 

disk, the operating system is qualified as the disk operating system, or 
DOS. 
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An editor is the program designed to facilitate the entry and the mod-

ification of text or progams. It allows the user to enter characters con-
veniently, append them, insert them, add lines, remove lines, search for 

characters or strings. It is an important resource for convenient and ef-
fective text entry. 

A debugger is a facility necessary for debugging programs. When a 
program does not work correctly, there may typically be no indication 
whatsoever of the cause. The programmer, therefore, wishes to insert 
breakpoints in his program in order to suspend the execution of the 
program at specified addresses, and to be able to examine the contents 
of registers or memory at this point. This is the primary function of a 
debugger. The debugger allows for the possibility of suspending a pro-
gram, resuming execution, examining, displaying and modifying the 
contents of registers or memory. A good debugger will be equipped 
with a number of additional facilities, such as the ability to examine 
data in symbolic form, hex, binary, or other usual representations, as 
well as to enter data in this format. 

A loader, or linking loader, will place various blocks of object code 

at specified positions in the memory and adjust their respective sym-
bolic pointers so that they can reference each other. It is used to relocate 
programs or blocks in various memory areas. A simulator or an emu-
lator program is used to simulate the operation of a device, usually the 
microprocessor, in its absence, when developing a program on a simu-
lated processor prior to placing it on the actual board. Using this ap-
proach, it becomes possible to suspend the program, modify it, and 
keep it in RAM memory. The disadvantages of a simulator are that: 

I—It usually simulates only the processor itself, not input/output 
devices 

2—The execution speed is slow, and one operates in simulated time. 
It is therefore not possible to test real-time devices, and synchronization 
problems may still occur even though the logic of the program may be 
found correct. 

An emulator is essentially a simulator in real time. It uses one proces-
sor to simulate another one, and simulates it in complete detail. 

Utility routines are essentially all the routines which are necessary in 
most applications and that the user wishes the manufacturer had pro-
vided! 

They may include multiplication, division and other arithmetic oper-
ations, block move routines, character tests, input/output device han-

dlers (or "drivers"), and more. 
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THE PROGRAM DEVELOPMENT SEQUENCE 

We will now examine a typical sequence for developing an assembly-
level program. We will assume that all the usual software facilities are 
available in order to demonstrate their value. If they should not be 
available in a particular system, it will still be possible to develop pro-
grams, but the convenience will be decreased and, therefore, the 

amount of time necessary to debug the program is likely to be in-

creased. 
The normal approach is to first design an algorithm and define the 

data structures for the problem to be solved. Next, a comprehensive set 
of flowcharts is developed which represents the program flow. Finally, 
the flowcharts are translated into the assembly-level language for the 
microprocessor; this is the coding phase. 

Next, the program has to be entered on the computer. We will exam-
ine in the next section the hardware options to be used in this phase. 

The program is entered in RAM memory of the system under the 
control of the editor. Once a section of the program, such as one or 
more subroutines, has been entered, it will be tested. 

First, the assembler will be used. If the assembler did not already 
reside in the system, it would be loaded from an external memory, such 
as a disk. Then, the program will be assembled, i.e., translated into a 
binary code. This results in the object program, ready to be executed. 

One does not normally expect a program to work correctly the first 

time. To verify its correct operation, a number of breakpoints will nor-
mally be set at crucial locations where it is easy to test whether the inter-
mediate results are correct. The debugger will be used for this purpose. 
Breakpoints will be specified at selected locations. A "Go" command 
will then be issued so that program execution is started. The program 
will automatically stop at each of the specified breakpoints. The pro-
grammer can then verify, by examining the contents of the registers, or 
memory, that the data so far is correct. If it is correct, we proceed until 
the next breakpoint. Whenever we find incorrect data, an error in the 
program has been detected. At this point, the programmer normally 
refers to his program listing and verifies whether his coding has been 
correct. If no error can be found in the programming, the error might 
be a logical one and one might refer to the flowchart. We will assume 
here that the flowcharts have been checked by hand and are assumed to 

be reasonably correct. The error is likely to come from the coding. It 
will, therefore, be necessary to modify a section of the program. If the 

symbolic representation of the program is still in the memory, we will 
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simply re-enter the editor and modify the required lines, then go 
through the preceding sequence again. In some systems, the memory 
available may not be large enough, so that it is necessary to flush out 
the symbolic representation of the program onto a disk or cassette prior 
to executing the object code. Naturally, in such a case, one would have 
to reload the symbolic representation of the program from its support 
medium prior to entering the editor again. 

The above procedure will be repeated as long as necessary until the 
results of the program are correct. Let us stress that prevention is much 
more effective than cure. A correct design will typically result in a pro-
gram which runs correctly very soon after the usual typing mistakes or 
obvious coding errors have been removed. However, sloppy design may 
result in programs which will take an extremely long time to be de-
bugged. The debugging time is generally considered to be much longer 
than the actual design time. In short, it is always worth investing more 
time in the design in order to shorten the debugging phase. 

However, using this approach, it is possible to test the overall organi-
zation of the program, but not to test it in real time with input/output 
devices. If input/output devices are to be tested, the direct solution con-
sists of transferring the program onto EPROM's and installing it on the 
board and then watching whether it works. 

There is a better solution. It is the use of an in-circuit emulator. An 
in-circuit emulator uses the Z80 microprocessor (or any other one) to 
emulate a Z80 in (almost) real time. It emulates the Z80 physically. The 
emulator is equipped with a cable terminated by a 40-pin connector, ex-
actly identical to the pin-out of a Z80. This connector can then be in-
serted on the real application board that one is developing. The signals 
generated by the emulator will be exactly those of the Z80, only perhaps 
a little slower. The essential advantage is that the program under test 
will still reside in the RAM memory of the development system. It will 
generate the real signals which will communicate with the real in-
put/output devices that one wishes to use. As a result, it becomes possi-
ble to keep developing the program using all the resources of the devel-
opment system (editor, debugger, symbolic facilities, file system) while 
testing input/output in real time. 

In addition, a good emulator will provide special facilities, such as a 
trace. A trace is a recording of the last instructions or status of various 
data busses in the system prior to a breakpoint. In short, a trace pro-
vides the film of the events that occurred prior to the breakpoint or the 
malfunction. It may even trigger a scope at a specified address or upon 
the occurrence of a specified combination of bits. Such a facility is of 
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great value, since when an error is found it is usually too late. The in-
struction, or the data, which caused the error has occurred prior to the 
detection. The availability of a trace allows the user to find which seg-
ment of the program caused the error to occur. If the trace is not long 
enough, we will simply set an earlier breakpoint. 

NON 

•031511Ne 

CA% 
0.1.111 

0,101.01111 

viena. 
CIBULCNI 

01.00A. CO!TCT 

001 

Fig. 10.2: A Typical Memory Map 

This completes our description of the usual sequence of events in-
volved in developing a program. Let us now review the hardware alter-
natives available for developing programs. 
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HARDWARE ALTERNATIVES 

Single-Board Microcomputer 

The single-board microcomputer offers the lowest cost approach to 
program development. It is normally equipped with a hexadecimal key-
board, plus some function keys, plus 6 LED's which can display ad-
dress and data. Since it is equipped with a small amount of memory, an 
assembler is not usually available. At best, it has a small monitor and 
virtually no editing or debugging facilities, except for a very few com-
mands. All programs must, therefore, be entered in hexadecimal form. 
They will also be displayed in hexadecimal form on the LED's. A sin-
gle-board microcomputer has, in theory, the same hardware power as 
any other computer. Simply because of its restricted memory size and 
keyboard, it does not support all the usual facilities of a larger system 
and makes program development much longer. Because it is tedious to 

develop programs in hexadecimal format, a single board microcom-
puter is best suited for education and training where programs of lim-
ited length have to be developed and their short length is not an obstacle 
to programming. Single-boards are probably the cheapest way to learn 
programming by doing. However, they cannot be used for complex 
program development unless additional memory boards are attached 
and the usual software aids are made available. 

The Development System 

A development system is a microcomputer system equipped with a 
significant amount of RAM memory (32K, 48K) as well as the required 
input/output devices, such as a CRT display, a printer, disks, and, usu-

ally, a PROM programmer, as well as, perhaps, an in-circuit emulator. 
A development system is specifically designed to facilitate program 

development in an industrial environment. It normally offers all, or 
most, of the software facilities that we have mentioned in the preceding 
section. In principle, it is the ideal software development tool. 

The limitation of a microcomputer development system is that it may 
not be capable of supporting a compiler or an interpreter. This is be-
cause a compiler typically requires a very large amount of memory, 
often more than is available on the system. However, for developing 
programs in assembly-level language, it offers all the required facilities. 
But because development systems sell in relatively small numbers com-
pared to hobby computers, their cost is significantly higher. 
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Hobby-Type Microcomputers 

The hobby-type microcomputer hardware is naturally exactly analo-
gous to that of a development system. The main difference lies in the 

fact that it is normally not equipped with the sophisticated software 
development aids which are available on an industrial development sys-
tem. As an example, many hobby-type microcomputers offer only ele-
mentary assemblers, minimal editors, minimal file systems, no facilities 
to attach a PROM programmer, no in-circuit emulator, no powerful 
debugger. They represent, therefore, an intermediate step between the 
single-board microcomputer and the full microprocessor development 
system. For a user who wishes to develop programs of modest complex-
ity, they are probably the best compromise, since they offer the advan-
tage of low cost and a reasonable array of software development tools, 
even though they are quite limited as to their convenience. 

Time-Sharing System 

It is possible to rent terminals from several companies which will con-
nect to time-sharing networks. These terminals share the time of the 
larger computer and benefit from all the advantages of large installa-

tions. Cross assemblers are available for all microcomputers on vir-
tually all commercial time-sharing systems. A cross assembler is simply 
an assembler for, say, a Z80 which resides, for example, in an IBM370. 
Formally, a cross assembler is an assembler for microprocessor X, 
which resides on processor Y. The nature of the computer being used is 
irrelevant. The user still writes a program in Z80 assembly-level lan-
guage, and the cross assembler translates it into the appropriate binary 
pattern. The difference, however, is that the program cannot be ex-
ecuted at this point. It can be executed by a simulated processor, if one 
is available, provided it does not use any input/output resources. This 
solution is used, therefore, only in industrial environments. 

In-House Computer 

Whenever a large in-house computer is available, cross assemblers 
may also be available to facilitate program development. If such a com-
puter offers time-shared service, this option is essentially analogous to 
the one above. If it offers only batch service, this is probably one of the 
most inconvenient methods of program development, since submitting 
programs in batch mode at the assembly level for a microprocessor re-
sults in a very long development time. 
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Front Panel or No Front Panel? 

The front panel is a hardware accessory often used to facilitate pro-
gram debugging. It has traditionally been a tool for conveniently dis-
playing the binary contents of a register or of memory. However, all the 

functions of the control panel may be accomplished from a terminal, 
and the dominance of CRT displays now offers a service almost equiva-
lent to the control panel by displaying the binary value of bits. The ad-
ditional advantage of using the CRT display is that one can switch at 
will from binary representation to hexadecimal, to symbolic, to decimal 
(if the appropriate conversion routines are available, naturally). The 
disadvantage of the CRT is that one must hit several keys to obtain the 
appropriate display rather than turn a knob. However, since the cost of 
providing a control panel is quite substantial, most recent microcom-
puters have abandoned this debugging tool. The value of the control 
panel is often considered more on the basis of emotional arguments in-
fluenced by one's own past experience than by the use of reason. It is 
not indispensable. 

Summary of Hardware Resources 

Three broad cases may be distinguished. If you have only a minimal 
budget and if you wish to learn how to program, buy a single-board 
microcomputer. Using it, you will be able to develop all the simple pro-
grams in this book and many more. Eventually, however, when you 
want to develop programs of more than a few hundred instructions, 
you will feel the limitations of this approach. 

If you are an industrial user, you will need a full development system. 

Any solution short of the full development system will cause a signifi-
cantly longer development time. The trade-off is clear: hardware re-

sources vs. programming time. Naturally, if the programs to be devel-
oped are quite simple, a less expensive approach may be used. How-
ever, if complex programs are to be developed, it is difficult to Justify 
any hardware savings when buying a development system, since the 
programming costs will be by far the dominant cost of the project. 

For a personal computerise, a hobby-type microcomputer will typi-
cally offer sufficient, although minimal, facilities. Good development 
software is still to come for many of the hobby computers. The user will 
have to evaluate his system in view of the comments presented in this 
chapter. 

Let us now analyze in more detail the most indispensable resource: 

the assembler. 
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THE ASSEMBLER 

We have used assembly-level language throughout this book without 
presenting the formal syntax or definition of assembly-level language. 

The time has come to present this definition. An assembler is designed 
to allow the convenient symbolic representation of the user program, 
and yet to make it simple for the assembler program to convert these 
mnemonics into their binary representation. 

Assembler Fields 

When typing in a program for the assembler, we have seen that fields 
are used. They are: 

The label field. optional, which may contain a symbolic address for 

the instruction that follows. 
The instruction field, which includes the opcode and any operands. 

(A separate operand field may be distinguished.) 
The C0111111elli field. far to the right, which is optional and is intended 

to clarify the program. 

These fields are shown on the programming form in Figure 10.3. 

Once the program has been fed to the assembler, the assembler will 
produce a listing of it. When generating a listing, the assembler will 
provide three additional fields, usually on the left of the page. An ex-
ample appears on Figure 10.4. On the far left is the line number. Each 
line which has been typed by the programmer is assigned a symbolic line 
number. 

The next field to the right is the actual address field, which shows in 
hexadecimal the value of the program counter which will point to that 
instruction. 

Moving still further to the right, we find the hexadecimal representa-
tion of the instruction. 

This shows one of the possible uses of an assembler. Even if we are 
designing programs for a single-board microcomputer which accepts 

only hexadecimal, we should still write the program in assembly-level 
language, providing we have access to a system equipped with an as-

sembler. We can then run the programs on the system, using the assem-
bler. The assembler will automatically generate the correct hexadecimal 
codes on our system. This shows, in a simple example, the value of ad-
ditional software resources. 
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Fig. 10.3: Microprocessor Programming Form 
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Tables 

When the assembler translates the symbolic program into its binary 

representation, it performs two essential tasks: 

1—It translates the mnemonic instructions into their binary en-
coding. 

2—It translates the symbols used for constants and addresses into 
their binary representation. 

In order to facilitate program debugging, the assembler shows at the 
end of the listing the equivalence between the symbol used and its hexa-
decimal value. This is called the symbol table. 

Some symbol tables will not only list the symbol and its value, but 
also the line numbers where the symbol occurs, thereby providing an 
additional facility. 

Error Messages 

During the assembly process, the assembler will detect syntax errors 

and include them as part of the final listing. Typical diagnostics in-
clude: undefined symbols, label already defined, illegal opcode, illegal 
address, illegal addressing mode. Many more detailed diagnostics are 
naturally desirable and are usually provided. They vary with each as-
sembler. 

The Assembly Language 

Opcodes have already been defined. We will here define the symbols, 
constants and operators which may be used as part of the assembler 
syntax. 

Symbols 

Symbols are used to represent numerical values, either data or ad-
dresses. Symbols may include up to six characters, and must start with 

an alphabetical character. The characters are restricted to letters of the 
alphabet and numbers. Also, the user may not choose names identical 
to the opcodes utilized by the Z80, the names of registers such as A,B, 
C,D,E,H,L, B.C. DE, HL, AF, BC, DE, IX, IY. SP, as well as the 
various short names used as pseudo-operators by the assembler. The 
names of these assembler "directives" are listed below in the corre-
sponding sections. Also, the abbreviations used to designate the flags 
should not be used as symbols: C,Z.NI,PE,NC.P,PO,NZ,M. 
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Assigning a Value to a Symbol 

Labels are special symbols whose values do not need to be defined by 
the programmer. The value will automatically be defined by the assem-
bler program whenever it finds that label. The label value thus auto-
matically corresponds to the address of the instruction generated at the 
line where it appears. Special pseudo-instructions are available to force 
a new starting value for labels, or to assign them a specific value. 

0900 000/ 111,0 elltl•111 
401,30, 000: !WRA0 14. 090011 
10201,1  0003 nrIMP 1•L 079:0 
!09011 	 0riA0 M 

100% . 
0100 	F0400002 0006 MAIM LP Pc,,  m1,01., :1 1131. 	fill 	1 i,1119 1010 
0101 	06011 0007 rim hat HI 	5 An I 
010A 	r0S1.070? 0000 LP Pr. 11010/.. ilAP 	/01111- 1.1.90/1. 111113 
0100 	1600 0009 EP 11..0 .0 LAI 
010( 	210000 .010 10 M .0 .511 	1.1 .all 
0101- 	LPAY •1011 NM 8 Ila '01111 	n1111111 	111< 101 1010 rearin 
0111 	3001 0011 JI. 10..1111(.04! 1L1 	5:01.1.1 
011.1 	19 0013 M•I. m .19: M 
0114 0014 rumbh ILA 4:0111 	Mt 1.f11 
4116 	CPI? 0015 hi .. ;....193. 	011 	1:1 	se 
01111 	0% !air 10.: 9  ...I ill n1 01 	'MI 1 1 1000 
0619 	010101 .co: 0:.001 . 
031c 	4:040: v01n LP .14.5.40,.1k .11111 	!.:I 	..:ot 
4111 1011011. 00/9 Lnp 

Fig. 10.4: Assembler Output—An Example 
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However, other symbols used for constants or memory addresses 
must be defined by the programmer prior to their use. 

A special assembler directive may be used to assign a value to any 
symbol. A directive is essentially an instruction to the assembler which 
will not be translated into an executable statement. For example, the 
constant LOG will be defined as: 

LOG DFW 3002H 

This assigns the value 3002 hexadecimal to the variable LOG. The 
assembler directives will be examined in detail in a later section. 

Constants or Literals 

Constants may traditionally be expressed either in decimal, in hexa-
decimal, in octal, or in binary, or as alphanumeric strings. In order to 
differentiate between the base used to represent the number, a symbol 
must be used. To load "0" into the accumulator, we will simply write: 

LD A, 0 

Optionally a "D" may be used at the end of the constant. 
A hexadecimal number will be terminated by the symbol "H". To 

load the value "FF" into the accumulator, we will write: 

LD A, OFFH 

An octal symbol is terminated by the symbol "0" or "Q". A binary 
symbol is terminated by "B". 

For example, in order to load the value "11111111" into the accumu-
lator, we will write: 

LD A, 1111111IB 

Literal ASCII characters may also be used in the literal field. The 
ASCII symbol must be enclosed in single quotes. 

For example, in order to load the symbol "S" into the accumulator, 
we will write: 

LD A, 'S' 

Exercise 10.1: Will the following two instructions load the same value 
in the accumulator: LD A. '5', and LD A, 5H? 
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Note that in the Zilog convention, parentheses denote an address. 
For example: 

LD A, (10) 

specifies that the accumulator is loaded from the contents of memory 
location 10 (decimal). 

Operators 

In order to further facilitate the writing of symbolic programs, as-
semblers allow the use of operators. At a minimum, they should allow 
plus and minus so that one can specify, for example: 

LD A, (ADDRESS) 
LD A, (ADDRESS +I) 

It is important to understand that the expression ADDRESS + I will 
be computed by the assembler in order to determine the actual memory 
address which must be inserted as the binary equivalent. It will be com-
puted at assembly time, not at program-execution time. 

In addition, more operators may be available, such as multiply and 
divide, a convenience when accessing tables in memory. More special-
ized operators may be also available, such as greater than and less 
than, which truncate a two-byte value respectively into its high and low 
byte. 

Naturally, an expression must evaluate to a positive value. Negative 
numbers may normally not be used and should be expressed in a hexa-
decimal format. 

Finally, a special symbol is traditionally used to represent the current 
value of the address of the line: "8". This symbol should be interpreted 
as "current location" (value of PC). 

Exercise 10.2: What is the difference between the following instruc-
tions? 

LD A, 10101010B 
LD A, (10101010B) 

Exercise 10.3: What is the effect of the following instruction? 

JR NC, $ — 2 

Expressions 

The Z80 assembler specifications allow a wide range of expressions 
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with arithmetic and logical operations. The assembler will evaluate the 
expressions in a left-to-right manner, using the priorities specified by 
the table in Figure 10.5. Parentheses may be used to enforce a specific 
order of evaluation. However, the outermost parentheses will denote 
that the contents are to be treated as an address. 

Assembler Directives 

Directives are special orders given by the programmer to the assem-
bler, which result either in storing values into symbols or into the mem-
ory, or in controlling the execution or printing modes of the assembler. 
The set of commands which specifically controls the printing modes of 
the assembler is also called "commands" and is described in a separate 

section. 
To provide a specific example, let us review here the 11 assembler 

directives available on the Zilog development system: 

ORG nn 

This directive will set the assembler address counter to the value nn. In 
other words, the first executable instruction encountered after this 
directive will reside at the value nn. It can be used to locate different 
segments of a program at different memory locations. 

EQU nn 

This directive is used to assign a value to a label. 

DEFL nn 

This directive also assigns a value nn to a label, but may be repeated 
within the program with different values for the same label, whereas 
EQU may be used only once. 

DEFB 'S' 

This directive assigns eight-bit contents to a byte residing at the current 
reference counter. 

DEFB 'S' 

assigns the ASCII value of "S" to the byte. 

DEFW nn 

This assigns the value nn to the two-byte word residing at the current 
reference counter and the following location. 
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OPERATOR FUNCTION PRIORITY 

+ UNARY PLUS I 
— UNARY MINUS I 
. NOT. or \ LOGICAL NOT I 
. RES. RESULT I 
" EXPONENTIATION 2 

• MULTIPLICATION 3 
/ DIVISION 3 

.MOD. MODULO 3 

.SHR. LOGICAL SHIFT RIGHT 3 

.SHL. LOGICAL SHIFT LEFT 3 
+ ADDITION 4 

SUBTRACTION 4 
.AND. orb LOGICAL AND 5 
.OR. or I LOGICAL OR 6 
.XOR. LOGICAL XOR 6 
.EQ. or = EQUALS 7 

.GT. or > GREATER THAN 7 

.LT. or 	< LESS THAN 7 

.UGT. UNSIGNED GREATER THAN 7 

.ULT. UNSIGNED LESS THAN 7 

Fig. 10.5: Operator Precedence 

DEFS nn 

reserves a block of memory size nn bytes, starting at the current value 
of the reference counter. 

DEFM `S' 

stores into memory the string 'S' starting at the current reference coun-
ter. It must be less than 63 in length. 

MACRO PO PI ...Pn 

is used to define a label as a macro, and to define its formal parameter 
list. Macros are defined in another section below. 

END 

indicates the end of the program. Any other statements following it will 
be ignored. 

ENDM 

is used to mark the end of a macro definition. 
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Assembler Commands 

Commands are used to modify the format of the listing to control the 
printing modes of the assembler. All commands start with a star in col-
umn one. Seven commands are provided by the Z80 assembler. Typical 

examples are: 

EJECT 

which causes the listing to move to the top of the next page; and 

LIST OFF 

which causes the printing to be suspended, effective with this com-

mand. The others are: "*HEADING S", "LIST ON", "•MACLIST 
ON", "•MACLIST OFF", "•INCLUDE FILENAME". 

Macros 

A macro is simply a name assigned to a group of instructions. It is a 
convenience to the programmer. If a group of instructions is used sev-
eral times in a program, we could define a macro to represent them, in-
stead of always having to write this group of instructions. 

As an example, we could write: 

SAVREG MACRO 
PUSH AF 
PUSH BC 
PUSH DE 
PUSH HL 

ENDM 

then simply write the name "SAVREG" instead of the above instruc-

tions. Any time that we write SAVREG, the five corresponding lines 
will get substituted instead of the name. An assembler equipped with a 
macro facility is called a macro-assembler. When the macro assembler 
encounters a SAVREG, it performs a mere physical substitution of 
equivalent lines. 

Macro or Subroutine? 

At this point, a macro may seem to operate in a way analogous to a 
subroutine. This is not the case. When the assembler is used to produce 
the object code, any time that a macro name is encountered, it will be 
replaced by the actual instructions that it stands for. At execution time, 
the group of instructions will appear as many times as the name of the 
macro did. 
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By contrast, a subroutine is defined only once, and then it can be 
used repeatedly; the program will jump to the subroutine address. A 
macro is called an assembly-time facility. A subroutine is an execution-
rune facility. Their operation is quite different. 

Macro Parameters 

Each macro may be equipped with a number of parameters. As an 
example, let us consider the following macro: 

SWAP MACRO NM, #N, NT 
LD 	A, A4 	M INTO A 
LD 	 tn., A 	A INTO T (=N) 
LD 	A, #1s1 	N INTO A 
LD 	#M, A 	: A INTO M ( = N) 
LD 	A, rr 	T INTO A 
LD 	#N, A 	; A INTO N ( = T) 
END 

This macro will result in swapping (exchanging) the contents of mem-
ory locations M and N. A swap between two registers, or two memory 
locations, is an operation which is not provided by the Z80. A macro 

may be used to implement it. "T" in this instance is simply the name 
for a temporary storage location required by the program. As an exam-
ple, let us swap the contents of memory locations ALPHA and BETA. 
The instruction which does this appears below: 

SWAP (ALPHA), (BETA), (TEMP) 

In this instruction, TEMP is the name of some temporary storage 
location, which we know to be available and which can be used by the 
macro. The resulting expansion of the macro appears below: 

LD A, (ALPHA) 
LD (TEMP), A 
LD A, (BETA) 
LD (ALPHA), A 
LD A, (TEMP) 
LD (BETA), A 

The value of a macro should now be apparent: it is convenient for the 

programmer to use pseudo-instructions, which have been defined with 
macros. In this way, the apparent instruction set of the Z80 can be ex-
panded at will. Unfortunately, one must bear in mind that each macro 
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directive will expand into whatever number of instructions were used. A 
macro will, therefore, run more slowly than any single instruction. Be-
cause of its convenience for the development of any long program, a 

macro facility is highly desirable for such applications. 

Additional Macro Facilities 

Many other directives and syntactic facilities may be added to a sim-

ple macro facility; macros may be nested, i.e., a macro call may appear 

within a macro definition. Using this facility, a macro may modify it-
self with a nested definition! A first call will produce one expansion, 
whereas subsequent calls will produce a modified expansion of the same 

macro. This is allowed by the Z80 assembler, but nested definitions are 
not allowed. 

CONDITIONAL ASSEMBLY 

Conditional assembly is another facility provided in the Z80 assem-
bly. With a conditional assembly facility, the programmer can devise 
programs for a variety of cases, and then conditionally assemble the 
segments of codes required by a specific application. As an example, an 
industrial user might design programs to take care of any number of 
traffic lights at an intersection, for a variety of control algorithms. He 
will then receive the specifications from the local traffic engineer, who 
specifies how many traffic lights there should be and which algorithms 
should be used. The programmer will then simply set parameters in his 
program and assemble conditionally. The conditional assembly will 
result in a "customized" program which will retain only those routines 
which are necessary for the solution to the problem. 

Conditional assembly is, therefore, of specific value to industrial 
program generation in an environment where many options exist and 
where the programmer wishes to assemble portions of programs quick-
ly and automatically in response to external parameters. 

Only two conditional pseudo-OPs are provided in the standard 
micro-assembler version supplied by Zilog. They are respectively: 

COND NN and ENDC 

where NN represents an expression. The pseudo-OP "COND NN" will 
result in the evaluation of the expression NN. As long as the expression 
evaluates to a true value (non-zero), the statement following the COND 

will be assembled. However, if the expression should be false, i.e., eval- 
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uate to a zero value, the assembly of all subsequent statements will be 
disabled up to the ENDC instruction. 

ENDC is used to terminate a COND, so that the assembly of subse-
quent statements is re-enabled. The COND pseudo-OP's cannot be 
nested. 

In theory, more powerful conditional assembly facilities could exist, 
with "IF" and "ELSE" specification. They may become available in 
future versions of the assembler. 

SUMMARY 

This chapter has presented the techniques and the hardware and soft-
ware tools required to develop a program, along with the various trade-
offs and alternatives. 

These range at the hardware level from the single-board microcom-
puter to the full development system; at the software level, from binary 
coding to high-level programming. 

You will have to select them on the basis of your goals and resources. 
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CHAPTER 11 

CONCLUSION 

We have now covered all important aspects of programming, from 
definitions and basic concepts to the internal manipulation of the Z80 
registers, to the management of input/output devices, as well as the 

characteristics of software development aids. What is the next step? 
Two views can be offered, the first one relating to the development of 

technology, the second one relating to the development of your own 
knowledge and skill. Let us address these two points. 

TECHNOLOGICAL DEVELOPMENT 

The progress of integration in MOS technology makes it possible to 
implement more and more complex chips. The cost of implementing the 
processor function itself is constantly decreasing. The result is that 
many of the input/output chips or the peripheral-controller chips used 
in a system now incorporate a simple processor. This means that most 

LSI chips in the system are becoming programmable. An interesting 

conceptual dilemma is now developing. In order to simplify the soft-
ware design task, as well as to reduce the component count, the new 
1/O chips now incorporate sophisticated programmable capabilities: 

many programmed algorithms are now integrated within the chip. 
However, as a result, the development of programs is complicated by 

the fact that all these input/output chips are radically different and 
need to be studied in detail by the programmer! Programming the 
system is no longer programming the microprocessor alone, but also 
programming all the other chips attached to it. The learning time for 
every chip can be significant. 

Naturally, this is only an apparent dilemma. If these chips were not 
available, the complexity of the interface to be realized, as well as of the 
corresponding programs, would be still greater. The new complexity 

that is introduced is the need to program more than just a processor, 
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and to learn the various features of the different chips in a system. How-
ever, it is hoped that the techniques and concepts presented in this book 
will make this a reasonably easy task. 

THE NEXT STEP 

You have now learned the basic techniques required to program sim-
ple applications on paper. That was the goal of this book. The next step 
is actual practice for which there is no substitute. It is impossible to learn 
programming completely on paper; experience is required. You should 

now be in a position to start writing your own programs. It is hoped 
that this journey will be a pleasant one. 
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APPENDIX A 
HEXADECIMAL CONVERSION TABLE 

HEX 0122 4  5 5 7 5 9 A BCPEE 00 000 ;
C

I—
rv

n
v

n
b

n
m

 e
n

<
C

O
U

0
11.111. 

012 	3 	456 7 6 9M11 12 13 14 15 0 0 
16 17 18 19 20 21 22 23 24 25 26 27 20 29 30 31 256 40% 

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 512 8192 

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 765 12286 

64 65 66 67 66 69 70 71 72 73 74 75 76 77 78 79 1024 16384 

BO 81 82 83 54 05 86 87 161 89 90 91 92 93 94 95 1280 20480 

96 97 98 99 100 101 102 103 104 to 106 107 10B 109 no III 1535 24575 

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 092 28572 

128 129 130 131 132 133 134 135 135 137 130 139 140 141 142 143 2045 32768 

144 145 145 147 146 149 150 151 152 153 154 155 156 157 1511 159 2304 36564 

160 161 162 163 164 165 IN 167 160 169 170 171 172 173 174 175 2560 40960 

175 177 176 179 MO MI 13k 18] 184 MS 106 187 188 189 190 191 2016 45056 

192 193 194 195 195 197 MB 199 200 201 202 203 204 205 206 207 3072 49152 

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 3328 53248 

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 3584 57344  

240 241 242 243 244 245 246 247 246 249 250 251 252 253 254 255 3810 51440 

5 4 3 2 I 0 

HEX' 	DEC HEX DEC HEXI DEC HEX DEC HEX DEC HEX DEC 

0 0 0 0 0 0 0 0 0 0 0 0 

I 1,048.576 I 65,536 I 4,096 I 256 1 16 I I 

2 2,097,152 2 131,072 2 8,192 2 512 2 32 2 2 

3 3.145.728 3 196,608 3 12.288 3 768 3 48 3 3 

4 4,194,304 4 262,144 4 16,384 4 1,024 4 64 4 4 

5 5,242,880 5 327,680 5 20,480 5 1.280 5 80 5 5 

6 6.291,456 6 393.216 6 24.576 6 1,536 6 96 6 6 
7 7,340,032 7 458,752 7 28,672 7 1,792 7 112 7  7 

8 8,388.608 8 524,288 8 32.768 8 2,048 8 128 8 8 
9 9,437,184 9 589.824 9 36.864 9 2,304 9 144 0 0 

A 10,485.760 A 655,360 A 40,960 A 2,560 A 160 A 10 

B 11.534.336 B 720,896 B 45.056 B 2.816 B 176 B 11 

C 12,582,912 C 786,432 C 49,152 C 3,072 C 192 C 12 

D 13,631,480 D 851,968 D 53,248 D 3,328 D 20B D 13 

E 14,680,064 E 917,504 E 57,344 E 3,584 E 224 E 14 

F 15.728.640 F 983,040 F 61,440 F 3.840 F 240 F 15 
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APPENDIX B 
ASCII CONVERSION TABLE 

HEX 
LSO 
0 
1 
2 

MSD 	0 1 2 3 4 5 6 7 
BITS 000 001 010 011 100 101 110 111 
0000 
0001 
0010 

NUL 
SOH 
SD( 

DLE 
DC1 
DC2 

SPACE 
I 

0 
1 
2 

@ 
A 
BR 

P 
Q 

— 
a 
b 

p 
q 
r 

3 0011 ETX DC3 # 3 CS c S 
4 0100 EOT DC4 $ 	4 D T d t 
5 0101 ENQ NAK % 5 E U e u 
6 0110 ACK SYN 8 6F V I v 
7 0111 BEL ETB 7 G W g w 
8 1000 BS CAN ( 8 FIX h x 
9 1001 HT EM ) 9 I Yi y 
A 1010 LF SUB J Z I z 
13 1011 VT ESC + ;K [ k { 
C 1100 FF FS < L \ I .._ 
D 1101 CR GS — = M ] m 1 
E 1110 SO RS > N A n ..• 
F 1111 SI US / 9  0 e— o DEL 

THE ASCII SYMBOLS 

NUL —Null 
50K —Start of Heading 
SIX —Siert of Text 
ETX —End of Text 
EOT —End of Transmission 
ENO —Enquiry 
ACK —Acknowledge 
BEL —Bell 
BS —Backspace 
HT 	—Horizontal lbhulatfon 
LF 	—Una Feed 
VT 	—Vertical KibulatIon 
FF 	—Farm Feed 
CR 	—Caning, Return 
SO 	—Shill Out 
SI 	—Shift In 

DLE —Data Link Escape 
DC 	—Device Control 
NAK —Negative Acknowledge 
SYN —Synchronous Idle 
ETB —End of Transmission Block 
CAN —Cancel 
EM 	—End of Medium 
SUB —Substitute 
ESC —Escape 
FS 	—File Separator 
GS 	—Group Separator 
RS 	—Record Separator 
US 	—Unit Separator 
SP 	—Space (Blank) 
DEL —Delete 

605 



APPENDIX C 
RELATIVE BRANCH TABLES 

FORWARD RELATIVE BRANCH TABLE 

V.:M5 
0 I 7 3 4 6 	6 7 11 9 ABC CI F 

0 0 i 2 3 4 5 	6 7 8 9 10 II 12 13 1.1 15 

16 12 18 19 20 21 	22 23 24 25 26 N 28 29 30 31 

2 32 33 34 35 36 37 	38 N 40 .11 42 43 44 45 40 47 

3 48 49 50 51 52 53 	54 55 So 57 58 N 60 61 62 63 

4 64 65 66 07 6l3 69 	70 71 n 73 74 75 70 77 711 79 

5 BO 81 E12 03 IN 85 	at, ei ea 89 90 91 92 93 94 95 

6 96 97 98 99 100 101102 103 104 105 106 107 100 109 110 III 

7 112 113 114 115 116 
II? 
	118 119 120 121 122 123 124 125 126 127 

BACKWARD RELATIVE BRANCH TABLE 

150 

11A5 
0 i 2 3 4 5 6 7 8 9 A BCD 8 F 

8 178 127 120 125 124 123 122 121 120 119 118 117 116 115 114 113 

9 112 111 110 109 1013 107 100 105 104 103 102 101 100 99 98 97 

A 90 95 94 93 92 91 90 89 88 87 /36 85 84 8] 82 81 

B 80 79 78 77 76 75 74 73 72 71 70 69 68 67 00 65 

C 64 63 62 61 60 59 58 57 50 55 54 53 52 51 50 49 

D 48 37 46 45 44 4] .12 41 40 39 38 37 30 35 34 33 

32 31 30 29 28 27 26 25 24 2] 22 21 20 19 18 17 

16 15 14 13 12 II lo 9 0 7 6 i a 3 2 I 
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APPENDIX D 
DECIMAL TO BCD CONVERSION 

DECIMAL BCD DEC BCD DEC BCD 

0 0000 10 00010000 90 10010000 

I 0001 11 00010001 91 10010001 

2 0010 12 00010010 92 10010010 

3 0011 13 00010011 93 10010011 

4 0100 14 00010100 94 10010100 

5 0101 15 00010101 95 10010101 

6 0110 16 00010110 96 10010110 

7 0111 17 00010111 97 1001011? 

8 1000 18 00011000 98 10011000 

9 1001 19 00011001 99 10011001 
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APPENDIX E 
Z80 INSTRUCTION CODES 

(The literal d is shown as 05 in the object code.) 

OBJ 	 SOURCE 
CODE 	 STATEMENT 

BE 	 ADC AMU 
DDBEOS 	ADC 	AA I Xedl 
F D8E05 	ADC 	AIIY•dI 
BF 	 ADC AA 

B8 	 ADC 	A.B 

89 	 ADC A.0 

BA 	 ADC A.D 
BB 	 ADC A,E 
BC 	 ADC 	A ,H 

so 	 ADC A.L 
CE20 	 ADC An 

EO4A 	ADC 	HL.13C 
ED5A 	ADC HL.DE  

ED6A 	ADC 	FILM L 
ED7A ADC HL.SP 

B6 	 ADD 	A.IHLI 
008605 	ADD 	A.IIX+d) 
F0EI605 	ADD 	A.11Y+dl 
87 	 ADD A.A 
80 	 ADO A.B 
81 	 ADD AC 
B2 	 ADD AD 
83 	 ADD A,E 
84 	 ADD 	A./I 
85 	 ADD A.L 
C520 	 ADD An 

09 	 ADD 	H L.BC 
19 	 ADD 	HL,DE 

29 	 ADD HL,HL 

39 	 ADD 	HL.SP 

0009 	ADD 	IX ,BC 
131319 	ADD 	I X.DE 
D029 	ADD 	I LI X 

0039 	ADD ILSE 

F1309 	 ADD 	IY.Bc 

FD19 	 ADD 	I Y,DE 

F029 	 ADD 	I Y,IY 

F039 	 ADD 	I Y,SP 

A6 	 AND 	IHL1 
1313A605 	AND 	I IX+dl 

FDA605 	AND 	IIY+dl 
Al 	 AND A 
AO 	 AND B 
Al 	 AND C 

A2 	 AND 0 
A] 	 AND E 
A4 	 AND H 
AS 	 AND L 

OBJ 

CODE 

SOURCE 

STATEMENT 

E620 AND n 

C846 BIT OAHU 
DOC80546 BIT 0,11X+d) 
FOCI:10546 BIT 0.11Y+d1 
C1347 BIT 0.A 
CB40 BIT 0.13 

CB41 BIT 0,C 
CB42 BIT 0.0 
CB43 BIT 0.E 
C844 BIT O.H 

C1345 BIT O,L 
CB4E BIT 1H LI 
ODCB0545 BIT .IIX+dl 

FDCB054E BIT 
CB4F BIT ,A 
CB48 BIT .I3 
CB49 BIT .0 
CB4A BIT .D 
CB4B BIT .E 
CB4C BIT 
CB4D BIT .L 
CB66 BIT 2.1H LI 

DDCB0556 BIT 2.11X.d/ 

FDC130556 BIT 2,11Y+d1 
CE157 BIT 2,A 
CBSD BIT 2,8 

CEI51 BIT 2.0 
CBS2 BIT 2.D 
CBS3 BIT 2,E 

CB54 BIT 2.H 
CB5E BIT 2,L 
CBSE BIT 3.IHLI  
DDCB055E BIT 3.11X+d1 
F DCBOSSE BIT 3,11Y+d1 
GIME BIT 3.A 
CBS8 BIT 3.B 
C1359 BIT 3,C 
CBSA BIT 3.D 
CI3513 BIT 3,E 

CBSC BIT 3,H 
CBSD BIT 3.L 
CB66 BIT 
D0CB0566 BIT 4,Il /OA) 

FDCB0566 BIT 4.11Y+d1 
CB67 BIT 4.A 

CB6O BIT 4,B 
CB61 BIT 4.0 
CB62 BIT 4.D 
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OBJ 	 SOURCE 

	

CODE 	STATEMENT 

C563 	 BIT 	4,E 
CB64 	 BIT 	4,H 
CB65 	 BIT 	4.L 
CB6E 	BIT 	5,IHLI  
ODCB056E 	BIT 	X+Ell 
FDC0056E 	BIT 	5.(1Y+911 
CB6F 	 BIT 	5,A 
CBES 	 BIT 	5.5 
CB69 	 BIT 	5.0 
CNA 	BIT 	5.0 
CB6B 	 BIT 	5.E 
CB6C 	BIT 	5.H 
C136D 	BIT 	5.L 
CB76 	 BIT 	6.IHLI 
DDCB0576 	BIT 	6.IIX+dl 
FOCB0576 	BIT 
CB77 	 BIT 	6A 
0070 	 BIT 	6.5 
C071 	 BIT 	6.0 
CB72 	 BIT 	5.D 
CB73 	 BIT 	6.E 
CB74 	 BIT 	6.H 
CB75 	 BIT 	6.L 
CB7E 	BIT 	TIM LI 
DDCB057E 	BIT 	7.11X+41 
FOCB057E 	BIT 	7.11Y.d) 
CB7F 	BIT 	7.A 
C137E1 	 BIT 	7.B 
CB79 	 BIT 	7.0 
CB7A 	BIT 	7.0 
CB7B 	 BIT 	7.E 
CB7C 	BIT 
C13713 	BIT 	7.L 
DCB905 	CA LL C." 
FC8405 	CA LL 
D4B405 	CALL NC.nn 

C98405 	CA LL 	NZ,nn 
F48405 	CA LL 	P.nn 
ECB405 	CALL PE nn 
E48405 	CALL PO nn 
CC8905 	CALL Z.nn 
C08405 CALL nn 
3F 	 CCF 
BE 	 CP 	IHLI 
DDBE05 	CP 	IIX+dI 
FDBE05 	CP 	IlY(d1 

BF 	 CP 	A 
58 	 CP 
B9 	 CP 
BA 	 CP 
BB 	 CP 
BC 	 CP 
BD 	 CP 
F E20 	 CP 
EDA9 	CPO 
EDB9 	CPOR  

OBJ 	 SOURCE 
CODE 	STATEMENT 

EDB1 	 CPIR 
EDA I 	CPI 
2F 	 CPL 
27 	 DAA 
35 	 DEC 	IHLI 
DD3505 	DEC 	11X+91/ 
FD35D5 	DEC 	IIY+d) 
30 	 DEC A 
05 	 DEC 	B 
OB 	 DEC BC 
OD 	 DEC C 
15 	 DEC 	0 
IS 	 DEC 	DE 
10 	 DEC 	E 
25 	 DEC H 
2B 	 DEC 	HL 
DOM DEC IX 
F02B 	DEC 	IT 
20 	 DEC 
3B 	 DEC 	SP 
F3 	 DI 
102E 	 DJNZ 
FB 	 El 
E3 	 EX 	ISPI ,HL 
DDE3 	EX 	ISPI.IX 
FOE] 	EX 	(SPLIT 
OB 	 EX 	AF ,AF' 
613 	 EX 	[WEIL 
DO 	 EXX 
76 	 HALT 
ED46 	 M 	0 
ED56 
FOSE 	 M 	2 
ED78 	 N 	AJCI 
ENO 	 N 	B.ICI 
6048 	 N 	C.ICI 
E D50 	 N 	0.1C1 
ED58 	 N 	E.ICI 
EDGO 
ED6B 	 N 	L .ICI 
34 	 NC 	IHLI 
DD]405 	NC 	11%441 
F D3405 	NC 	IlYsg9 

3C 	 NC 	A 
04 	 NC 
03 	 NC 	BC 
DC 	 NC 
14 	 NC 
13 	 NC 	DE 
1 C 	 NC 
24 	 NC 
23 	 NC 	HL 
0023 	 NC 	IX 
FD23 	 NC 	IV 
2C 	 NC 
3] 	 NC 	SP 
01320 	 N 	A In I 
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PROGRAMMING THE ZBO 

OBJ 
CODE 

SOURCE 
STATEMENT 

E L1AA 
EDBA 
EDA2 
E0B2 

IND 
!NOR 
IN I 
INIR 

C38405 JP nn 

E9 JP IHLI 

DDE9 JP 11X1 

F DE9 JP 11•'1 

0A8405 JP Olin 

F A8405 JP Mon 

028405 JP NC nn 

C28405 JP NZ,nn 

F28405 JP P nn 

E A8405 JP PE nn 

E28405 JP PO.nn 
CA8405 JP Z.nn 
182E JR 
307E JR NC." 

202E JR NZ .e 

282E JR 2,4 
1826 JR ,, 	..IL 

02 LD 1dCi A 
12 LD I DE1,4 
77 LO 1FILIA 
70 LD CHUM 

71 LD IHLI,C 
72 LID 1HLI.D 
73 LD !MLLE 
74 LD CHUM 
75 LD IHL1.L 
3620 LO (KOJI 

007705 LD 11X+d),A 

D07005 LD 11X+111.13 

007105 ID 11X+c1LC 

007205 LO 11X+1:11,0 

007305 LD II Widl.E 
007405 LO I I X+d1.14 

D07505 LD 11X+d1.1_ 

00360520 LD 0 /0:11.n 

F D7705 LD IIY+d1,A 

F07005 LD 11Y411,B 

F D7105 LD 11Y+dl,C 

F07205 LE) 11Y+ c11.0 

F07305 LD 0 Y+dI.E 

F D7405 LO 11Y+dl,H 

F D7505 LD 1IY+df,L 

F D350520 LO 11Y+d),n 
328405 LD 1nn1,A 
E0438405 LO InnI,BC 
E05313905 LO Inn),DE 

228405 LD Inn! HL 
00228405 LD Inn1.17( 
F0228405 LD Inn1.1Y 
E0738405 LD Innl.SP 
OA LD &MCI 
1A LO AIDE) 
7E LD 4,1111.1 

08.1 
CODE 

SOURCE 
STATEMENT 

OD7 EDS LD A,I1X+d) 

F 07E05 LO AA, Y+t11 

3A8405 LO 4,Inn) 

7F LO A,A 

78 LD AM 

79 LO A,C 

7A LD A.0 

7B LO A.E 

7C LD A H 

ED57 LO Ai 
7D LD A.L 
3E20 LD An 

E D 5F LD AR 
96 LO BAHL) 
004605 LD B.IIX+d) 
F1)4605 LD 13.11Y+w 
47 LO BA 
40 LEI BM 
41 LD 8.0 

42 1.1) 8,0 
43 LO B.E 
44 LD LH 
45 LD B.L 

0620 LE/ BA 

60488405 LD BC.1nnl 
018405 LD BC,nn 
4E LD C.IRL) 

DD4 EDS LD C,I1X+0 

FD9E05 LD C,11Y+d) 

4F LO CA 
48 LO CM 

49 LD C.0 

4A LD C,D 
4B LO C.E 
4C LD C.H 
40 LD C,L 
0E20 LO On 
56 LO D.IHLI 
005605 LD 0.11X+di 
F05605 LD 0.11Y+di 
57 LD D,A 
50 LO D.B 
51 LD D.0 
52 LD 0.0 
53 LD DM 
54 LO D.H 
55 LO D.L 
1620 1.1) D. n 
E0588405 LD 0 E.Innl 
118405 LD DE nn 
SE LO 5,1HLI 

005E05 LD E.11X+d1 
FD5E05 LD E.I1V+di 
5F LD E,A 

58 LD 6.8 
59 LD E.0 
5A LD E.D 
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APPENDIX 

OBJ 

CODE 

SOURCE 

STATEMENT 

OBJ 

CODE 

SOURCE 

STATEMENT 

5B LD E,E E083 OT I R 

5C LD E ,H E079 OUT 	(chi% 

SO LD E.L ED41 OUT 	(CIA 

1E20 LD E,n ED49 OUT 	ICI.0 

66 LO 11,01L1 ED51 OUT 	10.0 

0136605 LD H,(1X+E0 E059 OUT 	ICI.E 

FI36605 LD H,IIY•dl ED61 OUT 	IC1.11 

67 LO H.A EDGY OUT 	IC1.1. 

60 LD H.6 D320 OUT 	In1A 
61 LO KC EDAB OUTO 
62 LC H.0 EDA] OUTI 
63 LD H.E Fl POP 	AF 
64 LD H H CI POP 	BC 
65 LD H.L D1 POP 	DE 
2620 LO H,n E I POP 	HL 
2A8405 LD HL.Innl 0DE1 POP 	IX 
218405 LO HL,nn FDE1 POP 	I Y 
ED47 LO IA F5 PUSH 	AF 

002A13405 LC/ 1X,Innl CS PUSH 	BC 

00216405 LO I X.nn 05 PUSH 	DE 

F D2A8405 LO IY.Innl E5 PUSH 	HL 

F D218405 LD I Y.nn ODES PUSH 	IX 

GE LD OHL) FOES PUSH 	1 

CID6E05 LD L.I1XMII CE386 RES 	OM LI 

F 06E05 LD LI I `MAI ODCB0586 RES 	0.IIX+d) 

6F LO LA F DCB0586 RES 	D.lIV•dI 
66 LD L.B CB87 RES 	0,A 
69 LD L.0 CB80 RES 	0.8 
6A LD L.I3 0981 RES 	0,C 
68 LO L. E C682 RES 	MD 
SC LD L.H C883 RES 	0.E 
SO LO L,L C884 RES 	0.H 
2E20 LO Ln COBS RES 	01 
FDA F LP R,A CORE RES ANL/ 
E07613405 LO SP,Inn) DDCBOSBE RES 
F9 LD SP HL F DCB058E RES IY.E11 
ODF9 LD SP,I X CBBF RES A 
FDF9 LO SP.I Y CB138 RES .B 
318405 LD SP,nn 

CE189 RES .0 
EOA8 LDD CUBA RES .0 
WEB LO OR 

C886 RES .E 
EDAO WI 

CB8C RES 
EDBO LDIR 

CHO RES .L 
E044 NEG 

C696 RES 	2 	I ,IHL 
00 
86 

NOP 
OR I H L I DDCB0596 RES 	2,IIX•dI 

0138605 OR I I *MB F DCB 0596 RES 	2.IIV•dI 

FD8605 OR (MA) CR97 RES 	2,A 

B7 OR A CB90 RES 	2.8 

BO OR 8 C891 RES 	2.0 

61 OR C CR92 RES 	2.0 

82 OR 0 CO93 RES 	2.E 

83 OR E C894 RES 	2.H 

84 OR H CR95 RES 	2.L 

85 OR L C89E RES 	3 	LI 

F620 OR n EIDCB059E RES 	3.IIX+d) 

EOBB OT DR FDCB059E RES 	3.11Yedl 
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PROGRAMMING THE Z80 

OBJ 	 SOURCE 

CODE 	STATEMENT 

CHF RES 3,A 

CB98 	 RES 	3.9 

CR99 	 RES 	3.0 

CB9A 	RES 	3.0 

CHB 	 RES 	3.E 

CR9C 	RES 	3.H 

CB9D 	RES 	3.L 

CRAG 	RES 	4,1H LI 

DDC1305A6 	RES 	4,11%4E0 

F DCB05A6 	RES 	4.11Y+d) 

CBA7 	RES 	4.A 

CBAO 	RES 	4,9 

CBA1 	 RES 	4.0 

CBA2 	RES 	4,O 

CBA3 	RES 	4,E 

CBA4 	RES 	4,H 

GRAS 	RES 	4,L 

CBAE 	RES 	5.111 

ODC805AE 	RES 	5.11X+41 

F DC805AE 	RES 	5.11 N 410 
CRAF 	RES 	5.A 

CBA8 	RES 	5.B 

CBA9 	RES 	5.0 

CRAA 	RES 	5,D 

CRAB 	RES 	5.E 

CRAC RES SS 

CBAD 	RES 	5.L 
CBB6 RES UHL) 

DDC1305136 	RES 	6.11%44 

FDCB05E16 	RES 	6,11Y+d) 
CE1B7 	 RES 	6.A 
CBE° 	RES 	6.B 

C13131 	 RES 	6.0 
CB82 	 RES 	6.0 

C13133 	RES 	6.E 
CB94 	 RES 	6.H 

CBB5 	RES 	6.L 
CBBE 	RES 	7,(HL)  

DDCBOSBE 	RES 	7,11X+41 

FOCBOSBE 	RES 	7,11Y+4) 
CRRF 	RES 	7,A 

CLOS 	RES 	7,B 
CBB9 	 RES 	7.0 
CBBA 	RES 	7.0 

GLOB 	RES 	7.E 
CBBC 	RES 	7.H 
C131113 	RES 	7,L 
CO 	 RET 
08 	 RET C 
F8 	 RET M 
00 	 RET NC 
CO 	 RET NZ 

FO 	 RET P 
EB 	 RET 	PE 
E0 	 RET PO 
C8 	 RET Z  

OB.) 	 SOURCE 

CODE 	STATEMENT 

LOAD 	RETI 
E045 	RETN 
C816 	 RL 	(HU 
130030516 	RL 	(IX+dI 

FDCB0516 	RL 	IIV+d) 

CB17 	 RL 	A 

C810 	 RL 

CB11 	 RL 
CB12 	 RL 

CB13 	 RL 
CR14 	 RL 
CBI 5 	 RL 
17 	 RLA 
CB 06 	 RLC 	OIL) 

DOCE10506 	RLC 	11X+d) 

FoCB0506 	RLC 	IIY+d) 

CB07 	RLC A 

CBOO 	 RLC 

CB01 	 RLC C 
CB02 	 RLC 	13 

CB03 	 RLC 	E 

C1304 	 RLC 	H 

C905 	 RLC 	L 
07 	 RLCA 
ED6F 	RLD 

CB1E 	RR 	1HL) 

DDCB051 E 	RR 	11X+d) 

F008051E 	RR 	(IY+d) 

CB1 F 	 RR 	A 

CO18 	 RR 

CR19 	 RR 

C91 A 	RR 

CRIB 	 RR 

CB1C 	RR 

CB1D 	RR 
1F 	 RRA 
CBOE 	RRC (HU 
DOCB0513E 	RRC 	11X+41 
FOCB050E 	RRC 	I !Mid) 
CBOF 	RRC A 
C808 	RRC B 

C809 	RRC C 

CBOA 	RRC D 

C8OB 	RRC E 
UDC 	RRC H 

CBOD 	RRC L 
OF 	 RRCA 
ED67 	 REID 
C7 	 RST 	OCR 

CF 	 RST 	OBH 
D7 	 FIST 	10H 
OF 	 RST 	16H 
E7 	 RST 	20H 
EF 	 PST 	28H 
F7 	 FIST 	30H 
FF 	 RST 	38H 
DE20 	SBC 

612 



APPENDIX 

	

013.1 	 SOURCE 

	

CODE 	STATEMENT 

9E 	 SAC 	A .1F1L) 

DO9E05 	SAC 	A.11)(410 
F D9E0S 	SAC 	A.IIY+dI 
9F 	 SAC 	A .A 

98 	 SAC 	A,13 
99 	 SBC 	A.0 

9A 	 SAC 	A.D 
9B 	 SAC 	A,E 

9C 	 SBC 	A,H 
90 	 SBC 	A ,L. 
ED42 	 SAC 	HLAC  
ED52 	 SAC 	HL.DE 
ED62 	 SAC 	HL.H L 
ED72 	 513C 	H LSE 
37 	 SCF 
CRCS 	 SET 	0.IH L) 
DOCB05C6 	5ET 	0.11 X•ell 
F DC605C6 	SET 	OM Y+dl 
C8C7 	 SET 	0.A 
CBCO SET OR 
CBC1 	 SET 	0,C 
CBC2 	 SET 	0,D 

CBC3 	 SET 	0,E 
CBC4 	 SET 	0,H 

CBC5 	 SET 	0.L 
CBCE 	 SET 	UHL] 
DIDCBOSCE 	SET 	I,IIX+d) 
F DCB05CE 	SET 	1,11Y+d) 
CBCF 	 SET 

COCA 	 SET 	1.13 
COGS 	 SET 
CBCA 	 SET 	1,0 
COCA 	 SET 	I ,E 

CBCC 	 SET 	I ,H 
CBCO 	 SET 	I .L 
CBD6 	 SET 	2.11.1 LI 

DOC1305D6 	SET 	2.11X+dl 
F DC80506 	SET 	2.1IY +di 
CB 117 	 SET 	2,A 
C600 	 SET 	2,B 
CBD1 	 SET 	2,C 

CAM 	 SET 	2,D 
CBD3 	 SET 	2.E 
CBD4 	 SET 	2,H 

CADS 	 SET 	2.L 
CADS 	 SET 	3.I3 

CBDE 	 SET 	3.1H LI 

DOCBOSIDE 	SET 	3.11X.d) 
FOCAOSDE 	SET 	3.11Y+th 
CBDF 	 SET 	3,A 
CB D9 	 SET 	3,C 
CODA 	 SET 	3.13 
CODE 	 SET 	3,E 

CHOC SET 3M 
CE1013 	 SET 	3.L 
CBES 	 SET 	4 ,CHL /  

08.1 	 SOURCE 

CODE 	STATEMENT 

DOCB05E6 	SET 	4.11X+d1 

F DCB05E6 	SET 	Al IY•d1 
CBE] 	 SET 	4.A 
COED 	 SET 	4.B 
CBE I 	 SET 	4,C 
CBE2 	 SET 	4,0 
CBE3 	 SET 	4,E 
CBE4 	 SET 	4,H 
CBES 	 SET 	4.L 
CBEE 	 SET 	5.0-1 LI 
ODCB05EE 	SET 	5.IIX+dI 
F DCBOSEE 	SET 	5.11Y+d1 
CBEF 	 SET 	5.A 
CEEB 	 SET 	5,8 
CB E9 	 SET 	5,C 

CB EA 	 SET 	5.0 
CBEB 	 SET 	5.E 
CBEC 	 SET 	5,H 

COED 	 SET 	5,L 
CBES 	 SET 	6.1H L / 

DOCB05F6 	SET 	6,11X+d) 

F DCBO5F6 	SET 	6.111,4-di 
Cl3F7 	 SET 	6,a 

CBFO 	 SET 	6.8 
CBF I 	 SET 	6.0 
CBF2 	 SET 	6.0 
CL4F3 	 SET 	6,E 

CBF4 	 SET 	5.H 
CB F5 	 SET 	6.L 
CB FE 	 SET 	7.111L1 
DDCBOSF E 	SET 	7.11)(4d1 
FOCBO5F E 	SET 	7.11Y+d) 
CB FF 	 SET 	7.A 
CBF8 	 SET 	7.B 

CBF9 	 SET 	7,C 
CB F A 	 SET 	7,D 

CB FB 	 SET 	7,E 
CBFC 	 SET 	7,H 

COED 	 SET 	7.L 
CO25 	 SLA 	1H LI 
ODC50526 	SLA 	DX+d} 

FOCB0526 	SLA 	IIY +di 
CB27 	 SLA 	A 

CB20 	 SLA 

CO21 	 SLA 	C 
C822 	 SLA 

C823 	 SLA 	E 
CB24 	 SLA 	H 

CB25 	 SLA 	L 
CB2E SRA (HU 

ODCB1352E 	SRA 	II /DO 
FDCB052E 	SRA 	11'010 
CB2F SRA A 
GBH 	 SRA 	B 

CB29 SRA C 

CB2A 	 SRA 

613 



PROGRAMMING THE Z80 

	

OBJ 	 SOURCE 

	

CODE 	STATEMENT 

CB2B 	 SRA 

CB2C SRA H 

CE4213 	 SRA 

CB3E 	 SRL 	IHLI 

ODCB0536 	SRL 	11)0E11 

FOCB053E 	SRL 	IIY•dl 

CB3F 	 SRL 	A 

CB3B 	 SRL 	B 
CB39 	 SRL 

CB3A 	 SRL 

CB3B 	 SRL 

CB3C 	 SRL 

CUD 	 SRL 

96 	 SUB 	IHLI 

OD9505 	SUB 	11X+41 

F09505 	SUB 	IIY•dI 

97 	 SUB 	A 

90 	 SUB 

91 	 SUB 

92 	 SUB 	❑ 

93 	 SUB 

94 	 SUB 

95 	 SUB 

D620 	 SUB 

AE 	 XOR 	IHLI 

OOAEOS 	XOR 	IIXndl 

FDAE05 	XOR 	IIY+d1 

AF 	 XOR A 

AB 	 XOR 

A9 	 XOR C 

AA 	 XOR D 

AB 	 XOR E 

AC 	 XOR H 

AD 	 XOR L 

EE20 	 XOR 	n 

Courtesy of flog Inc.) 
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APPENDIX F 
Z80 to 8080 EQUIVALENCE 

Z80 8080 zoo 	8080 zoo 8080 

ADC A, (HE) ADC M EX (SP). HL 	%TPA OR n ORi 162 I 

ADC A n A01821 HALT 	 HLT OR r ORA r 

ADC A. • ADC. IN A,( n) N 1621 OR (HO ORA M 

ADD A. )HL) ADD M INC BC N%8 OUT (n). A OUT 11321 

ADD A. n ADI 1621 INC DE NX D POP AF POP PSW 

ADD A.. ADD r INC HL NX H POP BC POP B 

ADD HI. BC DAD B INC. NR r POP DE POP 0 

ADD HI, DE DAD D INC SP NX SP POP HL POP II 

ADD HL. HL DAD H INC (HLI NR M PUSH AC PUSH PSW 

ADD HL. SP DAD SP JP C. nn C (132) [631 PUSH BC PUSH 13 

AND n ANI 1821 JP M. nn M18211831 PUSH DE PUSH 0 

AND r ANA r JP NC. nn NC 182) (631 PUSH HL PUSH H 

AND (HL I ANA M JP nn MP 1132((B]1 RET RET 

CALL C. nn CC IB21 [531 JP NZ. nn N21821[031 RET C RC 

CALL M. nn CM 1621(6]1 JP P nn P11121 [E131 REIM RM 

CALL NC, nn CNC 11321(6]1 JP PE. nn PE 1B2((831 RET NC RNC 

CALL nn CALL JP PC, nn PO 11321[1331 RET NZ RNZ 

CALL NZ. nn CH21132111131 JP Z. nn 2 11321 [B31 RET P RP 

CALL P nn CP 1521(6]1 JP (HL1 PCHL RET PE RPE 

CALL K. nn CPE 1621 [VI LD A, (DE1 DAN RET PO RPO 

CALL PO. nn CP011321[631 U3A. inn/ DA 11321[631 RET Z R2 

CALL Z. 'in CZ 1671[631 LD DE, nn XID, 11371(0]) RLA RAL 

CCF CMC ID SA nn 	IX! SP. 1B2( [13]1 RICA PLC 

CP r UV. IM (BC). A 	STAX B RRA RAR 

CP (HU CMP M ID (13E). A 	STAN D RRCA RRC 

CPI. CMA ID (AI.. 	MOV IA.. PST P RST P 

CP n CPI 1621 LD (nn). A 	STA MI [B31 
55C A, (HI) 566M 

DAA DAA LD inn). HL 	SHLD 1571(0]1 SBC A. n 5511621 

DEC BC OCX 5 ID A. (BC) 	LDAX B 
SBCA,. SBB r 

DEC DE DCX D LD BC, ,in 	IX113, 18211831 SCE STC 

DEC Ill DCX H ID H) inn) 	Lnto 10X(6]1 
SUB n SUI1821 

DEC. DCR r LD HL. nn 	IX! H 1132)(031 SUB r SUB r 

DEC SP DCX SP LD r. (HC) 	MOV I, M 
SUB (HQ SUB M 

DEC (HO OCR M LD r, n 	MVI r. 1621 
XOR n XRI 1621 

DI DI 113 r. i 1 	MOVrl. .2 
XOR r XRA e 

El El ID SP, Hl 	SPHT XOR (HL) XRA M 

EX DE HL XCHG NOP 	 NOP 
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APPENDIX G 
8080 to Z80 EQUIVALENCE 

8080 zoo 8080 	Z80 son zoo 

ACI 1121 ADC A, n N 1121 N A, (n1 POP H POP HL 

ADC M ADC A. (Hl) NR M NC (HI) POP PSW POP AT 

ADC. NR NC. PUSH B PUSH BC 

ADD M ADO A. (Nil NX B NC BC PUSH D PUSH DE 

ADD, 

ADI 1821 ADD A. n 

NXD 

NXH 

NC DE 

NC HI 

PUSH H 

PUSH PSW 

PUSH HE 

PUSH AF 

ANA M AND (HI) NX SP NC SP RAL PEA 

ANA r AND, JC 1821 [B.11 P C. nn RAR RRA 

AN1 1821 AND n .IM 1821 [B31 PM. nn RC RET C 

CALL CALL nn JMP 1621 [B31 P nn RET RET 

CC 1821 [831 CALL C. nn JNC (12) (83) P NC, nn RIC RICA 

CM 0311 [1131 CALL M. nn JNZ 10)(131 P NZ. nn RM RETM 

CMA CPE JP HU) (831 P P. nn RNC RET NC 

CMC CCF 1PE 1121 [B31 P PE. 'In ANC RET N2 

CMP M CP (11L) WO (02)1B31 P PO, nn RP RET P 

CMP t CP r JZ (32) (1331 P Z. nn RPE RET PE 

CNC 182) (11.31 CALL NC. nn LOAM) (1331 0 A, (no RPO RET PO 

CNZ 8321(831 CALL 842, nn LDAX B (3 A. (BC) RRC RRCA 

CP Illf [B31 CALL P. nn LDAX 0 A. (DE) RST RST P 

CPE 1321(153) CALL PE. nn LH U3 re2j [MI D HL. (nn I RZ RET Z 

CM 1821 CP n UCI B 1B21 [B31 	LD BC. nn SHIM SIC A. (MCI 

CPO 11121 [831,  CALI. PO, nn WID 1E121 (B3) 	ID DE. nn SIB, SBC A.. 

CZ 1621 [B31 CALI. 2. nn IXl H B21 (B.11 	LD HL. nn 581 1121 SRC A. n 

DAA DAA I.X1 SP 1132) (B31 	LO SP. 'In SHLD 11321(831 ED (nnl. HI 

DADB  ADD HI.. BC MOV M.. 	LEI (LILL SPILL LD SP. HI 

DAD D ADD HI DE MOV r M 	ID r. (HI) STA 182) [B31 LD Inn). A 

DAD H ADO HI.. Hl MOV r I. r2 	1.0 r, .' STAX B ID (BC), A 

DAD SP ADO HI. SP MVI M 	1.0 (HO. n SIPA, D LD (DE). A 

OCR M DEC (HI) MVI r 1121 	LO r. n STC SCF 

DCR r DEC. NOP 	NOP SUB M SUB (HL) 

DCX B DEC BC ORA M 	OR (HO SUB' SUB' 

DCX DEC DE ORA 	OR r 5111 1011 SUB fl 
DCX H DEC HI OR1 132( 	OR n %CNC EX DE, HI 
DCX SP 

DI 
DEC SP 
DI 

OUT 182) 	OUT (n). A 
PCIA 	 JP (FR) 

XRA M 
XRA r 

XOR (HO 
XOR r 

El El POPE 	POP BC XR11821 XOR n 
HALT HIT POP D 	POP CIE XD1L EX (SP]. HI. 

616 



A 
absolute addressing 
ACT 
accumulator 
ADC 
ADC, A, s 
ADC HL, ss 
ADD 
ADD A, (HLI 

ADD A, (IX + d) 
ADD A, (IY + d) 

ADD A, n 
ADD A, r 
ADD HL, ss 
ADD IX, rr 
ADD IY, rr 
addition 
address bus 
address registers 
addressing 

108, 439, 446 
61 

439 
101 
190 
192 
101 

84, 194 

196 
198 

67, 200 
67, 75, 76, 201 

203 
205 
207 

58, 95, 100, 105 
47 

51 
438, 442 

addressing modes 438, 440, 444, 445 
addressing techniques 	 438 

algorithm 	 15, 16, 114, 539 
alphabetic list 	558, 565, 569, 570 
alphanumeric data 	 39 

ALU 
AND 

ANDS 
application examples 

arithmetic-logical unit 
arithmetic programs 
arithmetic shift 
ASCII 
ASCII conversion table 
assembler 
assembler directives 
assembler fields 
assembly-language 
assigning a value 

asynchronous 
automated Z80 

instructions 

46, 77, 85 
166, 167 

209 
520 

46, 61 
94 

119 
39, 524, 525 

40 

96, 582, 590 
596, 598 

590 
67, 580, 592 

593 
471, 496, 518 

142,453,455 

INDEX 

B 
B 	 62 
banks of registers 	 62 
BASIC 	 24 

basic architecture 	 46 
basic concepts 	 15 
basic programming choices 	579 
basic programming techniques 	94 
BCD 	 35, 37, 525 

BCD addition 	 107, 110 
BCD arithmetic 	 107 

BCD black transfers 	 530 
BCD flags 	 112 

BCD representation 	 35 
BCD subtraction 	 110 
BCD table 	 35 
benchmark 	 470 

binary 	 20, 21, 22, 41, 45 

binary code 	 19 
binary digit 	 18 
binary division 
	

133 
binary logic 
	

18 

binary representation 
	

41 
binary search 	546, 558, 559, 560, 

561 , 566, 567, 568 
BIT b, (HL) 
	

211 
BIT b, (IX + dl 
	

213 

BIT b, (IY + dl 
	

215 

BIT b, r 
	

217 
bit 
	

18, 20, 41 
bit addressing 
	

448 
bit manipulation 
	

172, 173 
bit serial transfer 
	

471, 472 

block 
	

540, 542, 544 
block transfer 450, 451, 453, 458, 530 

block transfer 
instructions 	 163, 450, 452 

bootstrap 	 48 

bracket testing 	 523 

branch instruction 	 441 

branching point 	 115 

break character 	 467 
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breakpoint 	 584, 586 

bubble-sort 	533, 534, 535, 536, 537 

CPI 
CPIR 

23 i 
233 

buffer register 
buffered 

buffers 

59, 61 
49 

61 

CPL 	 165, 

CPU 	 46, 

critical race 

235 
187 
60 

bus request 497 CRT display 	 44, 587 

BUSRQ 92, 497 crystal 47 

byte 	 18, 19, 41, 444 CU 46 

C D 

C 	 28, 30, 31, 62, 73 62, 74 

CALL 	 145, 156, 446, 500 DAA 	 109, 236 

CALL cc, pq 219 data buffer 511 

CALL pq 222 data bus 47 

CCF 224 data counters 51 

CALL SUB 143, 144, 145 data direction register 512 

carry 	 22, 23, 26, 

central-processing unit 

28, 30, 174 
46 

data processing 

data processing instructions 

155 

164 

chccksum computation 528 data ready 469 

circular list 544,545 data representation 548 

classes of instructions 154 data structures 539 

clearing memory 
clock 

520 
47 

data transfers 	 154, 158, 

debugger 

160 

583 

clock cycles 69 debugging 18 

clock-synchronous logic 
code conversion 

86 
525 

decimal 	 20, 21, 

DEC m 

22 

238 

coding 16 DEC rr 240 

combination chips 48 DEC IX 242 

commands 16 DEC I Y 243 

comment field 590 decode 	 71, 86 

compare 531 decoding 56 

compiler 545,581,582 decoding logic 49 

COND 
conclusion 

600 
602 

decrement 	 164, 
DEFB 

442 
596 

conditional assembly 600 DEFL 596 

conditional instruction 50 DEFM 597 

constants 439,445,594 DEFS 597 

control box 49 DEFW 596 

control bus 47 delay generation 463 

control instructions 
control registers 

control signals 

157,185 
512,513,515 

91 

delay loop 	 464, 
deleting 	 553, 565, 
design examples 

483 
574 

548 

control unit 46 destination register 67 

count the zeroes 529 development systems 587 

counter 463,465 DFB 596 

CP 166 DI 244 

CP s 225 direct addressing 	 439,441 

CPO 227 direct binary 	 19 

CPDR 229 direction register 	 515 
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directives 	 146, 
directories 
disk operating system 
displacement 

571, 580, 594 
541, 545 
541, 582 

63 
displacement field 442 
DINZ c 245 
DMA 491,498 
documenting 97 
DOS 582 
doubly-linked lists 545,546 
double-precision format 34 
drivers 49 

E 
E 62 
EBCDIC 39 
echo 486 
editor 583 
El 247 
8-bit addition 95 
8-bit division 134, 137 
element deletion 564 
element insertion 550, 563 
emulator 583 
END 597 
ENDC 600 
EN DM 597 
EPROM's 585 
EQU 596 
error 586 
error messages 592 
EX AF, AFB 162 

exchange instructions 162 
Exclusive ORing 31 
EX DE, HL 249 
executable statements 16 
execute 71 
execution 56, 69, 599 
execution cycle 55 
exponent 37, 38 
EX (SP), HL 250 
EX (SP), IX 252 
EX (SP), 1Y 254 
extended addressing 

external representation 
of information 

160, 441, 446 

41,44 

EXX 256 

F 

INDEX 

F 61 
fetch 55, 70, 84 
fetch-execute overlap 78 
FIFO 543 
file directory 541 
flags 	 31, 
flags register 

50, 51, 179, 180 
61 

flip-flops 	 51 
floating point representation 	37, 38 
flowcharting 	 16, 17, 114, 

450, 464, 469, 494, 559 
front panel 	 45, 589 

C 
general purpose registers 

	
51 

getting characters in 
	

522 

H 
H 
	

62,176 
half-carry flag (H) 
	

176 
HALT 
	

92,185,257 

handshaking 
	

477,478,511 
hardware 
	

93 
hardware delays 
	

465 
hardware organization 
	

46 

hardware resources 
	

587,589 
HEX 
	

525 
hexadecimal 
	

41,42,481 
hexadecimal coding 
	

43,579 
high byte 
	

103 
high level language 
	

581 

63 
I FF I 
	

499 
I FF2 
	

499 
illegal code 
	

107 
IMO 
	

258 
IM I 
	

259 
1M 2 
	

260 
immediate addressing 108,159,439,445 

immediate operation 	 69 
implicit addressing 	 438, 445 
implied addressing 	 438 
improved multiplication 126, 128, 129 
IN r, (CI 	 261 
IN A, (N) 	 263 
in-circuit emulator 	 585 
INC (HL) 	 267 
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INC r 	 264 

increment 	 164, 442 

incrementer 	 57 

INC rr 	 265 

INC (IX + d) 	 268 
INC (IY + dl 	 270 
INC IX 	 272 

INC IY 	 273 

IND 	 274 

index register 	53, 63, 441, 442 
indexed addressing 160, 441, 447, 540 

indexing 	 63 

indirect addressing 443, 444, 448, 540 
indirect indexed addressing 	443 

Indirect memory access 	 499 

INDR 	 276 

information representation 	18 

in-house computer 	 588 

INI 	 278 

INIR 	 280 

input/output 	 157, 460, 518 

Input/output devices 	511, 521 
input/output instructions 	183, 460 
input register 	 466 
inserting 	 552, 573 
instruction 	 96 
instruction field 	 590 
instruction formats 	 66 
instruction register 	 55, 64 
instruction set 	 154 
instruction types 	 112 
INT 	 91 
internal control registers 	51, 513 
Internal representation 

of information 	 18 
interpreted 	 69 
interpreter 	 545, 581, 582 
interrupt 	466, 496, 497, 500, 505, 

508, 509, 511 
interrupt acknowledge 	 500 
interrupt flag 	 187 
interrupt handler 	 502 
interrupt logic 	 510 
interrupt-mask-bit 	 499 
interrupt mode 0 	 500 
Interrupt mode I 	 503 
interrupt model 	 504 
interrupt overhead 	 504 
interrupt-page addressing register 63 

interrupt table 
interrupt vector 

interrupts 
I/O control 

IORQ 
IR 
IX 
1Y 

.1 

504 
498 

495 
92 

92, 500 
55 

53, 63 
63 

JP cc, pq 282 
JP nn 89 
JP pq 284 
JP (HL) 285 
JP (IX) 286 
JP (IY) 287 
JR cc, e 288 
IR e 290 
JUMP 
lump instruction 

90, 172, 179,441 
156, 182 

Jump relative (112) 446, 447 

K 

I K 24 

L 
L 62 
label field 590 
largest element 526, 527 
LD A, (n, n1 69, 86 
LD D, C 72 
LDD 164 
LDDR 164 
LD1 164 

LDIR 142, 164 
LD dd, (nnl 291 
LD dd, nn 293 
LD r, n 295 
LD r, r 66 
LD r, r1  297 
LD (BC), A 299 
LD (DE), A 300 
LD (HL), n 301 
LD (HL), r 303 
LD r, (HL1 356 
LD r, (IX + d) 305 
LD r, (IY + dl 307 
LD (IX + d), n 309 
LD (IY + d), n 311 
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M 

machine cycle 
MACRO 

operator precedence 

	

69 	 OR 

	

597, 598, 600 
	

OR s 

587 

166, 168 
360 

LD (IX + d), r 313 

LD (IY + d), r 315 
LD (nn), A 317 

LD (nn), A 319 

LD (nn), dd 321 

LD (nn), 1-11. 323 
LD (nn), IX 325 
LD (nn), IY 327 

LD A, (BC) 329 

LD A, (DE) 330 

LD A,1 331 
LD t, A 332 

LD A, R 333 

LD HL, (nn) 334 

LD IX, nn 336 

LD IX, (nn) 338 
LD fY, (nn) 340 

LD IY, nn 342 

LD 12, A 344 

LD SP, HL 345 

LD SP, IX 346 

LD SP, IY 347 

LDD 348 

LDDR 350 

LDI 352 

LDIR 354 

LED 41,480 

LIFO structure 540,544 

light emitting diodes 41 

linked list 	542, 544, 568, 571, 573, 
574, 577, 578 

linked loader 583 
list 	540, 548, 549, 550, 555, 556, 557 

listing 
	

590 
list pointer 
	

542 

literal 
	

69,439,455,594 

load 
	

96,106 

loader 
	

583 

logarithmic searching 
	

546,562 

logical 
	

166,558 

logical errors 
	

582 

logical operations 
	

141 

logical shift 
	

119 

long addressing 
	

449 

longer delay 
	

464 

INDEX 

mantissa 
	

38 
MASK 
	

168, 522 
memory cycles 
	

55 
memory map 
	

453, 586 
memory-mapped I/O 
	

157 
memory-refresh register 

	
64 

micro instructions 
	

86 
mnemonic 
	

67, 579 
MI 
	

92 
modes 
	

444 

monitor 
	

48, 582 
monitoring 
	

467 
MOS Technology 6502 
	

452 
MPU 
	

52, 59 
MPU mom 
	

91 
MREQ 
	

92 
multiple devices 
	

506 
multiple LED's 
	

482 

multiple precision 
	

98 
multiplexer 
	

52, 62 
multiplication 
	

113, 114, 115, 116, 
124, 151, 152, 153 

MUX 
	

52, 62 

N 
N 
	

34 
NEG 
	

358 
negative 
	

24,26,32 
nested calls 
	

145 
nibble 
	

18,36 
NMI 
	

91,92,498 
nonmaskable interrupt 
	

498 
nonrestoring method 
	

133 
NOP 
	

359 
NOPs 
	

92 
normalize 
	

37 
normalized mantissa 
	

37 

0 

octal 
	

41, 42 

odometer 
	

465 

one's complement 
	

25 

one-shot 
	

466 

opcode 
	

66, 86, 439, 444, 446 

operand 
	

100, 102, 438, 439 
operating system 	 582 
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ORG 	 596 

OTDR 	 362 

OTIR 	 364 
OUT (C), r 	 366 
OUT (N), A 	 368 

OUTD 	 369 

OUTI 	 371 

output register 	 461 
overdraw 	 133 

overflow 	 28, 30, 31, 32 

overlap technique 	 79 

P 
packed BCD 	 36, 107 

packed BCD subtract 	110, III 
paper-tape readers 	 494 

parallel input/output 	 48 

parallel work transfer 	467, 468, 469 
parity bit 	 39, 40 

parity generation 	 524 
parity/overflow (P/V) 	 175 
PC 	 52 
PIC 	 446, 506 
PIO 	48, 511, 512, 513, 514, 515, 518 
pointers 51, 62, 444, 539, 544, 550, 551 
polling 	466, 469, 492, 521, 544 
polling loop 	 493, 494 
POP qq 	 373 
POP IX 	 375 
POP IY 	 377 
pop 	 53, 76, 154 
port 	 511, 515, 516 
positional notation 	 20 
positive 	 24, 26, 32 
post-indexing 	 442, 443 

power failures 	 48 
pre-indexing 	 442 
printer 	 44, 479, 495 
program 	 16, 48 
program counter 	 52 
program development 	579, 584 
program loops 	 63, 121 
programmable input/output chip 511 
programmable interval 

timer (PIT) 	 463, 465 
programmer's model 	 94 
programming 	IS, 16, 515, 518, 602 
programming language 	 16 
pseudo-instructions 	 98 

pulse 
pulse counting 

462, 467 
466 

punch 495 
PUSH qq 379 
PUSH IX 381 
PUSH IY 383 

push 53, 76, 154 

Q 
queue 543, 544 

R 
R 64 
RAM 	 48, 75, 

random element 

584, 587 

541 
RLCA 385 

RD 92 
read operation 
read-only memory 

96, 515 
48 

read-write memory 48, 75 
recursion 148 
reference table 571 
register addressing 438 
register indirect addressing 
register-interrupt 

444, 448 
184 

register pairs 51 
registers 	31, 51, 149, 
relative addressing 
relative Jump 

439, 

441, 

474 

446 
156 

relays 
request blocks 

461, 462 
543 

RES b, s 386 
RESET 92 
restoring method 133 
RET 389 

RET cc 391 
RETI 	 181, 393, 501 
RETN 	 181, 395, 499 
RETURN 144, 145 
RFSH 93 
RL s 397 
RLA 399 
RLC r 103 
RLC (HL) 402 
RLC (IX + d) 404 
RLC (IY + dl 406 
RLD 408 
ROM 48 
rotation 	 120, 155, 170, 171 
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rotate 

round robin 
RR s 

RR A 

RRC s 

RRCA 

RRD 

RST 

RST p 

rubout 

50, 156 

544,545 

410 

412 

413 

415 
416 

183, 500 

418 
467 

S 

S 	 178 

saving the registers 	 502 
SBC A, s 	 420 

SBC I-11, ss 	 422 

SCF 	 424 
scheduling 	 491 

searching 	 551, 558, 572 

segment drivers 	 484 

segments 	 480,541 

sensing pulses 	 466 
sequential lists 	 540 

sequential searching 	 546 

service routing 	 492 

SET b, s 	 425 

seven-segment light-emitting 
diode (LED) 	 480, 481 

shift 	 50, 118, 120, 155. 156 
short addressing 	441, 446, 449 

short instruction 	 19 

sign 
	

178 

signal 
	

461 
signed binary 
	

24, 25 

signed numbers 
	

532 

simple list 
	

551 

simulator 
	

583 

simultaneous interrupts 
	

507 

single-board microcomputers 
	

587 

I6-bit accumulator 
	

103 

16 by 8 division 
	

134, 135 

16 by 16 multiplication 
	

130,131 

skew operations 
	

169 

skip 
	

157 

SLA s 
	

428 

software aids 
	

582, 587 

SP 
	

53 

special digit instructions 
	

172 
speed 
	

476  

SRA s 	 430 

SRL s 	 432 

stack 53, 146, 149, 496, 508, 539, 544 

stack pointer 	 53,540 

standard architecture 	 49 

standard PIO 	 511 

status 	 31, 85, 476, 515 

status bits 	 50, 512 

status register 	 50 

storing operands 	 102 

string of characters 	 490 

SUB A, s 	 434 

subroutine call 	 143, 146 

subroutine library 	 15U 

subroutine mechanism 	 144 
subroutine parameters 	 149 

subroutines 	142, 147, 443, 598 

subtraction 	 104 
subtract (N) 	 175 
sum of N elements 	 527, 528 
symbolic 	 41,44 
symbols 	 592, 593 
synchronous 	 471, 496 
syntactic ambiguity 	 16 
syntax 	 544 
system architecture 	 46 

T 

tables 	526, 539, 540, 551, 554, 592 

technological development 	602 

teletype 	466, 485, 487, 488, 489 

temporary register 	 61 

test 	 16, 156. 172 

testing a character 	 523 

timer 	 465 

time-sharing system 	 588 
timing 	 463 

trace 	 585 

transfers 	 52 

trees 	 544, 545 

truncating 	 34 

truth table 	 167 

two's complement 	25, 26, 27, 29 

two-level directory 	 541 

U 

UART 
	

477, 518 

underflow 
	

32 
utility routines 
	

583 

623 



PROGRAMMING THE Z80 

V X 

V 28, 30, 31 XOR 166, 169 

137 XOR s 436 

vectoring of interrupts 504 
Z 

W Z 87, 177 

W B7 Z80 registers 95 

WAIT 92 zero 177 

working registers 496 zero page addressing 441, 446 

WR 92 Zilog Z80 PIO 516,517 
Zilog Z80 SIO SIB 
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The SYBEX Library 
BASIC PROGRAMS FOR SCIENTISTS AND ENGINEERS 
by Man R. Miller 340 pp., 120 illustr., Ref. B240 
This second book in the "Programs for Scientists and Engineers" series provides a 
library of problem solving programs while developing proficiency in BASIC. 

INSIDE BASIC GAMES 
by Richard Mateosian 350 pp., 240 111ustr., Ref. B245 
Teaches interactive BASIC programming through games. Games are written in 
Microsoft BASIC and can run on the TRS-80, APPLE II and PET/CBM. 

FIFTY BASIC EXERCISES 
by J.P. Lamoitier 240 pp., 195 Illustr., Ref. B250 
Teaches BASIC by actual practice using graduated exercises drawn from everyday 
applications. All programs written in Microsoft BASIC. 

EXECUTIVE PLANNING WITH BASIC 
by X.T. BM 192 pp., 19 illustr., Ref. B380 
An important collection of business management decision models in BASIC, 
including Inventory Management (EOQ), Critical Path Analysis and PERT, 
Financial Ratio Analysis, Portfolio Management, and much more. 

BASIC FOR BUSINESS 
by Douglas Hergert 250 pp., 15 illustr., Ref. 8390 
A logically organized, no-nonsense introduction to BASIC programming for 
business applications. Includes many fully explained accounting programs, and 
shows you how to wnte them. 

YOUR FIRST COMPUTER 
by Rodney Zaks 260 pp., 150 Illustr., Ref. C200A 
The most popular introduction to small computers and their peripherals: what 
they do and how to buy one. 

DON'T (or How to Care for Your Computer) 
by Rodney Zaks 220 pp., 100 Illustr., Ref. 0400 
The correct way to handle and care for all elements of a computer system including 
what to do when something doesn't work. 

INTRODUCTION TO WORD PROCESSING 
by Hal Glatzer 200 pp., 70 illustr., Ref. W101 
Explains in plain language what a word processor can do, how it improves produc- 
tivity, how to use a word processor and how to buy one wisely. 

INTRODUCTION TO WORDSTAR 
by Arthur Neiman 200 pp., 30 illustr., Ref. W110 
Makes it easy to learn how to use WordStar, a powerful word processing program 
for personal computers. 

FROM CHIPS TO SYSTEMS: AN INTRODUCTION TO 
MICROPROCESSORS 
by Rodnay Zaks 560 pp., 255 illustr., Ref. C207A 
A simple and comprehensive introduction to microprocessors from both a hard-
ware and software standpoint: what they are, how they operate, how to assemble 
them into a complete system. 



MICROPROCESSOR INTERFACING TECHNIQUES 
by Rodney Zaks and Austin Lesea 460 pp., 400 Illustr., Ref. C207 
Complete hardware and software interconnect techniques including ID to A con- 
version, peripherals, standard buses and troubleshooting. 

PROGRAMMING THE 6502 
by Rodney Zaks 390 pp., 160 Illustr., Ref. C202 
Assembly language programming for the 6502, From basic concepts to advanced 
data structures. 

6502 APPLICATIONS BOOK 
by Rodnay Zaks 280 pp., 205 11luso., Ref. D302 
Real life application techniques: the inputloutput book for the 6502. 

6502 GAMES 
by Radon); Zaks 300 pp., 140 lllustr., Ref. G402 
Third in the 6502 series. Teaches more advanced programming techniques, using 
games as a framework for learning. 

PROGRAMMING THE Z80 
by Rodnay Zaks 620 pp., 200 Illustr., Ref. C280 
A complete course in programming the Z80 microprocessor and a thorough intro- 
duction to assembly language. 

PROGRAMMING THE Z8000 
by Richard Mateosian 300 pp., 125 lllustr., Ref. C281 
How to program the Z8000 16-bit microprocessor. Includes a description of the 
architecture and function of the Z8000 and its family of support chips. 

THE CP/M HANDBOOK (with MP/M) 
by Rodney Zaks 330 pp., 100 Illustr., Ref. C300 
An indispensable reference and guide to CP/M— the most widely used operating 
system for small computers. 

INTRODUCTION TO PASCAL (Including UCSD PASCAL) 
by Rodnay Zaks 420 pp., 130 11luso., Ref. P3I0 
A step-by-step introduction for anyone wanting to learn the Pascal language. 
Describes UCSD and Standard Pascals. No technical background is assumed. 

THE PASCAL HANDBOOK 
by Jacques Tiberghien 490 pp., 350 Illuscr., Ref. P320 
A dictionary of the Pascal language, defining every reserved word, operator, pro- 
cedure and function found in all major versions of Pascal. 

PASCAL PROGRAMS FOR SCIENTISTS AND ENGINEERS 
by Alan Miller 400 pp., 80 Illustr., Ref. P340 
A comprehensive collection of frequently used algorithms for scientific and 
technical applications, programmed in Pascal. Includes such programs as curve-
fitting, integrals and statistical techniques. 

APPLE PASCAL GAMES 
by Douglas Hergerl and Joseph T. Kalash 380 pp., 40 illustr., Ref. P360 
A collection of the most popular computer games in Pascal challenging the reader 
not only to play but to investigate how games are implemented on the computer. 



INTRODUCTION TO UCSD PASCAL SYSTEMS 
by Charles T. Grant and Jon Butah 300 pp., 110 illustr., Ref. P370 
A simple, clear introduction to the UCSD Pascal Operating System for beginners 
through experienced programmers. 

INTERNATIONAL MICROCOMPUTER DICTIONARY 
140 pp., Ref. X2 
MI the definitions and acronyms of microcomputer jargon defined in a handy 
pocket-size edition. Includes translations of the most popular terms into ten 
languages. 

MICROPROGRAMMED APL IMPLEMENTATION 
by Rodney Zaks 350 pp., Ref. ZI0 
An expert-level text presenting the complete conceptual analysis and design of an 
APL interpreter, and actual listings of the microcode. 

SELF STUDY COURSES 
Recorded live at seminars given by recognized professionals in the microprocessor 
field. 

INTRODUCTORY SHORT COURSES: 
Each includes two cassettes plus special coordinated workbook. (21/ 2  hours) 

S10—INTRODUCTION TO PERSONAL AND BUSINESS 
COMPUTING 
A comprehensive introduction to small computer systems for those planning to 
use or buy one, including penpherals and pitfalls. 

Sl—INTRODUCTION TO MICROPROCESSORS 
How microprocessors work, including basic concepts, applications, advantages 
and disadvantages. 

S2—PROGRAMMING MICROPROCESSORS 
The companion to SI . How to program any standard microprocessor, and how it 
operates internally. Requires a basic understanding of microprocessors. 

S3—DESIGNING A MICROPROCESSOR SYSTEM 
Learn how to interconnect a complete system, wire by wire. Techniques discussed 
are applicable to all standard microprocessors. 

INTRODUCTORY COMPREHENSIVE COURSES: 
Each includes a 300-500 page seminar book and seven or eight C90 cassettes. 

SB3—MICROPROCESSORS 
This seminar teaches all aspects of microprocessors: from the operation of an MPU 
to the complete interconnect of a system. The basic hardware course. (12 hours) 

SB2—MICROPROCESSOR PROGRAMMING 
The basic software course: step by step through all the important aspects of micro-
computer programming. (10 hours) 



ADVANCED COURSES: 
Each includes a 300-500 page workbook and three orfour C90 cassettes. 

SB3-SEVERE ENVIRONMENT/MILITARY 
MICROPROCESSOR SYSTEMS 
Complete discussion of constraints, techniques and systems for severe environ-
mental applications, including Hughes, Raytheon, Actron and other militarized 
systems. (6 hours) 

SB5-BIT-SLICE 
Learn how to build a complete system with bit slices. Also examines innovative 
applications of bit slice techniques. (6 hours) 

SB6-INDUSTRIAL MICROPROCESSOR SYSTEMS 
Seminar examines actual industrial hardware and software techniques, components, 
programs and cost. (41/2  hours) 

SB7-MICROPROCESSOR INTERFACING 
Explains how to assemble, interface and interconnect a system. (6 hours). 
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understanding of programming in the language of the Z80, but also a detailed 
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