

PROGRAMMING
THE Z80

PROGRAMMING
THE Z80

RODNAY ZAKS

*'ZB0" is a registered trademark of ZILOG Inc., with whom SYBEX is not connected
In any way.

Cover Design by Damel le Noury

Every effort has been made to supply complete and accurate information. However,
Sybex assumes no responsibility for its use; nor any infringements of patents or other
nghts of third parties which would result. No license is granted by the equipment manu-
facturers under any patent or patent rnghts. Manufacturers reserve the right to change
arcuitry at any time without notice.

In particular, technical charactenstics and prices are subject to rapid change. Com-
pansons and evaluations are presented for their educational value and for guidance
principles. The reader 1s referred to the manufacturer’s data for exact specifications.

Copyright ©t980, SYBEX Inc. World rights reserved. No part of this publication may
be stored in a retrieval system, transmetted, or reproduced in any way, including but not
limited to, photocopy, photograph, or magnetic or other record, without the prior written
permussion of the publisher,

Library of Congress Card Number: 80-5468
ISBN: 0-89588-094-6

First Edition published 1979. Third Edition 1981
Printed in the United States of America
Printing 109876543

ACKNOWLEDGEMENTS

Designing a programmung textbook is always difficuit. Destgning it so that 1t will teach
elementary programming as well as advanced concepts while covering both hardware and
software aspects makes 1t a challenge. The author would like to acknowledge here the
many constructive suggestions for improvements or changes made by: O.M. Barlow,
Dennis L. Feick, Richard D. Reid. Stanley E. Erwin, Philip Hooper, Dennis B. Kitsz,
R. Ratke, and Jim Crocker.

A special acknowledgement is also due to Chris Williams for hus contribution to the
instruction-set and the data structures section.

Any additional suggestions for improvements or changes should be sent to the author,
and will be reflected in forthcoming editions.

Several tables in Chapter Four showing hexadecimal codes for the Z80 instructions
have been reprinted by permission of Zilog Inc. Tables 2.26 and 2.27 have been reprinted
by permission of Intel Corporation.

TABLE OF CONTENTS

PREFACE 13

BASICCONCEPTS 15
Introduction, What is programming ?, Flowcharting, Informa-
tion Representation

Z30 HARDWARE ORGANIZATION 46

Introduction, System Architecture, Internal Organization of
the Z80, Instruction Formats, Execution of Instructions with
the Z80, Hardware Summary

BASICPROGRAMMING TECHNIQUES 94
Introduction, Anithmetic Programs, BCD Arithmetic Multipli-
cation, Binary Division, Instruction Summary, Subroutines,
Summary

THE Z30 INSTRUCTION SET 154
Introduction, Classes of Instructions, Summary, Individual
Descriptions

ADDRESSING TECHNIQUES 438

Introduction, Possible Addressing Modes, Z80 Addressing
Modes, Using the Z80 Addressing Modes, Summary

vi. INPUT/OUTPUT TECHNIQUES 460

Introduction, Input/output, Parallel Word Transfer, Bit Serial
Transfer, Peripheral Summary, Input/Output Scheduling,
Summary

VII. INPUT/OUTPUTDEVICES 511

Introduction, The Standard PIO, The Internal Control Register,
Programming a PIO, The Zilog Z80 PIO

VIII. APPLICATION EXAMPLES 520

Introduction, Clearing a Section of Memory, Polling 1/0
Devices, Getting Characters In, Testing A Character, Bracket
Testing, Parity Generation, Code Conversion: ASCII to BCD,
Convert Hex to ASCII, Finding the Largest Element of a Table.
Sum of N Elements, A Checksurn Computation, Count the
Zeroes, Block Transfer, BCD Block Transfer, Compare Two
Signed 16-bit Numbers, Bubble-Sort, Summary

IX. DATASTRUCTURES 339

PART I—THEORY
Introduction, Pointers, Lists, Searching and Sorting, Section
Summary

PART 2—DESIGN EXAMPLES
Introduction, Data Representation for the List, A Simple List,
Alphabetic Set, Linked List, Summary

X. PROGRAMDEVELOPMENT 579

Introduction, Basic Programming Choices, Software Support,
The Program Development Sequence, Hardware A {ternatives,
The Assembler, Conditional Assembly, Summary

XI. CONCLUSION

Technological Development, The Next Step

APPENDIX A

Hexadecimal Conversion Table

APPENDIX B
ASCIT Conversion Table

APPENDIX C
Relative Branch Tables

APPENDIX D

Decimal to BCD Conversion

APPENDIX E
Z80 Instruction Codes

APPENDIX F
Z80 to 8080 Equivalence

APPENDIX G
8080 to Z80 Equivalence

INDEX

602

604

605

606

607

608

615

616

617

PREFACE

This book has been designed as a complete self-contained text for
fearning programming, using the Z80. It can be used by a person who
has never programmed before, and should also be of value to anyone
using the Z80.

For the person who has already programmed, this book will teach
specific programming techniques using (or working around) the speci-
fic characteristics of the Z80. This text covers the elementary to inter-
mediate techniques required to start programming effectively.

This text aims at providing a true level of competence to the person
who wishes to program using this microprocessor. Naturally, no book
wifl effectively teach how to program, unless one actually practices.
However, it is hoped that this book will take the reader to the point
where he feels that he can start programming by himself and can soive
simple or even moderately complex problems using a microcomputer.

This book is based on the author’s experience in teaching more than
1000 persons how to program microcomputers. As a result, it is strongly
structured. Chapters normally go from the simple to the complex. For
readers who have already learned elementary programming, the intro-
ductory chapter may be skipped. For others who have never program-
med, the finai sections of some chapters may require a second reading.
The book has been designed to take the reader systematically through
all the basic concepts and techniques required to build increasingly
complex programs. It is, therefore, strongly suggested that the ordering -
of the chapters be followed. In addition, for effective results, it is
important that the reader attempt to solve as many exercises as possible.
The difficulty within the exercises has been carefully graduated. They
are designed to verify that the material which has been presented is
realfy understood. Without doing the programming exercises, it wiil
not be possibie to realize the full value of this book as an educational
medium. Several of the exercises may require time, such as the mufti-
plication exercise. However, by doing them, you will actually program
and learn by doing. This is indispensabie.

For those who have acquired a taste for programming when reaching
the end of this volume, a companion vofume is planned: the Z80 Ap-
Dplications Book.

13

Other books in this series cover programming for other popular
Microprocessors.

For those who wish to develop their hardware knowledge, it is sug-
gested that the reference books From Chips to Systems: an Introduction
to Microprocessors (ref. C201A) and Microprocessor Interfacing
Technigues (ref. C207) be consulted.

The contents of this book have been checked carefully and are
believed to be reliable. However, inevitably, some typographical or
other errors will be found. The author will be grateful for any comments
by alert readers so that future editions may benefit from their experience.
Any other suggestions for improvements, such as other programs
desired, developed, or found of value by readers, will be appreciated.

14

1
BASIC CONCEPTS

INTRODUCTION

Thus chapter will introduce the basic concepts and definitions re-
lating to computer programming. The reader already familiar with
these concepts may want to glance quickly at the contents of this
chapter and then move on to Chapter 2. It is suggested, however,
that even the experienced reader look at the contents of this intro-
ductory chapter. Many significant concepts are presented here in-
cluding, for example, two's complement, BCD, and other represen-
tations. Some of these concepts may be new to the reader; others
may improve the knowledge and skills of experienced programmers.

WHAT IS PROGRAMMING?

Given a problem, one must first devise a solution. This solution,
expressed as a step-by-step procedure, is called an a{gorithm. An
algorithm is a step-by-step specification of the solution to a given
problem. It must terminate in a finite number of steps. This
algorithm may be expressed in any language or symbolism. A sim-
ple example of an algorithm is:

1—insert key in the keyhole

2—turn key one full turn to the left
3—seize doorknob

4—turn doorknoh left and push the door

15

PROGRAMMING THE Z80

At this point, if the algorithm is correct for the type of lock in-
volved, the door will open. This four-step procedure qualifies as an
algorithm for door opening.

Once a solution to a problem has been expressed in the form of
an algorithm, the algorithm must be executed by the computer.
Unfortunately, it is now a well-established fact that computers
cannot understand or execute ordinary spoken English (or any
other human languagel. The reason lies in the syntactic ambiguity
of all common human languages. Only a well-defined subset of
natural language can be '‘understood” by the computer. This is
called a programming language.

Converting an algorithm into a sequence of instructions in a pro-
gramming language is called programming. To be more specific,
the actual translation phase of the algorithm into the program-
ming language is called coding. Programming really refers not just
to the coding but also to the overail design of the programs and
“data structures” which will implement the algorithm.

Effective programming requires not only understanding the
possible implementation techniques for standard algorithms, but
also the skillful use of all the computer hardware resources, suchas
internal registers, memory, and peripheral devices, plus a creative
use of appropriate data structures. These techniques will be
covered in the next chapters.

Programming aiso requires a strict documentation discipline, so
that the programs are understandable to others, as well as to the
author. Documentation must be both internal and external to the
program.

Internal program documentation refers to the comments placed
in the body of a program, which explain its operation.

External documentation refers to the design documents which
are separate from the program: written explanations, manuals,
and flowcharts,

FLOWCHARTING

One intermediate step is almost always used between the
algorithm and the program. It is called a flowchart. A flowchart is
simply a symbolic representation of the algarithm expressed as a
sequence of rectangles and diamonds containing the steps of the
algorithm. Rectangles are used for commands, or ‘“executable
statements.”” Diamonds are used for tests such as: If information

16

BASIC CONCEPTS

X is true, then take action A, else B. Instead of presenting a formal
definition of flowcharts at this point, we will introduce and discuss
flowcharts later on in the book when we present programs.
Flowcharting is a highly recommended intermediate step be-
tween the algorithm specification and the actual coding of the solu-
tion. Remarkably, it has been observed that perhaps 10% of the
programming population can write 2 program successfully with-
out having to flowchart. Unfortunately, it has also been observed
that 90% of the population believes it belongs to this 10%! The
result: 80% of these programs, on the average, will fail the first
time they are run on a computer. (These percentages are naturally
not meant to be accurate.) In short, most novice programmers sel-
dom see the necessity of drawing a flowchart. This usually results
in ‘‘unclean’ or erroneous programs. They must then spend a long
time testing and correcting their program (this is called the

START

READ TEMPERATURE SETTING T~
ON THERMOSTAT BOX

1 3

READ ACTUAL ROOM TEMPERATURE "R”
FROM THERMOMETER OR OTHER SENSOR

(ROOM

TOO COLD) TQO HOTH)

HEATERON |4 HEATER OFF

wn

(OPTIONAL DELAY} {OPTIONAL DELAY)

Fig. 1.1: A Flowchar(for Keeping Room Temperature Constant

17

PROGRAMMING THE Z80

debugging phase). The discipline of flowcharting is therefore
highly recommended in all cases. It will require a small amount of
additional time prior to the coding, but will usually result in a clear
program which executes correctly and quickly. Once flowcharting
is well understood, a small percentage of programmers will be able
to perform this step mentally without having to do it on paper. Un-
fortunately, in such cases the programs that they write will usual-
ly be hard to understand for anybody else without the documenta-
tion provided by flowcharts. As a result, it is universally recom-
mended that flowcharting be used as a strict discipline for any
significant program. Many examples will be provided throughout
the book.

INFORMATION REPRESENTATION

All computers manipulate information in the form of numbers or
in the form of characters. Let us examine here the external and
internal representations of information in a computer.

INTERNAL REPRESENTATION OF INFORMATION

All information in a computer is stored as groups of bits. A bit
stands for a binary digit(**0’" or *‘1"’). Because of the limijtations
of conventional electronics, the only practical representation of infor-
mation uses two-state logic (the representation of the state ‘0"’ and
““1'"). The two states of the circuits used in digital electronics
are generally ‘‘on"” or “‘off’’, and these are represented logi-
cally by the symbols “‘0°° or “‘I'’. Because these circuits are
used to implement “logical” functions, they are called ““binary
logic.” As a result, virtually all information-processing today is
performed in binary format. In the case of microprocessors in
general, and of the Z80 1n particular, these bits are structured in
groups of eight. A group of eight bits is called a byte. A group of
four bits is called a nibble.

Let us now examine how information is represented internally in
this binary format. Two entities must be represented inside the
computer. The first one is the program, which is a sequence of
instructions. The second one is the data on which the program will
operate, which may include numbers or alphanumeric text. We will
discuss below three representations: program, numbers, and alpha-
numerics.

18

BASIC CONCEPTS

Program Representation

All instructions are represented internally as single or multiple
bytes. A so-called *‘short instruction” is represented by a single
byte. A longer instruction will be represented by two or more
bytes. Because the Z80 s an eight-bit microprocessor. it fetches
bytes successively from its memory. Therefore, a single-byte
instruction always has a potential for executing faster than a two-
or three-byte instruction, It will be seen later that this is an impor-
tant feature of the instruction set of any microprocessor and in
particular the Z80, where a speaal effort has been made to pro-
vide as many single-byte instructions as possibie in order to im-
prove the efficiency of the program execution. However, the limita-
tion to 8 bits in length has resulted in important restrictions which
will be outlined. This is a classic example of the compromise be-
tween speed and flexibility in programming. The binary code used
to represent instructions is dictated by the manufacturer. The
Z80, like any other microprocessor, comes equipped with a- fixed
instruction set. These instructions are defined by the manufac-
turer and are listed at the end of this book, with their code. Any
. program will be expressed as a sequence of these binary instruc-
tions. The Z80 instructions are presented in Chapter 4.

Representing Numeric Data

Representing numbers is not quite straightforward, and several
cases must be distinguished. We must first represent integers, then
signed numbers, i.e., positive and negative numbers, and finally we
must be abie to represent decimal numbers. Let us now address
these requirements and possible solutions.

Representing integers may be performed by using a direct
binary representation. The direct binary representation is simply
the representation of the decimal value of a number in the binary
system. In the bmary system, the right-most bit represents 2 to
the power 0. The next one to the left represents 2 to the power 1,
the next represents 2 to the power 2, and the left-most bit
represents 2 to the power 7=128.

b,bb;b,b,b.b,b,

represents
b,2” + b¢2° + b2¢ + b,2* + b,2* + b.2* + b,2" + by2°

19

PROGRAMMING THE ZB0

The powers of 2 are:
2" =128,2°=64,2°=232,2'=16,2°=8,22=4,21=2,2=1

The binary representation is analogous to the decimal representa-
tion of numbers, where 123" represents:

1 X 100 = 100
+2xX 10= 20
+3X 1= 3

=123

Note that 100 = 10% 10 = 10%, 1 = 10°

In this “positional notation,”” each digit represents a power of 10.
In the binary system, each binary digit or “‘bit" represents a power
of 2, instead of a power of 10 in the decimal system.

Example: “*00001001°' in binary represents:

IX 1=1 (9
(2"
(27
(27
(24
(2°)
(29
(29

o
X
)
I
o

(=R =l =R R
XXX XXX
[y
[== 3 -]
0D da bD OO0 W
i

O oo Oomo

in decimal;

Let us examine some more examples:

10000001 represents:

XX XXXX XX

—

T T T 1 T
[
[]
MO OoOOoOOoOD

FOOOOOOM
O NS b=

BN QO

in decimal: =129
‘10000001° represents, therefore, the decimal number 129.

20

BASIC CONCEPTS

By examining the binary representation of numbers, you will
understand why bits are numbered from 0 to 7, going from right to
left. Bit 0 is "‘b,"" and corresponds to 2° Bit 1 is “‘b,"”" and cor-
responds to 2', and so on.

Decimal | Binary Decimal | Binary
0| 00000000 32 | 00100000
11 00000001 33 | 00100001
21 00000010 .
3| 00000011 .
4| 00000100 .

51 00000101 63 | 00111111
6| 00000110 64 | 01000000
71 00000111 65 | 01000001
B | 00001000 .

9 | 00001001 y

10 | 00001010 127 | 01111111
11 | 00001011 128 | 10000000
12 | 00001100 129 | 10000001
13 | 00001101

14 | 00001110 .

15 | 00001111 .

16 | 00010000

17 | 00010001 .

. 254 | 11111110
31 | 00011111 255 | 11111111

Fig. 1.2: Decimal-Binary Table

The binary equivalents of the numbers from 0 to 255 are shown
in Fig. 1-2.

Exercise 1.1: What is the decimal value of “11111100"?

21

PROGRAMMING THE Z80

Decimal to Binary

Conversely, let us compute the binary equivalent of ‘11"
decimal:
11+2=35 remains | —=1 (LSB)
5+2=2 remains | —=1
2-+2=] remans 0 —=0
1+-2=0remains | —=1 (MSB)

The binary equivalent is 1011 (read right-most celumn from bot-
tom to top).

The binary equivalent of a decimal number may be obtained by
dividing successively by 2 until a quotient of 0 is obtained,

Exercise 1.2: What is the binary for 2572
Exercise 1.3: Convert 19 to binary, then back to decimal
Operating on Binary Data

The arithmetic rules for binary numbers are straightforward.
The rules for addition are:

0+0= 0
0+1= 1
1+0= 1
[+1=() O

where (1) denotes a ‘‘carry’’ of 1 (note that 10" is the binary
equivalent of ‘2"’ decimal). Binary subtraction will be performed
by “‘adding the complement’ and will be explained once we learn
how to represent negative numbers.

Example:
(2) 10
+{1) +01
=(3) 11

Addition is performed just like in decimal, by adding columns,
from right to left:

Adding the right-most column:

10
+01

(0 + 1 = 1. No carry.j

22

BASIC CONCEPTS

Adding the next column:

10
+01

11 {1 + 0 =1. No carry.)

Exercise 1.4: Compute 5 + 10 in binary. Verify that the result is 15.

Some additional examples of binary addition:

0010 {2} 0011 {3}
+0001 (1 +0001 (1)
=0011 (3) =0100 (4)

This last example illustrates the role of the carry.

Looking at the right-most bits: 1 + 1 = (1)1 0
A carry of 1 is generated, which must be added to the next bits:

001 — column 0 has just been added
+000 —
+ 1 (carry)

= (1}0 — where {1} indicates a new
carry into column 2,

The final result is: 0100

Another example:

011l (7)
+0011 + (3)
1010 =(10}

In chis example, a carry is again generated, up to the left-most co-
lumn.

Exercise 1.5: Compute the result of:

1111
+0001

=?

23

PROGRAMMING THE 280

Does the result hold in four bits?

With eight bits, it is therefore possible to represent directly the
numbers ‘00000000 to *11111111,” ie., 0" to "255". Two
obstacles should be visible immediately. First, we are only
representing positive numbers. Second, the magnitude of these
numbers is limited to 255 if we use only eight bits. Let us address
each of these problems in turn.

Signed Binary

In a signed binary representation, the left-most bit is used to in-
dicate the sign of the number. Traditionally, ‘0" is used to denote
a positive number while ‘1"’ is used to denote a negative number.
Now “11111111" will represent —127, while “01111111"" will
represent +127. We can now represent positive and negative
numbers, but we have reduced the maximum magnitude of these
numbers to 127,

Example: ‘0000 0001'' represents +1 {the ileading 0"’ is **+",
followed by 000 0001 = 1).

1000 0001"" is —1 {the leading ‘1" 15 "*—"").

Exercise 1.6: What is the representationof *'—5" in signed binary?

Let us now address the magnitude problem: in order to represent
larger numbers, it will 'be necessary to use a larger number of bits.
For example, if we use sixteen bits (two bytes) to represent
numbers, we will be able to represent numbers from —32K to
+32K in signed binary (1K in computer jargon represents 1,024).
Bit 15 is used for the sign, and the remaining 15 bits {bit 14 to bit
0) are used for the magnitude: 2'* = 32K. If this magnitude is still
too small, we will use 3 bytes or more. If we wish to represent large
integers, it will be necessary to use a larger number of bytes inter-
nally to represent them. This is why most simple BASICs, and
other languages, provide only a limited precision for integers. This
way, they can use a shorter internal format for the numbers which
they manipulate. Better versions of BASIC, or of these other
languages, provide a larger number of significant decimal digits at
the expense of a large number of bytes for each number.

Now let us solve another problem, the one of speed efficiency.
We are going to attempt performing an addition in the signed

24

BASIC CONCEPTS

binary representation which we have introduced. Let us add “*—5"
and " +7".

+7 is represented by 00000111
—5 is represented by 10000101

The binary sum is: 10001100, or —12

This is not the correct result. The correct result should be +2. In
order to use this representation, special actions must be taken, de-
pending on the sign. This resufts in increased complexity and re-
duced performance. In other words, the binary addition of signed
numbers does not "‘work correctly.”” This is annoying. Clearly, the
computer must not only represent information, but also perform
arithmetic on it.

The solution to this problem is called the twe’s complement
representation, which will be used instead of the signed binary
representation. In order to introduce two's complement let us first
introduce an intermediate step: one's complement.

One's Complement

In the one’s complement representation, all positive integers are
represented in their correct binary format. For example “+3" is
represented as usual by 00000011. However, its complement *“—3"'
is obtained by complementing every bit in the original representa-
tion. Each 0 is transformed into a 1 and each 1 is transformed into
a 0. In our example, the one’s complement representation of *‘—3"
will be 11111100.

Another example:

+2 is 00000010
—21s 11111101

Note that, in this representation, positive numbers start with a
0" on the left, and negative ones with a **1'* on the left.

Exercise 1.7: The representation of '*+6" is “00000110". What is
the representation of *'—6"" in one's complement?

As a test, let us add minus 4 and plus 6:

25

PROGRAMMING THE Z80

—41g 11111011
+6 is 00000110

the sum is: (1) 00000001 where (1) indicates a
carry

The “correct result’’ should be 2", or “00000010°’,

Let us try again:

—3is 11111100
—2is 11111101

The sum is: (1) 11111001

or *'—6,” pius a carry. The correct result should be *—.”” The
representation of ' —5" is 11111010. It did not work.

This representation does represent positive and negative
numbers. However the result of an ordinary addition does not
always come out “correctly.” We will use still another representa-
tion. It is evolved from the one’s complement and is called the
two's complement representation.

Two’s Complement Representation

In the two's complement representation, positive numbers are
still represented, as usual, in signed binary, just like in one’s com-
plement. The difference lies in the representation of negative
numbers. A negative number represented in two's complement is
obtained by first computing the one's complement, and then ad-
ding one. Let us examine this in an example:

+3 is represented in signed binary by 00000011. Its one's com-
plement representation is 11111100. The two’s complement is ob-
tained by adding one. It is 11111101.

Let us try an addition;

(3) 00000011
+(5I +00000101

=(8) =00001000

The result is correct.

26

BASIC CONCEPTS

Let us try a subtraction:

{3} 000600011
{(—5) +11111011
=11111110

Let us identify the result by computing the two's complement:

the one's complement of 11111110 is 00000001
Adding1 + 1

therefore the two’s complement 1s 00000010 or +2
Our result above, **11111110" represents ' —2'". It is correct.,

We have now tried addition and subtraction, and the results were correct
(ignoring the carry). [t seems that two's complement works!

Exercise 1.8: What is the two's complement representation of
H4-12777

Exercise 1.9: What is the two's complement representation of
1282

Let us now add +4 and —3 (the subtraction is performed by add-
ing the two’s complement):

+4 is 00000100
—3is 11111101

The result is: {1) 00000001

If we ignore the carry, the result is 00000001, 1.e., "'1" in decimal.
This is the correct result. Without giving the complete mathe-
matical proof, let us simply state that this representation does
work. In two’s complement, it is possible to add or subtract signed
numbers regardless of the sign. Using the usual rules of binary addi-
tion, the result comes out correctly, including the sign. The carry
is 1gnored. This is a very significant advantage. 1f it were not the
case, one would have to correct the result for sign every time, caus-
ing a much slower addition or subtraction time.

For the sake of completeness, let us state that two's complement
is simply the most convenient representation to use for simpler
processors such as microprocessors. On complex processors, other
representations may be used. For example, one's complement may
be used, but it requires special circuitry to ‘'correct the result.”

27

PROGRAMMING THE Z80

From this point on, all signed integers will implicitly be represented
mternally in two's complement notation. See Fig. 1.3 for a table of
two's complement numbers.

Exercise 1.10: What are the smallest and the largest numbers
which one may represent in two's complement notation, using only
one byte?

Exercise 1.11: Compute the twao’s complement of 20. Then com-
pute the two's complement of your result. Do you find 20 again?

The following examples will serve to demonstrate the rules of two’s
complement. In particular, C denotes a possible carry {or borrow)
condition. (It is bit 8 of the result.)

V denotes a two’s complement overflow, i.e., when the sign of the
result is changed “accidentally’ because the numbers are too
large. It is an essentially internal carry from bit 6 into bit 7 {the
sign bit). This will be clarified below.

Let us now demonstrate the role of the carry *'C" and the overflow
. |vl I‘

The Carry C

Here is an example of a carry:

{(128) 10000000
+(129) + 10000001

{257) = {1) 00000001
where (1) indicates a carry.

The result requires a ninth bit (bit ‘8", since the right-most bit is
“'0”L. It is the carry bit.

If we assume that the carry is the ninth bit of the result, we
recognize the result as being 100000001 = 257.

However, the carry must be recognized and handled with care.
Inside the microprocessor, the registers used to hold information
are generally only eight-bit wide.When storing the result, oniy bits 0 to
7 will be preserved.

A carry, therefore, always requires special action: it must be
detected by special instructions, then processed. Processing the
cariy means either storing it somewhere (with a special instruc-
tion), or ignoring it, or deciding that it is an error (if the largest
authorized result is “11111111'".

28

BASIC CONCEPTS

2's complement

2's complement

code - code
+ 127 01111111 — 128 10000000
+126 01111110 -127 10000001
+ 125 01111101 - 126 10000010
—125 10000011
+65 01000001 —65 j0111111
+64 01000000 -64 11000000
+63 00111111 -63 11000001
+33 00100001 -33 11011111
+32 00100000 -132 11100000
+31 00011111 -131 11100001
+17 00010001 —-17 11101111
+16 00010000 - 16 11110000
+135 00001111 —15 11110001
+ 14 00001110 —14 11110010
+13 00001101 -13 (1110011
+12 00001100 —12 11110100
+11 00001011 - 11 11110101
+10 00001010 — 10 11110110
+9 00001001 -9 11110111
+8 00001000 -8 11111000
+7 00000111 -7 11111001
+6 00000110 -6 11111010
+5 00000101 -3 11111011
+4 00000100 -4 11111100
+3 00000011 -3 11111101
+2 00000010 -2 15511110
+1 00000001 -1 [RRANRED
+0 00000000

Fig. 1.3: 2’s Complement Table

29

PROGRAMMING THE Z80

Overflow V

Here is an example of overflow:

bit 6
bit 7_+
01000000 (64)
+ 01000001 +(65)

=10000001 =(—127)
An internal carry has been generated from bit 6 into bit 7. This is
called an overflow.

The result is now negative, “'by accident.” This situation must
be detected, so that it can be corrected.

Let us examine another situation:

11111111 (=1
+11111111 +(—1}
=(1) 11111110 =(—2)

carry

In this case, an internal carry has been generated from bit 6 into
bit 7, and also from bit 7 into bit 8 {the formal "“Carry’’ C we have
examined in the preceding section). The rules of two's complement
arithmetic specify that this carry should be ignored. The result is
then correct.

This is because the carry from bit 6 into bit 7 did not change the
sign bit.

This is not an overflow condition. When operating on negative
numbers, the overflow 1s not simply a carry from bit 6 into bit 7.
Let us examine one more example.

11000000 (—64)
+10111111 (—65)

=(1) 01111111 (+127)

Y
carry

This time, there has been no internal carry from bit 6 into bit 7, but
there has been an external carry. The result is incorrect, as bit 7
has been changed. An overflow condition should be indicated.

30

BASIC CONCEPTS

Overflow will occur in four situations:

1—adding large positive numbers

2—adding large negative numbers

3—subtracting & large positive number from a large negative
number

4—subtracting a large negative number from a large positive
number,

Let us now improve our definition of the overflow:

Technically, the overflow indicator, a special bit reserved for this
purpose, andcalled a “‘flag,” will be set when there is a carry from
bit 6 into bit 7 and no external carry, or else when there is no carry
from bit 6 into bit 7 but there is an external carry. This indicates
that bit 7, ie., the sign of the result, has been accidentally
changed, For the technically-minded reader, the overflow flag is
set by Exclusive ORing the carry-in and carry-out of bit 7 (the sign
bit). Practically every microprocessor is supplied with a special
overflow flag to automatically detect this condition, which re-
quires corrective action.

Overflow indicates that the result of an addition or a subtraction
requires more bits than are available in the standard eight-bit
register used to contain the result.

The Carry and the Ouverflow

The carry and the overflow bits are called "‘flags." They are pro-
vided in every microprocessor, and in the next chapter we will
learn to use them for effective programming. These two indicators
are located in a special register called the flags or “status”
register. This register also contains additional indicators whose
function will be clarified in Chapter 4.

Examples

Let us now illustrate the operation of the carry and the overflow
in actual examples. In each example, the symbol V denotes the
overflow, and C the carry.

If there has been no overflow, V = 0. If there has been an
overflow, V = 1 (same for the carry C). Remember that the rules of
two's complement specify that the carry be ignored. (The
mathematical proof is not supplied here.)

31

PROGRAMMING THE Z80

Positive-Positive

00000110 (+6)
+ 00001000 (+8)

= 00001110 (+14) V:0 C:0
(CORRECT)
Positive-Positive with Qverflow

01111111 (+127)
+ 00000001 (+1)

= 10000000 (—128) V:1 C:0
The abave is invalid because an overflow has occurred.
(ERROR)}

Positive-Negative (result positive)

00000100 (+4)
+ 11111110 (—2)

=(1)00000010 (+2) V:0 C:1 (disregard)
(CORRECT)
Positive-Negative (result negative)

00000010 (+2)
+ 11111100 (—4)

= 11111110 (—2) V:0 C:.0

(CORRECT)
Negative-Negative
11111110 (~—2)
+ 11111100 (—4)
=(1)11111010 (—6) V:0 C:1 (disregard)
(CORRECT)

Negative-Negative with Overflow

10000001 (—127)
+ 11000010 (—62)

=(1)01000011 (7)) V1 C1
(ERROR)

32

BASIC CONCEPTS

This time an “underflow’’ has occurred, by adding two large
negative numbers. The result would be —189, which is too large to
reside 1n eight bits.

Exercise I.12: Complete the following additions. Indicate the
result, the carry C, the overflow V, and whether the resultis correct
or not:

10111111 () 11111010 (—)
+11000001 (—) +11111001 ()
O CORRECT & ERROR 0 CCRRECT O ERROR
00010000) 01111110 ()
+01000000 —) +0010101Q ()
V: C: = V: C:

0 CORRECT O ERROR 0 CORRECT O ERROR

Exercise I.13: Can you show an example of overflow when adding a
positive and a negative number? Why?

Fixed Format Representation

Now we know how to represent signed integers. However, we
have not yet resolved the problem of magnitude. If we want to
represent larger integers, we will need several bytes. In order to
perform arithmetic operations efficiently, it is necessary to use a
fixed number of bytes rather than a variable one. Therefore, once
the number of bytes is chosen, the maximum magnitude of the
number which can be represented is fixed.

Exercise 1.14: What are the lorgest and the smallest numbers
which may be represented in two bytes using two's complement?

The Magnitude Problem

When adding numbers we have restricted ourselves to eight bits
because the processor we will use operates internally on eight bits
at a time. However, this restricts us to the numbers in the range
~—128 to +127. Clearly, this is not sufficient for many applications.

Multiple precision will be used to increase the number of digits
which can be represented. A two-, three-, or N-byte format may

33

PROGRAMMING THE Z80

then be used. For example, let us examine a 16-bit, “‘double-pre-
cision™ format:

00000000 00000000 is 0"
00000000 00000001 is "1

01111111 11111111 is "32767"
11111111 11111111 is “—1"
11111111 11111110 is ' —2"

Exercise 1.15: What is the largest negative integer which can be
represented in a two's complement triple-precision format?

However, this method will result in disadvantages. When adding
two numbers, for example, we will generally have to add them
eight bits at a time. This will be explained in Chapter 3 {Basic Pro-
gramming Techniques). It results in slower processing. Also, this
representation uses 16 bits for any number, even if it could be
represented with only eight bits. It is, therefore, common to use 16
or perhaps 32 bits, but seldom more.

Let us consider the following important point: whatever the
number of bits N chosen for the two's complement representation,
it is fixed. If any result or intermediate computation should
generate a number requiring more than N bits, some bits will be
lost. The program normally retains the N left-most bits (the most
significant) and drops the low-order ones. This is called truncating
the result.

Here is an example in the decimal system, using a six digit
representation:

123456
X 1.2

246912
123456

=1481472

The result requires 7 digits! The ''2"" after the decimal point will be
dropped and the final result will be 148147, It has been truncated.
Usually, as long as the position of the decimal point is not lost, this
method is used to extend the range of the operations which may be
performed, at the expense of precision.

The problem is the same in binary. The details of a binary multi-

34

BASIC CONCEPTS

plication will be shown in Chapter 4.

This fixed-format representation may cause a loss of precision,
but it may be sufficient for usual computations or mathematical
operations.

Unfortunately, in the case of accounting, no loss of precision is
tolerable, For example, if a customer rings up a large total on a
cash register, it would not be acceptable to have a five figure
amount to pay, which would be approximated to the dollar.
Another representation must be used wherever precision in the
result is essential. The solution normally used is BCD, or
binary-coded decimal.

BCD Representation

The principle used in representing numbers in BCD is to encode
each decimal digit separately, and to use as many bits as necessary
to represent the complete number exactly. In order to encode each
of the digits from 0 through 9, four bits are necessary. Three bits
would only supply eight combinations, and can therefore not en-
code the ten digits. Four bits allow sixteen combinations and are
therefore sufficient to encode the digits ''0'" through “9". It can
also be noted that six of the possibie codes will not be used in the
BCD representation (see Fig. 1-4). This will result later on in a potential
problem during additions and subtractions, which we will have to solve.

BCD BCD
CODE SYMBOL CODE SYMBOL
0000 0 1000 8
0001 1 1001 9
0010 2 1010 unused
0011 3 1011 unused
0100 4 1100 unused
0101 5 1101 unused
0110 & 1110 unused
0111 7 1111 unused

Fig. 1.4: BCD Table

35

PROGRAMMING THE Z80

Since only four bits are needed to encode a BCD digit, two BCD digits
may be encoded in every byte, This is called “packed BCD. "

As an example, “'00000000" will be 00" in BCD, *'10011001"
will be 99",

A BCD code is read as follows:
0010 0001
BCD digit 2"
BCD digit 1" «———
BCD number **21""
Exercise 1.16: What is the BCD representation for “'29¢ “'91'?
Exercise 1,17: Is “'10100000" a valid BCD representation? Why?

As many bytes as necessary will be used to represent all BCD
digits. Typically, one or more nibbles will be used at the beginning
of the representation to indicate the total number of nibbles, i.e.,
the total number of BCD digits used. Another nibble or byte will
be used to denote the position of the decimal point. However, con-
ventions may vary.

Here is an example of a representation for multibyte BCD in-
tegers:

I I3l+12|2]lJ(3bytesl
e ™ T g e
nurjber l number **221"
of digits

(up to 255) sign

This represents 4221
{The sign may be represented by 0000 for +, and 0001 for —, for
example.)

Exercise 1.18: Using the same convention, represent ‘"—23123".
Show it in BCD format, as above, then in binary.

Exercise 1,19: Show the BCD for ‘222" and "'111", then for the re-
sult of 222 X 111. (Compute the result by hand, then show it in the
above representation.)

The BCD representation can easily accommodate decimal
numbers.

36

BASIC CONCEPTS

For example, +2.21 may be represented by:
digit 3 digit 2 digit 1

(3 [2 | +] 2z [2z [1 |
3 digits “"is on the +

left of digit 2

The advantage of BCD is that it yields absclutely correct
results. Its disadvantage is that it uses a large amount of memory
and results in slow arithmetic operations. This is acceptable only
in an accounting environment and is normaily not used in other
cases.

Exercise 1.20: How many bits are required to encode “'9999" in
BCD? And in two's complement?

We have now salved the problems associated with the represen-
tation of integers, signed integers and even large integers. We
have even already presented one possible method of representing
decimal numbers, with BCD representation. Let us now examine
the problem of representing decimal numbers in a fixed length for-
mat.,

Floating-Point Representation

The basic principle is that decimal numbers must be represented
with & fixed format. In order not to waste bits, the representation
will rormalize all the numbers.

For example, “0.000123" wastes three zeros on the left of the
number, which have no meaning except to indicate the position of
the decimal point. Normalizing this number results in 123 x 10,
123" is called a rormalized mantissa, ''—3"' is called the expo-
nent. We have normalized this number by eliminating all the meaning-
less zeros on the left of it and adjusting the exponent.

Let us consider another example:;
22.1 is normalized as .221 x 10°

or M X 10E where M is the mantissa, and E is the exponent.

37

PROGRAMMING THE Z80

It can be readily seen that a normalized number is characterized
by a mantissa less than 1 and greater or equal to .1 in all cases
where the number is not zero. In other words, this can be repre-
sented mathematically by:

d<€M<lorl0rsM<10°
Similarly, in the binary representation:
2-1€M<2° (or .5<M<1}

Where M is the absolute value of the mantissa (disregarding the
sign).

For example:
111.01 is normalized as: .11101 x 2%
The mantissa is 11101.

The exponent is 3.

Now that we have defined the principle of the representation,
let us examine the actual format. A typical floating-point represen-
tation appears below.

3 24 23 16 15 8 7 0

k
5 EXP 5 M A N T I 5 5 A
1

Fig. 1.5: Typical Floating-Point Representation

In the representation used in this example, four bytes are used
for a total of 32 bits. The first byte on the left of the illustration is
used to represent the exponent. Both the exponent and the man-
tissa will be represented in two’s complement. As a result, the
maxmmum exponent will be — 128, **S'* 1n Fig. 1-5 denotes the sign
bit.

Three bytes are used to represent the mantissa. Since the first
bit in the two's complement representation indicates the sign, this
leaves 23 bits for the representation of the magnitude of the man-
tissa.

38

BASIC CONCEPTS

Exercise 1.21: How many decimal digits can the mantissa repre-
sent with the 23 bits?

This is only one example of a floating point representation. It is
possible to use only three bytes, or it is possible to use more. The
four-byte representation proposed above is just a common one
which represents a reasonable compromise in terms of accuracy,
magnitude of numbers, storage utilization, and efficiency in
arithmetic operation.

We have now explored the problems associated with the rep-
resentation of numbers and we know how to represent them in in-
teger form, with a sign, or in decimal form. Let us now examine
how to represent alphanumeric data internally.

Representing Alphanumeric Data

The representation of alphanumeric data, i.e. characters, is com-
pletely straightforward: all characters are encoded in an eight-bit
code. Only two codes are 1in general use in the computer world, the
ASCII Code, and the EBCDIC Code. ASCII stands for ** American
Standard Code for Information Interchange,” and is universally
used in the world of microprocessors. EBCDIC is a variation of
ASCII used by IBM, and therefore not used in the microcomputer
world unless one interfaces to an IBM terminal.

Let us briefly examine the ASCI1 encoding. We must encode 26
letters of the alphabet for both upper and lower case, pius 10
numeric symbols, plus perhaps 20 additional special symbols. This
can be easily accomplished with 7 bits, which allow 128 possible
codes. (See Fig.1-6.) All characters are therefore encoded in 7 bits.
The eighth bit, when it is used, is the parity bit. Parity is a tech-
nique for verifying that the contents of a byte have not been ac-
cidentally changed. The number of 1's in the byte is counted and
the eighth bit is set to one if the count was odd, thus making the
total even. This is called even parity. One can also use odd parity,
i.e. writing the eighth bit {the left-most) so that the total number of
1's in the byte is odd.

Example: let us compute the parity bit for "0010011" using even
parity. The number of 1's is 3. The parity bit must therefore bea 1
so that the total number of bits is 4, i.e. even. The result is
10010011, where the leading 1 is the parity bit and 0010011 iden-
tifies the character.

39

PROGRAMMING THE Z80

The table of 7-bit ASCIH codes is shown in Fig. 1-6. In practice, it
is used *‘as is,”” i.e, without parity, by adding a O in the left-most
position, or else with parity, by adding the appropriate extra biton
the left.

Exercise 1,22: Compute the 8-bit representation of the digits “0"
through 9", using even parity. (This code will be used in applica-
tion examnples of Chapter 8]

Exercise 1.23: Same for the letters “A" through “F"

Exercise 1.24: Using a non-parity ASCII code {where the left-most
bit is 07}, indicate the binary contents of the 4 characters below:

’ 24 LR
L3 l'? 3y
L3 l‘3 r
£ tb 23
HEX MSD 0 1 2 3 4 5 6 7
150 | BITS Qoo 001 010 011100 101 110 111
s 0000 NUL DLE SPACE 0 @ P - D
1 0001 | SOH DOt t 1 A QO a g
2 0010 | STX DC2 - 2 B R b r
3 ooM ETX DC3 # 3 ¢ &8 ¢ s
4 0100 ECT DC4 $ 4 D T d t
5 0101 | ENQ NAK % 5 E U e u
6 0110 | ACK SYN & & F Vv f v
7 ot BEL ETB ; 7T G W g w
8 1000 BS CAN { 8 H X h x
g 1001 HT EM) g i Y ! y
A 1010 LF sUB . : bz z
8 1011 VT ESC - ; K { X [
C 1100 FF Fs . < L \ | —
D 1101 CR GS - = M] m |
E 1110 S0 RS . > N A £)
F 1111 51 us / " 0 &« o DEL

Fig, 1.6: ASCII Conversion Table

{see Appendix B for abbreviationsi

In specialized situations such as telecommunications, other
codings may be used such as error-correcting codes. However they
are beyond the scope of this book.

40

BASIC CONCEPTS

We have examined the usual representations for both program
and data inside the computer. Let us now examine the possible ex-
ternal representations.

EXTERNAL REPRESENTATION OF INFORMATION

The external representation refers to the way information 1s pre-
sented to the user, i.e. generally to the programmer. Information
may be presented externally in essentially three formats: binary,
octal or hexadecimal and symbolic.

1. Binary

It has been seen that information is stored internally in bytes,
which are sequences of eight bits {0's or 1's). It is sometimes
desirable to display this internal information directly in its binary
format and this is called binary representation. One simple exam-
ple is provided by Light Emitting Diodes {LEDs) which are essen-
tially miniature lights, on the front panel of the microcomputer. In
the case of an eight-bit microprocessor, a front panel will typically
be equipped with eight LEDs to display the contents of any inter-
nal register. (A register is used to hold eight bits of information
and will be described in Chapter 2). A lighted LED indicates a one.
A zerois indicated by an LED which is not lighted. Such a binary
representation may be used for the fine debugging of a complex
program, especially if it involves input/output, but is naturally
Impractical at the human level. This is because in most cases, one
likes to look at information in symbolic form. Thus “9" is much
easier to understand or remember than **1001"". More convenient
representations have been devised, which improve the person-
machine interface.

2. Octal and Hexadecimal

“Octal™ and '‘hexadecimal’’ encode respectively three and four
binary bits into a unique symbol. In the octal system, any
combination of three binary bits is represented by a number be-
tween 0 and 7.

“Octal’ is a format using three bits, where each combination of
three bits is represented by a symbol between 0 and T7:

41

PROGRAMMING THE Z80

binary | octal

000
001
010
011
100
101
110
111

=1 N O

Fig. 1.7: Octal Symbols

For example, '00 100 100" binary is represented by:

Y v \J
0 4 4

or '044" in octal.

Another example: 11 111 111 is:
Y v Y
3 7 7

or ‘377" in octal.
Conversely, the octal 211" represents:
010 001 @01
or ''10001001" binary.

Octal has traditionally been used on older computers which were
employing various numbers of bits ranging from 8 to perhaps 64.
More recently, with the dominance of eight-bit microprocessors,
the eight-bit format has become the standard, and another more
practical representation is used. This is hexadecimal.

In the hexdecimal representation, a group of four bits is en-
coded as one hexadecimal digit. Hexadecimal digits are
represented by the symbols from 0 to 9, and by the letters A, B, C,
D. E, F. For example, "'0000" is represented by "0", ''0001” is
represented by "'1'" and ‘"1111"" is represented by the letter “F"
{(see Fig. 1-8).

42

BASIC CONCEPTS

DECIMAL BINARY HEX QCTAL
Q Q000 0 0
1 ooot 1 1
2 0010 2 2
3 oot 3 3
4 0100 4 4
5 010t 5 5
] 0110 6]
7 ot 7 7
8 1000 8 10
9 1001 9 11
10 1010 A 12
11 101 B8 13
12 1100 c 14
13 1101 D 15
14 1110 E 16
15 1111 F 17

Fig. 1.8: Hexadecimal Codes

43

PROGRAMMING THE ZBO

: in bi i ted
Example: 1010 0001 in binary is represented by

A 1 in hexadecimal.

Exercise 1.25: What is the hexadecimal representation of
©101010107°

Evxercise 1.26: Conversely, what is the binary equivalent of "FA™
hexadecimal?

Exercise 1.27: What is the octal of 010000012

Hexadecimal offers the advantage of encoding eight bits into on-
ly two digits, This is easier to visualize or memorize and faster to
type into a computer than its binary equivalent. Therefore, on
most new microcomputers, hexadecimal is the preferred method of
representation for groups of bits.

Naturally, whenever the information present in the memory has
a meaning, such as representing text or numbers, hexadecimal is
not convenient for representing the meaning of this information
when it is brought out for use by humans.

Symbolic Representation

Symbolic representation refers to the external representation of
information in actual symbolic form. For example, decimal num-
bers are represented as decimal numbers, and not as sequences of
hexadecimal symbols or bits. Similarly, text is represented as
such. Naturally, symbolic representation is most practical to the
user. It is used whenever an appropriate display device is
available, such as a CRT display or a printer. (A CRT display is a
television-type screen used to display text or graphics.) Unfortu-
nately, in smaller systems such as one-board microcomputers, it is
uneconomical to provide such displays, and the user is restricted
to hexadecimal communication with the computer.

Summary of External Representations

Symbolic representation of information is the most desirable
since it is the most natural for & human user. However, it requires
an expenstve interface in the form of an alphanumeric keyboard,
plus a printer or a CRT display. For this reason, it may not be

44

BASIC CONCEPTS

available on the less expensive systems. An alternative type of rep-
resentation is then used, and in this case hexadecimal is the domi-

nant representation. Only in rare cases relating to fine de-bugging
at the hardware or the software level is the binary representation
used. Binary directly displays the contents of registers of memory
in binary format.

{The utility of a direct binary display on a front panel has always
been the subject of a heated emotional controversy, which will not
be debated here.)

We have seen how to represent information internally and exter-
nally. We will now examine the actual microprocessor which will
manipulate this information.

Additional Exercises

Exercise 1.28: What is the edvantage of two's complement over
other representations used to represent signed numbers?

Exercise 1.29: How would you represent “'1024" in direct binary?
Signed binary? Two's complement?

Exercise 1.30: What is the V-bit? Should the programmer test it
after an addition or subtraction?

Exercise 1.31: Compute the two's complement of *+16", "+17",
I'+18". “_16“, .._1711. IR

Exercise 1.32: Show the hexadecimal representation of the follow-
ing text, which has been stored internally in ASCII format, with
no parity: = "MESSAGE",

45

2

780 HARDWARE ORGANIZATION

INTRODUCTION

In order to program at an elementary level, it s not necessary to
understand in detail the internaf structure of the processor that one is
using. However, in order to do efficient programming, such an
understanding is required. The purpose of this chapter is to present the
basic hardware concepts necessary for understanding the operation of
the Z80 system. The complete microcomputer system includes not only
the microprocessor unit (here the Z80), but also other components.
This chapter presents the Z80 proper, while the other devices (mainly
input/output) will be presented in a separate chapter (Chapter 7).

We will review here the basic architecture of the microcomputer
system, then study more closely the internal organization of the Z80.
We will examine, in particular, the various registers. We will then study
the program execution and sequencing mechanism. From a hardware
standpoint, this chapter is only a simplified presentation. The reader in-
terested in gaining detailed understanding is referred to our book ref.
C201 {**Microprocessars,’' by the same author).

The Z80 was designed as a replacement for the Intel 8080, and to of-
fer additional capabilities. A number of references will be made 1n this
chapter to the 8080 design.

SYSTEM ARCHITECTURE

The architecture of the microcomputer system appears in Figure 2.1.
The microprocessor unit (MPU), which will be a ZBO here, appears on
the left of the illustration. It implements the functions of a central-
processing urit (CPU) within one chip: 1t includes an arithmetic-logical
urmit (ALL), plus its internzl registers, and a contro! unit (CU), in

46

280 HARDWARE ORGANIZATION

charge of sequencing the system. Its operation will be explained 1n this
chapter.

T K>

280
é’—c RST

Qm x
N ROM RAM PO
Y

g

f]'\ ADDRESS Mus

IRV
K COnMDL Bus 4>

LR LI T)

Fig. 2.1: Standard Z80 System

The MPU creates three buses: an 8-bit bidirectional data bus, which
appears at the top of the illustration, a 16-bit unidirectional address
bus, and a controf bus, which appears at the bottom of the illustration.
Let us describe the function of each of the buses.

The data bus carries the data being exchanged by the various ele-
ments of the system. Typically, it will carry data from the memory to
the MPU or from the MPU to the memory or from the MPU to an in-
put/output chip. (An input/output chip is a component 1n charge of
communicating with an external device.)

The address bus carries an address generated by the MPU, which will
select one internal register within one of the chips attached to the
system. This address specifies the source, or the destination, of the data
which will transit along the data bus.

The control bus carries the various synchronization signals required
by the system.

Having described the purpose of buses, let us now connect the addi-
tional components required for a complete system.

Every MPU requires a precise timing reference, which is supplied by
a clock and a crystal. In most "'older’’ microprocessors, the clock-oscil-
lator 1s external to the MPU and requires an extra chip. In most recent
microprocessors, the clock-oscillator is usually incorporated within the
MPU. The quartz crystal, however, because of its bulk, is always exter-

47

PROGRAMMING THE Z80

nal to the system. The crystal and the clock appear on the left of the
MPU box in Figure 2.1.

Let us now turn our aftention to the other elements of the system.,
Going from left to right on the illustration, we distinguish:

The ROM is the read-only memory and contains the program for the
system. The advantage of the ROM memory 1s that its contents are per-
manent and do not disappear whenever the system is turned off. The
ROM, therefore, always contains a bootstrap or a monitor program
(their function will be explained later) to permit initial system opera-
tion. In a process-control environment, nearly all the programs will
reside in ROM, as they will probably never be changed. In such a case,
the industrial user has to protect the system against power failures; pro-
grams must not be volatile. They must be in ROM.

However. in a hobbyist environment, or in a program-development
environment (when the programmer tests his program), most of the
programs will reside in RAM so that they can be easily changed. Later,
they may remain in RAM, or be transferred into ROM, if desired.
RAM, however, is volatile, Its contents are lost when power is turned
off.

The RAM (random-access memory} is the read/write memory for the
system. In the case of a control system, the amount of RAM will
typically be small (for data only). On the other hand, in a program-
development environment, the amount of RAM will be large, as it will
contain programs plus development software. All RAM contents must
be loaded prior to use from an external device.

Finally the system will contain one or more interface chips so that it
may communicate with the external world. The most frequently used
interface chip is the P1O or parallel input/output chip. It is the one
shown on the illustration. This PIO, like all other chips in the system,
connects to all three buses and provides at least two 8-bit ports for
communication with the outside world. For more details on how an ac-
tual PIO works, refer to book C201 or, for specifics of the Z80 system,
refer to Chapter 7 (Input/Output Devices).

All the chips are connected to all three buses, in¢luding the control
bus.

The functional modiles which have been described need not
necessarily reside on a single LSI chip. In fact, we could use combina-
tion chips, which may include both PIO and a limited amount of ROM
or RAM.

Still more components will be required to build a real system. In par-

48

Z80 HARDWARE QRGANIZATION

ticular, the buses usually need to be buffered. Also, decoding logic may
be used for the memory RAM chips, and, finaily, some signals may
need to be amplified by drivers. These auxiliary circuits will not be
described here as they are not relevant to programming. The reader in-
terested in specific assembly and interfacing techniques is referred to
book C207 **Microprocessor Interfacing Techniques.’

INSIDE A MICROPROCESSOR

The large majority of all microprocessor chips on the market today
implement the same architecture. This **standard’’ architecture will be
described here. It 15 shown in Figure 2.2, The modules of this standard
microprocessor will now be detailed, from night to left.

EXTERNAL DATA 8US
INTERNALBUS 4 > (8 BITS)

C
g ‘
’] R R
4 E
5P e Gl 0
I
S | wae | 3 c
1 I H
£ E T
] R R
N L
| Bt
—e
L ;
ﬁé’mﬁ? SHIFTER
EXTERNAL
ADDRESS BUS
{16 BITS)

Fig. 2.2: ''Standard’' Microprocessor Architecture

The control box on the right represents the control unit which syn-
chronizes Lthe entire system. lts role will be clarified within the re-
mainder of this chapter.

49

PROGRAMMING THE Z80

The ALU performs arithmetic and logic operations. A special
register equips one of the inputs of the ALU, the left input here. It is
called the accumulator. (Several accumulators may be provided.) The
accumulator may be referenced both as input and output (source and
destination) within the same instruction.

The ALU must also provide shift and rotate facilities.

A shift operation consists of moving the contents of a byte by one or
more positions to the left or to the right. This is illustrated in Figure
2.3. Each bit has been moved to the left by one position. The details of
shifts and rotations will be presented in the next chapter.

SHIFT LEFT

NN NP PN

(

ROTATE LEFT

LMD MMM MM <
< CARRY)

Note: Some Shifi and Rolate insiructions do not include the Carry.

Fig. 2.3: Shift and Rotate

The shifter may be on the ALU output, as illustrated in Figure 2.2, or
may be on the accumulator input.

To the left of the ALU, the flags or status register appear. Their role
1s to store exceptional conditions within the microprocessor. The con-
tents of the flags register may be tested by specialized instructions, or
may be read on the internal data bus. A conditional instruction will
cause the execution of a new program, depending on the value of one of
these bits.

The role of the status bits in the Z80 will be examined later in this
chapter.

50

Z80 HARDWARE ORGANIZATION

Setting Flags

Most of the instructions executed by the processor will modify some
or all of the flags. It is important to always refer to the chart provided
by the manufacturer listing which bits will be modified by the instruc-
tions. This is essential in understanding the way a program is being ex-
ecuted. Such a chart for the ZB0 is shown in Figure 4-17.

The Registers

Let us look now at Figure 2.2. On the left of the illustration, the reg-
isters of the microprocessor appear. Conceptually, one can distinguish
the general purpose registers and the address registers.

The General-Purpose Registers

General-pur pose registers must be provided in order for the ALU to
manipulate data at high speed. Because of restrictions on the number of
bits which 1t is reasonable to provide within an instruction, the number
of (directly addressable) registers s usually limited to fewer than eight.
Each of these registers is a set of eight flip-flops, connected to the
bidirectional internal data bus. These eight bits can be transferred
simultaneously to or from the data bus. The implementation of these
registers in MOS flip-flops provides the fastest level of memory
available, and their contents can be accessed within tens of
nanoseconds.

Internal registers are usually [abelled from 0 to n. The role of these
registers is not defined in advance: they are said to be ‘‘general
purpose.’’ They may contain any data used by the program.

These general-purpose registers will normally be used to store eight-
bit data. On some microprocessors, facilities exist to manipulate fwo of
these registers at a time. They are then called *‘register pairs.’’ This ar-
rangement facilitates the storage of [6-bit quantities, whether data or
addresses.

The Address Registers

Address registers are 16-bit registers intended for the storage of ad-
dresses. They are also often called data counters or pointers. They are
double registers, i.e., two eght-bit registers. Their essentiai
characteristic is to be connected to the address bus. The address
registers create the address bus. The address bus appears on the left and
the bottom part of the illustration in Figure 2.4,

51

PROGRAMMING THE Z80

The only way to load the contents of these 16-bit registers is via the
data bus. Two transfers will be necessary along the data bus in order to
transfer 16 bits. In order to differentiate between the lower half and the
higher half of each repister, they are usually labelled as L (low) or H
(high), denating bits 0 through 7, and 8 through 15 respectively. This
label is used whenever it 1s necessary to differentiate the halves of these
registers. At least two address registers are present within most
microprocessors. “MUX" in Fig. 2.4 stands for muitiplexer.

DATA BUS (8} R
4>
MIX ACC
INDEX 1 REGISTER)
+ 14-8IT
STACK | POMATER ADDRESS REGISTERS
PROGRAM ! COUNTER M
{mx |
ADDRESS BUS {16} N

4

Fig. 2.4: The 16-bit Address Registers Create the Address Bus

Program Counter (PC)

The program counter must be present in any processor. It contams
the address of the next instruction to be executed. The presence of the
program counter is indispensable and fundamental to program execu-
tion. The mechanism of program execution and the automatic sequenc-
ing implemented with the program counter will be described 1n the next
section. Briefly, execution of a program is normally sequential. In
order to access the next instruction, It 1s necessary to bring it from the
memory into the microprocessor. The contents of the PC will be
deposited on the address bus, and transmitled towards the memory.
The memory will then read the contents specified by this address and
send back the corresponding word to the MPU. This is the instruction.

52

Z80 HARDWARE ORGANIZATION

In a few exceptional microprocessors, such as the two-chip F8, there is
no PC on the microprocessor. This does not mean that the system does
not have a program counter. The PC happens to be implemented direct-
ly on the memory chip, for reasons of efficiency.

Stack Pointer (SP)

The stack has not been introduced yet and will be described in the
next section. In most powerful, general-purpose microprocessors, the
stack is implemented in '‘software,” i.e., within the memory. In order
to keep track of the top of this stack within the memory, a 16-bit
register is dedicated to the stack pointer or SP. The SP contains the ad-
dress of the top of the stack within the memory. It will be shown that
the stack is indispensable for interrupts and for subroutines.

Index Register (1X)

Indexing 1s a memory-addressing facility which is not always pro-
vided in microprocessors. The various memory-addressing techniques
will be described in Chapter 5. Indexing is a facility for accessing blocks
of data in the memory with a single instruction. An index register will
typically contain a displacement which will be automatically added to a
base (or it might contain a base which would be added to a displace-
ment). In short, indexing is used to access any word within a biock of
data.

The Stack

A stack 1s formally called an LIFO structure (last-in, first-out). A
stack is a set of registers, or memory locations, allocated to this data
structure. The essential characteristic of this structure is that it is a
chronological structure. The first efement introduced into the stack is
always at the bottom of the stack. The element most recently deposited
in the stack is on the top of the stack. The analogy can be drawn with a
stack of plates on a restaurant counter. There i1s a hole in the counter
with a spring in the bottom. Plates are piled up in the hole. With this
organization, it is guaranteed that the plate which has been put first in
the stack (the oldest) is always at the bottom. The one that has been
placed most recently on the stack is the one which is on top of it. This
example also illustrates another characteristic of the stack. In normal
use, a stack is only accessible via two instructions: “’push’ and *‘pop”’
{or “pull’’). The push operation results in depositing one element on

53

PROGRAMMING THE 280

top of the stack (two in the case of the Z80). The pu// operation consists
of removing one element from the stack. In the case of a
microprocessor, it i1s the accumalator that will be deposited on top of
the stack. The pop will result in a transfer of the top element of the
stack into the accumulator. Other specialized instructions may exist to
transfer the top of the stack between other specialized registers, such as
the status register. The Z80 is more versatile than most in this respect.

The availability of a stack is required to implement three program-
ming facilities within the computer system: subroutines, interrupts, and
temporary data storage. The role of the stack during subroutines will be
explained in Chapter 3 (Basic Programming Techniques). The role of
the stack during interrupts will be explained 1n Chapter 6 (Input/Qut-
put Techniques). Finaily, the role of the stack in saving data at high
speed will be explained during specific application programs.

We will simply assume at this pomt that the stack is a required facility
N every computer system. A stack may be implemented in two ways:

l. A fixed number of registers may be provided within the micro-
processor itself. This is a ‘*hardware stack.’’ It has the advantage of
high speed. However, 1t has the disadvantage of a limited number of
registers.

2. Most general-purpose microprocessors choose another approach,
the software stack, in order not to restrict the stack to a very small
number of registers. This is the approach chosen in the Z80. In the soft-
ware approach, a dedicated register within the microprocessor, here
register SP, stores the stack pointer, i.e., the address of the top element
of the stack (or, sometimes, the address of the top element of the stack
plus one). The stack is then implemented as an area of memory. The
stack pointer will therefore require 16 bits to pomnt anywhere in the
memory.

MICROPROCESSOR 7 MEMORY O

________ -

0

S
S
A L e
S
N L L et et

STACK
BASE

Fig. 2.5: The Two-Stack Manipulation Instructions

54

Z80 HARDWARE ORGANIZATION

The Instruction Execution Cycle

Let us refer now to Figure 2.6. The microprocessor unit appears on
the left, and the memory appears on the right. The memory chip may be
a ROM or a RAM, or any other chip which happens to contain
memory. The memory is used to store instructions and data. Here, we
will fetch one instruction from the memory to illustrate the roie of the
program counter. We assume that the program counter has valid con-
tents. It now holds a 16-bit address which is the address of the next in-
struction to fetch 1n the memory. Every processor proceeds in three
cycles:

1 —fetch the next mstruction
2—decode the instruction
J—execute the instruction

Fetch

Let us now follow the sequence. In the first cycle, the contents of the
program counter are deposited on the address bus and gated to the
memory (on the address bus). Simultaneously, a read signal may be
issued on the control bus of the system, if required. The memory will
receive the address. This address js used to specify one location within
the memory. Upon receiving the read signal, the memory will decode
the address it has received, through internal decoders, and will select
the location specified by the address. A few hundred nanoseconds later,
the memory will deposit the eight-bit data corresponding to the
specified address on its data bus. This eight-bit word 1s the instruction
that we want to fetch. In our illustration, this instruction will be
deposited the data bus on top of the MPU box.

Let us briefly summarize the sequencing: the contents of the program
counter are output on the address bus. A read signal is generated. The
memaory cycles, and perhaps 300 nanoseconds later, the instruction at
the specified address is deposited on the data bus (assuming a single
byte instruction). The microprocessor then reads the data bus and
deposits its contents into a specialized internal register, the IR register.
The IR is the instruction register: it is eight-bits wide and s used to con-
tain the instruction just fetched from the memory. The fetch cycle is
now completed. The 8 bils of the instruction are now physically in the
special internal register of the MPU, the IR register. The IR appears on
the left of Figure 2.7. It is not accessible to the programmer,

55

PROGRAMMING THE Z80

MPU ROM/RAM

PC: FINSTRUCTION

Z

; ADDRESS BUS
R)

A

Fig. 2.6: Fetchiﬁg an Instruction from the Memory

Decoding and Execution

Once the instruction is contained in IR, the control unit of the
microprocessor will decode the contents and will be able to generate the
correct sequence of internal and external signals for the execution of the
specified instruction. There is, therefore, a short decoding delay fol-
lowed by an execution phase, the length of which depends on the nature
of the instruction specified. Some instructions will execute entirely
within the MPU. Other instructions will fetch or deposit data from or
into the memory. This is why the various instructions of the MPU re-
giure various lengths of time to execute. This duration is expressed as a
number of (clock) cycles. Refer to Chapter 4 for the number of

V 7 MEMORY
MPY DATA BUS ’ % o
T o 7
iR
2 2
£
RCODER Z
S -
¥ %
SIGNALT A N O
1% rc] R
A /; § MERORT
é oM
7
17/ ADDRYLS BLIS N o
T, o wcn | |

Fig. 2.7: Automatic Sequencing

56

Z80 HARDWARE ORGANIZATION

cycles required by each instruction. Since various clock rates may be
used, speed of execution is normally expressed in number of cycles
rather than in number of nanoseconds.

EXTERNAL o JHTERNAL DATA BUS
BUS Q

g 1

ACCIMULATOR

I

R@ Rl Rn
REGISTERS

RESULT (QESTINATION) BUS
Fig. 2.8: Single-Bus Architecture

Fetching the Next Instruction

We have described how, using the program counter, an instruction
can be fetched from the memory. During the execution of a program,
instructions are fetched i sequence from the memory. An antomatic
mechanism must therefore be provided to fetch instructions in se-
quence. This task is performed by a simple incrementer attached to the
program counter, This is illustrated in Figure 2.7. Every time that the
contents of the program counter (at the bottom of the illustration) are
placed on the address bus, its contents will be incremented and written
back into the program counter. As an example, if the program counter
contained the value **0”", the value ‘0" would be output onthe address
bus. Then the contents of the program counter would be incremented
and the value ‘“I'"" would be written back into the program counter. In
this way, the next time that the program counter is used, it is the in-
struction at address [that will be fetched. We have just implemerted an
auromatic mechamism for sequencing instructions.

It must be stressed that the above descriptions are simplified. In reali-
ty, some instructions may be two- or even three-bytes long, so that suc-
cessive bytes will be fetched (n this manner from the memory. However,
the mechanmism is identical. The program counter is used to fetch

57

PROGRAMMING THE Z80

successive bytes of an instruction as well as to fetch successive instruc-
tions themselves. The program counter, together with 1ts incrementer,
provides an automatic mechanism for pointing to successive memory
locations.

INTERNAL DATA BUS
A A N R RN

Yy,

EXTERNAL
BUS

\ RN

\“%Q;{f

ALU

TR AT L
REG1STERS

Fig. 2.9: Execution of an Addition—R{ inte ACC

) INTERNAL DATA BUS
SRR ‘W\\\\\\

]
o]
-~

brprmmii

REGISTERS

Fig. 2.10: Addition—Second Register R1 into ALU

58

Z80 HARDWARE ORGANIZATION

We will now execute an instruction within the MPU (see Figure 2.8).
A typical instruction will be, for example: RO = RO + Rl. This means:
**ADD the contents of R0 and Rl, and store the results in R0."" To per-
form this operation, the contents of RO wiil be read from register RO,
carried via the single bus to the left input of the ALU, and stored in the
buffer register there. RI wiil then be selected and its contents will be
read onto the bus, then transferred to the right input of the ALU. This
sequence is illustrated in Figures 2.9 and 2.10. At this point,
the right input of the ALU 15 conditioned by Rl, and the left
input of the ALU is conditioned by the buffer register, containing the
previous value of R0O. The operation can be performed. The addition is
performed by the ALU, and the results appear on the ALU output, in
the lower right-hand corner of Fig. 2.11. The results will be deposited
on the single bus, and wiil be propagated back to R0, This means, in
practice, that the input latch of RO will be enabled, so that data can be
written into it. Execution of the instruction 15 now compliete. The
results of the addition are in RO. It should be noted that the contents of
RI have not been modified by this operation. This is a general prin-
ciple: the contents of a register, or of any read/write memory, are not
modified by a read operation.

The buffer register on the left input of the ALU was necessary in
order to miermorize the contents of RO, 50 that the single bus could be
used again for another transfer. However, a problem remains.

EXTERHAL INTERMAL DATA BUS

R R1
ACC + R1—=RD

Fig. 2.11: Result Is Generated and Goes into RO

59

PROGRAMMING THE Z80

The Critical Race Problem

The simple organization shown in Figure 2.8 will not function cor-
rectly.

Question: What is the tinung problem?

Answer: The problem is that the resuit which will be propagated out
of the ALU will be deposited back on the single bus. It will not pro-
pagate just in the direction of RO, but along all of the bus. In particular,
it will recondition the right input of the ALU, changing the result coming
out of it a few nanoseconds later, This is a critical race. The output of
the ALU must be isolated from its input (see Figure 2.12).

Several solutions are possible which will isolate the input of the ALU
from the output. A buffer register must be used. The buffer register
could be placed on the output of the ALU, or on its input. It is usually
placed on the input of the ALU. Here it would be placed on tts right in-
put. The buffering of the system is now sufficient for a correct opera-
tion. It will be shown later in this chapter that if the left register which
appears in this illustration is to be used as an accumulator (permitting
the use of one-byte long instructions), then the accumulator will require
a buffer too, as shown in Figure 2.13.

EXTERNAL [KTERHAL DATA BUS
BUs \\w\m\m\\\\\wm\\m\\m\&sm\\\\m\\\\§
N

N
ACCUHULATOR

|

7z

G

Wm’mfifm@

L

REGISTERS RRRRRRRRTNTNN

Fig. 2.12: The Critical Race Problem

60

280 HARDWARE ORGANIZATION

EXTERKAL INTERHAL DATA BUS

BUS <<: UL

AN
ACCUMULATOR

|rmerecd

“TEMP ACC. .

REGISTERS

Fig. 2.13: Two Buffers Are Required (Temp Registers)

INTERNAL ORGANIZATION OF THE Z80

The terms necessary in order to understand the internal elements of
the microprocessor have been defined. We will now examine in more
detail the Z80itself, and describe its capabilities. The internal organiza-
tion of the Z80 is shown in Figure 2.14. This diagram presents a logical
description of the device, Additional interconnections may exist but are
not shown. Let us examine the diagram from right to left.

On the right part of the illustration, the arithmetic-logical unir (the
ALU) may be recognized by its characteristic *'V'* shape, The accumu-
lator register, which has been described in the previous section, is iden-
tified as A on the right input path of the ALU. It has been shown 1n the
previous section that the accumulator should be equipped with a buffer
register., This 15 the register labeled ACT (temporary accumulator).
Here, the left input of the ALU is also equipped with a temporary
register, called TMP. The operation of the ALU will become clear in the
next section, where we will describe the execution of actual instructions.

The flags registeriscalled*‘F”’ inthe Z80,and is shown on theright of the
accumulator register. The contents of the flags register are essentially
conditioned by the ALU, but it will be shown that some of its bits may
also be conditioned by other modules or events.

The accumulator and the flags registers are shown as double registers
labelled respectively A, A' and F, F'. This is because the Z80 is

61

PROGRAMMING THE Z80

equipped internally with two sets of registers: A + F, and A’ + F'.
However, only one set of these registers may be used at any one time. A
special instruction is provided to exchange the contents of A and F with
A’ and F'. In order to simplify the explanations, only A and F will be
shown on most of the diagrams which follow. The reader should
remember that he has the option of switching to the alternate register
set A' and F' if desired.

The role of each flag in the flags register will be described in Chapter
3 (Basic Programming Techniques}.

A large block of registers is shown at the center of the illustration. On
top of the block of registers, two identical groups can be recognized.
Each one includes six registers iabeled B, C, D, E, H, L. These are the
general-purpose eight-bit registers of the Z80. There are two peculiari-
ties of the Z80 with respect to the standard microprocessor which has
been described at the beginning of this chapter.

First, the Z80 is equipped with rvo banks of registers, .., two iden-
tical groups of 6 registers. Only six registers may be used at any one
time. However, special instructions are provided to switch between the
two banks of registers. One bank, therefore, behaves as an internal
memory, while the other one behaves as a working set of internal
registers. The possible uses of this special facility will be described in
the next chapter.

Conceptually, it will be assumed, for the time being, that there are
only six working registers, B, C, D, E, H, and L, and the second
register bank will temporarily be 1gnored, in order to avoid confusion.

The MUX symbol which appears above the memory bank 1s an ab-
breviation for rmultiplexer. The data coming from the internal data bus
will be gated through the multiplexer to the selected register. However,
only one of these registers can be connected to the internal data bus at
any one time.

A second characteristic of these six registers, in addition to being
general-purpose eight-bit registers, is that they are equtpped with a con-
nection to the address bus. This 1s why they have been grouped n
pairs. For example, the contents of B and C can be gated simultaneous-
ly onto the [6-bit address bus which appears at the bottom of the illustra-
tion. As a result, this group of 6 registers may be used to store either
eight-bit data or else 16-bit pounters for memory addressing.

The third group of registers, which appears below the two previous
ones in the middle of Figure 2.14, contains four “‘pure” address
registers. As 1n any microprocessor, we find the program counter (PC)
and the stack pointer {SP). Recall that the program counter contains

62

280 HARDWARE ORGANIZATION

the address of the next instruction to be executed.

The stack pointer points to the top of the stack in the memory. In the
case of the Z80, the stack pointer points to the /ast actual entry 1n the
stack. (In other microprocessors, the stack pointer points just above the
last entry.) Also, the stack grows *‘downwards, '’ i.e. towards the lower
addresses.

This means that the stack pointer musl be decremented any time a
new word is pushed on the stack. Conversely, whenever a word i3
removed (popped) from the stack, the stack pointer must be -
cremented by one. In the case of the Z80, the ‘‘push’’ and ‘“‘pop”’
always involve fwo words at the same time, so that the contents of the
stack pointer will be decremented or incremented by two.

Looking at the remaining two registers of this group of four registers,
we find a new type of register which has not been described yet: two
index-registers, labeled 1X (Index Register X} and 1Y (Index Register
Y). These two registers are equipped with a special adder shown as a
miniature V-shaped ALU on the rnight of these registers in Figure 2.14.
A byte brought along the internal data bus may be added to the con-
tents of [X or 1Y. This byte is called the displacement, when using an in-
dexed instruction. Special instructions are provided which will
automatically add this displacement to the contents of 1X or 1Y and
generate an address. This is called indexing. It allows convenient access
to any sequential block of data. This important facility will be des-
cribed in Chapter 5 on addressing techniques.

Finally, aspecial box labeled ** + 1’* appears below and to the left of the
block of registers. This is an increment/decrement. The contents of any
of the register pairs SP, PC, BC, DE, HL (the “*pure address’’ registers)
may be automatically incremented or decremented every ime they depos-
it an address on the internal address bus. This is an essential facility for
implementing automated program loops which will be described in the
next section. Using this feature it will be possible to access successive
memory locations conveniently.

Let us move now to the left of the illustration. One register pair 15
shown, 1solated on the left: I and R. The I register 1s called the witerrupt-
page address reguster. 1ts role will be described 1n the section on inter-
rupts of Chapter 6 (Input/Qutput Techniques). It 1s used only in a
spectal mode where an indirect call to a memory location is generated in
response to an interrupt. The I register is used to store the high-order
part of the indirect address. The [ower part of the address is supplied by
the device which generated the interrupt.

63

PROGRAMMING THE Z80

The R register 15 the memory-refresh register. 1t 1s provided to refresh
dynamic memories automatically. Such a register has traditionally been
located outside the microprocessor, since it 1s associated with the
dynamic memory. It is a convenient feature which minimizes the
amount of external hardware for some types of dynamic memories. It will
not be used here for any programming purposes, as it is essentially a
hardware feature (see reference C207 ‘‘Microprocessor Interfacing
Techniques™ for a detailed description of memory refresh techniques).
However, 1t 1s possible to use it as a software clock, for example.

Let us move now to the far left of the illustration. There the control
section of the microprocessor is located. From top to bottom, we find
first the imstruction register 1R, which will contain the instruction to be
executed. The IR register is totally distinct from the *‘I, R*' register pair
described above. The instruction is received from the memory via the
data bus, is transmitted along the internal data bus and is finally
deposited into the instruction register. Below the instruction register ap-
pears the decoder which will send signals to the controlier-sequencer
and cause the execution of the instruction within the microprocessor
and outside it. The contro/ section generates and manages the control
bus which appears at the bottom part of the iliustration.

The three buses managed or generated by the system, i.c., the data
bus, the address bus, and the control bus, propagate outside the
microprocessor through 1ts pins. The external connections are shown
on the right-most part of the illustration. The buses are isolated from
the outside through buffers shown in Figure 2.14,

All the logical elements of the Z80 have now been described. It is not
essential to understand the detailed operation of the Z80 in order to
start writing programs. However, for the programmer who wishes to
write efficient codes, the speed of a program and its size will depend
upon the correct choice of registers as well as the correct choice of
techniques. To make a correct choice, 1t is necessary to understand how
instructions are executed within the microprocessor. We will therefore
examine here the execution of typical instructions inside the Z80 to
demonstrate the role and use of the internal registers and buses.

280 HARDWARE ORGANIZATION

| uonszuedIQ g§Z jeuwsnu] p1°z g

@ DU e war

65

SN JOULNDD
sna
OUINOD
i]
3
T u (SU@ 91) Sng 5SS3NOQV
sng n ¢ o e S lits v o —— i p—
SSINAOY _ J
| ¥ _ i
_ _
_ Y
| X <~/
! a8 “ NOILDTS
“ T0HINDD ¥IDNINDIS
i M HITHOVINDD
|
_ x_ 73
_ |
_ |
I 1 H 1 H ¥30023
“ v _
3 Q 3 a $
| [I
| 4 — v AWl 2] 2 K] “_V 'l 1 039 15N
|
| i e v [1 [I A/
] xXnw xnw L - -—
¥iva -}
3 l' N] 1 11
A.Hv u {118 9} SNG ¥Y1VYQ TYNNLNI
] n
i]
|

e ——————

PROGRAMMING THE Z80

INSTRUCTION FORMATS

The Z80 instructions are listed in Chapter 4. Z80 instructions may
be formated in one, two, three or four bytes. An mstruction specifies
the operation to be performed by the microprocessor. From a
simplified standpoint, every instruction may be represented as an op-
code followed by an optional literal or address field, comprising one or
two words. The opcode field specifies the operation to be carried out.
In strict computer terminology, the opcode represents only those bits
which specify the operation to be performed, exclusive of the register
pointers that might be necessary. In the microprocessor world, it 1s con-
venient to call opcode the operation code itself, as well as any register
pointers which it might incorporate. This ‘‘generalized opcode’ must
reside in an eight-bit word for efficiency (this is the limiting factor on
the number of instructions available in a microprocessor).

The 8080 uses instructions which may be one, two, three, bytes long
(see Figure 2.15). However, the Z80 is equipped with additional indexed
instructions, which require one more byte. In the case of the Z80, op-
codes are, in general, one byte long, except for special instructions
which require a two-byte opcode.

Some instructions require that one byte of data follow the opcode. In
such a case, the instruction will be a two-byie instruction, the second
byte of which is data (except for indexing, which adds an extra byte).

In other cases, the instruction might require the specification of an
address. An address requires 16 bits and, therefore, two bytes. In that
case, the instruction will be a three-byte or a four-byte instruction.

For each byte of the instruction, the control unit will have to perform
a memory fetch, which will require four clock cycles. The shorter the
instruction, the faster the execution.

A One-Word Instruction

One-word instructions are, 1n principle, fastest and are favored by
the programmer. A typical such mstruction for the Z80 is:

LDr. '

This instruction means: ‘“Transfer the contents of register r’ intor."’
Ths is a typical *‘register-to-register’’ operation. Every microprocessor
must be equipped with such instructions, which allow the programmer
to transfer information from any of the machine's registers into
another one. Instructions referencing special registers of the machine,

66

Z80 HARDWARE ORGANIZATION

7 8
1-¥ORD
2Ok GENERALIZED DPCODE TNSTRN
N 3-%ORD
IHSTR OPTIONAL DATA OR
ADDRESS

INSTRM

OPTIOKAL ADDRESS

Fig. 2.15 Typical Instruction Formats

such as the accumulator or other special-purpose registers, may have a
special opcode.

After execution of the above instruction, the contents of r will be
equal to the contents of r’. The contents of r' will not have been
modified by the read operation.

Every instruction must be represented internally in a binary format.
The above representation “LD r,r’ ' is symbolic or mnemonic. 1t is
called the assembiy-language representation of an instruction. It is
simply meant as a convenient symbolic representation of the actual
binary encoding for that instruction. The binary code which will repre-
sent this instruction inside the memory is: 0 i DD D S S S (bits0to 7).

This representation is still partially symbolic. Each of the [etters S
and D stands for a binary bit. The three D's, *'D D D", represent the
three bits pointing to the destination register. Three bits allow selection
of one out of eight possible registers. The codes for these registers ap-
pear in Figure 2,16. For example, the code for register B is ‘000", the
code for register C is “00 1", and so on.

Similarly, *'S S S represents the three bits pointing to the source
register. The convention here is that register r’ is the source, and that
register r 1s the destination. The placement of the bits in the binary
representation of an instruction is not meant for the convenience of the
programmer, but for the convenience of the control section of the
microprocessor, which must decode and execute the instruction. The
assembly-language representation, however, 1s meant for the conve-
nience of the programmer. [t could be argued that LD r,r’ should really
mean: “Transfer contents of r into r'.”’ However, the convention has

67

PROGRAMMING THE Z80

been chosen in order to maintain compatibility with the binary
representation in this case. It is naturally arbitrary.

Exercise 2,1: Write below the binary code which will transfer the con-
tents of register C tnto register B. Consult Fig. 2.16 for the codes cor-
responding to C and B.

Another simple example of a one-word instruction is:
ADDA, 1

This instruction will result in adding the contents of a specified
register (r) to the accumulator (A). Symbolically. this operation may be
represented by: A = A + r. It can be verified in Chapter 4 that the
binary representation of this instruction is:

10000SSS

where S S S specifies the register to be added to the accumulator. Again,
the register codes appear in Figure 2.16.

Exercise 2.2: What is the binary code of the instruction which will add
the contents of register D to the accumuliaior?

CODE REGISTER

goo
oo
010
011l
log
1ol
110 |- (MEMORY)
111 1A

~ X M o O @

Fig. 2.16: The Register Codes

A Two-Word Instruction
ADD A, n

This simple two-word instruction will add the contents of the second
byte of the instruction to the accumulator. The contents of the second

68

Z80 HARDWARE ORGANIZATION

word of the instruction are said to be a “‘literal.’’ They are data and are
treated as eight bits without any particular significance. They could
happen to be a character or numerical data. This is irrelevant to the
operation. The code for this instruction is:

110001 10 followed by the 8-bit byte *'n"

This 1s an immediate operation. *‘Immediate,’’ in most programming
languages, means that the next word, or words, within the instruction
contains a piece of data which should not be interpreted (the way an op-
code is). It means that the next one or two words are to be treated as a
literal,

The control unit is programmed to “‘know’’ how many words each
instruction has. It will, therefore, always fetch and execute the right
number of words for each instruction. However, the longer the possible
number of words for the instruction, the more complex it is for the con-
trol unit to decode.

A Three-Word Instruction
LD A, (nn)

The instruction requires three words. It means: ‘“‘Load the ac-
cumulator from the memory address specified 1 the next two bytes of
the instruction.’” Since addresses are |6-bits long, they require two
words. In binary, this instruction is represented by:

00111010: 8 bits for the opcode
Low address: 8 bits for the lower part of the address
High address: 8 bits for the upper part of the address

EXECUTION OF INSTRUCTIONS WITHIN THE Z380

We have seen that all instructions are executed in three phases:
FETCH, DECODE, EXECUTE. We now need to introduce some
definitions. Each of these phases will require several ciock cycles. The
280 executes each phase in one or more logical cycles, called a
“‘machine cycle.”” The shortest machine cycie lasts three clock cycies.

Accessing the memory requires three cycles for any operands, four
clock cycles for the initial fetch. Since each instruction must be fetched
first from the memory, the fastest instruction will require four clock
cycles. Most instructions will require more,

Each machine cycle is labeled as M1, M2, etc., and will require three
or more clock cycles, or “‘states,’’ labeled TI, T2, etc.

69

PROGRAMMING THE Z80

The FETCH Phase

The FETCH phase of an instruction is implemented during the first
three states of machine cycle M1; they are called T1, T2, and T3. These
three states are common to all instructions of the microprocessor, as all
instructions must be fetched prior to execution. The FETCH
mechanism is the following:

Tl : PCOUT

The first step is to present the address of the next instruction to the
memory. This address is contained in the program counter {PC). As the-
first step of any instruction fetch, the contents of the PC are placed on
the address bus (see Figure 2.17). At this point, an address is presented
to the memory, and the memory address decoders will decode this ad-
dress in order to select the appropriate location within the memory.
Several hundred ns (a nanosecond is 107 second) will elapse before the
contents of the selected memory location become available on the out-

OATA BUS

L
TT

CONTROLLER

SECUENCER

CONTROL
SIGHALS

—

Fig. 2.17: Instruction Fetch—(PC) Is Sent to the Memory

70

280 HARDWARE ORGANIZATION

put pins of the memory, which are connected to the data bus. It is standard
computer design to use the memory read time to perform an operation
within the microprocessor. This operation is the incrementation of the
program counter:

T2:PC =PC + |

While the memory is reading, the contents of the PC are incremented
by | (see Figure 2.18). At the end of state T2, the contents of the
memory are available and can be transferred within the micro-
processor:

T3 : INST into IR

?/IIIIIIIIIIIIIIIIII{IIIIIIIII/IIIIIIIIIIWII”III”I/I/IIIII
7

P/ idd /7 ad

»’{/m’ﬁ Lo A]

CONTAOLLEA

E:@ DATA BUS

mm

SEQUEHCER

[}
w |r
7 PaooRess 8us

CONTROL
STGRALS

—

v

Fig 2.18: PC Is Incremented

The DECODE and EXECUTE Phases
During state T3, the instruction which has been read out of the

memory 15 depostted on the data bus and transferred into the instruc-
tion register of the Z80, from which point it is decoded.

!

PROGRAMMING THE Z80

A
¥

CONTROLLER

SEQUEHCER

[
v
6 |
% [)ADDRESS BUS

CONTROL
SIGHALS

>

v

Fig. 2.19: The Instruction Arrives from the Memory into IR

It should be noted that state T4 of M1 will always be required. Once
the instruction has been deposited into IR during T3, it is necessary to
decode and execute it, This will require at least one machine state, T4.

A few instructions require an extra state of MI (state TS). It will be
skipped by the processor for most instructions. Whenever the execution
of an instruction requires more than M1, i.e., MI, M2 or more cycles,
the transition will be directly from state T4 of M1 into state T1 of M2.
Let us examine an example., The detailed internal sequencing for each
example is shown in the tables of Figure 2.27. As these tables have not been
released for the Z80, the 8080 tables are used instead. They provide an in-
depth understanding of instruction execution.

LDD,C

Thus corresponds to MOV 11, 2 for the 8080. Refer to line { of Fig. 2.27.

By coincidence, the destination register in this example happens to be
named ‘D'’ The transfer is illustrated in Figure 2.20.

This nstruction has been described in the previous section. It
transfers the contents of register C, denoted by '*C"’, nto register D.

The first three states of cycle M1 are used to fetch the instruction
from the memory. At the end of T3, the instruction is in IR, the In-
struction Register, from which point it can be decoded (see Figure 2.19).

During T4: (SS Sy » TMP.
The contents of C are deposited into TMP (See Figure 2.21).

72

280 HARDWARE ORGANIZATION

During TS: (TMP) » DDD.
The contents of TMP are deposited into D. This is shown in Figure 2.22.

L C
[ooctooo0l [looolooo |
BEFORE

{ loooitoo0 [10001000 |
AFTER

Fig. 2.20: Transferring C into D

'}

H\\\\\\\\\\\\\\\\\\\\\\ R ’ DATA M5
F——

ey - R

INST, REG. NIEIWE

CONTROLLER

SEQUENCER

tr
1 |r
H RESS BUS

Fig. 2.21: The Contents of C Are Deposited into TMP

73

PROGRAMMING THE 280

JATa BuS

T

COMTROLLER

SECUENCER

ﬂ ‘1 :
‘ ' % |F
l ¥ [OOADDRESS EuS

] CONTROL

SIGUALS

Fig. 2.22: The Contents of TMP are Deposited into D

Execution of the instruction is now complete. The contents of
register C have been transferred into the specified destination register
D. This terminates execution of the instruction. The other machine
cycles M2, M3, M4, and M$ will not be necessary and execution stops
with M1,

It is possible to compute the duration of this instruction easily. The
duration of every state for the standard Z80 is the duration of the clock:
500 ns. The duration of this instruction is the duration of five states, or
S % 500 = 2500 ns = 2.5 us. With a 400 nsclock, 5 x 400 = 2000 ns
= 2.0us.

Question: Why does this insiruction require {wo states, T4 and T35,
in order to transfer the contents C into D, rather than just one? It
transfers the contents of C mto TMP, and then the contents of TMP in-
1o D. Wouldn'r it be stpler to transfer the contents of C wnto D direci-
fy witiun a single state?

Answer: This 1s not possible because of the implementation chosen
for the internal registers. All the internal registers are, in fact, part of a

14

Z80 HARDWARE ORGANIZATION

single RAM, a read/write memory internal to the microprocessor chip.
Only one word may be addressed or selected at a time within an RAM
(single-port). For this reason, it is not possible to both read and write
1to, or from, an RAM at two different locations. Two RAM cycles are
required. It becomes necessary first (o read the data out of the register
RAM., and store it in a temporary register, TMP, then, to write it back
into the final destination register, here D. This s a design inadequacy.
However, this limitation is common to virtually ail monolithic
microprocessors. A dual-port RAM would be required to solve the
probiern. This limitation is not intrinsic to microprocessors and it normally
does not exist 1n the case of bit-slice devices. It1s a result of the constant
search for fogic density on the chip and may be eliminated in the future.

Important Exercise:

Al this point, 1t 1s highly recommended that the user review by him-
self the sequencing of this simple instruction before we proceed to more
complex ones. For this purpose, go back to Figure 2.14. Assemble a few
small-sized “‘symbols’* such as matches, paperclips, etc. Then move the
symbolis on Figure 2.14 to simulate the flow of data from the registers
into the buses. For example, deposit a symbol into PC. T1 will move
the symbol contained in PC out on the address bus towards the
memory. Continue simulated execution in this fashion until you feel
comfortable with the transfers along the buses and between the
registers. At this point, you should be ready to proceed.

Progressively more complex instructions will now be studied:

ADD A, r

This instruction means: “* Add the contents of register r (specified by
a binary code S S S) to the accumulator (A), and deposit the result in
the accumulator.”’ This 1s an mpliciz instruction. It is called implicit as
it does not explicitly reference a second register. The instruction expli-
citly refers only to register r. It implies that the other register involved
in the operation 15 the accumulator. The accumulator, when used in
such an imptlicit instruction, 1s referenced both as source and desuina-
tion. Data will be deposited in the accumulator as a result of this addi-
tion. The advantage of such an implicit instruction 1s that its complete
opcode is only eight bits in length. It requires only a three-bit register
field for the specification of r. Thus is a fast way to perform an addition
operation.

Other implicit instructions exist in the system which wil reference

75

PROGRAMMING THE Z80

other specialized registers. More complex examples of such impticit in-
structions are, for example, the PUSH and POP operations, which will
transfer information between the top of the stack and the accumulator,
and will at the same time update the stack pointer (SP), decrementing it
or incrementing it. They implicitly manipulate the SP register.

The execution of the ADD A, r instruction will now be examined in
detail. This instruction wil| require two machine cycles, M| and M2. As
usual, during the first three states of M1, the instruction 1s fetched from
the memory and deposited in the IR register. At the beginning of T4, 1t
is decoded and can be executed. It will be assumed here that register B is
added to the accumnulator. The code for the instruction will then be:
10000000 (the code for register B is 0 0 0). The B080 equivalent 1s
ADD r.

T4: (SS S) » TMP, (A) » ACT

—li v
H DATA BUS
S 1
L]
INST. a6
BECOZEN < — l
S N -
b ¢
CONTROLLER
IR
SEQUENCER Fucs Ay
5
PC
[]
6 |*
& [anpaess pys
€onTROL
"D sious

Fig. 2.23: Two Transfers Occur Simultaneously

Two transfers will be executed simultaneously. First, the contents of
the specified source register (here B) are transferred into TMP, i.e., to
the right input of the ALU (see Fig. 2.23). At the same time, the con-
tents of the accumulator are transferred to the temporary accumulator
(ACT). By inspecting Fig. 2.23, you will ascertain that those transfers
can occur in parallel. They use different paths within the system. The

76

Z80 HARDWARE ORGANIZATION

transfer from B to TMP uses the internal data bus. The transfer from
ACT uses a short internal path independent of this data bus. In order to
gain time, both transfers are done simultaneously. At this point, both
the left and the right input of the ALU are correctly conditioned. The
left input of the ALU 1s now conditioned by the accumulator contents,
and the right input of the ALU is conditioned by the contents of register
B. We are ready to perform the addition. We would normally expect to
see the addition take place during state T5 of M 1. However, this state is
simply not used. The addition is not performed! We will enter machine
cycle M2. During state T1, nothing happens! It is only in state T2 of M2
that the addition takes place (refer to ADD rin Figure 2.27):

T2 of M2: (ACT) + (TMP) » A

The contents of ACT are added to the contents of TMP, and the
result is finally deposited in the accumulator. See Figure 2.24. The
operation is now compiete.

RN RN

Eﬁ ATA BUS
)

'
y

CONTROLLER

'

xja e | x
~lmle |

0 R
SEQUERCE 5P

PC

R
[]
s |7
‘ DRESS BUS

o
D sions

Fig. 2.24: End of ADD r

Question: Why was the completion of the addition deferred until
state T2 of machine cycle M2, rather than taking place during state TS5
of M1? (This is a difficult question, which requires an understanding of
CPU design. However, the technique involved is fundamental to clock-
synchronous CPU design. Try to see what happens.)

7

PROGRAMMING THE 280

Answer: This 1s a standard design ““trick’’ used in most CPU's. It is
calied “‘fetch/execute overlap.’’ The basic 1dea 15 the following: looking
back at Figure 2.23 1t can be seen that the actual execution of the addi-
tion wifl only require the use of the ALU and of the data bus. In part-
cular, it will not access the register RAM (register block). We (or the
control unit) know that the next three states which will be executed after
completion of any instruction will be Ti, T2, T3 of machine cycle M1
of the next instruction. Looking back at the execution of these three
states, it can be seen that thetr execution will only require access to the
program counter (PC) and use of the address bus, Access to the pro-
gram counter wiil require access to the register RAM. (This explains
why the same trick could not be used in the instruction LD r,r’.) 1t 1s
therefore possible to use simultaneously the shaded area in Figure 2.17
and the shaded area in Figure 2.24.

The data bus is used during state T1 of M1t to carry status informa-
tion out. It cannot be used for the addition that we wish to perform,
For that reason, it becomes necessary to wait until state T2 before the
addition can be effectively carried out. This is what occurred in the
chart: the addition is completed during state T2 of M2. The mechanism
has now been explained. The advantage of this approach should now be
clear. Let us assume that we had implemented a straightforward
scheme, and performed the addition during state TS of machine cycle

CONNCD

INSTRUCTION n: 'L” WL lT “‘ :L 1! % 2) EHD
|

be— FETCH ——-—-—-—f—cxzcun—ﬂ
1

[}
INSTRUCTION N + 1 o o - o o — o o LN L0 TN 0 . T I
] S . B
1
]
re——FETCH T ~+——— [XECUTE—

1

]

<D
VERLAP

Fig. 2.25: FETCH-EXECUTE Overlap during T1-T2

M. The duration of the ADD instruction would have been § x 500 =
2500 ns. With the overlap approach which has been implemented, once
state T4 has been executed, the next instruction is jnitiated. In a manner

78

Z80 HARDWARE ORGANIZATION

that 1s invisible to this next instruction, the *‘clever*’ control unit will
use state T2 to carry out the end of the addition. On the chart T2 is
shown as part of M2. Conceptually, M2 will be the second machine cy-
cle of the addition. In fact, this M2 will be overlapped, i.e., be identical
to machine cycle M1 of the next instruction. For the programmer, the
delay introduced by ADD will be only four states, i.e., 4 X 500 = 2000
ns, instead of 2500 ns using the '‘straightforward’’ approach. The
speed improvement is 500 ns, or 20%!

The overlap technique is illustrated on Figure 2.25. It is used when-
ever possible to increase the apparent execution speed of the micropro-
cessor. Naturally, it it not possible to overlap in all cases. Required
buses or facilities must be available without conflict. The control unit
**knows’’ whether an overlap 1s possible.

NOTES: 12. If ihe condition war ot the conienty of tha cegnter
parr W2 ars output on the sddrens lines {Agag! tnsteed ol

i. The tirst memary eycle {M1) it slweys an inyteuction the comtents of the program counter (PCI,

teteh; the first [or only] byte, containing the op mdr, 19
letched during this cvele,

2. Il the READY inpur lrom memory it nat high duning
T2 of sach mamary cytle, the oroct1sar will enter 3 wan
state (TWH until AEADY iy aampled oy high,

3. Siates T4 and T6 are prasant, a1 required, lor opere-
tians which ere completely snternal to she CPU. The con-
tents of she interngd but during T4 and T5 ers ewsilable 21
tha date bus: thit is dewgned for resting purposs only, An
“X" denates thal the state N pratant, but 3 only uied for

£3. If thy condition wat not met. sub-cyeles A4 and MS
are 1kipped; the proceuar instasd procesdy immadiaiely (o
tha initeuction feteh (M 1) ol the neat instructsan cycle.
14,)i the candition wat not mat, sub-cycles M and M3
Faskipped: the proceuar instead grocmeds immediajely to
the miteuctian fereh (M1] of the nent insiruetion cycle.
15. Stech read sub-cycla.

18. Stack write sub-cycle,

7. TH
luch internal operatians a5 imtrurclion decoding, 1. CONOITION cec
4. Only regitter pairecp = @ [cegistery Boand Clor sp= D N: : :’o’[‘;n-lfl- e z?
[ragysvars O snd E) may be specified, NC — no casry [CY = 0) 010
5. These states sre shipped, C - exryICY « 1} on
6 Mamory read 1ub-cyeln; sn tmytcucton of dafs waid PO - pantyodd [P+ 0] t00
will be reed. PE — pardy even (P 1] 101
P - puis=0 1o

7. Memory write jub-cvgle. M - minus = 1] m

18. HO swb-eycle: the /O port’y Bbit seteet code e dupli
ared on address linee 07 JAg g} and B 15 (Ag.i5l.

18. Dutput sub-cyele.

6. The REAOY ixgnal is not requded ducng Lhi second
and third sub-cycln (MY and M3). The HOLD ugnal is
secspted duting M2 and M. Tha SYNC ugral is not gene
tsted durirg M2 end M3, Quring The execution of DAD,

M2 and M1 e74 requrted Tor an internsl regiterpair add; 20, Ths processor will cemain idle in tha halt state untdd

mamory ie noy refesenced,

8. Thereulty of these srithmatic, logioat of cotets in-
Rfruciony pre not maved inlo the accumulator {AY untid
ttate T2of 1he neot instrucuion cycls. Thes 1s. A is losded
while the neal indtruction is being fesched; this oterlapping
of opetations vllows for faster pracesting.

18, 18 the velue of thy lrast ag: 4-bity of the

Tatos is graster than B or if the suxilisry ey bib s tnl, 6
13 86dxd 10 the accumulator, I the value of the mast ugnifi-
cant 4-bite of thy accumulntor is now grenter than 9, or if
the carsy bal is sat, 6 it added to 1ha mast ppnificant -
4-bits of the accumulater,

11, Thiy segrasents Whe tirst swub-cyels [the tmtructon
1etch] of tha neat instruchion cycls,

AN tTErrugt. 8 fedet of 8 hokd is acorpued. When a hold re-
Qui} 13 scoepted, tha CPU enteri the hald mode; ifter the
hold made 40 terminated, (he proceasos returnd 1o the halt
state. After a restt 13 sconpted, the @roeetior begins ¢ necu-
[+on of memory Iocatian 2era. Alter on cntersupt 11 acceplad,
1he proceisor enteutes the intiruction forced onto the date
but (usually & restaryinprogtion],

355 or DDQ Valus | ap T Velun
A T TRV Tee]
| __.& j .we o o1
.. e WT_ W0
| o i 810 ._SP 1

3 i o
L+ 1o_ |

Fig. 2.26: Intel Abbreviations

79

Courtesy intel Corporation

PROGRAMMING THE Z80

ey i o coat gt -y
" AE) L] " m e £
LI WY 2100 A3 "~ LGl KT (LY LA 2 IR -Twr Lo 1
Fatia
v =t8® Juria ¥ T e our ©aTa 2000
: ' nara’d
T
LI dti. baay i sy oty IS P
wy o e e ¢ 1y v
v - ecoo Jo1a [reouT I ~r>1)
Hatud
T a1 [ar e a i
welp, arm aaar fanan i z FarTor STaqeer
'
[r7y™ RN EERE] T ool sl
o aar Jaw s i z werT fri =
2010 sar g [taag H 1 i et
] [
LD s 13 fasana x et PcorTad
war ERLIL I RO W b - AaTa—te 8
Frad opt@ dumr [mara H ! . 15— DT T
I |
01 T et [) .
“80 tasas fansa [rTITITTTY ™ LT ATOrr—a
tar-dCt
apow veaso Jara : el i OUT, paATaeTuw
H Frataaid
e iR a oy l 1oi-agt rTout o ey
fTahad
apes i9galiuas i : T g m HICTI TP LY =4
| ikeart
e w 1o a3t i tar-acr a Aata—petwb
| fraiund
A trsa s L m)-act Sur ke I T
i srana
= R i T RIn~tr ™ 13CT- T
i ke ACT
sy 1ea1farng + tal-agT HLouT Satafetur
! crasuid
B an vra e e B ahedgT T out L2 2 5
manat
tan, 194a1 T LTI n FACTIFTURLLT s
| thi—act
Pam rae1 11 i tap-ary HLout, DaTh o Taet
i tranntll
[TTP cvan] i} 1ot ACT »cout ergen IR
FraTora
"~ 9Apop |[o1g s 100Ut AL OO b
[. L.
Ve aar . Joeraa [] 2, ouT Cata-to fur
Taho® Tt~ ALY
oca, DR o tur aaw—oto
(e
ocm RN EEEE [QT
srazns
inare sanrlesg e
Dexe IR e Lae -
Dk gl aenr|cpan L Cdaalt | rgpeT, AL T
ACTh APt b
Das LEC I LI Bhhs, Freged
Ak . re1 s (ona i [Lol L 18 CTI s Mg
3 (hhealt -
ARA U T ra | peve | o | rmeral dTatueeh | ja-act . ot Satafehe
Etatuy Tenad

30

Fig. 2.27: Intel Instruction Formats

280 HARDWARE ORGANIZATION

- -y -
" e n n e n n" REC] n L "™
-1
3
- T e par
llﬂ\ﬂ Pata b
LT L2
mann¥
L3 LI pata ba
Frahnl
e o wp ot rm— .
Fannm ’
e M—mn LI L BATA———d | WIouT LoLEE
STaAT® | wi-wzed Fratwiill
e oyt L2321 New "t our IU————parA b | wEovT m—t-osTama
Franni STATAT | wi.wier raTIAM
m (ACTH (Tara
m TACT]+ Petri
™ LAt ftamh gyt
m [(T T
~ 1ALT-{TW—a
[a1 Teres L
L] taCHhanCres
LTIt YA
owr al-feparana
mannm
v aw—-oata o
n—art [oot Aben, CF L
JACTH T oty ol .
L LALTL4 (Taefis : N

@ Ineel. Reproduced by permission.,

Fig. 2.27: Intel Instruction Formats (continued)

81

PROGRAMMING THE Z80

T Lg- T} it -
DyDyOy 0y | 01030 0y 11 oy ”w ta W " s 1
AN mw v e g L eeour | reerey L3 31 (LS
TTATVE
BRI R H (ACTIS TA- &
LN B LI LI ' Bata - lurhr
"
LI riosfirre i T a1t TP
R [N | 1803 Tty —a
Chaw IR EEEE
o aw Try L IR B I} . Lo AR TR -
[N R m
Wy BEEIEN H v . ouT Pata - rur
1 STalup
Cr D H e ouT CInZX - farur
' itanae
g OO - [atv-a Cv
Ahe DN R R L) [yl
aay 'EEENEREE T craau alvea cv
san DO I ' alu-a v
L) COOEN R -
cwc LI L) CNL L | E¥-cr .
g KN B . —r K
! i
A KN KR a wcgur I3 fas
TTanre
drvemesat s ec | cana WTOB SN ITigN T PPy TR}
' sfatuim
ALt e R EEER [swepany rcout e s
Patugs
Comua™ {1 v cc| Crae ' TG L g ey " aut LT l-fus
P TAGE P e L - 4 WAl
are tree| vpan x + our wegrer pate fer
. N Harpd
tuwemM |y v cc[cona [T ASDG] COwDITIgRIT 2 OuT. Hadr DAt -te]
FratyRiN
v IR K ”—n wapr out -3 K eoalanul
- turnn Tranala
L N XK waretwaaa | . . i,x
Pup ORI T T oyt . e —degata A
L] L J "P . LAl S0
B IR EEEE . wout 2T 1) [epata vt
- e
"o NILER K T x | Hout S48 el PAlb —mel
i . : . Gt | ¥
g LI) LN x It Pedr 3 Qala—$rbLAGC)
- srasupTH
ey T B a » T WeWet OaAth-fer
H R Patiy
[N EEK [] reavr weaTay Er
Tatu@
oUT gan LI] LI R 0 H L] - T ouT wCamgay "—-tn
N R avarune
" EICER X] l (LI -
:
oF IR KRR T i ALY ivTaes |-
I | : L N
-y O KR k] R < ot ALY MOOE
- Tann
Lo Dawdfeess | rour | M iutaterne x N BB ‘
L] .

82

Fig. 2.27': Intel Instruction Formats (continued)

Z80 HARDWARE ORGANIZATION

uy -~ s
" nH A1) " i " L] "o > L] L]

m At~ (Twrren H
(ACTH Tatten -
AChi (Tasy—a

[AETI -4 - . L -

) AT TR

" WLT). (Ve s LagL

) IAENATNN, FLakh

How J'C"Cll "o R o, avii- 1 -rC
o e o e B X LR
oy, frese LI) Fostawn | omou | reudasrae |- B E- LCRE R
'ls:lls.ﬂ L2l] a1 el gg'mu‘j“, IID'C.M"—'I—A [0 a7a BUE :l“l‘"l:l"“ IFCL -4 DATA BUL ;‘.ﬂ-un fAD i~
;’l.b‘.'"wlll W=t JATA ~mA) ;"ﬂ?‘u'ﬂ"' L EXEd
oty - MOUT p | R
nout .)) DA PUR

pow 0N —r0a s BuB

vour [et oatae N

pour L [FeTe e - B - RS I

4. QATA T [Trastann | wour W—d oavaILE | D

nrow aTA s

Lab = TS BRE

Fig. 2.27': Intel Instruction Formats (continued)

83

PROGRAMMING THE 280

Question: Would it be possible to go further using this scheme, and
to also use state T3 of M2 if we have to execute a longer instruction?

In order to clarify the internal sequencing mechanism, it 1s suggested
that you examine Figure 2.27, which shows the detailed instruction
execution for the 8080. The Z8Q includes all 8080 instructions, and
more. The information presented in Figure 2.27 is not avaiiable for the
Z80. it ;s shown here for its educational value in understanding the in-
ternal operation of this microprocessor. The equivalence between Z80 and
8080 instructions is shown in Appendices F and G.

A more complex instruction will now be examined:

ADD A, (HL)

The opcode for this instruction is 10000110. This instruction means
‘““add to the accumulator the contents of memory location (HL)."” The
memory location is specified through a rather strange system. it is the
memory location whose address is contained in registers H and L. This
instruction assumes that these two special registers (HL) have been
loaded with contents prior to executing the instruction. The 16-bit con-
tents of these registers will now specify the address in the memory
where data resides. This data will be added to the accumulator, and the
result will be left in the accumulator.

This instruction has a history. It has been supplied 1n order to pro-
vide compatibility between the eariy 8008, and its successor, the 8080.
The early 8008 was not equipped with a direct-memory addressing
capability! The procedure used to access the contents of the memory
was to load the two registers H and L, and then execute an instruction
referencing H and L. ADD A, (HL) is just such an instruction. 1t must
be stressed that the 8080 and the Z80 are not limited in the same way as
the 8008 in memory-addressing capability. They do have direct-memory
addressing. The facility for using the H and L registers becomes an
added advantage, not a drawback, as was the case with the 8008.

Let us now follow the execution of this instruction (it is called
ADD M for the 8080 and 1s the 16th instruction on Figure 2.27). States
Ti, T2, and T3 of M1 will be used, as usual, to fetcs the instruction.
During state T4, the contents of the accumuiator are transferred to 1ts
buffer register, ACT, and the left input of the ALU is conditioned.

Memory must be accessed in order to provide the second byte of data
which will be added to the accumulator. The address of this byte of

84

Z80 HARDWARE ORGANIZATION

data is contained in H and L. The contents of H and L will therefore
have to be transferred onto the address bus, where they will be gated to
the memory. Let usdo it.

9ATA RIS

=

CONTROLLER]

o e | =

W
&l l-

SECQUENCER

it

s ?

s —_— 16 E TO MEMORY
e T ////I////:“/// DDRESS Bus

L
L ,) CONTROL

2| stemLs

Fig. 2.28: Transfer Contents of HL to Address Bus

During machine cycle M2,weread: HL. OUT. H and L are deposited on
the address bus, in the same way PC used to be deposited there in
previous instructions. As a remark, it has already been indicated
that during state T status is output on the data bus, but no use of
this will be made here. From a simplified standpoint, it will require two
states: one for the memory to read its data, and one for the data to
become available and transferred onto the right input of the ALU,
TMP.

Both inputs of the ALU are now conditioned. The situation is analo-
gous to the one we were in with the previous instruction ADDA, r: both
inputs of the ALU are conditioned. We simply have to ADD as before.
A fetch/execute overlap technique will be used, and, instead of exe-
cuting the addition within state T4 of M2, final execution is postponed
until state T2 of M3. It can be seen in Figure 2.27 that during T2 we in-
deed have: ACT + TMP—=A. The addition is finally performed. the
contents of ACT are added to TMP, and the result deposited into the
accumulator A.

85

PROGRAMMING THE Z80

Question: What is the apparent execution time (to the programmer) for
this instruction? Using a 2.5 Mhz clock, is it 3.6 us? 2,8 us?

Another more compiex instruction will now be examined which is a
direct-memory addressing instruction using two invisible W and Z
registers:

LD A,(nn)

The opcode 15 00111010, The 8080 equivalent i1s LDA addr. As usual,
states T1, T2, T3 of M1 will be used to fetch the instruction from the
memory. T4 is used, but no visible result can be described. During state
T4, the instruction is in fact decoded. The control unit then finds out
that it has to fetch the next two bytes of this instruction in order to ob-
tain the address from which the accumulator will be ioaded. The effect
of this instruction 15 to load the accumulator from the memory contents
whose address is specified 1n bytes 2 and 3 of the instruction. Note that
state T4 is necessary to decode the instruction. It could be considered a
waste of time since only part of the state is necessary to do the
decoding. It 1s. However, this is the philosophy of clock-synchonous
fogic, Because rmucroinstructions are used internally to perform the
decoding and execution, this is the penalty that has to be paid in return
for the advantages of microprogramming. The structure of this instruc-
tion appears in Figure 2.29.

LH Lo A (81) :0PCODE

N+]: 4 -
| ADDRESS) B2) {16-BIT

we2: (83) \ADDRESS

Fig. 2.29: LD A, (ADDRESS) Is a 3-Word Instruction

The next two bytes of instruction will now be fetched. They will
specify an address (see Figure 2.30).

86

280 HARDWARE ORGANIZATION

A —""’"‘“\/V\ {hex)
(HEX
L 1110108 yoof 00111010 WA (3A)
[pocoooooooooooq 101] 00000010 tlDﬂ? {02}
- 1023 000106000 (WX (10)
REGISTERS MEMORY

Fig. 2.30: Before Execution of LD A

AT N

100: 00111010
10k 0000001410
102 00010000,

l——\—-\/\/w

00001114

foooooooldoooooo.y
PC

00001111

REGISTERS MEMORY

Fig. 2.31: After Execution of LD A

The effect of the instruction is shown in Figures 2.30 and 2.31 above.

Two special registers are available to the control unit within the Z80
(but not to the programmer). They are *“W* and “Z"’, and are shown
in Figure 2.28,

87

PROGRAMMING THE 280

Second Machine Cycle M2: As usual, the first 2 states, Tl and T2, are
used to fetch the contents of memory location PC. During T2, the pro-
gram counter, PC, 1s incremented. Sometime by the end of T2, data be-
comes available from the memory, and appears on the data bus. By the
end of T3, the word which has been fetched from memory address PC
(B2, second byte of the instruction) is available on the data bus. tt must
now be stored in a temporary register. It is deposited into Z: B2 » Z
(see Figure 2.32).

B2 e=—ip- 7
- N T ——
2 Z
" ey
7 B3
PC
ADDRESS
Ry, ADDRESS DECUDERI
ZB0 ammlpm- 780 MEMORY

Fig. 2.32: Second Byte of Instruction Goes into Z

Machine Cycle M3: Again, PC 1s deposited on the address bus, incre-
mented, and finally the third byte, B3, is read from the memory and de-
posited into register W of the microprocessor. At this point, i.e., by the
end of state T3 of M3, registers W and Z inside the microprocessor con-
tain B2 and B3, i.e., the complete 16-bit address which was originally
contained in the two words following the instruction in the memory.
Execution ¢an now be completed. W and Z contain an address. This ad-
dress will have to be sent to the memory, 1n order to extract the data.
This is done in the next memory cycle:

Machine Cycle M4: This ime, W and Z are output on the address bus.
The 16-bit address is sent to the memory, and by the end of state T2,
data corresponding to the contents of the specified memory location
becomes available. It 15 finally deposited in A at the end of state T3.
This terminates execution of this instruction.

58

Z80 HARDWARE ORGANIZATION

This illustrates the use of an immediate mnstruction. This instruction
required three bytes in order to store a two-byte explicit address. This
instruction also required four memory cycles, as it needed to go to the
memory three times in order to extract the three bytes of this three-
word instruction, plus one more memory access in order to fetch the
data specified by the address. It is a long instruction. However, it is also
a basic one for loading the accumulator with specified contents residing
at a known memory location. It can be noted that this instruction re-
quires the use of W and Z registers.

Question: Could this instruction have used other registers than W, Z
within the system?

Answer: No. If this instruction had used other registers, for example
the H and L registers, it would have modified their contents. After ex-
ecution of this instruction, the contents of H and L would have been
lost. It is always assumed in a program that an instruction will not
modify any registers other than those it is explicitly using. An instruc-
tion loading the accumulator should not destroy the contents of any
other register. For this reason, it becomes necessary to supply the extra
two registers, W and Z, for the internal use of the control umt.

Question: Would it be possible to use PC instead of W and Z?

Answer: Positively not. This would be suicidal. The reader should ana-
lyze this.

One more type of instruction will be studied now: a #ranch or jump
instruction, which modifies the sequence in which instructions are
executed within the program. So far, we have assumed that instructions
were executed sequentially. Instructions exist which allow the pro-
grammer to jump out of sequence to another instruction within the
program, Or in practical terms, to jump to another area of the memory
containing the program, or to another address. One such instruction is:

JP nn

This instruction appears on Line 18 of Figure 2.27' as **JMP addr.”
Its execution will be described by following the horizontal line
of the Table. This is again a three-word instruction. The first word
is the opcode, and contains 11000011. The next two words contain the

89

PROGRAMMING THE 280

16-bit address, to which the jump will be made. Conceptually, the ef-
fect of this instruction is to replace the contents of the program counter
with the 16 bits following the ‘“JUMP" opcode. In practice, a some-
what different approach will be implemented, for reasons of efficiency.

As before, the first three states of M1 correspond to the instruction-
fetch. During state T4 the instruction 1s decoded and no other event 15
recorded (X). The next two machine cycles are used to fetch bytes B2
and B3 of the instruction. During M2, B2 is fetched and deposited into
internal register Z. The next two steps will be implemented by the pro-
cessor during the next instruction-fetch, as was the case already with the
addition. They will be executed instead of the usual steps for T1 and T2
of the next instruction. Let us look at them,

The next two steps will be: WZ QUT and (WZ) + 1 ™ PC. In other
words, the contents of WZ will be used mstead of the contents of PC
during the next instruction-fetch. The control unit will have recorded
the fact that a jump was being executed and will execute the beginning
of the next instruction differently.

The effect of these two extra states 1s the fellowing:

The address placed on the address bus of the system will be the ad-
dress contained in W and Z. In other words, the next instruction will be
fetched from the address that was contained in W and Z. This 1s effec-
tively a_jump. In addition, the contents of WZ will be incremented by |
and deposited 1n the program counter, so that the next instruction will
be fetched correctly by using PC as usual. The effect 1s therefore cor-
rect.

-Question: Why have we not loaded the contents of PC directly? Why
use the intermediate W and Z registers?

Answer: It is not possible to use PC. If we had loaded the lower part
of PC (PCL) with B2, instead of using Z, we would have destroyed PC!
It would then have become impossible to fetch B3.

Question: Would it be possible to use just Z, mnstead of Wand Z?

Answer: Yes, but it would be slower. We could have loaded Z with
B2, then fetched B3, and deposited 1t into the high order half of PC
{PCH). However, it would then have become necessary to transfer Z in-
to PCL., before using the contents of PC. This would slow down the
process. For this reason, both W and Z should be used. Further, and 1n
order to save time, W and Z are not transferred into PC. They are
directly gated to the address bus in order to fetch the next 1nstruction.

90

280 HARDWARE ORGANIZATION

Understanding this point is crucial to the understanding of efficient ex-
ecution of instructions within the microprocessor.

Question: (For the alert and informed reader only), What happens
in the case of an interrupt at the end of M3? (If instruction execution is
suspended at this point, the program counter points to the instruction
following the jump, and the jump address, contained in W and Z, will
be lost.)

The answer is left as an interesting exercise for the alert reader.

The detailed descriptions we have presented for the execution of
typical instructions should clarify the role of the registers and of
the internal buses. A second reading of the preceding section may
help in gaining a detailed understanding of the internal operation
of the Z80,

CLOCK d —mls
AQ
30 10 40 ADDRESS
CONTROL {BUSAK'-:— 23 s a5

NMI — gl 17
INT —] 15

MPU WAIT =i 24
CONTROL }HATY —e— 18

RESET ——=1 24 71015 DO DATA
{except 11) D7 BUS

MREﬁ-q-— 19
[T s—

MEMORY
AND 110 ? ;?
CONTROL |@m ¢ 22
RFSH ~w—1, 28
29 1}
GND +5v
POWER
Fig. 2.33: Z80 MPU Pinout
The Z80 Chip

For completeness. the signals of the Z80 microprocessor chip will be
examined here. It is not indispensable to understand the functions of

91

PROGRAMMING THE Z80

the Z80 signals in order to be able to program it. The reader who 1s not
interested in the details of hardware may therefore skip this section.
The pinout of the Z80 appears on Fig. 2.33. On the right side of the
illustration, the address bus and the data bus perform their usual role,
as described at the beginning of this chapter. We will describe here the
function of the signals on the control bus. They are shown on the left of
Figure 2.33.

The control signals have been partitioned in four groups. They will
be described, going from the top of Figure 2.33 towards the bottom.

The clock input 15 §. The Z80 incorporates the clock oscillator within
the microprocessor chip. Only a 330-ohm pull-up resistor is necessary
externally. It is connected to the 0 input and to 5 volts. However, at 4
MHz, an external clock driver 1s required.

The two bus-control signals, BUSRQ and BUSAK, are used to dis-
connect the Z80 from its busses. They are mainly used by the DMA, but
could also be used by another processor in the system. BUSRQ is the
bus-request signal. It is issued to the ZB8O. In response, the Z80 will place
its address bus, data bus, and tristate output control signals in the high-
impedance state, at the end of the current machine cycle. BUSAK is the
acknowledge signal issued by the Z80 once the busses have been placed
in the high-impedance state.

Six Z80 control signals are related to its internal status or to its se-
quencing:

INT and NMI are the two interrupt signals. INT is the usual interrupt
request. Interrupts will be described in Chapter 6. A number of in-
put/output devices may be connected to the INT interrupt line. When-
ever an interrupt request is present on this line, and when the internal
interrupt enable flip-flop (IFF) is enabled, the Z80 will accept the inter-
rupt {provided the BUSRQ is not active). It will then generate an
acknowledge signal: [ORQ (issued during the M state). The rest of the
sequence of events 15 described in Chapter 6.

NM1 is the non-maskable interrupt. It is always accepted by the Z80,
and it forces the Z80 to jump to location 0066 hexadecimal. It too is
described in Chapter 6. (It also assumes that BUSRQ 1s not active.)

WAIT is a signal used to synchronize the Z80 with slow memory or
input/output devices. When active, this signal indicates that the
memory or the device is not yet ready for the data transfer. The Z80
CPU will then enter a spectal wait state until the WAIT signal becomes
mactive. It will then resume normal sequencing.

HALT i1s the acknowledge signal supplied by the Z80 after it has ex-

92

Z80 HARDWARE ORGANIZATION

ecuted the HALT instruction. In this state, the Z80 waits for an exter-
nal interrupt and keeps executing NOPs to continually refresh memory.

RESET is the signal which usually initializes the MPU. It sets the
program counter, register 1 and R to ‘0. [t disables the interrupt
enable flip-flop and sets the interrupt mode to *‘0’*. It is normally used
after power is applied to the board.

Memory and /0 Control

Six memory and [/0 control signals are generated by the Z80. They are:
MREQ is the memory request signal. It indicates that the address pres-
ent on the address bus is valid. A read or write operation can then be
performed on the memory.

M1 is machine cycle |. This cycle corresponds to the fetch cycie of an
instruction.

IORQ is the input/output request. [t indicates that the 1/0 address
present on bits 0-7 of the address bus is valid. An 1/0 read or write
operation can then be carried out. IORQ is also generated together with
M1 when the Z80 acknowledges an interrupt. This information may be
used by external chips to place the interrupt response vector on the data
bus. (Normal [/QO operations never occur during the M1 state. The
combination IORQ plus M1 indicates an interrupt-acknowledge situa-
tion.)

RD is the read signal.* It indicates the ZBO is ready to read the con-
tents of the data bus into an internal register. It can be used by any ex-
ternal chip, whether memory or /0, to deposit data onto the data bus.

WR is the write signal.* It indicates that the data bus holds valid
data, ready to be written into the specified device.

RFSH is the refresh signal. When RFSH is active, the lower seven
bits of the address bus contain a refresh address for dynamic memories.
The MREQ signal is then used to perform the refresh by reading the
memory.

HARDWARE SUMMARY

This completes our description of the internal organization of the
Z80. The exact hardware details of the Z80 are not important here.
However, the role of each of the registers 1s important and should be
fully understood before proceeding to the next chapters. The actual in-
structions available on the Z80 will now be introduced, and basic pro-
gramming techniques for the Z80 will be presented.

*used in conjunction with MREQ or [OREQ,
93

3
BASIC PROGRAMMING
TECHNIQUES

INTRODUCTION

The purpose of this chapter is to present the basic techniques neces-
sary in order to write a program using the Z80. This chapter will intro-
duce new concepts such as register management, loops, and sub-
routines. [t will focus on programming technigues using only the inter-
nal Z80 resources, i.e., the registers. Actual programs will be de-
veloped, such as arithmetic programs. These programs will serve to il-
lustrate the various concepts presented so far and will use actual in-
structions. Thus, it will be seen how instructions may be used to
manipuiate the information between the memory and the MPU, as well
as to manipulate information within the MPU itself. The next chapter
will then discuss in complete detail the instructions available on the Z80.
Chapter 5 will present Addressing Techniques, and Chapter 6 will pre-
sent the technigues available for manipuilating information oufside the
Z80: the [aput/Qutput Techniques.

In this chapter, we will essentially learn by ‘‘doing.”” By examining
programs of increasing complexity, we will learn the role of the various
instructions, of the registers, and we will apply the concepts developed
so far. However, one important concept will not be presented here; it is
the concept of addressing techniques. Because of its apparent complex:-
ty, it will be presented separately in Chapter S.

Let us immediately start writing some programs for the Z80, We will
start with arithmetic programs. The ‘‘programmer’s model’’ of the Z80
registers 1s shown in Figure 3.0.

94

BASIC PROGRAMMING TECHNIQUES

MAIN SET ALTERNATE SET
A F . .
am (occumulator) [flags) A F
(000} B C (001} % c
GENERAL —
[(s][0)]] 3 (o11) D E PURPOSE
REGISTERS
(100} H L (on H v
1
{inlerrupt veciar)l {mem retresh)

X INDEX
W REGISTERS
SP

{siack poinler)
PC

{progrom counter)

Fig. 3.0: The Z80 Registers

ARITHMETIC PROGRAMS

Arithmetic programs include addition, subtraction, multiplication,
and division. The programs presented here will operate on integers.
These integers may be positive binary integers or may be expressed in
two’s complement notation, in which case the left-most bit is the sign
bit (see Chapter | for a description of the two’s complement notation).

8-Bil Addition

We will add two 8-bit operands called OPl and OP2, respectively
stored at memory address ADRI], and ADR2. The sum will be called
RES and will be stored at memory address ADR3. This 1s illustrated in
Figure 3.1. The program which will perform this addition 1s the follow-
ing:

Instructions Comments
LD A,{ADRD LOADOPI INTO A
LD HL,(ADR?2) LOAD ADDRESS OF OP2 INTO HL
ADD A, (HL) ADD QP2 TQO OPI]
LD (ADR3), A SAVE RESULT RES AT ADR3

95

PROGRAMMING THE Z80

MEMORY

NSNS

ADRI ——————= OP1 (FIRST OPERAND)
ADR2 —— | OP2 {SECOND OPERAND)
ADR} ——— = RES (RESULT)

ADDRESSES PN

Fig. 3.1: Eight-Bit Addition RES = OP1 + OP2

This is our first program. The instructions are listed on the left and
comments appear on the right. Let us now examine the program. Itis a
four-instruction program. Each line is called an ¢nstruction and 1s ex-
pressed here in symbolic form. Each such instruction will be translated
by the assembler program 1nto one, two, three or four binary bytes. We
will not concern ourselves here with the translation and will only look at
the symbolic representation.

The first line specifies loading the contents of ADRI into the accu-
mulator A. Referring to Figure 3.1, the contents of ADRI are the first
operand, **OP1’’'. This first instruction therefore resuits in transferring
OP! from the memory into the accumulator. This is shown in Figure
1.2. **ADRI1"” is a symbolic representation for the actual 16-bit address
in the memory. Somewhere else in the program, the ADR1 symbol will
be defined. It couid, for exampie, be defined as being equal to the ad-
dress *'100".

This load instruction will result 1n a read operation from address 100
(see Figure 3.2), the contents of which will be transferred aiong the data

96

BASIC PROGRAMMING TECHNIGQUES

760 MENMORY

DATABUS
g i f

(ADRY)

ADOEESS BUS

Fig. 3.2: LD A, (ADR1): OP1is I oaded from Memory

bus and deposited inside the accumulator. You will recail from the pre-
vious chapter that arithmetic and logical operations operale on the
accumulator as one of the source operands. (Refer to the previous
chapter for more details,) Since we wish 10 add the two values OQPI and
QP2 1ogether, we musl first load OP1 into the accumulator. Then, we
will be able to add the contents of the accumulator, 1.e., add OPI to
OP2. The right-most field of this instruction is called a conunent field.
it is ignored by the assembler program at translation time, but 1s pro-
vided for program readability. In order to understand what the pro-
gram does, it 1s of paramount importance to use good comments. This
15 called docismenting a program.

Here the comment is self-explanatory: the value of OPl, which is
located at address ADRI, 15 loaded into the accumulator A.

The result of this first instruction is illustrated by Figure 3.2. The
second instruction of our program is:

LD HL, (ADR2)

It specifies: ‘*‘Load from (ADR2) into registers H and L.’ In order
to read the second operand, OP2, from the memory, we must first place
its address into a register pair of the Z80, such as H and L. Then, we
can add the contents of the memory location whose address is in H and
L to the accumulator,

ADD A, (HL)

Referring to Figure 3.1, the contents of memory location ADR2 are
OP2, our second operand. The contents of the accumulator are now
QPI1, our first operand. As a result of the execution of this tnstruction,
OP2 will be fetched from the memory and added to QPI, This s il-
lustrated in Figure 3.3

97

PROGRAMMING THE 280

DATA BUS

(—o)

ADRZ

1ADA 2}

ADORESS BUS

Fig. 3.3: ADD A, (HL)

The sum will be deposited in the accumulator. The reader will
remember that, in the case of the Z80, the results of the arithmeuic oper-
ation are deposited back into the accumuiator. In other processors, it
may be possible to deposit these results in other registers, or back into
the memory,

The sum of OP1 and QP2 is now contained in the accumulator. To
complete our program, we simply have o transfer the contents of the
accumulator into memory location ADR3, in order to store the results
al the specified location. This 1s performed by the fourth instruction of
our program:

LD (ADR3), A

This nstruction loads the contents of A into the specified address
ADR3. The effect of this final instruciion is illustrated by Figure 3.4,

80 MEMDEY

> S

DAla BUS

apay s

{ADR)

ADDELLS BUY

Fig. 3.4: LD (ADR3), A (Save Accumulator in Memory)

98

BASIC PROGRAMMING TECHNIQUES

Before execution of the ADD operation, the accumulator contained
OP1 (see Figure 3.3). After the addition, a new result has been written
into the accumulator. It is “OP[+ OP2'", Recall that the contents of
any register within the microprocessor, as well as any memeory location,
remain the same after a read operation has been performed on this
register. In other words, reading the contents of a register or memory
location does not change 1ts contents. It is only, and exclusively, a write
operation into this register location that will change its contents. In this
example, the contents of memory locations ADR1 and ADR2 remain
unchanged throughout the program. However, after the ADD nstruc-
tion, the contents of the accumulator will have been modified, because
the output of the ALU has been written into the accumulator. The
previous contents of A are then lost.

Actual numerical addresses may be used instead of ADRI, ADR2,
and ADR3. In order to keep symbolic addresses, it will be necessary to
use so-called ‘‘pseudo-instructions’’ which specify the value of these
symbolic addresses, so that the assembly program may, during transla-
tion, substitute the actual physical addresses. Such pseudo-instructions
could be, for example:

ADR] = 100H
ADR2 = 120H
ADR3 = 200H

Exercise 3. 1: Now close this book. Refer only 1o the fist of instructions
at the end of the book. Write a program which will add two numbers
stored at memory locations LOCI and LOC2. Deposit the resulis at
memory locarion LOC3. Then, compare your program o the one
above.

16-Bit Addition

An 8-bit addition will only allow the addition of 8-bit numbers, i.e.,
numbers between 0 and 255, if absolute binary is used. For most prac-
tical applications it is necessary to add numbers having 16 bits or more,
t.e., to use nuultiple precision. We will here present examples of arith-
metic on 16-bit numbers. They can be readily extended to 24, 32 bits or
more (always multiples of 8 bits). We will assume that the first operand
is stored at memory locations ADRI1 and ADR1-1. Since OP1 is a 16-bit
number this ime, 1t wifl require two 8-bit memory locations. Similarly,

99

PROGRAMMING THE 280

OP2 will be stored at ADR2 and ADR2-1. The result s 1o be deposited
al memory addresses ADR3I and ADR3-1. This 1s ilustrated ligure
3.5. H ndicates the hagh hall (bis 8 through 15), while Loindicates the
low halt {(bis 0 through 7).

MLMAOA Y

ADE®Y - 1 {OP1H
ADE (OP1 N

ADEI -1 {OP2IH

aDe} (OPZIL
ADRI~ | (TSH
ADR s

Fig. 3.5: 16-Bit Addition—The Operands

The logic of the program is exactly like the previous one. First, the
lower half of the two operands will be added, since the microprocessor
can only add on 8 bits at a time. Any carry generated by the addition of
these low order bytes will automatically be siored in the internal carry
bit (*‘C""). Then, the tugh order half of the two operands will be added
together along with any carry, and the result will be saved in the
memory. The program appears betow:

LD A,(ADRD LOAD LOW HALF OF OP!I

LD HL. ADR2 ADDRESS OF LOW HALF OF OP2
ADD A, (HL}, ADD OP[AND OP2 LOW

LD (ADR3), A STORE RESULT, LOW

LD A, (ADRI-I) LOAD HIGH HALF OF OPI1

DEC HL ADDRESS OF HIGH HALF OF OP2
ADC A, (HL) (OP!1 + OP2) HIGH + CARRY

LD (ADR3-1), A STORE RESULT, HIGH

100

BASIC PROGRAMMING TECHNIQUES

The first four instructions of this program are identical to the ones
used for the 8-bit addition in the previous section. They result in adding
the least significant halves (bits 0-7) of OP1 and OP2. The sum, called
“RES" 15 stored at memory location ADR3 (see Figure 3.5).

Automatically, whenever an addition 1s performed, any resulting
carry (whether ‘0" or **I'") is saved 1n the carry bit C of the flags
register {register F). If the two numbers do generate a carry, then the C
bit will be equal to **1"’ (it will be set). 1f the two 8-bit numbers do not
generate any carry, the value of the carry bit will be *‘0°",

The next four instructions of the program are essentially like those
used 1n the previous 8-bit addition program. This time they add
together the most significant half (or high half, 1.e., bits 8-15) of OPI
and OP2, plus any carry, and store the result at address ADR3-1].

After execution of this 8-instruction program, the 16-bit result 1s
stored at memory locations ADR3 and ADR3-I, asspecified. Note,
however, that there 1s one difference between the second half of this
program and the first half. The “‘ADD"" wstruction which has been
used is not the same as in the first half. In the first half of this program
(the 3rd instruction), we had used the ““ADD’’ instruction. This instruc-
tion adds the two operands, regardless of the carry. In the second half,
we use the **ADC" instruction, which adds the two operands together,
plus any carry that may have been generated. This is necessary in order
o obtain the correct result. The addition initially performed on the low
operands may result in a carry. Such a possible carry must be taken into
accounl 1n the second half of the addition.

The question which comes naturally then i1s: what if the addition of
the high half ol the operands also results in a carry? There are two pos-
sibilities: the first onc is to assume that this is an error. This program is
then designed to work for results of only up 10 16 buts, but not 17. The
other one i1s to include additional instructions to tesi explicitly for the
possibility of a carry at the end of this program. This is a choice which
the programmer must make, the first of many choices.

Note: we have assumed here that the high part of the operand is
stored *‘on top of"’ the lower part, 1.e., at the lower memory address.
This need not necessarily be the case. In fact, addresses are stored by
the Z80 in the reverse manner: the low part is first saved in the memory,
and the high part 1s saved in the next memory location. ln order to use a
common convenuon for both addresses and data, it 1s recommended
that data also be kept with the low part on top of the high part. This is
illustrated 1n Figure 3.6.

101

PROGRAMMING THE 280

PAEMOARY

ADAL {OPER

ADR1 + 5 [OP1H

ADRY foPNL

ADAZ 1 {OP2)H
ADEZ 1,418
DRI+) ASH

Fig. 3.6: Storing Operands in Reverse Order

When operating on multibyte operand, it 1s important to keep in mind
two essential conventions:

—the order in which data is stored in the memory.
—where data pointers are pointing: low byte or high byte.
Exercises 3.2 and 3.3 are designed to clarify this point.

Exercise 3.2: Rewrite the l6-but addition program above with the
memory layout indicated tn Figure 3.6.

Exercise 3,3: Assume now that ADR1 does not pownt to the lower half

of OPI fas in Figures 3.5 or 3.6), but points to the higher part of OP1.
This is illustrated in Figure 3.7. Again, write the corresponding pro-
gram.

102

BASIC PROGRAMMING TECHNIQUES

NEMORY

ADEL | [OPI1 L
. AD (OP1 M
ADRZ-t {oP2)1L
i ADRD {OP2M
ADE31 1,538
— ADR3 (PESH

Fig. 3.7: Pointing to the High Byte

It is the programmer, i.c., you, who musi decide how to siore 18-bit
numbers (i.e., low pari or high pari first) and also whether your address
relerences point to the lower or to the higher hall of such numbers. This
is another choice which you will learn to make when designing
algorithms or data structures.

The programs presented above are traditional programs, using the
accumulator. We will now present an aliernative program for the 16-bit
addition that does not use the accumulator, but instead uses some ol
the special 16-bit instructions available on the Z80. Operands will be
assumed to be stored as indicated in Figure 3.5. The program is:

LD HL,(ADRD LOAD HL WITH OP1
LD BC,(ADR2) LOAD BC WITH OP2
ADD HL, BC ADD 16 BITS

LD (ADR3}, HL STORE RES INTO ADR3

Note how much shorter this program is, compared 10 our previous ver-
sion. It is more “‘clegant.’’ fir a lintted manrier, the Z80 allows registers
H and L t0 be used as a 16-hit accunilator,

103

PROGRAMMING THE Z80

Exercise 3.4: Using the 16-bit instructions which have just been intro-
duced, write an addition program for 32-bil operands, assuming that
operands are siored as shown in Figure 3.8. (The answer appears
below.)

Answer:

LD HL, (ADRI)
LD BC, (ADR2)
ADD HL, BC

LD (ADR3)

LD HL, (ADRI +2)
LD BC, (ADR2+2)
ADC HL, BC

LD (ADR3+2)

MEMORY
ADR1+3 HIGH
oPRI
ADRI LOW
HIGH
OPR2
ADRZ LOW
HIGH
RES
ADRI LOW

Fig. 3.8: A 32-Bit Addition

104

BASIC PROGRAMMING TECHNIQUES

Now that we have learned to perform a binary additon, let us turn to
subtraction.

Subtracting 16-Bit Numbers

Doing an 8-bit subtract would be too simple. Let us keep it as an ex-
ercise and directly perform a 16-bit subtract. As usuval, our two num-
bers, OP1 and OP2, are stored at addresses ADR1 and ADR2. The
memory layout will be assumed to be that of Figure 3.6. In order to
subtract, we will use a subtract operation (SBC) instead of an add
operation (ADD).

Exercise 3.5: Now write a subtraction program.

The program appears below, The data paths are shown in Figure 3.9,

LD HL, (ADRI) OP1 INTO HL
LD DE, (ADR2) OP2 INTO DE
AND A CLEAR CARRY
SBC HL, DE OPl — OP2

LD (ADR3),HL RES INTO ADR3

The program is ¢ssentially like the one developed for 16-bit addition.
However, the Z80 instruction-set has two types of additions on double
registers: ADD and ADC, but only one type of subtraction: SBC.

As a result, two changes can be noted.

105

PROGRAMMING THE Z80

NMEMORY
H 1
[OPIiH [OPIL
i (OP1 1t ADR)
{OP1)H ADRY + |

Fig. 3.9: 16-Bit Load — LD HL, (ADRI)

A first change is the use of SBC instead of ADD.

The other change is the **AND A" instruction, used to clear the carry
flag prior to the subtraciion, This instruction does not modify the value
of A.

This precaution s necessary because the Z80 is equipped with two
modes ol addition, with and without carry on the H and L register, but
with only one mode of subtractton, the SBC nstruction ot **subtract
with carry” when operanig on the HE register parr. Because SBC auto-
matically takes into account the value of the carry bat, it must beset 1o 0
prnor Lo starting the subtraction. This is the role ol the “"AND A™ -
strucuon.

Exercise 3.6: Rewrite the subtraction program withowi usmg the
specialized 16-bit instruction.
Exercise 3.7: Wriee the subitract progrant for 8-bu opereids.

[t must be remembered thal in the case of 1wo’s complement arithne-
ui¢, the final value ol the carry flag has no meaning, [an overflow con-
dition has occurred as a resull of the subtraction, then the overflow bl
{bit VY of the lNags register will have been set. 1t can then be tesied.

106

BASIC PROGRAMMING TECHNIQUES

The examples just presented are simple binary additions or subtrac-
tions. However, another type of arithmetic may be necessary; it is BCD
arithmetic.

BCD ARITHMETIC
8-Bit BCD Addition

The concept of BCD anthmetic has been presented in Chapter I. Let
us recall its features. It is essentially used for business applications
where 1t 15 imperative o retain every significant digit in a result. In the
BCD notation, a 4-bit nibble is used to store one decimai digit (0
through 9). As a result, every 8-bit byte may store two BCD digils.
(This s called packed BCD). Let us now add 1wo bytes each contatning
two BCD digits.

In order to identify the problems, let us try some numeric examples

first.
Let us add “*01”’* and *02”’:

*01" is represented by: 0000 0001
“02"’ is represented by: 0000 0010

The result is; 0000 0011

This 1s the BCD representation for ‘03", (II' you feel unsure of the
BCD equivalent, refer to the conversion iable ai the end of the book.)
Everything worked very simply in this case. Let us now try another ex-
ample,

08" is represented by 0000 1000
‘03’ 1s represented by 0000 0011

Exercise 3.8: Compute the sum of the two numbers above n the BCD
representation. What do you obtain? fanswer follows)

If you obtamn **0000 I011’’, you have computed the binary sum of 8
and 3. You have indeed obtained 11 1n dinary. Unfortunately, “ 011"
is an illegal code in BCD. You should obtain the BCD representation of
117, i.e., 0001 0001!

The problem stems from the fact that the BCD representation uses
only the first ten combinations of 4 digits in order to encode the decimal
symbois 0 through 9. The remaining six possible combinations of 4
digits are unused, and the illegal *‘1011'’ is one such combination. In
other words, whenever the sum of two BCD digits is greater than 9,

107

PROGRAMMING THE Z80

then one must add 6 to the result in order to skip over the 6 unused
codes.
Add the binary representation of **6"' to i011:

1011 (iliegal tinary result)
+ 0110 (+6)

The result is: 0001 0001

This is, indeed, **11"" in the BCD notation! We now have the correct
result.

This example illustrates one of the basic difficuities of the BCD
mode. One must compensate for the six missing codes. A special n-
strucuion, “*DAA’", called **decimal adjust,” must be used to adjust the
result of the binary addition. {(Add 6 if the result is greater than 9.)

The next problem is illustrated by the same example. In our example,
the carry will be generated [rom the lower BCD digit (the right-most
one} (nto the left-most one. This internal carry must be taken into ac-
count and added to the second BCD digit. The addition insiruction
takes care of this automatically. However, it 15 often convenient to
detect this internal carry from but 3 to bit 4 (the **half-carry’}. The H
flag is provided for this purpose.

As an example, here is a program to add the BCD numbers **i"" and
22"

LD A iIIH LOAD LITERAL BCD 'II"
ADD A, 22H ADD LITERAL BCD 22
DAA DECIMAL ADJUST RESULT
LD (ADR), A STORE RESULT

In this program, we are using a new symbol “H'". The **H"’ sign
within the operand field of the instruction specifies that the data it
tollows 15 expressed 1n hexadecimal notation. The hexadecimal and the
BCD representations for digits **0"’ through "9’ are identical. Here we
wish to add the literals (or constants) *“11°' and 22", The resull 15
stored at the address ADR. When the operand is specified as part of the
tnstruction, as it is in the above example, this is called immediate ad-
dressing. (The various addressing modes will be discussed in detail in
Chapter 5.) Storing the result at a specifted address, such as LD (ADR), A
is called absolute addressing when ADR represents a [6-bit address.

108

BASIC PROGRAMMING TECHNIQUES

MEMORY

(RESWLY) (ADR)

Fig. 3.10: Storing BCD Digits

This program 15 analogous to the 8-bit binary addition, but uses a
new mstruction: ‘‘DAA’. Let us illustrate its role in an example. We
will first add *‘11"* and '*22'" in BCD:

00010001 (1Y
+ 00100010 (22)

= 00110011 (3%
S, g Soatlin, g

3 3
The resuli 1s correct, using the rules of binary addition.
Lei us now add “'22"" and *'39"", by using the rules of binary addi-

tion: 00100010 (22)
+ 00111001 (39)

='01011011

N
5 7
“1011" is an ilfegul BCD code. This 1s because BCD uses only the

first 10 binary codes, and ‘‘skips over'' the next 6. We must do the
same, i.e. add 6 to the result:

01011011 (binary resuit)
+ 0110 (&
= (01100001 (61
S

—

6 i
This is the correct BCD resuit.

109

PROGRAMMING THE Z80

Ixercise 3.9: Could we move the DAA mstruction 1n the program after
the instrucuon LD (ADR), A?

BCD Subtraction

BCD subtraction 1s, in appearance, complex. In order to perform a
BCD subtraction, one must add the ten s complement of the number,
just as one adds the (wo's complement of a number (o perform a binary
subtract. The ten's complement 1s obtained by computing the comple-
ment to 9, then adding **1°*. This requires typically three to four opera-
tions on a standard microprocessor. However, the Z80 is equipped with
a powerlful DAA nstruction which simplifies the program.

The DAA instruction automatically adjusts the value of the result 1n
the accumulator, depending on the value of the C, H and N flags before
DAA, 1o the correct value. (See the next chapter for more details on
DAA

16-Bit BCD Addition

16-bit addition is performed just as simply as in the binary case. The
program for such an addition appears below:

LD A, (ADRD LOAD (OP1) L INTO A

LD HL,‘ADR2) LOAD ADR2 INTO HL

ADD A, (HL) (OP1 + OP2) LOW

DAA DECIMAL ADJUST

LD (ADRY), A STORE (RESULT) LOW

LD A, (ADRt + 1) LD (OP1)H INTO A

INC HL POINT TO ADR2 + |

ADC A, (HL) (OP1 + OP2) HIGH + CARRY
DAA DECIMAL ADJUST

LD (ADR3 + 1), A STORE (RESULT)Y HIGH

Packed BCD Subtract

Elemcntary BCD addition and subtraction have been described.
However, 1n actual practice, BCD aumbers include any number of
bytes, As a simplified example of a packed BCD subtract, we will
assume that the two numbers NI and N2 include the same number of
BCD bytes. The number of byles 1s called COUNT. The register and

110

BASIC PROGRAMMING TECHNIQUES

memory allocation is shown in Figure 3.11. The program appears
below:

BCDPAK LD B, COUNT

LD DE, N2
LD HL, N1
AND A CLEAR CARRY
MINUS LD A, (DE) N2 BYTE
SBC A, (HL) N2 — NI
DAA
LD (HL), A STORE RESULT
INC DE
INC HL
DINZ MINUS DEC B, LOOP UNTIL B = 0.
B COUNT
T £ . N2
D N2
: COUNT
T L
H NI
1
K —
{7 {}
- N1

Fig. 3.11: Packed BCD Subtract: N1-+— N 2 - N1

N1 and N2 represent the addresses where the BCD numbers are stored.
These addresses will be loaded in register pairs DE and HL:

BCDPAK LD B, COUNT
LD DE, N2
LD HL, NI

111

PROGRAMMING THE Z80

Then, in antictpation of the first subtraction, the carry bit must be
cleared. It has been pointed out that the carry bit can be cleared 1n a
number of equivalent ways. Here, for example, we use:

AND A
The first byte of N2 1s loaded into the accumulator, then the first byte
of N1 is subtracted from it. The DAA instruction is then used, to obtain
the correct BCD value:

MINUS LD A, (DE)
SBC A, (HL)
DAA

The result is then stored into Ni;
LD (HL), A
Finally, the poiwnters 1o the current byte are incremented:

INC DE
INC HL

The counter is decremented and the subtracuion loop is executed until it
reaches the value 0"

DINZ MINUS

The DINZ instruction is a special Z80 instruction which decrements
register B and jumps if 1t 1s not zero, in a single instruction,

Lxercise 3.10: Compare the program above to the one for the 16-bit
binary addition. What i1s the difference?

Exercise 3.11: Can you exchange the roles of DE and HL? (Hint: Be
careful with S8C.)

Exercise 3.12: Write the subtraciion program for a 16-hit BCD.

BCD Flags

In BCD mode, the carry flag set as the result of an addition indicates
the fact that the resuit is larger than 99. This ts not like the two’s com-
plement situation, since BCD digits are represented in true binary. Con-
versely, the presence of the carry flag after a subtraction indicates a
borrow.

Instruction Types

We have now used two types of microprocessor instructions. We

112

BASIC PROGRAMMING TECHNIQUES

have used LD, which loads the accumulator from the memory address,
or stores ity contents at the specitied address. This is a dafa transfer n-
struction,

Next, we have used aritfimernic instrucuons, such as ADD, SUB,
ADC and SBC. They perform addition and sublraction operations.
More ALU instructions will be introduced soon in this chaper.

Still olher types ol instructions are available within the micropro-
cessor which we have not used yet, They are in parlicular “‘jump’”’ in-
structtons, which will modity the order in which 1he program is being
executed. This new type of instruction will be introduced in our next ex-
ample, Note thal jump instructions are often called *branch™ for con-
ditional situations, i.e. instances where there 1s a logical choice in the
program. The *‘branch’’ derives i1ls name [rom the analogy (o a tree,
and implies a lork in Lhe representation of the program.

MULTIPLICATION

Let us now examine a2 more complex arithmetic problem: the mulir-
plication of binary numbers. [n order to introduce the algorithm for a
binary mulliplication, [et us start by examinng a usual decimal multi-
plication: We will muluply [2 by 23.

[2 (Multiplicand)
x 23 (Multiplier)

36 {(Partral Product)
+ 24

= 276 (Final Result)

The multiplication (s performed by multiplying the right-most digit of
the multiplier by the multiplicand, i.e., **3’" x *‘[2’". The partial prod-
uct is “‘36”". Then one multiplies the next digit of the multiplier, i.e.,
“2' by ‘12" ‘24" s then added to the partial product.

But there is one more operation: 24 1s offser 1o the left by one posi-
tion. We will say that 24 is shifted left by one position. Equivalently, we
could have said that the parual product (36) had been shifred one pos:-
nion 1o the right before adding.

The 1wo numbers, correctly shifted, are Lhen added and the sum s
276. This is simple. The binary multiplication s performed in exactly
the same way.

113

PROGRAMMING THE Z80

Let us look at an example. We will multiply § X 3:

5 101 (MPD)
(3 x 0it (MPR)
1ot (PP

tot

000

(15 0t11t (RES)

In order to perform the multiplication, we operate exactly as we did
above. The formal representation of this algorithm appears in Figure
3-12. It 1s-a flowchart for Lhe algorithm, our first flowchart. Let us ex-
amine 1t more closely.

!

SET RESULT TO ZERC

YES

RESULT =
RESULT + mPD

LEFT SHIFT (1) MPD
OR RIGHT SHIFT {1} RES

!

NEXT L5B (MPR)

DONE FOR 8 BITS?

Fig. 3.12: The Basic Multiplication Algorithm—Flowchart

This flowchart is a symbolic representation of the algorithm we have
Just presented. Every rectangle represents an order to be carried out. It
will be translated into one or more program instructions. Every

i14

BASIC PROGRAMMING TECHNIQUES

diamond-shaped symbol represents a test being performed. This will be
a branching poinf in the program. 1f the test succeeds, we will branch to
a specified location. If the test does not succeed, we will branch to
another location. The concept of branching will be explained later, in
the program itself. The reader should now examine this flowchart and
ascertain that it does indeed exactly represent the algorithm which has
been presented. Note that there is an arrow coming out of the last dia-
mond at the bottom of the flowchart, back to the first diamond on top.
This is because the same portion of the flowchart will be executed eight
times, once for every bit of the multiplier. Such a situation, where ex-
ecution will restart at the same point, is called a program loop for ob-
vious reasons.

Exercise 3.13: Muluply "*4'" by "*7'"in binary, usmg the flowchart, and
verifv that vou obtain *'28". If you do not, try agamn. It 1s only if you
obtain the correct result that you ure ready to translate this flowchart
info a progrant.

8-By-8 Multiplicatinn

Lel us now translaie this flowchart into a program for the Z80. The
complete program appears in Figure 3.13. We are going to study it in
detail. As you will recall from Chapter 1, programming consists here of
transtating the llowchart of Figure 3.12 into the program of Figure
3.13. Each of the boxes n the flowchart will be translated by one or
more instructions,

It 1s assumed that MPR and MPD already have a value.

MPY88 LD BC,(MPRADY LOAD MULTIPLIER INTO C

LD B,8 B IS BIT COUNTER

LD DE.(MPDAD) LOAD MULTIPLICAND INTO E

LD D,0 CLEAR D

Le HL,0 SET RESULTTOO
MULT SRL C SHIFT MULTIPLIER BIT INTO

CARRY

JR NC, NOADD TEST CARRY

ADD HL,DE ADD MPD TO RESULT
NOADD SLA E SHIFT MPD LEFT

RL D SAVE BIT IND

DEC B DECREMENT SHIFT COUNTER

JP NZ,MULT DO IT AGAIN IF COUNTER # 0
LD (RESAD), HL STORE RESULT

Fig. 3.13: 8 x 8 Multiplication Program

115

PROGRAMMING THE 280

The first box of the flowchart is an initialization box. I is necessary
to set a number of registers or memory locations to *‘0*’, as this pro-
gram will require their use. The registers which will be used by the
multiplication program appear in Figure 3.14.

{COUNIER)

(MPRAD}

AT

RES (RESAD,

C RESULTY

Fig 3.14: 8 x 8 Multiplication—The Registers

Three register pairs of the Z80 are used for the multiplication pro-
gram. The 8-bit multiplier is assumed to reside at memory address
MPRAD. The multiplicand MPD is assumed to reside at memory ad-
dress MPDAD. The muhiplier and the multiplicand respectively will be
loaded into registers C and E (see Figure 3.14). Register B will be used
as a counter.

Registers D and E will hold the multiplicand as it is shifted left one
bit at a time.

Note that, even though only C and E need to be loaded initially, a 16-
bit load must be used, so that B and D will also be loaded from memory,
and will have (0 be reset respectively to “*8”* and to *‘0”’.

116

BASIC PROGRAMMING TECHNIQUES

Finally, the results of an 8-bit by 8-bit muluplication may require up
to 16 bits. This 1s because 2" x 2" = 2'%, Two registers must therefore
be reserved for the result. They are registers H and L, as indicated on
Figure 3.14.

The first step 1s to load registers B, C, and E with the appropriate
contents, and o imtalize the result {the partial product) 10 the vafue
“0'" as specified by the flowchart of Figure 3.12. This is accomplished
by the toillowing insiructions:

MPY88 LD BC, (MPRAD)

L B,8

LD DE, (MPDAD)
L D,o0

LD HL, 0

The first three nsiruciions respectively load MPR into the register pair
BC, the value ‘8" into regisier B, and MPD into the register pawr DE.
Since MPR and MPD are 8-bit words, they are, in facl, loaded inlo
registers C and E respectively, while (he next words in the memory alter
MPR and MPD get loaded inio B and D. Ths is shown in Figure 3.15
and 3.16. The next instruction will zero the contenis of D.

In thus multiplication program, the multplicand will be shifted left
before being added (o the result (remember thal, optionally, 1 1s pos-
sible o shift the resuft right instead, as indicated in the fourth box of
the flowchart of Figure 3.12). The multiplicand MP D will be shified in-
to register D at each step. This register D must therefore be imualized to
the value “‘0"’. This is accomplished by the fourth insirucuon. Finally,
the fifth instruction sets the contents of registers H and L to 01n a single

instruction.
MEMORY

%L,*,/ 1 7

]

Fig. 3.15: LD BC, (MPRAD)

117

PROGRAMMING THE Z80

MEMORY

MPDAD

Fig. 3.16: LD DE, (MPDAD)

Referring back to the flowchart of Figure 3.12, the next step is (o test
the least significant bit(the right-most bit)of the multiplier MPR. If this
bit1sa ‘“1’", then the value of MPD musl be added to the partial resutt,
otherwise it will not be added. This is accomplished by the next threen-
structions:

MULT SRL C
IR NC, NOADD
ADD HL, DE

The first problem we must solve is how to test the least significant btt of
the multiplier, contained in register C. We could here use the BIT in-
struction of the Z80, which allows testing any bit in any register. How-
ever, in this case, we would like to construct a program as simpie as
possibte, using a loop. If we were using the BIiT nstruction here, we
would first test bit 0, then later test bit |, and so on until we reached bit
7. This would require a different instruction every time, and a simple
loop could not be used. in order (o shorten the length of the program,
we must use a different instruction. Here we are using a shift instruc-
tion,

Note: There 1s & way to use the BIT instruction and a loop, but this
would require the program to modify ttself, a practice we will avoid.

118

BASIC PROGRAMMING TECHNIQUES

SRL is a new type of operation within the arithemetic and logical
unit. It stands for “‘shift right logical.”” A logical shift to the right is
characterized by the fact tnat a**0’* comes into bit position 7. This can
be contrasted to an grithemtic shift to the right, where the bit coming
into position 7 is identical to the previous value of bit 7. The different
types of shift operations will be described in the next chapter. The
effect of the SRL C instruction is illustrated in Figure 3.14 by an arrow
coming out of register C and into the square used to designate the carry
bit (also called *“C’"). At this point, the right-most bit of the MPR will
be in the carry bit C, where it can be tested.

The nex1 instruction, **JR NC, NOADD?”, is a jump operation. It
means ‘‘jump on no carry'’ (NC) to the address (the label) NOADD. If
the contents of the carry bit are **0’’ (no carry), then the program will
jump to the address NOADD. If the contents of C are **1"" {the carry
bit is se1), 1then no branch will occur, and tHe next sequential instruction
will be executed, i.e., the instruction ““ADD HL, DE** will be executed.

This instruction specifies that the contents of D and E be added to H
and L, with the result in H and L. Since E contains the multiplicand
MPD (see Figure 3.14), 1his adds the multiplicand to the partial result.

At this point, regardless of whether MPD has been added to the
result or not, the multiplicand must be shifted left (this is the fourth box
in the fiowchart of Figure 3.12). This is accomplished by:

NOADD SLA E

SLA stands for *‘shift left arithmetic.”" it has just been explained above
that there are two types of shift operations, a logical shift and an arith-
metic shift. This is the arithmetic one. In the case of a left shift, an SLA
specifies that the bit coming into the right part of the register (the least
significant bit) be a **0’" (just as in the case of an SRL before).

As an example, et us assume that the initial contents of register E
were 00001001, Afiter the SLA instruction, the contents of E will be
00010010, And the contents of the carry bit will be 0.

However, looking back at Figure 3.14, we really want to shift the
most significant bit (called the MSB) of E directly into D (this is il-
lustrated by the arrow on the illustration coming from E into D).
However, there is no instruction which will shift a double register such
as D and E in one operation. Once the contents of E have been shifted,
the left-most bit has *‘fallen into'’ the carry bit. We must collect this bit
from the carry bit and shift it into register D. This is accomplished by
the next instruction:

RL D

119

PROGRAMMING THE 780

RL 1s still another type of shift operation. It stands for *‘rotate left."”
in a rotarion operaiton, as opposed to a shift operation, this bit coming
into the register is the contents of the carry bit C (see Figure 3.17). This
is exactly what we want. The contents of the carry bit C are loaded into
the right-most part of D, and we have effecuvely transferred the left-
most bit of E.

This sequence of two nstructions is illustrated n Figure 3.18. 1t can
be seen thal the bit marked by an X in the most significant position of E
will first be transferred into the carry bit, then into the least significant
posttion of D, Effectively, it will have been shifted from E mto D.

At this point, referring back to the flowchart of Figure 3.12, we must
point to the next bit of MPR and check for the eighth bit. This is ac-
complished by decrementing the byte counter, contained 1n register B
(see Figure 3.14). The register is decremented by:

DEC B
Thts 1s a decrement instruction, which has the abvious effecl.

Finally, we must check whether the counter has decremented to the
value zero. This 1s accomplished by checking the value of the Z bit. The
reader will recall that the Z (zero) flag indicates whether the previous
arithmetic operation (such as a DEC operation) has produced a zero
result. However, note that DEC HL, DEC BC, DEC DE, DEC IX,
DEC SP do not affect the Z flag. 1f the counter is not **0'*, the opera-
tion 15 not finished, and we must execute this program loop agamn. This
ts accomplished by the next instruction;

JP NZ MULT SHIFT LEFT

LN MNP NN

(CARRY

ROTATE LEFT

MMy MDD P -

o ML)

Fig. 3.17: Shift and Rotate

BASIC PROGRAMMING TECHNIQUES

D E
X X

Fig. 3.18: Shifting from E into D

This is a jump instruction which specifies that whenever the Z bit is
not sel (NZ stands for non-zero), a jump occurs (o focation MULT. This
is the program loop, which will be execuled repeatedly until B decre-
menls (0 the value 0. Whenever B decrements to the value 0, the Z bit
will be sel, and the JP NZ instruction will fail. This will resuit in the
next sequential instruction being executed, namely:

LD (RESAD), HL

This tnstruction merely saves the contents of H and L, 1.e., the result of
the multiplication, at address RESAD, the address specified for the
result, Note that this instruction will transfer the contents of both regis-
ters H and L into two consecutive memory locations, corresponding to
addresses RESAD and RESAD + L. It saves 16 bits at a time.

Exercise 3. 14: Could you write the same multipfication program using
the BIT instruction (described 1n the next chapter) instead of the SRL C
instruction? What would be the disadvantage?

Let us now improve the program, if possible:

Exercise 3.15: Can JR be substtuted for JP at the end of the program?
If so, what is the advantage?

Exercise 3.16: Can you use DJNZ to shorten the end of the program?

121

PROGRAMMING THE Z80

Exercise 3.17: Examine the iwo instructions: LD D, 0 and LD HL, 0at
the beginning of the programn. Can you substitute:

XOR A

LD D A
LD H A
LD L, A

If 50, whai 1s the unpaci on size (number of byvies) and speed?

Note that, 1n most cases, the program that we have just developed
will be a subroutine and the final instruction in the subroutine will be
RET (return). The subroutine mechanism will be explained later in this
chapter.

Important Self-Test

This is the first significant program we have encountered so far, It in-
cludes many different types of instructions, including transfer instruc-
tions (LD), arnthmetic operations (ADD), logical operations (SRL,
SLA, RL), and jump operations (JR, JP). It also implements a pro-
gram foop, in which the lower seven instructions, starting at address
MULT, are executed repeatedly. In order to understand programming,
it 1s essential to understand the operauon of such a program in com-
plete detail. The program 1s much longer than the previous simple arith-
melic programs we have developed so far, and it should be studied in
detail. An important exercise will now be proposed. The reader is
strongly urged to do this exercise completely and correctly before pro-
ceeding. This will be the only real proof that the concepts presented s0
Far have been understood. If a correct resuft is oblained, it will mean
that you have really understood the mechanism by which 1nstructions
manipuiate information in the microprocessor, transfer it between the
memory and the registers, and process it. 1f you do not obtain the cor-
rect result, or if you do not do this exercse, 1t s likely that you will ex-
perzence difficulties later in writing programs yourself. Learning to pro-
gram requires personal practice. Please pause now, take a piece of
paper, or use the illustration of Figure 3.19, and do the following exer-
cise:

Exercise 3.18: Every tine that a program s written, 1 should be verified
by hand, in order 10 ascertain thai iis resubis wil be correci. We are go-
ing to do just that: the goal of this exercise is to fill in the table of Figure
3.19 completely and accurately.

122

BASIC PROGRAMMING TECHNIQUES

LABEL |INSTRUCTION| B c C D E H L

4
{CARRY)

Fig. 3.19: Form for Multiplication Exercise

You may want (o write directly on Figure 3.19 or make a copy of it.
You must determine the contents of every relevant register in the Z80
after the execution of each instruction tn the program, from beginning
to end. All the registers used by the program of Figure 3.13 arc shown
in Figure 3.19. From left to right, they are registers B and C, the carry
C, registers D and E, and, finally, registers H and L. On the left pari ol
this illustration, fill in the label, it applicable, and then the instructhions

123

PROGRAMMING THE Z80

being executed. On the right of the instruction, fill in the contents of
each register after execution of the instruction. Whenever the contents
of a register are not known (indefinite), you may use dashes to repre-
sent 1ts contents. Let us start filling in this table together. You will then
have to fill it out by yourself until the end. The first line appears below:

LABEL |INSTRUCTION| B C C D £ H L

MPY88 | LD BC,(0200)} 00 03 - -- v - =

Fig. 3.20: Multiplication: After One Instruction

We will assume here that we are multiplying **3'* (MPR) by “‘§"
{(MPD).

The first instruction to be executed 1s “LD BC, (MPRAD}". The
contents of memory location MPRAD is loaded into registers B and C.
It has been assumed that MPR 1s equal to 3, i.e., ““00000011"". After ex-
ecution of this instruction, the contents of register C have been set 1o
**3'"_ Note that this instruction will also result 1n loading register B with
whatever followed MPR in the memory. However, the next instruction
in the program will take care of this by loading register B with ‘‘8”’, as
shown in Figure 3.21. Note that, at this point, the contents of D and E
and H and L are still undefined, and this is indicated by dashes. The LD
mstruction does not condition the carry bit, so that the contents of the
carry bit C are undefined. This is also indicated by a dash.

LABEL |INSTRUCTION| B C C D E H L

MmPYss [LDBC,(0200)] 00 | 03 | « | == | == [«a | --
LDB,08 08 | 03] « | ==} -- [--}-.

Fig. 3.21: Multiplication: After Two Instructions

The situation after the execution of the first five instructions of the
program {just before the MULT) is shown in Figure 3.22,

124

BASIC PROGRAMMING TECHNIQUES

LABEL [INsTRUCTION] B | ¢ c 1 D | E | H]| L
MPygs | LDBC,(0200){ 00 | 03 | = | == | == } == | --
LD B, 08 08 |03 | ~ | == | == | | --
LDDE,0202)| 08 | 03 | - | oo | o5 | == --

DD, 00 o8 |03 | - |oo} o5 -]~
LOHL0000 {08] 03| - | oo | os|ool oo

Fig. 3.22: Multiplication: After Five Instructions

The SRL instruction will perform a logical shift right, and the right-
most bit of MPR will fall into the carry bit. You can see in Figure 3.23
that the contents of MPR afier the shift is *“0000 0001°’. The carry bit C
is now set to **1*". The other registers are unchanged by this operation.
Please continue to fill out the chart by yourself.

A second iteration is shown at the end of this chapter in Fig. 3.41,

LABEL JINSTRUCTION| B C C D E H L
MPY88 | LDBC,(0200}| €O | 03 - -- -- -1 --
LD B.08 08 03 - == = ==} =
LD DE,(0202)| 08 | 03 - 00 05 = =
DD, 0O 08 | 03 - 00 05 = | ="
LD HL.0000 08 | 03 - 00 05 1 00|
MULT SRLC 08 01 1 00 05 | 00| Q0
JRNC,0114 t 08 | O 1 00 05 { 007 Q0
ADD HL,DE 08 { 01 0 00 05 [00| O5
NQADD | SLAE o8 | O 0 00 OA | 00| O5
RLD o8 [O 0 00 OA | 00 | 05
DECB 07 | 01 0 00 OA | 00| OS5
JP NZ,01CF 07 | Ol 4] 00 OA | 00 | O5

Fig. 3.23: One Pass Through The Loop.

125

PROGRAMMING THE Z80

A compilete listing showing the contents of ail the Z80 registers and
the flags is shown in Fig. 3.39 at the end of this chapter for the complete
multiplication. A hex or decimal listing ts shown in Fig. 3.40,

Programming Alternatlives

The program that we have just deveioped could have been written.in
many other ways. As a general rule, every programmer can usually find
ways to modify, and often improve, a program. For example, we have
shifted the multiplicand left before adding, It would have been mathe-
matically equivalent to shift the resuit one position to the right before
adding it to the multiplicand. As a matter of fact, this is an interesting
exercise!

Exercise 3.19: Write an 8 X 8 multiplication program using the same
algorithm, but shifting the result one position to the right instead of
shifting the multiplicand by one position to the left. Compare it to the
previous program, and determine whether this different approach
would be faster or slower than the preceding one. The speeds of the Z80
mnstructions are given in the next chapter.

Improved Multiplication Program

The program that we have just developed 1s a straightforward trans-
lation of the algorithm to code. However, effective programming re-
quires close attention to detail, and the lengih of the program can often
be reduced or is execution speed can be improved. We are now going to
study alternatives designed to improve this basic program,

Step 1

A first possible improvement lies in the better utilization of the Z80
instruction set. The second-to-last instruction as well as the preceding
one can be replaced by a single instruction:

DINZ LOOP

This 1s a special Z80 “‘automated jump'’ which decrementsthe B register
and branches to a specified location if 1t 1s not “0"". To be absolutely
correct, the instruction is not completely identical to the previous pair

DEC B
JP NZ, MULT

126

BASIC PROGRAMMING TECHNIQUES

for 1t specifies a displecement, and one can only jump within the range
of — 126 to + 129. However, we must here jump to a location which is
only a few bytes away, and this improvement is legitimate, The
resulting program is shown in Figure 3.24 below:

MPY88B LD DE, (MPDAD)
LD BC. (MPRAD)

LD B, 8 BIT COUNTER
LD HL.O

MULT SRL C
JR NC. NOADD

ADD HL, DE
NOADD SLA E

RL D

DINZ MULT

LD (RESAD), HL

RET

Fig. 3.24: Improved Multiply, Step |
Step 2

In order to improve this multiplication program further, we will
observe that three different shift operations are used in the initial pro-
gram of Figure 3.13. The multiplier is shifted right, then the muitipli-
cand MPD is shifted left, in two operations, by first shifting register E
lelt, then rotating register D to the left. This 1s time-consuming. A stan-
dard programming *‘trick’" used in the case of multiplication is based
on the following observation: every time that the multiplier is shifted by
one bit position, another bit position becomes available in the mulu-
plier register. For example, assuming that the multiplier shifts right (in
the previous example), a bil position becomes available on the left.
Simultaneously, 1t can be observed that the first partial product (or
“result’”) will use, at most, 9 bits. If a single register had been allocated
to the result in the beginning of the program, we could then use the bit
position that has been vacated by the multiplier to store the ninth bit of
the resuit.

After the next shift of the MPR, the size of the partial product will be
increased by just one bit again. In other words, a single register can be
reserved intially for the partial product, and the bit positions which are
being freed by the multiplier can then be used as the MPR is being
shifted. In order to improve the program, we are therefore going to

127

PROGRAMMING THE Z80

assign MPR and RES to a register pair. Ideally, they should be shifted
together in a single operation. Unfortunately, the ZB0 shifts only 8-bit
registers at a time. Like most other 8-bit microprocessors, it has no in-
struction that ailows shifting [6 bits at 2 time.

However, another trick can be used. The Z80 (like the B0B0} 15
equipped with special [6-bit add instructions that we have aiready used.
Provided that the multiplier and the result are stored in the register pair
H and L, we can use the instruction:

ADD HL, HL

which adds the contents of H and L to itself. Adding a number to
itself 1s doubling it. Doubling a number 1n the binary system 1s equiva-
lent to a left shift. We have just obtained a {6-bit shift in a single in-
struction. Unfortunately, the shift occurs to the left when we would like
it to occur to the nght. This is not a problem.

Conceptually, the MPR can be shifted either left or right. We have
used a right shift algorithm because this is the one which is used in or-
dinary addition. However, it does not necessarily need to be 50, The
addition operation is commutative, and the order can be reversed: shif-
ting the MPR to the left is just as valid.

In order to take advantage of this simulated [6-bit shift, we will have
to shift the MPR to the left. Therefore, the MPR will reside in register
H and the result in register L. The resulting register configuration 1s
shown in Figure 3.25.

B| COUNTER
E
D 0 MPD
L
H MPR -«——— RES
C

Fig. 3.25: Registers for Improved Multiply

128

BASIC PROGRAMMING TECHNIQUES

The rest of the program is essenuially 1dentical to the previous one.
The resulting program appears below:

MULBSC LD HL, (MPRAD-1)

LD L,0

LD DE, (MPDAD)

LD D, 0

LD B. 8 COUNTER
MULT ADD HL,HL SHIFT LEFT

IR NC, NOADD

ADD HL, DE
NOADD DINZ MULT

LD (RESAD), HL

RET

Fig. 3.26: Improved Multiply, Step 2

When comparing this program to the previous one, it can be seen that
the length of the multiplication loop (the number of 1nstructions be-
tween MULT and the jumpj has been reduced. This program has been
written in fewer instructions and this will usually result in taster execu-
tion. This shows the advantage of selecting the correct registers to con-
tain the information.

A straightforward design will generally result in a4 program that
works. It will not result in a program that is optimzed. tt 1s therefore
unportant to understand and use the available registers and instructions
in the best possible way. These examples illustrate a rational approach
to register selection and instruction selection for maxumum efficiency.

Exercise 3.20: Compitte the speed of a nnilnplication operation using
this last program. Asswne that a branch will occur m 50% of the cases.
Look up the number of cycles required by every instruction in the index
section. Assuine a clock rate of 2 MHz (one cycle = 2 us).

Exercise 3.21: Note that here we have used the register paw D and E 10
contain the multiplicand, How would the above program be changed if
we had used the register pair B and C nsteacd? (Hint: thus would ro-
quire a viodification at the end.)

Exercise 3.22; Why did we have to boiher Zerowmyg register D when
toading MPD into E?

Finally, let us address a detail which may look irriitating to the pro-
grammer who 1s not yet familiar with the Z80. The reader will have

129

PROGRAMMING THE Z80

noticed that, in order to load MPD into E from the memory, we had to
load both registers D and E at the same time from a memory address.
This is because, unless the address is contained in registers H and L,
there is no way to fetch a single byte directly and load it into register E.
This is a feature carried over from the early 8008, which had no direct
addressing mode. The feature was carried forward into the 8080, with
some improvements, and improved still further in the Z80, where it is
possible to fetch 16 bits directly from a given memory address (but not
8 bits - except toward register A).

Now, having solved this possible mystery, let us execute a more
complex multiplication.

A 16 X 16 Multiplication

In order to put our newly acquired skills to a test, we will multiply
two 16-bit numbers. However, we will assume that the result requires
only 16 buts, so that it can be contained in one of the register pairs.

The result, as in our first multiplication example, 1s contained in
registers H and L (see Figure 3.27). The multuplicand MPD is contained
in registers D and E.

B C
A
COUNTER MPR, HIGH
MPR. LOW

Fig. 3.27: 16 X 16 Multiply—The Registers

130

BASIC PROGRAMMING TECHNIQUES

[t would be tempung to deposit a muluplier into register B and C.
However, if we want to take advantage of the DINZ instruction,
register B must be allocaled to the counter, As a result, half of the
muliiplier will be 1n register C, and the other halt in register A (see
Figure 3.27). The muluplication program appears below:

MULI6 LD A, (MPRAD + 1) MPR, HIGH

LD C, A
LD A, (MPRAD) MPR, LOW
LD B, 16 COUNTER
LD DE. (MPDAD) MPD
LD HL, 0
MULT SRL C RIGHT SHIFT MPR,
HIGH
RRA ROTATE RIGHT MPR,
LOW
JR NC, NOADD TEST CARRY
ADD HL, DE ADD MPD TO RESULT
NOADD EX DE. HL
ADD HL, HL DOUBLE - SHIFT MPD
LEFT
EX DE. HL
DINZ MULT
RET

Fig. 3.28: 16 X 16 Multiplication Program

The program 1s analogous 1o those we have developed before, The
first six instructions (from label MULI6 to label MULT) perform the
initialization of registers with the appropriale contents. One complica-
tion is introduced here by the fact that the two halves of MPR must be
loaded in separate operations, [t 1s assumned that MPRAD poinis (o the
low part of the MPR in the memory, followed in the next sequential
memory location by the high part. (Note that the reverse convention
can be used.) Once the high part of MPR has been read into A, it must
be transferred into C:

LD A.(MPRAD + 1)
LD C, A

Finally, the low part ol MPR can be read directly into the accumublator:

LD A, (MPRAD)

131

PROGRAMMING THE Z80

The rest of the registers, B, D, E, H, and L are imualized as usual:

LD B, 16
LD DE, (MPDAD)
LD HL, 0

A 16-bit shift must be performed on the multiplier. It requires two
separate shift or rotate operations on registers C and A:

MULT SRL C
RRA

After the 16-bit shift, the right-most bit of the MPR, 1.e., the LSB, is
contained in the carry bit C where it can be tested:

JR NC, NOADD

As usual, the multiplicand s not added to the result if the carry bit is
“0'’. and is added to the result if the carry bit is “‘I’":

ADD HL, DE

Next, the multiplicand MPD must be shifted by one position to the left.

However, the Z80 does not have an instruction which will shift the
contents of register D and E simultaneously to the left by one bit posi-
tion, and 1t can also not add the contents of D and E to itself. The con-
tents of D and E will therefore first be transferred into H and L, then
doubled, and transferred back to D and E. This is accomplished by the
next three instructions:

NOCADD EX DE, HL
ADD HL, HL
EX DE, HL

Finally, the counter B is decremented and a jump occurs 1o the begin-
ning of the loop as Jong as it does not decrement (o ‘'0"":

DINZ MULT

As usual, it is possible to consider other register allocations which may
{or may not) result in shorter codes:

Exercise 3.23: Load the muluplier into registers B and C. Place the
counter 1 A. Write the corresponding multiplication program and
discuss the advantages or disadvaniages of this regisier aflocation.

132

BASIC PROGRAMMING TECHNIQUES

lixercise 3.24: Referring to the priginal 16-bir mplnplicarion program
of Figure 3.28, cun you propose a way (o shift the MPD, contained tn
regisiers D and E, without transferring it mto registers H und L?

Exercise 3.25: Wrie a (6-by-(6 mdlnptication pragrant wiuch decects
the fact that the result has more than 16 bits. This 1s ¢ suuple mprove-
tent of our basic progratii,

Lxercise 3.26: Write a 16-by-16 muluplicarnion pragramt wirh a 32-but
result. The suggesied regisier allocarion appears m Figure 3.29.
Rewmemher that the mutial result after the first adclition m the loap will
regunre only 16 Dus, and thar the mulnplier will free ane it for each
subsequent werafton,

1
B MPD C
1
1
D MPR E
] RESULY
AFTER
MULTIPLICATION
H RES L

Fig. 3.29: 16 x 16 Muitiply with 32-Bit Result

Let us now examine the last usual anthmetic operation, the division.

BINARY DIVISION

The algorithm for binary division 1s analogous to the one which has
been used for the multiplication. The divisor 1s successively subtracted
from the high order bits of the dividend. Afiler each subtracuon, the
resuft is used instead of the inttial dividend. The value of the quotien? 15
simultaneously increased by | every time. Eventually, the result of the
subtraction s negative. This 1s called an overdraw. One must then
restore Lhe partial result by adding the divisor back to it. Naturally, the
quotient must be sstmultaneously decremented by t. Quotient and divi-
dend are then shified by one bit position 10 the left and the algorithm 1s
repeated. The flow-chart is shown in Figure 3.30.

The method just described is called the restoring method. A vananon
of this method which yields an improved speed ol execution is called the
non-restortng method.

133

134

PROGRAMMING THE Z80

INITIALIZE
QUOTIENT = 0
SHIFTCOUNTER = 4

1

SHIFT LEFT
OIVIDEND
[WITH B LEADING 0'3)
AND GUOTIENT

i

JRIAL SUBTRACT:
LECT (DIVIDENO}-DIVISOR

YES
BORROW?
NO
_ RESTORE:
[QUOTIENT = QUOTIENT +1 A0 DIVISOR
I T
1

COUNTER = COUNTER—1

YES

END (REMAHNOER IN LEFT (DIViDENOD)

Fig. 3.30: 8-Bit Binary Division Flowchart

8 | CouNTER c
of ovs T 0o e
T
H | owvIDENDQUOTIENT

L

Fig. 3.31: 16/8 Division—The Registers

BASIC PROGRAMMING TECHNIQUES

16-by-8 Division

As an example, let us here examine a [6-by-8 division, which will
yield an 8-bit quotient and an 8-bit remainder dividend. The register
allocation 1s shown in Figure 3.31.

The program appears below:

DIVI68 LD A.(DVSAD) LOAD DIVISOR
LD D, A iNTO D
LD E. 0
LD HL,(DVDAD) LOAD 16-BIT DIVIDEND
LD B.8 INITIALIZE COUNTER
DIV XOR A CLEAR C BIT
SBC HL,DE DIVIDEND — DIVISOR
INC HL QUOTIENT = QUOTIENT + I
P P,NOADD TEST IF REMAINDER
POSITIVE
ADD HL,DE RESTORE IF NECESSARY
DEC HL QUOTIENT = QUOTIENT - |
NOADD ADD HL, HL SHIFT DIVIDEND LEFT
DINZ DIV LOOP UNTIL B = 0
RET

Fig. 3.32: 16/8 Division Program

The first five instructions in the programload the divisor and the divi-
dend respectively into the appropriate regisiers. They also initialize the
counler, in register B, to the value 8. Note again that regisier B is a pre-
ferred location for a counter if the specialized Z80 instruction DINZ is
to be used:

Divies LD A, (DVSAD)

LD D, A
LD E, 0
LD HL, (DVDAD)
LD B, 8

Nexl1, the divisor is subtracted {rom the dividend. Since an SBC in-
struction must be used (there is no [6-bit subtract without carry), the
carry must be set (o the value *‘0’" belore subtracting. This can be ac-
complished in a number of ways. The carry can be cleared by perform-

135

PROGRAMMING THE Z80

ing instructions such as:

XOR A
AND A
OR A

Here, an XOR is used:

DIV XOR A
The subtraction can then be performed:
SBC HL, DE

It is anticipated that the subtraction will be successful, r.e., that the re-
mainder will be positive. This is called the ‘‘trial subtract”’ step (refer to
the flowchart of Figure 3.30). The quotient is therefore incremented by
one. If the subtraction has in fact failed (i.e., if the remainder 15
negative), the quotient will have to be decremented by one later on:

INC HL
The resuit of the subtraction 15 then tested:
IP P, NOADD

If the remainder is positive or zero, the subtraction has been successful,
and it is not necessary to store it. The program jumps to address
NOADD. Otherwise, the current dividend must be restored to its
previous value, by adding the divisor back to it, and the quotient must
be decremented by one. This is performed by the next instructions:

ADD HL, DE
DEC HL

Finally, the resulting dividend 1s shifted left, in anticipation of the
next trial subtract operation. Finally, the B counter 15 decremented and
tested for the value **0"". As long as B 1s not zero, this loop is executed:

NOADD ADD HL, HL
DINZ DIV
RET

Exercise 3.27: Verify the operation of this division program by hand,

by filling our the table of Figure 3.33, as in Exercise 3.18 for the wulti-
plication. Note that the contents af D need not be entered on the form
of Figure 3.33, since they are never modified.

136

BASIC PROGRAMMING TECHNIQUES

LABEL

INSTRUCTION

Fig. 3.33: Form for Division Program

8-Bit Division

The following program uses a restoring method, and leaves a com-
plemented quotient in A. It divides B bits by 8 bits (unsigned).

E IS DIVIDEND

C IS DIVISOR

A IS QUOTIENT
B IS REMAINDER

D1V88

LOOP8S

XOR
LD
RL

RLA
SUB
JR
ADD
DINZ
LD
LD
RLA
CPL
RET

A
B, 8
E

C

NC,3 +3
A, C
LOOPS8S
B, A

A.E

CLEAR ACCUMULATOR
LOOP COUNTER

ROTATE CY INTOQ ACC-
DIVIDEND

CY WILL BE OFF

TRIAL SUBTRACT DIVISOR
SUBTRACT OK

RESTORE ACCUM, SET CY

PUT REMAINDER IN B
GET QUOTIENT
SHIFT IN LAST RESULT BIT

COMPLEMENT BITS

Notc: the **$'" symbol in the sixth instruction represents the value of the
program counler.

137

PROGRAMMING THE Z80

Non Restoring Division

The lollowing program performs a 16-bit by 15-bit integer division,
using a non-resioring technique. 1X points to the dividend, 1Y to the
divisor (not zero). (see Figure 3.34.).

A DVD,HI |

8 COUNTERJ DVD,LO |c

D | DIVISOR |&
H{ REM L
IX DVD ADDRESS

I | DVS ADDR

Flg. 3.34: Non-Restoring Division—The Registers

Register B is used as a counter, initially set to 16.
A and C contain the dividend.
D and E contain the divisor.
H and L contain the result.
The 16-bit dividend is shifted left by:
RL C
RLA
The remainder is shifted left by:
ADC HL, HL.
The finai quotient is left in B, C, with the remainder in HL. The
program follows.

138

DIVié6

TRIALSB

NULL

PTV

RESTOR

NGV
DONE

LD
LD
LD
LD
LD
OR

JR

LD
LD
LD
RL

RLA
ADC

SBC
CCF
JR

DINZ
IP
RL

RLA
ADC
AND
ADC
JR
JR
DINZ
RL
RLA
ADD
LD
RET

BASIC PROGRAMMING TECHNIQUES

B.(IX + D)

C, (IX)

Di(lY + I)

E. (IY)

A, D

E {DIVISOR) HIGH OR
(DIVISOR) LOW

Z.ERROR CHECK FOR DIVISOR =

ZERO

A B GET (DVD) HI

HL,0 CLEAR RESULT

B. 16 COUNTER

C ROTATE RESULT + ACC
LEFT

HL.HL LEFT SHIFT. NEVER SETS
CARRY.

HL, DE MINUS DIVISOR
RESULT BIT

NC, NGV ACCUMULATOR
NEGATIVE?

TRIALSB COUNTER ZERO?

DONE

C ROTATE RESULT + ACC
LEFT

HL, HL AS ABOVE

A

HL, DE RESTORE BY ADDING DVSR

C,.PTV RESULT POSITIVE

Z,NULL RESULT ZERO
RESTOR COUNTER ZEROQO?

C SHIFT IN RESULT BIT
HL, DE CORRECT REMAINDER
B. A QUOTIENT ISIN B, C

139

PROGRAMMING THE Z80

Exercise 3.28: Compare the previous program to the following one, us-
g a restoring teclimque:

DIVIDEND IN AC
DIVISOR IN DE
QUOTIENT IN AC
REMAINDER IN HL

DIV16 LD HL, 0 CLEAR ACCUMULATOR
LD B, 16 SET COUNTER

LOOP16 RL C ROT ACC-RESULT LEFT
RLA
ADC HL.HL LEFT SHIFT
SBC HL.DE TRIAL SUBTRACT DIVISOR
JR NC,§ +3 SUB WAS OK
ADD HL,DE RESTORE ACCUM
CCF CALC RESULT BIT
DINZ LOOPIlé6 COUNTER NOT ZERO
RL C SHIFT IN LAST RESULT BIT
RLA
RET

Note: The symbol *‘$*’ means “‘current location’’ {eighth instruction).

LOGICAL OPERATIONS

The other class of instructions which can be executed by the ALU in-
side the microprocessor 1s the set of Jogical instructions. They include:
AND, OR and exclusive OR (XOR). In addition, one can also include
here the shift and rotate operations which have already been utilized,
and the comparison instruction, called CP for the Z80. The individual
use of AND, OR, XOR, will be described 1n Chapter 4 on the instruc-
tion set.

Let us now develop a brief program which will check whether a given
memory [ocation called LOC contains the value ‘0’ the value **1"’, or
something else.

The program will introduce the comparison instruction, and perform
a series of logical tests. Depending on the result of the comparison, one
program segment or another will be executed.

140

BASIC PROGRAMMING TECHNIQUES

The program appears below:

LD A, (LOO) READ CHARACTER IN

LOC
CP 00H COMPARE TO ZERO
IP Z,ZERO ISITAQ0?
CP OIH COMPARE TO ONE
JP Z, ONE
NONEFOQUND ...
ZERO
ONE

The first instruction: **LD A, (LOC)’’ reads the contents of memory
location LOC, and toads 1t into the accumulator. Thus s the character
we want to test, It 1s compared to the value 0 by the following instruc-
tion:

Cp 00H

This instruction compares the contents of the accumulator to 1the hex-
adecimal value ‘00", i.e., the bit pattern **0000 QQ00"’. This compari-
son instruction will set the Z bit in the flags regisier 10 the value **1"", if
it succeeds. This bit can then be tested by the next instruction:

JP Z, ZERO

The jump instruction tests the value of the Z bit, If the comparison suc-
ceeds, the Z bit has been set to one, and the jump will succeed. The pro-
gram will then Jump to the address ZEROQ. It 1he 1est fails, then the next
sequential istruction will be executed:

CPp OIH

Similatily, the following jump instruction will branch to location ONE
if the comparison succeeds. 1f none of the comparisons succeed, then
the 1nstruction at location NONEFOUND will be executed.

JP Z, ONE
NONEFOUND ...

141

PROGRAMMING THE Z80

This program was introduced lo demonstrate the value of the com-
parison nstruction followed by a jump. This combination will be used
in many ol the following programs.

I-xercise 3.29: Refer to the definttion of the LD A, (LOC) mstruction
the next chapter. Exonnne the effect ol this wsiruction on the flags, if
any. Is the second instruction of this program necessary (CP 00H}?

Exercive 3.30: Wrae the progrant wiuch will read the contents of
memory tocation **24° and branch to an acddress called STARif there
was & 7 memory Jocation 24, The bt patiern for a **** i hnary
notattan witl be essined (o he represented by “0010{0{0"".

INSTRUCTION SUMMARY

We have now studied mosi of the important instruciions of the Z80
by using them. We have translerred values between Lhe memeory and the
regisiers. We have performed anithmetie and logical operations on such
data. We have tested i, and depending on the results ol these tests,
have execuled various portions ol the program, In parttcular, special
“automated’’ Z80 instructions such as DJNZ have been used to shorten
programs. Other automated instructions: LDDR, CPIR, INIR will be
introduced throughout the remainder of this book.

Full use has beert made of special Z80 teatures, such as 16-bil register
istructions (o simplify the programs, and the reader should be careful
not 1o usc these programs on an 8080: they have been optimized tor the
Z80.

We have also introduced a structure called u loop. Another impor-
tant programming struclure will be introduced now: the subroutine.

SUBROUTINES

In concept, a subroutine 15 stmply a bloek of instructions which has
been given a name by the programmer. From a practical standpoint, a
subroutine must start with a special nstruction called a subronine
declaration. which identifies il as sueh for the assembler, [t is also tler-
minated by another special instruction called a return. Let us first 1l-
lustrate the use of a subroutine 1 & program in order to demonstrate its
valuc. Then, we will examine how 1t 1s actually simplemented.

142

BASIC PROGRAMMING TECHNIQUES

WA PROGA AN

SUBROUIrr

Cag sue

CALLSuB

Fig. 3.35: Subrautine Calls

The use ol a subrourine 1s illustrated 1n Figurce 3.35. The main pro-
gram appears on the lelt ol the illustration. The subroutine 1s shown
symbalically on the right. Let us examine the subroutine mechantsm.
The lines of the main program are exceuted suceessively until a new in-
struction “CALL SUB" 1s met. This special nstruciion s the
subrautine call and resulls 1 a transfer 1o ihe subroutine. This means
that the next instruction to be executed after the CALL SUB 1s the first
instruction within the subroutine. This 15 illustrated by arrow { on the
illustrauion,

Then, the subprogram within the subroutine execuies just like any
other program. We will assume that the subroutine does not contam
any other calls. The iast instruction of this subroutine ts a RETURN.
This 1s a special mstruction which will cause a return o the main pro-
gram. The next instruction to be exceuted atter the RETURN 15 the one
following the CALL SUB in the main program. This is illustrated by ar-
row 3 on the illustration. Program exccution conunues then, as il
lustrated by arrow 4,

In the body ol the main program a sccond CALL SUB appears. A
new transfer oceurs, shown by arrow 5. This means that the body of the
subroutine s again exceuted following the CALL SUB instruction.

Whenever the RETURN within the subrouline i encounlered, a
returnt oceurs (o the instruction following the CALL SUB in question.
This 1y illustrated by arrow 7. Following the return to the main pro-
graim, program exceution procgeds normally, as illustrated by arrow 8,

The eftect of the two special instructions CALL SUB and RETURN
should now he clear. What s the valuc ol the subrounine mechanism?

The essenual value al the subroutine 1s that it can be called from any
number of ponts 1 the matn program, and used repeatedly without

143

PROGRAMMING THE Z80

rewriting . A first advantage 1s that this approach saves memory
space, since there 1s no need (o rewrtte the subroutine every tme. A se-
cond advantage is that the programmer can design a specific subroutine
only once and then use 1 repeatedly. This 1s a significant simplification
I program design.

Exercise 3.31: What 1s the wamn disadvantage of a subroutime? (Answer
follows.)

The disadvantage of the subroutine should be clear just by examining
the flow ol execution between the main program and the subrouune. A
subroutine results in a sfower execihion, since exira instructions must
be exceuted: the CALL SUB and the RETURN.,

Implementation of the Subroutine Mechanism

We will examine here how the two special wstructions, CALE SUB
and RETURN, are implemented internally within the processor. The
effect of the CALL SUB instruction 15 (0 causce the next instruction (o
beietched at a new address. You will remember (or else read Chapter
[agam) that the address ol the next nstruction (o be executed in a
computer 15 contained n the progrant counter {(PC). This means that
the elTect ol the CALE SUB 15 to substitule new contents in regisier PC.
Lts effect 15 to load the start address of the subroutine i the program
counier. Is thar really sufficienr?

To answer this question, let us consider the other instruction which
has 10 be implemented: the RETURN., The RETURN must cause, as its
name indicates, a return to the instruction that follows the CALL SUB.
This 15 possible only if the address of this instruction has been prescrved
somewhere. This address happens to be the value ol the program
counter at the time that the CALL SUB was encountered. This is
because the program counter is automatcally incremented every time it
iy used (read Chapter | agamn). This ts preciscly the address that we want
to prescrve, 5o that we can later perform the RETURN,

The next problem 15: where can we save (his reiurn address? This ad-
dress must be saved in a location where it is guaranteed that it will not
be erased.

However, let us now consider the following situaton, illustrated by
Figure 3.36. In thisexample, subroutine | contamns a call to SUB2. Qur
mechamism should work in this case as well. Naturally, there might even
be more than two subroutines, say N *‘nested’’ calls. Whenever a new

144

BASIC PROGRAMMING TECHNIQUES

CALL s encountered, the mechanism must therefore again store the
program counter. This implies that we need at [east ZN memory loca-
tions for this mechamism. Additionally, we will need to return from
SUB2 first and SUB! next. in other words, we need a structure which
can preserve the chronological ordering in which addresses have been
saved,

The structure has a name and has already been mntroduced. i is the
stack. Figure 3.38 shows the actual contents of the stack during suc-
cessive subroutine calls. Let us look at the main program first. At ad-
dress 100, the Tirst call is encountered: CALL SUBt. We will assume
that, in this microprocessor, the subroutine call uses 3 bytes (RST is an
exception). The next sequennal address 15 therefore not 101, but
*“103"’. The CALL instruction uses addresses “*100°", ‘101", “102"".
Because the control unit of the Z80 ““knows’’ that 1t is a 3-byte instruc-
tion, the value of the program counter, when the call has been com-
pletely decoded, will be **103"’. The effect of the call will be to load the
value *‘280”" 1n the program counter. **280" is the starting address of
sSuBl.

naa

5
‘
|

ot

v

-
7

P

Fig. 3.36: Nesled Calls

We are now ready (o demonstrate the effect of the RETURN instruc-
tion and the correct operation of our stack mechanism. Execution pro-
ceeds within SUB2 until the RETURN instruction 1s encountered at
time 3. The effect of the RETURN nstruction is simply to pop the top
ol the stack into the program counter. In other words, the program
vounter is restored to its value prior to the entry into the subroutine,
The top of the stack in our exampie 15 **303"’. Figure 3.38 shows that, at
tume 3, value *‘303"" has been removed from the stack and has been put
back into the program counter. As a result, instruction execution pro-
ceeds from address **303”", Attime 4, the RETURN of SUBI is encoun-
tered. The value on top of the stack is **103"". It is popped and is in-
stalled in the program counter. As a result, program executton will pro-
ceed from location **103"’ on within the main program. This is, indeed,

145

PROGRAMMING THE 280

the effect that we wanted. Figure 3.38 shows that at time 4 the stack 1s
again empty. The mechanism works.

The subroutine call mechanism works up to the maximum dimension
of the stack. This is why early microprocessors which had a 4- or
8-register stack were essentially fimited to 4 or 8 levels of subroutine
calls.

Note that, on Figures 3.36 and 3.37, the subroutines have been
shown to the right of the main program. This is only for the clarity of
the diagram. In reality, the subroutines are typed by the user as regular
instructions of the program. On a sheet of paper, when producing the
listing of the complete program, the subroutines may be at the begin-
ning of the text, tn its middle, or at the end. This 1s why they are pre-
ceded by a subroutine declaration: they must be identified. The special
instructions tell the assembler that what follows should be treated as a
subroutine. Such assembler directives will be discussed in Chapter 10.

ADORESS {AAING
oo CALLSUB + ®
1+1] (sus 1y
280

I

Q w0 [suB 2)

X0, CALLSUB2

RETURN

T

4
|

RETURN

Fig. 3.37: The Subroutine Calls

stack: | me () | wME(D) | Tme (@) | me ()

103 103 103

303

Fig. 3.38: Stack vs. Time

146

BASIC PROGRAMMING TECHNIQUES

Z80 Subroutines

The basic concepts relating to subroutines have now been presented.
It has been shown that the stack is required in order to implement this
mechanism. The Z80 is equipped with a 16-bit stack-pointer register.
The stack can therefore reside anywhere within the memory and may
have up to 64K (IK = [024) bytes, assuming they are available for that
purpose. In practice, the start address for the stack, as well as its max-
imum dimension, will be defined by the programmer before writing his
program. A memory area will then be reserved for the stack.

The subroutine-call instruction, in the case of the Z80, is called
CALL, and comes In two versiohs; the direct or unconditional call,
such as CALL ADDRESS, 1s the one we have already described. In ad-
dition, the Z80 is equipped with a conditional call instruction which will
call a subroutine if a condition 15 met. For example: CALL NZ, SUBI
will result in a call to subroutine [if the Z flag is zero at the time of the
test. This is a powerful facility, since many subroutine calls are
conditional, i.e.. occur only if some specific condition 1s met,

CALL CC, NN s execuled only if the condinion specitied by **CC™
is true. CC is a set of three bits {bits 3. 4, and 5 of the opcode) which
may specify up to eight conditions. They correspond respectively to the
four flags “*Z", “C*’, “P/V’’, “S'' geing either zero or non-zero.

Similarly, two types of return tnstructions are provided: RET and
RET CC,

RET is the basic return instruction, It occupies one byte, and causes
the top two bytes of the stack to be re-installed tn the program counter,
It 15 unconditional.

RET CC has the same effect except that it is executed only if the con-
dittons specified by CC are true. The condition bits are the same as for
the CALL instruction just described.

Additionally, two specialized types of return are available which are
used to terminate interrupt routines: RETI, RETN. They are described
in the section on the Z80 mnstructions as well as in the section on inter-
rupts.

Finally, one more spectalized instruction is provided which s analo-
gous to a subroutine call, but allows the program to branch to only one
of eight starting locations located in page zero. This 15 the RST P in-
struction. This is a one-byte instruction which automatically preserves
the program counter in the stack, and causes a branch to the address
specified by the three-bit P field. The P field corresponds to bits 3, 4
and 5 of the insrtuction, multiplied by eight.

147

PROGRAMMING THE Z80

In other words, if bits 3, 4, 5 are **000°*, the jump will occur to loca-
tion Q0H. If these bits are ‘001", the branch will occur to 08H, vte. up
to 111, which will cause a branch to location 38H. The RST instruction
is very efficient in terms of speed singe it is a single-byte nstruction,
However, it can jump to only eight iocations, in page 0. Additionally,
these addresses in page O are only eight bytes apart. This instructionis a
carry-over from the 8080 and was extensively used for interrupts. This
will be described in the interruplt section. However, this instruction may
be used for any other purpose by the programmer, and should be con-
sidered as a possible specialized subroutine call.

Subroutine Examples

Most of the programs that we have developed and are going to
develop would usually be written as subroutines. For example, the
multiplication program is likely to be used by many areas of the pro-
gram. In order to facilitate and clarify program development, it is
therefore convenient to define a subroutine whose name would be, for
example, MULT. At the end of this subroutine we would simply add
the instruction RET.

Exercise 3.32: If MULT s used as a subroutine, would it “‘damage’’
any internal flags or registers?

Recursion

Recursion 1s a word used (o indicate that a subroutine is calling itself.
If you have understood the implementation mechanism, you should
now be able to answer the following question:

Exercise 3.33: Is «t legal 10 let a subroutine call uself? (In other words,
will everything work even if a subroutine calls itself?) If you are not
sure, draw the stack and fill i with the successive addresses. Then, look
at the registers and memory (see Exercise 3.18) and deternune if a pro-
blem exisis,

Interrupts will be discussed 1n the mput/output chapter (Chapter 6).
All returns except returns from interrupts are one-byte instructions; all
calls are 3-byte instructions (except RST).

Exercise 3.34: Look at the execution times of the CALL and the RET
instructions in the next chapter. Why s the return from g subroutine so
much faster than the CALL? (Hint: if the answer is not obvious, look
agatn at the stack unplementation of the subroutine mechanismn, and
analyze the nternal operations that must be performed.)

148

BASIC PROGRAMMING TECHNIQUES

Subroutine Parameters

When calling a subroutine, one normaliy expects the subroutine to
work on some data. For example, in the case of multiplication, one
wants to transmit two numbers to the subroutine which will perform
the multiplication. We saw in the case of the multiplication routine that
this subroutine expected to find the multipiier and the muitipiicand in
given memory locations. This illustrates one method of passing para-
meters: through memory. Two other techniques are used, so that we
have three ways of passing parameters.

1—through registers
2—through memory
J—through the stack

Registers can be used to pass parameters. This is an advantageous
soiution, provided that registers are available, since one does not need
to use a fixed memory location: the subroutine remains memory-inde-
pendent. If a fixed memory iocation is used, any other user of the sub-
routine must be very careful that he uses the same convention and that
the memory location is indeed available (look at Exercise 3.19 above).
This is why, in many cases, a block of memory locations is reserved
simply to pass parameters among various subroutines.

Using memory has the advantage of greater flexibiiity (more data),
but results in poorer performance and also in tying the subroutine to a
given memory area.

Depositing parameters in the stack has the same advantage as using
registers: it is memory-independent. The subroutine simpiy knows that
it is supposed to receive, say, two parameters which are stored on top of
the stack. Naturaily, it has disadvantages: it ciutters the stack with data
and, therefore, reduces the number of possible levels of subroutine
calls. It also significantly complicates the use of the stack, and may re-
quire multiple stacks.

The choice is up to the programmer. In generai, one wishes to remain
independent from actual memory locations as long as possible.

If registers are not availabie, a possible solution is the stack. How-
ever, if a large quantity of information should be passed to a sub-
routine, this information may have to reside directiy in the memory. An
elegant way around the problem of passing a block of data is simpiy to
transmit a pointer to the information. A pointer is the address of the
beginning of the biock. A pointer can be transmitted in a register, orin
the stack (two-stack locations can be used to store a 16-bit address), or
in a given memory location(s).

149

PROGRAMMING THE Z80

Finally, if neither of the two solutions is applicable, then an agree-
ment may be made with the subroutine that the data will be a1 some
fixed memory location (the ‘‘mail-box™).

Exercise 3.35: Which of the three inethods above is best for recursion?

Subroutine Library

There is a strong advantage to structuring portions of a program into
identifiable subroutines: they can be debugged independently and can
have a mnemonic name. Provided that they will be used in other areas
of the program, they become shareable, and one can thus build a
library of useful subroutines. However, there is no general panacea in
computer programming, Using subroutines systentatically for any
group of instructions that can be grouped by function may also result in
poor efficiency. The alert programmer will have to weigh the advan-
tages against the disadvantages.

SUMMARY

This chapter has presented the way information is manipulated inside
the Z80 by instructions. Increasingly complex algorithms have been in-
troduced and translated into programs. The main types of instructions
have been used and explained.

Important structures such as loops, stacks and subroutines, have
been defined.

You should now have acquired a basic understanding of program-
ming, and of the major techniques used in standard applications. Let
us study the instructions available.

150

c

C

A=00
A’'=00
=00
A =00
A=00
A’ =00
A=00
A'=00

A=00-

A’ =00
A=00
A’ =00
A=00
A’=00
A=00
A’=00
A=00
A’ =00
A=00
A’=00
A=00
A’ =00
A=CD
A’=00
A=0Q
N’ =00
A=00
A’'=00
N=00
A’ =00
A=00
A =00
A=00
A’ =00
A=00
a’' =00
#=00
A’ =00
A=00
A'=00
=00
A’ =00
A=00
A’ =00
A=00
A’=00
A=00
f' =00
A=00
A’ =00
A=00
A=00
A=00
A =00
A=00
A =0Q
A=DC
A" =00
A=00
A’ =00
=00
A°=0Q
A=00
A’ =00

BC=0000C
B=0000
BC=0003
B =0000
BC=0803
Br=0G00
BC=0803
B*=0D00
BC=0803
B’=0000
BC=GHO03
R*=0DO0
BC=0A01
B =0000
BC=0801
B =0000
BC=080%
B’ =0000
BC=¢B01
0-=0600
BC=G801
F‘=0gGG0
BC=0701
D =0G00
BC=D701
R’ =000C
BL=0700
B'=0000
BC=Q700
R’ =0G00
BC=0700
[=0G00D
HC=0700
H‘=0G00
nC=06700
B =0000D
HC=0800
B =0000
BC=0400
B’ =0000
BC=0400C
B’ =0000
HC=0&00
H’=0000
IC=0600
B*=0000
BC=04600
B/=0000
HC=0500
R*=0000
RC=0500
B’ =0000
ODC=0500
I’ =0000
nc=0500
E*=0000
0C=0300
B =0000
BC=0500
B =0000
RC=0400
[=0000
BC=0400
B’ =0000

LE=0000
[’=0000
OE=0000
0°=0000
DE=0000
0°=0000
DE=0005
0’=0000
DE=0005
D’=0000
DE=0005
D*=0000
DE=00G0S
D’=00600
DE=000S

‘=0000
DE=0005
0’ =GGRQ
DE=0G0DA
I‘=0000
DE=0GGA
D‘=0000
BE=000A
B’=0000
DE=000CA
D’=0000C
DE=00G0A
0/=000¢
DE=000A
D‘=0000
IE=CGGOA
0°=060060
DE=GGlA
0‘=000Q
DE=0014
B =0ocon
DE=0014
B’ =0000
DE=06G14
I =0000
BE=0014
I =Go00
DE=0014
n‘=06000
DE=0028
[’ =0000
DE=CG28
b’=0000
DE=0028
0 =0000
UE=0¢28
b'=00600
bE=0028
[“=0000
DE=0028
B’ =0000
BE=0050
D’ =0000
RE=0050
I =0000
[E=00S5S0
It =0000
UE=Q050
0’=0000

BASIC PROGRAMMING TECHNIQUES

HL=000C
H* =000
HL=0000
H*=0000
HL=000C
H*‘=06GG0
HL=0GGO00
H*=0G00
HL=0G00
H=Gg000
HL=G000
H*=0G00
HL=00G0
H’=0000C
HL=GGG0
H”=0000
HL=0005
H’=0000
HL=0G0S
H’'=0000
HL=0003
H’=20000
HL=00G%
M =0000
HL=0005
H*=00G0
HL=0005
H’=0600
HL=0005

¢=0000
HL =0oaF
H’=0000
HL=000F
H’=0000
HL=0GOF
H’=0000
HL=GQOF
H*=0000
HL=000F
H*=00G0
HL=00GF
H*=0G00
HL=0GOF
H*=0000
HL=000F
H’=0000
HL=0GDF
H*=0000
HL=0G00F
H’=pg00
HL=0GOF
H*=0000
HL=0G0F
H’=0000
HL=000F
H*=Q000
HL=000F
H*=0000
HL=000F
H/=0000
HL=0OOF
H’=0000
HL=GGOF
H*=0000

5=0300
X=0000
S=0300
X=0000
5=0300
X=0000
S=0300
X=0000¢
§=030¢
X=0000¢
S=0300
X=000G
5=030¢
X=0000
5=63G0
X=00G0
5=03060
X=0000
S=0300
X=0000
5=0300
X=0000
S=0300
X=G000
$=0300
X=0G00
S=0300
X=0G00
5=03060
X=000G
5=0300
X=000D
§=0300
X=0000
$=0300
X=0000
5=0300
X=0000
S=0300
X=0000
S=D3G0
X=0000
5=0300
X=00090
5=0300
X=6000
5=0300
X=0000
5=0300
X=0000
§5=0300
X=0GG0o
5=0300
X=0000
5=0300
X=0Q000
8=0300
X=0000D
5=0300
X=-0000
5=0300
X=09000
§=0300
X=0000

£=01060
Y=0000
F=0104
Y=0000
P=0106
¥=0000C
£=010A
¥=0000
£=010C
Y=0000
P=010F
¥=000G0
F=0111
¥=0000
F=0113
¥Y=0000
F=0114
Y=0000
F=0t14&
¥=00006
F=0118
¥Y=0000
F=0)19
¥=0000
F=010F
Y=G000
P=G111
¥=0000
F=0G113
¥=0000
F=0114
Y=0000
F=01164
Y=0000
F=0118
Y=0000
F=0119
¥=0000
F=010F
Y=0000
F=0111
¥=0600
F=0t14
¥=0000
F=01164
Y=0000
F=0118
¥Y=000Q
F=0119
Y=0000
F=010F
Y=0000
F=0Ll11
Y=6000
Fr0114
Y=0000
F=0116
Y=0000
F=D118
Y=0000
FE0119
¥=0000
F=010F
¥=0000

0100
1=00
0104°
I=00
0iD&”
1=00
o10A"
I=00
¢i10C”
I=00
Di0F "
1=00
0111’
I1=00
0113-
1=00
0114’
1=00
0116°
I=00
ol18°
I=00
o119
1=60
010F "
I1=00
o111+
I=60
0113~
I=00
n114-
I=00
0114°
I=p0
ol18*
I=00
0119
1=00
GlGF -
I=00
0i11”
T=00
o114’
100
0116°
1=00
o118°
1=00
oL1e-
I=00
Q106F "
I=00
ol11”
I=0G
Otia’
I=00
0116
1=00
0118°
1=00
0119°
I=Q0
O10F*
I=00

LD
LD
LD
L
LB
SRL
JR
ADD
SLA
RL
DEC

JF

JRr
AQD
SLa
RL
DEC
JF
SRL
JR
Si.A
RL
DEC
JF
SRL
JR

-1

DET
JFE

SRL

Fig. 3.39: Multiplication: A Complete Trace

HCr (020G}
{02007)
B.08

DE £ (G262}
(02027
000

HL »00DO
(0000}
C
NCs0O114
(g1147)
HL¢DE

E

o

B

N2y G10OF
(GIGF "
c
NCr0Q114
(0114°>
HL yDE

E

(]

I
HZ.010F
(010F)
c

HC»0114
101147

NZyQLOF
(O10F
C

Nl ,0114
[N E R

14
i}
NI QIDF

TQLOF)
-

151

PROGRAMMING THE 280

v

(2]
<

152

A=00
A’ =00
A=0D
h* =00
n=00
‘=00
A=00
A’ =00
A=00
7’ =00
A=00
=00
A=00
A’ =00
A=00
A’=00
A=00
A=00
A=00
A’ =00
A=00
A‘=00
A=00
A =00
A=00
A’=00
A=00
A =00
=00
A'=00
A=00
A’=00
A=00
A =00
A=00
A‘=00
A=00
A‘=00
A=00
A =00
A=00
A‘=00
A=00
A=00
A=00
A" =00
A=00
A =00
A=00
A‘=00

Fig.

RC=0400
n/=0000G
BC=040G0
L' =0000
BC=0400
E/=0000
RC=0400
b‘=0000
RC=0300
B’ =0000
BC=0G3I00
F‘=0000
BFC=0300
B’ =0000
BC=0300
B=0000
BLC=0300
B’=0000
LC=0300
B =0000
BC=0200
E*=0000
BC=0200
R’=0000
BC=0200
B =0000
EC=0200
B =0000
KC=0200
0’ =0000
BC=0200
B =0000
BC=0100
n* =0000
RC=0t00
B/=0000
BRC=0L00
Is* =0000
rC=0100
B’ =0000
BEC=0100
B =0000
BC=0100
L =Q000
EC=0000
I =0000
LC=0000

*=0000
BC=0000
L =0000

LE=0Q0S0
[1-=0000
DE=0050
nr=0000
NE=00n0
n’=000G
DE=00NQ
L’ =0000
DE=COA0
B =0000
PE=00AC
0*=0000
DE=00A0Q
f1*=0000
DE=00AQ
I-=0000
DE=0040
0/ =0000
NE=6110
i =0000
DE=0140
0 =0G00
DE=Q14Q
I =0000
DE=0140
[=0000
DE=0140
D’ =6000
DE=0180
[=0000
DE=028C
n=0000
DE=0Q80
I’ =Q000
BE=07180
b’ =0Q00
TE=Q280Q
I“ =000
DE=0280
o =0000
OE=0700
0’ =0000
IE=0500
" =0000
OE=0500
[’ =0000
FE=0500
o+=0000
DE=0500
n*=0000

HL=000F
H*=0000
HL=006F
I+ <0000
HL=000F
H*=0000
HL =000F
H’=0000
HL=GOUF
" =0000
HL=000F
H*=0000
HL=000F
H* =0000
HL=00Q0F
H =0000
HL=000F
H’ =0000
HL=000F
H’=0000
HI=000F
H=0000
HL=000F
H =000D
HL=000F
H*=0000
HL=000F
H’=0000
HL=GOOF
H*=0000
HL=000F
H’=0000
HL=000F
H’=0000
HL=000F

*=0000
HL=000F
H’=0000
HL=0GOF
H’=0000
HL=000F
H’ =000
HL=000F
H*=G000
HL=00O0F
H’=0000
HL=000F
H’=0000
HL=000F
H’=0000

5=0300
X=0000
5=03060
X=00060
S=0300
xX=0000
§=0300
X=0000
S=0G300
X=0000
$=0300
X=0000
S=0300
X=0000
S5=0300
X=0000
5=0300
X=Q000
S5=0300
X=0000
S=0300
X=0000
5=0300
X=0000
S=0300
X=0000
$=0300
X=Q000
§=0300
X=0000
5=0300
X=0N000
S$=0300
X=Q000
$=0300
X=0000
§=0300
X=0000
5=0300
X=0000
5=0300
X=0000
S=0300
Xz0000
S=0300
X=0000
$=0300
X=0000
5=0300
xX=0000

P=0111
Y=0000
F=0114
=000
P=D114
¥Y=0000
FP=0118
¥=0000
F=0119
¥=0000
F=010F
¥=0000
P=0111
¥=0000
F=0114
Y=000¢4
P=01164
Y=0000
F=0118
¥=0000
F=011%
¥=0000
P=010F
¥=0000
F=0111
Y=0000
F=0114
¥=0000
F=0116
¥=0000
F=0118
Y=00G0
F=0119
Y=0000
F=010F
¥=0000
F=0EEL
¥Y=0000
F=0114
Y=0000G
F=011é
¥=0000
F=0118§
Y=0000
F=0119
¥Y=0000
F=011C
Y=0000
F=011F
Y=0000

0111
I=00
Q114
1=00
o114
1=00
o118’
1=00
o119
=00
01G6F°
=00
ol11-
=00
o114’
T=00
o114°
=00
o118’
T=00
oL1e”
=00
C10F "
=00
o1ty
1=00
0ila
T=00
o114
[=00
0118°
I1=00
01197
T=00
Q10F -
1=00
01tlL”
1=00
oL1yar
=00
0114”7
I1=00
0118°
=00
o119’
1=00
o1ic
I=00
013F°
1=00

JR
SE.h
RL
DEC
Jr
SRL
JR
SLA
RL
LER
Jr
SRL
JR
SLA
KL
DEC
JAFE
SRL
Ji
S5LA
kL
IEC
JE
LD

NOF

ME0114
oL14’y
=4

(]
B
N LOE
(01aF
C
MC-0114
(erta
E
Ir
B
NZ+OI0OF
(O010F "
C
MCDI LA
(glLtan
E
I
R
NZ» Q101
(GIGFE)
C
NC.0114
(Q1ia")
E
I
3]
N2y 01OF
(QLorF ")

{02047 s HL
{0204°)

3.39: Multiplication: A Complete Trace (continued)

BASIC PROGRAMMING TECHNIQUES

ANSWERS TO EXERCISE 3.18 (MULTIPLICATION):

CROHCHCR CLOS 200 ASSEMULCE verasign 02,10 FAGE e0u!

0000 ¢on] ORR QLO0H

€000 0002 HIRAG nL 02Q0H

(olol) 0003 HPDAD oL DI02H

(G042 0001 RESAD nu 02041

0005

0100 [Epanneo? 0004 fAFag0 L PCa CHPRADY FLOAD HULTITLIER IHTO C
gJ]04 Q4600 0007 Lis heg e 15 RIT COURTER
Qt¢és EDSBROZO2 0000 LK NEr ¢MEDAR iLAAD MUTICLICAHK THTD E
QIDA té0D 0o0% Ly uelr FCLEAR b
otol TI0D00 0alo Lk Bl -0 FOET RESDLT TR O
O10F CEB3I? 0611 AuLT GRL 4 SRHIFY MILTTELIER TIT 1HTO CARRY
DI1l1 3004 0012 Sk HCyHOODU FTEST CARKY
DI13 19 00l AlD HLr0E inhp HRD TO RESULT
o114 Co23 0014 HOADD SLA F iSHIF1 HPU LEFT
o114 Cp12 0G43 RL D iSAvE MIT In o
Q1310 S 0014 nec b FRTEREHERY SHIFT COURTEL
a1L7 C20FO1 0017 JP HZsHULT fng 11 AATE 1T COURTER .. 0
011C 270407 ool LD CRESAOT L FGTUKE RCSULY
O11F (0000 0019 EHlD
Errors o

Fig. 3.40: The Multiplication Program (Hex)

LABEL [INSTRUCTION B C C D E H L
{CARRY)

00 00| o (oo | oo |00} 00

MP488 | LDBC,(0200}| 00 { 03 | 0 |00 | 00 | 00 | 0O
LD 8,08 08 | 03| o {oof{ 00| 00] 00
LDDE{0202)| 08 | 03 | 0 [o0 | 05 | 00| 00

LD D, 00 o8 | 03| o |oo| o5 | 0ol 00
tDHLoo0o | 08 |03 | o oo | 05 [00| 00

MULT | SRLC o8 [or | 1 |oo| o5 |00 o0
JRNC,0114 | 08 } 01 | 1 oo] o5 | oo} oo
ADDHLDE {08 [o1 | 0o | oo | o5 | 00| os

NOADD | SLAE o8 |01 | o | ool oa|oo|os
RLD o8 |01 { o |oo| oa|oo]fos

DEC B 07 t o1 | o |00] oal|oo]os
JPNZOIWOF {07 o1 | o {oo | oa|o0] 05

MULT | SRLC 07 {oo{ 1 (oo | oaloolos
JRNCON4 [07 oo | 1 {00 | 0oa]oo]| 05
ADDHLDE [07 |00 [o | oo | oa | 0o | oF

NOADD | SLA E 07 {00 | 0 |00 | 14 [00| OF
RL D 07 |00 | o | 00| 14 | 00| oF

DEC B 06 oo | o | oo | 14 |00]oF
JPNZ010F 106 00} 0 |00 | 14| 00| oF

Fig. 3.41: Two Iterations Through the Loop

153

4
THE Z80 INSTRUCTION SET

INTRODUCTION

This chapter will first analyze the various classes of instructions
which should be available in a general-purpose computer. It will then
analyze one by one all of the instructions available for the Z80, and ex-
plain in detail their purpose and the manner in which they affect flags
or can be used in conjunction with various addressing modes. A de-
tailed discussion of addressing techniques will be presented in Chapter
5.

CLASSES OF INSTRUCTIONS

Instructions may be classified in many ways, and there is no stan-
dard. We will here distinguish five main categories of instructions:

l—data transfers
2—data processing
J—test and branch
4—input/output
S—control

Let us now examine each of these classes of instructions in turn.

Data Transfers

Data transfer instructions will transfer data between registers, or be-
tween a register and memory, or between a register and an input/output
device. Specialized transfer instructions may exist for registers which
play a specific role. For example, push and pop operations
are provided for efficient stack operation. They will move a word of

154

THE Z80 INSTRUCTION SET

data between the top of the stack and the accumulator 1n a single in-
struction, while automatically updating the stack-pointer register.

Data Processing

Data processing structions fall into five general calegories:

[—arithmetic operations (such as plus/minus)

2—brit manipulation (set and reset)

3—increment and decrement

4—Ilogical operations (such as AND, OR, exclusive OR)
5—skew and shift operations (such as shift, rotate)

It should be noted that, for efficient data processing, it is desirable to
have powerful arithmetic instructions, such as multiply and divide.
Unfortunately, they are not available on most microprocessors. 1t is
also desirable to have powerful shift and skew instructions, such as
shift n bits, or a nibble exchange, where the right half and the left half
of the byte are exchanged. These are also usually unavailable on most
MICTOProcessors.

Before examining the actual Z80 instructions, let us recall the dif-
ference between a shift and a rotarion. The shift will move the contents
of a register or a memory locauon by one bit location to the left or (o
the right. The bit falling out of the register will go mnto the carry bit.
The bit coming in on the other side will be a *‘0"” except in the case of an
*‘arithmetic shift nght,”” where the MSB will be duplicated.

In tne case of a rotation, the bit coming out still goes in the carry.
However, the bit coming in is the previous value which was in the carry
bit. This corresponds Lo a 9-bit rotation. It 1s often desirable (o have a
true 8-bit rotation where the bit coming in on one side is the orne falling
from the other side. This is not provided on most microprocessors
but is available on the Z80 (see Figure 4.1).

Finally, when shifting a word to the right, it 1s convenient to have one
more type of shift, called a sign extension or an “‘arithmeuc shift
right.”” When doing operations on two’s complement numbers, parti-
cularly when itmplementing floating-potnt routines, it is often necessary
to shift a negative number to the right. When shifung a two’s comple-
ment number to the right, the bit which must come in on the left side
should be a 1" (the sign should get repeated as many times as needed
by the successive shifts). This is the arithmetic shift right.

155

PROGRAMMING THE Z80

SHIFT LEFT

LN N DD DD L

Q CARRY

ROTATE LEFT

LM NN DD

TR TTTS

Fig. 4.1: Shift and Rotate

Test and Jump

The test instructions will test bits in the specified register for ‘0"’ or
“1'’, or combinations. At a minimum, 1t must be possible to tes1 the
flags register. It 1s, therefore, desirable to have as many flags as pos-
sible in this register. In addition, 1t is conventent to be able to test for
combinations of such bits with a single instruction. Finally, it is
desirable to be able to test any bir position in any register. and Lo test
the value of a register compared to the value of any other register
(greater than, less than, equal). Microprocessor test insiructions are
usually limited to testing single bits of the flags register. The Z80, how-
ever, offers better facilities than most.

The jump instructions that may be available generally fall into
three categories:

| —the jump, which specifies a full 16-bit address

2—the relative jump, which often is restricted to an 8-bit displace-
ment field

J—the call, which 1s used with subroutines

156

THE Z80 INSTRUCTION SET

It is convenient to have two- or even three-way jumps, depending, for
example, on whether the result of a comparison is ‘**greater than,’" *‘less
than,”” or ‘*equal.’’ It is also convenient to have skip operations, which
will jump forward or backwards by a few instructions. However, a
‘‘skip’ is equivalent to a2 “jump.’’ Finalty, in most |oops, there is
usually a decrement or increment operation -at the end, followed by a
test-and-branch. The availability of a single-instruction increment/
decrement plus test-and-branch is, therefore, a significant advan-
tage for efficient loop impiementation. This 15 not available in most
microprocessors. Only sumple branches, combined with simple tests,are
availabte. This, naturally, complicates programming and reduces effi-
ciency. In the case of the Z80, a ““decrement and jump’’ instruction is
available. However, it only tests a specific register (B) for zero.

Input/Qutput

Input/output instructions are specialized instructions for the hand-
ling of input/output devices. In practice, a majority of the 8-bit micro-
processors use memory-mapped [/0: input/output devices are con-
nected to the address bus just fike memory chips, and addressed as
such. They appear to the programmer as memory locations. All
memory-type operations normally require 3 bytes and are, therefore,
slow. For efficient input/output handling in such an environment, it 1s
desirable to have a short addressing mechanism avaitable so that 1/0
devices whose handling speed is crucial may reside in page 0. However,
if page 0 addressing is available, 1t 1s usually used for RAM memory,
which prevents us effective use for input/output devices. The
280, like the 8080, is equipped with specialized 1/0 instructions. As a
result, 1n the case of the Z80, the designer may use either method: in-
put/output devices may be addressed as memory devices, or else as in-
put/output devices, using the 1/0 instructions.

They will be described later in this chapter.

Control Instructions

Control instructions supply synchronization signals and may suspend
or interrupt a program. They can also function as a break or a simu-
lated interrupt. (Interrupts will be described in Chapter 6 on in-
put/QOutput Techniques.)

157

PROGRAMMING THE Z80

THE Z80 INSTRUCTION SET

Introduction

The ZB80 microprocessor was designed to be a replacement for the
8080, and to offer additional capabilities. As a result of this design
philosophy, the Z80 offers all the instructions of the 8080, plus add;i-
tional instructions. In view of the limited number of bits available in an
8-bit opcode, one may wonder how the designers of the Z80 succeeded
in 1mplementing many addiconal ones. They did so by using a few
unused 8080 opcodes and by adding an additional byte to the opcode
for indexed operations. This 1s why some of the Z80 instructions oc-
cupy up to five bytes in the memory.

It 1s important 10 remember that any program can be writlen in many
different ways. A thorough knowledge and understanding of the in-
struction set 15 indispensable for achieving efficient programming.
Howewver, when learning how Lo program, it is not essential to write op-
tirmized programs. During a first reading of this chapter, 1t 1s therefore
unimportant to remember all the various instructions. It is important 10
remember the categories of instructions and to study typical examples.
Then, when writing programs, the reader should consuit the Z80
mstruction-set description, and select the instructions best suited to his
needs. The various instructions of the ZBO will therefore be reviewed in
this section with the mntent of simplifying them and grouping them in
logical categories. The reader interested n exploring the capabilities of
the various nstructions is referred to the individual descriptions of the
Instructions.

We will now examine the capabilities provided by the Z80 in terms of
the five classes of instructions which have been defined at the beginmng
of this chapter.

Data Transfer Instructions

Data transfer instructions on the Z80 may be classified tn four
categories: 8-bit transfers, 16-bit transfers, stack operations, and
block transfers. Let us examine them.

Eight-Bit Data Transfers

All etght-bit data transfers are accomplished by load instructions.
The formal is:

LD destination, source

158

THE Z80 INSTRUCTION SET

For example, the accumulator A may be loaded from register B by
using the instructions:

LD AB

Direct transfers may be accomplished between any two of the
working registers (ABCDEHL).

In order to load any of the working registers, except for the accu-
mulator, from a memory location, the address of this memory loca-
tion must first be loaded into the H-L register pair.

For example, 1n order to {oad register C from memory location 1234,
register H and L will first have to be loaded with the value **1234"", (A
load instruction operating on 16 bits will be used. This is described in
the following section.)

Then, the instruction LD C, (HL)} will be used and will accomplish
the desired result,

The accumulator i1s an exception. It can be loaded directly from any
specified memory location. This is called the extended addressing
mode. For example, 1n order to load the accumulator with the contents
of memory location 1234, the following instruction will be used:

LD A, (1234H) (Note the use of ‘“()"’ to denote ‘‘contents of."")
The instruction will be stored in the memory as follows:

address PC :3A (opcode}
PC + 1:34 (low order half of the address)
PC + 2:12 ¢high order half of the address)

Note that the address 1s stored in ‘‘reverse order’’ in the instruction
itself:

[3A] lowaddr [high addr |

All the working registers may also be loaded with any specified eight-bit
value, or “‘literal,’” contained in the second byte of the instruction (this
1s called immediate addressing). An example is:

LD E, 12H

which loads register E with the value 12 hexadecimal.
In the memory, the instruction appears as:

PC. IE {opcode)
PC + I:12 (literal operand)

159

PROGRAMMING THE Z80

As a result of this instruction, the immediate operand, or literal value
will be contained in register E.

The indexed addressing mode is also available for loading register
contents, and will be fully described in the next chapter on addressing
techniques. Other muscellaneous possibilities exist for loading specific
registers, and a table listing all the possibilities is shown in Figure 4.2
(tables supplied by Zilog, Inc.). The grey areas show instructions
common with the 80BOA.

JOURCE
!Et
REG INDIAEET PoEXEs favon e
L Hu] mel | o) ||l--i||v --ll (mnt a
T - T PosE oo | o [[d4 | %
ol wm @] e | |s -
M o I d -
oo | fo
o | .. W “ o
: 4 4 .
. oo [ro
L - 4€ € o
L -4 »
- - op | 70
RECIITIR o - “~ sli L]
. " . [
oo | ro -
wmI M 5K 3K uw
o -1 L)
- oo | fo
e [] “] -
- o 1 u
1" I oo | fo
M- [3 iE =
. - o 4]
g » »
3 -
HELL
g| womeer
] 4
oo | oo co| eo| oo [oo | oo ““
L n o " b d n " i M
* ¢ L] d Ll d - Y
to 0 | ro fa 0 o o o
Y ol 3 w | n n | n " n Id
o o i o al L] 1 al
ERY. ADOR | [nad [y
ik
] ©0
at
waryisn
L] 0w
It

Fig. 4.2: Eight-Bit Load Group—‘LD’

16-Bit Data Transfers

Basically, any of the [6-bit register pairs, BC, DE, HL, SP, IX, 1Y,
may be loaded with a literal [6-bit operand, or from a specified
memory address (extended addressing), or from the top of the stack,
Le., from the address contained in SP. Conversely, the contents of these

160

THE Z80 INSTRUCTION SET

register pairs may be stored in the same manner at a specified memory
address or on top of the stack. Additionally, the SP register may be
loaded from HL, IX, and IY. This facilitates creating muitipie stacks.
The register pair AF may also be pushed on top of the stack.

The table listing all the possibilities is shown in Figure 4.3. The stack
push and pop operations are included as parts of the 16-bit data
transfers. All stack operations transfer the contents of a register pair to
or from the stack. Note that there are no singie push and pop instruc-
tions for saving individual eight-bit registers.

SOURCE
. | exT. | Rea,
AEDISTER EXT. | ADDR.|INDIR,
AF | Bc | DE | M. | = [w | m tnn) | tsm
AF
~ot.| ED
LT I
ec L n
Ly "
| ED
A | oE el 3
5 miv] n
; HL s
CESTINATION | ¢ :
: B2
Al oo | 0 | AW
F9 Fg | um:
i n
DD | OO
" 7 74 | oo
n n E1
n 1]
FO | FD
v 2 4 |
n n E1
n n
ED | 0D | FO
EXT. 73| 2 22
aoce | '™ n n
n n
PusH rea. | ism | oo | fo
INSTRUCTIONS ™™ { |np, S ES
NOTE: Yhe Push & Pop Instructions adjust *
the 3P efter svery exscution

POF
INSTRUCTIONS
Fig. 4.3: 16-Bit Load Group—‘LD’, 'PUSH’ and ‘POP’

A double-byte push or pop is always executed on a register pair: AF,
BC, DE, HL, 1X, IY (see the bottom row and right-most column in
Figure: 4.3).

When operating on AF, BC, DE, HL, a single-byte 1s required for the
instruction, resulting in good efficiency. For example, assume that the

161

PROGRAMMING THE Z80

stack pointer SP contains the value ‘*0100"'. The foilowing 1nstruc-
tion is executed:

PUSH AF

When pushing the contents of the register pair on the stack, the stack
pointer SP is first decremented, then the contents of register A are de-
posited on top of the stack. Then the SP 1s decremented again, and the
contents of F are deposited on the stack. At the end of the stack trans-
fer, SP points to the top element of the stack, which 1n our example
1s the value of F.

It 1s important to remember that, in the case of the Z80, the SP
points to the top of the stack and the SP 1s decremented whenever a
register pair is pushed. Other conventions are often used in other pro-
cessors, and this may be a source of confuston.

IMPLIED ADDRESSING
A |BC.DE&HL | HL | ix v
AF | o
BC.
o be
IMPLIED)
HL
DE E8
REG. | (5P} B3 | oo | fo
INDIR. E3 E3

Fig. 4.4: Exchanges 'EX’ and ‘'EXX’

Exchange Instructions

Additionally, a specialized mnemonic EX has been reserved for ex-
change operations. EX is not a simple data transfer, but a dual data
transfer. It actually changes the contents of fwo specified locations. EX

162

THE Z80 INSTRUCTION SET

may be used to exchange the top of the stack with HL, IX, 1Y and also
to swap the contents of DE and HL and AF and AF' (remember that
AF’ stands for the other AF register pair availabie in the Z80).
Finally, a special EXX instruction is available to exchange the con-
tents of BC, DE, HL with the contents of the corresponding registers in
the second register bank of the Z80.
The possible exchanges are summarized 1n Figure 4.4,

SOURCE
REG.
INDIR.
(HL}
ED ‘LDV — Load (DE}=—{HL}
AD Inc HL & DE, Dec BC
ED 'LDIR,' — Load (DE}-s—(HL)
REG BO Inc HL & DE, Dec BC. Repeat until BC = 0
DESTINATION INDI'R. (DE}
ED ‘LDD" — Load (DE)-e—[HL}
AB Dec HL & DE. Dec 8C
ED 'LDDR’ - Load (DE}w—(HL)
BB Dec HL & DE, Dec BC, Ropeatuntil BC= 0

Reg HL pomnts to source
Aeg DE pornts 1o destination
Reg BC 13 byte counter

Fig. 4.5: Block Transfer Group

Block Transfer Instructions

Block transfer instructions are nstructions which will result in the
transfer of a block of data rather than a single or double byte. Block
transfer instructions are more complex for the manufacturer to imple-
ment than most instructions and are usually not provided on micropro-
cessors. They are convenient for programming, and may improve the

163

PROGRAMMING THE ZB0

performance of a program, especially during input/output operation,
Their use and advantages will be demonstrated throughout this book.
Some automatic block transfer instructions are available in the case of
the Z80. They use specific conventions.

All block transfer instructions require the use of three pairs of
registers: BC, DE, HL:

BC 1s used as a 16-bit counter. This means that up to 2'* = 64K bytes
may be moved automatically. HL 1s used as the source pointer. It may
point anywhere in the memory. DE is used as the destination pointer
and may poimi anywhere in the memory.

Four block transfer instructions are provided:
LDD, LDDR, LDI, LDIR

All of them decrement the counter register BC with each transfer. Two
of them decrement the pointer registers DE and HL, LDD and LDDR,
while the two others iacrement DE and HL, LDI and LDIR. For each
of these two groups of imstructions, the letter R at the end of the
maemonic 1ndicates an automatic repeat. Let us examine these instruc-
tions.

LDI stands for ‘*load and increment."” It transfers one byte from the
memory location pointed to by H and L to the destination in the
memory pointed to by D and E. It also decrements BC. It will automati-
cally increment H and L and D and E so that all register pairs are pro-
perly conditioned to perform the next byte transfer whenever required.

LDIR stands for ‘“‘load increment and repeat,” i.e., execute LDI
repeatedly until the counter registers BC reach the value **0°”, It is used
to move a continuous block of data automatically from one memory
area to another,

LDD and LDDR operate in the same way except that the address
pointer 1s decrenmented rather than incremented. The transfer therefore
starts at the /fughest address in the block instead of the lowest. The ef-
fect of the four instructions is summarized in Figure 4.5.

Similar automated instructions are available for CP (compare) and
are summarized 1n Figure 4.6,

Data Processing Instructions

Arithmetic

Two main arithmetic operations are provided: addition and subtrac-
tion. They have been used extensively in the previous chapter, There are
two types of addition, with and without ¢arry, ADC and ADD respec-

164

THE Z80 INSTRUCTION SET

SEARCH
LOCATION
REG.
INDIR.
{HL}
ED ‘cPr
Al Inc HL. Dec BC
ED ‘CPIR’, inc HL. Dec BC
81 repeat until 8C = 0 o1 find match
ED iyt HL
a9 Ch0° Dec & BC
oD '‘CPDR’ D HL & BC
B2 Ruprat until BC = 0 o4 find maiwch

HL pusnts te iacation in memary
to be compared with accumulzior
conients

BC is Lyle counter

Fig. 4.6: Block Search Group

tively. Similarly, two types of subtraction are provided with and
without carry. They are SBC and SUB.

Additionally, three special instructions are provided: DAA, CPL,
and NEG. The Decimal Adjust Accumulator instruction DAA has been
used to implement BCD operations. [t 1s normally used for each BCD
add or subtract, Two complementation instructions also are available.
CPL will compute the one's complement of the accumulator, and NEG
will negate the accumulator into its complement format{two's comple-
ment),

All the previous instructions operate on eight-bit data. 16-bit opera-
tions are more restricted. ADD, ADC, and SBC are available on
specific registers, as described in Figure 4.8,

Finally, increment and decrement instructions are available which
operate on all the registers. both in an eight-bit and a [6-bit format.
They are listed in Figure 4.7 (eight-bit operations) and 4.8 (16-bit opera-
tions).

165

PROGRAMMING THE Z80

SOURCE
REG.
REGISTER ADDRESSING INDIR.| INOEXED |IMMED.
&] < E L (HL) | UX+d) | tYed} [o
- | bD FO
‘ADD’ ”] 4] ” L.} . | 0s 85 84 [~]
d [n
DD FD
ADD w CARRY | OF] [] [1]]] 1 g€ 13 e
‘ADC’ d d »
1 DD FD
SUBTRACT n | .o 9 R | s | 9 9 D&
‘sus’ R IR R d d n.
. DD FD
SUBw CARRY | 9P | O] M| 8 9O | 9B |9E SE DE
‘SBC' .- d d [
. . DD FD
*AND’ AT AS Al | A2 | A AS | AB . | A8 AB 8
. d d »
: oD FD
‘XOR° AF AB A | AA AB AD | AE | AE AE EE
o . d d]
co e - DD | FD X
‘OR’ " []) [-] [N B5 | B8 86 BE Fe
d d n
v T o) .. {DD FD RIERv
COMPARE . as mn BA] BD | BE :13 :13 FE .
R d . d d N
’ . B O DD FD
INCREMEN T x o oc " 1 x | » H 34
Ne . Lt N B d
* | oo FD
DECREMENT » o] 35 35
DEC d d

Fig. 4.7;: Eight-Bit Arithmetic and Logic

Note that, 1n general, all arithmetic operations modify some of the
flags. Therr effect is fully described in the instruction descriptions later
in this chapter. However, it is important to note that the INC and DEC
instructions which operate on register pairs do not modify any of the flags.

This detail 1s important to keep 1in mind. This means that if you incre-
ment or decrement one of the register pairs to the value “0Q"', the Z-bit
1n the flags register F wiil not be set. The value of the register must be

explicitly tested for the value ‘0"’ in the program.

Also, it is important to remember that the instructions ADC and SBC

always affect all the flags. This does not mean that all the flags will
necessarily be different after their execution. However, they might.

166

THE Z80 INSTRUCTION SET

SOURCE
Bc | DE [WL | sp IX Iy
HL | oo 19 29 39
5 | ‘a0D’ 1X oo { oo oD | DD
= 09 19 » 29
<
=
= 37 FO | FD FD FD
o 09 19 a9 29
Q
ADDWITHCARRY AND | HL | E0 | €D | ED | ED
SET FLAGS ‘ADC' sa | 5a | BA | 7A
SUBWITHCARRYAND | HL | ED | ED | ED | ED
SET FLAGS ‘SBC’ 42 52 62 72
INCAEMENT “INC’ 03 13 zn | n DD FD
23 23
DECREMENT ‘DEC’ 0B 1B 28 | 38 | DD FO
28 28
Fig. 4.8: Sixteen-Bit Arithmetic and Logic
Logical

Three logical operations are provided: AND, OR (inclusive) and
XOR (exclusive), plus a comparison instruction CP. They all operale
exclusively on eight-bit data. Let us examine them in turn. (A table list-
ing all the possibilities and operation codes for these instructions is part
of Figure 4.7.)

AND

Each logical operation is characterized by a fruth table. which ex-
presses the logical value of the result in function of the inputs. The
truth table for AND appears below:

167

PROGRAMMING THE Z80

0AND O =0 AND | © 1
OAND] =0

1ANDO =0 o | O 0 0
1ANDI = | 1 0 1

The AND operation is characterized by the fact that the output is
‘“1" only if both inputs are “*1°". In other words, if one of the inputs 1s
“0*', it is guaranteed that the result is *‘0’’. This feature is used to zero
a bit position in 2 word. This is called *‘masking."’

One of the important uses of the AND instruction 1s to clear or
““mask out’’ one or more specified bit positions in a word. Assume for
example that we want to zero the right-most four-bit positions tn a
word. This will be performed by the following program:

LD A, WORD WORD CONTAINS ‘10101010’
AND 11110000B ‘11110000" IS MASK

Let us assume that WORD is equal to ‘10101010°. The result of this
program is to leave the value ‘10100000’ in the accumulator. *B" is
used to indicate a binary value. .

Exercise 4.1; Write a three-line program which will zero bits I and 6 of
WORD.

Exercise 4.2: What happens with a MASK = *11111111"?
OR

This tnstruction is the inclusive OR operation. 1t is characterized by
the following truth tabie:

0ORO =0 orR [¢ |
OOR1 = |
10RO =1 ¥ 0 0 l

The logical OR is characterized by the fact that if one of the operands
is *“1"*, then the result is always *“1''. The obvious use of OR is to set
any bit in a word to ‘1",

Let us set the right-most four bits of WORD to I’s. The program is:

LD A, WORD
OR A, 00001111B

168

THE Z80 INSTRUCTION SET

Let us assume that WORD did contain ‘10101010’. The final vaiue of
the accumulator will be ‘10101111°.

Exercise 4.3: What would happen if we were to use the instruction
OR 10101111 B?

Exercise 4.4: What 15 the effect of ORing with *‘FF’" hexadecimal?
XOR

XOR stands for ‘‘exclusive OR."" The exclusive OR differs from the
inclusive OR that we have just described in one respect: the result is
“1"" only if one, and only one, of the operands is equal to *“I’*. If both
operands are equal to *‘1'’, the normal OR would give a “‘1" result.
The exclusive OR gives a *‘0’’ result. The truth table is:

0 XOR 0 =0 xor] o | 1
OXOR I = |

IXOR0=1 2 | @ O
1XORI =0 L | 1] o

The exclusive OR is used for comparisons. If any bit 1s different, the
exclusive OR of two words will be non-zero. In addition, in the case of
the Z80, the exclusive OR may be used to complement a word, since
there is no complement instruction on anything but the accumulator.
This is done by performing the XOR of a word with all ones. The pro-
gram appears below:

LD r, WORD
XOR, 11111111 B
LDrt, A

where ‘“r”’ designates the register.

Let us assume that WORD contained ‘*10101010°°. The final value of
the register will be ““01010101"", You can verify that this is the comple-
ment of the original vaiue.

XOR can be used to advantage as a **bit toggle.”’

Exercise 4.5: What 1s the effect of XOR using a register with **00"’ hex-
adecimal?

Skew Operations (Shift and Rotate)

Let us first differentiate between the shift and the rotate operations,
which are illustrated in Figure 4.9. In a shift operation, the contents of

169

PROGRAMMING THE 280

the register are shifted to the left or to the right by one bit position. The
bit which falls out of the register goes into the carry bit C, and the bt
which comes in 15 zero. This was explained in the previous section.

SHIET LEFT

OO NORARARIA = =

(CARRY

ROTATE LEFT

F e W N P
I

\ = o)

| -

Fig. 4.9: Shift and Rotate

One exception exists: 1t 15 the shift-right-arithmetic. When perform-
ing operations on negative numbers tn the two’s complement format,
the left-most bit 1s the sign bit. In the case of negative numbers 1t 1s
1", When dividing a negative number by 2’ by shifting 1t to the
right, it should remain negative, i.e., the left-most bit should remain a
“1'". This 1s performed automatically by the SRA 1nstruction or Shift
Right Arithmetic. In this arithmetic shift right, the bit which comes in
on the left 1s identical 1o the sign bit. [tis “'0"" if the left-most bit was a
“0", and “‘1"" if the left-most bit was a *‘1"’. This 1s illustrated on the
right of Figure 4.10, which shows all the possibie shift and rotate opera-
tions.

Rotations

A rotation differs from a shift by the fact that the bit coming into the
register is the one which will fall from either the other end of the
register or the carry bit. Two types of rotations are supplied in the case
of the Z80: an eight-bit rotation and a nine-bit rotation.

The nine-bit rotation is illustrated in Figure 4.11. For example, in the
case Of a right rotation, the eight bits of the register are shifted right by
one bit position. The bit which falls off the night part of the register
goes, as usual, into the carry bit, At this time the bit which comes in on
the left end of the register 1s the previous value of the carry bit (before it
is overwritten with the bat falling out.) In mathematics this is called a
nine-bit rotation since the eight bits of the register plus the mnth bit (the

170

THE Z80 INSTRUCTION SET

carry bit) are rotated to the right by one bit position. Conversely, the
{eft rotation accomplishes the same result in the opposite direction.

¥
f

s | s}l e|ofc ' [CYR LR LA - =] l.,_ ... —
s
lelalslalalalale [TlE] [mta
wflw|lolae|so|w|s|= A —
ll. : gy L a
.
W (-] (1] o h (<] o o i 2] £ L4 L J
- - - o L] .3 L Ll -
1 1 Srome
=] Iy
wdelwlalals=lalals 8] (=«
wo|ou " i " & | o |4 -
T -
o AORBREBEHE I ORE =
-yinH i e
B H3
SRR EEEEEELE B
L Ad I A i [} kAl i1 b bl) 1 ? et —
%)5
TSy
valalao|lo|lolea]al c|ou|o|d -—
R AR A AR R A b O L= =
R | ro
el a0 | x| o e |ea]ea]| e | BB S
ll » " i b = o u) "
Wl O =1 %
R 1% "w

v 1 L]
w R R I ROV ORI L i
e b e]

Fig. 4.10: Rotates and Shifts

7 REGISTER 0 C
RIGHT {1 * - '_]
7 REGISTER 1] C
|
LEFT |—1] ‘"I
L

Fig. 4.11: Nine-Bit Rotation

The eight-bit rotation operates in a similar way. Bit 0 is copied into
bit seven, or else bit seven 1s copted into bit 0, depending on the direc-
tion of the rotation. In addition, the bit coming out of the register is
also copied in the carry bit. This 1s illustrated by Figure 4.12.

C
P g
RIGHT

LE

Fig. 4.12: Eight-Bit Rotation

171

PROGRAMMING THE Z80

Special Digit Instructions

Two special digit-rotate instructions are provided to facilitate BCD
arithmetic. The result is a four-bit rotation between two digits con-
tained in the memory location pointed to by the HL registers and one
digit in the lower half of the accumulator. Ths 1s illustrated by Figure

4.13,

MEMORY

RIGHT; x L - (e

H ADDRESS - Sl o

MEMORY

LEFT: @ Q@@=
[

Fig. 4.13: Digit Rotate Instructions (Rotate Decimal)

Bit Manipulation

It has been shown above how the logical operations may be used to
set or reset bits or groups of bits in specific registers, However, it is con-
venient to set or reset any bit tn any register or memory location with a
single instruction. This facility requires a considerable number of op-
codes and is therefore usually not provided on most microprocessors.
However, the ZB0 is equipped with extensive bit-manipulation
facilities. They are shown in Figure 4.14. This table also includes the
test instructions which will be described only in the next section.

, Two special instructions are also available for operating on the carry
flag. They are CCF (Complement Carry Flag) and SCF (Set Carry
Flag). They are shown in Figure 4.15.

Test and Jump

Since testing operations rely heavily on the use of the flags register.
we will here describe in detail the role of each of the flags. The contents
of the flags register appear in Figure 4.16.

172

ryeay

08228 08|28 mm...%m.“._m?u I i

CBo3 maan_mmnu_muun

INDEXED
LX)

bt - ot B mauu—mmuu_mueu 2308 maau_muau 28+3

880285 -%(58 8|28 .4 (88 - £|EB % mm.u_m?u_m?u 85+2/38.8(66-5(89- _wu.u 53.2|28:4[88 .2

REG,
1NOIN,
HL]

e 2w | B [Bu |88 |69 (82|08 |B% (8% |Bx |8« |B82|82|35 (8% |86 35|88 82|82 82| 82

THE Z80 INSTRUCTION SET

1

Be |Be |BulB2 |33|83 |B2 |82 |B8|Be | 8% |88 |82 |32 |85 (B2 |8s| 28|88 538|8z|88) 8¢

B3 By |Bx| 8w |Bz|ew 8= |32 [Ba|6e |85 |8y |83 |BY |82 (88) B5|BE| 63| 68| 82| B B2

gz | B2 |82 |52 83838 |(8r (6% |Bo|8% |85 (8% | B2 |B8% |32 (B8R | 80| B3| B3| 63| 32| 82| 8T

By |Be|8n|8s |8z B2 B | 8o |85 |2x |88 |82 |63 |6 83| Bo| 53|65 | 85| 82| B3| 8T

REGISTER ADDRESSING

8 |8g|2z|82 |2z |88 |8-|Be |58 |06z |88|8c |82 |8z |82) 85| 30| 85] 32 85| 88| B2

Be|Be |9% |22 |89 |58 |ee|Be |22 |58 (Ba |88 |82 |82 |82 82| B8 88)B8) 85| 8% B 82

L 114

173

Group

10n

Bit Manipulati

-
.

Fig. 4.14

TEST

T
RES'
SET
ar
SET"

PROGRAMMING THE Z80

Beaimal Adjust Ace, ‘DAA’ 27
Complement Acc, 'CPL’ 2F
Negate Acc, "NEG” ED
12's complement) 44

Complement Carry Flag, "CCF’ 3F

Set Carry Flag, 'SCF* 37

Fig. 4.15: General-Purpose AF Operations

7 & 5 4 3 2 | [¢]
5 Z — H — | Prv N C
m m M m

Fig. 4.16: The Flags Register

C 1s the carry, N is add or subtract, P/V is parity or overflow. H is half
carry, Z 1s zero, S 1s sign. Bits 3 and 5 of the flags register are not used
(*“=""). The two flags H and N are used for BCD arithmetic and cannot
be tested. The other four flags (C, P/V, Z, S) can be tested in conjunc-
tion with conditional jump or call instructions.

The role of each flag will now be described.

Carry (C)

In the case of nearly all microprocessors, and of the Z80 in par-
ticular, the carry bit assumes a dual role. First, it is used to indicate
whether an addition or subtraction operation has resulted in a carry (or
borrow}. Secondly, it is used as a ninth bit in the case of shift and rotate
operauons. Using a single bit to perform both roles facilitates some
operations, such as a multiplication operation. This should be clear
from the explanation of the multiplication which has been presented in
the previous chapter,

174

THE Z80 INSTRUCTION SET

When learning to use the carry bit, it is important to remember that
all arithmetic operations will either set it or reset it, depending on the
result of the instructions. Similarly, all shift and rotation operations use
the carry bit and will either set it or reset it, depending on the value of
the bit which comes out of the register.

In the case of logical instructions (AND, OR, XOR}, the carry bit
will always be reset. They may be used to zero the carry explicitly.

Instructions which affect the carry bit are: ADD A,s; ADC A,s:
SUBs; SBC A,s; CP s; NEG; AND s; OR s;: XOR s; ADD DD,ss; ADC
HL,ss; SBC HL,ss; RLA; RLCA; RRA; RRCA; RL m; RLC m; RR m;
RRC m; SLA m; SRA m: SRL m; DDA; SCF; CCF; NEGs:

Subiract (N)

This flag is normally not used by the programmer, and 15 used by the
Z80 itself during BCD operations. The reader will remember from the
previous chapter that, following a BCD add or subtract, a DAA
(Decimal Adjust Accumulator) instruction is executed to obtain the
valid BCD results. However, the “*adjustment’’ operation is different
after an addition and after a subtraction. The DAA thercfore executes
differently depending on the value of the N flag. The N flag is set to
*Q" after an addition and is set to a **1’" after a subtraction.

The symbol used for this flag, “*N*', may be confusing to program-
mers who have used other processors, since it may be mistaken for the
sign bit, It is an internal operation sign bit.

N is set to '0"" by: ADD A,s: ADC A,s:ANDs;ORs: XORs; INCs;
ADD DD,ss; ADC HL,ss; RLA: RLCA; RRA; RRCA; RL m; RLCm;
RR m; RRC m; SLA m; SRA m; SRL m; RLD; RRD; SCF: CCF; IN1,
(C); LDI; LDD; LDIR; LDDR; LD A, I; LD A, R; BIT b, s.

Nissetto “‘1"" by: SUBs; SBC As; CP 5; NEG; DEC m; SBC HL, ss:
CPL; INIL; IND; OUTE; OUTD: INIR; INDR: OTIR: OTDR; CPl:
CPIR; CPD: CPDR.

Parity/Overflow (P/V)
" The parity/overflow flag performs two different functions. Specific
instructions will set or reset this flag depending on the parity of the
result; parity is determined by counting the total number of ones in the
result. If this number is odd, the parity bit will be set to *“0** {odd pari-
ty). If it 15 even, the parity bit will be set to ‘1"’ (even parity). Parity is
most frequently used on blocks of characters (usually in the ASCI!I for-
mat). The parity bit is an additional bit which is added to the seven-but
code representing the character, in order to verify the integrity of data
which has been stored in a memory device. For example, if one bit in
the code representing the character has been changed by accident, due

175

PROGRAMMING THE 280

to a malfunction in the memory device (such as a disk or RAM
memory), or during transmission, then the total number of ones in the
seven-bit code will have been changed. By checking the parity bit, the
discrepancy will be detected, and an error will be flagged. In particular,
the flag 15 used with logical and rotate instructions. Also, naturally,
during an input operation from an 170 device, the parity flag will in-
dicate the parity of the data being read.

For the reader familiar with the Intel 8080, note that the parity flag in
the 8080 is used exclusively as such. 1n the case of the Z80, 1t is used for
several additional functions. This flag should therefore be handled with
care when going from one of the microprocessors to the other.

In the case of the Z80, the second essential use of this flag 1s as an
overflow flag (not available in the 8080). The overflow flag has been de-
scribed in Chapter 1, when the two's complement notation was 1ntro-
duced. 1t detects the fact that, during an addition or subtraction, the
sign of the result is“‘accidentally’’changed due to the overflow of the
result into the sign bit. (Recall that, using an eight-bit representation,
the largest positive number s + 127, and the smallest negative number
is —128 in two’s complement.)

Finally, this bit is also used, in the case of the Z80, for two unrelated
functions,

During the block transfer instructions (LDD, LDDR, LDI, LDIR),
and during the search instructions (CPD, CPDR, CPl, CPIR), this flag
is used to detect whether the counter register B has attained the value
0", With decrementing wnstructions, this flag is reset to ““0** if the
byte counter register pair is ‘0*’, When incrementing, it is reset if BC —
I = Oat the beginning of the instruction, i.e., if BC will be decremented
to **0” by the instruction.

Finally, when executing the two special instructions LD A,1 and LD
A.R, the P/V flag reflects the value of the interrupt enable flip-flop
(1FF2). This feature can be used to preserve or test this value.

The P flag is affected by: AND s; OR s; XOR 5; RL m; RLC m; RR m;
RRC m; SLA m; SRA m; SRL m; RLD; RRD; DAA; INr,(C).

The V flag 1s affected by: ADD A.s; ADC A s;SUBs; SBCA5:CPs:
NEG:; INCs; DEC m: ADC HL ss; SBC HL,ss.

It 1s aiso used by: LDIR; LDDR (set to “‘0’"); LDI; LDD; CPI:
CPIR: CPD; CPDR.

The Half-Carry Flag (H)
The half-carry flag indicates a possible carry from bit 3 into bit 4 dur-

Ing an arithmetic operation. In other words, it represents the carry from

176

THE Z80 INSTRUCTION SET

the low-order nibble (group of 4 bits) into the high order one. Clearly, it
1s primarily used for BCD operations. in particular, it 1s used internally
within the microprocessor by the Decimal Adjust Accumulator (DAA)
instruction in order to adjust the result to its correct value,

This flag will be set during an addition when there is a carry from bit
3 to bit 4 and reset when there is no carry. Conversely, during a subtract
operation, it will be set if there 1s a borrow from bit 4 to bit 3, and reset
if there 1s no borrow.

The flag will be conditioned by addition, subtraction, mncrement,
decrement, comparisons, and logical operations.

Instructions which affect the H bit are: ADD A.r ; ADD A,s; SUBs;
SBC A.s; CP s; NEG; AND s; OR s; XOR s; INC s; DEC m; RLA;
RLCA; RRA; RRCA; RL m;: RLC m; RR m; RRC m; SLAm; SR m;
SRL m; RLD; RRD; DAA; CPL, SCF; INT.(C}; LDI; LLD; LDIR;
LDDR; LD A: LD A,r; BIT b,r.

Note that the H bit is randomly affected by the 16-bit add and sub-
tract instructions, and by block input and output instructions.

Zero (Z)

The Z flag is used to tndicate whether the value of a byte which has
been computed, or is being transferred, is zero. it s also used with com-
parison instructions to indicate a match, and for other miscellaneous
functions.

In the case of an operation resulting in a zero result, or of a data
transfer, the Z bit is set to **1'* whenever the byte 15 zero. Z is reset to
‘0" otherwise,

In the case of comparison instructions, the Z bit is set to **1'" when-
ever the comparison succeeds and to *'0"’ otherwise.

Additionally,in the case of the Z80, 1t is used for three more funcijons:
it is used with the BIT instruction to indicate the value of a bit being
tested, It is set to **1”* if the specified bit is *'0"* and reset otherwise.

With the spectal “‘block input-output instructions'' (IN1, IND,
QUTI, QUTD), the Z flag is set if D — 1 = 0, and reset otherwise; it is
set if the byte counter will decrement to *‘0’* (INIR, INDR, OTIR,
OTDR).

Finally, with the special instructions [N r,(C), the Z flag is set to
to indicate that the input byte has the value “*0*".

In summary, the following instructions condition the value of the Z
bit: ADD A.s; ADCA,s;SUB s; SBC A,s; CP s; NEG; AND s; OR s;
XOR s; INC s; DEC m; ADC HL, ss; SBC HL,ss; RL m; RLC m;

I‘I“

1m

PROGRAMMING THE Z80

RR m; RRC m: SLA m; SRA m; SRL m: RLD; RRD: DAA; IN r,(C);
INI; IND; QUTIL; OUTD:; INIR; INDR: OTIR; OTDR; CPIL: CPIR;
CPD; CPDR: LD A, [; LD A, R; BITb,s; NEGs.

Usual instructions which do not affect the Z bit are: ADD DD, ss;
RLA; RLCA; RRA; RRCA; CPL; SCF; CCF; LDL LDD; LDIR;
LDDR: INC DD; DEC DD.

Sign (S)

This flag reflects the value of the most significant bit of a result or of
a byte being transferred (bit seven). In two’s compiement notation, the
most significant bit is used to represent the sign. *‘0’’ indicates a posi-
tive number and a ‘1"’ indicates a negative number. As a result, bit
seven is called the sign bit,

In the case of most microprocessors, the sign bit plays an important
role when communicating with input/output devices. Most micropro-
cessors are not equipped with a BIT instruction for testing the contents
of any bits in a register or the memory. As a result, the sign bit 1s usual-
ly the most convenient bit to test. When examining the status of an in-
put/output device, reading the status register will automatically condi-
tion the sign bit, which will be set to the value of bit seven of the status
register. It can then be tested conveniently by the program. This 15 why
the status register of most input/output chips connected to micropro-
cessor systems have their most important indicator (usually ready/not
ready) in bit position seven.

A special BIT instruction is provided in the case of the ZB80.
However, in order to test a memory location {which may be the address
of an I/0Q status register), the address must first be loaded into registers
IX, IY or HL. There is no bit instruction provided to test a specified
memory address directly (i.e., no direct addressing mode for this in-
struction), The value of positioning an wmput/output ready flag in bit
position seven, therefore, remains intact, even in the case of the Z80.

Finally, the sign flag is used by the special instruction IN, (C) to in-
dicate the sign of the data being read.

Instructions which affect the sign bit are; ADD A.s; SUB s: SBC A.s:
CP s; NEG; AND s; OR s; XOR s; INC s; DEC m; ADC HL, ss; SBC
HL, ss: RLm; RLC m; RRm; RRCm;SLA m; SRA m; SRLm; RLD:
RRD; DAA; IN r,(C); CPR; CPIR: CPD; CPDR: LD A.I; LDA.1;
NEG.

178

THE Z80 INSTRUCTION SET

Sunimary of the Flags

The flag bits are used to automatically detect special conditions with-
in the ALU of the microprocessor. They can be conveniently tested by
spectalized instructions, so that specific action can be taken in response
to the condition detected. It is important to understand the role of the
various indicators available, since most decisions taken within the pro-
gram will be taken in function of these flag bits. All jumps executed
within & program will jump to specified tocations depending on the
status of these flags. The oniy exception involves the interrupt
mechanism, which will be described in the chapter on input/output and
may cause jumping to specific locations whenever a hardware signal is
received on specialized pins of the Z80.

At this point, it is onty necessary to remember the main function of
each of these bits. When programming, the reader can refer to the de-
scription of the instruction later in this chapter to verify the effect of
every instruction of the various flags. Most flags can be ignored most of
the time. and the reader who is not yet familiar with them should not
feel intimidated by their apparent complexity. Their use will become
clearer as we examine more application programs.

A summary of the six flags and the way they are set or reset by the
various instructions is shown in Figure 4.17.

The Jump Instructions

A branch instruction is an instruction which causes a forced bran-
ching to a specified program address. It changes the normal flow of
execution of the program from a sequential mode into one where a dif-
ferent segment of the program is suddenly executed. Jumps may be
conditional or unconditional. An unconditional jump is one in which
the branching occurs to & specific address. regardless of any other con-
dition.

A conditional jump is one which occurs to a specific address only if
one or more conditions are met. This is the type of jump instruction
used to make decisions based upon data or computed results.

In order to explain the conditional jump instructions, it is necessary
to understand the role of the flags register, since all branching decisions
are based upon these flags. This was the purpose of the preceding sec-
tion. We can now examine tn more detail the jump instructions pro-
vided by the Z80.

Two matn types of jump instructions are provided: jump instructions
within the main program (they are called *‘jumps’), and the special

179

PROGRAMMING THE Z80

180

INSTRUCTION c|z(%|s|nin COMMENTS
ADD A, 3: ADC A g tlifwvwii]og-: 8-ty addd or edd wath cacry
SUB ¢; SBC A, 5. CP 1, NEG L]t [8- btract. subtract wikh
compate and
negate sccumulator
AND o|l:lPp|:}foO] Logica! opergtrons
OR «; XDR 1 ol:{P|[:]Of0O And ety il lerent Hag
INC s sl (v]af- 8-bit inceement
OECm sl (V)] BB decrement
ADDDD. o HEELELEEL R 16-tut add
ADCHL. n ilijv]r|o]x 16-bit add weth chrry
SBC HL. s H BN A B R 16-tut tubgract with cairy
ALA; ALCA. RRA. RRCA {|le]o |®ojOD]|0O Rotate sccumulitor
ALmALCm:ARm:AACm} | S|P |:|B|O Rotaie and thilt Incation m
SLA m; SRAmM;SAL M
ALG. RRD el |P|i|B]|O Rotaie digt laft and right
Daa AR LB EEE Decimat adjEr sccumulator
cPL sje | o] I Cemplemant sccumulafor
SCF ile|o|e[alo Set carey
CCF {[o|e [} 0] X Complamant carry
(LR] sl (P []O}O Ingus regustar indiract
INS: IND; DUTI: OUTD o [xIx]|]|x I Block input gnd aufput
INJA:INDR: DTIR: OTDR el X Ix]i]|x Z+0, B +0othcrwesal s i
LWDi. DD e|X|: |X]O|0 } Black tranglés cnttructiont
LD'R, LDDR s|lx}f0|x]o]o P/ = i1 BC 7 0. otherwite
PV
CP{.CPIR. CPD. CPOR . 13 B R Black search (ntiructions
T idAnIHL),
otherwne Z =0
Prv s r1BC 2 0,
ofheswits PiV + 0
WDau1l0a R - FFj: Jo o Tha content ol thé inlerrupt
enabda fhp-tlap (IFF) &
copimd into the P/V llag
BiThb 1 sl Ix2Ix)0] The complement of bt b af
locairon w tapied tnte the
NEG HEE A Z g
Negaie stcumulator
Tha follawing notation s wisd in this tebly:
SYMBOL OPERATION
[Carryflink Hag. Co1tf tha oparation produced a aarry from the MSB of the oparand ar result.
z Zuro flag. Z=1tf tha result ol Tha Qperktien if dvva,
s Sign fleg. $=1 «f tha M5B of 1 farult i one.
Piv Purity ar asarfiaw flag, Parsty {P) and averfiaw (V) shera the ume flag. Lopcal operations
attact thit Hag with the pansty of the reguls while anithmatic oparstions alfecs this Hag with
1 rilaw ol the rasult, if P/ holds pangy, P7V=10f the
PIVe0 ol rasutt o0 edd. | P/V halds avarfiew, FIV=1 il the result af the operatian produced
an ovsrifaw,
H Hall-carry flgg, M=1if the add at yubtract opurefion produced § carry tnte o Datiow from
bit af the sccumulstor.,
N Add/Subtract flag, N=1 f the p was & suly
M and N flags are usad in conjunctisn with the decimaf adjust nstruction [OAAL 10 property
eorract the rewlt inta packed BCO format fallewing addihian of subtraciion uging operands
weiih packed BCO lovmat,
H The 1leg r3 alfectad sccording o the tasult of the apatstinn.
- The flag 15 unchanged bry the oparation.
Q Ths flag (s raset bry the Operairen.
1 The Hag 11 s by the oparation.
x The tlsgive “don’s cars,”
v L4 RUTTL d q to the flaw rawult ol the oparatian.
[Prv tlag eftected according to ths pariy result of ihe oparetion.
' Any oneof thes CPU ragutene 4,8, C, D E. M. L.
] Any 3-bit [oatian for all the sddiressing modes atlawsd For 1he pariicular (nstrueiron,
" Any 16-bit locapon [of ¢ll the addresting modas glowed (or that tnstruction,
i Any sne of the two index regiten EX or Y.
A Ralrash countar,
n 8-tit vatus in renge <0, 255>
an 16-bat salua 1 renge < 0. 65515,
- Any B-kit location lor sll the sddiegerng maxded stfxved For the pavticular instruction.

Fig. 4.17; Summary of Flag OQperation

Courtesy af Zilog Inc

THE 280 INSTRUCTION SET

type of branch instructions used to jump to a subroutine and to return
from it (“*call’’ and *‘return’’). As a result of any jump instruction, the
program counter PC will be reloaded with a new address, and the usual
program execution will resume from this point on. The full power of
the various jump instructions can be understood only in the context of
the various addressing modes provided by the microprocessor. This
part of the discussion will be deferred uantil the next chapter, where the
addressing modes are discussed. We will only consider here the other
aspects of these instructions.

Jumps may be unconditional {branching to a specified memory ad-
dress) or else conditional. in the case of a conditional jump, one of four
flag bits may be tested. They are the Z, C, P/V, and S flags. Each of
them may be tested for the value **0" or *i"’.

The corresponding abbreviations are:

Z =zero(Z = 1)

NZ = nonzero (Z = 0)
C =carry (C =

NC= no carry (C =0)
PO = odd parity

PE = even parity
P = positive (8§ =
M = minus § = 1)

In addition, a special combination instruction is available in the Z80
which will decrement the B register and jump to a specified memory ad-
dress as long as it is not zero. This is a powerful instruction used to ter-
minate a [oop. and it has already been used several times in the previous
chapter: it is the DIJNZ instruction.

Similarly, the CALL and the RET (return} instructions may be condi-
tional or unconditional. They test the same flags as the branch instruc-
tion which we have aiready described.

The availability of conditional branches 1s a powerful resource in a
computer and is generally not provided on other eight-bit micropro-
cessors. It improves the efficiency of programs by implementing in a
single instruction what requires two instructions otherwise,

Finally, two special return instructions have been provided in the case
of interrupt routines. They are RETI and RETN. They will be described
in the section of Chapter 6 on interrupts.

The addressing modes and the opcodes for the various branches
available are shown n Figure 4.18.

181

PROGRAMMING THE 280

CONDITIDN
- NOM MON |PARITY | PAAITY | SION DGN 11
COND. | CARAY | CANRY| ZLAD RO |EVEN odp NEG ros 820
(=] Da 02 CA c2 EA E2 FA F2
Jump g IMMED, on n L] n n n n L a n
EXT. n n n n n n n n n
JUuMP R RELATIVE| PCoe 18 8 30 b}]
2 e2 e? e? -2
p—
Jume et [1%] 2]
Jums Pt REG.) DD
INDIR, E9
JUMP nyl FO
€9
[=1} oC D4 ct <] EC (1] fC F4
"CALL’ IMMED. na n n n n n n L] n n
ERT. n n n n» n n n n n
DECREMENT B,
JUMP IF NON AELATIVE | FCHs 10
2EAD 'DINT' el
RETURN AEGISTER | (SP) =] [+,] o0 | o =] (11 EQ (4] Fo
‘RET INDIR. skFetd
RETURN FRDM | REG, 157} ED
INT "RETI INDIA. Is*+1)| b
RETUAN FROM
NDN MASKABLE | REG. ISkl 3
INT RETN INDIR, (sPell | as

Fig. 4.18: Jump Instructions

A detailed discussion of the various addressing modes is presented
in Chapter 5.
By examining Figure 4.18, it becomes apparent that many ad-
dressing modes are restricted. For exampie, the absolute jump JPnn

can test four flags, while JR can only test two flags.

Note an important observation: JR tends to be used whenever
possible as it is shorter than JP (one less byte) and facilitates program
relocation. However, JR and JP are not interchangeable: JR cannot
test the parity or the sign flags.

182

THE Z80 INSTRUCTION SET

One more type of specialized branch is available; this is the restartor
RST instruction. It is a one-byte instruction which allows jumping to
any one of eight starting addresses at the low end of the memory. Its
starting addresses are, 1n decimal, O, 8, 16, 24, 32, 40, 48 and 56. Itisa
powerful instruction because it is implemented in a single byte. It pro-
vides a fast branch, and for this reason is used essentially to respond to
interrupts. However, it is also available to the programmer for other
uses. A summary of the opcodes for this instruction is shown in Figure
4.19.

or
CODE

‘AST O

'AST &'

‘RST 16"

‘AST 247

‘RST 32"

@woemmnQAUP rrpo

‘AST 40"

‘RST 48°

oa3s, | F¥ | ‘RsTSE’

H Indicates a hexldecimal number.

Fig. 4.19: Restart Group

Input/Output Instructions

Input/output techniques will be described in detail in Chapter 6.
Simply, input/ouiput devices may be addressed in two ways: as
memory locations, using any one of the instructions that have already

183

PROGRAMMING THE Z80

been described, or using specific input/output mnstructions. Usual
memory addressing instructions use three bytes: one byte for the op-
code and two bytes for the address. As a result, they are slow to ex-
ecute, since they require three memory accesses. The main purpose of
specialized input/output nstructions is to provide shorter and,
therefore faster, instructions. However, input/output instructions have
two disadvantages.

First, they ““waste’’ several of the precious few opcodes available
(since usually only 8 bits are used to supply all opcodes necessary for a
microprocessor). Secondly, they require the generation of one or more
specialized input/outpul signals, and therefore ‘‘waste’’ one or more of
the few pins available in the microprocessor. The number of pins 1s
usually limited to 40. Because of these possible disadvantages, specific
input/output instructions are not provided on most microprocessors.
They are, however, provided on the original 8080 (the first powerful
eight-bit general-purpose microprocessor introduced) and on the Z80,
which we know is compatible with the 8080.

The advantage of input/output instructions 1s to execute faster by re-
quiring only two bytes. However, a similar result can be obtained by
supplying a special addressing mode called ‘‘page 0’ addressing, where
the address is limited to a field of eight bits. This solution 1s often
chosen 1n other microprocessors.

The two basic input/output instructions are IN and OUT. They
transfer either the contents of the specified 1/0 locations into any of
the working registers or the contents of the register into the [/0 device.
They are naturally two bytes long. The first byte 15 reserved for the op-
code, the second byte of the instruction forms the low part of the ad-
dress. The accumulator 1s used to supply the upper part of the address.
1t is therefore possible to select one of the 64K devices. However, this
reguires that the accumulator be loaded with the appropriate contents
every time, and this may slow the execution.

In the register-tnput mode, whose format is IN r, (C), the register
pair B and C is used as a pointer to the 1/0 device. The contents of B
are placed on the high-order part of the address bus. The contents of
the specified 170 device are then loaded into the register designated by
r.

The same applies to the QUT instruction.

Additionally, the ZB) provides a register-indirect mode, plus four
specialized block-transfer instructions for input and output.

The four block-transfer instructions on input are: INI, INIR
(repeated INI), IND and INDR (repeated IND). Similariy, on cutput,

184

THE ZB0 INSTRUCTION SET

they are: OUTI, OTIR, OUTD, and OTDR.

In this automated block transfer, the register pair H and L is used as
a destination pointer. Register C is used as the 1/0 device selector (one
out of 256 devices). In the case of the output instruction, H and L point
to the source. Register B is used as a counter and c¢an be incremented
or decremented. The corresponding instructions on input are INI
when incrementing and IND when decrementing,

[N is an automated single.byte transfer. Register C seiects the input
device. A byte 1s read from the device and is transferred to the memory
address pointed to by H and L. H and L are then incremented by I, and
the counter B is decremented by |.

INIR 1s the same nstruction, automated. It is executed repeatedly
until the counter decrements to *‘0°’’. Thus, up to 256 bytes may be
transferred automatically. Note that to achieve a total transfer of exact-
ly 256, register B should be set to the value *‘0'’ prior to executing this
instruction. .

The opcodes for the input and output instructions are summarized in
Figures 4.20 and 4.21.

Control Instructions

Control instructions are instructions which modify the operating
mode of the CPU or manipulate its internal status information. Seven
such instructions are provided.

The NOP instruction i1s a no-operation instruction which does
nothing for one cycle. It is typically used either to introduce a deliberate
delay (4 states = 2 microseconds with a 2MHz clock), or to fill the gaps
created in a program during the debugging phase. In order to facilitate
program debugging, the opcode for the NOP is traditionally all @’s.
This 1s because, at execution time, the memory is often cleared, i.e., all
0's. Executing NOP’s is guaranteed to cause no damage and wili not
stop the program execution.

The HALT instruction 1s used in conjunction with interrupts or a
reset. It actually suspends the operation of the CPU. The CPU will then
resume operation whenever either an interrupt or a reset signal is re-
ceived. In this mode, the CPU keeps executing NOP's. A halt is often
placed at the end of programs during the debugging phase, as there 1s
usually nothing else to be done by the main program. The program
must then be explicitly restarted.

Two specialized 1nstructions are used to disable and enabie the inter-
nal interrupt flag. They are El and DI. Interrupts will be described in

185

PROGRAMMING THE Z80

SOURCE
RED.
AEDISTER IND.
A [c D E H L HU
iMueo] fn) | O3
our
Aep. | icl | eo | Eb | ED €0 | ED [ED | %D
IND. m |« 40 51 s8 | 61 e
TUTT = DUTPUT REQ | 1€ ED
Int HL, Dec b IND, aa
DTIK - DUTPUT, IncHL. | RED. | () 1]
Duc 8, REPEAT (F 870 IND, L) BLOCK
> QUTPUT
‘QUTD’ — DUTRUT REQ. | dch (] COMMAN
Oec L& B WND. AB
‘OTOR' = OUTPUT. Dec ML | REQ | [ED
& B, AEPEAT IF B0 IND. 88
\W_/
FORT
BESTINATION
ADORESS
Fig. 4.20: Ouiput Group
SQURCE
PORT ADDRESS
At] RET.
INDOIA
|
A o (1]
n b
a 0
L]
L]
13
G c &
“
NPT i a
o |o 13
" &
H
3 e [
1
INPUT N “
DESTINATION S fu [
&0
L ©w
L]
M - TRPUT & to
o vk, Ouc B AT
AMER = 1IN (A ML, [1+]
Cwe b, REFEAT (F 0 ™ 81
oa] et BLOCK INPUT
INOr—iNPUT B to COMMANDS
Cwcmi, Owcll AR
INDA - INPUT e ML (1]
Owe d AEPEAT 6 Bmg BA

Fig. 4.21: Input Group

186

THE Z80 INSTRUCTION SET

Chapter 6. The interrupt flag is used to authorize or not authorize the
interruption of a program. To prevent interrupts from occurring during
any specific portion of a program. the interrupt flip-flop (flag) may be
disabled by this instruction. It will be used in Chapter 6. These in-
structions are shown in Figure 4.22.

rfeiogaes
)
“NOP’ R
"HALT' e B

DISABLE INT “(DU)" |-

ENABLE INT(EX" |*-78
ET INT MODE
SETINFMODEO | ED | gos0a mooE
SET INT MODE 3 §0 | caLL To LocaTION ooas,,
SETINTMODE2 | ED | INDIRECT CALL USING REGISTER
‘M2’ §E | 1AND 8BITS FROM INTERRUPTING

DEVICE AS A POINTER.

Fig. 4.22: Miscetlaneous CPU Control

Finally, three interrupt modes are provided in the Z80. (Only one is
available on the 8080}. Interrupt mode 0 is the 8080 mode. interrupt | is
a call to location 038H, and interrupt mode 2 is an indirect call which
uses the contents of the special register [, plus 8 bits provided by the in-
terrupting device as a pointer to the memory location whose contents
are the address of the interrupt routine. These modes will be explained
in Chapter 6.
which will also be explained in Chapter 6. They are the IRQ and the
NMI pins.

187

PROGRAMMING THE Z80

SUMMARY

The five categories of instructions available on the 280 have now
been described. The details on individual instructions are supplied in
the following section of the book. It is not necessary to understand the
role of each mnstruction in order to start to program. The knowledge of
a few essential instructions of each type is sufficient at the beginning.
However, as you begin to write programs by yourself, you should learn
about all the instructions of the Z80 if you want to write good pro-
grams. Naturally, at the beginning, efficiency is not important, and this
is why most instructions can be ignored.

One important aspect has not yet been described. This 1s the set of
addressing techniques implemented on the Z80 to facilitate the retrieval
of data within the memory space. These addressing techniques will be
studied in the next chapter.

188

THE Z80 INSTRUCTION SET

THE Z80 INSTRUCTIONS: INDIVIDUAL DESCRIPTION

ABBREVIATIONS

FLAG ON QFF
Carry C (carry) NC (no carry)
Sign M (minus) P (plus)
Zero Z (zero) NZ (non zero)
Parity PE (even) PO (odd)

® changed functionally according to operation

9] flag is set to zero

1 flag is set to one

? flag is set randomiy by operation

X special case, see accompanying note on that page

bit positions 3 and 5 are always random

189

PROGRAMMING THE Z80

ADCA,s Add accumulator and specified operand with
carry.

Function: A+~ A +s5+C

Formati: s:may ber, n, (HL),(IX + d), or (1Y + o)

r [efefo [[= =]
n [oTefefefeft]e] bytet:cE
(S] e immedae
ML) [Tofofo] Ji]i]o]
(IX + d Ll]l]oll]ITl]Du byte 1: DD
[JooJoft]t]r]o] bye28E

L ‘ — d — I byte 3: offset value

[+ -]

E

L 1 L L

avy+d T el] byte i FD
[Jofofoj:[frjof bye2:8E

—T T T 1
L g
| S N N

:] byte 3: offset value

r may be any one of:

A - I E - 0Ol
B - 000 H - 100
C - 001 L - 101
D - 010

190

THE Z80 INSTRUCTION SET

Description: The operand s and the carry flag C from the status
register are added to the accumulator, and the
result is stored in the accumulator. s 15 defined in
the description of the similar ADD instructions.

Data Flow:

A X

B (o

D E ALY | |
H L +C

Tinung: usec
s: M cycles: | Tstates: | @ 2 MHz
r l 4 2
n 2 7 3.5
(HL) 2 7 3.5
(IX + d) 5 19 9.5
(IY + d) 5 19 9.5

Addressing Mode.

Byte Codes:

Flags.

Example:

N —

CE
1A

—]
OBJECT CODE

r: impliait; n: immediate; (HL): indirect: (IX +
d), (IY + d): indexed.

ADC A,l’ f:

L;I;[ailail:a]aZEDI

s 2 H PO N C
(o/e] lo] |@lO[@]

ADC A, IA

Before: After:

Al [3 o Ap g

191

PROGRAMMING THE 280

ADC HL,ss Add with carry HL and register pair ss.

Function: HL - HL +ss + C

Format:

(LT LT lel owerien
LTl o) bne

Description. The contents of the HL register pair are added to
the contents of the specified register pair, and then
the contents of the carry flag are added. The final
result is stored back 1n HL. ss may be any one of:

BC - 00 HL — 10
DE - 01l SP - I1!
Data Flow: _
A CAF
: =\
D E ALU
L [_H D +

sel |

Timung: 4 M cycles; 15 T states: 75 usec @ 2 MHz
Addressing Mode: 1mplicit.

BC DE HL SP

58
o {aloa]

Byte Codes:

192

Flags:

Example:

ED

S5A

OBJECT
CODE

THE Z80 INSTRUCTION SET

H PO N C

COREEDE0

H is set if there is a carry from bit 11.

ADC HL, DE
Before: After:
[T Mg
D 3291 E D 3291 e
H OF18 v WY AT

193

PROGRAMMING THE Z80

ADD A, (HL) Add accumulator with indirectly addressed
memory location (HL).
Function: A+ A+ (HL)
Formati:
noEoEnoaiE
Description: The contents of the accumuiator are added to the
contents of the memory location addressed by Lhe
HL register pair, The result 1s stored in the ac-
cumulator.
Daia Flow:
A (" oaii
8 C
o £ b —
H LL“ MEMORY
Tinung: 2 M cycles; 7 T states: 3.5 usec @ Z MHz

Addressing Mode:

Flags:

194

Indirect.

ODEON0E0

THE Z80 INSTRUCTION SET

Example: ADD A, (HL)
Before: After:
A ~ LT

H w0 | H[_ 9620]

86 9620 Bl 9620 8
OBJECT CODE

195

PROGRAMMING THE 280

ADD A, (IX + d) Add accumulator with indexed addressed
memory location (IX + d)

Function: AA+(IX +d)

Farmat:

FhTo]u[Jﬂohl byte |: DD
fLLololo[olf[nloj byte 2: 86

[————d —————]| byte 3: offset value

. | 1 J—1 L L

Description: The contents of the accumulaior are added to the
contents of the memory location addressed by the
contents of the 1X register plus the immediate off-
set value. The result is stored in the accumulator.

Data Flow:
A — /-_/
8 C | DATA
D E
H L
/__/ *
ADD
Ix[_ 4|L -
d
f\/
Timing: 5 M cycles; 19 T states: 9.5 usec @ 2 MHz

Addressing Mode: Indexed.

Flags: s 2 H PO N ¢
OOROROE0

196

Example:

N

o}
;]
03

f\—/

OBJECT CODE

THE Z80 INSTRUCTION SET

ADD A, (IX + 3)

Before:

Al]

X

0Bs1
0862
0843
0B&4

After:

A Wllzazi

[0861 | 1%{ 0861]
04 086! 04
B2 0842 B2
36 0B&3 36
91 0Bs4 9

197

PROGRAMMING THE Z80

ADD A, (IY + d) Add accumulator with indexed addressed
memory location (IY + d)

Function; A+ A + (IY + d)

Format:

T T [[e]¢] byer:Fp

[u[o[u[ololllllol byte 2: 86

l—: I : ;‘ : : :] byte 3: offset value

1

Description: The contents of the accumulator are added to the
contents of the memory location addressed by the
contents of the 1Y register plus the given offset
value. The result is stored in the accumulator.

Data Flow:
{L SN
A . DATA
B c \/
D E ALY
H L + TN
/\J
1y | | T
ADD d
’\—/
Timing: 5 M cycles; 19 T states; 9.5 usec @ 2 MHz

Addressing Mode: Indexed.

Flags: H PADN C

OOEOE0E0

198

Example:.

FD

ol

OBJECT
CODE

THE Z80 INSTRUCTION SET

ADD A, (1Y +1)

Before: After:
%22 =
Al 2] "EZ G
x| 0028 1] 0028]
/-\-_.__ /-\—
0028 06 0028 ¢
002¢ 9A 002 A

199

PROGRAMMING THE 280

ADDA,n Add accumulator with immediate daia n.
Function: A+~A+n
Format:

IIIIIUIUIU[illIOJ byte 1: C6

r‘ T ‘_] byte 2: immediaie
1 L

data

Description: The contents of the accumulator are added to the
contents of the memory location immediately
following the op code. The result is stored in the

accumulator.

Data Flow:

A

8 c

D 3

H L

MEMORY

Tinmung: 2 M cycles; 7 T states: 3.5 usec @ 2 MHz

Addressing Mode: 1mmediate.

rless e[e] To[Je[0[e]

Example: ADD A, E2
Before: After:
N .
£2
P —
OBJECT CODE

200

ADDA,r

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Byte Codes:

Flags:

I o ® >

THE 280 INSTRUCTION SET

Add accumulator with register r.

A+~A +r

L fe]ofo]oj—r]

The contents of the accumulator are added with
the contents of the specified register. The result 1s
placed in the accumulator. r may be any one of:

A — 111 E - 011
B — 000 H - 100
C - 001 L — 101
b - 010

F

U
1\ V

E ALY

L +

T

| M cycle; 4 T states: 2 usec @ 2 MHz.

Implicit.

A B C D E H L

[B?lBOIBIIBZIBGIBdIBSl

H PP N C

[e]e] To[®[0l®]

201

PROGRAMMING THE 280

Example:

/_1

80

b —
OBJECT CODE

202

ADD A,B

Before:

THE Z80 INSTRUCTION SEY

ADD HL, ss Add HL and register pair $s.

Function: HL < HL + ss
Format:
[ofofs sfi[ofe}]
Description: The contents of the specified register pair are

added to the contents of the HL register pair and
the result is stored in HL. ss may be any one of:

BC - 00 HL - 10
DE - Q1 SP - 11
Data Flow:
A
B C
D E
', Y ﬂ
sp]
Timing: 3 M cycles: 11 T states: 5.5 usec @ 2 MHz
Addressing Mode: Implicit.
Byte Codes: §s; BC DE HL_SP

Flags:

EEEOERC0

Cis set by carry from bit 15, reset otherwise.

Hisset by a carry from bit 11

203

PROGRAMMING THE Z80

Example: ADD HL, HL
Before:
(T — H 0681 I8
29
OBJECT
CODE

204

After:

L

THE Z80 INSTRUCTION SET

ADDIX, rr Add 1X with register pair rr.
Funcuon: IX+~IX + o1
Format:

[T Tel '] [o]]byter: DD
TeT T Tololbve 2

Description: The contents of the 1X register are added to the
conteats of the specified register pair and the
result is stored back in I1X. rr may be anyone of:

BC — 00 IX - 10
DE - 0l sSP - 11
Data Flow: {} F
A
o °
D E ALY
H L +
| |
_ } r
se[]
Timing: 4 M cycles; |5 T states: 7.5 usec @ 2 MHz

Addressing Mode: implicit.

Byte Codes: rr: BC DE [X SP

SN EIED

205

PROGRAMMING THE 280

Flees: ENEOERE0

H is set by carry out of bit 11,
C is set by carry from bit 15.

Example: ADD IX, SP
Before: After:
T~ 1] 0000 |\ XN
oD sp] 3021 | 3021 i
)
o —
OBJECT
CODE

THE Z80 INSTRUCTION SET

ADDIY,rr Add 1Y and register pair rr.
Function: IY ~ 1Y + 11
Format:

[‘["'['!'l'l"]'lbytel:FD

Lol T olo] Joyee

Description; The contents of the [Y register are added to the
contents of the specified register pair and the
result is stored back in Y. rr may be any one of:

BC — 00 Iy — 10
DE - 01 SP - 11
Data Flow: {} F
A
B C
{ o £ ALY
H L +
1 L <—-_—
- {
se[]
Timing: 4 M cycles; 15 T states: 7.5 usec @ 2 MHz

Addressing Mode: |lmplicit.

Byte Codes: rr: BC DE 1Y Sp

fo- [os] 0] 2]]

207

PROGRAMMING THE Z80

Flags:

Example:

FD

OBJECT
CODE

208

ENNEREE0

H is set by carry out of bit 11.
C is set by carry out of bit 15.

ADD 1Y, DE

Before: After:

o[5122 fe ol 8122

v s | w5

THE Z80 INSTRUCTIOMN SET

AND s Logical AND accumulator with operand s.
Function: A+ AAs
Format: s:may ber, n, (HL), (IX + d), or 1Y + d)
r L foftfolofrrr]
n [][Jelel [1]o] byter1:E6
[r_ v v 1t v byte 2: immediate
12 | data

®L) o Jofo]r]i]o] a6

(X + d) |;]||o]|];|||ol,| byte 1: DD
[t]o] Jojo+[1]o] bye2: A6
I — ——d—— }bytc3: offset value

1 1 L

(1Y + d) ||||1|li]|]i[o||| byte 1: FD

ln]o]n[o]olrlu—[ﬂ byte 2: A6

| : : —d — ' '] byte 3: offset value
r may be any one of:

A-11 E - 011

B — 000 H - 100

C - 001 L - 101

D — 010
Description: The accumulator and the specified operand are

logically *and’ed and the result is stored in the ac-
cumulator. s is defined in the description of the
similar ADD instructions.

209

PROGRAMMING THE ZBO

——

Data Flow:

A
8
o E L s |
H
Tinung: usec
s M cycles: | Tstates: | @ 2 MHZz:
r | 4 2
n 2 7 3.5
(HL) 2 7 3.5
(IX + d) 5 19 9.5
(1Y + d) 5 19 9.5

Addressing Mode: r: implicit; n: immediate; (HL): indirect; (IX +
d}, (IY + d): indexed.

Byte Codes: AND E H L

riA?l:OlAll:ZlA:ilAA[AS

Flags.

s 2 H @v N C
[ofe] [:] [®]O0]

Example: AND 4B
Before: After:
a3] N
T —
E6
48
OBJECT
CODE

210

THE Z80 INSTRUCTION SET

BIT b, (HL) Test bit b of indirectly addressed memory location
(HL)

Function: Z < (HL)

Formai:

L‘l‘["l“l'l"l' {1] byte 1: CB-
Iol’l‘_:'b:_’[‘ [' IO_I byte 2

Description: The specified bit of the memory location address-
ed by the contents of the HL register pair is tested
and the Z flag is set according to the result. b may
be any one of:

0 — 000 4 - 100
1 — 001 5 - 101
2 - 010 6 — 110
l-o0n 7 1l

Data Flow: f

A 7 F DATA

B C

D E ALU

" t l b —
Tinung: 3 M cycles; 12 T states; 6 usec @ 2 MHz

Addressing Mode: Indirect,

PNV N C

COl LI 1]

Flags:

211

PROGRAMMING THE Z80

Byte Codes:

Example:

—

o]
S

—
OBJECT CODE

212

cn. [e ao s Tro e |

BIT 3, (HL)
Before: After:
C o Jr ik
H(6A42 L H[6A42Z I
. N
4A42 05 &A42 Qs
T]

THE Z80 INSTRUCTION SET

BIT b, (IX + d) Test bit b of indexed addressed memory location

(X + d)
Function: Z ~(IX + d)
Format:
[1[|[ol|]| In lolu] byte 1: DD
F] |]o|o||lol|l| | byte 2: CB
| 'l : : :.’ : 1 : } byte 3: offset value
Lol r[-—e—[]:]e] bytea
Description: The specified bit of the memory location address-
ed by the contents of the IX register plus the given
offset value is tested and the Z flag s set according
to the result. b may be any one of’
c - 000 5 —101
[- 001 6 — 110
2 — 010 7 - L1t
3 - 011
4 — 100
Data Flow: j ;: .
B C
D £ ALU
M L 41 I/‘_J
X — 0
BIT
3
b

213

PROGRAMMING THE Z80

Timing: S M cycles; 20 T states: 10 usec @ 2 MHz

Addressing Mode: Indexed.

B Codes: b: 0 | 2 3 4 5 & 7
vie Codes 0D-CB-d- Fblaisolsslmlos l?bl?El
Flags: s 2 H PV N €
e [] f~]ef |
Example: BIT 6,(I1X + O
Before: After:
o Jr g
ix | AATI | x [AALT]
. ~— T
DD AATL 42 AAl 42
CB P — /_\-.._____
0
76
OBJECT CODE

214

THE Z80 INSTRUCTION SET

BIT b, (IY + d) Test bit b of the indexed addressed memory loca-
tion (IY + d)

Function: Z ~(IY + d)p

Format:

['I'I'ITT"'IOLT] byte 1: FD
L] {ojofi]or]r] byte2:cB
l L B gr —— | byte 3: offset value

LT [o] byes

Description: The specified bit of the memory location ad-
dressed by the contents of the IY register plus the
given offset value is tested and the Z flag 1s set ac-
cording to the result. b may be any one of:

0 — 000 4 — 100
| — 001 5 - 101
2 - 010 6 — 110
3 - 011 7 — 111

Data Flow:
A F /-\
B C /
0 E ALY
H L DATA
/‘__
i/ 1 {+ /\—1
BIT
d
v~

215

PROGRAMMING THE Z80

Timing: 5 M cycles; 20 T states: 10 usec @ 2 MHz

Addressing Mode: Indexed.

Byte Codes: b 0 1 2 3 4 5 & 7
Fu-ca-d-[“["ETMISEIbblos [76]7EJ

Flags: s z H PV N C
HOEDEAOE
Example: BIT 0, (Y + 1)
Before: After:
o2 Jr
e[FF12 | ry| FF12]
FD FF12 81 FF12 51
CB FF1J B2 FF13 B2
Ll T b —)
48
OBJECT CODE

216

THE Z80 INSTRUCTION SET

BIT b, r Test bit b of register .
Function: A -r_b
Format:

lnln[o|o||lol1lll byte 1: CB

o t [——bo—f—nr——| byte2
1 1 i [

Description: The specified bit of the given register is tested and
the zero flag 1s set according to the resuits. band r
may be any one of:

b: 0 — 000 4 — 100
1 - 001 5 — 101
2 — 010 6 — 110
3 - 011 7 — 111
T A — Il E - 011
B — 000 H - 100
C - 00l L - 101
D - 010
Data Flow: (}_—__
A (2 |
B C
) E ALY
H L
I
Timing: 2 M cycles; 8 T states; 4 usec @ 2 MHz

Addressing Mode: Implicit.

217

PROGRAMMING THE Z80

Byte Codes: biA B C D E H L
CB- O [47]40(4) 42|43 44|45
i 4F | 48 | 49 | 4A | 4B | 4C| 4D
2 |s7|s50f51|52]|51|5a]55
3 [sF|s8|se|salse|sc|sp
4 |o7| 60| 61| 62| 83] 84|85
S {eF|o8|en|ealsB|ec]sp
s |7|70|71] 72{73| 7475
7 |7 7879 | 78] 78| 7| 7D
Flags: s 7 H PV N C
Clof [[+]ef]
Example: BIT 4,B
Before: After:
B &] [o Jr B[__e& | [__:ss
B
&0
—

218

CALL cc,pq

Function:

Formaz:

Description:

THE Z80 INSTRUCTION SET
Call subroutine on condition.
if cc true: (SP — 1) = PCpyon; (SP - 2) =

PClow: SP <= SP — 2; PC + pq
If cc false; PC — PC +3

e [5] v

—T T byle 2: address,

T T T T

r Ly low order

{ LIS S S i byte 3: address,
P W S S S— high order

If the condition is mel, the contents of the pro-
gram counter are pushed onto the stack as de-
scribed For the PUSH instructions. Fhen, the con-
tents of the memory location immediately follow-
ing the opcode are loaded into the low order of the
PC and the contents of the second memory loca-
tion after the the opcode are foaded into the high
order half of the PC. The next instruction fetched
will be from this new address. 1f the condition 1s
not met, the address pq is 1gnored and the follow-
ing mstruction is executed. cc may be any one of:

NZ - 000 PO - 100
Z — 001 PE - 101
NC - 010 P - 100
C - 011 M - 111

An RET instruction can be used at the end of the
subroutine being called to restore the PC.

219

PROGRAMMING THE Z80

Data Flow:

Tinung:

I O wm>»

PC

SP

[CONTROH

LOGIC

T

Vi i,

v

i i

.
///////

Addressing Mode:

Byte Codes:

Flags:

220

usec
M cycles: | Tsiales: | @ 2 MHzZ
condition
lrue: 5 17 8.5
condition
not true: 3 {y 5
)

Immediale.

CC.NZ,Z NC C PO PE P M

[ﬂ_cc]mjoc‘sa [Eclr.s fC |-ap

(T LTIT]

N_C
]:] (no effect)

Exampie:

T —

cC

42

BO

/\.____
OBJECT CODE

THE Z80 INSTRUCTION SET

CALL Z, B042
Before: After:

F F
pc | 0801 | el ce0a
sp” BB12 | sei BBI2]

T~ T~
BBIO 8F 8810 8F
BB11 04 Ben 04
BB12 32 BB12 32

221

PROGRAMMING THE Z80

CALL pq Call subroutine at location pqg.

Function: (SP — 1)+ PChigp; (SP — 2) = PCjgy; SP - SP
- 2, PC~pq

Format:

r ‘:1 -] byte 2: address, low order

l:n..-_.u_-_ _:___-:-__:ﬁ‘] byte 3: address, high order

Description. The contents of the program counter are pushed
onto the stack as described for the PUSH instruc-
unons. The contents of the memory location 1m-
mediately following the opcode are then loaded 1n-
to the low order half of the PC and the contents of
the second memory location after the opcode are
loaded n the high order half of the PC. The next
instruction will be fetched from this new address.

1]

oo [[o]] bye 1: cp 2BS

Data Flow:
A
B
pC
L
W
Timing: 5 M cycles; 17 T states: 8.5 usec @ 2 MHz

Addressing Mode: |mmediate.

222

THE Z80 INSTRUCTION SET

Flags: s 2 H PV N C
LLIL T T T 1] (noeffecty
Example: CALL 40B1
Before: After:
e | AA4D | WA
s oBt4 | YR
T~ S N—
<o oz 9a w2l 477
B omia o o813/ /AR]
40 oBla[F4 oBlal Fs |
b~ P —
OBJECT CODE

223

PROGRAMMING THE 280

CCF Complement carry flag.
Function: C -C
Format;

Lofofe [e[[r]aF
Description: The carry flag is complemented.

Data Flow: 1 [- ‘ {}

A I F

B c

o} E ALY

H L
Timing: I M cycle; 4 T states: 2 usec @ 2 MHz
Addressing Mode: Implicit.
Flags: s 7 H PV N C

L1 | [*] [[Oe

224

THE ZB0 INSTRUCTION SET

CPs Compare operand s to accumulator.
Function: A -5
Format: s: may ber, n, (HL), (IX + d), or (1Y + d).

anonnnEss
N nnnnnono:

I v J byte 2: immediate
L 11 data
ot e[i []o] bwer:ne
ax+o (Lol []]o]1] byetioD
I'I°l'l']'|'|']°1 byte 2: BE
— byte 3: offset value

.[.]] [J byte 1: FD

l
[.[o[n[nlulfl:[ol byte 2: BE

o

ay+d) [i]]

[—r - l byte 3: offset value

r may be any one of:

A - [11 E - Ott
B — 000 H - 100
C - 001 L — 10t
D - 010
Description: The specified operand is subtracted from the ac-

cumulator, and the result is discarded. s is defined
in the description of the similar ADD instructions.

225

PROGRAMMING THE Z80

Data Flow: u B

F

a G\ OV

0 E ALY | s |

H L —

Timing: usec

s M cycles: | T states: |@ 2 MHz:
r | 4 2
n 2 7 3.5
(HL) 2 7 3.5
(IX + d) 5 19 9.5
(IY + d) 5 19 9.5

Addressing Modes: r: implicit; n: immediate; (HL): indirect;
(IX + d), (1Y + d): indexed

Byte Codes: CP r:
[BF [EB lB‘? IBA]BB lBC IBDI

Flags: H PR N C

[o[e] o] o] [®]

Example: CP (HL)
Before: After:

AL % | 3 |F a9 PZZca72¢
W[8203 I H B203 it

o — /-_1
BE B203 42 B203 42
QOBJECT
CODE

226

CPD

Function:

Format:

Description:

Data Flow:

Bl

H

Timung:

Addressing Mode:

Flags :
H

THE Z80 INSTRUCTION SET

Compare with decrement.

— [HL]; HL =—HL — |; BC =—BC—1

[] To]] To]] bytel:ED
[iolﬂo] llﬂull] byte 2: A9

The contents of the memory location addressed by
the HL register pair are subtracted from the con-
tents of the accumulator and the resuit 1s discarded.
Then both the HL register pair and the BC register
pair are decremented.

——
Yl

F DATA
C

]

4 M cycles; 16 T states: 8 usec @ 2 MHz

indirect.

[. xj [® Ix]/T] Reser if BC = 0 after execution; set otherwise
s

Setif A = fHL]

F¥y

PROGRAMMING THE Z80

Example: CPD

Before: After:

Al 2a | o |r Al 24 Pracii]r

%
B 3154 <) c

H 86BS o WO 888
T T —— T
ED B&BS 2A 8685 2A
il b L
L
OBJECT CODE

228

THE Z80 INSTRUCTION SET

CPDR Block compare with decrement.
Function: A —[HL]); HL=— HL. —|; BC=—BC —I;
Repeat until BC = Oor A = [HL]
Format:
Lelef ool o] of] byte 1: ED
{lof il {iTofol] byte2:Bo
Description: The contents of the memory location addressed by
the HL register pair are subtracted from the con-
tents of the accumulator and the result is discard-
ed. Then both the BC register pair and the HL
register pair are decremented. If BC # Oand A #
[HL], the program counter is decremented by two
and the instruction is re-executed.
Data Flow:
(oaa]
of s =
H L —] L’—_\.i

Timing: BC = 0 or A = [HL]: 4 M cycles; 16 T states:
8 usec @ 2 MHz
BC # 0 and A # [HL]: 5 M cycles; 21 T states:
10.5 usec @ 2 MHz

Reset if BC = 0 after
execution; set otherwise

Flags: PV N C

O o[*['L]
t

JSet ifA = [HL]

229

PROGRAMMING THE Z80

Example: CPDR
Before: After:
B 0002 c s
T — T T
) SOFE 08 S0FE 08
a9 S0FF 00 SOFF 00
L — 8100 2A 4100 2A
OBJECT CODE] p—

230

THE Z80 INSTRUCTION SET

CP1 Compare with increment.
Function: — [HL]; HL =— HL + |; BC =—BC—1|
Format:
rprprjerprjejry| bytei:ED
rlel Jolelolaf | byte2 Al
Description: The contents of the memory location addressed by
the HL register pair are subtracted from the con-
tents of the accumulator and the result is discarded,
The HL register pair is incremented and the BC
register pair is decremented.
Data Flow:
") DATA
Bk
0 —— ¢
N W
Tirmng: 4 M cycles; 16 T states: 8 usec @ 2 MHz
Addressing Mode: ndirect.
Flags:

Reset if BC = 0 after execution set otherwise
Dnl[]lulll [~ Set if A =[HL]

23

PROGRAMMING THE Z80

Example:

T .

ED

Al

L)
OBJECT CODE

232

3
C

CPI
Before: After:
A o | F oAl o ”/////m
) 0510 c 8 %///////W%//%
wl 8489 L
T
8689 98 86B9 98
/H\ V\

CPIR

Function:

Description:

Data Flow:

THE Z80 INSTRUCTION SET

Block compare with increment.

A —[HL]; HL-— HL + 1;BC ~—BC — |;
Repeat until BC = Oor A = [HL]

L‘l'l'["l'l'[oh] byte 1: ED
Lifol [rjefofo]] byte2:m1

The contents of the memory location addressed by
the HL register pair are subtracted from the con-
tents of the accumulator and the result is discarded.
Then the HL register pair is incremented and the
BC register pair is decremented. If BC # 0 and A
[HL], then the program counter is decremented
by 2 and the instruction is re-executed.

Timing:

Addressing Mode:

1
T - ~

J \/ ﬁL

Ve
LT
I

BC = Oor A = [HL] ;: 4 M cycles; 16 T states:
B usec @ 2 MHz

BC # Oand A # [HL]:5Mcycles; 21 T states:
10.5 usec @ 2 MHz

indirect.

233

PROGRAMMING THE Z80

Flags:

H PNV N C . . ,
Reset if BC = 0after execution; set otherwise

s Z
FOI?I o] l:l'_l__r_[SetifA=[HL]

Example: CPIR
Before: After:
A | ® Al [k
B oos! i

H N H 555 i

/-_-_ /\‘
ED 0398 2A 039 2A
Bl 039C 9B 03¢9C 98
L] 03%D o] 0390 06
QBJECT C
OBE —]

234

CPL

Function:

Format:

Description:

Data Flow:

Timing:
Addressing Mode:

Flags:

Example:

T

2F

OBJECT
CODE

THE Z80 INSTRUCTION SET

Complement accumulator,

A+YA

Lolef fof] [o]] 2F

The contents of the accurnulator are com-
plemented, or inverted, and the result 1s stored
back in the accumulator (one’s complement).

L
o ——

Alu

I o m® >
m

1 M cycle; 4 T stales; 2 usec @ 2 MHz

Implict.

s 2 H PV N C
LIl
CPL

Before: After:

Ao] T

235

PROGRAMMING THE Z80

DAA Decimal adjust accumulator.
Function. See below.
Format:

[T[ﬂl]ﬂlﬂmlll—l 27

Description; The instruction conditionally adds **6’’ to the right
and/or left nibble of the accumulator, based on the
status register, for BCD conversion after arithmetic
operations,
value of value of | # added | C after

N C | high nibble | H | low nibble | to A execution
0 0 0-9 0 0-9 00 0
(ADD, { O 0-8 0 A-F 06 0
ADC, | 0 0-9 l 0-3 06 0
INCY | O A-F 0 0-9 60 1
0 9-F 0 A-F 66 1
0 A-F l 0-3 66 |
l 0-2 0 0-9 60 1
1 0-2 0 A-F 66 l
l 0-3 | 0-3 66 |
1 0 0-9 0 0-9 00 0
(SUB, |0 0-8 | 6-F FA 0
SBC, I 7-F 0 0-9 AQ 1
DEC, I 6-F | 6-F 9A I
NEG)
Data Filow;
A (4 F
a NV
8] E ALL
H L DAA
!

236

Timing:

Addressing Mode:

Flags:

Example:

27

OBJECT
CODE

THE Z80 INSTRUCTION SET

| M cycle; 4 T states; 2 usec @ 2 MHz
Implicit.

PV N C

[@[e] To] Jo[[o]

DAA

Before: After:

A2 | % JralZZl8 YA

237

PROGRAMMING THE 280

DECm Decrement operand m.
Function: m+m- |
Format: m: may ber, (HL), (IX+d), (IY+d)

r oo [o]
@) [ofofiJefo]efo]] 35
ax +d)y [1Jfofefe]efof] byter:DD
loloiW'lolilol'IbvteZ:s

I I'_l_é T

(%]

, byte 3: offset value

ay +d [][0 [L]jbytexFD

Lofolifr]efr LT (| byte 2: 35
f . 4—:i ’ [byte 3: offset value
r may be any one of:
A - 111 E - 011
B — 000 H - 100
C - 001 L - 101
D - 010
Description: The contents of the location addressed by the

specific operand are decremented and stored back
at that location, mis defined in the description of
the similar INC nstructions.

Data Flow:

I © o >

238

THE Z80 INSTRUCTION SET

Tinung: usec
m: M cyeles: | T siates: |@ 2 MHZ:
T | 4 2
(HL) 3 11 5.5
(IX + d) 6 23 I1.5
(IY + d)] 23 11.5

Addressing Mode: o imnlicit; (HL): indirect; (IX + d), (IY + d}:in-
dexed.

Byte Codes: DECTr

r:[:ol:sloco[?slfo[:sl;oj

Flags: s Z H P N C
(o]e] [of [® [|
Example: DEC C
Before: Alter:
(T o e VB
oo
OBJECT
CODE

239

PROGRAMMING THE 280

DEC rr Decrement register pair rr.
Function: rr~—rr — 1|
Formati:

Lefele el efef]]

Description:. The contents of the specified register pair are
decremented and the result is stored back in the
register pair. rr may be any one of:

BC — 00 HL - 10
DE - 01 Sp - 11
Dara Flow:
A
B
D E ALY
H -1
s]
Timing: | M cycle; 6 T states; 3 usec @ 2 MHz
Addressing Mode: Implicit.
Byte Codes: IT® BC DE HL SP

240

THE Z80 INSTRUCTION SET

PV N C

SLlZ[[Hl l I |] (no effect).

Flags:

Example: DEC BC

Before: After:

Bl: 811 —lc ac

oB

OBJECT CODE

241

PROGRAMMING THE 280

DECIX Decrement 1X.
Function: IX—=IX -1
Formai:

[Tl T [[olr]oe 00
FlorrlolsTolrlllbyteZ:ZB

Description: The contents of the EX register are decremented
and the result is stored back in IX,

Data Flow:

A

) c

D E AlU

H L — 1
Tinung: 2 M cycles; 10 T states; 5 usec @ 2 MHz

Addressing Modes: Implicit.

Flags: s Z H PV N C
(T T LT L] troctteen
Lxample: DEC X
Before: After:
(T w[___ena | <)
oo
28
V__‘

OBJECT COOE

242

DEC 1Y

Function.

Format:

Description:

Data Flow:

Timmng:

Addressing Mode:

Flags:

Example:

N —

FD
28

Vo
OBJECT CODE

THE Z80 INSTRUCTION SET

Decrement 1Y,

IY < 1Y - |

LT T e [v 10

tolo] o] jo]] i]|byte2:2B

The contents of the 1Y register are decrementea
and the result 1s stored back in 1Y,

T O @ P

2 M cycles; 10 T states; 5 usec @ 2 MHz

Ilmplicit.

PV N C

I:S_lz | THL | []] noeffect.

DEC 1Y

Before: After:

Y[900F oW o el T

243

PROGRAMMING THE Z80

DI Disable interrupts.
Funcrion: IFF ~ 0
Format:

Ll ofelefe] B3

Description: The interrupt flip-flops are reset, thereby disabling
all maskable interrupts. It is reenabled by an EI
instruction.

Tinung: | M cycle; 4 T states; 2 use¢c @ 2 MHz

Addressing Mode: Implicit.

F[ggs_- S 7 H PV N C

rl l l [I l [] (no effect),

244

DINZ e

Funcrion:

Format:

Description:

Data Flow:

THE Z80 INSTRUCTION SET

Decrement B and jump e relative on no zero.

B+~B -1:ifB#0:PC~PC + ¢

Io[olo[ol byte 1: 10

I byte 2: offset value

The B register is decremented. If the result 15 not
zero, the immediate offset value 1s added to the
program counter using two‘s complement
arithmetic so as to enable both forward and
backward jumps. The offset value is added to the
value of PC -+ 2 (after the jump). As a result, the
effective offset 1s -126 to + 129 bytes. The as-
sembler automatically subtracts from the source
offset value to generate the hex code,

DINZ

AU ALY e-2

Timing:

B # 0: 3 M cycles; 13 T states; 6.5 usec @ 2 MHz.
B = 0: 2 M cycles; 8 T states; 4 usec @ 2 MHz

Addressing Modes: Immediate.

245

PROGRAMMING THE Z80

Flags: s z H PV N C
L1 HEEE | (no effect)
Example: DINZ % - 5 (8 = current PC)
Before: After:
~ = e A

0 pC o0ET
Fo

il 85

OBJECT CODE

246

El

Function:

Format:

Description:

Timing.

Addressing Mode:

Flags:

Example:

THE Z80 INSTRUCTION SET

Enable interrupts.

IFF -~ 1

Ll el jof]] s

The interrupt flip-flops are set, thereby enabling
maskable interrupts after the execution of the in-
struction following the EI instruction. In the mean-
time maskable interrupts are disabied.

1 M cycle; 4 T states; 2 usec @ 2 MHz
Implicit.

Z H PV N C

lsl I Il I]ij (no effect).

A usual sequence at the end of an interrupt routine is:
El

RETI

The maskable interrupt is re-enabled following
completion of RETI.

247

PROGRAMMING THE Z80

EX AF, AF’ Exchange accumulator and flags with alternate

registers.
Function: AF=-wAF
Format:
[eofeef fo]ofo] o8
Desceription: The contents of the accumulator and status
register are exchanged with the contents of the
alternate accumufator and status register.
Data Flow: -
B C B c
D 3 D' E
H L H' L
Timing: I M cycle; 4 T states; 2 usec @ 2 MHz

Addressing Mode: 1mplicit.

Flags: 5z H PY N C
[eee]e[e]e]e]e]
Example: EX AF, AF'
Before: After:
N Al oa [s JF AT w | aa_ |r
2 Al %0 [s |p A 6 | B |F
OBJECT CODE

248

EX DE, HL

Function:

Format:

Description:

Data Flow:

Tinung:

Addressing Mode:

Flags:

Example:

/\/

EB

~_

OBJECT CQODE

I O >

THE Z80 INSTRUCTION SET

Exchange the HL and DE registers.

DE «— HL

[T e

The contents of the register pairs DE and HL are
exchanged.

C
E
L

| M cycle; 4 T states; 2 usec @ 2 MHz

Implicit.
s 27 H PV N C
I l l l l I | L l {no effect).
EX DE, HL
Before: After:
o A4ES E o 9504 c
H 9604 T AdE6 L

249

PROGRAMMING THE Z80

EX (SP),HL

Function:

Formatr.

Descripnion:

Data Flow:

Tinung:

Addressing Mode:

Flags:

250

Exchange HL with top of stack.

(SPy+—L:{SP + '+ H

Ol TiTelolef 1] Es

The contents of the L register are exchanged with
the contents of the memory location addressed by
the stack pointer. The contents of the H register
are exchanged with the contents of the memory
location immediately following the one addressed
by the stack pointer.

I O m P
m

sp[_ 4'—'_I N

5 M cycles; 19 T states; 9.5 usec @ 2 MHz

Indirect.

[l [I [[| l] {no effect).

Example:

O —

EJ

e
OBJECT CODE

THE Z80 iNSTRUCTION SET

EX (SP), HL
Before: After
H 8290 v M\
5| 8409] se[B409]
T
Bao?| 3F s
B40Al OF B40Al /827
]]

251

PROGRAMMING THE ZBO

EX (SP),IX Exchange IX with top of stack.

Function: (SP) > X|gw: (SP + 1) <> 1 Xpeh
Format:

[llllOIlIllliOllI byte i: DD

[el ol 1] by 2: ks
Description: The contents of the low order of the 1X register

are exchanged with the contents of the memory
jocation addressed by the stack pointer. The con-
tents of the high order of the IX register are ex-
changed with the contents of the memory tocation
immediately following the one addressed by the
stack pointer.

Data Flow. A

]

o) E

H L

X i |

i :; DATA]

5P| — N

Tirung: 6 M cycles; 23 T states; 1.5 usec @ 2 MHz

Addressing Mode: Indirect.

Flags: s Z H PV N C

[TTTTTTT] moetfen.

252

Example:

TN

00

E3

V\/

QBJECT COOE

THE Z80 INSTRUCTION SET

EX (SP), IX
Before: After:
le 9234 J le s]1.1-} J
5| 0402 | s 0402 |
/XJ /_\j
04072 aB 0402 34
0403 Y D403} 92 |
- \—/

253

PROGRAMMING THE 280

EX (SP), 1Y

Function:

Format:

Descriprion:

Data Flow:

Tinung:

Addressing Mode:

Flags:

254

Exchange 1Y with top of stack.

(SP) ~* 1Y]owi (SP + 1) = IYhigh

LT L [olr] bvet:

I|I|I|lo|0]olllll byte 2: E3

The contents of the low order of the 1Y register
are exchanged with the contents of the memory
location addressed by the stack poinier. The con-
tents of the high order of the 1Y register are ex-
changed with the contents of the memory location
immediately following the one addressed by the
stack pornter.

T O @ >
]

5P }—‘ TN

6 M cycles; 23 T states; 11.5 usec @ 2 MHz

Indirect.

[l l I [l l [] (no effect).

Example.

TN

FD
E3

OBJECT CODE

THE Z80 INSTRUCTION SET

EX (SP), 1Y

Before: After:
| BFO3 Y fofiin 409 2 7]
sp 6211 sp| 6211]

N

&M 90
6212 4D

~__

g2, ;.08
6212 V500 BR

255

PROGRAMMING THE 280

EXX

Function:

Format:

Description:

Data Flow:

Tinung:

I 0>

Exchange alternate registers.

BC +-BC" DE «~DE" HL «-HL

Ll ol [eTefe]] bo

The contents of the general purpose registers are
exchanged with the contents of the corresponding
alternate registers.

F Al Fl
c al c
E D E!
L H! L

| M cycle; 4 T states: 2 usec @ 2 MHz

Addressing Mode: Implicit.

Flags:

Example:

O —
D9

b~

OBJECT
CODE

256

LSTZI l H[—fw’ Nl cl (no effect).

EXX

Before: After:
A 04 28 F A 04 78 F
8 3% 2 c 8 8C 00 c
D 54 02 £ D 93 oo E
H Fi Do L H 4F £3 L
Al 3F 2A Flooal IF 24 I3
at 8C 00 [oLEY a9 26 o
o! 93 23] E! pt 54 02 £
H! 4F] | L S F1 Do L

HALT

Function:

Format:

Description:

Timiing:

Addressing Mode:

Flags:

THE Z80 INSTRUCTION SET

Halt CPU.
CPU suspended.
Llfe[rfe] fefe] %

CPU suspends operation and executes NOP's so
as to continue memory refresh cycles, until in-
terrupt or reset is received.

| M cycle; 4 T states; 2 usec @ 2 MHz + inde-
fimte Nop’s.

implicit.

5 I H PV N C

LT TTTT T moeffe.

257

PROGRAMMING THE Z80

IMO Set interrupt mode 0 condition.
Function: Internal interrupt control.
Format.

LD]e]] [o]'] byter:ED

lo]ulolo]olllllol byte 2: 46

Description: Sets interrupt mode 0. In this condition, the in-
terrupting device may insert one instruction onto
the data bus for execution, the first byte of which
must occur during the interrupt acknowledge cycle.

Tinung: 2 M cycle: 8 T states; 4 usec @ 2 MHz

Addressing Mode: Implicit.

Flags: s z H PV N C

I l l l l] l l I {no effect).

258

IM1

Function:

Format:

Description:

Data Flow:

Timung:

Addressing Mode:

Flags:

THE Z80 INSTRUCTION SET

Set interrupt mode 1 condition.

Internal interrupt control.

lu[u[l[O[lllIlJ]_ll byte 1: ED
[ulnlu[nlulnlu]o—‘ byte 2: 56

Sets interrupt mode 1. A RST 0038H instruction
will be executed when an interrupt occurs.

00

38
el
0038 INT
I —

{at time of interrupt)

/\1

PCH
PCL

STACK
2 M cycles; 8 T states; 4 usec @ 2 MHz
Implicst.

s 2 H PV N C

| I I I | | I [] (no effect).

259

PROGRAMMING THE Z80

IM2

Function:

Format:

Description:

Timing:
Addressing Mode:

Flags:

260

Set interrupt mode 2 condition.

Internal interrupt ¢ontrol.

|||||u|o]|]|[o|r4l byte 1: ED

Lol [1]o] byte2:se

Set interrupt mode 2. When an interrupt occurs,
one byte of data must be provided by the peripheral
which is used as the low order of an address. The
high order of this vector address s 1aken from the
contents of the [register. This points to a second
address stored 1n memory,which is loaded into the
program counter and begins execution.

2 M cycles: 8 T states; 4 usec @ 2 MHz

Implicit.

CTTTTTLL] troetec

THE Z80 INSTRUCTION SET

IN r, (C) Load register r from port(C)
Fuaction: r — {C)
Formai:
ora [u[1L1rola[|lolﬂbylel:ED
Lol 1[————{ojolo]|bye2
Description: The peripheral device addressed by the contents of

the C regisier 1s read and the result is loaded into
the specified register.
C provides bits A0 to A7 of the address bus.

B provides bits A8 to Al5.
Data Flow:
A PORT
]
b 3
H
r may be any one of:
A - |1 E - 011
B - 000 H - 100
C - 001 L — 10]
D - ¢lo
Tinung: 3 M cycles: 12 T states; 6 usec @ 2 MHz

Addressing Mode: External.

Byte Codes:

cof] o] s so] s e 1]

261

PROGRAMMING THE Z80

Flags: § 2 - H @v N C
o[®] [& [®/o] |
It is important to note that INA,(N) does not have
any effect on the flags, while IN 1, (C) does.
Example: IN D, (C)
Before: After:
T = e &
Zg o[o | [ea |eort ofZEA77Z [eA Rt
A5 AS
b —
OBJECT CODE

262

THE Z80 INSTRUCTION SET

IN A, (N) Load accumulator from input port N.
Function: A~ (N)
Format:
Lol fof] ol [+]oyer: DB
I {]L l 'I" : I Ij byte 2: port address

Description: The peripheral device N is read and the result is
loaded into the accumulator.
The literal N 15 placed on lines A0 to A7 of the
address bus. A supplies bits A8 to Al5.

Data Flow: A —
A
8 < l N
o E f I—_ N
H L
PORT ’-\-._..._—
Tinnng: 3 M cycles; t1 T states; 5.5 usec @ 2 MHz

Addressing Mode: External.

Flags: PV N C

CTTTITTII] ot

Example: IN A, (B2)

Before: After:

M~ A s | [anlr \rort Al ZE 777 @PORT
o8
»’—\.___,

OBJECT CODE

263

PROGRAMMING THE Z80

INCr Increment register r.
Function: r+~r +1
Format: elof—= =l To]o]
Description: The contents of the specified register are in-
cremented. r may be any one of:
A — 111 E - 011
B - 000 H - 100
C — 001 L — 101
D - 010

Data Flow: i;

Al

B

D £ ALU

H + 1
Timing: [M cycle: 4 T states: 2 usec @ 2 MHz

Addressing Mode: Implicit.

Byte Codes: f2 A B C D E H L
lacloaloc[ulmlulzcl

Flags: § z H PO N C
o/e] [o] [@[C]]
Example: INC D

Before: After:

14

OBJECT
COCE

264

THE Z80 INSTRUCTION SET

INC rr Increment register pair rr.
Function: rror + |
Format: .
Lofolr - fofofr]]
Description: The contents of the specified register pair are 1n-

cremented and the result is stored back in the
register pair. rr may be any one of:

BC - 00 HL - 10
DE - 01 SP - 11
Data Flow: ‘,\}
A
B
] E ALU
H +
sP|]
Tinung: I M cycle; 6 T states; 3 usec @ 2 MHz

Addressing Mode: 1mplicit.

Byte Codes: rr: 8C DE HL sP

265

PROGRAMMING THE Z80

Flags:

Example:

23

OBJECT
CODE

266

s 2z H PV N C

l l [[[] I] |(noeffect).

INC HL

Before:

H 0814 i

THE Z80 INSTRUCTION SET

INC (HL) Increment indirectly addressed memory location
(HL).

Function: (HL) = (HL) + |

Formai:

ool Tfofi]ofo] 34

Description: The contents of the memory location addressed by

the HL register pair are tncremented and stored
back at that location.

Data Flow:
A
8 c Y
D E ALY '
H L §| +1
Tinung: 3 M cycles; Il T states; 5.5 usec @ 2 MHz

Addressing Mode: Indirect.

Flags: s 2 H PO N T
[o]®] [e] [®[O] |
Example: INC (HL)
Before: After:
Hf 04B1 b H 0681 e
/\ o N——
34 04B! 3B
L\/
OBJECT
CODE

267

PROGRAMMING THE Z80

INC (X + d)

Funcrion:

Format:

Description:

Dara Filow:

Increment indexed addressed memory location
(IX + d).

(IX +)~ (IX + d} + |

[T el bre 00
lo[o[u[tlo[u[o]o—]byteZ:M

LI —— é#l :]byte3:offsetvalue

The contents of the memory location addressed by
the contents of the IX register plus the given offset
value are incremented and stored back at that
location.

]
oAt]

Timing:

Addressing Mode:

Flags:

268

6 M cycles; 23 T states; 11.5 usec @ 2 MHz
Indexed.

H PO N C

[o]o] [o] Joc] |

THE Z80 INSTRUCTION SET

Example: INC (IX + 2)
Before: After:
ix| 0381] ix| 0381
oD 0381 Bl 0381 Bl
34 0382 BS 0382 85
02 0383 B89 03B
— e
OBJECT
CODE

269

PROGRAMMING THE Z80

INC (IY + d) Increment indexed addressed memory location (1Y

+ d).
Function. Iy +d) - dY +d) + 1
Format:
Ll delefeJefo]] byter: ¥
|o|o]||||o| ! [o[ol byte 2: 34
|—— é 1 1 1] byte 3: offset vatue
Description: The contents of the memory location addressed by
the contents of the 'Y register plus the given offset
value are incremented and stored back at that
focation,
Data Flow: /-]
A Gk
B | DaTA
D E
H
v -
d
b —
Tinung: 6 M cycles; 23 T states; 11.5 usec @ 2 MHz

Addressing Mode: Indexed.

Flaps:

OOECEORE

270

Example:

FD

14

OBJECT
CODE

INC (1Y + O)
Before:
| 0601

/—_‘

0601 51
0602 BO
T —

THE Z80 INSTRUCTION SET

271

PROGRAMMING THE Z80

INC IX Increment IX.
Function: IX+~IX + |
Format.
I.lulollI.ll]olllbytel:DD

[ofo [[ofolo]]|]byte2: 23

Description; The contents of the 1X register are incremented
and the result is stored back in IX.

Data Flow:
A
B c ; \/
4] E ALY
H L + 0
A <—
Timing: 2 M cycles; 10 T states; 5 usec @ 2 MHz

Addressing Mode: Implicit.

Flags: s 2 H PV N C

LI T 1T 11T |moeffee.

Example: INC 1IX

Before: After:

T~ x[e | X se

00
23

OBJECT CODE

m

INC 1Y

Function:

Format:

Description;

Data Flow.

Timing:

Addressing Mode:

Flags:

Example:

T

FD
23

—
OBJECT COOE

THE Z80 INSTRUCTION SET

Increment 1Y

IY < 1Y + 1

[T LT ol Jovee : F0

lolol |]o]o]o]1l ||byte2:23

The contents of the 1Y register are incremented
and the result is stored back in 1Y.

—=

] \/
E ALU
L + 1

v <

I o ® P

2 M cycles; 10 T states; 5 usec @ 2 MHz

Implicit.
s 2 H PPV N C
LLT LT T[] moeffen.
INC 1Y
Before: After:
ST | ~ s

273

PROGRAMMING THE Z80

IND Input with decrement.
Function: (HL) <= (C); B+~ B — |; HL - HL - |
Format:

Description: The peripheral device addressed by the C register
15 read and the result is loaded into the memory
location addressed by the HL register pair. The B
register and the HL register pair are then each

decremented.
Data Flow:
! s
WO
Timing: 4 M cycles; 16 T states;: 8 usec @ 2 MHz

Addressing Mode: External.

Flags: s 7 H
HEANE
b

PV N_C
I T-1 [] Set if B = 0 after execution
r‘ Reset otherwise

274

Example:

(T

ED
AA

OBJECT CODE

THE Z80 INSTRUCTION SET

IND

Before: After:

B A | e |c eZZR7ZA e |
H] owsa L WA A\

=
85 BS
(T (™
06BA 0o 0sBA Y967
— b~

275

PROGRAMMING THE Z80

INDR Block input with decrement.

Funcuon. (HL)~ (C); B~ B - | HL ~ HL - |
Repeat untilB = 0

r|’|FIOJIIT!0]L} byte [: ED
l'!°l'|'l'ﬁ['l°l byte 2: BA

Format:

Description: The peripheral device addressed by the C register
is read and the result is loaded into the memory
location addressed by the HL register pair. Then
the B register and the HL register pair are
decremented. If B 1s not zero, the program
counter 1s decremented by 2 and the instruction is
re-executed.

Data Flow.

8 FCOUNTER]

H

L

Tinung: B = 0:4 M cycles; 16 T states; 8 usec @ 2 MHz.
B # 0:5 M cycles; 21 T states; 10.5 usec @ 2 MHz,

Addressing Mode: External

Flags:

CLT LI LT

276

THE Z80 INSTRUCTION SET

Example: INDR

Before: After:

B o | s Jo {70 s c
H 09F2 I« WSS

[Jeomr PORT
/?‘ S 9| 6A
” owro| £8 ovFo Bt
O%F) 48 WP A
CM ooF2[9a 09F2(///W

271

PROGRAMMING THE Z80

INI Input with increment.
Function: (HLy = (C); B—B - {; HL--HL + 1
Format:

| 'l 'I ‘I°I 'l 'l°[']bytel:ED

[Tl [ele] ol o] bwee2: a2

Description: The peripheral device addressed by the C register
1s read and the resuit is loaded into the memory
location addressed by the HL register pair. The B
register is decremented and the HL register pair is
incremented.

The contents of C are placed on the low haif of the
address bus. The contents of B are placed on the
high half. I/0 selection is generally made by C,
1.e., by AOto A7. B is a byte counter.

Data Flow:
A DATA
8}/ COUNTER c
D E PORT
R

Timung: 4 M cycles; 16 T states; 8 usec @ 2 MHz

Addressing Mode: External.

Flags:

l M l?l l?l'l |
Z is set if B = 0 after execution,
Reset otherwise

278

Example:

T —

ED

A2

b
OBJECT CODE

THE Z80 INSTRUCTION SET

INi

H A112 W WA
——

21

Al12 09 A2 Pz es
b -

279

PROGRAMMING THE Z80

INIR

Function:

Block input with increment.

(HL) = (C); B— B — I: HL = HL + [; Repeat
untitB = 0

Formnat:
LTl el fe]e]] byet:ED
Jol [Je]o[o] byte2: B2
Description: The peripheral device addressed by the C regisier
1s read and the result is loaded mto the memory
location addressed by the HL register pair. The B
register 1s decremented and the HL register pair is
incremented. If B is not zero, the program counter
1s decremented by 2 and the instruclion is re-
executed.
Data Flow:
A (ami]
B [7.counier 7/} C ///ﬂ///%// i
° T 2 } € FoRT r ‘%//W 2
WO A (- -3

Tinng:

Addressing Mode:

Flags:

280

Ui
~_]

B = 0: 4 M cycles; 16 T siates; 8 used @ 2 MHz.
B #0 5 M cycles; 21 T siales; 10.5 usec @ 2 MHz.

Exlernal.

PV N C

HOEEROnN

Example:

T~
ED
B2

)
OBJECT CODE

THE Z80 INSTRUCTION SET

INIR

Before: Afler:

o W R
o 91A5 8 w7 a4

:1]]pom 7//’/ PORT
Q1AS5 aF
9148 10
QP1A7 oe
b —

281

PROGRAMMING THE Z80

JP cc, pg Jump on condition to location pq.
Function: if cc true: PC + pg
Format:

L1 l-—r<.—*l°l o] byte

I T - J byte 2: address,

o]

PO low order
— T T T T T 1 byte 3: address,
I T 1_] high order
Description: If the specified condition is true, the two-byte ad-

dress immediately following the opcode will be
loaded into the program counter with the first byte
following the opcode being loaded into the low
order of the PC, If the condition is not met, the
address is ignored. cc may be any one of:

NZ - 000 no zero
Z — 001 Zero
NC - 010 no carry
C - 0il carry
PO - 100 parity odd
PE - 101 parity even
P - 110 plus
M - Il minus
Data Flow: l {}
A F CONTROL
8 C LOGIC 1P CC
b E . q
H L c—onll P
~ D T

282

Timing:

Addressing Mode:

Byte Codes:

Flaps:

Example:

T

DA
24
3.

/'\.__‘___J
OBJECT CODE

THE Z80 INSTRUCTION SET

3 M cycles; 10 T states; 5 usec @ 2 MHz

Immediate.

cc N2 Z NCC PO PE P m
HCA10210A152]EA1F22F1\

5 2 H PY N C

Ll [l I l] lj(noeffect)

JP (, 3B24

Before: Alter:
T st e
e oo 1 el R

283

PROGRAMMING THE 280

JP pq Jump to location pq.

Funcuon: PC ~— pg

Format: I.].loiolololllll byte 1: C3
[T~ T 7T T 1] byte 2: address,
T T low order
S S l byte 3: address,
s o % sy high order

Description. The contents of the memory location immediately

following the opcode are loaded into the low order
half of the program counter and the contents of
the second memory location immediately follow-
ing the opcode are loaded into the high order of
the program counter. The next mstruction will be
fetched from this new address.

Data Flow: A S N—
8 = Jp
D E q
H L P
Tinung: 3 M cycles; 10 T states; 5 usec @ 2 MHz

Addressing Mode: Immediate.

Flags: s 2z H PV N C
: [T TT 1L T Jovoetrecn
Example: JP 3025
Before: After:
/—\1 pc | 5520 V' 0
ca

284

THE Z80 INSTRUCTION SET

JP (HL) Jump to HL.
Function; PC — HL
Formalt:

nuuonoanic

Descripnion: The contents of the HL register pair are loaded in-
to the program counter. The next instruction is
letched from this new address.

Data Flow:

C
E
L

I oo@>

el

Titnng. I M cycle; 4 T states; 2 usee @ 2 MHz

Addressing Mode: lmplicit.

Flags: s 2z H PV N C

LJ l TL[l] J (no effect).
Example: JP (HL)

Before: Alter:
p-._._ M oatl G 04N JL
!/_E"C. re| 8001 | el 0

OBJECT CODE

285

PROGRAMMING THE Z80

JP (IX)

Function:

Formar:

Description.

Data Flow:

Tinung:

Jump to IX.

PC < IX

rlhlollllllloll—l byte I: DD
rlll—[1[0jll()|0]l1 byte 2: E9
The contents of the IX register are loaded into the

program counter. The next instruction is fetched
from this new address.

I o wP
a]

[I |

{}
v

2 M cycles; 8 T states; 4 usec @ 2 MHz

Addressing Mode: lmplicit.

Flags:

Example.

/__‘
o~

OBJECT CODE

286

H PN N C

[jALZI I LI l l?(noaffect).

1P (X)

Before: After:

1 { 80F1 1 x| aoF1]
RC | sman | el SR

JP (1Y)

Function:

Format:

Description:

Deara Flow:

Timmtng:

Adcdressing Muode:

Flags:

Examnple:

T

FD
E¥

b —
OBJECT CODE

THE Z80 INSTRUCTION SET

Jump 1o 1Y
PC ~- 1Y

I | 1 -I !I !IE_[I_) byIEI:FD
{t‘llllolllololj byte 2; E9
The contents ol the 1Y register are moved 1nio the

program counter, The next instruction will be fel-
ched from this new address.

2 M cycles; 8 T states; 4 usec @ 2 MHz
implicit.

PsY N

lez‘ lHl 1 lcj(noerfect).

JP (1Y}

Before: After:

| AAB 1w AA4B |
rel E410] ec

287

PROGRAMMING THE Z80

JR ce, e Jump e relative on condition.
Function: if cc true, PC+~ PC + ¢
Format.
[o]olulc:clololo] byte |
{ : : : e;2 I I : J] byte 2: offset value
Description: If the specified condition is mel, the given offset
value 1s added to the program counter using two's
complement arithmetic so as to enable both for-
ward and backward jumps. The offset value is
added to the value of PC + 2 (after the jump). As
a result, the effective offset is -126 to + 129 bytes.
The assembler automatically subtracts 2 from the
source offset value to generate the hex code. If the
condition is not met, the offset value is ignored
and instruction execution continues in sequence,
cc may any one of:
NZ — 00 NC — 10
Z -0l C - 11
Data Flow: i L S —
A Fl L
B o \/ JR
o] E ALU e-2
H L + T —
el
s ____L _____ 1
27 CIIIITITl
Tinung: WSeT
M cycles: | T states: | @ 2 MHz;
condition
met: 3 12 6
condition
not met: p 7 3.5

288

THE Z80 INSTRUCTION SET

Addressing Mode: Relative.

Byte Codes: ce: NIT 2 NC C
[20] 28] s0] 8]
Flags: 5 2 H PV N C
(I T TTTTTT moetfe.
Example: JR NC, § -3 $ = current PC
Before: Afler:
[o Jr o I
M~ [e
30
F8
/—\-.__.J
OBJECT CGDE

289

PROGRAMMING THE 280

JRe

Function.!

Format:

Description:

Data Flow.

A

Jump e relative.
PC<PC + ¢

[o[o]ol-]ulolo]oJ byte 1: I8

I T T T 1 T T T]

| e2 —| byte 2: offset value

1 1 1 1 1 'l

The given offset value is added to the program
counter using two's complement arithmetic so asto
enabie both forward and backward jumnps. The off-
set value is added to the vaiue of PC + 2 (after the
jump). As a result, the effective offset is -126 to
+ 129 bytes. The assembler automatically subtracts
2 from the source offset value to generate the hex
code.

B
D
H

C —
JR
£ ALU e-2
L +
/‘_—_‘

v VA< |

Tinung:

Addressing Mode:

Flags:

Example:

TN

1B
D2

)
QBJECT CODE

290

3 M cycles; 12 T states; 6 usec @ 2 MHz

Relative.
s 2 H PV N C
[I I [[l I | J (no effect)
JR D4
Before: After:
P B100 | T

(This is a backwards jump.)

LD dd, (nn)

Function:

Formai.

Description:

Data Flow:

THE Z80 INSTRUCTION SET

Load register pair dd from memory locations ad-
dressed by nn.

ddlo\v e (nn); ddhlgh e (nn +1)

CT L Te [T To] e t: B

ﬁ]lld;dli'loll !l}bylez

| S B ERS S s byte 3: address,
r PNV] lgw order ;
T T l byte 4: address,
C v 0 v high order

The contents of the memeory location addressed by
the memory locations immediately following the
opcode are loaded into the low order of the
specified register pair. The contents of the
memory location immediately following the one
previously loaded are then loaded into the
high order of the register pair. The low order byte
of the nn address immediately follows the opcode.
dd may be any one of:

BC - 00 HL - 10
DE - 0l SP - 11
TN
e]
A I
B c i 0]
D 3 LN
H L /—\J
sel :]

291

PROGRAMMING THE Z80

Timing:

6 M cycles; 20 T states: 10 usec @ 2 MHz

Addressing Mode: Direct,

Byte Codes:

Flags.

Example:

£ED
58
21

OBJECT CODE

292

dd: BC DE HL SP

to- [40] 0] en] 7o]

5 Z H P N C

[—[l 1 I l] l_] (no effect)

LD DE, (5021)

Before: After:

o| DBE2 e o % 7 ¢

5021 Fa 5021 F4
5022 30 5022 30

LD dd, nn

Function:

Format:

Description:

Data Flow:

Tinung:

Addressing Mode:

Byte Codes:

Flags:

THE Z80 INSTRUCTION SET

Load register pair ¢d with immediate data nn.

dd = nn

| l] OIOEberI

T 1 byte 2: immediate
1 I 1_1 | b1} data, low order

I T T Ibyte3: mmmediate
Y (DS S T data, high order

1]

1]

T
1

The contents of the two memory locations im-
mediately following the opcode are ioaded into the
specified register pair. The lower order byte of the
data occurs immediately after the opcode. dd may
be any one of:

BC - 00 HL - 10
DE - 0] SP - 11

/\d
3 E:_L1
L n

n

o[] .

I O ® »
2]

3 M cycles; 10 T states; 5 usec @ 2 MHz

Immediate.

dd: BC DE HL &P

H PY N C

[S—IZI T l | l IJ (no effect)

293

PROGRAMMING THE 280

Example; LD DE. 4131
Before: After:
N o[0394 e B =
n
ET)

41

OBJECT CODE

294

LDr,n

Function.

Format:

Description:

Data Flow:

Tinung:

Addressing Mode:

Byte Codes:

Flags:

THE Z80 INSTRUCTION SET

Load register r with immediate data n.

r+n
| 0 [~—i—I | byte 1
l — _'._ L — j byte 2: immediate data

The contents of the memory location immediately
following the opcode iocation are loaded into the
specified register. r may be any one of:

A — 111 E — 011

B — 000 H - 100

C - 001 L — 101

D - 010

T —

A
B c LD
] E<'_— n
H ¢ a—

2 M cycles; 7 T states; 3.5 usec @ 2 MHz

Immediate.

r:l;[oil;[zsllea[;[:eJ

5 Z PV N C

l I [l l ITJ] {no effect).

295

PROGRAMMING THE Z80

Example: LD C,3B
Before: After:
(T o] <7
[
38
L'_/
OBJECT CODE

296

THE Z80 INSTRUCTION SET

LDr,r Load register r from register r’,
Function: r+~r
Format: — —_—
Lol ===
Description: The contents of the specified source register are
loaded into the specified destination register. r and
£’ may be any one of;
A — 111 E — 011
B - 000 H - 100
C - 001 L - 101
D - 010
Data Flow: A
B C |
o E
H L
Timing: I M cycle; 4 T states; 2 usec @ 2 MHz

Addressing Mode:

Implicit.

A B C D E H L (source)

Byte Codes:
A {7F| 78|79 |7a| 78] 7C| 7D
B |47]|a0|41]a2]a3|ada]as5
C |4 |48]a9]aalaB]ac]ap
O |57]|50)5 |52[53]|54](55
E |5F|58]|59]5a]s8|sc|sD
H [67]|e0]61]|62]63]06d]65
L |oF e8| a9 |eales]sc]en

{dest.)
Flags: $ Z H PPV N C

HEEEEEEN

(no effect).

297

PROGRAMMING THE Z80

Example: LD H, A

Before: After:

Al e | Al e]

o] T

&7

e
OBJECT CODE

298

THE Z80 INSTRUCTION SET

LD (BO), A Load indirectly addressed memory location (BC)
from the accumulator.

Function: (BOY — A
Format:
:o'o]o[oh'olq lol 02
L ! . 1 l
Description: The contents of the accumulator are loaded tnto

the memory location addressed by the contents of
the BC register pair.

Data Flow:
A
8 C
0 | [U]
. 1 oz
DATA
Tinung: 2 M cycles; 7 T states; 3.5 usec @ 2 MHz

Addressing Mode. Indirect.

Flags: s .z M _PWN C
L1 L1 1] tmoeffeen.
Example: LD (BC), A
Before: After.
Al] |
B 4109 Jc s 2109 Je
/\1 7N
02 4109 1E 4109 W

OBJECT CODE

299

PROGRAMMING THE Z80

LD (DE). A

Function:

Format:

Description:

Data Flow:

Tinmng:

Addressing Mode:

Flags:

Example:

OBJECT CODE

300

A

D

Q392

I o md»

Load indirectly addressed memory location (DE)
from the accumulator.

(DE)~ A
Telol e To o]

The contents of the accumulator are loaded into
the memory location addressed by the contents of
the DE register pair.

. 51
L2

2 M cycles; 7 T states; 3.5 usec @ 2 MHz

Indirect.

s Z H P/Y N C
[TTTTTTT] Gt
LD (DE), A
Before: After:
Al e]
{ D392 1e of 0392 le
/\/

F7 0392

THE Z80 INSTRUCTION SET

LD{HL),n Load immediate data n into the indirectly ad-
dressed memory location (HL).

Function: (HL) < n

Format:

Lefol [Te] i Te [e] by 1:36

I" T TrT v T byte 20 immediate
T S data
Description. The contents of the memory location immediately

following the opcode are loaded into the memory
location indirectly addressed by the HL data
pointer

Data Flow:

I QO ® »

Timing: 3 M cycles; 10 T states; 5 usec @ 2 MHz

Addressing Mode: Immediate/indirect.

Flags: s Z H P/Y N C
l I] l I l [l I (no effect).

301

PROGRAMMING THE 280

Example:

T——

k-]

5A

/\._‘___
OBJECT CODE

302

H

Ad42

Ju

LD (HL), 5A

Before: After:

(Ad42 Jo H A342
0 A2 [T

/—_4

THE Z80 INSTRUCTION SET

LD (HL),r Load indirectly addressed memory location (HL)
from register r.

Function: (HL) < r

Format:

Lol fel=—]

Description. The contents of the specified register are loaded
into the memory location addressed by the HL
register pair. r may be any one of:

A - 111 E — 011
B - 000 H - 100
C — 00! L - 101
D - 0i0
Data Flow:
A
B
o E DATA
H L
| I
Timing: 2 M cycles; 7 T states; 3.5 usec @ 2 MHz

Addressing Mode: Indirect.

Byte Codes: m A B8 C D E H L
lnlmlﬂlnlnlu[ul

303

PROGRAMMING THE Z80

Flags: sz H PV N C
l l l [[[| | | {no effect).
Example: LD (HL), B
Before: After:
s&] s &]
Ml cso1 o H| 501
/_\“—-—' /_\‘-—-_.
70 501 2A cs01
T — b —
OBIECT CODE

304

THE Z80 INSTRUCTION SET

LDr,(IX + d) Load register r indirect from indexed memory
location (IX + d)

Function. r—{UX + &

Format:

I | lo [| I byte [: DD
ol i l——r—J i1]l1]o byle 2
[]e]
T T J byte 3: offset value

Description: The contents of the memory location addressed by
the 1X index register plus the given offset value,
are loaded into the specified register. r may be any

one of:
A — 111 E - 011
B - 000 H - 100
C — 001 L — 101
D - 010
DATA
Data Flow:
afa Flow N) N.—}
8 c
5 : S /\—1
H L LD
x| } d
/‘____J
Tinung. 5 M cycles; 19 T states; 9.5 usec @ 2 MHz
Addressing Mode: Indexed.
Byte Codes: r A B € D E H L

oo:ln].aolmlsolseloolés -d

305

PROGRAMMING THE Z80

Flags.‘ 5 Zz H PvY N C
[(TITITTT] ot
Example: LD E, (X + 3
Before: After:
[e 57
x| 3020 | x| 3020 |
oo 3020 2A 026 24
5€
05
—~_ 3025 15 3025 15
OBJECT CODE T~

306

LDr, (Y + d)

THE Z80 INSTRUCTION SET

Load register r indirect from indexed memory
location (1Y + d)

Function: r+ (Y + d)
Format:
Lol el belefo]t] byrer: P
o] ']'_'T‘l] o] byte2
[— 99—/] byte 3: offset value
Description: The contents of the memory location addressed by
the 1Y index register plus the given offset value,
are loaded into the specified register. r may be any
one of:
A - 111 E - 011
B - 000 H - 100
C - 001 L - 101
D - 010
S
DATA
Darta Flow:
ala ow A /\‘_‘.~|
8 ¢ T
D E
H L)
Iy] d
T —
Timing: 5 M cycles, 19 T states; 9.5 usec @ 2 MHz

Addressing Mode:

Indexed.

307

PROGRAMMING THE 280

B Codes: rr A B C D E H L
yie Lodes Fo-’75[4alaelso]s¢|oa|ael-d

Flags: 5 Z H PV N C

[TT T T[] oo
Example: LD A, (IY + 2)

Before: After:

wl[BOOS 1 e[B0OS

FD BOOS 61 BOOS 61

7E

02 8007 F9 BOO7 F9
] | N~
QBJECT CODE

308

THE Z80 INSTRUCTION SET

LD (X + d),n Load indexed addressed memory location (IX +

Function:

Format:

Description:

Data Fiow:

Tinmung:

Addressing Mode:

Flags:

d) with immediate data n.

(IX +dy=n

[|
| o

|:_ - : {’ ' ' Yﬁ| byte 3: offset value

I[ol| |I|Io[|]bytel:DD
[o]] l

I
of Ti]o] [1To]byte2: 36

1
T T T oA T] byte 4. immediate
A1 A A l 1 I A d

ata

The contents of the memory location immediately
following the offset are transferred into the
memory location addressed by the contents of the
index register plus the given offset value.

A DATA
. C;
o t
H /\
ix] | 0
7
N —

5 M cycles: 19 T states; 9.5 usec @ 2 MHz

Indexed/immediate.

s 2 PN N C

rl I FH] [] I] (no effect).

309

PROGRAMMING THE Z80

Example: LD (X + 4), FF

Before: After:

X[e 1 ox[BI09

DD B9 &0 B109 60

)

4

FF B10D 4 BIODEZZ Fr]
b V\.__J

OBJECT CODE

310

THE Z80 INSTRUCTION SET

LD (IY + d),n Load indexed addressed memory location (1Y +

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

d) with immediate data n.

(IY + d}) = n
vi1|r i |ijo |1 | bytel: FD
[T[o[1[1[o]1 [1 I[Ll byte 2: 36
[-—{ } } c'g { —z I] byte 3: offset value
[11 ' T T 71| byte4: immediate
T T TR S N data

The contents of the memory location immediately
following the offset are transferred into the me-
mory location addressed by the contents of the
index register plus the given offset value.

A vl LD
B c ~
D E

d
H| L it .
v |]

i

5 M cycles; 19 T states; 9.5 usec @ 2 MHz

Indexed/immediate.

Pv N C

| no effect).

m

PROGRAMMING THE Z80

Example:

s

FD
6
03
BA

/\/

OBJECT CODE

312

LD (IY + 3), BA

Before: After:
iy [0100 1 | 0100
0100 D2 0100 D2
2 82
OF oF
0103 o4 0103 %

LDAX + d)r

THE Z80 INSTRUCTION SET

Load indexed addressed memory location (IX +
d) from register r.

Function.: (IX + dyw—r
Format:
Ll Jofilefife]] bytet:DD
Lol e[[lof=ror] bye2
I ' 1 1 1] l byte 3: offset vatue
Description: The contents of specified register are loaded into
the memory location addressed by the contents of
the index register plus the given offset value. r may
be any one of:
A — 111 E - 011
B — 000 H - 100
C - 001 L - 101
D - 010
Data FI Vi
a N
a Flow R , ~
B d
o iy /_I
H L))
x|] d
/‘\-_.’
Tinung: 5 M cycles; 19 T states; 9.5 usec @ 2 MHz

3

PROGRAMMING THE Z80

Addressing Mode: Indexed.

Byte Codes: rr A B C D E H L
oo-lrrlrolnl?:l?:;lnlwsl-d

Flags: s 2 H PAVN €

[l I l [I I l J (no effect).

Example: LD (IX + D, C
Before: After:
e e & e
x| 4462 | | 4462 |
/—___ o —
DD 4462 9b
21 4463 OF
or P
b —
OBJECT CODE

314

THE Z80 INSTRUCTION SET

LD (IY + d),r Load indexed addressed memory location (IY +
d) from register r.

Function: (1Y + d) +~r

Formati:

[l
T T

[T T TeT] byero
TT Ll b

] byte 3: offset value

I 1

Description: The contents of the specified register are loaded
into the memory location addressed by the con-
tents of the index register plus the given offset
value. r may be any one of:

A — 1] E — 011
B - 000 H - 100
C - 001 L - 10!
D - 0l0
Data Fi D
{
ata Flow .]
B C [—— /-\-—.‘
o E
H L D
Y d
f'"_‘_‘_/
Tinung: 5 M cycles; 19 T states; 9.5 usec @ 2 MHz
Addressing Mode: Indexed.
Byte Codes: w A B C D E H |

FD-,E]?O I7| l?2 I73 I74 l?S]-d

315

PROGRAMMING THE Z80

Flags:

Example;

FD

03

OBJECT CODE

316

5 Z H

PV N C

[] | I l l I l l(noeffect).

LD (Y + 3), A

Before: After:
A] N
[SABA] [ABA
N I~
SAba 2! 5AB4 21
SAB7 5A 5AB7 W
-

THE Z80 INSTRUCTION SET

LD A, (nn) Load accumulator from the memory location
{nn).

Function: A~ {nn)

Format:

:[: sloln[O] byte 1: 3A
T lbyte 2: address, low

L TR order byte

T T '_J byte 3: address, high

' =t order byte
Description: The contents of the memory location addressed by

the contents of the 2 memory locations immediate-
ly following the opcode are loaded into the ac-
cumulator. The low byte of the address occurs im-
mediately after the opcode.

Data Flow: TN
A —— DATA
B8 C -t
D E
H !
/\
o
n
n
/\/
Timing: 4 M cycles; 13 T states; 6.5 usec @ 2 MHz

Addressing Mode: Direct,

7

PROGRAMMING THE Z80

Flags:

Examiple:

N

A

01

3

~

0BJECT COOE

318

H PAYN C

lslzl 1 I! l]] (no effect).

LD A, (330D

Before: Alter:

A N i

N

3301 28 330t 2B

LD (nn), A

Function:

Formai:

Description:

Data Flow:

Timing:

Addressing Mode:

T QO @ >

THE Z80 INSTRUCTION SET

Load directly addressed memory location (nn)
from accumulator.

{nm+~ A

] byte 2: address, low

order

] byte 3: address, high
order

|y = }—
—1— == p—
Y U [S U W

o]]o] byte1:32
——
f T [
1 1 1

badbod —

The contents of the accumuiator are loaded into
the memory location addressed by the contents of
the memory locations immediately foliowing the
opcode. The low byte of the address immediately
follows the opcode.

:c(>=
N
~

4 M cycles; 13 T states; 6.5 usec @ 2 MHz

Direct.

319

PROGRAMMING THE Z80

Flags: 5 z H PV N C

[l l I l l I Ij (no effect)

Example: LD (0321), A
Before: After:
N Am]
/_A /\/
32 0321 06 02
21
0 TN

OBJECT CODE

320

LD (nn), dd

Function:

Format:

Descriptions:

Data Flow:

THE Z80 INSTRUCTION SET

Load memory locations addressed by nn from
register pair rr.

(nn) *ddjgw; (nn + 1) —ddhigh

Pl T o]] Jo]t] byte1: ED
iOJI[dZdIOlO]l [j byte 2

r 1 7717 byte 3: address,
L 1 1 1 r|‘ L 1 L low order
I S S J byte 4: address,
I I high order

The contents of the low order of the specified
register pait are loaded into the memory location
addressed by the memory locations immediately
following the opcode. The contents of the high
order of the register pair are loaded into the
memory location immediately following the one
loaded from the low order. The low order of the
nn address occurs immediately after the opcode.dd
may be anyone of:

BC - 00 HL - 10
DE - 01 SP - 11
e
R o
. c dd
o 3 n]
H L n
sp |] TN

L=

321

PROGRAMMING THE 280

Tinung: 6 M cycles; 20 T states; 10 usec @ 2 MHz
Addressing Mode: Direct.

Byte Codes: dd: BC DE HL SP

- [o] sa]] %]

Flags: s 2 H P/Y N_C

[l [I l] [[](noeffect).

Example: LD (040B), BC
Before: After:
B[0221 ool 0221 c
N
ED 0408| 08 04082]
4 040C AB 040C //JW/
0B
04 TN
QBJECT
CODE

322

LD (nn), HL

Function:

Format:

Description:

Data Fiow:

Tinmung:

Addressing Mode:

X O ®»

THE Z80 INSTRUCTION SET

Load the memory locations addressed by nn from
HL.

{(nn) = L;{nn + D+ H

Ledols FUIOTOl IOIbvtelzz

P ——— T byte 2: address,
N low order
1 byte 3: address,
LT high order

The contents of the L register are loaded into the
memory location addressed by the memory loca-
tions immediately following the opcode. The con-
tents of the H register are loaded into the memory
location 1mmediately following the location
loaded from the L register. The low order of the
nn address occurs immediatety after the opcode.

N

LD

5 M cycles; 16 T states; 8 usec @ 2 MHz

Direct.

323

PROGRAMMING THE 280

Flags:

Example:

OBJECT
CODE

324

Z H P/V N C

CTTTITII] woefeen.

LD (40B9), HL

Before: After:

nLmea oW mea

/_, /_/
4089 20 4089 [487
40BA 9F w08l 07

V\/

_

LD (on),IX

Function:

Format:

Description.

Data Flow.

Timing:

Addressing Mode:

r o ® >

THE Z80 INSTRUCTION SET

Load memory locations addressed by nn from 1X.

(nn) + IX|ow; (nn + 1) < 1Xpjph

(LTl [[T [e]] bwe s: oD

o{o|rfolo]o [| o byte 2: 22
[T byte 3: address,
e oy low order
[T T byte 4: address,
{ i 1 1 : I 1 | hlgh order

The contents of the low order of the IX register
are loaded 1nto the memory location addressed by
the contents of the memory location immediately
following the opcode. The contents of the high
order of the IX register are loaded into the
memory location immediately following the one
loaded from the low order. The low order of the
nn address occurs immediately after the op code.

Y
7//////

6 M cycles; 20 T states; 10 usec @ 2 MHz

Direct.

325

PROGRAMMING THE Z80

Flags:

Example:

DD

22

28

01

OBJECT
CODE

326

s 2 H PV N C

m l I l JJ_] (no effect).

LD (012B), IX

Before: After:

[_oaoe) x 0404

=

0128 D3 o128 U706 /)
oy %A ovzc 0

LD (nn), 1Y

Function.

Format:

Description:

Data Flow:

Tinung:

Addressing Mode:

I oW >

THE Z80 INSTRUCTION SET

Load memory locations addressed by nn from Y.

(nn < IY|gwi (nn + 1) = [Yhjop

LT el e 1 0
r—l—l—[[oTo [Jo] byte2: 22

L T_T_ 1T) byte 3: address,
L+ 0 0 v 1 Jlow order
(T T 7T T T] byte 4: address,
n
L 1 1 1 1 L 1 1 J h]gh order

The contents of 1he low order of the I'Y register are
loaded into the memeory location addressed by the
contents of the memory locanons immediately
following the opcode. The contents of the high
order of the IY register are loaded into the
memory location 1mmediately following the one
loaded from the low order. The low order of the
nn address occurs immedialtely after the opcode.

N

LD

N
_

6 M cycles; 20 T states; 10 usec @ 2 MHz

Direct.

327

PROGRAMMING THE 280

Flags:

Example:.

FO

22

04

80

/—\/

OBJECT CODE

328

5 Z H PV N C

[l l J l [I lJ (no effect)

LD (BD04}, 1Y

Before: After:

[p2oe | | D204

8004 %
8005 8

N
TN

THE Z80 INSTRUCTION SET

LD A, (BO) Load accumulator from the memory location in-
directly addressed by the BC register pair.

Funcrion: A~ (BOY

Format:

(oo TeTs [To] 5] oa

Descripuion. The contents of the memory location addressed
by the contents of the BC register pair are loaded
into the accumujator.

Data Flow:
B
8 ‘ C /\—’J
D |E DATA
H i it _l_.
’\J
Tinning: 2 M cycles; 7 T states; 3.5 usec @ 2 MHz

Addressing Mode: Indirect.

Flags: s 2 H PV N €

LI T I I 111 toeffen.

Exariple: LD A (BO
Before: After;
a[A] NZZd 2
8 3201 lc s 3201 C
TN N N
0A 2201 4 3201 41

OBJECT CODE

329

PROGRAMMING THE Z80

LD A, (DE)

Function:

Format.

Description:

Data Flow:

Tinung:

I <o ® P

Addressing Mode:

Flags:

Example:

1A

OBJECT CODE

330

A

D

6051

Load the accumulator from the memory location
indirectly addressed by the DE register pair.

A +~ (DE)

[elofol frfofi]of1a

The contents of the memory location addressed by
the contents of the DE register pair are loaded 1nto
the accumulator.

i

=1

L /___J

2 M cycles; 7 T states; 3.5 usec @ 2 MHz

Indirect.

H PV N C

FSLZT l i—l] IJ(Noeffect).

LD A, (DE)

Before: After:

57

[eos e of 6as1 e
Q9 &051 o9

T ——] b

THE Z80 INSTRUCTION SET

LD A,1 Load accumulator from interrupt vector register |.
Function: A-—1
Format:

Cleledel [lol] by oo
Lol [al [l de[] byre2: 57

Description; The contents of the interrupt vector register are
loaded into the accumulaltor.

Dara Flow:

Timng: 2 M cycles; 9 T states; 4.5 usec @ 2 MHz

Addressing Mode: Emplicit.

Flags: S zl H PV N C Setto th ent
el to the contents
(el Tol Lol I-Siete
Example: LD A,lI

Before: After:

T~ T W ® g [e)

ED
57

OBJECT CODE

331

PROGRAMMING THE 280

LD ILA Load Interrupt Vector register [from the ac-
cumulator.

Function: l+— A

Format. I|[|I|]ol|l|loluj byte 1: ED

[0|r|0]0|o||l.lglbyte2:47

Description: The contents of the accumulator are loaded into
the Interrupt Vectlor register,

Datag Flow:

I O @
N

VY

Timing: 2 M cycles; 9 T states; 4.5 usec @ 2 MHz
Addressing Mode: lmplicit.

Flags: s Z H PV N €
[TTTITLT] toetrecs
Example: LD LA
Before: After:
/_4 al e [p2 | al o | e
ED
a7

GBJECT CODE

3R

LD A,R

Function:

Format:

Description.

Dara Flow:

Tinming:
Addressing Mode:

Flags:

Example:

OBJECT CODE

THE Z80 INSTRUCTION SET

Load accumulator from Memory Refresh register
R.

A+—R

rj |I||o[|[110m byte 1: EDw
Gl LT by s

The contents of the Memory Refresh register are
loaded into the accumulator.

N

8 C

D E

H L
R

2 M cycies; 9 T states; 4.5 usec @ 2 MHz

Implicit.

H PV N C

e[l o I~[o]

set to contents of 1FF2

LD A,R

Before: After:

Al &2 R[e | AEZIRRZZAR A

333

PROGRAMMING THE Z80

LD HL.(nn) Load HL register from memory locations addres-

sed by nn.
Function: L={mhiH<+~(an+1D
Format:
[olo[||oll l(]ll ILI byte 1: 2A
l—' L S SN J byte 2: address, low
H 2 y 1 i] 1 order
[LI S S S S] byte 3: address, high
bt L 11| order
Description: The contents of the memory location addressed by
the memory locations immediately after the op-
code are {oaded into the L register. The contents
of the memory {ocation afler the one loaded into
the L register are loaded into the H register. The
low byte of the nn address occurs immediately
after the opcode.
Data Flow: 1
A
B c n
D E
H V77 ///// L
Tt ,
| v
Titning: 5 M cycles, 16 T states; 8 usec @ 2 MHz
Addressing Mode: Direct.
Flags: s 2 H PVN C

f l J l] L [—l {no effect)

334

Example:

OBJECT CODE

THE Z80 INSTRUCTION SET

LD HL, (0024)

Betore: After:

M o8eF M Wl e

N

0024 69 0024

0025 4D 0025

335

PROGRAMMING THE 280

LD 1X, nn Load IX register with immediate data nn.
Function: IX < nn
Format:

(T To L o] owe -
[o]ol IOIOIO]OIbeteZ 21

(T 1 O beteli immediate
1

I - ' L1 data, low order
’ S I S S N S J byte 4: immediate
11 1 1t Jdata, high order
Description: The contents of the memory locations immediale-

ly following the opcode are loaded into the IX
register. The low order byte occurs immediately
after the opcode.

Data Flow:

I 0 o>
”m

Tinnng: 4 M cycles; 14 T states; 7 usec @ 2 MHz

Addressing Mode: Immediate.

Flags: s 2 H PY N C

LT T 1T T T 1] (oeffey

336

THE Z80 INSTRUCTION SET

Example: LD IX,BOB1

Before: After:

T~ x [306F | <

8] 2]
21

Bt
BO

OBJECT CODE

kX7)

PROGRAMMING THE Z80

LD IX, (nn) Load IX register from memory locations ad-
dressed by nn.

Funcrion; Xjow = (nnk Xpigh = (nn + 1)

Clelo el fr[of] by r:op
F’T “7—[“'7@—'_'[;-[7_‘[3 byte 2: 2A

(T byte 3: address,
| T low order

[——v——r'-r"**r ~v—T 1 byle 4: address,
o 0 | high order

Format:

Descriptions: The contents of the memory location addressed by
the memory locations immediately following the
aopcode are loaded into the low order of the IX
register. The contents ol the memory location im-
mediately following the one loaded into the low
order are loaded into the high order of the IX reg-
tster. The low order of the nn address immediately
follows the opcode.

Data Flow: TN
- T3]
A ——————{
B C -
0 E
H e

n
n
N /__)
;
¥

Tinung: 6 M cycles; 20 T states; 10 usec @ 2 MHz

Addressing Mode: Direct.

338

THE ZB0 INSTRUCTION SET

Flags: 5 2 H PAY N C

l l] J I l l l] (no effect).
Examiple: LD IX, (010B)

Before: After:

x| FF4B 1 Y

oo owe 00 0108 00

2A 010C 32 a0 2

08

¢l ’__) ’_/
TN

OBJECT CODE

339

PROGRAMMING THE 280

LDIY, nn

Function:

Formati:

Description:

Data Flow.

Tinung:

Addressing Mode:

340

Load 1Y register with immediate data nn.

1Y = nn

[ST T T R T I I+ I I byte I: FD
lolurT'J_ololo 0 nlbyle2:21
[S S A l byte 3: immediate
' daia, low order
Efr T J byte 4: immediate
bt L data, high order

The contents of the memory locations ummediate-
ly followtng the opcode are ioaded into the 1Y
register. The low order byte occurs immediately
after the opcode,

4 M cycles; 14 T states; 7 usec @ 2 MHz

Immediate.

THE Z80 INSTRUCTION SET

Flags: 5 2 H PV N C

U I l l I l lj (no effect)

Example: LD 1Y, 21

Before: After:

TN | 0498 | Y5

FD
21
21

OBJECT CODE

341

PROGRAMMING THE 780

LD 1Y, (nn)

Function:

Format:

Description:

Data Flow:

342

Load register IY from memory locations addressed
by nn.

lYlOW +~ (nn}); thigh —(nn +

G LT Lo ove 70
| [BE }_ byte 2: 2A

S byte 3: address,
I T S low order
LA S, AL . l byte 4: address,
| I A high order

The contents of the memory location addressed by
the memory locations immediately following the
opcode are loaded into the low order of the 1Y
register, The contents of the memory tocation im-
mediately following the one loaded into the low
order are toaded into the high order of the IY
register. The low order of the nn address im-
mediately follows the opcode.

/

LD

0 3 .
H L V‘_/
v)
[
TN

THE Z80 INSTRUCTION SET

Tinming: 6 M cycles; 20 T states; [0 usec @ 2 MHz

Addressing Mode: Direct.

Flags: s 2 H

HEEE]PNLN Lcl (no effect).

Example: LD 1Y, (500D)
Before: After:
1Y | 6002 | Y s
= T
O 5000 03 5000 03
2A S00E 44 500€ 44
B TN
OBJECT
CODE

343

PROGRAMMING THE 280

LD R,A

Function:

Format:

Description:

Data Flow:

Tinung:
Addressing Mode.

Flags.

Exainple:

ED
4F

OBJECT CODe

344

Load Memory Refresh register R from the ac-
cumulator.

R+~A

Lu[.[rlOLL]uln] byte |: ED
T Tole [[L Tr] brez 4

The contents of the accumulator are loaded 1nto
the Memory Refresh register.

I o ® >
m

RG]

2 M cycles; 9 T states; 4.5 usec @ 2 MHz

[mpliait.

H PV N C

[TTTTT L] woeite

LD R. A

Before: After:

Al or | o Al o 1 RPZEGT

LD SP, HL

Function:

Format:

Description;

Data Flow:

Tirning:

THE Z80 INSTRUCTION SET

Load stack pointer from HL.

SP <~ HL

LB D el foe] o

The contents of the HL register pair are loaded in-
to the stack pointer.

C

I o = »

E

B

I M cycles; 6 T states; 3 usec @ 2 MHz

Addressing Mode: Implicit,

Flags:

Example:

Fo
OBJECT
CODE

5 Z —H_l_

PV N C

_] _ , (no effect)

LD SP, HL

Before: After;
H[Q6AF jL HF DOAF fL
5P | OBOE J SPW SAF A

345

PROGRAMMING THE Z80

LD SP,IX Load stack pointer from IX register.
Function: Sp—1X
Format:

‘_'L' of | .Io[.|byle1:DD
O T Jeto]] bye2Fo

Description: The contents of the 1X register are loaded into the
stack pointer.

Data Flow: o
A
B
o E
H !
1% P |
s Wg
Tinung: 2 M cycles; 10 T states; 5 usec @ 2 MHz

Addressing Mode: Implicit.

Flags: sz H_PvNC
I:_ L L_J ‘ r'_I_l J {no effect)
Example: LD SP,IX
Before: After:
(\/ T 0902 o[e]
0o
F9 s 54A0 | s w0277
CODE

346

THE Z80 INSTRUCTION SET

LD SP.1Y Load stack pointer from 1Y register.
Function: SP ~ 1Y
Format:

L e e v
O LT e o] ez b9

Description: The contents of the 1Y register are [oaded into the
stack pointer.

Data Flow:
A
8 C
o E
H L
i I
Timing: 2 M cycles; 10 T states; 5 usec @ 2 MHz

Addressing Mode: Implicit.

Flags: s 2 H__PYN C
[T LT IT L] wmoere
Example: iD SP,1Y
Before: Aflter:
N
o Y T

\\
N
N

AW

se 004 | w2

OBJECT CODE

347

PROGRAMMING THE 280

LDD Block load with decrement.

Function: (DEY+~ (HL); DE+< DE - |; HL+< HL - |;
BC <« BC -1

Forinat:

||T| l 1 lol | l'—I(LL'] byte I: ED
[Tel el ToTelo] byie2: a8
Description: The contents of the memory location addressed by

HL are loaded nto the memory location address-
ed by DE. Then BC, DE, and HL are all

decremented.
Data Flow: ,m
ata Floy N T
W// c]
N s
W7 e
Timrnig: 4 M cycles; 16 T states; 8 usec @ 2 MHz

Addressing Modes: [ndirect.

Flags: PV N C
l l ITOLIXU—I

t Reset if BC = 0 after
executllon, set otherwise.

348

THE Z80 INSTRUCTION SET

Example: LDD
Before: After:
B oBO4 c 8 A
D 8211 E D //////////// //////// E
H 8438 L W // g
£0 6211 90 sy
AB T ~—] ~
b
OBJECT CODE /—_l /_1
8438 62 4438 62
b=] T

349

PROGRAMMING THE Z80

LDDR Repeating block load with decrement.
Function: (DE)« (HL); DE~DE — I; HL -~ HL - I;
BC < BC - I; Repeat until BC =
Format:
[elefofr[efolt] byet:ED
[I lolrlllllololol byte 2; B8
Description: The contents of the memory location addressed by
HL are ioaded into the memory location address-
ed by DE. Then DE, HL, and BC arc all
decremented. 1f BC # 0, then the program counter
15 decremented by 2 and the instrucnon re-
executed.
O et e s aoi I diinmhhni 1
. ;j//-////,w/; oty] :
Dara Flow: 3 I;/////”/ gy i | E
SEN
IR
11
Pl
P
4 b
. 2R
N 7
L]
~__/
Tinung: BC # 0: 5 M cycles; 21 T siates; 10.5 usec @ 2

MHz.
BC = 0: 4 M cycles; 16 T stales; 8 usec @ 2 MHz

Addressutg Mode: Indirect.

Flags: s PV N C

[T folfolel]

350

Example: LDDR

Before:

o} 06B2

Hl 9035

O8AF Bl
04BO 04
0681 DF
06B2 36
OBJECT CODE
TN

s012[92

%023| OE

o3| ©1 |
9035| BF

THE Z80 INSTRUCTION SET

After:

< sl a7)c
e WW&W%
W)

DoAF
06BO

00B1 //////ﬁy/
0882 /W

9032 92
9033 DE
9034 3
9035 BF

351

PROGRAMMING THE Z80

LDI Block load with increment.

Function: (DE)~ (HL); DE+~ DE + |; HL - HL + [;
BC ~BC - 1|

Format.:

E[‘l‘["—r‘l'l"llj byte 1: ED

Illolllolo]u]o]oJ byte 2: AD

Description: The contents of the memory location addressed by
HI are loaded into the memory location addressed
by DE. Then both DE and HL are incremented,
and the register pair BC is decremented.

Dara Flow:
al] .
By SQUNTERTZ /
DY DESTIINATION’ e
W SQURCE 774\ DATA |
Timing: 4 M cycles; 16 T states; 8 usec @ 2 MHz

Addressing Mode: Indirect.

Flags: s Z H PV N C

Reset if BC = 0 after
¢xecution, set otherwise.

352

THE Z80 INSTRUCTION SET

Example: LDl
Before: After:
B 0006 B 0005 o
D 34B1 pf - 3482 3
H 3902 H 3903 L
34B1 0A 3481
b —
OBJECT CODE (_
3902 42 02 a2
/_""____‘ /—__._‘

353

PROGRAMMING THE Z80

LDIR Repeating block load with increment.

Function: (DE) < (HL); DE+—DE + I, HL — HL + {;
BC <« BC - !; Repeat until BC =0

Format.

[T Lo [o] bwer:ep

[:lc]u'uLololoIOI byte 2: BO

Description: The contents of the memory location addressed by
HL are loaded into the memory location ad-
dressed by DE. Then both DE and HL are in-
cremented. BC is decremented. If BC # 0 -then
the program counter is decremented by 2 and the
instruction s re-executed.

Data Flow:

Timing: For BC # 0: M cycles: 21 T states; 10.5 usec @ 2
MHz.
For BC = 0:4 M cycles: 16 T states; 8 usec @ 2
MHz

Addressing Mode: |ndirect.

354

Flags:

Example:

"

ED

BO

I~

OBJECT CODE

/,{K%V/////

s 2 PV N C
Lt IOI 10[0] |
LDIR
Before: After:
B 0002 %//////WW
e r
4AD4 F4 4A04 o0
4805 AA 4R05) AA |
\/ (\/
TN TN
9424 38 962A s
9628 %0 9628 %0
962¢ oF 962¢ &F
f\/ '—\/

THE ZB0 INSTRUCTION SET

E
L

355

PROGRAMMING THE Z80

LDr,(HL) Load register r indirect from memory location
{HL).

Function: r = {(HL)

Format:

Lol [l []

Description: The contents of the memory location addressed by
HL are loaded into the specified register. r
may be any one of:

A — 111 E —~ 011
B — 000 H - 100
C - 001 L - 101
D - 010
Data Flow:
A
B C T —
D E
H L————> DATA
S —]
Timing. 2 M cycles; 7 T states; 3.5 usec @ 2 MHz

Addressing Mode: Indirect.

Byte Codes: m A B C D E H 1

[o] €] 5o [oo]

356

Flags:

Example:

OBJECT CODE

THE 280 INSTRUCTICN SET

H P’V N C

CTTTIT 1] toetten

LD D, (HL)

Before: After:

0Caz] ocaz| 24

357

PROGRAMMING THE Z80

NEG Negate accumulator.
Function. A+~ - A
Format:

1]1]1]0'1[1]0[l| byte 1: ED

[
[o[1JoJefo]1]o]o]| byte2: a4

Description: The contents of the accumulator are subtracted
from zero (two’s complement) and the result is
stored back in the accumulator.

Data Flow: | {}

A f { C—
B C
D E
H L
Timing: 2 M cycles; 8 T states; 4 usec @ 2 MHz

Addressing Mode: Implicit.

Flags. 5 2 H ®wv N ¢
oo o (@ @
C will be set if A was 0 before the instruction.
P will be set if A was 80H.
Example: NEG
S Before: After:
44
OBJECT
CODE

358

THE ZB0 INSTRUCTION SET

NOP No operation.
Function: Delay.
Format:

[o]ofoofefofo]e] o

Description: Nothing is done for 1 M cycle.

Datag Flow: No action

I o @ ¥
m O

S R

Timing: 1 M cycle; 4 T states; 2 usec @ 2 MHz

Addressing Mode: Implicit

FfﬂgS.' s Z PV N C

L[LTH[IJ I] (no effect).

359

PROGRAMMING THE Z80

OR s Logical or accumulator and operand s.
Function: A+ AVs
Forinat: s: may be r, n, (HL), (IX+ d), or (1Y + d)

r [e =
junonoonn e

[T lbyteZ immediate

f'l

L data

(HL) 1.1o]1| | o L] ﬁ byte I: B6
X+ [fr]o]]
MUlalulT[rlu[olbyteZ:B()

|l||0[|‘ byte I: DD

[————3————] byte 3: offset value
ay +a@ [[[fefefifof] byer:FD

Lelol ffel[:]o] byte2: Bs

[————3————] byte 3: offset value

r may be any one of:

A - Il E - 011
B - 000 H - 100
C - 001 L - 101
D - 010
Description: The accumulator and the specified operand are

logically ‘or’ed, and the result is stored in the ac-
cumulator, s is defined in the description of the
similar ADD instructions.

360

THE Z80 INSTRUCTION SET

Data Flow: {L
Al 7
B C
D £ ALY s]
H L v
Timung: usec
s M cyeles: | T states: (@ 2 MHz:
r | 4 4
n 2 7 3.5
(HL) 2 7 33
(X + d) 5 19 9.5
(ay + d) S 19 9.5

Addressing Mode:

Byvie Codes:

Flags:

Example:

BO

OBJECY
CODE

r: implicit; n: immediate; (HL): indirect; (IX +
d), (1Y + d): indexed.

OR

" T oo Joa osoeos]

s 2 H v N C
(e{e®] [O] [@[0[0]

OR B

Before: After:
06 NS
® o[o |

361

PROGRAMMING THE Z80

OTDR Block output with decrement
Function: {(CQ)=(HL); B«B — |; HL<HL - 1;
Repeat untilB = 0.
Format:
[T Tl o[] owe i
[[ol.]]1 Iol IJ byte 2: BB
Description: The contents of the memory location addressed by
the HL register pair are output to the peripheral
device addressed by the contents of the C register.
Both the B register and the HL register pair are
then decremented. If B # 0, the program counter
is decremented by 2 and the instruction 1s re-
executed. C supplies bits AQ to A7 of the address
bus. B supplies (after decrementation) bits A8 to
AlS.
Dara Flow:
T~
DATA
— -3
. . -2
8 EGUNTER, c — < *
D E PORT /\'——‘l
W
Timmng: B = 0: 4 M cycles; 16 T states; 8 usec @ 2 MHz.
B # 0: 5 M cycles; 21 T states; 10.5 usec @ 2 MHz
Addressing Mode: External,
Flags: s 2 H PV N C

362

THE Z80 INSTRUCTION SET

Example: OTDR
Before: After:
s o2 [& |c 8lZZooiz s |c

OBJECT CODE T~

363

PROGRAMMING THE Z80

OTIR

Function:

Format:

Description;

Data Flow:

Block output with increment.

(Cy+~(HL; B+ B - I; HL < HL + I;

until B = ¢

Lo f

]+ 7o)] bye 1:ED

[‘LLOI'['IOIOI'IJ byte 2: B3

Repeal

The contents of the memory location addressed by
the HL register pair are output to the peripheral
device addressed by the contents of the C register.
The B register is decremented and the HL register
pair 1s incremented. If B # 0, the program counter
is decremented by 2 and the instruction 1s re-
executed. C supplies bits Al to A7 of the address
bus. B supplies (after decrementation) bits A8 to

Alj,

“scoynters;

IUmb

// /////,///

A G
A

Tinung:

Addressing

Flags:

364

B
B

Mode:

External.

5 Z

P2y N C

LTI

HEIN

= 0: 4 M cycles; 16 T states; & usec @ 2 MHz.
#0: 5 M cycles; 21 T states; 10.5 usec @ 2 MHz

THE Z80 INSTRUCTION SET

Example: OTIR

Before: After:

80 [m Jc slZ&IA a0 |c
Hi 5550 1w H e\

poRT ST Pom
AQ AQ
ED 5550 :! 5550 6B
B3 5551 02 5551 02
b — 5552 9A 5552 9A
OBJECT CODE 5553 65 5552 65
/‘\‘_— /\'—‘—.J

365

PROGRAMMING THE Z80

ouT (O), r

Function:

Format:

Description:

Data Flow:

Tinung:

Addressing Mode:

Flags:

Byte Codes:
ED-

366

Output register r to port C.

(Cy+r

o[Jof [o] Joyer: ED
[=

| |
Lo lefo] by

The contents of the specified register are output to
the peripherai device addressed by the contents of
the C register. r may be any one of:

A — 111 E - 011
B - 000 H - 100
C - 001 L — 101
D - 010

Register C supplies bits AQ to A7 of the address
bus. Register B supplies bits A8 to Al5.

PORT
7

I O® P
n

3 M cycles; 12 T states; 6 usec @ 2 MHz
External.

s Z H PV N C

[! | l ’ l l l | (no effect).

A B C D E H
l?‘?ldlld‘?lﬂli‘?léllé‘?l

Example:

/\1

£D
41

b —
OBJECT CODE

THE Z80 INSTRUCTION SET

OUT (C), B
Before: After:
Bf] w [fm Jc 8 o [B |c
(e Jeomr 7 eor
3 Fl

367

PROGRAMMING THE Z80

OUT (N), A QOutput accumulator to peripheral port N.

Function: (N) — A

Format:

[] oyte 1: D3
I l byte 2: port address

Description: The contents of the accumulator are output to the
peripheral device addressed by the contents of the
memory location immediately following the op-

code,
Data Flow: T —
A
B c our
Y e Y N
H L PORT
f_"__\‘_"
Timing: 3 M cycles, 11 T states; 5.5 usec @ 2 MHz
Addressing Mode: External.
Flags: 5 2 H PAY N C
[TITTTTT] woetten
Example: OUT (0A), A
Before: After:
T~ A st][FF Jporr Al s | 7 eor
” 0A 0A
04
b~

CBJECT CODE

368

THE Z80 INSTRUCTION SET

ouTD QOutput with decrement.
Function: (Cy+~ (HL); BC+~ B - i; HL - HL - 1|
Format:

nononnant

||lolqlol|[0||||lbyte2:AB

Description: The contents of the memory location addressed by
the HL register pair are output to the peripheral
device addressed by the contents of the C register.
Then both the B register and the HL register pair
are decremented. C supplies bits A0 to A7 of the
address bus. B supplies (after decrementation) A8

to AlS.
Data Flow:
: E COUNTER ¢ — —
D £ PORT /—-_‘____*‘
L

Timing: 4 M cycles: 16 T states; 8 usec @ 2 MHz
Addressing Mode: Exlernal.

Flags:

psv N C

fvl}l T 100]

Set if B = Q after execution,
reset otherwise.

369

PROGRAMMING THE Z80

Example: OuUTD

Before: After:

B[o | 98 e sPZZH7] e |c
H 226F o Wl 508 77]\

poRT 757 v
9A
T~ N T~
£D 22BF 4A 228F 4A
AB b~ b

e
OBJECT CODE

370

THE Z80 INSTRUCTION SET

OUTI Output with increment.
Function; ()~ (HL); B=—B - I, HL — HL +
Formai:
el]o] e[To] /] byet:ED
L lof i fofefofr]r] bye2:as
Description: The contents of the memory locauon addressed by
the HL register pair are cutput to the peripheral
device addressed by the C register. The B register
15 decremented and the HL register pair is incre-
mented.
C supplies bits A0 to A7 of the address bus.
B (after decrementation) supplies bits A8 to AlS.
Data Fiow:
DATA
PORT
/\‘____’
Tinung: 4 M cycles; 16 T states; 8 usec @ 2 MHz
Addressing Mode: External.
Flags:
5 2 PPY N C
[2 ’ I I Ll [l —— Set if B = 0 after execution,

reset otherwise.

37

PROGRAMMING THE Z80

Example: OUT!
Before: After:
B[9a | 88 |c sfZZ%77] 8 |C
Hl OF9A o WA
PORT [/ en /i port
BB BB
5 . 7y OF9A [Ty
a3 | /‘_

OBJECT CODE

372

THE Z80 INSTRUCTION SET

POP qq Pop register pair qq from stack.
Function: 9|5y + (SP); pgn~ (SP + 1); SP—SP + 2
Format:

L] Ja oo o]]

Descripuon: The contents of the memory location addressed by
the stack pointer are loaded into the low order of
the specified register pair and then the stack
pointer is incremented. The contents of the
memory location now addressed by the stack
pointer are loaded into the high order of the
register pair, and the stack pointer is again in-
cremented. gqmay be any one of:

BC - 00 HL - 10
DE - 01 AF - 11
Data Flow:
A F
B C
0 E
H L
.
Tinung: 3 M cycles; 10 T states: S usec @ 2 MHz

Addressing Mode: Indirect.

Byte Codes: oa: BC DE HL AF

cforfern]

373

PROGRAMMING THE Z80

Flags: 5 z H PV N

[— [1 lr _Lj (no effect).
Example: POP BC
Before: After:

o[B70A LRSS

= - —
T N TN
<l 0158 0A 0158 0A
e 015C a2 015C 42
OBJECT CODE 0150 03 015D 03
/\/ f\/

314

THE Z80 INSTRUCTION SET

POP IX POP IX register from stack,

Function: leow — (SP); Ixhtgh +—(SP + 1); SP~SP + 2
Formal:
rl||lolnll|l|0[||bylc[:DD
i.[.inio|ojojoLbe:eZ:El
Description; The contents of the memory location addressed by

the stack pointer are Joaded 1nto the low order of
the 1X register, and the stack pointer 1s in-
cremented. The contents of the memory location
now addressed by the stack pointer are loaded 1n-
ta the high order of the 1X register, and the stack
pointer 15 again incremented.

Date Flow: .

I o ®@ >

L i

Tinung: 4 M cycles; 14 T states; 7 usec @ 2 MHz

Addressing Mode: Indirect.

375

PROGRAMMING THE Z80

Flags: s 7z H PV N €
[l] I l I l I] (no effect).
Example: POP IX
Before: After:

x [0001 |

5P r 0908 _l

i 0%0B| 36 I

& 0%C| 04 ooc| o4
r_/ ool B2 090D B2
OBJECT CoDE TN L_/

376

POP 1Y

Function:

Format:

Description:

Data Flow:

Tirung:

Addressing Mode:

Flags:

THE Z80 INSTRUCTION SET

PQP 1Y register from stack.

1Y low ™™ (SP); thlgh._ (SP + 1); SP+SP + 2

[T [T fe]] oytet: FD
r.luluTo]o[o]olul byte 2: El

The contents of the memory locauon addressed by
the stack pointer are loaded into the low order of
the 1Y register, and then the stack pointer is incre-
mented. The contents of the memory location now
addressed by the stack pointer are loaded nto the
tugh order of the 1Y register, and the stack pointer
15 again incremented.

4 M cycles, 14 T states: 2 usec @ 2 MHz

Indirect.

Lri[f l] | I]—I(nocffecu.

3711

PROGRAMMING THE 280

Example: POP 1Y
Before: After:
| 032A | w08
s¢f 004 | P

3004 81 3004 d

3005 40 3005 40
] 3006 39 3006 9
OBJECT CODE TN TN

378

THE Z80 INSTRUCTION SET

PUSH qq Push register pair onto stack.
Function: (SP — 1) =qqhigh: (SP — 2) —qdlow’
SP—SP -2
Formag:
[L Tsrale] [o]:
Description; The stack pointer 15 decremented and the contents

of the high order of the specified register pair are
then loaded into the memory location addressed
by the stack pointer. The stack pomnter is agan
decremented and the contents of the low order of
the register pair are loaded into the memory loca-
uon currently addressed by the stack pointer.q4q
may be any one of:

BC - 00 HL - 10
DE - 01 AF - 11
Data Flow: e
A] F
B 0) c
of | e
H N o] L
'TN\t:_,>
| \———j z
N
S ///A—l N
Tinnpg: 3 M cycles; 11 T states; 6.5 usec @ 2 MHz

Addressing Mode: [ndirect.

Byte Codles: qQ: BC DE HL AF

ofos[esrs)

39

PROGRAMMING THE Z80

c
[_] (no effect).

| €

Flags: lslzl I J] l
Example: PUSH DE
Before:
b OAO3
SPE_ oo
N,
D5 QOAF B
008G ?A
T 00B) OF
OBJECT CODE
TN

380

s» V055570

PUSH IX

Funcuaon:

Formnai:

Description:

Dara Flow:

Tinmung:

Addressing Mode -

Flags:

T o ® »

THE Z80 INSTRUCTION SET

Push 1X onto stack,

(SP =) < IXpgh; (SP = 2) = [X|gws
SP+—SP-2

i'l'IOI'_J'I'_J_U_J_l_!byteI:DD
L[felof el Foyea: es

The stack pointer is decremented, and the contents
of the high order of the IX register are loaded into
the memory location addressed by the stack
pointer. The stack pointer 15 again decremented
and then the contents of the low order of the [X
register are loaded into the memory locauion ad-
dressed by the stack ponter.

4 M cycles; 15 T states; 7.5 usec @ 2 MHz

Indirect.

H Py N_C

[sﬁj[| | [_T] (no effect)

381

PROGRAMMING THE Z80

Example: PUSH 11X
Before:
|x[_ 042 |
s 00%]
/\/ /_\/
oD 0094 a8
| ES | 0005 5F
L o9 04
SN

OBJECT CODE N

382

After:

X [_ 04A2 |

W

PUSH 1Y

Funcrion:

Formai:

Description:

Daia Flaw:

Tinung:

Addressing Mode:

Flags:

w

THE Z80 INSTRUCTION SET

Push 1Y onio stack.

(SP -1y~ 1Y h|gh' (SP - 2) - 'Ylo\\-'.
SP—5SpP -2

LLLT Ll o] Joves:Fo

||(.|nio:ogn 01 byte2: ES

The stack pointer 1s decremented and the contents
of the lmgh order of the 1Y regsster are loaded into
the memory location addressed by the stack
pomnter. The stack pomter 1s again decremented
and the contents of the low order ol the VY regssier
are loaded into the memory location addressed by
the stack pointer,

8
D E
H | L

3 M cycles; 15 T states; 7.5 usee @ 2 MHz

Indirect.
5 2 H P O NC
[TTTIT] toeftecy

383

PROGRAMMING THE Z80

Example: PUSH 1Y

Before: After:

v J0BF 1w ooee]
se__ ooms | P

N
| 0084 FF o084 EZ20F 2
£5 0085 85 0085 907
ooss [o[0
r’\/
OBJECT CODE ’\/

384

THE Z80 INSTRUCTION SET

Reset bit b of operand s.

RES b,s

spb — 0

Function:

S:

Format:

[‘['l"l"l'[ol'l'i byte 1: CB

L[]

T

I byte 2

| T
— —
i !

l

1

T
—_——

Ll fofol Jol fr] byter:ca

(HL}

II[IIOI byte2

T
1

- b—

1

o]

Gl e[o] bweet:o
[T lolol o] w2 ca

(IX + d)

] byte 3: offset value

[[]e] byes

[

L]

lrlnlnll[l['lﬂlil byte 1: FD
L] fefol «fet]] bye2:cB

(Iy + d)

1 byte 3: offset value

1

T LI
L

b may be any one of:

- Y — Hmm
8822 22
L b
< O -~ w T

0 - 000
I - 001
B - 000
C - 00t
D - 010

2 - 010
3 -011

A — 111

r may be any one of:

385

PROGRAMMING THE Z80

Description: The specified bit of the location determined by s is
reset. s is defined in the description of the similar
BIT instructions,
Data Flow:
A
: c v
b E
H L ALY
Timing: usec
s M cycles: | T states: | @ 2 MHz:
r 2 8 4
(HL) 4 15 1.5
(X + d) 6 23 11.5
(Y + d) 6 23 11.5
Addressing Mode: r:implicit; (HL): indirect: (IX + d), (IY + d):n-
dexed.
Byte Codes: RES b,r
. rA B8 C D E H L
CB— o |87{80|81|02|a3}8s|as
1 | 8F| @88 |8v|eala6|8c 8D
2 |97 |90 |91 |92 |93 |94 |95
2 |or|v8|oe|oatonisc |v0
4 {AT[AD| A1} A2 | A3 | A4 A5
5 | aF| A8 |Av | AalaB|ac|aD
& 87| 80|®1|82[B3]Ba|BS
7 |BF| 68| B9 | BA (BB |8C|6D
b: 0 [2 1 4 5 & 7
RES b, (HL) CB— lsa[SEl%l?EIAélAE[Bblﬂil

386

RES b,(IX + d)
RES r/ (HL)
RES b, (IY + d)

Flags:

Examples:

T~

CB
8C

e

QBJECT CODE

THE Z80 INSTRUCTION SET

DDCB~ b 0 1 2 3 4 5 & 7
:;C;_ 86 ssloolos]AolA5]a¢|aE]
s z H PV N C

LIT T T I T T JiNoetreen
RES I, H

Before: After

W2]

387

PROGRAMMING THE Z80

RET Return from subroutine
Function: PClow * (SP): PChgh ~ (SP + 1);SP—SP + 2
Format:

nnaonoonk:

Description: The program counter is popped off the stack as
described for the POP instructions. The next in-
struction fetched is from the location pointed to
by PC.

Data Flow:
STACK
PCL
PCH
P b
Timing: 3 M cycles; 10 T states; 5 usec @ 2 MHz

Addressing Mode: Indirect.

Flags: s 2 H PAV N C

[T 1T [[] |woeetn

388

THE Z80 INSTRUCTION SET

Example: RET
Before: After:
pcl 0BB1 \ e
Pl 3310 1 Vgm0
Cce 3310 Nn 30 21
e an B4 aan B4
OBJECT CODE e]

389

PROGRAMMING THE Z80

RET cc Return from subroutine on condition.

Funcnon: If cc true: PClgy + (SP); PChjgh < (SP + 1)
SP-SP + 2

Format: —

T [Feer=iefo o]

Description; If the condition 15 met, the contents of the pro-
gram counter are popped off the stack as described
for the POP instructions. The next instruction is
fetched from the address in PC. If the condition is
not met, instruction execution continues in
seqguence.

Data Flow:

A F
] c
o E
H t
CONTROL
LOGIC
STACK
o PCL
T PCH
7 —
s
cc may be any one of:
NZ - 000 PO — 100
Z - 001 PE — 10}
NC - 010 P -110
C - 0l M - 111
Tinung: Condition met: 3 M cycles; 11 T states; 6.5 usec @

Addressing Mode:

390

2 MHz.
Condition not met: | M cycle; 5 T states; 2.5 usec
@ 2 MHz

Indirect.

THE Z80 INSTRUCTION SET

Byte Codes: CC. NZ Z NC C PO PE P M

ICOICSIDUIDS[EOIEBIFOlFBJ

Flags. H
] I I I | I {no effect)
Example: RET NC
Before: After:
F ¢
Pl 0124 | «<Es
e 8511 | S
T —
1 Bsn :53
> g:: 2 L_g?— 8512 Y
OBJECT CODE L __| b —

391

PROGRAMMING THE Z80

RETI

Function:

Format:

Description:

Data Flow:

Timing:

Return from interrupt.

PClow * (SP); PChigh * (SP + 1); SP <SP + 2

N] v o |+ | byte I: ED

[—] lo[ol J—IO[J byte 2: 4D

The program couater 1s popped off the stack as
described for the POP instructions. This instruc-
tion is recognized by Zilog peripheral devices as
the end of a peripheral service routine so as to
allow proper control of nested priority interrupts.
An EI instruction must be executed prior to RETI
in order to re-enable interrupts.

4 M cycles; 14 T states; 7 usec @ 2 MHz

Addressing Modes: Indirect.

Flags:

392

H PV N C

lslzl ‘ IT‘] I (no effect).

Example:

ED

4D

b—
QBJECT CODE

RETI

Before:

PC[84E1

]

P 8982

|

8982 A4
B9B3 Bl

THE Z80 INSTRUCTION SET

After:

el A)
s

8982
8982

T —

Ad

81

b

393

PROGRAMMING THE Z80

RETN

Function:

Format:

Description:

Data Flow:

Timing:

el

Return from non-maskable interrupt.

PCiow * (SP); PChjgp - (SP + 1); SP =~ SP +
2; IFF'1 « IFF2

Ll f]e]
L] To]o]

0

vfifo]1] bytel: ED
I,

o]]ofi] byte2:4s

The program counter is popped off the stack as
described for the POP instructions. Then the con-
tents of the IFF2 (storage flip-flop) is copied back
into the IFFlto restore the state of the interrupt
flag before the non-maskable interrupt.

I o @ »
m

STACK
PCL
PCH

S

4 M cycles; 14 T states; 7 usec @ 2 MHz

Addressing Mode: Indirect.

394

Flags:

Example:

T —

Eo
45

b~

OBJECT CQDE

THE Z80Q INSTRUCTION SET

PV N C

[T T 1] | | (noeffect).
RETN
Before: After:
e | ASEI | R
sP | 884C | SR
T — /__
BB4C o1 884C o
884D 9A 8840 FA
| b ——

395

PROGRAMMING THE Z80

RL s

Function:

Format:

Description:

396

Rotate left through carry operand s.

L Y9

.]Jo]n]o]iljbytel:CB
e[o] byee2
1lolollﬁlllljbytel:CB

j_—l byte 3: offset value
ol l ‘iﬂ]byte 4: 16

|
+JJo]]byte1: FD
|

1 Jo []byte2: B
] } J byte 3: offset value

of [+]o]oyte 4: 16

r may be any one of:

8
H-lo

A - 111 E - 011
B — 000 H - 100
C - 001 L - 101
D - 010

The contents of the location of the specific
operand are shifted left one bit place. The con-
tents of the carry flag are moved to bit 0 and the
contents of bit 7 are moved to the carry flag. The
final result is stored back in the original location. s
is defined in the description of the similar RLC in-
structions,

Data Flow:

I Q0 @ >

Tinung.

Addressing Mode:

Byte Codes:

Flags:

Example:

<8
3

—
OBJECT CQDE

THE ZB0 INSTRUCTION SET

usec
s: M cycles: | Tstates: | @ 2 MHz:
r 2 8 4
(HL) 4 5 7.5
(IX + d) 6 23 11.5
(IY + d) 6 23 11.5

r: implicit; (HL): indirect; (1X + d), (IY + d): in-

dexed.

RL

I A B C D E H L
CB-{IT[]O’H[IZIIS‘I&]ISI

Vv N C

[e]e[Jo[Te0[®)

C is set by bit 7 of source.

RL E

Before:

F

[e

After:

diik

E

§

397

PROGRAMMING THE Z80

RLA Rotate accumnulator left through- carry flag.
Function:
e
C A
Format:
Lelelofrfol [ifi] w
Description: The contents of the accumulator are shifted left
one bit position. The contents of the carry flag are
moved into bit 0 and the original contents of bit 7
are moved into the carry flag. (9 bit rotation.)
Data Flow:
A
8
D
H
Timing: 1 M cycle; 4 T states: 2 usec @ 2 MHz

Addressing Mode: Implicit.

as: s z H PV N €
Flags: LI [[c] | [ole]
Cisset by bit 7 of A.
Example: RLA
Before: After:

- N T i s

17

OBJECT CODE

398

THE Z80 INSTRUCTION SET

RLCA Rotate accumulator left with branch carry.
Function:
L
T A
Format:
Lololo]o[o]|||[.] 07
Description: The contents of the accumulator are rotated left

one bit position. The original contents of bit 7 15
moved to the carry flag as well as to bit 0.

Data Flow: ?}
Al /,,/f/(; 3 & F
B C
s} E ALY
H L
Tinming: 1 M cycle; 4 T states; 2 usec @ 2 MHz
Addressing Mode: Implicit.
Flags: 5 7 H PVN C
L[[[of { [Ole]
Cissetbybit7 of A.
Example: RLCA
Before: After:
T~ Al e | o Jr alns7 %"
07 Note: This instruction is identical to RLC A, ex-
cept for the flags. It is provided for compat-
OBJECT OBt ibility with the 8080.

399

PROGRAMMING THE Z80

RICr

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Byte Codes:

400

Rotate register r left with branch carry.

] 7—0
< -

[ul.lo]olulollmwte!:CB

[ofofo]o]e]ezrar]byte2

The contents of the specified register are rotated
left. The original contents of bit 7 are moved to
the carry flag as well as bit 0. r may be any one of:

A - 11 E — 01l
B — 000 H - 100
C - 001 L - 101
D - 010

=)

A C4F

: ; \/
D E AlU
H L -

2

2 M cycles; 8 T states; 4 usec @ 2 MHz

Implicit.

. ca—‘owloolo1|oz|on[oi]$sj

THE ZBO INSTRUCTION SET

Flags: s 2 H v N C
o[®] [O] {e[Ce]
C is set by bit 7 of source register.
Example: RLC B
T Before: After:
gg o 2 [% I s ZCe AU /% ¥
T

OBJECT CODE

401

PROGRAMMING THE Z80

RLC (HL)

Function:

Format:

Description:

Data Flow.

Rotate left with branch carry memory location
(HL).

F['Iolol'lol'['l byte I: CB
lolololololllllol byte 2: 06

The contents of the memory location addressed by
the contents of the HL register pair are rotated left
one bit position and the result is stored back at
that location. The contents of bit 7 are moved to
the carry flag as well as to bit 0.

I O o >»

Timing:

Addressing Mode:

Flags:

402

4 M cycles; IS5 T states; 7.5 usec @ 2 MHz
Indirect.
H v N C

[e]e] o[[e[o[e]

C is set by bit 7 of the memory location.

THE Z80 INSTRUCTION SET

Example: RLC (HL}
Before: After:
=)
H[o114 ju H| o114 Ju
I sla] G5 sl4f 887
5]]
P —
OBJECT CODE

403

PROGRAMMING THE 780

RLC (IX + d) Rotate left with branch carry memory location (1X

Function:

Format:

Description:

Data Flow:

+ d)

D-'ﬁE?]:‘

[« (lx-{-d

[[r]o]] [i]o]]bytet: DD

I'l']°l°l'l°l'J']byle2:CB

l : I : d : :_: Ibyte3: offset value

|°]°l°|°[°['['l°]byte4:06

The contents of the memory [ocation addressed by
the contents of the IX register plus the given offset
value are rotated left and the result is stored back
at that location. The contents of bit 7 are moved
to the carry flag as well as to bit 0,

B

I O wmp

404

Timing:

THE Z80 INSTRUCTION SET

6 M cycles; 23 T states; 11.5 usec @ 2 MHz

Addressing Mode: Indexed.

Flags:

Example:

T —

[238)

ce

o

06

T —]

OBJECT CODE

o[e] o] [e[o[®)

C is set by bit 7 of memory location.

RLC (IX + D

Before: After:
L2 YRS
1x| 04B1 I 048 |
e
0481 &3 04B1
0482 94 0482
""--..,_‘_____‘J

405

PROGRAMMING THE Z80

RLC (IY + d) Rotate left with carry memory location (1Y + d).

Function:
-lg= o))
C fiy +d]
Format:
Ll fefefefe] Joyer:FD
Ll l°l K l [+ [¢]bye2:CB
{ «f ’ byle 3. offset value
IoloJo|o|ol| l. lolbyte4:06
Description: The contents of the memory location addressed by
the contents of the 1Y register plus the given offset
value are rotated left and the result is stored back
at the location. The contents of bit 7 are moved to
the carry flag as well as bit 0.
Data Flow: \lh
A
B
D
H
|
RLC

406

THE Z80 INSTRUCTION SET

Tinung: 6 M cycles; 23 T states; 11.5 usec @ 2 MHz

Addressing Mode: Indexed.

Flags: 5 2 H EVv N ¢
[efe] [O [e|O]e]
C 1s set by bit 7 of memory [ocation.
Example: RLC (IY + 2)
Before: After:
[ca Jr AN
v o021]| 0021]
o — /__
FD 0021 Qs 0021 05
cB 0022 Bl 0022 B1
02 o0z3] A2 0023 {77745,
06 l/‘\,__‘

)
OBJECT CODE

407

PROGRAMMING THE 280

RLD Rotate left decimal.
Function: al7 aJa of [4[3 o]
Format: l. .l. Io[| l. 0 |] byte I: ED

l
t |+] byte2: 6F

Description: The 4 low order bits of the memory location ad-
dressed by the contents of HL are moved to the
high order bit positions of that same location. The
4 high order bits are moved to the 4 low order bits
of the accumulator. The low order of the ac-
cumulator 1s moved to the 4 low order bits of the
memory location oniginally specified. All of these
operations occur simultaneously.

Data Flow:
.
a] E - _
H) .’ Vi
Timing: 5 M cycles; 18 T states; 9 usec @ 2 MHz

Addressing Mode: Indirect.

408

THE Z80 INSTRUCTION SET

Flags: s 2 H BV N C
loje] [O] [®[0]]
Examples: RLD
Before: After:
Al] S
H BaF2] H B4F2 e
~ = —
D B4F2 48 B4F2
4F T -
e
OBJECT CODE

409

PROGRAMMING THE Z80

RR s

Function:

Format.

(HL)

(X + d)

(Y + d)

Description;

410

Rotate right s through carry.

7—5—-0

Ll fofof Jo[[]
Lolofol] 1]
L] fofof fol][]
Lofolol [[o]
LofJolefofofo]r]
Llrjofolefof [}
]
olofol []]o]
NEnnnnon
L] Jofof fof 1]
R o
Lofofol [+][]+ Te]

r may be any one of:

A-111 E — 0il
B - 000 H - 100
C - o001 L - 101
D — 010

byte I:
byte 2
byte I:
byte 2:
byte i:
byte 2:
byte 3:
byte 4:
byte |:
byte 2:
byte 3:
byte 4:

CB

CB
1E
DD
CB
offset value
1E
FD
CB
offset value

1E

The contents of the location determined by the
specific operand are shifted right. The contents of
the carry flag are moved to bit 7 and the contents
of bit 0 are moved to the carry flag. The final
result is stored back in the orginal location. s is
defined in the description of the similar RLC In-

structions.

Data Flow:

THE Z80 INSTRUCTION SET

rTrQo wp

Tinung:

Addressing Mode:

Byre Codes.

Flags:

Example:

usec

s: M cycles: | T states: § @ 2 MHZ:
T 2 8 4
{HL) 4 15 7.5
(IX + d) 6 23 1.5
(Y + d) 6 23 1.5

r: implicit; (HL): indirect; (1X + d), (1Y + d):in-
dexed.

RR . v A B C D E H L
' CE-IIFllB[19|1AllEllCllDl

PV N C

[e[e] [O] [e[0[e]

C is set by bit 0 of source data.

Before: After:

T~ H[

® |[o F @R VRN

CB
1C

OBJECT CODE

411

PROGRAMMING THE Z80

RRA

Function:

Format:

Description:

Data Flow:

Tinung:

Addressing Mode:

Flags:

Example:

T~
\F

o —
OBJECT CODE

412

Rotate accumuliator right through carry.

b

A ct

Iolo[ol|l|[|||lj IF

The contents of the accumulator are shifted nght-
one bit position. The contents of the carry flag
are moved to bit 7 and the contents of bit 0 are
moved to the carry flag (9-bit rotation).

\

AlLU

— -

[M cycle; 4 T states; 2 usec @ MHz

Implicit.

5 Z H PV N C
Lol | [o]e)
Cisset by bit 0of A.

RRA

Before: After:

al_ra [o v ZE7257 ¢

Note: Thisinstructionis almost identicalto RR A, [t
is provided for 8080 compatibility.

Function:

Format: 5.

(HL)

(X + d)

(dY + d)

Description:

THE Z80 INSTRUCTION SET

Rotate right with branch carry s.

.7 o' (]
S T

sisany of r, (HL), X + &), Y + d).
uufo]olulollij byte 1: CB
Iolo]olol|l*—‘f—1—'-l]byteZ

L['i"r"l'T"l'[J byte {: CB
(oLo Lo o[[Te] ove 2 0
[T Lol L[Tol] owe 00
|||| oo OIIII byte 2: CB

Lg' i r_cj'i_T_l : jj byte 3: offset value

olo|0foO ! | r|a byte 4: OE

[Ill III | ||o|||byleI:FD
CLolol o[[] brez co
m byte 3: offset value
[ojo[oﬁlﬂ’.[r[ﬂ byte 4: QFE

r may be any one of:

(=]

A - 111 E - 011
B - 000 H - 100
C - 001 L - 101
D - 010

The contents of the location determined by the
specified operand are rotated right and the resuit
is stored back in the original location. The con-
tents of bit 0 are moved to the carry flag as well as
to bit 7. s is defined in the description of the
similar RLC instructions.

413

PROGRAMMING THE 280

Data Flow:
A
8
D
H
Tinng: usec
N M eveles: | T states: | @ 2 MHZ:
r 2 8 4
(HL) 4 15 1.5
(X + d) 6 23 1.5
(1Y + d) 6 23 [1.5

Addressmg Mode:

Byte codes:

Flags:

Exarnple:

H

s

(43

b —]
OBJECT CODE

414

CB 3FF2

r; implicit; (HL): indirect; (IX + d), (1Y + d):an-
dexed.

m A B C D E H L
CB“OF OBIO?I—O-AIOB oC OD'
H FP¥YWwN C

ele] [o] Te[Cle)

C is set by bit 0 of source data.

RRC (HL)
Before: After:
e Jr
B 3IFF2 It Hf IFF2 Tt
06

THE Z80 INSTRUCTION SET

RRCA Rotate accumulator right with branch carry.

Funcuon:

A C
Formai:
[ofefolef [ie]]oF
Descripnon: The contents of the accumulator are rotated right
one bit position. The contents of bit 0 are moved
to the carry flag as well as to bit 7.
Data Flow: {}
o
E
L
Tinung: | M cycle; 4 T states; 2 usec @ 2 MHz
Addressing Mode: Implicit.
Flags: 5 zZ H PV N C

[1T [o] | [o]e]

Cissetby bit 0 of A.

Exariple: RRCA
Before: Afler:
T~ Al pba T st]r a0: - JF
OF
b
OBJECT CODE

415

PROGRAMMING THE Z80

RRD Rotate right decimal.
[A | }
Function: AE af3 o E EE AT
%]
T
Format: F!'L'l"]'r""iq byte {: ED

Lol Tefofel [[] bye267

Description: The 4 high order bits of the memory location ad-
dressed by the contents of the HL register pair are
moved to the low order 4 bits of that location. The
4 low order bits are moved o the 4 low order bits
ol the accumulator. The low order bats of the ac-
cumulator are moved to the 4 high order bit posi-
tions of the memory location originally specified.
All of the above operations occur simultaneously.

Data Flow:
Eyse———l.

AFV/AZZ/M}/ A em— \/

B c

o) E ALY

: t ([

Yiiiin,

Timung: 5 M cycles; 18 T states; 9 usec @ 2 MHz

Addressing Mode: 1ndirect.

416

Flags:

Example:

M

ED

&7

OBJECT CODE

THE Z80 INSTRUCTION SET

H Bv N C

[ee] To[JeJo] |

RRD
Before: After:
A AN
H FEB! Juo H] FEB! I
T —
FEB) 50 FEB!
b~

417

PROGRAMMING THE Z80

RST p

Function:

Format:

Description:

Data Flow:

Restart at p.

(SP = 1) = PCygh; (SP — 2} = PClgy; SP -~ SP
— 2; PChigh =~ 0: PCloy = P

= []

The contents of the program counter are pushed
onto the stack as described tor the PUSH instruc-
tions. The specilied value for p 1s then loaded into
the PC and the next instruction s fetched from
this new address. p may be any one ol:

00H - 000 20H - 100
08H - 001 28H — 101
10H - 010 30H - 110
18H - 011 J8H - 111

This instruction performs a jump to any of eight
starting addresses in low memory and requires only
a single byte. [t may be used as a fast response to
an interrupt.

418

A

B c

D 3

H L

BCp STACK
T
L

SV

Tinung:

THE Z8Q INSTRUCTION SET

3 M cycles; 11 T states; 5.5 usec @ 2 MHz

Addressing Mode: Indirect.

Byvte Codes:

Flags:

Example:

FF

OB8JECT CODE

o0 08 10 18 20 28 30 38

|C7lCFLlDF E71EF lWJiI

H PrY N_C

[75[21 l [I l I I {no effect).

RST 38H

Before: Alter:
P | 4414 | reli 0
sp | 0268 | e[S i

0269 51 0269 {5/ 1A7
026A BF o204 |47
0268 03 0268

419

PROGRAMMING THE Z80

SBCA,s Subtract with borrow accumulator and specified
operand.

Function:’ A+~A—-s5-—-C

Forinat: 5: may be r,n,(HL), IX + d), or (1Y + d)

7]
o [TTe[[[Te) bwer:oe

o] e
(it [[[TiTe] bret:sE
ax+d [+Jefo[«]+]]e] '] byer:DD
mopnnnooiks
[FT] v 3ottt vae
av+o [Tl owe s e

ll|l|0| byte 2: 9E

l \ : ‘ I :_ J byte 3: offset value
r may be any one ol:

INETE E - 0l

B — 000 H — 100

C - 001 L — 10l

D - 010
Description: The specified operand s, summed with the con-

tents of the carry fMag, is subtracted from the con-
tents of the accumulator, and the result is placed
in the accumulator. s 1s defined 1n the description
of the similar ADD instructions.

420

THE Z80 INSTRUCTION SET

Data Flow:
A
B c
D E ! 5 |
H L
Tinung: isec
S M cycles: | Tstates: | @ 2 MH::
r l 4 2
n 2 7 35
{HL) 2 7 3.5
(IX + d) 5 19 9.5
Ly + d) 5 19 | 9.5 |

Addressing Mode: r: implicit; n: immediate; (HL): tndirect; (1X +
d}, (1Y + d): indexed.

Byte Codes: SBC A,r nA B C D E H 1
9F|99|99 9A|9819C 90
Flags. H PAY N C

[e]e] o To[[®]

Example: SBC A, (HL)
Before: After:
Al &2] s Jr
H 3600 T
% 3800 oF 3600 oF
OBJECT CODE

421

PROGRAMMING THE 280

SBC HL,ss Subtract with borrow HL and register pair ss.

Function: HL « HL — ss - C

Format.

l'l'{'l”l_‘[‘l“['betei:ED
F’['Is:slur‘ll'lﬂibytez

Description: The conlents of the specified register pair plus the
contents of the carry flag are subtracted from the
contents ol the HL repister pair and lhe result is
stored back 1n HL. ss may be any one of:

BC - 00 HL - 10
DE - 01 SP - Il
Data Flow: i} F
A cle
B C \/
o . ALY
(ﬁ_ﬁ L “c
sl B
Titning. 4 M cycles; 15 T states; 7.5 usec @ 2 MHz

Addressing Mode: |mplicit.

Byte Codes: 55. BC OE HL SP

- |42 [s2[e2 |72

422

Flags:

Example:

ED

52

QRJECT
CODE

THE Z80 INSTRUCTION SET

5 2z H P N C
@/e] [[@] [@]
H is set if borrow from bit 12.
Cis set if borrow.

SBC HL, DE
Before: After:
F
06B9 E ; E

423

PROGRAMMING THE Z80

SCF Set carry flag.
Function: C-~—1
Formai:

ponnononiE

Description: The carry flag is set.
Tinung: 1 M cycle; 4 T states; 2 usec @ 2 MHz
Addressing Mode: lmplicit.

Flags: 5 7 H PPY N C

Ll [o] | [ol]

424

THE Z80 INSTRUCTION SET

SET b,s Set bit b of operand s
Function: 5p + 1
Format: s:

r HI[OTCL[I[OII—FJ byte |: CB

| .-—ibL—--.—'rl—-l byte 2
(HL) ryrjojojijo byte |: CB
=L
(IX + 4 Lli"]L] o]
Lelefe]e] Jo]]
l

byte 2

J
J byte I: DD
3

byte 2: CB
- 1 1 T T T T]
TR T | byte 3: offset vaiue
Ll =t]]e] byea

(IY + d) D—]W byte 1: FD
Ll JoJel Je[]] bye2cB

1 3’ 1 1| byte 3: offset value

(L[ils] bves

r may be any one of:

A - 111 E - 011
B — 000 H - 100
C - 001 L — 101
D — 010

b may be any one of:

0 - 00D 4 — 100
I - 00l 5 — 101
2 — 010 6 — 110
3 — 0I1 T — 111
Description: The specified bit of the location determined by s is

set. 5 15 defined in the description of the similar
BIT instructions.

425

PROGRAMMING THE 280

Data Flow:
A
B C
D E
H L
Tinung: usec
s M cycles: | T states: | @ 2 MHz:
r 2 8 4
(HL) 4 15 7.5
(IX + d) 6 23 11.5
(IY + d) 6 23 11.5
Addressing Mode: r:mplicit; (HL): indirect; (iIX + d), {1Y + d):1n-
dexed.
Byte Codes: SET b.r

CB- 0 |C7|CO(QVjC2|Ca|Ca|Cs

Q
8

CP|CAIBICC |

210700V {D2 (D3| D4ID5

J |DF| DB} O DA{DB|DC|DD

5 |EF |EB [E9 | EA| EB | EC | ED

7 |FF{FB|F? | FA[FB {FC | FD

SET b, (HL)

HE ¢ 1 2 3 4 5 &6 7
SET b, (IX + d Icglcelmloe[sakElFa E]

SET b, (IY + d)

426

THE Z80 INSTRUCTION SET

F!ﬂg.f.' 5 2 H PV N C
rL’ I I I] ,_] {no effect)
Example: SET 7, A
Before: Alter:
cB
FF
/"‘_____‘
OBJECT CODE

427

PROGRAMMING THE Z80

SLA s

Function.

Formalt: s

(HL)

(IX + d)

(IY + d)

Description.

428

Arithmetic shift left operand s.

n
n

—
=]

[=]
bt
=]

[=]

SIEEE
HEin
B

==
HEa0

=]
o

|~]
'3{
o

.
1=

SaEE

J

misiah
—

Eiip

=]

gis

A

|

3]
o
o

A8

: [o]
I may be any one of:

A — 111 E - 011
B - 000 H - 100
C - 001 L - 101
D - 010

byte L:
byte 2
byte 1:

byte 2:

byte L:
byte 2:
byte 3:
byte 4:
byte L:
byte 2:
byte 3:
byte 4:

CB

CB

26

DD

CB

offset value
26

FD

CB

offset value

26

The contents of the location determined by the
specific operand are arithmetically shifted left with
the contents of bit 7 being moved to the carry flag
and a 0 being forced into bit 0. The final result is
stored back in the original location. s is defined in
the description of the similar RLC instructions.

THE Z80 INSTRUCTION SET

Data Flow: (e 6V bﬁl

A F
B C
D E ALL
H l 3 R
l
Thitng: usec
5 M cveles: T stares: | @ 2 MHz:
r 2 8 4
(HL) 4 [5 7.5
(IX + d) 6 23 11.5
ay + &y 6 23 {1.5

Aderessing Made: r:mplicig (HL):indireet: (IX + d), (1Y + d):in-
dexed.

Byte Cudes: SLA

© A B € 0D E H I
ca| 27 ml_m 22 23[24 ﬂ

Flags: 5 2 H @V N C
eje] [o] [e[C[e]
C 15 set by bit 7 of source data.
Example: SLA (HLi
Betore: After:
M OFF2 i [
/\
cB OFF2 Fi OFF2
76
T —)
r"_‘_'_)

OBJECT CODE

429

PROCGRAMMING THE Z80

SRA s Shift right arithmetic s.
Function:
]
5 C
Format: s

T [—l[l—m byte |: CB
Lofol [o] =] byie2

olo 1 fop || |0f byte2:2E

(X + 4y | ¢! '|°I'['I‘|°|'lbylcl:DD

[TrJelol]o]] | bye2:CB
lf'L.T : 7’1 T L Ij byte 3: offset value

0 i Jo] .n byte 4: 2E
ay +ay [[[] Je][] byet: FD

tlitofloeli|ofrv]i]| byte2: CB

byle 3: offset value

glolifof1]vii]o]| byted: 2E

r may be any one of:

A - 111 E - 0il
B — 000 H - 100
C - 001 L — 101
D - 010
Description: The contents of the location determined by the

specific operand are arithmetically shifted right.
The contents of bit 0 are moved to the carry flag
and the contents of bit 7 remain unchanged. The
final result is stored at the original location. s is
defined 1n the description of the simitlar RLC in-
structions.

430

THE ZBO INSTRUCTION SET

Data Flow:
Al
B!
D, i
Tinung: usec
5 M cveles: | T states: | @ 2 MH::
r 2 8 4
(HL) 4 15 7.5
(IX + d) 6 23 11.5
(I + b 6 23 1.5

Addressing Mode: 1 umpliait; (HL): indirect; (IX + d), (1Y + d):n-

dexed.
Byte Codes: SRA r r_A_B_C H L
CB.EE;__' wlelza f2clzm
Flags: H Bv N C
I olo[O] Je|cle]
C 15 set by bit 0 of source data.
Example: SRA A
Be[are: After:
A 8B 04 F A R T
B
7F

OBJECT COOE

431

PROGRAMMING THE ZBC

SRL s

Function:

Format: Lh

(HL)

(IX + d)

(Y + d)

Description:

432

Logical shift right s.

ll[l]ﬂlﬂll’ﬂlllli byte |: CB
o[[[t by
o
|
I

[n—] ‘ l byte |: CB

ru o[u 0l ilolbyLEZ:JE
E]—slo v lolj byte |: DD

il]Jofopi o]} byte2: CB
— d | byte 3: offset value

CTel L To] tweesse
CLL LT Lol bvte evp

! ofofcjof1|1] byte2: CB

d: : i]1] byte 3: offset value
Lol []o] byte4: 3E

r may be any one of:

A - 111 E - 011
B — 000 H - 100
C - 00l L - 101
D - 010

The contents of the location determined by the
specific operand are (ogically shified right. A zero
is moved into bit 7 and the contents of bit 0 are

moved into the carry flag. The final result 1s slored
back in the original location.

THE Z80 INSTRUCTION SET

Darta Flow:
A af
B! c
D 1€
H .
Timing: usec
s M cveles: | Tstares; | @ 2 MHz:
r 2 8 4
(HL)j 4 15 7.5
(IX + d) 6 23 11.5
Iy + d) 6 23 11.5
L - i _
Addressing Mode: roimplicu; (HL): indirect; (I1X + d), (1Y + d): 1n-
dexed.
Byvre Codes. SRL r r A B C D E H L
CB FF[JEI Jqlil aa[ac[JDI
Flags: 5 ¢ H @v N ¢
@@ [O] [®[O[e]
C is set by bit 0 of source data.
Exaniple: SRL E

Before: After:

(T

OdJECT CODE

433

PROGRAMMING THE Z80

SUB s Subtract operand s from accumulator.
Function: A+ A -5
Format: s:may ber, n, (HL), (IX + d) or (1Y + d)

(HL)

(IX + d)

(IY + d)

Description.

434

Lelefol Jo =]
Clelefefel [t]e]
e e ———
L lefof Jof []o]
Lefefefefeefol]
Llofef Jof il i]e]
s e
aunnnnon
Liofofriofrf o]
=

r may be any one of:

A — 11 E — 011
B — 00 H - 100
C - 001 L - 101
D — 010

byte 1:

byte 2:
data

96

byte §:
byte 2:
byte 3;
byte 1:
byte 2:

byte 3:

D6

immediate

DD

96

offset value

FD

96

offset value

The specified operand s is subtracted from the ac-
cumulator and the result is stored in the ac-
cumulator. The operand s is defined in the
description of the similar ADD instructions.

THE 280 INSTRUCTION SET

Data Flow:

B

D

H

Timing: 1sec

5 M cycles: | T states: | @ 2 MHZ
r | 4 2
n 2 7 3.5
{HL) 2 7 3.5
(IX + d) 5 19 9.5
(IX + d) 5 19 9.5

Addressing Mode: r: implicit; n: immediate; (HL): indirect; (IX +
d), (IY + d): indexed

Byte Codes: SUB r ¢ A B C D E H

|97 90|9'I |92|93|94]95l

Flags: s 2 H PN C
(o[®] (o] [o]]9
Example: SUB B
Before: After:
A& R
JIT o3|

/_]
~__

OBJECT CODE

435

PROGRAMMING THE Z80

XOR s Exclusive or accumulator and s.
Funcrian: A+~ AVs
Formai: s: may be r.n, (HL), (IX + d), or (IY + d)
e [l fe[=+
n l'l'l'l”l'l'l‘l“l byte 1: EE
I L S LS J byte 2: immediate
I R S W S S data
¢ [Tl []e] s
ax+d [«JsJe] [[r]a]1] byel:DD
l‘lol'["l'l'l'lﬂl byte 2: AE
l I : : {f '] | byte 3: offset value
av+d) [][[]]e]lt] byer:FD
lllulllol|l|[|lul byte 2: AE
[LT {1 : L I byte 3: offset value
r may be any one of:
A - 111 E - 011
B - 000 H - 100
C - 001 L - 10l
D - 010

The accumulator and the specified operand s are
exclusive ‘or‘ed, and the result is stored 1n the ac-
cumulator. s i1s defined in the description of the
similar ADD instructions.

Description:

436

THE Z80 INSTRUCTION SET

Date Flow:
A
B
o E [s |
H L
Timng: usec
s M cycles:{ T states: | @ 2 MHz.
r | 4 2
n 2 7 35
(HL) 2 7 35
(IX + d) 5 19 9.5
(1Y + d) 5 19 9.5

Addressing Modes: r: implicit; n: immediate; {(HL): indirect; (IX +

Byte Codes:

Flags:

Example:

EE
Bl

V"\J

OBJECT CODE

d), (1Y + d): indexed

XOR 1

Tl

Before: After:

437

S

ADDRESSING TECHNIQUES

INTRODUCTION

This chapter will present the general theory of addressing and the
various technigues which have been developed to facilitate the retrieval
of data. In a second section, the specific addressing modes available in
the Z80 will be reviewed, along with thewr advantages and limitaiions.
Finally, in order to familiarize the reader with the various trade-olfs
possible, an applicaiions section will demonsirate possible tradc-olls
berween the various addressing techniques by studying specific applica-
tion programs.

Because the Z80 has several 16-bit registers, in addition to the pro-
gram counter, which can be used 10 specily an address, it 1s important
that the Z80 user understand the various addressing modes, and 1n par-
ticular, the use of the index registers. Complex retrieval modcs may be
omilted al the beginning stage. However, all the addressing modes are
useful in developing programs for this microprocessor. Let us now
study the various allernatives available.

POSSIBLE ADDRESSING MODES

Addressig refers (o the specification, within an instruction, of the
location of the operand on which the instruction will operate. The main
addressing methods will now be examined. They are all illustrated 1n
Figure 5.1.

Implicit Addressing (or **Implied,’ or ‘‘Register™)

Instructions which operate exclusively on regisiers normally use on-
plici addressing. This is illustrated in Figure 5.1. An implicit instrue-

438

ADDRESSING TECHNIQUES

tion derives its name from the fact that it does not specifically contamn
the address of the operand on which it operates. Instead, its opcode
specifies one or more registers, usually the accumulator, or else any
other register(s). Since internal registers are usually few in number
(commaorily eight), this will require a small number of bits. As an exam-
ple, three bits within the instruction will point to one out of eight inter-
nal registers. Such instructions can, therefore, normally be encoded
within eight bits. This 1s an 1mportant advantage, since an eight-bit n-
struction normally executes faster than any two- or three-byte mstruc-
tion.
An example of an mmplicit instruction is:

LD A, B

which specifies *'transfer the contents of Binto A"’ (Load A from B.)

Immediate Addressing

Immediate addressing is illustrated in Figure 5.1. The eight-bit op-
code 15 followed by an 8- or 16-bit literal (a constant). This type of
instruction 15 needed, for example, to load an eight-bit value 1n an
eight-bit register. Since the microprocessor is equipped with 16-bit reg-
isters, il may also be necessary to load 16-bit literals. An example of an
immediate instruction 1s:

ADD A, OH

The second word of this instruction contains the literal **0"", which 1s
added to the accumulator.

Absolute Addressing

Absolute addressing usually refers to the way inwhich data 1s retrieved
from or placed in memory, in which an opcode s followed by a 16-bit
address. Absolute addressing, therefore, requires three-byte nstruc-
tions. An example of absolute addressing 1s:

LD (1234H), A

It specifies that the contents of the accumulator are to be stored at
memory location *“1234"" hexadecimal.

The disadvantage of absolute addressing 1s to require a three-byte in-
struction. In order to improve the efficiency of the microprocessor,
another addressing mode may be made available, whereby only one
word 1s used for the address: direct addressing.

439

PROGRAMMING THE ZBO

7 0
1
IMPLICIT/IMPLIED OPCODE A I R
[MMEDI ATE OPCODE
LITERAL
1 LITERAL |
e e e = J
EXTENDED/ABSOLUTE OPCODE
FULL 16-8IT
. —_—
ADDRESS
DIRECT/SHORT OPCODE
SHORT ADDRESS
(—— -~ === 1
OPCODE i
INDEXED OPCODE X REG

DISPLACEMENT

| OR ADDRESS I

Fig. 5.1: Basic Addressing Modes

440

ADDRESSING TECHNIQUES

Direct Addressing {or ‘‘Short,”’ or “‘Relative™)

[n this addressing mode, the opcode 1s followed by an eight-bit ad-
dress. This is also illustrated in Figure 5.1. The advantage of this ap-
proach 1s to require only two bytes instead of three for absolute ad-
dressing. The disadvantage 1s to [imut all addressing within this mode (o
addresses 0 to 255 or else — 128 to +127. When using 0 to 255 (“*page
zero™'), this 1s also called shorl addressing, or 0-page addressing. When-
ever short addressing is available, absolute addressing 1s often called ex-
tended addressimg by contrast. The range — [28 to + 127 15 used with
branch instructrons. This 1s called relative addressing.

Relative Addressing

Normal jump or branch instructions require erght bits for the op-
cade, plus the 16-bit address to which the program has to jump. Just as
in the preceding example, this mode has the disadvantage of requiring
three words, t.e., three memory cycles. To provide maore efficient
branching, relative addressing uses only a two-word format. The first
word 15 the branch specification, usually along with the test it is imple-
menting. The second word is a displacement. Since the displacement
must be paositive or negalive, a relalive branching nstruction allows a
branch forward to 127 locations (seven-bils) or a branch backwards to
128 locauions (usually +129 or — 126, since PC will have been incre-
cremenied by 2). Because most loops tend lo be short, relative branch-
g can be used most of the time and results in significantly improved
performance for such short routines. As an example, we have already
used the instruction JR NC, which specifies a “*‘jump if no carry’" to a
location within 127 words of the branch instruction (more precisely
+129 to —126).

The two advantages of relative addressing are improved performarnce
({fewer bytes used) and program relocatability (independence from ab-
solute addresses).

Indexed Addressing

Indexed addressing is a technique used to access the elements of a
biock or of a table successively. This will be illustrated by examples
later in this chapter. The principle of indexed addressing 1s that the in-
struclion specifies both an index register and an address. The contents
of the register are added to the address to provide the final address. In
this way, the address could be the beginning of a table in the memory.

441

PROGRAMMING THE 280

The index register would then be used to access all the elements of a
table successively in an efficient way. (This reguires the availability of
increment/decrement 1nstructions for the index register). in practice,
restrictions often exist which may limit the size of the index register, or
the size of the address or displacement field.

OPCODE INDEX REGISTER
—— e —m T
DISPLACEMENT | :- BASE
1
|
1
[
1
BASE —io - ~
TABLE

dusplacement ////.’////
/////// 7%

final oddress

MEMORY

Fig. 5.2: Addressing {Pre-indexing)

Pre-Indexing and Post-Indexing

Two modes of indexing may be disunguished. Pre-indexing 1s the
usual indexing mode in which the final address 1s the sum of a displace-
ment or address and of the contents of the index register. 1t 1s shown in
Figure 5.2, assumung an 8-bit displacement field and a 16-bit index
regisier.

Post-indexing treats the contents of the displacement field like the
address of the actual displacement, rather than the displacement itself.
This is illustrated in Figure 5.3. In post-indexing, the final address 1s the
sum of the contents of the index register plus the contents of the mem-
ory word desighated by the displacement field. This feature utilizes, in
fact, a combination of indirect addressing and pre-indexing. Bul we
have not defined indirect addressing yet. Let us do that.

442

ADDRESSING TECHNIQUES

e Y (index}

L~ |
o L o [(4

FINAL
it
AQDRESS

—— [DATAN —

POINTER = BASE

Fig. 5.3: Indirect Indexed Addressing (Post-Indexing)

Indirect Addressing

We have already seen that two subroutines may wish to exchange a
large quantity of data stored in the memory. More generally, several
programs, or several subroutines, may need to access a common block
of information. To preserve the generality of the program, it is desira-
ble not to keep such a block at a fixed memory location. In particular,
the size of this block might grow or shrink dynamically, and it may
have to reside in various areas of the memory, depending on its size. [t
would, therefore, be impractical to try to access this block using abso-
lute addresses, that 1s without rewriting the program every time.

The solution to this problem lies in depositing the starting address of
the block at a fixed memory location. This is analogous to a situation in
which several persons need to get into a house, and only one key exists.
By convention, the key to the house will be hidden under the mat. Every
user will then know where to look (under the mat) to find the key to the
house (or, perhaps, to find the address of the scheduled meeting, to
propose a stricter analogy). Indirect addressing, therefore, normally

443

PROGRAMMING THE Z80

uses an opcode followed by a 16-bit address. This address is used to
retrieve a word from the memory. Usually, it will be a 16-bit word (in
our case, two bytes) within the memory since it is an address. This is il-
lustrated by Figure 5.4. The two bytes at the specified address Al con-
tain "*A2"'. A2 is then interpreted as the actual address of the data that
one wishes to access.

INSTRUCTION MEMORY
OPCODE
INDIRECT (A FINAL
ADDRESS As ADDRESS (Aa)
Aa DATA

Fig. 5.4: Indirect Addressing

Indirect addressing 1s particularly useful any time that pointers are
used. Various areas of the program can then refer to these pointers to
access 2 word or a block of data conveniently and elegantly. The final
address may also be obtained by pomnting within the instruction to a
16-bit register in which it 1s contamed, This 1s called *‘register indirect.”

Combinations of Modes

The above addressing modes may be combined. in particular, 1t
should be possible in a completely general addressing scheme to use
many levels of indirection. The address A2 could be interpreted as an
mndirect address again, and so on.

Indexed addressing can also be combined with indirect agcess. This
allows the efficient access to word n of a block of data, provided one
knows where the pointer to the starting address is (see figure 5.2).

444

ADDRESSING TECHNIQUES

We have now become familiar with all usual addressing modes that
can be provided 1n a system. Most microprocessor systems, because of
the limitation on the complexity of an MPU, which must be realized
within a single chip, do not provide ail possible modes but only a small
subset of these. The Z80 provides a good subsel of possibilities. Lel us
examine them now,

Z80 ADDRESSING MODES
Implied Addressing (Z80)

Implied addressing is essentiaily used by single-byte instructions
which operate on internal registers. Whenever implicit instructions
operate exclusively on internal registers, they require only one machine
cycle to execute,

Examples of instrucuons using implied (or ‘‘register’’) addressing
are: LDr.r’; ADDA,r; ADC A.5; SUBs; SBCA.5; ANDs; ORs;
XOR s: CPs; INCr.

Zitog further distingwishes between ‘‘register addressing™ and “‘im-
plied addressing.’’ implied addressing 1s then limited, in that definition,
to nstructions that do not have a specific field (0 point to an internal
register. This introduces one mare addressing mode. This 15 one reason
why the number of addressing modes 1s insufficient to characterize the
capabilities of a microprocessor.

Immediate Addressing (Z80)

Since the Z80 has both singie-length registers {eight bits), and double-
length register pairs (16 bils), it provides two types of immediate ad-
dressing, both with 8-bit and 16-bit literals. Instructions are then
either two or three bytes long. The second (and sometimes the third)
byte contains the opcode, followed by the constant, or literai, to be
loaded in a register or used for an operation. Exceptions are LD X and
LD IY, which require 16-bit opcodes.

Examples of instructions using the immediate addressing mode are:

LD r,n (two byles)
LD dd.nn (three bytes)

and
ADD A,n (two bytes)

When the literal i1s Iwo bytes {ong, the mode 15 called '‘immediate ex-
tended,” in the case of the Z80,

445

PROGRAMMING THE Z80

Absolute or ""Extended’’ Addressing (Z80)

By definition, absolute addressing requires three bytes. The first byte
is the opcode and the next twao bytes are the 16-bit address specifying
the memory location (the “‘absolute address’").

By contrast with ‘‘shart addressing’” (eight-bit address), this mode 1s
alsa called *‘extended addressing.”

Examples of instructions using extended addressing are:

LD HL, (nn) and JP nn

where nn represents the 16-bit memary address, and (nn) represents the
contents of the specified location.

Madified Zero-Page Addressing (Z80)

Zero-page addressing 1s not available in the Z80, except through the
RST instruction. The special addressing mode used by this instruction
is called *‘modified zero-page addresing.”’

The RST instruction contains a 3-bit field in bit position b, b, b, us-
ed to pint to one of 8 locations in page 0 memory. The effective
address 15 bsbab3000 and is icaded into PC. Since it requires only a
single byte, this instruction executes rapidly, and 1s easily generated m
hardware. It was generally used to respond to multiple interrupts (up to
8.) Its disadvantage is either to limit the execution sequence ta 8 loca-
tions, or to require a jump eliminating the speed advantage. This is
because each of the 8 branch addresses are 8-bytes apart.

Relative Addressing (Z80)

By definition, relative addressing requires two bytes. The first one 15
the *“‘jump relative’’ opcode, whereas the second one specifies the dis-
placement and its sign.

In order to differentiate this mode from the absoiute jump instruc-
tion, it 1s labeled ‘*JR"’

From a timing standpoint, this instruction should be examined with
caution. Whenever a test fails, 1.e., whenever there 1s no branch, this in-

446

ADDRESSING TECHNIQUES

struction requires only seven ' T cycles.” This 1s because the next
instruction to pe executed 1s already pointed to by the program counter.

However, when the test succeeds, 1.e., whenever the jump takes
place, this mstruction requires 12 ““T-states'’; a new effeclive address
must be computed and loaded into the program counter.

When computing the duration of the execution of a program seg-
menlt, caullon must be exercised. Whenever one s not sure whether or
not the jump will succeed, one must take inta consideration the fact
that sometimes the jump will require {2 T-states, (condition met),
sometimes 7 (condition not met).

When designing a loap. execution will, therefore, be faster using a
JR(Jump Relative) testing a condition usually nof met, such as a non-
zero caondition for the counter.

When JR's are used outside of loops, and the condition under test 15
unknown, an average timing value 1s ofien used for the duration
of JR.

This timing problem does not apply to the unconditional jump JR e. 1t
does not test any condition, and always lasts 12 T-states.

Indexed Addressing (Z80)

This addressing mode did not exist in the 8080, and was added to the
ZB0 (as well as the two index registers). As a result, it became necessary
to add an extra byte to the opcode, making 1t a 16-bit opcode 1n the Z80
istruction set (LDIR is another example of a [6-bit opcode). The
structure of an indexed instruction 1s shown on Figure 5.5.

OPCODE BYTE |
OPCODE BYTE 2
DISPLACEMENT 8YTEJ
i
1 LITERAL | BYTE4
| S -

Fig. 5.5 Indexed Addressing Has 2-byte Opcade

447

PROGRAMMING THE Z80

Instructions allowing indexed addressing are:
LD, ADD, INC, RLC, BIT. SET, CP, and others.

This mode will be used extensively in the programs operating on
blocks of data, tables or lists.

Indirect Addressing (Z80)

The ZBO provides a limiled indirect addressing capability called
“Register Indirect Addressing.’” In this mode, each of the [6-bit regis-
ter pairs BC, DE, HL may be used as a memory address.

Whenever they point to 16-bit data, they point to the lower parl. The
higher part resides al the next (higher) sequential address.

Combinations of Modes

Combinations of modes are essentially non-existent, except that n-
structions referring to two operands may use a different type of ad-
dressing for each.

Thus, a load or an arithmetic instruction may access one operand in
the immediate mode, and the other one through an indexed access.

Also, the bit addressing mechanism may access the eight-bit byte
through one of the three addressing modes, as explained in the follow-
ing paragraph. The specific addressing modes available for each in-
struction are indicated in the tables of the preceding chapter.

Bit Addressing

Bit addressing is generally not considered an addressing mode if ad-
dressing is defined as accessing a byfe. However, whether defined as a
mode or a group of instructions, it 1s a valuable facility. Since it is de-
fined as an "‘addressing mode’ 1n Zilog nomenclature, it will be so de-
scribed here. It1s specific to the Z80 and was not provided on the 8080.

Bit addressing refers to the access mechanism to specified bits. The
Z80 is equipped with special instructions for setling, resetting and test-
ing specified bits in a memory location or a register. The specified byte
may be accessed through one of three addressing modes: register, regis-
ter-indirect, and indexed. Three bits are used within the opcode to select
one of eight bits.

448

ADDRESSING TECHNIQUES

USING THE Z80 ADDRESSING MODES
Long and Short Addressing

We have already used relative jump instructions in various programs
that we have developed. They are self-explanatory. One interesting
question 15: What can we do if the permissible range for branching 1s
not sufficient for our needs? On many microprocessors, the solution is
to use a so called long jump. This is simply a jump to a location which
contains an absclute or ‘‘long" jump specification:

JRNC, § + 3 BRANCH TO CURRENT ADDRESS
+3 IF C CLEAR
JP FAR OTHERWISE JUMP TO FAR

(NEXT INSTRUCTION}

The two-line program above will result in branching to location FAR
whenever the carry is set. In the case of the Z80, JP may be used instead
of IR to test all conditions and removes this problem,

Use of Indexing for Sequential Block Accesses

Indexing is primarily used to address successive locations within a
table. The restriction 1s that the maximum length must be less than 256
so that the displacement can reside in an eight-bit index register.

We have learned to check for a character. Now we will search a table
of 100 elements for the presence of a **’. The starting address for this
table 15 called BASE. Thetable has only 100 elements. The program ap-
pears below: (see flowchart on Figure 5.6):

SEARCH LD IX, BASE

LD A,™

LD B, COUNT
TEST CP (1X)

JR Z, FOUND

INC 1X

DEC B

JR NZ, TEST
NOTFND

An improved program will be presented below in the section on
Block Transfer, using DJ NZ.

449

PROGRAMMING THE Z80

INITIALIZE
TOHEMENTQ

[1

READ MNEXT
ELEAMENT

YES
[——=———%=STARFQUND

nNO

POINT TO
NEXT ELEMENT

L i

YES

NOT FOUND

Fig. 5.6: Character Search Flowchart

A Block Transfer Routine for Fewer Than 256 Elements

We will call ““COUNT"’ the number of elements in the block to be
moved. The number is assumed to be less than 256. FROM is the base
address of the block. TO is the base of the memory area where it should
be moved. The algorithm is quite simple: we will move a word at a ime,
keeping track of which word we are moving by storing its posttion 1n
the counter C. The program appears below:

BLKMOV LD
LD
LD
LD
LD
INC
INC
DEC
JR

Let us examine it:

BLKMOV LD
LD
LD

NEXT

IX, FROM
IY, TO

BC, COUNT
A, (IX)

(IY), A

IX

1y

C

NZ, NEXT

GET WORD

[X,FROM
IY.TO
C,COUNT

These three instructionsinitialize registers [X, [Y, and C respectively, as

450

ADDRESSING TECHNIQUES

C| COUNT }

x[SOURCE }

[DESTINATION b

Fig. 5.7: Block Transfer: Initializing the Register

illustrated in Figure 5.7. Index register IX is used as the source pointer,
and will be incremented regularly. Index register 1Y is used as the desti-
nation pointer, and would be incremented regularly. Register C is ioad-
ed with the maximum number of elements to be transferred (limited to
256 since this is an eight-bit register) and will be decremented regularly.
Whenever C decrements to zero, 2ll elements have been transferred.
The next two instructions:

NEXT LD A, (IX)
LD (1Y), A

load the contents of the memory location pointed to by 1X into the ac-
cumulator, then transfer it into the memory location pointed to by reg-
ister 1Y. In other words, these two instructions transfer an element of
the source block into the destination block. The two index registers are
then incremented:

INC IX
INC 1Y

And the counter register is decremented:
DEC C

Finally, as long as the counter 1s not 0, the program loops back to the
label NEXT:

JR NZ, NEXT

451

PROGRAMMING THE Z80

This is an example of the possibie utilization of index registers. How-
ever, let us compare it to the same program written for another micro-
processor, the MOS Technology 6502, which is also equipped with an
indexing capability, but uses different conventions (i.e., has different
limitanions on a general-purpose indexing facility). The program appears
below;

LDX #ANUMBER

NEXT LDA FROM, X
5TA TO, X
DEX
BNE NEXT

Withoul going into the details of the above program, the reader will
immediately notice how much shorter 1t is than the previous one. This is
because Lhe index register X 15 used as a variable displacement, whereas
FROM and TO are used as the fixed source and destination addresses.

This example should point out that although in theory indexing i1s a
powerful facilily, 1t does not necessarily lead Lo efficient coding, due to
the addressing limitations imposed on it in the case of various micro-
processors. Truly general-purpose indexing requires the possibility of a
[6-bit displacement or address field as well as a [6-bit index register.

However, 1t should be noted that this specific problem is solved, n
the Z80 by the presence of specalized instructions. A general-purpose
block transfer will now be described which can be implemented in just
four instructions. However, to be fair 1o the Z80, let us suggest addi-
tional exercises for the reader:

Exercise 5.1: Wrue the block transfer program for the Z80 in the style
of the above program jor the 6502, i.e., assuning that the index register
contains a displacernent. Assume that the source and the destinaton
block are located 1n page 0. 1.e., at addresses 0 to 256. Naturally, o will
be assumied that the number of elements within each block is samall
enongh that they do not overlap.

Exercise 5.2: Assume now that the source and the desitnation blocks are
located anywhere in the memory, except that they are both within the
same page. Rewrite the above program in that case. {Is there a dif-
Jerence, i.e., does page zero play any role for the Z807?)

Generalized Block Transfer Routine (More Than 256 Elements)

The register allocation and the memory map are shown in Figure 5.8.

452

ADDRESSING TECHNIQUES

The program is shown below:

LD BC, COUNT NUMBER OF BYTES

LD DE, TO DESTINATION ADDRESS
LD HL, FROM START ADDRESS

LDIR TRANSFER ALL BYTES

Memory used: L1 bytes
Timing: 21 cycles/byte transferred

The first instruction is:
LD BC, COUNT

It ioads the number of elements to be transferred {a [6-bit value) 1nto
the register pair BC. The next two instructions initialize the register pair
DE and the register pair HL respectively:

LD DE, TO
LD HL, FROM

Finally the fourth instruction:
LDIR

performs the complete transfer.

LDIR is an automated block-transfer instruction. Its power should
be obvious from this example. LDIR results in the following sequence:
The contents of the memory location pointed to by H and L are trans-
ferred into the memory location pointed to by DE: (DE) ={HL). Next,
DE is incremented: DE = DE + [. Then, HL is incremented: HL =
HL + I. Next, BCis decremented: BC = BC — 1. If BC becomes 0, the
instruction 1s terminated. Otherwise, the instruction is repeated.

N :ijrry/

Fig. 5.8: A Block Transfer-Memory Map

453

PROGRAMMING THE Z80

The value and power of the LDIR wstruction should be apparent at
this point without further comments. Similarly, our search for the char-
acter “‘star’’can be improved by the use of an automated instruction,
CPIR, special to the Z80. The corresponding program appears below:

LD A, »

LD BC, COUNT

LD HL, STRING
STAR CPIR

JR Z, STAR
NOSTAR ——-

The first instruction loads the accumulalor with the code for the
character star. Next, the register pair BC 1s ininalized to the count of
the number of words to be searched within the block:

LD BC, COUNT

The register pair H and L is set to the starting address of the block to
be searched (STRING). The automalted instruction is then executed:

LD HL, STRING
CPIR

The CPIR instruction i§ an automated compare nstruction. The con-
tents of the memory location specified by the address contamed in H
and L is compared to the contents of the accumulator. If the compari-
son succeeds, then Z of the flags register will be sel tg L. Then, the reg-
ister pair H and L is incremented and the register pair BC ts
decremented. The instruction is repeated until either the pair BC goes to
0 or else the comparison succeeds. After the instruction CPIR is ex-
ecuted, it is therefore necessary to test the Z flag to determine whether
the comparison has succeeded (the CPIR might have looped through
64K words without success in the extreme case). This is the purpose of
the last instruction of the program:

JR Z, STAR

Exercise 5.3: Rewrite the above program so that a search proceeds

backwards. (Hint Use the CPDR instruction) Continue the block
transfer until *** is found.

Let us now develop a program combining the features of the two pre-
vious ones, We will implement the block Lransfer from location FROM

454

ADDRESSING TECHNIQUES
to locanon TO, which shall stop automatically whenever an escape
character, **star’’, 1s found. The program appears below:

LD BC, COUNT
LD HL, FROM

LD DE, TO
LD A% DELIMITER (ESCAPE CHAR)
TEST CP(BL) COMPARE WITH MEMORY

CHARACTER

JR Z,END END IF SUCCESS

LDI TRANSFER CHARACTER AND
UPDATE POINTERS AND
COUNT

JP PE, TEST KEEP TESTING UNLESS DONE

P/V INDICATES WHETHER BC =0

The first three instructions of the program perform the usual initiali-
zation, setting up the counter registers and the source and destination
pointers:

LD BC, COUNT
LD HL, FROM
LD DE, TO

The slar character is deposited, “'as usual'’ into the accumulator, so
that it can be compared lo the character read from a memory location.

LD A¥
This ts exactly what is done by the next instruction:
TEST CP (HL)

The success or faiture of the comparnison is determined by testing the Z
bil. The Z bt will have been set if the comparison has succeeded. This 15
performed by the next mstruction:

JR Z,END
The next instruction is an aqutomated transfer instruction:
LDI

This 1nstruction transfers the characler, and updates the pointers and
the count in a single instruction. LDI transfers the contents pointed (o
by H and L into the memory iocation pointed to by D and E: (DE) =
{HL}. It mncrements DE and HL:

DE = DE + |
HL = HL + |
455

PROGRAMMING THE ZBQ

Finally, it decrements BC: BC becomes BC — 1. The particularity of
this instruction is that the P/V flag is cleared if BC decrements to ‘0"
and set otherwise. This will be explicitly tested by the last instruction in
the program to determine whether exit should occur:

JP PE, TEST
Adding Two Blocks

A program will be developed here to add element! by element two
blocks starting respectively at addresses BLK1, and BLK2, and having
equal numbers of elements, COUNT. The program Is shown below:

BLKADD LD IX, BLK]
LD IY. BLK2
LD B, COUNT

XOR A

LOOP LD A (IX + 0)
ADC A, (IY + 0)
LD (IX), A
DEC IX
DEC 1Y
DEC B

JR NZ. LOOP

s []

MEMORY

Fig. 5.9: Adding Two Blocks; BLK1=BLK1 + BLK2

456

ADDRESSING TECHNIQUES

The memory layout is shown tn Figure 5.9. The program 1s straightfor-
ward. The number of elements to be added 15 loaded into the counter
register B, and the two index registers IX and 1Y are initialized to their
values BLK] and BLK2:

BLK ADD LD IX, BLKI
LD 1Y, BLK2
LD B, COUNT

The carry bit 1s then cleared in anticipation of the first addition:

XOR A
The first element 15 loaded into the accumulator:
LOOP LD A, (X + O

The corresponding element of BLK2 is then added to it:
ADC A, (Y +0)

and finally saved into the element of BLKI:
LD (IX), A

The two pointer registers X and Y are decremented:

DEC IX
DEC 1Y

as well as the counter register:
DEC B

As long as the counter register 1s not 0, the addition loop 1s executed:
JR NZ, LOOP

Exercise 5.4: Can you use the above program to perform a 32-bit addi-
tign?

Exercise 5.5: Can you use the above program to perform a 64-bit addi-
tian?

Exercise 5.6: Modify the above program so that the result is stored in a
separate block starting at nddress BLK3.

Exercise 5.7: Modify the above program to perform a subtraction
rather than an addition.

457

PROGRAMMING THE Z80

Exercise 5.8: Modifv the original program above so that BLK| and
BLK2 are ar the rop of each block rather than the bortoni (see Fig_5.10).

FROM ——ert
COUNT =N SCURCE BLOCR
————————————— TRANSFER
A x
f ELEMENT] L COUNTER]
10—
N[oestinaton mock

b e e e e —

Fig. 5.10: Memory Organization for Block Transfer

SUMMARY

A complete description of addressing modes has been presented. It.
has been shown that the Z80 offers many possible mechanisms, and the
specific addressing modes available on the Z80 have been analyzed.
Finally, several application programs have been presented t0 demon-
sirate the value of the various addressing mechamsms. Programming
the Z80 efficiently requires an understanding of these mechanisms,
They will be used throughoul the programs in the remainder of this
book.

EXERCISES

5.9: Write a program to add the first {0 bytes of a table stored at {oca-
ton “‘BASE’’. The result will have 16 bus. (This is a checksum com-
putation).

5.10: Can you solve the same problem withow using the indexing
niode?

458

ADDRESSING TECHNIQUES

5.11: Reverse the order of the [0 byies of this table. Store the result
at address ""REVER".

5.12: Search the same table for its largest elenient. Store 1t at memory
address "LARGE"’.

5.13: Add together the corresponding elements of three tables, whose
bases are BASE I, BASE2, BASE3. The length of these tables is stored
at address "LENGTH'".

459

6

INPUT/OUTPUT TECHNIQUES

INTRODUCTION

We have learned so far how 1o exchange information between the
memory and the various registers of the processor. We have learned to
manage the registers and (o use a variety of instructions to manipulate
the data. We must now learn to communicale with the external world.
This 15 called input/output.

Input refers 1o the capture of data from outside peripherals (key-
board, disk, or physical sensor}. Queput refers to the transfer of data
from the microprocessor or the memory to external devices such as a
printer, a CRT, a disk, or actual sensors and relays.

Wewill proceed 1n two steps, First, we will learn to perform the input /
output operations required by common devices. Secondly, we will
learn to manage several input/output devices simullaneously, i.e., to
schedule them. This second part will cover, in parucular, polling vs. tn-
ferrupfts.

INPUT/OUTPUT

In this section we will learn 1o sense or to penerate simple signals,
such as pulses. Then we will study techniques for enforcing or measur-
ing correct tuming. We will then be ready for more complex types of in-
put/output, such as high-speed serial and parallel transfers.

The Z80 Input/Output Instractions

The 280 ts equipped with a special set of inpul and output instruc-
lions. Most erght-bit microprocessors are not equipped with a special
set of input and ocutput instructions, and use the general instruction set

460

INPUT/OUTPUT TECHNIQUES

on input/output devices. The Z80, like the 8080, is equipped with basic
input and output instructions. However, the Z80 is also equipped with
additional I/0Q instructions. These will be described in more detail here
in order to facilitate understanding of the programs that will be pre-
sented throughout this section.

The basic input and output instructions are respectively: IN A, (n)
and OUT (n),A. These two instructions are inherited from the 8080.
They will respectively read or write one byte between the selected port
and the accumuiator. The actual addressing processissuch that the 1L,O
device address **n’’ is gated on lines A0 through A7 of the address bus,
while the contents of the accumulator appear on address lines A8 through
Al5. When only 256 devices are addressed, it may be necessary to zero
the contents of the accurnulator explicitly if any of the address lines A8
through A15 may be decoded by an I/0 device. In the simple examples
that follow, we will assume that fewer than 256 devices are present and
that they are not connected to addresses A8 through A 15, so that it will
not be necessary to zero the contents of the accumulator explicitly, for
example prior to using the IN instruction.

A special input instruction: IN r, {C), allows using the contents of
register C as the 1/0 device'address. When using this instruction, the
contents of register B automatically provide the top part of the address
(A8 through AI5). The specified register r is loaded from the specified
address. ‘‘r’” may be any of the usual seven general-purpose registers.

Generate a Signal

In the simplest case, an output device will be turned off (or on) from
the computer. In order to change the state of the output device, the pro-
grammer will merely change a level from a logical *‘0”’ to a logical **1”’,
or from **I’" to “'0"’". Let us assume that an external relay is connected
to bit **0”’ of a register called ““OUTI"’. In order to turn it on, we will
simply write a **1”’ into the appropriate bit position of the register, We
assume here that OUTI represents the address of this output register
within our system. A program which will turn the relay on is:

TURNON LD A, 00000001B LOAD PATTERN INTO A
OUT (OUTI), A OUTPUT IT TO DEVICE

where OUT is the output instruction.

We have assumed that the state of the other seven bits of the register
OUTI 1s irrelevant. However, this is often not the case. These bits
might be connected to other relays. Let us, therefore, improve this stm-
ple program. We want to turn the relay on, without changing the state

461

PROGRAMMING THE Z80

of any other bit within this register. We will assume that it is possible to
read and wnite the contents of this register. Qur improved program now
becomes:

TURNON IN A, (OUTDH READ CONTENTS OF OUTI
OR 00000001B FORCE BIT 0" TO **I"" IN A
OUT (OQUTDND, A
The program first reads the conterus of location OUTI, then per-
forms an inclusive OR on 1ts contents. This only changes bit position 0
o ““I'", and leaves Lhe rest of the register intact. (For more details on
the OR operation, refer to Chapter 4.) This 1s illustrated by Figure 6.1.

BEIFORE AFTER

DATA pUs

RELAY

Ut ot

Fig. 6.1: Turning on a Relay

Pulses

Generating a pulfse 1s accomplished exactly as in the case of the leve/
above, An output bit is first urned on, then later turned off. This re-
sults in a pulse. This is illustrated in Figure 6.2. This time, however, an
additional problem must be solved: one must generate the pulse for the
correct length of time. Let us, therefore, study the generauon of a com-
puted delay.

o OQUTPUT PORT SIGNAY
REGISTER

pm— e N USEC ——a

1]
—
1]
—_—
1}
_—
—_— 0 ——
b——p
0
——
1}
—
]

— e ————————] S |
0= | =y

THE PROGRAM SEECT QUTPUT PORT

LOAD QUIFUT PORT EGISTER WiTH PATTERN

WAIT (LOOFFOR NUSKC)

LOAD QUIPUT ROAT WHH TERO

RETURN

Fig. 6.2: A Programmed Pulse

462

INPUT/QUTPUT TECHNIQUES
Delay Generation and Megsurement

A delay may be generated by software or by hardware methods. We
will here study the way to perform 1t by program, and later show how it
can also be accomplished with a hardware counter, called a program-
mable interval tmer (PIT).

Programmed delays are achieved by counting. A counter register 1s
loaded with a value, then 1s decremented. The program loops on itself
and keeps decrementing until the counter reaches the value 0’ The
total length of time used by this process will impiement the required
delay. As an example, let us generate a delay of 82 clock cycles:

DELAY LD A5 A IS COUNTER
NEXT DEC A DECREMENT
JR NZ,NEXT NEXT TEST

This program loads A with the value 5. The next instruction decre-
ments A and the following instruction will cause a branch to NEXT to
occur as long as A does not decrement to “‘0"’. When A finally decre-
menlts to zero, the program will exit from this loop and execute what-
ever instruction follows. The logic of the program s simple and appears
in the flowchart of Figure 6.3.

Let us now compute the effective delay which will be implemented by
the program, In Chapter 4 of the book, we will look up the number of
cycles required by each of these instructions:

LD in the immediate mode requires seven clock cycles. DEC will use
four cycles. Finally, JR will use 12 cycles except during the last itera-
tion, where it will use 7 cycles. When [ooking up the number of cycles
for JR in the table, verify that two possibilities exist: if the branch does
not occur, JR will oniy require seven cycles. If the branch does succeed,
which will usually be the case during the loop, then 12 cycles are re-
quired.

The timing is, therefore, seven cycles for the first instruction, plus 11
cycles for the next two, multiplied by the number of times the loop will
be executed, minus an extra five-cycle delay for the last unsuccessful JR:

Delay = 7 + 16 X 5 — 5 = 82 cycles.

Assuming a .5 microsecond cycle, this programming defay will be 41
microseconds.

463

PROGRAMMING THE Z80

t

COUNTER=VALUE

—

DECREMENT COUNTER

YES

out

Fig. 6.3: Basic Delay Flowchart

The detay loop which has been described 15 used by most input/output
programs. It should be well understood. Try to do the following exercises:

Exercise 6.1; What are the maxumum and the nnwniaman delays winch
can be unplervented with these three instructions?

Exercise 6.2: Modifv the program to obtain a delay of about 100 vucro-
seconcls.

If one wishes to implement a longer delay, a simple solution is to add
extra instructions in the program, before DEC. The simplest way to do
s0 is to add NOP instruction. (The NOP does nothing for four cycles.)

Longer Delays

Generating longer delays by software can be achieved through using
a wider counter. A register pair can be used to hold a 16-bit count. To

464

INPUT/OUTPUT TECHNIQUES

simplify, let us assume that the lower count is “‘0"". The lower byte
will be loaded with *‘0”’, the maximum count, then go through a
decrementation loop. Since the first decrementation results in 00=FF
and does not affect the Z flag whenever it is decremented to ‘0", the
upper byte of the counter will be decremented by 1. Whenever the up-
per byte is decremented to the value *‘0"’, the program terminates. If
more precision is required 1n the delay generation, the lower count can
have a non-null value. In this case, we would write the program just as
explained and add at the end the three-line delay generation program,
which has been described above.

A 24-bil delay program appears below:

DEL24 LD B, COUNTH COUNTER HIGH (8 BITS)

DELI6 LD DE, -1|

LOOPA LD HL, COUNTL COUNTERLOW

LOOPB ADD HL, DE DECREMENTIT
JR C. LOOPB GO ON UNTIL NULL
DINZ LOOPA DECREMENT B AND JUMP

Note that DE 1s loaded with ** — 1", and used to decrement the |6-bit
counter HL.

Naturally, still longer delays could be generated by using more than
three words. This is analogous to the way an odometer works on a car.
When the nght-most wheel goes from ‘9"’ to *‘0”’, the next wheel to the
left is incremented by |. This 1s the general principle when counting
with mulitiple discrete units,

However, the main disadvantage of this method 1s that when one is
counting delays, the microprocessor will be domng nothing else for hun-
dreds of milliseconds or even seconds. If the computer has nothing else
to do, this i1s perfectly acceptable. However, 1in general the microcom-
puter should be available for other tasks, so that longer deiays are nor-
mally not implemented by software. In fact, even short delays may be
objectionable n a system if 1t i1s to provide some guaranleed response
time 1n given situations. Hardware delays must then be used. In addi-
tion, if interrunts are used, timing accuracy may be lost if the counting
loop can be interrupted.

Exercise 6.3: Write a program (o unplement a {00 s delay (tvpical of a
Teletype).

Hardware Delays

Hardware delays are implemented by using a programmable interval
timer or *‘timer’’ in short. A register ol the timer 1s loaded with a value.

465

PROGRAMMING THE 780

The difference is that the timer will automatically decrement the
counter periodically. The period can usually be adjusted or selected by
the programmer. Whenever the timer has decremented to 0, it will
narmally send an inlerrupl 1o Lthe microprocessor. It may also set a
slatus bil which can be sensed periodically by the computer. The use of
nterrupts will be explained later 1n this chapler.

Other umer operating modes may include starting from ‘0" and
counting Lhe duration of the signal, or, counuing the number ol pulses
received. When functioning as an nlerval limer, the timer 1s said 10
operate in a one-shot mode. When counting pulses, it 1s said to operate
1n a puise courting mode. Some timer devices may even include mul-
tiple registers and a number of opuional facilities which the programmer
can select.

Sensing Pulses

The problem with sensing pulses is the reverse of thal of generating
puises, and includes one more difficulty: whereas an output pulse 1s
generated under program conlrol, input pulses occur asvichronously
with the program. In order to delect a pulse, 1wvo methods may be used:
polling and inrerrupts. Interrupts will be discussed later in this chapter.

Let us now constder the polling technique. Using this techmique, the
program reads the value of a given inpul register continuously, tesling a
bit position, perhaps bit 0. It will be assumed that bit 0 is originally
**0"". Whenever a pulse 15 received, this bit will take the value *“[*". The
program continuously monitors bit O uniil it takes the value **["". When
a **1" is found, the pulse has been detecied. The program appears
below:

POLL IN A, (INPUTY READ INPUT REGISTER
ON BIT 0,A TESTFORO
JR Z, POLL KEEP POLLING IF 0

Conversely, let us assume {hat the inpul line 1s normally **1"" and that
we wish to detect a **0"". This 1s the usual case for detecting a START
bit, when monitaring a line connected to a Teletype. The program ap-
pears below:

POLL IN A, (INPUT READ INPUT REGISTER
BIT 0,A SET ZFLAG
JR NZ, POLL TEST IS REVERSED
START

466

INPUT/QUTPUT TECHNIQUES

Monitoring the Duration

Monitoring the duration of the pulse may be accomplished in the
same way as computing the duration of an output puise. Either a hard-
ware or a software technigque may be used. When monitoring a puise by
software, a counter 1s regularly incremented by 1, then the presence of
the pulse Is verified. If the puise is still present, the program loops upon
itself. Whenever the pulse disappears, the count contained in the
counter register is used to compute the effective duration of the pulse.
The program appears below:

DURTN LD B,0 CLEAR COUNTER
AGAIN IN A, (INPUT) READ INPUT

BIT 0,.A MONITOR BIT 0

JR Z, AGAIN WAIT FOR A “'1™
LONGER INC B INCREMENT COUNTER

IN A, (INPUT} CHECK BIT O

BIT 0,A

JR NZ, LONGER WAIT FOR A 0"

Naturally, we assume that the maximum duration of the pulse will
not cause register B to overflow. If this were the case, the program
would have tobe changed to takethat into account (orelse it would be a
programming error!).

Since we now know how to sense and generate pulses, let us capture
or transfer larger amounts of data. Two cases will be distinguished:
serial data and parallel data., Then we will apply this knowledge to ac-
tual input/output devices.

PARALLEL WORD TRANSFER

It 15 assumed here that eight bits of transfer data are available in par-
alle! at address ‘' INPUT"’ (see Fig. 6.4). The microprocessor must read
the data word at this location whenever a status word indicates that it 18
valid. The status information will be assumed to be contamned in bit 7 of
address “'STATUS™’, We will here write a program which will read and
automatically save each word of data as it comes in. To simplify, we
will assume that the number of words to be read 1s known in advance
and is contained in location ““COUNT"". If this information were not
available, we would test for a so-called break character, such as a
rubout, or perhaps the character “**’. We have learned to do this al-
ready.

467

PROGRAMMING THE Z80

T

VAUD

anTs

T y
INPUT M%f’//,@ /O DEVICE

7 o]

Fig. 6.4: Parallel Word Transfer - The Memory

The flowchart appears in Figure 6.5. It is quite straightforward. We
test the status information until it becomes **1'’', indicating that a word
1s ready. When the word 15 ready, we read 1t and save 1t at.an appropri-
ate memory location. We then decrement the counter and test whether
it has decremented to **0"". If s0, we are finished; if not, we read the
next word. A simple program which implements this algorithm appears
below:

PARAL LD A, (COUNT) READ COUNT INTO A
B

LD VA B IS COUNTER
WATCH IN A, (STATUS) LOOK FOR ‘DATA READY'
TRUE
BIT 7, BIT 71S “I"" IF DATA READY

A
JR Z, WATCH DATA VALID?
IN A, (INPUT} READ DATA
PUSH AF SAVE DATA INTO STACK

468

INPUT/QUTPUT TECHNIQUES

DEC B DECREMENT COUNT
JR NZ, WATCH DO IT UNTIL ZERO

It is assumed that the ‘‘data ready’’ flag 15 automatically cleared when

STATUS (s read.
The first two mstructions imtialize the counter register B:

PARAL LD A, (COQUNT)
LD B, A

Note that there s no easy way to load B only from memory. One must
either load A, then transfer its contents to B, or load B and C
simultaneously.

POLLING OR SERVICE REQUEST

!

READ COUNT

WORD READY?

TRANSFER
WORD

v

DECREMENT
COUNTER

NO

COUNT =07

YES

aur

Fig. 6.5: Parallel Word Transfer: Flowchart

469

PROGRAMMING THE Z80

The next three instructions of the program read the status informa-
tion and cause a loop to occur as long as bit seven of the status register
1s 0. (Lt 15 the sign bit, 1.e., bit N.)

IN A, (STATUS)
BIT 7, A "IN" DOES NOT SET THE FLAGS
JR Z, WATCH

When JP fails, dala 15 valid and we can read it:
IN A, (INPUT

The word has now been read from address INPUT where 1t was, and
must be saved. Assuming that a sufficient stack area 15 available, we
can use:

PUSH AF

which saves A (and F)in the stack. 1f the stack 1s full, or the number of
words to be transferred 15 large, we could not push them on the stack
and we would have to transfer them to a designated memaory area, us-
ing, for example, an indexed instruction. However, this would require
an extra instruction to increment or decrement the index register.
PUSH is faster (anly 11 clock cycles).

The word of data has now been read and saved. We will simply decre-
ment the word counter and test whether we are finished:

DEC B
JR NZ,WATCH

This nine-instruction program can be called a benchmark. A benchmark
program is a carefully optimized program designed to test the capabilities
of a given processor in a specific situation. Parallel transfers are one such
typical situation. This program has been designed for maximum speed and
efficiency. Let us now compute the maximum transfer speed of this pro-
gram. We will assume that COUNT is contained in memory. The duration
of every instruction is determined by inspecting the tables in Chapter Four

and is found to be the following:

PARAL LD A, (COUNT) 13
B

LD . A 4
WATCH IN A, (STATUSY Il
BIT 7. 8

A
JR Z, WATCH 7/12

470

INPUT/OUTPUT TECHNIQUES

IN A, (INPUT) gl
PUSH AF L1
DEC B 4
IR NZ, WATCH 7/12

The mimmum execution tme 15 obtained by assuming that data s
available every time that we sample STATUS. In other words, the first
JP will be assumed to fail every ime. Timing 1s then:

I3 +4+ (11 +8+ 7+ 11 +4+ 12)* COUNT

Neglecting the first 17 cycles necessary 10 1nitialize the counter regis-
ter, the time used to transfer one word is 64 clock cycles or 32
microseconds with a 2 MHz clock.

The maximum data transfer rate 1s, therefore:

—————— = 31 K bytes per second
32(107%)

fxercise 6.4: Assume that the number of words to be trunsferred s
greaier than 256, Maodify the progran accordingly aned determine the
anpact on the maxyrun dara transfer rate.

Etxercise 6.5: Madify thus progran w arder 1o (ry 1o wrprove i1ts speed:
{—ustig JR nsteacd of JP
2—using DINZ
3—using INI or IND

Was the above programt tralv optimal?

We have now learned to perform high-speed parallel transfers. Let us
consider a more complex case.

BIT SERIAL TRANSFER

A serial input 1s one in which the bits of information (0's or 1’s) come
in successively on a line. These bits may come in at regular intervals.
This 15 normally called svnchronous transmisston, Or, they may come
as bursts of data at random intervals. This 1s calied asynchronons trans-
misston. We will develop a program which can work 1n both cases. The
principle of the capture of sequential data i1s simple: we will watch an
tnput line, which will be assumed to be line 0. When a bit of data 1s de-
tected on this line, we will read the bt 1n, and shift 1t into a holding reg-
ister. Whenever eight bits have been assembled, we will preserve the
byte of data into the memory and assemble the next one. fn order to
simplify, we will assume that the number of bytes to be receved 1s

471

PROGRAMMING THE 280

known in advance. Otherwise, we might, for example, have to watch
for a special break character, and stop the bit-senal transfer at this

point. We have
pears 1n Figure

SERIAL LD
LD
LD

LOOP IN
BIT
JR
SRL
RL
JR

472

learned to do that. The flowchart for this program ap-
6.6. The program appears below:

C.0 CLEAR INPUT WORD
A. (COUNT) LOAD B WITH BYTE COUNT

B
A, (INPUTY READ PORT
7 BIT 7 1S STATUS, BIT 0 IS DATA

>

Z, LOOP WAIT FOR A 1"

A SHIFT DATA BIT INTO CARRY
C SAVE INPUT B INTO C

NC, LOOP CONTINUE UNTIL 8 BITS IN

POLLING OR SERVICE REQUEST

4

READ WORD COUNT

BIT READY?

STORE BIT
iINCREMENT COUNTER

WORD- ASSEMBLED?

YES

STORE WORD
RESET 8IT COUNTER
DECREMENT WORD COUNT

WORD COUNT =07

YES

DONE

Fig. 6.6: Bit Serial Transfer—Flowchart

INPUT/QOUTPUT TECHNIQUES

PUSH BC SAVE WORD IN STACK
LD C,. 0IH RESET MARKER BIT
DEC B DECREMENT BYTE COUNTER

JR NZ, LOOP ASSEMBLE NEXT WORD

This program has been designed for efficiency and will use new tech-
niques which we will explain {see Fig. 6.7).

The conventions are the following: memory location COUNT 15 as-
sumed to contamn a count of the number of words to be transferred.
Register C will be used to assemble eight consecutive bits coming in.
Address INPUT refers to an input register. It 1s assumed that bit posi-
tion 7 of this register s a status flag, or a clock bu. When 1t 15 **0”°, data
1s nol valid. When 1t s ‘1", the data 1s valid. The data itseif will be as-
sumed to appear 1n bu position O ol this same address. in many n-
stances, the status informanon will appear on a different register than
the data register. It shouid be a ssmple task, then, to modify this pro-
gram accordingly. in addition, we will assume that the first bit of data
to be received by this program 1s guarantced 1o be a **1"'. it indicates
that the real daia follows. If this were not the case, we will later see an
obvious modification to take care of it. The program corresponds ex-
actly to the flowchart of Fig. 6.6. The first few lines of the program im-
plement a waiing foop which tests whether a bit ts ready. To determine
whether a bit 1s ready, we read the input register, then test the zera it
{Z). As long as this bit ts ‘0", the instruction JR will succeed, and we
will branch back to the loop. Whenever the status {or clock} bit
becomes true (*‘1''), then JR willfail and the next instruction will be
executed.

This imitial sequence of instructions eorresponds to arrow | in Fig.
6.7.

Al this point, the accumulator contains a “*1" n bit position 7 and
the actual data bit tn bi positton 0. The first data bit to arrive 15 going
to bea*1I'". However, the following bits may be etther °0”’ or ““1"’. We
now wish Lo preserve the dala but which has been collected in position 0.
The instruction:

SRL A

shilts the contents of the accumuiator night by one position. This causes
the right-most bit of A, which 1s our data bit, to fail into the earry but.
We will now preserve Lhis data bt into register C (this process is iilus-
trated by arrows2 and 3 in Fig. 6.7):

RL C

473

PROGRAMMING THE Z80

COUNT X

COUNT |

sTaTus

SERIAL
4 DATA
IN

INPUT

Fig. 6.7: Serial-to-Parallel: The Registers

The effect of this instruction is to read the carry bit into the right-most
bit position of C. At the same ume, the left-most bit of C falls into the
carry bit. (If you have any doubts abou1 1he rotation operauion, refer to
Chapter 41)

It is important to remember that a rotation with carry operation will
both save the carry bit, here into the right-most bit position, and also
recondition the carry bit with the value of bit 7 (or bit 0).

Here, a “‘0’" will fall into the carry. The next instruction:

JR NC, LOOP
tests the carry and branches back to address LOOP as long as the carry

474

INPUT/QUTPUT TECHNIQUES

15 °0°" . This 1s our automatic bit counter. It can readily be seen Lthat, as a
result of the first RL, C will contain **00000001°° . Eight shifts later, the
“1" will Iinally fall in1o the carry bit and stop the branching. This s an
ingentous way to implement an automatic loop counter without having
to wasle an nstruction to decrement the contents ol an index register,
This technique 15 used n order (o shorten the program and improve 1ts
performance.

When JR NC finalily fails, 8 bits will have been assembled into C.
This value should be preserved in the memory. This is accomplished by
the next instruction (arrow 4 on Fig. 6.7):

PUSH BC

We arc here saving the contents of Band C into the stack. Saving into
the stack 1s possible only if there 15 enough room 1n Lhe stack. Provided
that this condinon 1s met, 1l ts usually the fastest way (o preserve a word
in the memory, even though we save an unnecessary register (B). The
stack pointer 15 updated automatically. If we were not pushing a word
m the stack, we would have to use one more instruction 10 update a
memory pointer, We could equivalently perform an indexed addressing
operation, but that would also involve decrementing or incrementing
the index, using extra time.

After the first word of data has been saved, there 1s no longer any
guarantee that the lirst data bit to come in will bea **I'". It can be any-
thing. We must, therefore, reset the contents to **00000001" so that we
can keep using it as a bit counter. This is performed by the next instruc-
fion:

LD C,0lH

Finally, we will decrement the word counter, since a word has been
assembled, and test whether we have reached the end of the transfer.
This 1s accomplished by the next two instructions:

DEC B
JR NZ,LOOP

The above program has been designed for speed, so that one may
capture a fast input siream of data bits. Once the program terminales,
it 1s naturally advisable to immediately read away from the stack the
words that have been saved there and transfer them elsewhere into the
memory, We have already learned to perform such a block transfer in
Chapter 2.

475

PROGRAMMING THE 780

Exercise 6.6; Compuie the maxunum speed ai wiuch this program will
be able to read serial bits. Look up the waomber of cveles required by
every wsiructton m the iable at the end of this book, then compute the
tnire which will elapse durmg execution of this program. To compuie
the length of tnne wiuch witl be nsed by a loop, simply wutiply the
total duration of this loop, expressed in microseconds, by the number
of times i will be executed. Also, when computing the maxunuin speed,
assume that a dara b will be reacy every tine that the input location is
sensed.

This program 1s more difficult to understand than the previous ones.
Let us look at it again (reter to Fig. 6.6) in more delail, examining some
trade-offs.

A bit ol data comes nto bit positon 0 of “INPUT" from ume (0
time. There might be, for example, three *‘[s’" in succession. We must,
therefore, differentiate between the successive bis coming in. This is
the function ol the *‘clock’ signal.

The clock (or STATUS) signal tells us that the input bit is now valid.
Before reading a bit, we will therefore lirst test the status but. If the
status s “‘0°". we must wait. If it 1s **1"°, then the data bit 15 good.

We assumc here that the status signal 1s connected 10 bit 7 of register
INPUT.

Exercise 6.7: Can you explaunt why bu 7 15 used for status, and bu 0 for
data? Does i maiter?

Once we have captured a data bit, we want to preserve it in a safe
location, then shift it lelt, so that we can get the next bit,

Unfortunately, the accumulator 1s used to read and test both data
and status in this program. I we were 1o accumulalte data in the accu-
mulator, bit posiion 7 would be erased by the status bit.

Exercise 6.8: Can vou suggest a way (0 test status wihout erasig the
contedds of the accunndlotor (d spectal msirictiean)? 1 ifus con e done,
cotld we use the accurmulutor to ucctunnlate the successive s connng
in? Can you unprove speed by useng an *‘autoinated jump’’?

Exercise 6.9: Rewrie the programt, usmg the accumulator (o siore the
s commg . Cowmpare it 10 the previous one in terus of speed and
ninber of msirctions.

Let us address two more possible vanations.
We have assumed that, in our parucular example, the very first bit to
come in would be a special signal, guaranteed to be “*1*’. However, in

476

INPUT/QUTPUT TECHNIQUES

general, 1t may be anything.

Exercise 6.80: Modify the program above, assuunng that the very first
bt to come m s valid data (nor 1o be discarded), and cann be 0" or
T Hiine onr Uit cotcniter” shiowldd still work correcely, if vou nuial-
1ize 1wl thie correct valne,

Finallv, we have been saving the assembled word i the stack, to gain

ume. We could naturally save 1t in a specified memory area.

Exercise 6.11: Modify the programt above, and save the assentbled word
w the memory area siartutg a1 BASE.

Lxererse 6.12: Modifyv the program above so that the transfer will stop

witent thee characier 'S s detecred wr the uynir stream.

The Hardware Alternative

As usual for most standard input/output algorthms, 1t 15 possible to
implement this procedure by hardware. The chip 1s called a UART. kt
will automanically accumulate the bits. However, when one wishes to
reduce the component count, this program, or g vanaton of it, will be
used stead.

Exercise 6.13: Modify the progran. assing Ched data s available i it
position 0 of location INPUT, while the status imnformation 1s available
it position 0 of address INPUT + 1.

BASIC 170 SUMMARY

We have now learned to perform clementary input/output opera-
tions as well as 1o manage a stream of parallel data or serial bils. We are
now ready to communicate with real input/output devices.

COMMUNICATING WITH INPUT/OUTPUT DEVICES

In order to exchange data with mput/output devices, we witl first
have to ascertain whether data 1s available, if we want to read it; or
whether the device 1s ready 1o accent data, il we want to send it. Two
procedures mav be used: handshaking and interrupts. Let us study
handshaking [lirst.

Handshaking

Handshaking 1s generally used to communicate beiween any two

477

MPU

PROGRAMMING THE Z80

at e -

+hlAD
AATuY)

T[4 O

STaruS
FECYSHA

DATA

—

QUTPUT
DEVICE

—

Gutrdt
AGISIER

FOCHP

Fig. 6.8: Handshaking (Output)

asynchronous devices, i.e., belween any lwo devices which are not syn-
chronized, For example, if we wanl to send a word to a parallel printer,
we must first make sure that the mput buffer of this printer 1s available.
We will, therefore, ask the printer: Are you ready? The printer will say
“yes"’ or “no.”" Ifitis not ready we will wait. 1f it 1s ready, we will send
the data (see Fig. 6.8).

DATA

—

et
LGSR
aluy
REGHlER

Fig. 6.8a: Handshaking (Input)

INPUT

MPU DEVICE

CHATACTER
ZEADY 7

ALERIIN

Conversely, before reading data from an mnput device, we will verify
whether the data s valid. We will ask: **Is data valid?"’ And the device
will tefl us ““ves’” or **no."” The “*yes or no'’ may be indicated by status
bits, or by other means (see Fig. 6.8a).

As an analogy, whenever you wish to exchange information with
someone who 1s independent and might be doing somethung else at the
ume, you should ascertain that he s ready (o communicate with you,
The usual rule o) courtesy is to shake his hand. Data exchange may then
follow. This 15 the procedure normally used 1n communicating with mn-

478

INPUT/OUTPUT TECHNIQUES

put/output devices.
Let us now illustrate this procedure with a simple example.

Sending a Character To The Printer

The character will be assumed to be conlained in memory localion
CHAR. The program to print it appears below:

WAIT IN A, (STATUS)
BIT 7. A TEST IF READY
JR Z, WAIT OTHERWISE WAIT

LD A, (CHAR) GET CHARACTER
OUT (PRNTD), A PRINTIT
JR WAIT GO FOR NEXT

The print program 1s straightforward and uses the handshaking pro-
cedure which has been described above. The data paths are shown in
Figure 6.9.

STATUS

CHAR DATA * -:l__— y '

PRNTD

PRINTER

C L DATA j

MEMORY 280

Fig. 6.9: Printer—Data Paths

The character (cailed DATA) is iocated at memory location CHAR.
First, the status of the printer 1s checked. Whenever bit 7 of the status

479

PROGRAMMING THE Z80

register becomes 1, it indicates that the printer ready for input, i.e., its
mput buffer is available. At this point, the character is loaded into
the accumulator, then output ta 1he printer, via the accumulator. As
fong as the status bu remains 0, the program will remam n a loop,
called WAIT 1 the program,

Exercise 6.14: How many instructions would be saved in the above pro-
gram by loading data directly into register C as well as outputing the con-
tents of register C directly?

Exercise 6.15: When using an actual printer, 1 ts usually necessary to
send q start order before using the device. Modify tius program 10 gen-
erate such an order, ussuring that the siart command 15 obramed by
writing a 1 tn bit posteon 0 of the STATUS register, winuch 1s assumed
10 be bidirectional,

Exercise 6.16: If the BIT instrucuon were not available, could you use
another instruction instead, in line 2 of the program? If so, explain the
advantage of using the BIT instruction, if any.

Exercise 6,17: Modifv the prograti above to print a string of n charac-
ters, where n will he assinned 1o be less than 255,

Exercise 6. 18: Modifv the above program to print a string of characters
untif a “‘carnage-return’’ code 1s encountered.

Let us now complicate the oulput procedure by requiring a code con-
version and by outputting 10 several devices at a time:

Output To a Seven-Segmeni LED

A (raditional seven-segment light-cnutting diode (LED) may display
the digits 0" through **9'", or even **0'" through “*F'* hexadecimal by
lighting combinations ot its 7 segiments, A seven-segment LED 1s shown
in Figure 6.10. The characters that may be generated with this LED
appear 1n Figure 6.11.

The segments of an LED are labeled *‘a'’ through **g' in Figure 6.10.

For example, "*0'" will be displayed by lighuing the segments abedef.
Ler us assume, now, that bu **0" of an gutput port 1s connected to seg-
ment ‘‘a’’, that **1"' 15 connecled to segment “*b’", and so on. Bit 71s
not used. The binary code required 1o light up fedcba (to display **'0™)
15, therefore, “*01111)1)"" In hexadecimal this 1s ©*3F"". De the follow-
INg exercise.

480

INPUT/QUTPUT TECHNIQUES

Fig. 6.10: Seven-Segment LED

8 / /—"'

/
=
[

_/
]
L

\
‘\
S

_

S

S

| ~I_
S~

|
I --"-u...
I

— \'\
“I\\
| Il]

——

~——
—
——
—

‘-—‘l'——.
|
|

Fig. 6.11: Hexadecimal Characters Generated
with a Seven-Segment LED

481

PROGRAMMING THE Z80

Exercise 6.19: Compute the seven-segment equivalent for the hexadeci-
mal digits "0 through *F’. Fill out the table below:

LED code x|LED code]Hex| LED code x| LED code

F

]

'11[11000;

wmwog

—-:cnm-h%

W@ e

Let us now display hexadecimal values on several LED’s.

Driving Multiple LED’s

An LED has no memory. 1t will display the data only as long as its
segment lines are active. In order to keep the cost of an LED display
low, the microprocessor will display information on each of the LED’s
in turn. The rotation between the LED’s must be fast enough so that
there is no apparent blinking. This implies that the time spent from one
LED to the next is less than 100 milliseconds. Let us design a program
which will accomplish this. Register C will be used to point to the LED
on which we want to display a digit. The accumulator is assumed to
contain the hexadecimal value to be displayed on the LED. Our first
concern is to convert the hexadecimal value into its seven-segment rep-
resentation. In the preceding section, we have built the equivalence
table, Since we are accessing a table, we will use the indexed addressing
mode, where the displacement index will be provided by the hexadeci-
mal value. This means that the seven-segment code for hexadecimal
digit *“3"* is obtained by looking up the third element of the table after
the base, The address of the base will be called SEGBAS. The program
appears below:

LEDS LD E, A A CONTAINS HEX DIGIT
LD D, 0 USE *'DE" AS DISPLACEMENT
LD HL, SEGBAS USE “"HL" AS INDEX
ADD HL, DE TABLE ADDRESS
LD A, (HL) READ CODE FROM TABLE
LD B, 50H DELAY VALUE = ANY

LARGE NBR

DELAY OUT (<), A OUTPUT FOR SET DURATION

DEC B DELAY COUNTER

482

INPUT/OUTPUT TECHNIQUES

JR NZ, DELAY KEEP LOOPING

LD A, C C IS PORT NUMBER
DEC C

Cp MINLED DONE FOR LAST LED?
IR NZ, OUT

LD BC, (MAXLED) IF SO, RESET C TO TOP LED
ouT RET

The program assumes that register C contains the address of the LED
Lo be illuminated next, and that the accumulator A contains the digit to
be displayed.

The program first looks up the seven-segment code corresponding to
the hexadecimal value contained 1n the accumulator. Registers D and E
are used as a displacement field, and registers H and L are used as a
16-bit index register. The hexadecimal digit is added to the base address
of the tabte:

LEDS LD E, A 7-SEGMENT CODE
LD D, 0
LD HL, SEGBAS
ADD HL, DE

A delay loop 1s then implemented, so that the code obtained from the
table is displayed for an appropriate duration. Here the constant ‘*50""
hexadecimal has been arbitrarily chosen:

LD A, (HL) READ CODE FROM TABLE
LD B, S0H DELAY VALUE

The delay 1s accomplished using a classic delay loop. The first instruc-
tton;

DELAY OUT <), A
outputs the contents of the accumulator at the 1/Q port pointed o by

register C (the LED number). The next two mstructions implement the
delay loop:

DEC B
IR NZ, DELAY
Once the delay has been implemented, we must simply decrement the
LED pomnter, and make sure that we loop around to the highest LED
address if the smallest LED address has been reached:

LD AC

483

PROGRAMMING THE Z80

DEC C

CP MINLED

JR NZ, OUT

LD BC, (MAXLED)
OuT RET

It is assumed here that the above program has been written as a sub-
routine, and the last instruction is then RET:**return from subroutine*

Exercise 6.20: It 1s usually necessary to turn off the segment drivers for
the LED prior to displaying the digit. Modify the above program by
adding the necessary wistructions (output 00" as the character code
prior fo outpuiting the character).

Exercise 6.21: What would happen 1o the display if the DELAY fabel
were moved up by one line position? Would tius change the tuning?
Would this change the appearance of the display?

Exercise 6.22: You will notice that the first four instructions of the pro-
gram are, in fact, performing a [6-bit indexed memory access. FHow-
ever. f seems-chuns_v. withour usmg the mdexing mechamism. Assinne
that the SEGBAS address is known in advairce. Call SEGBSH tle
high-order part of this address, and SEGBSL the low part of this ad-
dress. Store SEGBSH in the ligh-order part of the IX register, Now
write the above program, usmg the Z80 index-addressing mecharmsm,
and using SEGBSL as the displacement field of thie instrucion. What
are the advantages and disadvantages of tius approachi?

Exercise 6.23: Assunung that the above program 1s a subroutine, you
will notice that it uses registers B, D, E, H and L mternally, and modi-
Sfies their contents. If the subroutine may freelv use the memmory area
designated by address TI, T2, T3. T4, TS, could vou add instructions at
thie beginnming and at the end of ihus progran wiuch will guarantee that,
wilien the subroutine returns, the contents of registers B, D. E. Hand L.
will be the saine as when the subroutine was entered?

Exercise 6.24: Same exercise as above, but assume that the memory
area T, etc., is nor available to the subroutine. (Hint: remember that

there s @ buiki-in inecharusm 1 every computer for preserving informa-
tron i a chronological order.)

We have now solved common mput/output problems. Let us con-
sider the case of a common peripheral: the Teletype.

484

INPUT/OUTPUT TECHNIQUES

Teletype Input-Output

The Teletype ts a senal device. it both sends and recerves words of in-
formation 1n a senal formal. Each character is encoded in an 8-bit
ASCII format (the ASCil table appears at the end of this book}. [n ad-
dition, every character 15 preceded by a “‘start’ bit, and termmated by
two “‘stop’’ biuts. In the so-cailed 20-milliamp current loop interface,
which 15 most frequently used, the state of the line 1s normally a “*1"".
This 15 used to indicate to the processor that the line has not been cut. A
start 1sa *'17"-to-*'0"" transiton. Il indicates to the receiving device that
data bits follow, The standard Teletype 15 a 10-characters-per-second
device. We have just established that each character requires 1 bits.
This means that the Teletype will iransmit 110 bits per second. 11 15 said
to be a 110-baud device. We will design a program to serialize bits out
to the Teletype at the correct speed.

START PULSE

2 STOP PULSES
gl
MARK - —=— STOPl}STOPZ}
112131415161 718 Q 10
SPACE = — — —

Fig. 6.12: Format of a Teletype Word

One-hundred-and-ten its per second implies that bats are separated
by 9.09 milliseconds. This will have to be the duration of the delay toop
to be implemented between successive bits. The format of a Teletype
word appears n Figure 6.12. The flowchart for bit input appears in
Figure 6.13. The program follows:

TTYIN IN A, (STATUS)

BIT 7. A DATA READY"
IR Z, TTYIN OTHERWISE WAIT
CALL DELAYI CENTER OF PULSE

IN A (TTYBIT) START BIT
OUT (TTYBIT), A ECHOIT
CALL DELAY9 NEXT PULSE (9 M3)
LD B, 08H BIT COUNT

NEXT IN A, (TTYBITY READ DATA BIT
OUT (TTYBIT), A ECHOIT
SRL A SAVE IT IN CARRY

485

PROGRAMMING THE Z80

TTYIN

START BIT?

YES

WAIT 4.5ms
ECHO STARTBIT

— |

WAIT9.09 ms

SHIFT IN DATA BIT
ECHOIT

CHARACTER
ASSEMBLED?
I ves

WAIT .09 ms

OUTPUT STOP BIT

WAIT 13.59 ms

Fig. 6.13: TTY Input with Echo

486

INPUT/OUTPUT TECHNIQUES

RR C PRESERVE IT INTO C
CALL DELAY9 NEXT PULSE (9 MS)
DEC B DECREMENT BIT COUNT

JR NZ, NEXT

IN A, (TTYBIT) READ STOP BIT
OuUT (TTYBIT), A ECHOIT

CALL DELAY9 SKIP SECOND STOP
RET

Fig. 6.14: Teletype Program

Let us examine the program 1n detail. First, the status of the Teletype
must be tested to determine if a character s available:

TTYIN IN A, (STATUS)
BIT 7. A
JR Z, TTYIN
The *“*BIT'" instruction is a usefui Z80 facility which allows testing
any bit 1n any data register. [t does not modify the contents of the regis-
ter under test. The Z flag s set if the specified bt is 0, and reset other-
wise.
This program will, therefore, foop until the status finally becomes
“I'". It is a classic polling loop.
Note also that, since the STATUS does not need to be preserved, we
could advantageously use

AND 10000000B
instead of

BIT 7. A
However, using the AND instruction destroys the contents of A
{acceptable here).
When optimizing a program, remember that each new instruction
may introduce side-effects.
Next, a 4.5 ms defay is implemented in order to sense the start bit in
the middle of the pulse.

CALL DELAYI

where DELAY] s the delay subroutine implementing the required
delay. The first bit to come 1s the start bit. It should be echoed to the
Teletype, but otherwise ignored. This is done by the next instructions:

TTYIN IN A, (TTYBIT
OuUT (TTYBIT), A

487

PROGRAMMING THE 280

We must then wail for the first data bit. The necessary delay 15 equal to
9.09 milliseconds and 1s implemented by a subroutine:
CALL DELAY9

Regisler B 15 used as a counter and 15 loaded with the value 8 in order Lo
capture Lhe 8 data bits:

LD B, 08H

Next, each data bit will be read 1n turn into the accumulator, then
echoed. it 15 assumed to arrive in bt position 0 of the accumulator. The
data bit will then be preserved 1nto register C, where 1t will be shifted in.
The transfer from A 1o C s performed through the carry bit:

NEXT IN A, (TTYBITD
OuUT (TTYBIT), A

SRL A
RR C
This sequence is iltustrated in Figure 6.15.
A 17O SPACE
X
1 C
X
x -
TATUS TELETYPE
3 DATA -
8 < TIVBIT
I COUNTER l —b{:

Fig. 6.15: Teletype Input

Next, the usual 9 millisecond delay is implemented, the bit-counter 1s dec-
remented, and the loop 15 entered again as fong as the eight bits have
not been caplured:

CALL DELAY9
DEC B
JR NZ, NEXT

Finally, the STOP bt is captured, and echoed. 1t is usually sufficient to
send a single STOP bit, however both could be sent back using two
more instructions:

IN A, (TTYBIT
OouT (TTYBIT), A
CALL DELAYY
RET

488

INPUT/OUTPUT TECHNIQUES

The program should be examined with attention. The logic 15 quite
simple. The new fact is that whenever a bit is read from the Teletype (at
address TTYBIT), it 1s echoed back to the Teletype. This is a standard
feature of the Teletype. Whenever a user presses a key, the information
is transmitted to the processor and then back to the printing mechanism
of the Teletype. This verifies that the transmission lines are working
and that the processor is operating when a character is, indeed, printing
correctly on the paper.

ENTER ENTER
¥ v
SEND START . OSUENTTEBRITTO
BIT ELEVEN
1 -
SEND DATA OUTPUT
BITS A BIT
T Y
DELAY
SEND STDP 9,1 msec
BIT
i ND
EXIT
¥ YES
REY

Fig. 6.16: Teletype Ouiput

Exercise 6.25: Write the defay routine wiich results in the 9.09 millisec-
ond delay. (DELAY subrouime)

Exercise 6.26: Usmg the example of the program developed above,
wrife a PRINTC program which will print on the Teletype the contents
of memory location CHAR (see Fig. 6.15).

The answer appears below:

PRINTC LD B, 11 COUNTER = 11 BITS
LD A, (CHAR) GET CHARACTER
OR A CLEAR CARRY = START BIT
RLA CARRY INTO A

489

PROGRAMMING THE Z80

NEXT OUT (TTYBIT),A OUTPUT

CALL DELAY

RRA NEXT BIT

SCF CARRY = [(STOP BIT
DEC B BIT COUNT

JR NZ, NEXT

RET

Register B is used as a bit counter for the transmission. The contents
of bit 0 of A will be sent to the Teletype line ("“TTYBIT'"). Nole how
the carry is used to provide a ninth bit {the START bit}. Also, note that
the carry is cleared by:

OR A
Al the end of the program, the carry is set to one by:
SCF

in order to generate a stop bit.

Exercise 6.27: Modify the program so that it waiis for a START bit -
stead of a STATUS but.

Printing a String of Characters

We will assume that the PRINTC rotutine (see Exercise 6.26} takes
care of printing a character on our printer, or display,or any output de-
vice. We will here print the contents of memory locations {START) to

{START + N).
The program 1s straightforward (see Figure 6.17):
PSTRING LD B, NBR LENGTH OF STRING
LD HL, START BASE ADDRESS
NEXT LD A, (HL) GET CHARACTER
CALL PRINTC PRINT IT
INC HL NEXT ELEMENT
DEC B
JR NZ, NEXT DO IT AGAIN
RET

490

INPUT/QUTPUT TECHNIQUES

MEMORY

B

COUNTER

START +N

————-—-?0 PRINTER
QUTPUT REGISTER

Fig. 6.17: Printing a Memory Block

PERIPHERAL SUMMARY

We have now described the basic programming techniques used to
communicate with typical input/ocutput devices. In addition to the data
transfer, 1t will be necessary lo condition one or more control registers
within each 1/0 device in order to condition the transfer speeds, the in-
terrupt mechanism, and the various other options correctly. The man-
ual for each device should be consulted. {For more details on the spe-
cific algorithms for exchanging informauan with all the usual peripher-
als, the reader is referred to our book, C207, Microprocessor Interfac-
ing Techniques.)

We have now [earned to manage single devices. However, in a real
system, all peripherals are connected to the buses, and may request
service simultaneously. How are we gomng to schedule the processor’s
time?

INPUT/OUTPUT SCHEDULING

Since input/output requests may occur simultaneously, a scheduling
mechamsm must be implemented in every system to determine in which
order service will be granted. Three basic input/output techniques are
used, which can be combined with each other. They are: poiling, inter-
rupt, DMA. Polling and interrupts will be described here. DMA is
purely a hardware technique, and as such will not be described here. (It
is covered in the reference books C201 and C207.)

491

PROGRAMMING THE Z80

Polling

Conceptually, polling s the simplest method for managing muitipie
peripherals. With this strategy, the processor interrogates the devices
connecled to the buses in turn. If a device requests service, the service
15 granted. If 1t does nol request service, the next peripheral is exam-
ined. Polling is used not just for the devices, but for any device service
rouiine.

As an example, if the system 1s equipped with a Teletype, a tape re-
corder, and a CRT display, the polling routine would interrogate the
Teletype: ‘*Do you have a character to transmil?"' It would interrogate
the Teletype output routine, asking: ‘Do you have a character (0
send?"" Then, assuming that the answers are negalive 50 far, it would
nterrogate the tape-recorder routines, and finally the CRT dispiay. If
only one device is cannected 1o a system, polling will be used as well to
determine whether 11 needs service. As an example, the flowcharts for
reading a paper-tape reader and [or printing on a printer appear in Fig-
ures 6.20 and 6.21.

e e e e e — ot ——— e ————)
MPU INTERRUPT
1l J
| wo o |
INTI
1 INT 1 _INT
1
HOLD ! MEMORYI DMA]
MPU T ; DMA
| 1
1 170 17Q

Fig. 6.18: Three Methods of 1/0 Control

492

INPUT/CUTPUT TECHNIQUES

Example: a polling loop for devices [, 2, 3, 4 (see Fig. 6.19):
POLL4 IN A, {(STATUS 1) GET STATUS OF DEVICE |

BIT 7. A SERVICE REQUEST?
CALL NZ, ONE BIT7 =17

IN A, (STATUS2) DEVICE 2

BIT 7, A

CALL NZ, TWO

IN A, (STATUSDH DEVICE 3
BIT 1, A

CALL NZ, THREE

IN A, (STATUS4) DEVICE 4

BIT 7. A
CALL NZ, FOUR
JR POLL4 NO REQUEST, TRY AGAIN

Bit 7 of the status register for each device 15 **1"" when 1t wants serv-
ice. When a request is sensed, this program branches to the device
handler, at address ONE for device |, TWO for device 2, etc.

A fine point 15 worth noting here. For ¢ach mstruction, 1t 15 impor-
tant to verify carefully the way in which it affects the condition codes.
It should be noted that the IN A instruction does not change the flags.
If an IN r instruction has been used instead of an IN A instruction, bit7
of the mput would automatically be reflected as the SIGN bit in the
flags register. The special instruction ‘“BIT 7,A"" would become un-
necessary. However, because the IN A instruction does not change the
flags, this extra test must be included in the program.

In some hardware implementations, input/output devices may be
treated as memory devices for purposes of addressing. This is called
memory-mapped input/output. In this case, the IN instruction would
be replaced by an LD instruction and the rest of the program would be
as above, since LD does not affect the flags.

The advantages of polling are obvious: it is simple, does not require
any hardware assistance, and keeps all input/output synchronous with
the program operation. [ts disadvantage is just as obvious: most of the
processor's time is wasted looking at devices that do not need service.
In addition, by wasting so much time, the processor might give service
to a device loo late.

Another mechanism is, therefore, desirable in order to guarantee that
the processor's time can be used to perform useful computations rather
than polling devices needlessly all the ime. However, let us stress that
polling is used extensively whenever a microprocessor has nothing bei-

493

PROGRAMMING THE Z80

A
REGUESTIMG
SERVICE?

SERVICE ROUTINE
FOR DEVICE A

B
REQUESTING
SERVICE?

SERVICE ROUTINE
FOR DEVICE B

C
REQUESTING
SERVICE?

SERVICE ROUFINE
NO FOR DEVICE C

|

Fig. 6.19: Polling Loop Flowchart

+

SET READER
ENABLE ON

READY? .
NO

YES

READ CHARACTER

Fig. 6.20: Reading from a Paper-Tape Reader

494

INPUT/QUTPUT TECHNIQUES

READY NO

YES

LOAD PUNCH
OR PRINTER
BUFFER

y

TRANSMIT
DATA

|

Fig. 6.21: Printing on a Punch or Printer

ter to do, as it keeps the overall prgamization simple. Let us examine the
essenttal alternative to polling: interrupts.

Interrupts

The concepl of interrupts 1s illustrated in Figure 6.18. A special hard-
ware line, the interrupt line, is connecled to a specialized pin of the mi-
croprocessor. Multiple mput/output devices may be connected to this
interruplt line. When any one of them needs service, it sends a level or a
pulse on this line. An interrupt signal is the service request from an 1n-
put/autpul device to the processor. Let us examine the response of the
processor to this interrupt.

In any case, the processor completes the instruction that it was cur-
rently executing; otherwise, this would create chaos inside the micro-
processor. Next. the microprocessor should branch Lo an interrupt-han-
dling routine which will process the interrupt. Branching to such a sub-
routine implies that the contents of the program counter must be saved
on the stack. An interrupt must, therefare, cause the automaiic preser-
vation of the program counler on the stack. In addition, the flag regis-
ter F should be also preserved automalically, as its contents will be
altered by any subsequent instruction. Finally, if the interrupt-handling

495

PROGRAMMING THE Z80

routine should modify any internal registers, these internal registers
should also be preserved on the stack (see Figures 6.22 and 6.23).

5P e—— PCL

PCH

Fig. 6.22: Z80 Stack After Interruption

\/\/

PI7n|mln|olm

/\/'\,’—-J

Fig. 6.23: Saving Some Working Registers

After all these registers have been preserved, one can branch to the
appropriate interrupt-handiing address. Al the end of this routine, all
the registers should be restored, and a special interrupt return should be
executed so that the main program will resume execution. Lel us exam-
ine i more detail the interrupt lines of the Z80.

Z80 Inlerrupts

An interrupt 15 a signal sent to the microprocessar, which may re-
quest service at any time and is asynchronous to the program. When-
ever a program branches to a subroutine, such branching 1s synchron-
ous o program execution, i.e., scheduled by the program. An inler-
rupt, however, may occur at any time, and will generally suspend the
execution of the current program (without the program knowing it).
Because 1t may happen al any lime relalive to program execution, it is
called asynchronous.

Three interruption mechanisms are provided on the Z80: the bus re-
quest (BUSRQ), the non-maskable interrupt (NMI) and the usual inter-
rupt (INT).

Let us examine these three types.

496

INPUT/QUTPUT TECHNIQUES

The Bus Request

The bus request is the highest priority interrupt mechanism on the
Z80. The interrupt sequence for the Z80 is shown in Figure 6.24. Asa
general rule, no interrupt will be sensed by the Z80 until the current
machine cycle 1s completed, The NMI and INT interrupts will not be
taken into account until the current instruction is finished. However,
the BUSRQ will be handled at the end of the current machine cycle,
without necessarily waiting for the end of the instruction. It is used for

BusVy - @

watiak.d
PR
LAEL I TN
wid&aurt
MLE

Fig. 6.24: Interrupt Sequence

497

PROGRAMMING THE Z80

a direct memory access (DMA), and will cause the Z80 to go into DMA
mode (see ref. C201 for an explanation of the DM A mechanism). If the
end of an instruction has been reached, and if any NMI or INT were
pending, they would be-memorized internally in the Z80 by setting spe-
cialized flip-flops: the NMI flip-flop, and the INT flip-flop. In DMA
mode, the Z80 suspends operation and releases its data-bus and
address-bus in the high-impedance state. This mode is normally used by
a DMA controller to perform transfers between a high-speed input-
output device and the memory, using the microprocessor data-bus and
address-bus, The end of a DMA operation 1s indicated to the Z80 by
BUSRQ changing levels. At this point, the Z80 will resume normal
operation. In particular, it will first check whether its internal NMI or
INT flip-flops had been set and, if 5o, execute the corresponding inter-
Tupts,

The DMA should normally not be of concern to the programmer, un-
less timing is important. If a DMA controller is present in the system,
the programmer must understand that the DMA may delay the
response to an NMI or an INT.

The Non-Maskable Interrupt

This type of interrupt cannot be inhibited by the programmer. It is
therefore said to be non-maskable, hence its name. It will always be ac-
cepted by the Z80 upon completion of the current instruction, assuming
no bus request was received. (If an NMI is received during a BUSRQ,
it will set the internal NMI flip-flop, and will be processed at the end of
the instruction following the end of the BUSRQ.}

The NMI will cause an automatic push of the program counter into
the stack and branch to address 0066H: the two bytes representing the
address 0066H will be installed in the program counter. They represent
the start address of the handling routine for the NMI (see figure 6.25).

This interrupt mechanism has been designed for speed, as it is used in
case of ‘‘emergencies’’. Therefore, it does not offer the flexibility of the
maskabie interrupt mode, described befow.

Note also that an interrupt routine must have been loaded at address
0066H prior to using the NMI.

NMI will first cause:

SP «—S8P - |

(SP) «— PCH

SP ~—SP — | push PC
(SP) =—PCL

498

INPUT/QUTPUT TECHNIQUES

MEMORY
IFFI IFF2
o[]—»] 0066
NMI
HANDLER

:
<1 E
MO

- PC -« stock

Fig. 6.25: NMI Forces Automatic Vectoring

Then, NMI causes an automatic restart at locatipn 0066H. The com-
plete sequence of events 1s the following:

PC ———pe- STACK (preserve program counter)
IFF] -~ [FF2 (preserve [FFY

0 ———=p= |FF1 (reset IFF}

JUMP TO 0066H (execute interrupt handler)

Also, the status of interrupt-mask-bit flip-flop (IFF1) at the time that
NMI was received is preserved automatically into IFF2. Then, IFF1 is re-
set in order to prevent any further interrupts. This feature is important to
prevent the loss of lower-priority INT’s and simplifies the externai hard-
ware: the status of a pending INT is preserved internally in the Z80.

The NMI interrupt is normally used for hugh priority events such as a
real-time clock or a power failure.

The return from an NMI1 is accomplished by a special instruction, RETN:
“return from non-maskable interrupt.” The contents of IFFI are restored
from IFF2, and the contents of the program counter PC are restored from
their location in the stack. Since IFF1 had been reset during execution
of the NMI, no external INT’s could be accepted during the NMI
(unless the programmer uses an EI instruction within the NMI routine):
there has been no loss of information.

Upon termination of the interrupt handler, the sequence is:

fFF2 ———& [FFI (restore {FF}
STACK —» PC (restore program counter}

Note that, once IFF]1 is restored, maskable interrupt enable status is
restored.

499

PROGRAMMING THE Z80

Interrupt

The ordinary, maskable,interrupt INT may operate in one of three
modes. They are specific to the Z80, as the 8080 is equipped with only a
single interrupt mode. The ordinary interrupt INT may also be masked
selectively by the programmer. Setting the interrupt flip-flops IFFI and
IFF2 to a “‘I”’ will authorize interruptions. Setting them to a ‘0"
(masking them) will prevent detection of INT. The EI instruction is
used to set them, and the DI instruction is used to reset them. IFF1 and
IFF2 are set or reset simultaneously. Durimg execution of the El and DI
instructions, INT’s are disabled in order to prevent any [oss of informa-
tion.

Let us now examine the three interrupt modes:

Interrupt Mode 0

This mode is identical to the 8080 mterrupt mode. The Z80 will
operate in interrupt mode O either when initially started (when the RE-
SET signal has been applied) or else when an IMQ instruction has been
executed. Once mode O has been set, an interrupt will be recognized if
the interrupt enable flip-flop IFF1 is set to [, provided no bus-request
or non-maskable interrupt occurs at the same time. The interrupt will
be detected only at the end of an instruction. Essentially, the Z80 will
respond to the interrupt by generating an IORQ (and an MI signal),
and then do nothing, except wait.

It is the responsibility of an external device to recognize the IORQ
and M1 (this is called an interrupt acknowledge or INTA) and to place
an instruction on the data-bus. The Z80 expects an instruction to be
placed on its data bus by the external device within the next cycle. Typi-
cally, an RST or a CALL mnstruction is placed on the bus. Both of these
instructions automatically preserve the program-counter in the stack,
and cause branching to a specific address. The advantage of the RST in-
struction is that it resides within a single byte, i.e., it executes rapidly.
Its disadvantage is to branch to only one of eight possible locations in
page zero (addresses O through 255). The advantage of the CALL in-
struction is that 1t is a general-purpose branch instruction which speci-
fies a full [6-bit address. However, it requires three bytes and therefore
executes less rapidly.

Note that once the nterrupt processing starts, all further interrupts
are disabled. IFF1 and IFF2 are automatically set to **0"*. It is then the
responsibility of the programmer to insert an EI instruction (Enable In-

500

INPUT/OUTPUT TECHNIQUES

terrupts) at the appropriate location within his program if he wishes to
enable interrupts, and, in any case, before returning from the interrupt.

The detailed sequence corresponding to the mode 0 interrupt is
shown in Figure 6.26.

MODE D MODE 1 MCOE 2
OLSABLE INTERRUPTS DISABLE INTERRUFTS DISARLE [NTERRUFTS
WE1_[FF2 = 0 IFF1, IFF2 = IFF1, IFF2 = 0
READ FIRST BYTE L PC—o STACK] [READ VECTOR]
OF INSTALICTION
11, 10RQ LOW) } }
[RUMP 10 0038M J I PC ~#STACK]
: ¥
-
FORM VECTOR
MOVE BYTES o TABLE ADORESS:
REQUIRED FOR WG + VECION
INSTRUCTION ‘
YES :'.:TSII.I'TING
READ NEXT BYTE m“ £55 HRD
0] TABME
[NORMAL MEM. READ
WITH PC STATIDNARY] ‘
N |
JUMF T NEW LOCATION
" START INTERRUPT
CALL A RST SERVICE ROUTINE
.
.
PC < STACK -
[5S]
Bl [ENABLE (NTENRUPTS)
EXECUTE INGTRUCTION
m‘ m
H
FON AL
OR st

e oray
STACK—#PC

Fig. 6.26: Interrupt Modes

The return from the nterrupt is accomplished by an RETI instruc-
tion. Let us remind the programmer at this point that he/she 1s usually
responsible for explicitly clearing the interrupt which has been serviced
on the 1/0 device, and always for restoring the mterrupt disable flag in-
side the Z80. However, the peripheral controller may use the INTA sig-
nal to clear the INT request, thus freeing the programmer of this chore.

In additon, should the interrupt-handling routine modify the con-
tents of any of the internal registers, the programmer 1s specifically re-
sponsible for preserving these registers in the stack prior to executing
the interrupt-handling routine. Otherwise, the contents of these regis-
ters will be destroyed, and when the interrupted program resumes exe-

501

PROGRAMMING THE Z80

cution, it will fail. For example, assuming that registers A, B, C, D, E,
H and L will be used within the interrupt handler, they will have to be
saved (see Figure 6.27). \

D DECREASING
ADDRESSES

A

PCL
PCH

STACK
Fig. 6.27: Saving the Registers

The corresponding program is:

SAVREG PUSH AF
PUSH BC
PUSH DE
PUSH HL

Upon completion of the interrupt-handling routine, these registers must
be restored. The interrupt handier will terminate with the following se-
quence of 1nstructions:

POP HL
POP DE
POP BC
POP AF
El (unfess EI was used earlier in

the routine)

Additionally, if registers [X and [Y are used by the routine they must
also be preserved, then restored.

502

INPUT/OUTPUT TECHNIQUES

Interrupt Mode I

This interrupt mode is set by executing the IMI instruction. It is an
automated mterrupt handler which causes an automatic branch to loca-
tion 0038H. It is therefore essentially analogous to the NMI interrupt
mechanism except that it may be masked. The Z80 automatically pre-
serves the contents of PC into the stack (see Figure 6.28).

1M1 INT °
]~
aulgmatic 38 INTERRUPT
vecloring ROUTINE
PROGRAM Sp
PCL LOCATICN OF
automalic > FCH] INTERRUPTION
preserve % 77
STACK /
0038
{autamaohic) %
]

MEMORY

Fig. 6.28: Mode 1 Interrupt

This automated interrupt response, which *‘vectors” all interrupts to
memory location 38H, stems from the early 8080’s requirement to
minimize the amount of external hardward necessary for using inter-
rupts. Its possible disadvantage is to cause a branch to a single memory
location. In case several devices are connected to the INT line, the pro-
gram starting at location 38H will be responsible for determining which
device requested service. This problem will be addressed below.

One precaution must be taken with respect to the timing of this inter-
rupt: when performing programmed input/output transfers, the Z80
will ignore any data that may be present in the data bus during the cycle
which follows the interrupt (the interrupt acknowledge cycle).

503

PROGRAMMING THE Z80

Interrupt Mode 2 (Vectored Interrupts)

This mode 15 set by executing an IM2 instruction. It is a powerful
mode which allows automatic vectoring of interrupts. The interrupt
vector is an address supplied by the peripherai device which generated
the nterrupt, and used as a memory pomnter to the start address of the
interrupt-handling routine, The addresssing mechanism provided by
the Z80 in mode 2 is indirect, rather than direct. Each peripherai sup-
plies a seven-bit branching address which 1s appended to the 8-bit ad-
dress contained in the special | register in the Z80. The right-most bit of
the final 16-bit address bit 0 is set to **0"". This resulting address points
to an entry 1n a table anywhere in the memory. This table may contain
up to 128 double-word entries. Each of these double words (s the ad-
dress of the interrupt handler for the corresponding device. This is il-
lustrated in Figures 6.29 and 6.30.

" — e INT
DEVICE 2% VECTOR
'7 BIT VECTOR 00—

} ™ START]
] ADDRESS 1 —

Rl

DEVICE
HANDLER

MEMORY
Fig. 6.29: Mode 2 Interrupl

The interrupt table may have up to 128 double-word entries.

In this mode, the Z80 aiso automatically pushes the contents of the
program counter into the stack. This 1s obviousiy necessary, since PC
will be reloaded with the contents of the mterrupt table entry corre-
sponding ta the vector provided by the device.

Interrupt Overhead

For a graphic comparison of the palling process vs. the mterrupt
process, refer to Figure 6.18, where the polling process is itlustrated on
the top, and the interrupt process underneath. It can be seen that in the
polling technique the program wastes a lot of time waiting.

504

INPUT/QUTPUT TECHNIQUES

PROGRAM /

0152

rc| :] VECTOR

Tage 0%
T
SP[10 . 0,4} J

BEFORE 0304

QEVICE n
CONTROLLER

—— 04H

autarmatic vectaring

A\

e[0 1 0|
sp o . 98 J %

MEMORY

Fig. 6.30: Mode 2~ A Practical Example

Using interrupts, the program 1s interrupted, the interrupt 1s serviced,
then the program resumes. However, the obvious disadvantage of an
interrupt is to introduce several additional instructions at the beginning
and at the end, resulting in a delay before the first instruction of the de-
vice handler can be executed. This 1s additional overhead.

Exercise 6.28:Using the tables indicating the number of cycles per in-
Struction, in Chapter 4, compute how much time will be lost to save and
then restore registers A, B, D, H.

Having clarified the operation of the interrupt lines, let us now con-
sider two important remaining problems:

| —How do we resolve the problem of multiple devices tniggering an

505

PROGRAMMING THE Z80

interrupt at the same time?
2—How do we resolve the problem of an iterrupt occurring while
another interrupt is being serviced?

Multiple Devices Connected to a Single Interrupt Line

Whenever an interrupt occurs, the processor branches to a specified
address. Before it can do any effective processing, the interrupt han-
dling routine must determine which device triggered the interrupt. Two
methods are available to 1dentify the device, as usual: a software
method and a hardware method.

In the software method, polling s used: the microprocessor interro-
gates each of the devices in turn and asks them, **Did you trigger the in-
terrupt?'’ If the answer 1s negative, it interrogates the next one. This
process is illustrated in Figure 6.31. A sample program Iis:

POLINT IN A, (STATUSI) READ STATUS

BIT 7.A DID DEVICE REQUEST INT"
JP NZ, ONE HANDLE IT IF SO

IN A, (STATUS2)

BIT 7,A

JP NZ, TWO

etc. -—=

The hardward method provides the address of the interrupting device
simultaneously with the interrupt request.

INT 1 PILLING INTERRUPT VECTORED
? L POLLING 3

WHICH ROUTIHE

DEVICE?]

SERVICE
ROUTINE P

SERVICE
ROUT [KE

SERVICE
HROUTINE N

Fig. 6.31: Polled vs. Yeciored Interrupt

306

INPUT/QUTPUT TECHNIQUES

To be more precise, when operating in mode 0, the peripheral device
controller will supply a one-byte RST or a three-byte CALL on the data
bus in response to the interrupt acknowledge, thus automating the in-
terrupt vectoring, and minimizing the overhead.

MNoze that a subroutine call instruction is required as the Z80 does not
save the PC when operating in mode 0.

In most cases, Lhe speed of reaction to an interrupt 1s not crucial, and
a polling approach 1s used. 1f response time 1s a primary consideration,
a hardware approach must be used.

Simultaneous Interrupts

The next problem which may occur is 1hat a new mterrupt can be trig-
gered durning the execution of an interrupt-handling routine. Let us
examine whal happens and how the stack is used to solve the problem.
We have indicaled in Chapter 2 that this was another essential role of
the stack, and the time has come now to demonstrate its use. We will
refer to Figure 6.33 to illustrate multiple interrupts. Time elapses from
left 10 right in the illustration. The contents of the stack are shown at
the bottom of the illustration. Looking at the left, at time TO, program
P is in execution. Moving to the right, at ume T1, interrupt 11 occurs.
We will assume that the interrupt mask was enabled, authorizing I1.
Program P will be suspended. This is shown at the bottom of the illus-
tration. The stack will contain the program counter and the status reg-
ister of program P, at feast, plus any optional registers that might be
saved by the interrupt handler or 11 itself,

e 70
AI"\:.:‘_J INTERFACE] "®* |INTERFAC

t ug_n' ' § INT

Fig. 6.32: Several Devices May Use the Same Interrupt Line

At time T1, interrupt [1 starts executing until time T2. At time T2, in-
terrupt 12 occurs, We will assume thal interrupt 12 has a higher prionty
than interrupt 11, If it had a lower priorty, 1t would be ignored until I1
had been completed. At ume T2, the registers for 11 are stacked, and
this appears at the bottom of the illustration. Again, the conients of the
program counter and AF are pushed into the stack. In addition, the
routine for 12 might decide to save an additional few registers. 12 will
now execute Lo completion at time T3.

507

PROGRAMMING THE Z80

When 12 terminates (with an RETI}, the contents of the stack are
automatically popped back into the Z80, and this is illustrated at the
bottom of Figure 6.33. Thus, automatically I1 resumes execution. Un-
fortunately, at time T4, an interrupt 13 of higher priority occurs again.
We can see at the bottom of the illustration that again the registers for
Il are pushed into the stack. Interrupt 13 executes from T4 to TS and

TIME £ T, T. T 1. T f.
PROGRAMP 1= - — - — = == — = == = = s e
INTERRUPT 1, P g
INTERRUPT 1, I —_—

INTERRUPT 1, ! —

!

Ao I

= O pe
L 7 [P |

\ R . . 5

-

Fig. 6.33: Stack Conients During Multiple Enterrupts

terminates at T5. At that time, the contents of the stack are popped into
Z80, and interrupt I1 resumes execution. This time it runs to comple-
tion and terminates at T6. At T8, the remaining registers that have been
saved in the stack are popped into Z80, and progam P may resume ex-
ecution. The reader will verify that the stack is empty at this point. In
fact, the number of dashed lines indicating program suspension in-
dicates at the same time how many levels there are in the stack.

Exercise 6.29: Assume that the area available to the stack is limited to
300 locations in a specific programn. Assume that all the registers must
always be saved and that the progrannuner allows nterrupts to be nest-
ed, ie., to interrupt each other. Which 1s the maxunum number of
sinmtuftaneous interrupts that can be handled? Will auy other factor con-
tribute to stifl reduce further the maxumun number of sunultaneous in-
terruplis?

It must be stressed, however, that, 1n practice, microprocessor sys-
tems are normally connected to a small humber of devices using inter-
rupts, It is, therefore, unlikely that a high number of simultaneous in-
terrupts will occur in such a syslem.

We have now solved all the problems usually associated with inter-
rupts. Their use 15, in fact, simple and they should be employed to ad-
vantage even by 1he novice programmer.

508

INPUT/QUTPUT TECHNIQUES

SUMMARY

In this chapter we have presented the range of techniques used to
communicate with the outside world. From elementary input/output
routines to more complex programs for communication with actual
peripherals, we have learned to develop all the usual programs and have
even examined the efficiency of benchmark programs in the case of a
parallel transfer and a paraliel-to-serial conversion. Finally, we have
learned to schedule the operation of multiple peripherals by using poll-
ing and interrupts. Naturally, many other exotic input/output devices
might be connected to a system. With the array of techniques which
have been presented so far, and with an understanding of the peripher-
als involved, it should be possible to solve most common problems.

In the next chapter, we will examine the actual characteristics of the
input/output interface chips usually connected to a Z80. Then, we will
consider the basic data structures that the programmer may use,

Exercise 6.30: Compute the overhead wien operating in mode 0, as-
Suming that all registers are saved, and that an RST is received in re-
sponse (o the mterrupt acknowledge. The overiiead 1s defined as the
total delay incurred, exciusive of the instructions requured to umplement
the wterrupt processing proper.

Exercise 6.31: A 7-segment LED display can also display digits other
than the hex alphabet. Compute the codes for: H, 1, J, L. O, P. 8, U,
Yg i, o portou y.

Exercise 6.32: The flowchar! for interrupt managenient appears in Fig-
ure 6.34 Answer the following questions:
a— What is done by hardware, what is done by software?
b—what 15 the use of the mask?
c—How many registers should be preserved?
d—How is the wnterrupting device identified?
e— What does the RET! instruction do? How does it differ front a
subroutine return?
Sf—Suggest a way to handle a stack overflow situation.
g—What is the overhead (“'lost time”’) mtroduced by the mnterrupt
mechanism?

509

PROGRAMMING THE Z80

EXECUTE
INSTRUCTION

INTERRUPT
REQUEST

NO

NEXT INSTRUCTION

I SET MASK _I
PRESERYE REGISTERS
{f necassary)
| UNSET MASK
TOENTIFY DEVICE
tf nadasary)

L EXECUTE ROUTING]

!
L RESTORE REGISTERS ‘]

l

RETURN

Fig. 6.34: Interrupt Logic

510

7
INPUT/OUTPUT DEVICES

INTRODUCTION

We have learned how to program the Z80 microprocessor in most
usual situations. However, we should make a special mention of the
input/output chips normally connected to the microprocessor. Be-
cause of the progress in LSI integration, new chips have been intro-
duced which did not exist before. As a result, programming a system
requires, naturally, first to program a microprocessor itself, and then
to program the wnput/output chips. In fact, 1t is often more difficult
to remember how to program the various control options of an input/
output chip than to program the microprocessor itself! This is not be-
cause the programming in itself is more difficult, but because each of
these devices has its own idiosyncrasies. We are going to examine here
first the most general input/output device, the programmable input/
output chip {in short a '*PIQ™), then some Zilog 1/0 devices.

The **Standard PIO"’

There isno““‘standard PIO"", However, each PIOdevice is essentially
analogous in function to all similar PIO's produced by other
manufacturers for the same purpose. The purpose of a PIO is to
provide a multiport connection for input/output devices. (A *"port’’ is
simply a set of 8 input/output lines.) Each PIO provides at least
two sets of B-bit lines for I/0 devices. Each [/0 device needs a data
buffer in order to stabilize the contents of the data bus on output at
least. Qur PIO will, therefore, be equipped at a minimum with a
buffer for each port.

In addition, we have established that the microcomputer will use
a handshaking procedure, or else interrupts to communicate with the

511

PROGRAMMING THE Z80

170 device. The PIO will also use a similar procedure to communicate
with the peripheral. Each PIO must, therefore, be equipped with at
least two control lines per port to implement the handshaking
function.

The microprocessor will also need to be able to read the status of
each port. Each port must be equipped with one or more status bits.
Finally, a number of options will exist within each PIO to configure its
resources. The programmer must be able to access a special register
within the PIO to specify the programming options. This is the
control-register. In some cases the status information is part of the
control register.

CRA DDRA PDRA re—— CAl
e— CA2
o0 02 o m &
8g| [BRF] |9%3
- @ oFf 5]
DATA BU <:____—> z 5 705 £F§<:: :::)PORTA
xn Q ;ng 3 ¥
CRB DDRB “DRB
o " B
REGISTER | —{ RSP % Z <::> PORT B
SELECT | —» RS1 cs5
IRQA -~ B2
RQB ~— . CHI
Fig. 7.1: Typical PIO

One essential faculty of the PIO is the fact that each line may be
configured as either an input or an cutput line. The diagram of
a PIO appears in illustration 7.1. The programmer may specify
whether any line will be input or output. In order to program the
direction of the lines, a data-direction register is provided for each
port. On many PIO's, ‘0" in a bit position of the data-direction
register specifies an input. A *‘1"* specifies an output. Zilog uses the
reverse convention.

It may be surprising to see that a *'0” is used for input and a ‘1"’
for output when really ““0"’ should correspond to output and *1'’ to
input. This is quite deliberate: whenever power is applied to the
system, 1t is of great importance that all the 1/0 lines be configured as
input. Otherwise, if the microcomputer is connected to some

512

INPUT/QUTPUT DEVICES

dangerous peripheral, it might activate it by accident. When a reset is
applied, all registers are normally zeroed and that will result in con-
figuring all input lines of the PIQ as inputs. The connection to the
microprocessor appears on the left of the illustration, The PIQ
naturally connects to the 8-bit data bus, the microprocessor address
bus, and the microprocessor control-bus. The programmer will simply

specify the address of any register that it wishes to access within the
PIQ.

The Internal Control Register

The Control Register of the PIO provides a number of options for
penerating or sensing interrupts, or for implementing automatic hand-
shake functions. The complete description of the facilities provided is
not necessary here. Simply, the user of any practical system which uses
a PIO will have to refer to the data-sheet showing the effect of setting
the various bits of the control register. Whenever the system is
initialized, the programmer will have to load the control register of the
PIQ with the correct contents for the expected application.

CA i
RQA _ T CAL
{CR
- ‘DATA BUS: R
0807 Go | "alerer” “CONTROL
5 (DDRA]
— DATA
- BUS INPUT : ™ DIRECTION
[_ hd <
PERIPHERAL PAG.
CORTROL INTERFACE A @ A¢ PA7
—
—~»{ | {CHIP SELECT PERIPHERAL @mpw
— t INTERFACE B
- I_REGISTER >
— | I sELECT CATA
™ ———HA| DIRECTION
ResEg:: v (DDRE}
1 CONTROL
- 1) e CB
|
tkas s

Fig. 7.2: Using a PIO-Load Control Register

513

PROGRAMMING THE ZB8O

IRQA

00-07@

DATA BUS
BUFFER

!

BUS INPUT

I

CONTROL

CHIP SELECT

REGISTER
SELECT

PERIPHERAL
INTERFACE A

PERIPHERAL
INTERFACE B

i

DATA
DIRECTION

{DDORB)

[r—r—ichn

CONTROL

{CRB}

IRQB -

INE-
SIATUS

K PAD-PAT
Q:Q PBY-PB7

le— CB |
CB2

Fig. 7.3: Using a PIO-Load Data Direction

IRQA -

Dg.07 @

RERNE]

RESET —s

IRQB

INT#
STATUS
(CRA) l

DATA BUS T ONTROL
BUFFER - ‘
U, i [DDRA]
F DATA
BUS INPUT C— DbirecTiON
L] Y <
— PERIPHERAL
CONTROL INTERFACE A
- PERIPHERAL
CHIP SELECT INTERFACE B
REGISTER 75
SELECT — P
H DIRECTION
v {DDRB}
-
CONTROL
{CRB)
INE."
STATU

i

D Pap.PA7
@Pam-Pw

la— CB 1
—=CB2

514

Fig. 7.4: Using a PIQ-Read Status

INPUT/QUTPUT DEVICES

RQA == {0 =4
{CRAY
00-07 N | iR o T CoNTRoL
U ~v _(ODRA)
J: DATA
BUS INPUT ¢ —_DIRECTION
7
— PERIPHERAL o
CONTROL INTERFACEA. | e84
™ b
~—» || CHIP SELECT] PERI PHERAL @"“"”
) INTERFACE B
—»{ || REGISTER {2
—»i || SELECT — SATA
— :> DIRECTION
iy [OORE)
RESET — n
— CONTROL
Y (CRB
T =)

Fig. 7.5: Using a PIO Read INPUT
Programming a P10

A typical sequence, when using a PIO channel, 15 the following (as-
suming an input):

Load the controf register

This 15 accomplished by a programmed transfer between a Z80 re-
gister (usually the accumulator} and the PIO control register. This sets
the options and operating mode of the PIO (see Figure 7.2). It is nor-
mally done only once at the beginning of a program.

Load the direction register

This specifies the direction in which the I/0 lines will be used. (See
Figure 7.3.)

Read the status
The status register indicates whether a valid byte is available on in-
put. (See Figure 7.4),

Read the port
The byte 1s read into the Z80. (See Figure 7.5).

315

PROGRAMMING THE Z80

L JR [18—+ ARDY)
0 =20 16 pab—— n SIB
D, |
DATA DJ et 40
BUS 9 0, =1 b5 et Ay
O k]| 14 [A PORT A
D, =1 13 b 2 170
D5 *—=2 12}e—e Ag
10— A,
PORT B/A SEL ———1 6 Pre—a A,
CONTROL/ DATA SEL ———={ 5 780- PIO B b= A,
Jle] - 7 f—— Ao /
conTRoL § CHIP ENABLE 1!
M| ——| 37
1ORQ ~——— 36 2fle—eby
\ RO—™115 2B le—e 8
INTERRUPT INT = n 30— gy
1
CONTROL INT ENABLE IN =] 24 A f——t g, >PDRTE
INTENABLE OUT =8——=—122 32 Pt Bs e
13 pe—ir= B°
[als & 4 ¢—-25 Jife— B,
Fil Y
POWER (+ 5 ——{ 74 p——s- B RO
GND ———ae{ | 17 ptb——smee B STR J
Fig. 7.6: Z80 P10 pinout
The Zilog Z30 PIO

The Z80 PIO is a two-port PIQ whose architecture is essentially
compatible with the standard model we have described. The actual
pinout is shown in Figure 7.6, and a block diagram is shown in Figure
7.7.

Each PIO port has six registers: an 8-bit input register, an 8-bit out-
put register, a 2-bit mode-control register, an 8-bit mask register, an
8-bit input/output select (direction register), and a 2-bit mask-control
register. The last three registers are used only when the port is program-
med to operate in the bit mode.

Each port may operate in one of four modes, as selected by the con-
tents of the mode-control registers (2 bits). They are: byte output, byte
input, byte bidirectional bus, and bit mode.

The two bits of the mask control register are loaded by the program-
mer, and specify the high or low state of a peripheral device which is to
be monitored, and conditions for which an interrupt can be generated.,
generated.

The 8-bit input/output select register allows any pin to be either an
input or an output when coperating in the bit mode.

516

INPUT/QUTPUT DEVICES

B -
v 3
DATA F ° A DATA
BUS F < / OuT
E [a]
R
2
l PORT
MODE A
CONTROL DATA
IN
—4 !DECODING
— AND HANDSHAKE | | —=READY
CONTROL CONTROL ~—STROBE
L *i
Q — —
—— E i, 5 ~, DAT,
INT INTERRUPT |22 219 y O
INTE-IN —= | ~oNTROL a = v O
INTE-QUT =—] g -3
L) L
4 = ’.A_l. PORT
MASK 5 z B
cONTROL| | © <l DATA
L E N—— N
l - g [}
L] L
| . READY
HANDSHAKE | [—STROBE

5

1

Fig. 7.7: Z80 P}O Block Diagram

517

PROGRAMMING THE ZBO

Programming the Zilog P10

A typicai sequence for using a PIO, say in bit mode, would be the
foilowing:
Load the mode controi register to specify the bit mode.
Load the input/output select register of port A to specify that
lines 0-5 are inputs and lines 6 and 7 are outputs.
Then a word would be read by reading the contents of the input
buffer.
Additionally, the mask register could be used to specify the status
conditions.
For a detailed description of the operation of the P10, the reader is
referred to the companion volume in this series, the Z80 Applications
Book.

The Z80 SIO

The SIO (Serial Input/Output) 1s a dual-channel peripheral chip de-
signed to facilitate asynchronous communications in serial form. It 1n-
cludes a UART, i.e., a umversal asynchronous receiver-transmitter.
Its essentiai function is serial-to-parallel and parallel-to-serial conver-
sion. However, this chip is equipped with sophisticated capabilities,
like automatic handling of complex byte-oriented protocols, such as
IBM bisync as well as HDLC and SDLC, two bit-oriented protocols.

Additionally, it can operate in synchronous mode like a USRT, and
generate and check CRC codes. It offers a choice of polling, interrupt,
and block-transfer modes. The complete description of this device is
beyond the scope of this introductory book and appears in the Z80 Ap-
plications Book.

Other 1/0 Chips

Because the Z80 1s commonly used as a replacement for the 80RO, it
has been designed so that it can be associated with almost any of the
usual 8080 input/output chips, as weil as the specific /0 chips manu-
factured by Zilog. All the 8080 input/output chips may be considered
for use in a ZBO system.

518

INPUT/OUTPUT DEVICES

SUMMARY

In order to make ellective use of npul/outpwt components it 15
necessary o understand m detail the lunction ol every bit, or group of bits,
within the varous cantrol registers. These complex new chips automate a
number of procedures that had ta be carried out by saltware or special
logic before. In parucular, a good dealof the handshaking nrocedures are
automated withun components such as an S1O. Also, mterrupt handling
and detection may be nternal. With the mlormation that has been pre-
senled mn the preceding chapier, the reader should be able to understand
what the lunctions of the basic signals and regsters are. Naturally, still
newer companents are going to be introduced which will offer a hardware
implementation of still mare complex algarthms.

519

8
APPLICATION EXAMPLES

INTRODUCTION

This chapter 15 designed to test your new programmuing skills by pre-
senting a collection of utility programs. These programs or *‘routines’’
are frequently encountered in applications, and are generally called
“utility routines.'’ They will require a synthesis of the knowledge and
techniques presented so far.

We are going to fetch characters from an 1/0 device and process
them in various ways. But first, let us clear an area of the memory (this
may not be necessary—each of these programs 1s only presented as a
programmng example).

CLEARING A SECTION OF MEMORY

We want to clear (zero) the contents of the memory from address
BASE to address BASE + LENGTH, where LENGTH is less than 256.

The program is:

ZEROM LD B, LENGTH LOAD B WITH LENGTH

LD A0 CLEAR A
LD HL, BASE POINT TO BASE

CLEAR LD (HL), A CLEAR A LOCATION
INC HL POINT TO NEXT
DEC B DECREMENT COUNTER
JR NZ, CLEAR END OF SECTION?
RET

In the above program, the length of the section of memory is as-
sumed to be equal to LENGTH. The register pair HL is used as a point-
er to the current word which will be cleared. Register B ts used, as

520

APPLICATION EXAMPLES

usual, as a counter.

The accumulator A 1s (oaded only once with the value 0 (all zeros),
then copied into the successive memory locations.

In a memeoery test program, for example, this utility routine could be
used 10 zero the contents of a block. Then the memory test program
wauld usually verify that its contents remained 0.

The above was a straightforward 1mplementation of a clearing rou-
tine. Let us improve on it.

The improved program appears below.

ZEROM LD B, LENGTH
LD .HL, BASE

LOOP LD (HL} O
INC HL
DINZ LOQOP
RET

The two improvements were obtained by eliminating the LD A, 0 in-
struction and loading a ‘*zero’ directly into the location pointed to by H
and L, and aiso by using the special Z80 instruction DINZ.

This 1mprovement exampie should demonstrate that every fime a
program 1s writlen, even though i muy be correct, if can usualily be tm-
proved by examnining it carefully. Familiarity with the complete instruc-
tion set is essential for bringing about such improvements. These im-
provements are not just cosmetic. They improve the execution time of
the program, require fewer instructions and therefore less memory
space, and also generally improve the readability of the program and,
therefore, its chances of being correct.

Evxercise 8.1: Write a memory test program which zeroes a 256-word
block, then verifies that each location 15 0. Then, u will wrire all {'s and
verify the contenis aof the block. Then i will write 0{01010] and verify
the contents. Finally, 1t witl write 10101010, and verify the contents,

Exercise 8.2: Modify the above program so that it will fill the memory
section with alternaning 0's and 1's fall 0°s. then alf 1's).

Let us now poll our [/Q devices to {ind which one needs service.

POLLING 1/0 DEVICES

We will assume that those 170 devices are connected (0 our sys-
tem. Their status registers are located at addresses STATUSI,

STATUS2, STATUS3. The program is:

s

PROGRAMMING THE Z80

TEST IN A, (STATUSI) READ IQ STATUSI
BIT 7. A TEST ““READY" BIT(BITT
JP NZ, FOUND! JUMP TO HANDLER |
IN A, (STATUS2) SAME FOR DEVICE 2
BIT 7. A
JP NZ, FOUND2
IN A, (STATUSYY SAME FOR DEVICE 3
BIT 7, A
IP NZ, FOUND3
(failure exit)

The MASK will contain, for example, **10000000"" if we test bit posi-
tion 7. As a result of the BIT instruction, the Z bt of the status flags
will be set to I if “MASK AND STATUS" is zero, i.e., if the cor-
responding bit of STATUS matches the one in MASK. The JP NZ in-
struction (jump if non-equal to zero) will then result in a branch to the
appropriate FOUND routine,

GETTING CHARACTERS IN

Assume we have just found that a character is ready at the keyboard.
Let us accumulate charactersin a memoryareacalled BUFFER until we
encounter a special character called SPC, whose code has been previ-
ously defined.

The subroutine GETCHAR will fetch one character from the key-
board (see Chapter 6 for more details) and leave it in the accumulator,
We assume that 256 characters maximum will be fetched before an SPC
character 1s found.

STRING LD HL, BUFFER POQINT TO BUFFER
NEXT CALL GETCHAR GET A CHARACTER

CP SPC CHECK FOR SPECIAL CHAR
JR Z, OuUT FOUND IT?
LD {HL), A STORE CHAR IN BUFFER
INC HL NEXT BUFFER LOCATION
JR NEXT GET NEXT CHAR

OuUT RET

Exercise 8.3: Let us umprove this basic routine:
a—Echo the character back to the device (for a Teletype, for example).
b—Check that the input string is no longer than 256 characiers.

We now have a string of characters in a memory buffer. Let us proc-

522

ess them i1n various ways.

TESTING A CHARACTER

APPLICATION EXAMPLES

Let us determine if the character at memory location LOC is equal to

0,1,or2:

20T LD
CP
IP
Ccp
1P
Cp
P
1P

A, (LOO)
00

Z, ZERO
]l

Z, ONE
02

Z,. TWO
NOTFND

GET CHARACTER
ISIT A ZERQ?
JUMP TO ROUTINE
A ONE?

A TwQ?

FAILURE

We simply read the character, then use the CP instruction 1o check 11s

value.

Let us run a different test now.

BRACKET TESTING

Let us determine if the ASCII character at memory location LOCisa
digit between O and 9:

BRACK LD
AND
Cp
IR
CP
IR
Ccp

ouT RET

A, (LOC)
7FH

J0H
C,ouT
I9H

NC, OUT
A

EXIT

GET CHARACTER
MASK OUT PARITY BIT
ASCIL 0

CHAR TQO LOW?
ASCIL 9

CHAR TOO HIGH?
FORCE ZERO FLAG

ASCII 0" is represented in hexadecimal by "'30'" or by “B0",
depending upon whether the parity bit is used or not. Similarly, ASCII
9’ is represented in hexadecimal by **39" or by *'B9"".

The purpose of the second instruction of the program is to delete bit
7, the parity bit, In case 11 was used, so that Lhe program s applicable to
both cases. The value of the character is then compared 10 the ASClI
values for *'0'" and **9'". When using a comparison mstruction, the Z
flag 1s set if the comparison succeeds. The carry bit 1s set in the case of
borrow, and reset otherwise. In other words, when using the CP n-
struction, the carry bit will be set if the value of the literal thal appears

523

PROGRAMMING THE Z80

in the instruction 1s greater than the value contained in the accumu-
lator. It will be reset (**0”")if less than or equal.

The last instruction, CP A, forces a **1”" into the Z flag. The Z flag is
used to indicate to the calling routine that the character in CHAR was
indeed in the interval (0, 9). Other conventions can be used, such as
loading a digit in the accumulator in order to indicate the result of the
test.

Exercise 8.4: Is the following program equivalent to the one above?:

LD A, (CHAR)

SUB 30H

JP M, OUT
SuB 10

Jp P, OUT
ADD 10

Exercise 8.5: Determine [f an ASCII character contained in the accumu-
lator 15 a letter of the alphabel.

When using an ASCII table, you will notice that parity is often used.
For example, the ASCII for *‘0"* is *‘0110000"", a 7-bit code. However,
if we use odd parity, for example, we guarantee that the total number
of ones in a word is odd; then the code becomes: '*10110000"’. An extra
“1" ijs added to the left. Thisis ** B0’ in hexadecimal. Let us therefore
develop a program to generate parity.

PARITY GENERATION

This program will generate an even parity with bit position 7:
PARITY LD A, (CHAR) GET CHARACTER

AND 7FH CLEAR PARITY BIT
JP PE, OUT CHECK IF PARITY
ALREADY EVEN
OR BOH SET PARITY BIT
ouT LD (LOQC), A STORE RESULT

The program uses the mternal parity detection circust available in the
Z380.

The third instruction: JP PE, OUT checks whether parity of the
word in the accumulator is already even. This instruction will succeed if
the parity is even, “PE", and will exit.

If the parity is not even, j.e., if the jump instruction failed, then the
parity is odd, and a *‘1’* must be written in bit position 7. This is the

524

APPLICATION EXAMPLES

purpose of the fourth instruction:
OR 80H

Finally, the resulting value is saved in memory location LOC.

Exercise 8.6: The above problem was too sinple to solve, using the mn-
ternal parity detection circuitry. As an exercise, you are reqitested 10
solve the same problem without usmg this circuitry. Shift the contents
of the accununelator, and count the number of I's in order to determine
witich b should be written mito the parity position.

Exercise 8.7: Using the above program as an example, verify the parity
of a word. You must conipute the correct parity, then compare it (o the
one expected.

CODE CONYVERSION: ASCII TO BCD

Converting ASCII to BCD is very simple. We will observe that the
hexadecimal representation of ASCI{ characters 0to 91is 30 to 39 or B0
to BY, depending on parity. The BCD representation is sumply obtained
by dropping the *'3*" or the **B'’, 1.e., masking off the left nibble (4
bits):

ASCBCD CALL BRACK CHECK THAT CHAR IS0 TO?9
IP NZ, ILLEGAL EXIT IF ILLEGAL CHAR
AND OFH MASK HIGH NIBBLE

LD (BCDCHAR), A STORE RESULT
Exercise §.8: Write a program to convert BCD 1g ASCIL.

Exercise 8.9: Write g prograin (o convert BCD to buary (more diffi-
culi).

Hint:N; Ny N, No1n BCDis(({(N, x 10) + N:) x 10 + N,) x 10 + Ny1n
binary.

To muluply by 10, use a left shift (= x 2), another left shift (= x 4),
an ADC (= x5}, another left shift (= x 10).

In full BCD notation, the first word may contain the count of BCD
digits, the next nibble contain the sign, and every successive nibble con-
tain a BCD digit (we assume no decimal point). The last nibble of the
block may be unused.

CONVERT HEX TO ASCII

“A''contains one hexadectmal digit. We sumply need to add a **3"" (ora

525

PROGRAMMING THE Z80

“B'"Y into the left nibble:

AND OFH ZERO LEFT NIBBLE (optional)
ADD A, 30H ASCl

CP A, 3AH CORRECTION NECESSARY"
IP M, OUT

ADD A7 CORRECTION FORATOF

Exercise 8.10: Convert HEX to ASCII, assunung a packed formal (two
hex digits 1 A).

FINDING THE LARGEST ELEMENT OF A TABLE

The beginning address of the table is contained at memory address
BASE. The first entry of the table is the number of bytes it contains.
This program will search for the largest element of the table. Its value
will be left in A, and its position will be stored in memory location IN-
DEX.

This program uses registers A, F, B, H and L, and will use indirect
addressing, so that it can search a table anywhere in the memory (see
Figure 8.1).

MAX LD HL, BASE TABLE ADDRESS
LD B, (HL) NBR OF BYTES IN TABLE
LD A.0 CLEAR MAXIMUM VALUE
INC HL INITIALIZE INDEX
LD (INDEX), HL NEXT ENTRY

LOOP CP (HL) COMPARE ENTRY
JR NC,NOSWITCH JUMP IF LESS THAN MAX
LD A, (HL) LOAD NEW MAX VALUE
LD (INDEX), HL LOAD NEW MAX VALUE

NOSWITCH INC HL POINT TO NEXT ENTRY
DEC B DECREMENT COUNTER
JR NZ, LOOP KEEP GOING IF NOT ZERO
RET

This program tests the nth entry first. If it is greater than 0, the entry
goes 1n A, and 1ts location 1s remembered into INDEX. The (n-1)st en-
try is then tested, etc.

This program works for positive integers.

Exercise 8.11: Modify the program so that it works also for negative
numbers in two'’s complement.

Exercise 8. 12: Will this program also work for ASCII characters?
Exercise 8.13: Wrie a program which will sort n numbers in ascending

526

APPLICATION EXAMPLES

POINTERTO | INDEX
MAX
A [CURRENT mAX
_l COUNT=N BASE
ELEMENT |
s | counter |
[]
L] e
H L B . INCREASING
ADDRESSES
ELEMENT N

Fig. 8.1; Largest Element in a Table

arder.

Exercise 8.14: Write a program which will sort n names (3 characters
eqch) in alphabetical order.

SUM OF N ELEMENTS

This program will compute the 16-bit sum of N positive entries of a
table. The starting address of the table is contained at memory address
BASE. The first entry of the table contains the number of elements N.
The 16-bit sum will be left in memoy locations SUMLO and SUMHI. If
the sum should require more than 16 bits, only the lower 16 will be
kept. (The high order bits are said to be truncated.)

This program will modify registers A. F, B, H, L, IX. It assumes 256
elements maximum (see Figure 8.2).

SUMN LD HL, BASE POINT TO TABLE BASE

LD B.(HL) READ LENGTH INTO
COUNTER
SUMIG INC HL POINT TO FIRST ENTRY

LD IX,SUMLO POINT TO RESULT, LOW

527

PROGRAMMING THE Z80

LD (IX+0),0 CLEAR RESULT LOW
LD (IX+1),0 AND HIGH
ADLOOP LD A, (HL) GET TABLE ENTRY
ADD A, (IX+0D) COMPUTE PARTIAL SUM
LD (IX+0), A STORE IT AWAY
JR NC, NOCARRY CHECK FOR CARRY
INC (IX+1) ADD CARRY TO HIGH BYTE
NOCARRY INC HL POINT TO NEXT ENTRY
DEC B DECREMENT BYTE COUNT
JR NZ, ADLOOF KEEP ADDING TILL END
RET

8 r COUNT]<
|

LENGTH=N | BASE
HL] BASE }r ELEMENT 1

x| I I

ELEMENT N

= SUMLO

SUMH |

Fig. 8.2: Sum of N Elements

This program is straightforward and should be self-explanatory.

Exercise 8.15: Modify thus program to:
a—cormpute a 24-bit sum

b—compute a 32-bit sum

c-—deltect any overfiow.,

A CHECKSUM COMPUTATION

A checksum 15 a digit or set of digits computed from a biock of suc-
cessive characters. The checksum is computed at the time the data is

528

APPLICATION EXAMPLES

stored and pul at the end. In order to verify the integrity of the data, the
data is read, then the checksum is recomputed and compared against
the stored value. A discrepancy indicates an error or a failure.

Several algorithms are used. Here, we will exclusive-OR all bytes in a
table of N elements, and leave the result in the accumulator. As usual,
the base of the table is stored at address BASE. The first entry of the
table is its number of elements N. The program modifies A, F, B, H, L.
N must be less than 256

CHKS5UM LD HL, BASE LOAD ADDRESS OF TABLE
INTO HL
LD B, (HL) GET N = LENGTH
XOR A CLEAR CHECKSUM
INC HL POINT TO FIRST ELEMENT
CHLOOP XOR (HL) COMPUTE CHECKSUM
INC HL POINT TO NEXT ELEMENT
DEC B DECREMENT COUNTER

JR NZ, CHLOOP DO IT AGAIN IF NOT END
LD (CHECKSUM),APRESERVE CHECKSUM
RET

COUNT THE ZEROES

This program will count the number of zeroes in our usual table, and
leave it in location TOTAL. It modifies A, B, C, H, L, F.

ZEROS LD HL, BASE POINT TO TABLE

LD B, (HL) READ LENGTH INTO COUNTER
LD C,0 ZERO TOTAL
INC HL POINT TO FIRST ENTRY
ZLOOP LD A, (HL) GET ELEMENT
OR O SET ZERO FLAG
JR NZ,NOTZ ISIT A ZERO?
INC C IF SO, INCREMENT ZERO COUNT
NOTZ INC HL POINT TO NEXT ENTRY
DEC B DECREMENT LENGTH COUNTER
JR NZ, ZLOOP
LD A

LD (TOTAL), A SAVEIT

Exercise 8.16: Madify this program to count
a—the number of stars fthe character ''*'')
b—the number of letters of the alphabet
c—the number of digits between 0" and "'9”’

529

PROGRAMMING THE Z80

BLOCK TRANSFER

Let us pick up every third entry in the source block at address FROM
and store 1t 1nto a block at address TO:

FER3 LD HL, FROM

LD DE, TO SET UP POINTERS
LD BC, SIZE
LOOP LDI AUTOMATED TRANSFER
INC HL
INC HL SKIP 2 ENTRIES

JP PE, LOOP

BCD BLOCK TRANSFER

We will push up BCD digits 1n the memory, i.e, shift 4-bit nibbles
(see Figure 8 .3). The program appears below:

AL LSS LIS l
L e]

VALt r SILLL S S 5D

8 COUNT

e
] V///////////}Y///J
VAL TSRS 7o

o

1
H{ BLOCK -
| B

COUNT

L el
W 77

Vol P
ARSI
W AP A S
CLSLS 1 SISSS S S LS 1SS

Fig. 8.3: BCD Block Transfer-The Memory

DMOV LD B, COUNT
LD HL, BLOCK
XOR A A=190
LOOP RLD
DEC HL POINT TO NEXT BYTE
DINZ LOOP DEC COUNT LOOP UNTIL ZERO

530

APPLICATION EXAMPLES

The program uses the RLD instruction, which we have not used vet.
RLD rotates a BCD digit left between A and (HL). {HL) or M designate
the contents of the memory location painted to by H and L.

M LOW goes into M HIGH
M HIGH goes into A LOW
A LOW goes into M LOW

Here, “‘low'” and ‘*high’' refer to a 4-bit nibble.

In order to use the powerful DINZ nstruction, register B is used as
the digit counter. HL 1s set to point to the beginning of the biock.

A 15 used to store the left digit displaced by each rolation between
Iwo successive accesses to the block.

By convention, **0"" will be entered at the bottom of the block.

COMPARE TWO SIGNED 16-BIT NUMBERS

IX points to the first number N1.
[Y points to N2 (see Figure B.4).

The program sets the carry bit if NI< N2, and the Z bit if NI = N2,
COMP LD B, (IX+1) GET SIGN OF NI
LD A, B
AND 80H TEST SIGN, CLEAR CY
IR NZ, NEGM1 NIISNEG
BIT 7,(Y+D

RET NZ N2 IS NEG
LD A. B
CP (y + 1) SIGNS ARE BOTH POS
RET NZ
LD A (IX)
CP (8¢
RET
NEGM! XOR (Y + 1)
RLA SIGN BIT INTO CY
RET C SIGNS DIFFERENT
LD A, B
Cp (dY+D BOTH SIGNS NEG
RET NZ
LD A, (IX)
CP (IY)
RET

The program first tests the signs of N1 and N2. If NI is negative, a

531

PROGRAMMING THE Z80

jump accurs to NEGM\. Otherwise, the top of the program 15 executed.

MEMORY

A

NI, LOW

N1, HIGH

l HIGH ADDRESSES

v l N2, LOW

N2, HIGH

gl % Ve

Fig. 8.4: Comparing Two Signed Numbers
Note that the BIT instruction is used in the 5th line tp test directly the
sign bit of N2 in the memory:
BIT 7.{lY + D)

The same could have been done for NI, except that we will need the
value of NI shortly. It 15 therefore simpler to read NI from memary
and preserve it into B:

COMP LD B. (X + D)

It 15 necessary to preserve NI mto B because the AND may destroy the
contents of A:

LD A, B
AND BOH

Note also that a conditional return is used (line 6):
RET NZ

532

APPLICATION EXAMPLES

This is a powerful feature of the Z80 which simplifies programming.
Note that the comparison instruction executes directly on the con-
tents of memory, in indexed mode:

CP (IY + 1)

When comparing the two numbers, the most significant byte is com-
pared first, the least significant one second.

Note the extensive use of the indexing mechanism in this program,
which results in efficient code.

BUBBLE-SORT

Bubbie-sort 1s a sorting technique used to arrange the elements of a
table in ascending or descending order. The bubble-sort technique de-
rives 1ts name from the fact that the smallest element **bubbles up' to
the top of the table. Every time it *‘collides’” with a **heavier’’ element,
It Jumps over it.

A prachical example of a bubble-sort is shown on Figure 8.5 The list
to be sorted contains: (10, 5, 0, 2, [00), and must be sorted in descend-
ing order (*‘0’" on top). The algorithm is simple, and the flowchart 1s
shown on Figure 8.7

The top two (or else bottom twolelements are compared. If the lower
one 1s less (*'lighter'’) than Lhe 1op one: they are exchanged. Otherwise
not. For practical purposes, the exchange, il it occurs, will be remem-
bered in a flag called “"EXCHANGED" . The process is then repeated
on the next pair of elements, etc., until all elements have been com-
pared two by two.

This first pass 1s illustrated by steps [, 2, 3, 4, 5, 6§ on Figure 8.5, go-
ing from the bottom up. (Equivalently we could go from the top down.)

If no elements have been exchanged, the sort is complete. If an ex-
change has occurred, we slart all over again.

Looking at Figure 8.6, 1t can be seen that four passes are necessary in
this example.

The process is simple, and is widely used.

One additional complication resides in the actual mechanism of the
exchange.

When exchanging A and B, one may not write

A=B
B=A

as this would result in the loss of the previous value of A (lry it on an
example).

533

PROGRAMMING THE Z80

— 1=4

100

=5

100> 2

NO CHANGE

EXCHANGED

100 > 2:

NO CHANGE

210:
EXCHANGE

o [=]

2 [| -4

100

150
NO CHANGE

®

0 lt— 1 =1
o - =2
2
100
0« 10:
EXCHANGE!

5 ~— =3

b - (=4

2¢ >
EXCHANGE!

EXCHANGED

O

V00

O¢s
EXCHANGE!

EXCHANGE 0
END OF PASS 1

®

END OF PASS 1

—J

EXCHANGED

o — | =1

2 jl—= |xJ

2>0:
NO CHANGE

®@

END OF PASS 2

Fig. 8.5: Bubble-Sort Example: Phases 1 to 12

534

APPLICATION EXAMPLES

4] Q 4]
2 2 2
.
A L 1]
5 fof— | g 5 =4 0
100 . 3 100 100
100> 5 510
NQ CHANGE

EXCHANGE! EXCHANGED

) o h— 1= o
P - | -2 2 t— =2 2
5 [— =] 5 5
10 10 1] — (=4
14.9] 100 100 [| =5
5.2 2>0: 100 »10:
NO CHANGE NO CHANGE

©

END OF PASS 1

0 0 0 fat— 1=
2 2 i=2 (=2
5 l— =1 5 ft— =1 5
[s] - =4 10 10

100 100 100

10> & S z >0

NO CHANGE NO CHANGE NO CHANGE
® @ @
0 END

Fig. 8.6: Bubble-Sort Example: Phases 13 to 21

The correct solution 1s to use a temporary variable or location to pre-
serve the value of A:

TEMP = A
A =B
B = TEMP

It works (try it on an example). This is called a circular permutation.

This is the way all programs implement the exchange. This technique
1s illustrated on the flowchart of Figure 8.7.

535

PROGRAMMING THE Z80

y

EXCHANGED = 0

'

GET NUMBER OF
ElENl\EN'I'S N
=N

YES

| L

READ ELEMENT
E(l)

Y

DECREMENT |

NO

READ E'{l}

NQ

EXCHANGE € AND E:

TEMP = €|l
E(ly = Bl
E'{l} = TEMP

Y

EXCHANGED = |

536

Fig. 8.7: Bubble-Sort Flowchart

YES

NQ

DONE

YES

APPLICATION EXAMPLES

EXTHANGE/NOT

Al] FLAG IN H
B{ P || count e TEM:P_ R
of et][cumrent e

LIST

Fig. 8.8: Bubble-Sort

The register and memory assignments are shown on Figure 8.8, and
the program Is:

BUBBLE LD (TEMP), HL TEMP = (HL)

AGAIN LD IX,(TEMP) IX = (HL)
RES FLAG. H EXCHANGED FLAG =0
LD B,C
DEC B
NEXT LD A, (IX)
LD DA D=CURRENT ENTRY
LD E. {IX+D E=NEXT ENTRY
CP E COMPARE
JR NC, NOSWITCH GO TQ NOSWITCH IF
CURRENT 2 NEXT
XCHANGE LD (IX), E STORE NEXT INTO
CURRENT
LD (IX+1),D STORE CURRENT INTO
NEXT
SET FLAG, H EXCHANGED FLAG =1

537

PROGRAMMING THE ZBO

NOSWITCH INC IX NEXT ENTRY
DINZ NEXT DEC B, CONTINUE UNTIL
ZERO
BIT FLAG.,H EXCHANGED =17
JR NZ, AGAIN RESTART IF FLAG=1
RET
SUMMARY

Common utility routines have been presented in this chapter which
use combinations of the techniques we have described in the previous
chapters. They should allow you to start designing your own programs
now. Many of these routines have used a special data structure, the
table. Other possibilities exist for structuring data, and will now be re-
viewed.

338

9
DATA STRUCTURES

PART 1 — THEORY

INTRODUCTION

The design of a good program involves two tasks: algorithmn design
and datg structures design. In most simple programs, no significant
data structures are involved, so the main objective 1n learning program-
ming 1s designing algorithms and coding them efficiently in a given
machine language. This is what we have accomplished here. However,
designing more complex programs also requires an understanding of
data structures. Two data structures have already been used through-
out the book: the table and the stack. The purpose of this chapter is to
present other, more general, data structures that you may want
to use. This chapter 1s completely independent of the microprocessor,
or even the computer, selected. It is theoretical and involves the logical
organization of dalta in the system. Spectalized books exist on the topic
of data structures, just as specialized books exist on the subject of
effictent multiplication, division or other usual algorithms. This
chapter, therefore, will be limited to essentials only. It does not claim
to be complete. The most common data structures will now be reviewed,

POINTERS

A pointer 15 a number which 15 used to designate the location of the
actual data. Every pointer 1s an address. However, every address 1s not
necessarily called a pointer. An address is a pointer only if it points at

539

PROGRAMMING THE Z80

some type of data or at structured information. We have already en-
countered a typical pointer: the stack pointer, which points to the top
of the stack {or usually just over the top of the stack). We will see that
the stack 1s a common data structure, called an LIFO structure.

As another example, when using indirect addressing, the indirect ad-
dress is always a pointer to the data that one wishes Lo retrieve.

Exercise 9. I: Exanune Fig. 9.1. Ar address 15 in the memory, there 1s a
poinier to Table T. Table T starts at address 500. Whai are the actual
conrents af the pointer o T?

£
15
— POINTERTOT
16
500
TABLE T

Flg. 9.1: An Indirection Pointer

LISTS

Almost all data structures are organized as lists of various kinds.

Sequential Lists

A sequential list, or table, or block, 1s prabably the simplest data
structure, and is one that we have already used. Tables are normally
ordered in function of a specific criterion, such as alphabetical ordering
or numercal ordering. It is then easy 1o retrieve an element n a table,
using, for example, indexed addressing, as we have done. A block nor-
mally refers to a group of data which has definite limits but whose con-
tents are not ordered. It may contain a stung of characters; it may

540

DATA STRUCTURES

be a sector on a disk; or it may be some logical area (called segment) of
the memory. In such cases, it may not be easy to access a random ele-
ment of the block.

In order to facilitate the retrieval of blocks of information, directo-
ries are used.

Directories

A directory is a list of tables or blocks. For example, the file system
will normally use a directory structure. As a simple example, the master
directory of the system may include a list of the users’ names. This s il-
lustrated 1o Figure 9.2. The entry for user **John’’ points to John's file
directory. The file directory is a (able which contains the names of all of
John's files and their focation. This is, again, a table of pointers. In this
case, we have Just designed a two-ievel directory. A flexible directory
system will allow the inclusion of additional intermediate directories, as
may be found convenient by the user,

USER DRECTCRY
oS
FILE DIRECTCH Y
KN
MRS FUE

ALPHA

ALPHA

SIGaA DalA
SIGMA

Fig. 9.2: A Directory Structiure

Linked List

In a system there are often blocks of informanon which represent
data, events, or other structures which cannot be moved around eas-

541

PROGRAMMING THE Z80

ily. If they could, we would probably assemble them 1n a table in order
10 sort or structure them. The problem now is that we wish 1o ieave
them where they are and still establish an ordering among them such as
first, second, third, fourth. A linked list will be used to solve this prob-
lem. The concept of a linked list 1s illustrated by Figure 9.3. On the il-
lustration, we see that a list pointer, called FIRSTBLOCK, points 10 the
beginning of the first block. A dedicated location within Block | such
as, perhaps, the first or the lasl word in il, contains a pointer to Block
2, called PTRI. The process is then repeated for Block 2 and Block 3.
Since Block 3 is the {ast entry mn the list, PTR3, by convention, either
contains a special “*nil’* value, or points to itself, so that the end of the
list can be detected. This structure is economical, as it requires only a
few pointers {one per blocki and frees the user from having to physi-
cally move the blocks in the memory.

FIRSY

— BLOCKT
BLOCK

PIR 3
|

PTR 2

BLOCK 2 BLOCK 3

PIR |

Fig. 9.3: A Linked List

Let us examine, for example, how a new block will be inserted. This
1§ illustrated by Figure 9.4. Let us assume that the new block 1s at ad-
dress NEWBLOCK, and 1s to be inserted between Block [and Block 2.
Pointer PTRI 15 simply changed to the value NEWBLOCK, so that 1t
now points to Block X. PTRX will comain the former value of PTRI,
i.e., it will point to Block 2. The other pointers in the structure are left
unchanged. We can see that the msertion of a new block has simply re-
quired updating two pointers in the structure. This is ciearly efficient.

Exercise 9.2: Draw a diagram shawing how Block 2 would be removed
Jrom this structure.

NEW BLOCK ——e-
BLIOCK X

L BLOCK2

Fig. 9.4: Inserting a New Block

PIR X

]

FIRST
w—————1
BIOCK

BLOCK 1

PTR 2

PIR]

BLXK 3

PTR1

542

DATA STRUCTURES

Several types of lists have been developed to facilitate specific types
of access, insertions, and deletions to and from the list. Let us examine
some of the most frequently used types of linked lists.

Queue

A queue is formally called a FIFQ, or first-in-first-out list. A queue
1s illustrated n Figure 9.5. To clarify the diagram, we can assume, for
example, that the block on the left is a service routine for an output
device, such as a printer. The blocks appearing on the nght are the re-
quest blocks from various programs or routines, lo print characters.
The order in which they will be serviced 15 the order estabiished by the
waiting queue. It can be seen that the first event which will obtain serv-
ice is Block I, the next ane is Block 2. and the following one is Block 3.
In a queue, the convention 1s thal any new event arriving in the queue
will be nserted at the end. Here it will be inserted after PTR3. This
puarantees that the first block to be inserted in the queue will be the
first one to be serviced. It i5s quile common in a compuler system to
have queues for 2 number of events whenever they must wait for a
scarce resource, such as the processor or some input/output device.

SERVICE ROUTINE BLOCKI
NERT — PIR 1
pr—
ok]
FIR]
.
BLOCK 2
FIR? —

Fig. 9.5: A Queue

543

PROGRAMMING THE Z80

Stack

The stack structure has already been studied in detail throughout the
book. It 15 a last-in-first-oul structure (LIFO). The [ast element depos-
ited on top is the first one to be removed. A stack may either be im-
plemented as a sorted block, or it may be implemented as a list. Because
most stacks in microprocessors are used for high-speed events, such as
subroutines and interrupts, a continuous block is usually allocated to
the stack instead.of using a linked list.

Linked List vs. Block

Similarly, the queue could be implemented as a block of reserved
{ocations. The advantage of using a continuous block is fast retrievai
and the elimtnation of the pointers. The disadvantage is that it is usu-
ally necessary to dedicate a fawrly large block to accommodate the
worst-case size of the structure. Also, 1t makes it difficult or impractical
to insert or remove elements from within the block. Since memory is
traditionally a scarce resource, blocks have usually been reserved for
fixed-size structures or structures requiring the maximum speed of re-
trieval, such as the stack.

Circular List

*‘Round robin" is a common name for a circular list. A circular list is
a linked list in which the last entry points back to the first one, This 1s il-
lustrated in Figure 9.6. In the case of a circular list, a current-block
pomnter 1s often kept. In the case of events, or programs, waiting for
service, the current-event pointer will be moved by one position to the
left or to the right every time. A round robin usually corresponds to a
structure in which all blocks are assumed to have the same priority.
However, a circular list may also be used as a subcase of other struc-
tures simply to facilitate the retrieval of the first block after the last
one, when performing a search,

As an example of a circular list, a polling program usually goes in a
round robin fashion, interrogating all peripherals and then coming
back to the first one.

Trees

Whenever a logical relationship exists among all elements of a struc-
ture (this is usually called a syntax), a tree structure may be used. A sim-
ple example of a tree structure is a descendant, or genealogical, tree.

544

DATA STRUCTURES

T T TR SR BT

I

CURRENT EVENT

Fig. 9.6: Round Robin is Circular List

This 15 illustrated in Figure 9.7. It can be seen that Smith has two chil-
dren: a son, Robert, and a daughter, Jane. Jane, in turn, has three
children: Liz, Tom and Phil. Tom, in turn, has two more children: Max
and Chris. However, Robert, on the left of the illustration, has no de-
scendants.

This 15 a structured tree, We have, in fact, already encountered an ex-
ample of a simple tree 1n Figure 9.2. The directory structure is a two-
leve! tree. Trees are used to advantage whenever elements may be classi-
fied according to a fixed structure. This facilitates nsertion and re-
trieval. [n addition, they may establish groups of information in a
structured way which may be required for later processing, such as in a
compiler or interpreter design.

SMITH

/\

ROBERT JANE

=l D
N

CHRIS

PHIL

Fig. 9.7: Genealogical Tree

Doubly-Linked Lists

Additional links may be established between elements of a list. The

545

PROGRAMMING THE Z80

simplest example 1s the doubly-linked iist. This is illustrated in Figure
9.8. We can see that we have the usual sequence of links from left to
right, plus another sequence of links from right to left. The goal is to
allow easy retrieval of the element just before the one which is being
processed, as well as just after it. This costs an extra pointer per block,

BLOCK |

PTR
R
PIR

BLOCK]

PIR

BLOCK 2 =

Fig. 9.8: Doubly-Linked List

SEARCHING AND SORTING

Searching and sorung elements of a list depends directly on the type
of structure which has been used for the list. Many searching algo-
rithms have been developed for the most frequently used data struc-
tures. We have already used indexed addressing. This s possible when-
ever the elements of a table are ordered in function of a known
criterion. Such elements may then be retrieved by their numbers.

Sequential searching refers to the linear scanning of an entire block.
This is clearly inefficient but may have to be used when no better tech-
nique is available, for lack of ordering of the elements.

Binary, or logaruhnuce, searcinng attempts to find an element in a
sorted list by dividing the search interval in haif al every step. Assum-
ing that we are searching an alphabetical list, one might start, for exam-
ple, in the middle of a table and determine if the name we are looking
for is before or after this point. If it is after this pomnt, we will eliminate
the first half of the table and look al the middle element of the second
half. We compare this entry again to the one we are looking for, and we
restrict our search (o one of the two halves, and so on. The maxmmum
length of a search 1s then guaranteed to be log,n, where n is the number
of elements in the table.

Many other search techniques exist.

SECTION SUMMARY

Thus section was mtended as only a brief presentation of usual data
structures which may be used by a programmer. Although most com-

546

DATA STRUCTURES

mon dala structures have been organized in types and given a name, the
overall organization of data 1n a complex system may use any combina-
tion of them, or require the programmer [0 Invent more appropriale
structures. The array of possibilities 1s only limited by the imaginauon
of the programmer. Similarly, a number of weli-known sorting and
searching techniques have been developed for coping with the usual
data structures. A comprehensive description is beyond the scope of
this book. The contents of this secion were intended to stress the 1m-
portance of designing appropriate section struciures for the daia to be
manipulated and to provide the basic tools to that effect.
Actual programming examples will now be presented in detail.

547

PROGRAMMING THE Z80

PART 11 — DESIGN EXAMPLES

INTRODUCTION

Actual design examples will be presented here for typical data struc-
tures: table, sorted list, linked list. Practical searching and insertion and
deletion algorithms will be programmed for these structures.

The reader interested in these advanced programming technigues 15
encouraged to analyze in detail the programs presented in this section.

However, the beginning programmer may skip this section initially,
and come back to it when he feels ready for it.

A good understanding of the concepts presented in the first part of
this chapter is necessary to follow the design examples. Also, the pro-
grams will use all of the addressing modes of the Z80, and integrate
many of the concepts and techniques presented in the previous chapters.

Three structures will now be introduced: a simple list, an alphabetical
list and a linked-list plus directory. For each structure, three programs
will be developed: search, enter and delete.

DATA REPRESENTATION FOR THE LIST

Both the simple list and the alphabetic list will use a common repre-
sentation for each list element:

C C C D D é; D D

B
3-byte label Data

548

ENTLEN M=
TABLEN N=
TAB BASE
LABEL
ENTRY
DATA

AN

DATA STRUCTURES

LENG T4 OF ENTRY

NUMBER OF ENTRIES

M BYTES

-gp———— ENTER NEW ELEMENT

Fig. 9.9: The Table Structure

|
|
|
|

ELEMENT
I

ELE MENT
2

|
NVWV\/\) , e
|

ENTLEN

/V\/\/:N\j
i

Fig 9.10: Typical List Entries in the Memory

549

PROGRAMMING THE Z80

Each element, or “‘entry’", includes a 3-byte label, and an n-byte block
of data, with n between | and 253. Thus, at most, each ¢ntry uses one
page (256 bytes). Within each list, all elements have the same length (see
Figure 9.10). The programs operating on these two simple lists use some
common variable conventions:

ENTLEN js the iength of an element. For example, if each element
has 10 bytes of data, ENTLEN = 3 + 10 =13

TABASE is the base of the list or table in the memory

POINTR is arunning pointer to the current element

OBJECT is the current entry to be located, inserted or deleted

TABLEN s the number of entries,

All labels are assumed to be distinct. Changing this convention would
require 2 minor change in the programs.

1 -
bt —e wer I*-

ES[MENT ¥

Lot [— CuRignl
[IEMENT

ELEMENT n UARLEN ~n7

FREE SPACE ——guf FREL SPACE

LS NN

WSERT

I W P e

OB HECT
10 8T |NSERTID

Fig. 9.11: The Simple List

550

DATA STRUCTURES

A SIMPLE LIST

The simple list is organized as a table of n elements. The elements are
not sorted (see Figure 9.11). When searching, one must scan through
the list unti/ an entry 1s found or the end of the table is reached. When
inserting, new entries are appended to the existing ones. When an entry
15 deleted, the entries in higher memory locations, if any, will be shifted
up to keep the table continuous.

Searching

A serial search technique is used. Each entry’s label field is compared
in turn to the OBJECT's label, letter by letter.
The running pointer POINTR is initialized to the value of TABASE.

SEARCH

¥

COLINTER =
NUMBER OF ENTRIES

REAU ENTRY
3 LETTERSY

<>

NO

COUNTER = COUNTER — ¢

FOUND
{SET A TO“FF")

FAILURE EXIT

I POINT TO NEXT ENIRY !

|

Fig. 9.12; Table Search Flowchart

531

PROGRAMMING THE Z80

The search proceeds in the obvious way, and the corresponding flow-

chart 1s shown on Figure 9.12. The program appears on Figure 9.16
at the end of this section (program ‘‘SEARCH'). A sample run of the

program is shown in Figure 9.17.

Inserling

When nserting a new element, the first available memory block of
(ENTLEN) bytes at the end of the list 1s used (see Figure 9.11).

The program first checks that the new entry 1s not already in the list
(all labels are assumed to be distinct in this example). If not, it incre-
ments the list length TABLEN, and moves the OBJECT to the end of
the list. The corresponding flowchart is shown in Figure9.13.

The program is shown in Figure 9.16. Itis called *“NEW"’ and resides
at memory locations 0135 to OL5E.

The index register 1Y points to the source. HL and DE are destina-
tion pointers.

£xiT

NO

(SAVE OLD TABLE LENGTM]

[INCREMENT TABLE LENGTH]

!

POINT AFTER
END OF TABLE

'
INSERT OBJECT —l
!

IND

Fig. 9.13: Table Insertion Flowchart

552

DATA STRUCTURES

Deleting

In order to delete an element from the list, the elements following it
in the list at higher addresses are merely moved up by one element posi-
tion. The length of the list is decremented. This s illustrated on Figure
9.14.

The carresponding program is straightforward and appears on Fig-
ure 2.16. 1t is called '"DELETE"’, and resides at memory addresses
015F to 0187, The flowchart is shown in Figure 9.15.

Memory location TEMPTR is used as a temporary pointer painting
to the element to be moved up.

During the transfer, POINTR always points to the **hole’ 1n the list,
1.e., the destination of the next block transfer.

The Z flag is used to indicate a successful deletion upon exit.

Note how the LDIR instruction 1s used for efficient automated block
transfer (refer to address 0178 in Figure 9.16).

LD A, B BLOCK COUNTER
NEWBLOC LD BC, {ENTLEN) BLOCK LENGTH

LDIR

DEC A

P NZ, NEWBLOC

BEFORE AFTER

DELETE =]
MOVE

TEMPTR =]

OLOEE

MOVE

OLOEEO

N AN,

Fig. 9.14: Deleting an Entry (Simple List)

553

PROGRAMMING THE Z80

'

FIND ENTRY

our

YES

DECREMENT TABLE LENGTH

\
FIND NBR QOF ENTRIES
AFTER OBJECT IN TABLE

YES
EXIT

NO

-

SHIFT ONE ENTRY UP

'

DECREASE COUNT OF
ENTRIES REMAINING
AFTER THE ONE SHIFTED

Y

NO
our

Fig. 9.15: Table Deletion Flowchart

554

DATA STRUCTURES

[#]#]4]4] BRG BlBEH
(tO1B7) ENTLEM DL EHGER
tB187) TABLEN DL EMDER+2

ta1BA) TABASE AL EHDER+3
o) TEMP pL ENGER+%

DioB 14DO0 éEﬁREH LD LieB +CLEAR D

BLEZ JAB7DI LD ArCTABLEM) JCHECK FOR A ZERD TABLE LEMGTH
QlBS A7 AND n 19ET FLAGS

olBa CH RET F

OlB7 47 LG 11 iSTORE TABLE LEMGTH

o108 DD2AEABL Lo IX» ¢ TABASE) IPUT BASE ABDR. IN IX

olat DD7EBB LogP Lo ArCIX+RY fCHECK FIRST LETTER BF EMTRY
018F FDREQD CF LIY+0)

0112 CcII2761 JF NZ e MEXTONE

Bl113 ON7EQ) Lh netIX41} JCHMECK 28D LETTER

0118 FOREOL CP ETY+1)

Bk C22701 J4F N2y HEXTONE

O11E {[U7EBRI LDh AL {IX4DT} iCHECN 3RD LETTER

g121 FDREDD CP CIY+D)

9124 CaA3la) JF 2« Founn FEXIT IF ALL LETTERS MATCH
8127 O3 NEXTODME DEC B iDECREMENT TABLE LENGTH COUNTER
ai178 CB RET r4 TEXIT IF AT ENB BF TAEKLE

D129 EDSRB7O0L Lo DE r { ENTLEMN? FSET IX TO HEXT ENTRY ADBR.
D12 DY ADD N PE

mZF C3BCE1 JF LaOFP *IRT AGATHN

132 14FF FRUND (¥4 D BFFH ISET I TO SHBW IX CBNTALHS AlBR.
9134 C7% RET r..OF ENTRT IN TABRLE

A

913% Choooy NEW CALL SEARCH PSEE IF OBJECT IS5 THERE
o138 14 4.1 n
0139 CnSED) JP T10UTE HIF D WAS FF. EXIT
013C 3ABTOI LG Ar L TABLEN)
013F 5SF Lo Erih sLOND E WITH TABLE LENOTH
d148 3C INC n
BI4AI 372878l LD {TABLEH) «A }IWCRENRENT TARLE LENGTH
G144 148D (94 L]
9144 2JABABL LD HLr ¢ TARASE)
GIA7 EDhapazol LE BCr (ENTLEN) }SET B TO LENGTH OF AWM EHTRY
Q14 &) Lo BeC
al4E 19 LOOPE AL HLrDE
O14F IOFEB UJNZ LDOPE §ADD HL TO C(ENTLEH:TARLEH)
0151 EDABE7O) LD BCr LENTLEN)
0155 FDES PUSH TIY FHMOVE IY¥Y TD DE
o157 BJ FBP DE
BISB ER EX DErHL
0159 EDKO LDTIR FMDVE MEMORY FROM OBJECT To ENO
a1k DIFFFF Lo BC«BFFFFH i..0F TARLE
DISE C¥ OUTE RET

'

i

'
D1%F ChBOO} UELETE C[CALL SEARCH iFIND ENTRY TO BE DELETED
OL& 1# THC n PSEE IF 1T WAS FOUNWD
ol&3 CTAS0L JF HIOUT
alaé InB%al LD N CTABLEN) PDECRENENT TAKRLE LEKOTH
Dla? 3D DEC A
QI&éA 3IT8YD Lh tTABLEMI v A
0140 BT nEc R W HQUod GBF EWTRIES LEFT 1IN TALLE
D14E CaAG3ION JP TEXIT J..AFTER OWE TO BE DELETED
8171 DbES PUSH IX JMOVE IX TO DE
73 Bl FOP TE
a17&4 InB7O0I Lo HLe CENTLENY i5ET HL OME ENTRT AMEAO OF IE
p17? Iv9 11 HNL,DE
o178 78 Ln Ak 15ET BLOCA CGUNTER
D179 EDARB7BI HEUMLDC LD BLr CENTLEN) SET BLOCK LEMGTH CGBUNTER
o170 EDEB LIk JSHIFT | EHTRY BF TAHLE
oI7F 3Ih DEC [+]
olgo cCI7fOl JP HZHEWRLOC ISNIFT ANGTHER BLOCK
0163 BIFFFF EXIT LR BLC»BFFFFH iSNOW THAT IT WAS DONE
0184 C9 our RET
D1B7 (DDOD) ENDEK END

Fig. 9.16: Simple List— The Programs

555

PROGRAMMING THE Z80

SYMBOL TABLE

DELETE
LaooP
out
TEHP

Q1%F
o10C
0184
g1ac

ENDER o187
LoarPE CLAE NEW
QUTE 015E

ENTLEN Q187

0133

SEARCH 0100

EX1T

¢183
NEWBLG 0179
TARASE 01Ba

FOUND 0132
NEXTON 0127
TABLEH D1BY

Fig. 9.16: Simple List— The Programs (cont.)

~DH3I00
a¥oo
0310
032b
D33n
0340
0354
0340
370

53
a4
ab
55
a1
bb
[1]1]
ao

-5Y
Y=00Dn 3o

-193/1%4

Display Memory

aF ag
41 44
AF an
AE a3
AE 54
pa po
pa ao
00 o0g

3
3z
33
34
a5
aa
a0
0]

31
3z
33
14
35
ao
[+1:]
a0

31
kR
a3
34
35
oa
[+1:]
g

31
32
33
a4
35
(14}
ao
g

31-31
32-12
33-33
34-34
a5-15
04-00
a0-00
00-00

31
i
33
34
35
a4
od
L]

pan1vs 0194 Run ‘INSERT’

-DHAGD

o4abo 53
ga10 00
gazo o0
0430 00
044 a0
@450 00
Qa40 oD
Qa0 Qo

-5Y
Y=0300 114

-01P3/1748

AF 4AE
aa a0
a0 00
ad 09
00 a9
a0 a0
no 90
an 90

31
g
a0
g
a0
a0
00
00

ER
a9
4
g
1]
a4
3l+}
00

il
a0
4
a9
QQ
00
o4
00

31-3t
00-0g
00-90
a0-04
LLELL]
0g-00
a6-00
00-00

ER
a9
4
g
a0
a0
00
o0

3
a9
4
aa
[+ 1]
a0
QQ
a9

p=0t?s orva’ Run 'INSERT’

-hH400

aabo 53
Qa10 32
0420 aa
aaza oo
d4a40 0o
QasSp ap
Q440 oo
4748 bh
-0NA00

aspe 51
o419 37
Da2n 14
4430 33
Qaap 15
04%D aa
0460 00
04740 qg

556

AF 4E
L)
oo oa
nd na
a9 04
npp 00
or oo
00 0o

4F AE
a2 32
34 34
33 33
a0 oo
oo oo
o0 oo
aa aa

31
32
04
00
00
a0
00
aa

31
kB
34
k]
aa
aa
aa

31
E
g0
a0
aa
ng
aa
00

31-31
i2-ao
00-4aa
a0-no
09-00
09-00
aQ-ao
a0-04a

11
E
oa
00
00
an
00
00

31
E
an
aa
04
aa
00
00

31
3z
on
an
a0
00
00
a4

" {More insertions)

31
kB
34
41
aa
QQ
ag
aa

1
3z
J4
1E
aa
o
an
aa

EH
32
34
54
ag
aa
on
aa

J1-31
32-32
AD-4F
A5-35
oo-aa
oa-aa
ag-0a
aa-00

i
32
an
35
aQ
an
aa
Qo

31
32
33
34
RE
L]
a0
a0

Set 1Y to 0300H (pointer to

31
g
oo
Ly
o0
a0
ao
s 1]

k3
00
an
oo
oo
an
np
00

il
55

as
(11}
an
an
oo

31
12
33
da
a5
a0
g
a0

31
3T

14
35
og
aa
Q0

ap
g

00
dq

[+14]
Qo

OBJECT)

11
o0
oo
Qa
oo
aa
aa
bp

31
bp

an
ag
ag
bp
[+ 11}
bp

31
AE
33
35
oo
1]
ao
an

38
aa
aq
an
ao
ao
aa
(-]

Set LY to 0310H (next OBJECT)

3t
oo

ao
ao
oo
ob
af
bo

a1
43
33
35
a0
Qo
oo
aQ

of
[+14]
ao
pa
ao
ao
a¢
an

44
oo

Qg
aa
+1]
oo
[+10}
=1+]

44
kL]
13
a5
ag
Qa
aQ
a0

[+1¢}
ao
na
aa
ao
ao
Qa
an

41
34
33
35
an
a4
an
a0

00
g
4
aa
a0
od
00
a4

Listing of Objecta
with their locations
Inmemory

SONI111EERR11...
DAOTI20020T300
HOMIAIIFIIIII. ..
URCAAAARRALLL ., . .
ANTH555555555. ..

Tabie configursilon
after program run

SEM11111{111]...

Table configuration
wfler secnnd insert

SON1111111111DAD

29739970030

Tabic configuratinn
after aeversl Inseris

SO0HM11111111110AD
233330202 2UNC A4S
AAALALAHONSISSSS
3333ANTSS5555555

Fig. 9.17: SImple List—A Sample Run

DATA STRUCTURES

-5y
Y0340 370

-G190/193

re0193 o173 Run‘SEARCH"

Reg D shows that Dhject was losnd

Reglsler cuncents

-UR
T H A=4lr RCeO02FF DE=FFOO HL=-0340 5-0100 PF-01l93 0193’ CALL OL3S
A'=00 B*=0000 I*=0000 H'=0000 X=0427 ¥Y=03270 (cop {01351
-Address of Object
-G194/19%
r=o19? o199 Run'DELETE’ Tabie canflpuration

wleer deletion
-hH400

0400 53 4F 4AE 31 J1 31 31 31-31 31 31 3! 31 44 AL A4 SONIEIITLELELEeAD
C410 IT 3T IT IT 3T 37 37 33-32 32 N5 4E 43 I3 34 4 DO00ZD0DIZUNCAAA
0AZ0 34 34 34 34 34 34 34 A1-4FE 54 35 35 35 35 35 35 44444AANKTESS5S555
0430 35 35 15 35 41 4AE 54 35-35 35 J5 35 35 35 15 IS5 SRASSANTSSSS55SESS
0440 35 00 0O OC 00 OO OC OQ-00 OO QO 00 00 00 OO0 OO0 S,......

0a50 00 00 0O OO OD OO OO OO-CO0 00 0O OO0 Q0 GO QO OO .

0440 ©0 OO0 o4 00 OO CO QO O0-0O OO OQ OO0 OO OO OO0 OQ
0470 o0 00 QD 00 OGO OC OO OO-00 00 00 OO0 OO 00 OO0 Q0 +u.vvennenn.n. .

-5Y

¥=0240 340

61947199 Delete last entry in table Note: no apparent

FcO1997 0199 change tn tabic
configuration

-DH400

Q400 53 4F 4E I1 31 31 31 31~31 31 31 31 3L 44 A1 A4 SOMLI1IILIILIDAD
010 37 30 32 37 32 37 37 30-37 32 55 AFE A3 34 34 34 J0007270037UNCAA44
0420 34 34 J4 34 34 34 34 41-4E 54 3% 35 35 35 35 35 4444454nNT5ERESS
0430 35 35 35 3% 4@ 4AE 54 J5-35 35 35 35 35 35 35 35 SSSSANTSSHSSSSSS
g440 35 0O 00 OO OO OO QD OO0-00 00 00 OO OO0 00 Qo 00 N..
0450 00 0O 00 00 OO0 OO OO OO-Q0 OO OO0 00 QO OO0 00 00 .
Oaé40 o0 OO Q0 00 Q0 00 OO0 OO-00 OO0 60 OO 00 00 00 OB
0470 00 0O OO 0O OO 00 00 Q0-00 00 00 OO 00 OO0 00 QO

~IH10951

'-Jcl::w?g:s"_ Memory location 'TABLEN' — shows true length of table

P=0I91 BIS3” Run 'SEARCH'’ lor deleted Dhject
J?—Dshuws that Dbject was not found
i
Z N AeSh DC=0OFF DE=000D HL=044]1 50104 P=0L93 OL93" CALL 0135

n'=bo R-=0000 D =0000 |{"=0000 X=OALA ¥Y=0340 (=00 (0135

Fig. 9.17: Simple List— A Sample Run {cont.)

557

PROGRAMMING THE Z80

ALPHABETIC LIST

The alphabetic list, or ‘‘table,”’ unlike the previous one, keeps all
its elements sorted in alphabetic order. This allows the use of fast-
er search techniques than the linear one. A binary search 15 used here.

Searching

The search algorithm is a classic binary search. Let us recall that
the technique i5 essentially analogous to the one used to find a name in
a telephone book. One usually starts somewhere in the middle of the
book, and then, depending on the entries found there, goes either back-
wards or forward to find the desired entry. This method is fast and
reasonably simple to implement.

The binary seach flowchart is shown in Fig. 9.18, and the program is
shown in Fig. 9.23.

This list keeps the entries in alphabetical order and retrieves them by
using a binary or ‘‘logarithmic’’ search. An example is shown n Figure
9.19. The search is somewhat complicated by the need to keep track of
several conditions. The major problem to be avoided is searching for an
object that is not there. In such a case, the entries with immediately
higher and lower alphabetic values could be alternately tested forever.
To avoid this, a flag is maintained in the program to preserve the value
of the carry flag after an unsuccessful comparison. When the INCMNT
value, which shows by how much the pointer will next be incremented
reaches a value of **1'", another flag called *“CLOSENOW?", which we
will abbreviate to **CLOSE"’, is set to the value of the COMPRES
flag Thus, since all further increments will be ‘1", if the pointer goes
past the point where the object should be, COMPRES will no longer
equal CLOSE and the search will terminate. This feature also enabies
the NEW routine to determine where the logical and physical pointers
are located, relative to where the object will go.

Thus, if the OBJECT searched for is not in the table, and the running
pointer is incremented by one, the CLOSE flag will be set. On the next
pass of the routine, the result of the comparison will be opposite to the
previous one, The two flags will no longer match, and the program will
exit indicating *‘‘not found"'.

558

DATA STRUCTURES

[w0]
!

POINT 10 TABLE BASE l

LOGICAL POSITION =
INCREMENT VALUE =
TABLE LENGTH / 2
{ADD 1 IF IT WAS ODD}

NOT FOUND

NO

POINF 1O MIDOLE OF TABLE]

} f__—— (ENFRY}

I INCREMENT VALUE = INCREMENT VALUE/Z I

'

[ADD ONE IF IT WAS ODOD J

{ COMPARE OBJECF TO ENTRY l

YES
FOUND

NO

PRESERVE CARRY (SIGN OF COMPARISON)
IN COMPRES FLAG

15 INCREAAENT
VALUE ONE?

{NEXT TEST)

(LAST ONE)

Fig. 9.18: Binary Search Flowchart

559

PROGRAMMING THE Z80

{NEXT TEST}

ILAST OMNE}

WILL INCREMENT
GO PAST IND
OF TABRE?

UPDATE POINFERS

-

IENERY |

560

1FOOLO

UPOIATE POIMITRY

IENTRY)

MOVE PCHHIERS
DOwWN BY 1

INCREMENT = 1

CITSENOW = COMPRES

(ENTRY)

Fig. 9.18: Binary Search Flowchart (cont.)

DATA STRUCTURES

The other major problem that must be dealt with is the possibility of
running off one end of the table when adding or subtracting the incre-
ment value. This is solved by performing a test ‘‘add™ or *‘subtract”
using the logical pointer and length value which record the actual num-
ber of entries, not the physical positions in memory used by the physical
pointers.

In summary, two flags are used by the program to memorize infor-

(0121) LD A, C
SRL A
ADC 0
LD C. A
OBJECT
— “5YB"
TABASE
AAA
BAC
{ND} NOD)
@.__. FIL TES
= @—— xv2
xYZ
FIRSY TRY SECOND TRY
SEARCH INTERVAL = £ SEARCH INTERVAL = 2

Fig. 9.19: A Binary Search

561

PROGRAMMING THE Z80

mation: COMPRES and CLOSE. The COMPRES flag is used to preserve
the fact that the carry was either **0*" or *'1'* after the most recent com-
parison. This determines if the element under test was larger or smaller
than the one with which it was compared. The C indicates the relation.
Whenever the carry C was ‘1"°, and the element was smaller than the
object COMPRES is set to “‘1"". Whenever the carry C was ‘0", indi-
cating that the element was greater than the object, COMPRES will be
set to "“FF'’.

The second flag used by the program 1s CLOSE. This flag is set equal
to COMPRESS when the search increment INCMNT becomes equal to
“1", It will detect the fact that the element has not been found if

COMPRES is not equal to CLOSE the next time around.
Other variables used by the program are:

LOGPOS which indicates the logical position in the table
(element number)

INCMNT which represents the value by which the running
pointer will be incremented or decremented if
the next comparison fails

TABLEN represents as usual the total length of the list.

LOGPOS and INCMNT will be compared to TABLEN in order to
assure that the limits of the list are not exceeded.

The program calied ‘*SEARCH" is shown on Figure 9.23. 1t resides
at memory locations 0100 to 01CF, and deserves to be studied with care,
as it is much more complex than 1n the case of a linear search,

An additional complication is due to the fact that the search interval
may at times be either even or odd. When it is odd, a correction must
be introduced. (It cannot, for instance, point to the middle element of a
four-element list.} When it is odd, a “trick” is used to point to the
middle element: the division by 2 15 accomplished by a right shift. The
bit **falling off"" into the carry after the SRL instruction will be **I'* if
the interval was odd. It is merely added to the pointer.

The OBJECT 1s then matched against the entry in the middle of the
new search interval. If the comparison succeeds, the program exits.
Otherwise ("' NOGOOQOD""), the carry 15 set to ‘0" if the GBJECT is less
than the entry. Whenever the INCMNT becomes ‘1", the CLOSE flag
(which had been imtialized to *‘0") 1s then checked to see if it was set. If
it was not, it gets set. If it was set, a check 15 run to determine whether we
passed the location where the OBJECT should have been but 1s not.

562

DATA STRUCTURES

Also note that when the carry was “*1'"", the running pointer will point
to the entry below the OBJECT.

Element Insertion

In order to insert a new element, a binary search i1s conducted. 1f the
element is found in the table, it does not need to be inserted. (We
assume here that all elements are distinct). If the element was not found
in the table, it must be inserted immediately before or immediately after
the last element to which it was compared. The value of the COMPRES
flag after the search indicates whether it should be inserted immediately
before or immediately afterwards. All the elements following the new
location where it is going to be placed are moved down by one block
position, and the new element 1s inserted.

BEFORE AFTER
TABASE ——a= AAA AAA
ABC ABC
BAT BAC b NEW
ELEMENT
TAR BAT
ZAP TAR
ZAP
A |
OBJECT —o BAC MOVE DOWN

Fig. 9.20: Insert: “BAC"

563

PROGRAMMING THE 280

The insertion process is illustrated in Figure 9.20, and the corre-
sponding program appears n Figure 9.23,

The program is called NEW, and starts at memory location 01D0.
Note that the automated Z80 instructions LDDR and LDIR are used for
efficient block transfers.

Element Deletion

Similarly, a binary search is conducted to find the object. If the
search fails, it does not need 10 be deleted. 1f the search succeeds, the
element is deleted, and all the following elements are moved up by one
block position. A corresponding example 1s shown 1n Figure 9.21, and
the program appears in Figure 9.23. The flowchart 1s shown in Fig.
9.22,

The program is called “DELETE" and resides at address 0221.

A sample run of the abpve programs is shown in Fig. 9.24.

BEFORE AFTER

AAA AAA

MOV‘E‘UP ABC ABC

BAC = BAT

BAT TAR

— TAR IAP

ZAP
\
DELETE

Fig. 9.21: Delete “BAC"

564

DATA STRUCTURES

DELETE

Y

ALREADY IN? (7119

T T
COUNT HOW MANY
ELEMENTS FOLLOW THE
ONE TO BE DELETED

TEY
NO

RESULT = COUNTER
110G POS)

{

PQINT TO NEXT ENTRY
v POINTER = TEMP | SOURCE -

!

TRANSFER IT UP ONE BLOCK

—

POINT 1O NEXT ENTRY
PQINTER = PQINTER |OESTENATION,

!

DECREMENT LOGPOS

(DOWNTAB] ‘

SET 2 FLAGS

RTS

Fig. 9.22: Deletion Flowchart (Alphabetic List}

565

PROGRAMMING THE Z80

aQad nil Q106K
toram) CLOSEHNNW DL CHDED
{alan) CIMPRES M [XLUSLIN
azac) Tald Ly jUe FHI a

tozan TABASE ul ENDL
talaF) LNTLFN I ERNFING
'

0roe JEOO SEARCK tn n.Q
a1 32anul LI CRLOSENOWY -0 P28 FEAG LOEAT TOi
0105 324007 Lb {COHPRES} < N
o108 57 in (O]
a10% 2A4NOZ ' MI_s ¢ 1QBASE Y PTNITIALIZE 1
a10f 3naro? tn a4 TRNHE BN
010F CR3F skt n INEVIBE Dy 7
oLl1 CEGR Alc o Al 175 I RaCh IN
aL1y aF L cin iSTORE % THCREMEMT VALUF
oLtA a7 Ll e SSTOME A% LAGTEAL FOSTTTION VYALUE
@115 CnBRn01 JP 2 . ROTFaunt SCHECKR EF LERGIN IS ZERD
alif SF o Fift THULTIFLY [E-f1nCHTLEN
GIRL BRI NEC
arin CHihor LAl MY
olih 19 Ann WL DE JSET ML TO HEUDLE OF TARLE
a15E ES Entky rUSH HL DOAn KL O INTD 1X
a11f¥ hiE) (43 i
o1ty 79 L al SHEVINE (NCKEMEMT UOLUE DY TWn
a121 CBIF SKL A
Q124 CEQQ anc o
oL24 AF Lh i
Q127 GM7ECQ Lo et INETD FiENHPARE FINST LETTER
airo FUREQG cF cIY+a)
012n CIATGt i RZ-HOGOON
g130 BO7EOT Lb ArtIAEL) IEOMFARE DNE VETTER
0133 FIBEG! cr TIYe1)
0134 CIa208 P N7« NokODN
0139 npjEOC Lh ArTIXeD) iCOMFARE 3RE LETTER
613C FDREQG2 cr iyl
013F cCoRCOl F Z FIUND
o142 3EG) Mnooon LD fny I5F [COMPARKE HESULI FLAG 10
Q144 [AA901 JF CeTESTS .. «KESULT OF COMPARE E).F0)
G1a7 3JEFF Lo M OFFH
a149 I7ak0l TFSTS 1.0 (COMFRES) oA
o14C 77 Ln Nel IS INCREMEHT VALUE L7
Glak 10 nEr [
GIAE [CIAPOL JE M7 fHEXTFSE
o151 Inan0? LD Ay [CLOSENOUY FYES, TS LLGSE FLAD SET?
01%4 a7 aND A
oI55 Cna3a IR Z HOTCLDSE
o158 57 LD Deht 1YES.SEE IF MAVE FASSER WHERF
QISY Iaakez Lo Ar (COMFPRES) i« . ENTRT SHOULE HE BUT ISH-T
aLsg 92 SUH 0
o150 ChR&%UL e ZrHEXTEST
0E40 C3IPAOL JP HOTEQUND
a143 3sAnan MOTCLUSE LD fe CCORPRES] ISET CLOSE FLAG To pIRECTIon OF
plad ITan07 LD {GLOSENOWT . A r..SUARCH TU PREVENT REFETITION
Q149 DUES HEXFEST FUSH IX 'REPAKE ML AN TE FOR AIN DR
Q1AW EI FlF HL 1 G0 GF INCREMENT UALLE
atac 5v Lh Fel
0TAD CORDPOL CALL HMULT
Q17G 3pahaz Ln M {COMPRES) STEST EF WAaxt T olm AR SUH
aL?y 3iC INC n
0174 CIRA0) AF I ATDTT
al?7 78 Lp Arit STEST THO SEE [F S0k Wil MM
at7p 1 SUb c reOFF DUTTOR OF TADLE
0179 CNABS0I JE 2, ThoLnu
¢t7C DABRSOL JF C« FOOL OW
Ot?7F 47 LK Teh ¢SET MEW LODGICAL TOSITINON VALUE
aj80 EDS2 SHC MLeDE SEHANNE ABDREGS [VSELF
at@z CITEO) JF EHTRY
o185 78 THOLOW LT Artr ISEE 1F FOSITIOW IS
alds 30 TEC A
0187 CABADL JP £ NDTFOUND FIF 500 EXIT
0L8a EDSBAFOD LR NEr CEHTLENY ¢JUST SUK | ENTKRY FlISTTIDN
aiec 17 SCF
otlf 3JF CeF
0170 EUSZ snc HLeDF
0192 0S5 LEC R FCHANGE LOGICAL POSTRILN
0193 C3AFOL P RENLCLUS

Fig. 9.23: Binary Search Program

566

al?a
al?e
o19n
G190k
L 7E
QI%F
alAn
0l1Ad
oiAn
alnl
qrnég
G1A7
oinh
¢nE
a1aF
Atk
n1fa
NENT
G1FNn
aLRE

LT
0) kF
o 1hF
o1Ed
arr4
nice
gI1Cce
atriin
oer
acn
AiCF
arcy

n1ng
omnas
uyha
oIn?
aien
aink
O1DNE

MIET
2IER
ulEn
nign
nicF
o
0182
o1Fs
nIFa
CIF%
QifFA
OIFD
N FLI
G FF
arah
Q7oL
nlas
Qloc/
urob
020k
nzor
[ele]el 3
anoF
o0
0214
a4
4239
a21A
oin
9720

daaco?
94
Pt
hannot

CaknOl
EnGnaEg?
v

a4

OEQ!L
3nap0?
324n02
[N AN
14F}1

CY

1400
Troogo
EhApAr R
A1

iy

IOFD

r

rk

i

(]

rhoool
]

(Ml is
Anapo?
A

CAF Nl

=
rokpgl
19
il
Eh
nArao

[R

E h4k4F
Fhna

in
reiprx
a3

FDES

(39

FI
ElAnAFO]
Fhho
3InN4CoT
ic
itacnz
A1FFFF
K9

apnIr

G GH
KEALLE (85
NG T DIt
R

)
LU

AlNL &

:
HFU

IR S
SETUE-

HAvrh

IPISERT

L
B
St
Jr
apl
Ln
Akl
L
fi
nnn
a8
Lp
ape
FHL
L
Elr

Aar
IRg

[RYHH
In
Ln
L
In
ann
ot
1 F
Fy
cat
it

M. tTOrEH)
"

¢

CeTONEIGI
HL eI

Nl

r

Wan

FHYKY

C
SeHOTEUUND
PE«(CHTLE
ML LD

n

Uel

Mo L CHANRE S
e aSrmws on
FHILY
enEFIr

1]

Iec:

[ERE 1}

E| «NOO0O

D 2CNTLL W
a
ML TP
LIO0N,]
HI

urt el
m

SEnkCiE

"

LD

Poe g Trakel 5t
n

ZvINGERT

o 1IEBHERE)
n

PoHINT I
LF . trNTIENY
ML lp

NETUE

1
Asdinlel
n

P tNnGFGT
Fent

HMIN.

HLeDIN.

HL

ne=n

HL e TENEL I R]
HI. s N

TNE e Hl

IR CENTEF M)

n
WL cMDVER
HI

Iv
e

.
UL, (RHTIFHY

N (THRLEN]
n

CIARLFNT 0
e OFFEEEC

DATA STRUCTURES

YHLsr ta SEE 1T CURKENT 1

FlLU=E IH
saeFHDO N

5 ghe I

CRFAFHT WTIL 1
FHI TA |

ARGE AL TRAL Afrlr

TEHARGE 1OGTCAL FOS . WALLY

iG%FE T
STAmEC
inbh i ENT

FTHNGENE R

[HRitH
g bl

ELUUSRIYE T3
raaMALr o

FGEF 17 Ok

SCHNN TR

{LOMIRLS -3
e HIJEIT

ILOMFRE S0
NI |

ERE1 40 0 11 W 131
va FHIRTY

ISFT npy !

ESHICE 1R

IKEFEnl Fi

GITUR 15 At Ty
SOMF n5 TahlFN-
KY asTrrod

Ve TLAE FASTIT

ST T IWCRLI MU LHE

Cl Af T M AR

BY (EMOENDY
Howuloda rxte

Wl 1% AL aby

nommr

SF1 N alaul
mu bk

*» GFl Rk FNR ZURP
nbY FUTKES AkE

LOST FOSETEON

FHTREY AERIVWFE HL

ONF ENTEY (F AR

NECCERLARY

PN TN OFROMY AF MW EmElY
iLoAD OMIFCY IWTO FRETY SiFarE

P TNLEYMENT

rGHOU THAT

INKLE LERGTH

IF waS IMINE

Fig. 9.23: Binary Search Program (count.)

OSITTUN
FngT

RE 5%
(N
P OF

i

WHI

TR
rr

EW LAST

MORY

SMCE

567

PROGRAMMING THE Z80

o221 Chooo) NELETE CALL SEARCN IGET ADNDRESS DF ORJECT
al24 14 1NC n ISEE IF OBJECT 15 THERE
Q205 CA4902 JP Z+OUTE
0228 EDSFAFOD LD DE« CENTLER?
oz2¢c ER EX RE ¢ NL
pIzp 1% ADD HL ¢ DE JDE IS LOC. OF DBJECTy HL IS
aI2E JAACQD L Ar¢TARLEN? r«+(NE ENTRY DBROVE
o1 ¥0 SURN H 1SEE HWOW MANY ENTRIES ARE LEFT
aZir calFo:z P Z+DERUNTAD
b215 EDABAFQD SHIFTIN LD BCo {ENTLEN?
p23%¥ EDRO LIVIR FSHIFT BEWN 1 ENMTAY LENGTH
[l { 11} BEC A
D0I3c €23542 JP NZeSHIFTIN
D23F 3ascon MIUNTAR LD Ar{TARLENW? $DECAERENT TARLE LENDTH
D242 3D DEC n
olal J24Cp2 LE {TABLEH?Y rA
0244 DIFFFF iLh RCrOFFFFH #5SHOM THAT ACTION WAS TnKEHW
olae C9 QufE RET
’
D24a L{DODD} ENDEQ ENII

STMROL FaBLE

ADBEM o1Le ARBIT b194 CLAOSEN D2aa COMPRE D4R DELETE D221
DOUNTA BI2IF ENDED D2AA ENTLEN D24F ENFRY D11E FOUMB L1 9:13
NISIRE DIED INSERT B2bC MOUEM b2o1 MULT D1PB KEM bioD
NEXTES (149 NDOGOE QLA NOTCLO D143 HOFFOU D1BA our b228

QUTE D249 REALCL DIAF SEARCH Qipa SETUP 1EE SHIFTI 0233
TABASE D2Iab FARLEN 0O24AC TESTS Q1A% TOOHIG BIAS T¢OLDW BIBZ

Fig. 9.23: Binary Search Program (cont.)

LINKED LIST

The linked list is assumed 10 contain, as usual, the three alphanu-
meric characters for the label, followed by one ta 250 bytes of data, fol-
lowed by a two-byte pointer which contains the starting address of the
next entry, and lastly followed by a one-byte marker, Whenever this
one-byte marker is set to **[*’, it will prevent the insert-routine from
substituting a new entry in the place of the existing one.

Further, a directory contains a pointer to the first entry for each let-
ter of the alphabet, in order to facilitate retrieval, It 15 assumed 1n the
program that the labels are ASCII alphabenic characters. All pointers at
the end of the list are set to a NIL value which has been chosen here to
be equal to the table base, as this value should never occcur within the
linked list.

The insertion and the deletion programs perform the obvious pointer
manipulations. They use the flag INDEXED to indicate if a pointer
pointing to an object came from a previous entry in the list or from the
directory table. The corresponding programs are shown in Figure 9.29.

The data structure 1s shown in Figure 9.25.

568

DATA STRUCTURES

-IM400 Initiul (bl e
Q400 ©Q 0O QB 00 CO OO 0D BO-0C 00 OO0 00 QU OO OO0 00 ...
Galo 00 00 0O 00 DO 00 Q0 ok-0p GO 00 0O DO 00 oo Onp
94210 00 o0 00 00 ap 9% OO OR-0C OR O0 OO GO0 00 00 OO
0430 00 0o a0 00 b Q0 00 abv-00 ac Op On 0O OO0 O 00
D44 a0 ad 00 00 po 08 O QR-an 00 00 G0 of a0 00 an
0450 Q0 plt 00 Oon MO Q0 O 00-00 00 00 OO nO 00 Qn ag
0450 00 oo o0 00 0O NB 00 0A-00 A0 90 OO 00 OQ % GO ..
1470 00 a0 Do 40 Qo 08 48 90-0O 00 00 NO OC 00 00 B0

Listing of Objecis

und their luguiions
-IH300 Inmemory
O3a¢ T3 AF AF 31 31 3I 34 3i-3) 31 31 31 31 Na 20 oo SONIfTfMnq11
4310 44 A1 Aa A7 30 T XD Ar-3r 3 A2 X0 3T 4g 08 o DAIIIIIDDan
2370 AD 4F 4D 3X A3 33 X8 33-33 33 33 A3 33 00 00 g0 MOMIIA3A33333.
0330 55 AF 43 34 34 34 34 34-34 54 34 34 34 00 00 Q0 UNCAAALA44444,
2340 41 4E 44 35 A5 A% 1AL 35-2% X% 3T 315 35 00 O0 op ANTAESNSRESS
9350 af 00 G0 00 40 U0 Of 40-00 00 J0 OO o 00 00 OO «.senss
UlAC 00 o 00 0p oo 00 00 OonD-00 Q0 00 OO OR 0D 99 A0
0370 0 Q0 op N0 oo OO0 OO an-on NG 99 4o 00 00 00 no

-5r
Y=gonn 3T

-GI834704 Run 'INSERT'

F-alad Nlss’

-linAan Table ulter inserlion

N400 Al' AF AD 33 A3 33 33 33-33 33 33 A3 33 a0 90 00 HOMAIAAAA3333. ..,
N4io oo a0 00 OO0 OO 09 0O HO0-00 Q0 QO OO0 OO OO0 A0 0O
0420 o0 o0 00 Oo @0 OO0 OO O0-0O 0O OG0 00 0o 90 0o 00
aA3% 00 o 00 on 00 OO OO OO-G0 QO 00 0O a8 00 OO0 on
044n o0 @0 OO0 00 N0 00 OR DO-NG 00 00 00 Jda OO OO on
M50 o0 oo 00 OO0 Q0 QO 00 CO-Of OO 0O DD a0 oo 00 OO
NAs0 o0 oo 00 00 oo o0& a0 ne-cp O0 Do QO OO DO OO OO
o470 o0 g0 C0Q OO0 oo 0O OO0 Q0-g0 OO0 0O 00 o8 40 00 OO

‘S“

Yu0320 310

“GI63/246 Run 'INSERT" on another Object

T OME DG Listing of (ablc afier
- Insertinn, Note: table

BB Is hept alphabelic

GAgl A4 A1 44 37 37 37 32 37-30 A2 AT 30 32 Al 4F 4l OAD2I22DTI0370HOK
G410 33 13 33 33 11 31 A3 33-33 A1 90 0 o0 00 0ag a0
2420 00 o4 00 00 OO o0 00 OO-00 00 aa 40 00 00 00 a0
430 00 ON 40 00 ofr 00 00 04-g0 OO OO 00 Jp OO OO OO
0440 g0 00 00 00 0p 40 00 00-0O OO0 OO0 00 0O 00 OO 0
0450 00 00 00 Q0 GO OO OO0 0O-G0 QO 00 Og 0O 00 0O 00
440 oo 00 C0 00 00 00 00 OO-00 G0 00 00 a0 OO 00 09
a4'u oo on oo oo no ot 00 00-00 OO oo 00 o0 G0 90 o9

' * * {additional inserts) * " *

Fig. 9.24: Alphabetic List—A Sample Run

569

PROGRAMMING THE Z80

570

Table ronfiguration
after wll Objects
-DH400 have been Inseried

0400 A1 AE 5S4 15 35 35 35 35-35 35 33 IS5 35 A4 41 A4 ANTSSSSSGSISIDAD
oA10 37 37 37 32 32 37 37 32-37 3D 4D 4F ah 33 33 33 JI020021707HOHEID
0A20 33 33 33 33 33 33 313 53-4F AE 31 31 31 I 31 31 33AJIAISONI11111
0430 31 31 3| 31 55 4E 43 34-34 Ia 34 34 34 T4 34 34 1111UHCA44444444
0A40 3JA OO DD Q0 00 QO 00 DO-00 DD 00 OO0 OO OD DO 00 Avciinennnvnnsss
D450 00 90 o Qo 0o 00 oo 00-0v OO0 OO 00 OO ©O DO 0O
0440 00 00 00 00 0O 90 0O 00-p0 oD OO0 0O 00 00 o©d 0O
0470 00 00 00 Oc 00 00 OO Q0-00 OO 00 OO0 CO OO o0 OO

-5y
Y=0340 100

-DR60/243 Run ‘SEARCH?® for "*SON"" (at nddress 0300)
PapIs] 0243°

-IR r—-=Found
Z N A=4E BC=0Ac1 DE=000D HL=p4Z7 5=-0100.P=0243 DI43’ CALL D1DD
A'Ipd B*=QDO0 D’ =0000 H'=0DDD X=0477 Y=p300 I=00 (o100
Address of Object in table
(verify in Table atove that it is “*SON""}
-018471469
g, Run 'DELETE' np "SON"'

P=D26? 0249 Tabie conligaration
alter deletion. Nole:
that UNC was shifted
up, The st UNC
enlry must be

—~DHADD disreparded

DAQD 41 AE 54 35 35 135 35 I5-35 35 15 35 35 44 41 44 ANYSSS55SS5555DAD
D4lo A2 32 A2 37 30 37 37 30-37 37 AL AF AD I3 33 33 222730 I000MDM3ER
D47g 33 33 33 33 X3 33 33 55-4E A% 34 34 34 34 34 34 JTAIIIIUNCAAA444
DAZO 34 34 34 34 55 AE 43 34-34 34 34 34 34 34 34 T4 4444UNCAS44494444
0440 34 90 pO Qa 00 00 o J0-0C 0D Do OD DO O 0D G0 A.usresnnaannnas
oasSD op o0 DO 40 OC OO0 o0 Oo-0Q0 Ob OO oD OO 00 o0 OO
0450 00 00 OO0 00 0Op 0o 00 00-00 00 00 00 00 OO0 DO 0O
047Dp 00 00 00 00 00 00 00 00-0Q Q0 O @0 QO oo o0 do

-GI&0/253

Try run nf *'SEARCH' aguin (on "“SON'"
PaDI&Y 0243’

IR Not found

5 N A<FE BC~0A01 DE=FFOD HL=0477 S=0100 P=02s3 DI43- CaLL 011G
A‘=0D D‘=DOOO M°=0000 H°=00OD X=PA2?7 Ya0l6a 12DO to1pp)

-0263/2484

Re-insert Object (**SON'")
PaDl4s 02667
Corent bl
confligarsilon,
Compare lo the ooe
prior o the
-DNago DELETE

D400 41 AE S4 35 35 35 35 35-35 35 IS5 35 35 44 41 44 ANTSSS5555555DAD
DalID 2 32 32 32 A7 37 A2 I7-32 A7 Ap AF AD 33 33 33 2I00007200HBMIIS
0420 I3 33 33 33 33 I3 33 S3-4F 4E 31 F1 31 31 31 31 IIAZIIISONLILLLLY
oa3D 31 31 31 Il 55 4E AN 34-34 34 34 34 34 34 34 34 L1LIUNCAA4444444
o440 34 OD OD OO OO0 GO OO OO-OD 00 00 00 OO0 OO0 00 00 A...
0450 DO 0O DO OO OD OQ 00 Oo-PD 00 OD DO OO DD PP OO ...
0440 DD pp PQ OD OO0 O0 DO DPD-00 ODP Q0 OO OD DD 00 Q0 ...,
0470 00 00 00 00 Op 00 OD Do-PD 00 OD OD DD OO0 PO O% ..., 000000 eaus

Shows that ection was executed

N=0% BCoFFFF DE=0A34 HL=030D §=0100 P30l4s 0786° CALL 0721
A'=QQ B'=0D0g D =000 H'=000D X=~DA27 Y=D30O I=0C0 (Ozo1ry

Fig. 9.24: Alphabetic List— A Sample Run (cont.)

DATA STRUCTURES

DIRECTORY

A on ;
A
POINTER | A

R NIL

R POINTER -

NIL

Fig. 9.25: Linked List Structure

An application for this data structure would be a computerized ad-
dress book, where each person 1s represented by a unique three-letter
code (perhaps the usual initials) and the data field contains a simplified
address, plus the telephone number (up to 250 characters). Let us exam-
ine the structure in more detail. The entry format is;

CCCDD5§DPPO
"

w S . S o ———
unique iabei data (] to 250 bytes) pointer to
(ASCII) .
occupied

As usual the conventions are:

ENTLEN: total element length (in bytes)
TABASE: address of base of list

The address of the OBJECT is always assumed to reside in the IY register
prior to entering the program. Here, REFBASE points to the base ad-
dress of the directory, or **reference table.”’

Each two-byte address within this directory points to the first occur-
rence of the letter to which it corresponds in the list. Thus, each group

571

PROGRAMMING THE Z80

of entries with an identical first fetter in their labels actually forms a sep-
arate list within the whole structure. This feature facilitates searching
and is analogous to an address book. Note that no data are moved dur-
ing an insert or delete. Only pointers are changed, as in every well-
behaved linked list structure.

If no entry starting with a specific letter is found, or if there is no en-
try alphabetically following an existing one, their potnters will point to
the beginning of the table (= ‘*NIL™). At the bottom of the table, by
convention a value is stored such that the absolute value of the differ-
ence between it and **Z'’ 1s greater than the difference between ‘A"
and **Z'’. This represents an End Of Table (EOT) marker. The EOT
value is assumed here to occupy the same amount of memory as a nor-
mal entry but could be just one byte if desired. The letters are assumed
to be alphabetic letters in ASCI] code. Changing this would re-
quire changing the constant in the PRETAB routine.

The end-of-table marker is set to the value of the beginning of the
tabie ("*NIL'").

By convention, the **NIL pointers”, found at the end of a string, or
within a directory location which does not point to a string, are set to
the value of the table base to provide a unique identification. Another
convention could be used. In particular, a different marker for EOT
results in some space savings, as no NIL entries need be kept for non-
existing entries.

Insertion and deletion are performed in the usual way (see Part 1 of
this chapter) by merely modifying the required pointers. The
INDEXED flag is used to indicate if the pointer to the object is in the
reference table or another string element.

Searching

The SEARCH program resides at memory locations 0100 to 0455
an uses subroutine PRETAB at address 01D2.

The search principle 1s straight forward:

{—Get the directory entry corresponding to the letter of the alphabet
in the first position of the OBJECT's [abel.

2—Get the pointer. Access the element. If NIL, the entry does not
CXIst.

3—If not NIL, match the element against the OBJECT. If a match is
found, the search has succeeded. If not, get the pointer to the next entry
down the list.

4—Go back to 2.
An example is shown i Figure 9.26.

572

A-POINTER

®

DATA STRUCTLURES

AL

B-POINTER

|

NiL

OBJECT -]

AZC

Inserting

Fig. 9.26: Linked List—A Search

t4 SFEPS REQUIRED|

{FOUND}

The insertion is essentially a search followed by an insertion once a
**NIL'" has been found.
A block of storage for the new entry is allocated past the EOT
marker by looking for an occupancy marker set at *‘available”' .
The program 15 cailed “NEW" in Figure 9.29 and resides at ad-
dresses 0156 to IA3. An example is shown in Figure 9.27.

BEFORE

A-POWNTER

| [7]

R-FOTER

NR

CPOINTER

[

Cas

NiL

AFTER

OBXCT

A-POINTER

8- POINTER

il

NIL

C-PQOINTER

CBS

Fig. 9.27: Linked List: Example of Insertion

573

PROGRAMMING THE 280

Deleting

The element is deleted by setting its occupancy marker to *‘available™
and adjusting the pointer to it from the directory or else the previous
element.

The program is called “DELETE’’, and resides at addresses 01A4 to

01DI.
An example of a deletion is shown in Figure 9.28.

<BEFORE
A
s - -
o
[= —
DAF POIMIER
-DAF - ~poc
DX POINTER NIL
[4]
(AFTERY
A
Y
C
b
DOC #QINKER D
NK
P~ =—m -
1 Das 1
_______ 4

NOIE DAF IS nOT ERASID, BUF “INVISIBLE

Fig. 9.28: Example of Deletion (Linked List)

574

THHIO -

(LD TN
tABALY
tifa It b ANt
LY TR futien

RIRL L I AETER

N] |
Tt
A
AF
[

b s
o 1 B 1AM Akt
e

FubtOn
DAY 1
o

Flthe i1

L

PHHAWEE

[NLT
[QLAE R 1

R] R
L A
LA

SAE A

ik 1 e ik
ST

ot

KA |

R

1

”,
g

k:

Liraf 120y
:

zxLLa

2lx=

M
nema
1M
[
app
[]
it
b
Famiae
Nk
ih
L
n
i
t !

Fady
(£

'S

L Lt

I Btk
[£11H
EkLE
tr
L
11
(AL
(1L A
i

fprrmbd
F Rl
tH L)
[EDLNTR R
LRI LN A

Ao

natr

r

LR LUL LI TRT:)
FLE Ak
LERRL I

[3.

1

LTS L

Hed

L]

K]

ferdngem
hn

Ha e HHEEE (b
fet IEInN
(BRI

Ca RN
REY FR{ TN
LILRALNEY
“tfely
(R HL T
REILOIN: TN
YRR R X

(AR AN

Tel AL

HE D IR
1

[

W EFRI
Ht o4

tetin

Hoett

LATLIL G B TERY .Y
et nky

RetH

AL

Mot labang o
14 n

TR ITRTT
tn

HI

i

Ll

[[

o

2 o IO

L]

B st HALE My

re
L]

o .in
LFT T
Hi

Hy) Fewr
M.
PN

DATA STRUCTURES

SIRPELYW BT B A

I B Ald TH K
HO LU BRI e

URBERIRITAI RS
AN) Fan Rk

SUINKE AT R RN EPRIER W FHYEY
TNEE 1R 3N Frrt MARREE

P 1 1300 AP EIT K

araws Al et p 11D RS

HIMT TR VT | 3 DO N T

PN) TOERIFR IN ek

SR culeivh VAo iy ke

AN IF WIEE O FMEHIER

REGE L 11 A0

A WHLE DR G SHINN I 10

PN ARG I F RN, S HIRY
SEIM SEACE I DAk VIN HEW
SEFAT T LM N Mg rD TRIL,

sabbe 4 RIS BEAL DOm0 ok MEEDY

LEC vt MM £ MR . TET AGAIH

A FTNETTON e Tt el
P i BN

e Ok WL eIt am g

AT Ak I8 ARIET AR FEE I MAT
se A1 EMENEETR TN FiNg

SN THOICANLY MAKLL T

Fig. 9.29: Linked List—The Programs

575

PROGRAMMING THE Z80

576

a3
o1g4
o a7
[+}N11]
. 33:1.}
o18ac
0190
QIel
oL
0193
0194
41793
o178
199y
a1k
o190
Qi9E
01¥F
aing
nind

oifa
0in7
aian
[1FR18
owab
QINE
mE2
oIy
OtE4
nias
a1ls
aLn?
a1pe
ainr
aQ1nh
219
i
nica
11c?
$InA
mich
wIre
wigh
EE
arm

QIn?
arnd
aLlhs
nip?
107
N hp
uthE
0y hiF
M11ED
EeEs
MEa
NIFY
Q1ER

DR

SYHIH

CHAUGE
I"IN1GH
HEW
MUrFE
MpnsF

El Far
JAE70L Lh
D [
CAYBOI JP
EJ EX
EUSNECUI Lh
19 ann
i For
71 Ln
a3 1HC
72 Lh
C3nool dF
Ct SE[TRX FOF
Chyr201 okt
ER EXY
73 LI
a3 NC
72 [
olertF FIHRTGH Lo
Ce aut RET
'
'

Chono i KELETE Ll
an (HC
Corrlol JF
RREDL s
Fl FOF
ElranECae Lh
aw ann

Ln

INC

rICHO
2AERD1
1y

71

u3

70

Q1FFEF

cy

[afan

tabt ¥

ainy
orae
o158
oL

oLER

CHAINGEMH

Moo

LIEHTF
.

«

FRETAN PHSH
Ln
hEC

n

[N
apn
Lo
JF
N
F I1xuf Fx
vk
RET

ENDER €U

FOWEOR 0110
F1XUF QIEA
NEX10ON OIs!
FRCIAR 10T

HL

s {TNBEXEDY

n
ZeGEVINX
t50)aHL

IE . [ENTLERH)

HLTIE

{HL P
FINTGH
HC

FRE ThD
HE eI
CHLYaE
ML

fHL Y v 12

HC.OFFFFH

SERRCH
[

NZ «NUTE
Ix

HL

HC« (ENTLENY

HI_ 3 EIL
My tHLY
L
feg gl)
ML,
{HL2.D

fet [NIEXFI)

n
HZ CHARGE M

FRETAR
DE .1
HOUTH

HL ; (ENTLE8Y

HL o FF
tm 1.
L18

VR EE

HELOFFFFY

LI08

Aet IO
n

afll

i

i« (1t FRASE Y

L

Laf

ACLF 180T
"

DE+HL

Ml

nELFTE
FMINR

NhGOOL
RCFRAS

nina
9153
O1AF
01EA

SGET ADDR OF WHERE THES SPACE 15
+SEF WHAT PREVINUS POINTERS MUST
-..hE 2ET

sGET ALDR OF ENTRY FREVIOUS TD
¢ QRJIECT & HOWE TR ['OINTER AREA

$FETRIEVE AInR F O ECE
dPDT fT AT I'INICK POSTITINH

Eak OUT HTALK
T INUEX {INNKESS
SLOab ML TRTO TT

150NU TuAT [r WAS [MONE

FGEY ARMMESS OF NRJECT
FSEE IF 17 1% THERE

THET fi. T FOTHTER AREA OF [IpOEDT

SKE1LICWT POTHTER

iRFHOVE (OECUFANLY HIBKRER
SEFE IF IRDEY HRLCENS CHARGLING

SYFSeFIIT ATIMR THTR HE

S5F0 0l 10 POIRTER DF REVIDUS

iFHT ADRKE HF MFYT TRNI WIATRUER
. tEITHER IRDPEX R FHTEY!

SGET FIRST LOITFR O DRIECRT
SREHOVE AS%IT EFARER

SMtE TEFL Y HY '

ENNER MIE? ENTLEN 81EV
FHPEXE nNEET HOVEN QiCR
NOTFH) o1l aut oanh
SEARCH oo SETIY Mi=R

Fig. 9.29: Linked List—The Programs (cont.)

The Objects in memory

1M 300
0300
axn a4
axm An
23m 55
9340 41
dako a4l
n3an 4|
ny’a 3
Imaan
aadn
0a1a oo
LRI
410 oo
oada np
BELT I T
2450 on
[t g + B + 1]

nson an
uaig o
(14}
A o0
A0 00
auna oo
aShti 0n
a5 ab
hndun
Qaaa h
9410 At
a0 44
as 0 4
J40 &)
A5G0 Al
280 53
aa7a 4y
cy

4l
“
+f
4F
a1
L
q%

[HH
o0a
an
(1]
[t1s]
oo
(1]
ao

on
qE
a
al
ar
ar
A?
“w

Y 0dan X0

[T E ML)

qant
naln
aqa
LK (]
1440
RETHY
Q340
a0

1%

ool

44
Al
ax
54
a1
un
LE]

nn
nn
nn
on

[H1r]
nn

nh
on

aa
af
an
oa
ao
oo
Q0
an

A4

)

g0

A

ER N R

L

oY

R

ar

AR

an
an
un
oo
an

[¢]3]
an

(L]
a4
04
[1E]
[¢1+]
an
ng
un

Delete an

L3114

R
A
At
R}
R

e
oe
an
Qo
un
ao
nn
an

114}
no
a0

aa
a0
na

aa

R B LN [P S O B 3 §

un
ot
an
20
a6
[t]4]

an
aa

ua
04
aa
ot
.13}
aq
nn
[

"0 g
5
A0
14 34
LLIR T
[RER R

JIn oA

L

g

an
an
a0
an
ao
an
an

an
[411)
ad
[+1+]
11+]
1]
ae
oo

it

R]

34

Qo 00
ot oo
to-ao
00 -a0
ada-nh
oo -on
o6 an
ue ot

ta-no
a4-aa
a4 aqa
ag on
ad-ag
Qo-a0
on-nn

ag
on
o
no
0n
nn
oo

[-L}
L}
04
a0
00
Ho
on

6o -00 O

Ay

[414]
on
oa
Qo
oa
an

an
L]

na
ou
uga
aa
an
[t}
ou
[¢1+]

+1]
an
ao
[t1+]

on
oy
i

[tL}
o4
an
on
an
Qg
an

un
ot
06
00
6o
0o
o0
11}

an
[111]
ao
[$1:]

[+1]
no
[e]+]

[+ 1]
na
ao
[+11]
Qa
oa

na
an

04
a4
L]

oo
o0
oo
on

uo
0o
a9
an
no
14}
af
00

on
oa
on
o
no
oo

an
oo

ap
10
a0
ag
o0
0o
oo
on

on
0o
on
i
on
ad
00
ao

a9
oo
o0
a0
aa
oo
ao
no

a4
a4
L]
oy
1]
4]
[1]+]
oo

Occupancy markers—

Pointers —

eniry

au

He e
.

ki)
xT 31
an-
REEK Fe

kN

in
17

ng
a1}
no
0
HF
na
11
an

Qo

L L
na
a4
n4
o1
[tL]
04

DATA STRUCTURES

Lisitng af Lhlecis
und their incanana

In mcmery
Slerirppiplildil...

halopo222200 . ..
HIAAIIIXIRARN, .,
HHEAaa8444449

n# % N I
NANALBAASAARAA. « .
AZZIZ727273770...
SINIHARARBIHA. . .

—— EOT charscterin
nizixl abie

Tubie conligaration
slser sevcral
taverilzm.

1
L RRAREHN % KRR PN
S WRRHNORAOARE . |
AFZUTIIFITIILL L,

ANOAASEALABAA .
S U RRERR R AL
EREERRERRE]
' FIRINRHHBR 0N AR
AZIIIIIDTAIIN..

Fig. 9.30: Linked List—A Sample Run

577

PROGRAMMING THE Z80

-G1ros/223

Run *SEARCH?' for deleted entry

r=0223% o203

bk —Not found
N A=37 Ri=poFF NE=0400 HL-DOGOD S5=0100 F=0I03 0173 EALL 0171
ac=00 T*-0O000 N*-0000 H* =000 ¥-0400 Y-=03lQ (=00 (GL71"
-8y
Y-0l10o 3an
Gamosona Run “*SEARCH"’ for an existent entry

r=0223 o023° .
—Entry lound
-hik
TN n=%54 TLC-FF10 TE-0A30 HL-0A3E S=0L04 £-0723 O0I0d Coll 0171
n'=00 L =qoon T°-0000 11--0000 X-0414 Y-034Q -O00 G171}

-0124/009 .
Delete _ Address of eniry in table
F-0209 Q279”

Nair: Changes in
_NHAUDG pulnters.
04anld 7L oo OO on 0o OO 0O 00 GO 0O
0410 A1 4E 54 35 3 f 35 a5 3% 70 04 00
0450 44 41 44 37 34 3D AT 2 30 37 A2 00 04 00
0ad0 41 A1 A1 X 3 A6 XA A4 N4 ol
440 53 AF aF 31 3 A1 Xt 31 00 0a 01 HONITINI1QMME.
0456 A0 AF 40 13 A3 3¥ 33 £3-33 11 33 Y 33 G0 o4 01 MOHIIZAZAARAN. ..
0450 53 49 44 16 38 30 3@ 3g-30 318 1@ 36 1A 40 04 o1 SITNBONOOBEABE. .
0470 AL S0 SM 37 37 37 37 X7-X7 57 ¥ A7 37 006 04 GBI AZXIDIIRITINN. ..

Fig. 9.30: Linked List— A Sample Run (cont.}

SUMMARY

The beginning programmer need not concern himself yet with the
details of data stiuctures implementation and management. However,
efficient programming of non-trivial algorithms requires a good under-
standing of data structuses. The actual examples presented n this
chapter should help the reader achieve such an understanding and solve
all the common problems encountered with reasonable data structures.

578

10
PROGRAM DEVELOPMENT

INTRODUCTION

All the programs we have studied and developed so far have been
developed by hand without the aid of any software or hardware re-
source. The only improvement over straight binary coding has been the
use of mnemonic symbols, those of the assembly language. For effec-
tive software development, it is necessary to understand the range of
hardware and software development aids. It 1s the purpose of this chap-
ter to present and evaluate these aids.

BASIC PROGRAMMING CHOICES

Three basic alternatives exist: writing a program 1n binary or hexa-
decimal, writing it in assembly-ievel language, or writing it 1n a high-
level language. Let us review these alternatives.

Hexadecimal Coding

The program will normally be written using assembly language mne-
monics. However, most low-cost, one-board computer systems do not
provide an assembier. The assembier is the program which will auto-
matically transiate the mnemonics used for the program into the re-
quired binary codes. When no assembler 1s availabie, this translation
from mnemonics into binary must be performed by hand. Binary is
unpleasan: 0 use and error-prone, 5o that hexadecimal is normally
used. It has been shown in Chapter 1 that one hexadecimal digit will
represent four binary bits. Two hexadecimal digits will, therefore, be
used to represent the contents of every byte. As an example, the table
showing the hexadecimal equivalent of the Z80 instructions appears in
the Appendix.

5719

PROGRAMMING THE Z8O

in short, whenever the resources of the user are limited and no assem-
bler 15 available, he will have Lo translate the program by hand into hex-
adecimal. This can reasonably be done for a smali number of nstruc-
tions, such as, perhaps, 10 to 100. For larger programs, this process 15
tedious and error-prone, so that it tends not to be used. However, near-
ly all single-board microcomputers require the entry of programs in
hexadecimal mode. They are not equipped with an assembler and a full
alphanumeric keyboard, in order to lim:t their cost.

In summary, hesadecimal coding 15 not a desirable way o enter a
program in a computer. 1t 15 simply an economical one. The cost of an
assembler and the required alphanumeric keyboard 1s traded-off
against increased labor required 10 enter the program in the memory.
However, this does not change the way the program iself 1s wrtten.
The program is still writen 1 assembly-level language so thai it can be
examined by the human programmer and be meaningful.

Assembly Language Programming

Assembly-level programming covers both programs that may be
entered in hexadecimal and those that may be enlered in symbaolic
assembliy-level form 1n the system. Let us now examme the entry of a
program directly in its assembly language representation. An assembler
program must be avaiiablie. The assembler will read each of the mne-
monic instructions of the program and translate it 1nto the required bit
pattern using I to 5 bytes, as specified by the encoding of the instruc-
tions. in addition, a good assembler will offer a number of additional
facilities for writing the program. These wilt be reviewed 1n the section
on the assembler below. In particular, directives are available which
will madify the value of symbols. Symbolic addressing may be used and
a branch to a symbolic localion may be specified. During the debugging
phase, when a user may remove or add 1nstructions, 1t will not be neces-
sary (0 rewrite the entire program if an extra mstruction s inserted be-
tween a branch and the point to which 1t branches, as long as symbaolic
labels are used. The assembler will take care of automatically adjusting
all the labels during the translation process. In addition, an assembler
allows the user to debug his program in symbolic form. A disassembler
may be used 1o examine the contents of 2 memary locanon and recon-
struct the assembly-level instruction that it represents. The varnous soft-
ware resources normally availabie on a system will be reviewed below,
Let us now examne the third alternative,

580

PROGRAM DEVELOPMENT

POWER OF
THE
LANGUAGE

AN

APy
CoBOL
FORTRAN HIGH-LEVEL

PLZM
PASCAL

BASIC
MINI.BASIC

1 IIT T

MACRQ
CONDITIONAL ASSEMBL Y -LEVEL

ASSEMBLY

SYMBOLIC

.
HEXADECIMALF '
oCTAL

BIEERES

MACHINE-LEVEL
BINARY

I

Fig. 10.1: Programming Levels

High-Level Language

A program may be written in a high-level language such as BASIC,
APL, PASCAL, or others. Techniques for programming in these vari-
ous languages are covered by specific books and will not be reviewed
here. We will, therefore, only briefly review this mode of program-
ming. A high-level language offers powerful instructions which make
programming much easier and faster. These instructions must then be
translated by a complex program into the final binary representation
that a microcomputer can execute. Typically, each high-level instruc-
tion will be translated into a large number of individual binary instruc-
tions. The program which performs this automatic translaton 1s called
a compiler or an interpreter. A compiler will translate all the instruc-
tions of a program in sequence into object code. In a separate phase,
the resulting code will then be executed. By contrast, an interpreter will
interpret a single instruction, then execute it, then ‘‘transiate’” the next
one, then execute it. An interpreter offers the advantage of interactive
response, but results in low efficiency compared to a compiler. These
topics will not be studied further here. Lel us revert to the programming
of an actual microprocessor in the assembly-level language.

581

PROGRAMMING THE Z80

SOFTWARE SUPPORT

We will review here the main software facilities which are (or should
be) available in the complete system for convenient software develop-
ment. Some of the definitions have already been introduced. They will
be summarized here and 1he rest of the important programs will be de-
fined before we proceed.

The assenibler is the program which translates the mnemonic repre-
sentation of instructions into their binary equivatent, Il normally trans-
iates one symbolic wnstruction into one binary tnstruction {(which may
occupy |, 2 or 3 bytes). The resulting binary code 15 called obyect code.
It 1s directly executable by the microcompuler. As a side effect, the
assembler will also produce a complete symbolic listing of the program,
as well as the equivalence tables to be used by the programmer and the
symbol occurrence list in the program. Examples will be presented laler
1n this chapter.

In addition, the assembler will list syntax errors such as instructions
misspelled or illegai, branching errors, duplicate iabels or missing
labels.

It will not delete fogical errors (this is yvour problem}.

A compiler s the program which translates high-level language in-
structions 1nto their binary form,

An (nterpreter 1s a program similar Lo a compiler, which also trans-
lates high-level instructions 1nto their binary form but does not keep the
intermediate representation and executes lhem immediately, In Fact, it
often does not even generate any inlermediale code, but rather exccutes
the high-leve] instructions direetly.

A momitor s the basic program which 1s indispensable for using the
hardware resources of this system. Il continuously monitors the input
devices for input and manages the rest of the devices. As an example, a
minimal monitor for a single-board microcompuler, equipped with a
keyboard and with LED's, must continuously scan the keyboard lor a
user nput and display the specilied contents on the light-emitting
diodes. in addition, it must be capable of understanding a number of
limited ecommands from the kevboard, such as START, STOP, CON-
TINUE, LOAD MEMORY, EXAMINE MEMORY. On a large sys-
tem, the monitor s often qualified as the execnqve program, when
complex [ile management or task scheduling 1s also provided. The over-
all set of Facililies 1s called an operating system. 1f files are residing on a
disk, the operaling system is qualified as the disk operatimg system, or
DOS.

582

PROGRAM DEVELOPMENT

An editor is the program designed to facilitate the entry and the mod-
ification of text or progams. [t allows the user to enter characters con-
veniently, append them, insert them, add lines, remove lines, search for
characters or strings. It 1s an important resource for convenient and ef-
fective text entry.

A dehugger 1s a facility necessary for debugging programs. When a
program does not work correctly, there may typically be no indication
whatsoever of the cause. The programmer, therefore, wishes to nsert
breakpoints in his program in order to suspend the execution of the
program at specified addresses, and to be able to examine the contents
of registers or memory at this point. This 1s the primary function of a
debugger. The debugger allows 'or the possibility ol suspending a pro-
gram, resuming execution, examining, displaying and modifying the
contents of registers or memory. A good debugger will be equipped
with a number of additional facilities, such as the ability to examine
data in symbolic form, hex, binary, or other usual representations, as
well as to enter data in this format.

A loader, ot linking loader, will place various blocks of object code
at specified positions in the memory and adjust their respective sym-
bolic pointers so that they can reference each other. It is used to relocate
programs or blocks in various memory areas. A suntfator or an em-
lator program is used to simuiate the operation of a device, usually the
microprocessor, in its absence, when developing a program on a simu-
lated processor prior to placing it on the actual board. Using this ap-
proach, 1t becomes possible to suspend the program, modify it, and
keep it in RAM memory. The disadvantages of a simulator are that:

I—It usually simulates only the processor itself, not input/output
devices

2——The execution speed 1s slow, and one operates in simuiated time.
It 1s therefore nat possible to test real-time devices, and synchronization
problems may stiff occur even though the logic of the program may be
found caorrect.

An emulator s essentially a ssmulator in real time, It uses one proces-
sor to simulate another one, and simulates it in complete detail,

Utifity routines are essentially all the routines which are necessary in
most applications and that the user wishes the manufacturer had pro-
vided!

They may include multiplication, division and other arithmetic oper-
ations, block move routines, character tests, input/output device han-
dlers (or “‘drivers'’), and more.

583

PROGRAMMING THE Z80

THE PROGRAM DEVELOPMENT SEQUENCE

We will now examine a typical sequence for developing an assembly-
level program. We will assume that ali the usual software facilities are
available 1in order to demonstrate their value. If they should not be
available in a particular system, it will still be possible to develop pro-
grams, but the conventence will be decreased and, therefore, the
amount of time necessary to debug the program is likely to be in-
creased.

The normal approach 1s to first design an algorithm and define the
data structures for the problem to be solved. Next, a comprehensive set
of flowcharts is developed which represents the program flow. Finally,
the flowcharts are translated into the assembly-level [anguage for the
microprocessor; this is the coding phase.

Next, the program has to be entered on the computer. We will exam-
ine in the next section the hardware options to be used in this phase.

The program is entered in RAM memory of the system under the
control of the editor. Once a section of the program, such as one or
more subroutines, has been entered, it will be tested.

First, the assembler will be used. If the assembler did not already
reside in the system, it would be loaded from an external memory, such
as a disk. Then, the program will be assembled, 1.e., translated into a
binary code. This results in the object program, ready to be executed,

One does not normally expect a program to work correctly the first
time. To verify its correct operation, a number of breakpoints will nor-
mally be set at crucial localions where 1t 15 easy to test whether 1he inter-
mediate results are correct. The debugger will be used for this purpose.
Breakpoints will be specified at selected locations. A '*Go’’ command
will then be issued so that program execution is started. The program
will automatically stop a1 each of the specified breakpoints. The pro-
grammer can then verify, by examining the contents of the registers, or
memory, that the data so far 1s correct. If it is correct, we proceed until
the next breakpoint. Whenever we find incorrect data, an error in the
program has been detected. At this poini, the programmer normally
refers to his program [isting and verifies whether his coding has been
correct. If no error can be found in the programm:ng, the error might
be a logical one and one might refer to 1he flowchart. We will assume
here that the flowcharts have been checked by hand and are assumed 1o
be reasonably correct. The error 1s likely to come from the coding. It
will, therefore, be necessary to modify a section of the program. If the
symbolic representation of the program is still in the memory, we will

584

PROGRAM DEVELOPMENT

simply re-enter the editor and modify the required lines, then go
through the preceding sequence again. In some systems, the memory
available may not be large encugh, so that 1t 1s necessary to flush out
the symbolic representation of the program onto a disk or cassette prior
to executing the object code. Naturally, in such a case, one would have
to reload the symbalic representation of the program from its support
medium prior to enlering the editor again.

The above procedure will be repeated as long as necessary until the
resulls of the program are correct. Let us stress that prevention 1s much
more effective than cure. A correct design will typically result 1n a pro-
gram which runs correctly very soon after the usual typing mistakes or
obvious coding errors have been removed. However, sloppy design may
result tn programs which will take an extremely long time (o be de-
bugged. The debugging time 15 generally considered to be much longer
than the actual design time. In short, 1t 15 always worth mnvesting more
time 1n the design in order to shorten the debugging phase.

However, using this approach, 11 1s possible to test the overall organi-
zation of the program, but not to test it 1n real time with input/output
devices. If input/oulpul devices are to be tested, the direct solution con-
sists of transferring the program onto EPROM’'s and installing it on Lhe
board and then watching whether it works.

There 15 a better solution. [t is the use of an wu-circinf emudator. An
in-circull emulator uses the Z80 microprocessor (or any other one) (o
emulate a Z80 in (almost) real time. It emulates Lthe Z80 physicalily. The
emulator is equipped with a cable terminated by a 40-pin connector, ex-
actly identical to the pin-out of a Z80. This connector can then be in-
serted on the real application board that one 1s developing. The signals
gencrated by the emulator will be exactly those of the Z80, only perhaps
a little slower. The essential advantage is that the program under test
will still reside in the RAM memory of the developmenl system. It will
generate the real signals which will communicate with the real in-
put/output devices thal one wishes to use. As a resuit, it becomes possi-
ble to keep developing the program using all the resources of the devel-
opmenl systemn (editor, debugger, symbolic facilities, file system) while
testing input/output in real time.

In addition, a good emulator will provide special facilities, such as a
rrace. A trace is a recording of the last instructions or status of various
data busses in Lhe system prior to a breakpoint. In short, a trace pro-
vides the film of Lhe events thal occurred prior to the breakpoint or the
malfunction. It may even trigger a scape al a specified address or upon
the occurrence of a specified combination of bits. Such a facility 15 of

585

PROGRAMMING THE Z80

great value, since when an error 1s found 1t is usually too late. The in-
struction, or the data, which caused the error has occurred prior to the
detection. The availability of a trace allows the user lo find which seg-
ment of the program caused the error to occur. If the trace 1s not long
enough, we will simply set an earlier breakpoint.

sl —aw
ass[veiEe
oe
[l]
BOOISIEAR L
IMHRFIEY R
RETEQAFD oo
Dl ®
e
o8
Prinar
; LBUZGLR
DaVER or
s uLaice
e SYSIW
pEvIR WO SBAC
anDSAlu
CALENIF usLe
Do FADGRAM
(LU] uste
SHIRPALIER VEYLPACE
unEty
Bl
HEUIHTARY
CLAWTHR
Lirsrritany
fogy

Fig. 10.2: A Typical Memory Map

This rcompletes our description of the usual sequence of events in-
volved in developing a program. Lel us now review the hardware aler-
natives available for developing programs.

586

PROGRAM DEVELOPMENT

HARDWARE ALTERNATIVES
Single-Board Microcomputer

The single-board microcomputer offers the lowest cost approach to
program development. It 1s normally equipped with a hexadecimal key-
board, plus some function keys, plus 6 LED's which can display ad-
dress and data. Since it is equipped with a small amount of memory, an
assembler is not usually available. At best, it has a small monitor and
virtually no editing or debugging facilities, except for a very few com-
mands. All programs must, therefore, be entered 1n hexadecimal form.
They will also be displayed in hexadecimal form on the LED’s. A sin-
gle-board microcomputer has, in theory, the same hardware power as
any other computer. Simply because of its restricted memory size and
keyboard, it does not support all the usual facilities of a [arger system
and makes program development much longer. Because 1t is tedious to
develop programs in hexadecimal format, a single beard microcom-
puter 15 best suited for education and training where programs of {im-
ited length have to be developed and their short length 1s not an obstacie
to programming. Single-boards are probably the cheapest way to learn
programming by doing. However, they cannot be used for complex
program development uniess additional memory boards are attached
and the usual software aids are made available.

The Development System

A development system 15 a microcompuler system equipped with a
significant amount of RAM memory (32K, 48K) as well as the required
input/output devices, such as a CRT display, a printer, disks, and, usu-
ally, a PROM programmer, as well as, perhaps, an in-circuit emuiator.
A development system is specifically designed to facilitate program
development in an industral environment. It normally offers all, or
most, of the software facilities that we have mentioned in the preceding
section. In principle, it 15 the ideal software development tool.

The fimitation of a microcomputer development system is that it may
not be capable of supporting a compiler or an interpreter. This is be-
cause a compiler typically requires a very large amount of memory,
often more than is available on the system. However, for developing
programs in assembly-level language, 1t offers all the required facilities.
But because development systems sell in relatively small numbers com-
pared to hobby computers, their cost is significantly higher.

587

PROGRAMMING THE Z80

Hobby-Type Microcompulters

The hobby-type microcomputer hardware 1s naturally exactly analo-
gous to that of a development system. The main difference lies in the
fact that i1t 1s normally not equipped with the sophisticated software
development aids which are available on an industrial development sys-
tem. As an example, many hobby-type microcomputers offer only cle-
mentary assemblers, minimal editars, minimal file systems, no lacilities
to altach a PROM programmer, no in-ctrcuit emulator, no powerful
debugger. They represent, therefore, an intermediate step between the
single-board microcomputer and the full microprocessor development
system. For a user who wishes lo develop programs of modest complex-
ity, they are probably the best compromuise, since they offer the advan-
tage of low cost and a reasonable array ol software development tools,
even though they are quite limited as to their convenience.

Time-Sharing System

It 15 possible to rent terminals from several compames which will con-
nect to ume-sharing networks. These terminals share the time of the
larger computer and benefit [rom all the advantages of large insialla-
tions. Cross assemblers are available for all microcomputers on vir-
tually all commercial time-sharing syslems. A cross assembler 1s simply
an assembler for, say, a Z80 which resides, for example, in an [BM370.
Formally, a cross assembler is an assembler lor microprocessor X,
which resides on processor Y. The nature of the compulter being used 1s
irrelevant. The user still writes a program in Z80 assembly-level lan-
guage, and the cross assembler translates 1t into the appropriate binary
patiern. The difference, however, 1s that the program cannot be ex-
ecuted at this point. [t can be executed by a simulated processor, if one
is available, provided it does not use any input/ouinput resources. This
solution 1s used, therefore, only in industrial environments.

In-House Computer

Whenever a large in-house comnputer 1s available, cross assemblers
may also be available to facilitale program development. If such a com-
puter offers tme-shared service, this option 15 essentially analogous to
the one above. Il it ofTers only batch service, this 1s probably one of the
most inconvenient methods of program development, since submitting
programs in batch made at the assembly level for a microprocessor re-
sults 1n a very long development time,

588

PROGRAM DEVELOPMENT

Front Panel or No Front Panel?

The front panel 15 a hardware accessory often used to facilitate pro-
gram debugging. It has traditionally been a tool for conveniently dis-
playing the binary contents of a register or of memory. However, all the
functions of the control panel may be accomplished from a terminal,
and the dominance of CRT displays now offers a service almost equiva-
lent to the control panel by displaying the binary value of bits. The ad-
ditional advantage of using the CRT display 15 that one can switch at
will from binary representation to hexadecimal, to symbolic, to decimal
(if the appropriate conversion routines are available, naturally). The
disadvaniage of the CRT is that one must hit several keys 10 obtain the
appropriate display rather than turn a knob. However, since the cost of
providing a controt panel 15 quite substannal, most recent microcom-
puters have abandoned this debugging tool. The value of the control
panel 15 often considered more on the basis of emotional arguments 1n-
fluenced by one's own past experience than by the use of reason. It is
not ndispensable.

Summary of Hardware Resources

Three broad cases may be distinguished. If you have only a minimal
budget and if you wish to learn how to program, buy a single-board
microcomputer. Using it, you will be able to develop all the simple pro-
grams 11 this book and many more. Eventually, however, when you
want to develop programs of more than a few hundred instructions,
you will feel the limstations of this approach.

If you are an industrial user, you will need a full development system.
Any solution short of the full development system will cause a signifi-
cantly longer development time. The trade-off is clear: hardware re-
sources vs. programming time. Naturally, if the programs to be devel-
oped are quite simple, a less expensive approach may be used. How-
ever, if complex programs are to be developed, it is difficult to justify
any hardware savings when buying a development system, since the
programming costs will be by far the dominant cost of the project.

For a personal computerist, a hobby-type microcomputer will typi-
cally offer sufficient, although mimmal, facilities. Good development
software is still to come for many of the hobby computers. The user will
have to evaluate his system in view of the comments presented in this
chapter,

Let us now analyze in more detail the most indispensable resource:
the assembler.

589

PROGRAMMING THE Z80

THE ASSEMBLER

We have used assembly-level language throughourt this book without
presenting the formal syntax or defimtion ol assembly-level language.
The time has come to present this delimition. An assembler is designed
to allow the convenient symbolic representatton of the user program,
and yet to make it sumple far the assembler program Lo convert these
mnemaoncs (nto their binary representation.

Assembler Fields

When typing 1n a program for the assembler, we have seen that fields
are used. They are:

The label field, optional, which may contain a symbolic address for
the instruction that follows.

The mstriiction field, which includes the opcode and any operands.
(A separate operand field may be distinguished.)

The comment field, far Lo Lhe night, which 1s optional and s intended
to clarify the program.

These fields are shown on the programmung form in Figure 10.3.

Once the program has been fed to the assembler, the assembler will
produce a listing of 11, When generauing a listing, the assembler will
provide three additional fields, usually on the left of the page. An ex-
ample appears on Figure 10.4. On the far left 15 the line number. Each
line which has been typed by the programmer 1s assigned a symbalic line
number.

The next field to the right 1s the aclual address field, which shows in
hexadectmal the value of the program counter which will point to that
mstruction.

Moving still further to the nght, we find the hexadecimal representa-
tion of the mstruction.

This shows one of the possible uses of an assembler. Even if we are
designing programs for a single-board microcomputer which accepts
only hexadecimal, we should still write the program in assembly-level
fanguage, providing we have access 1o a system equipped with an as-
sembler. We can then run the programs on the system, using the assem-
bler. The assembler will automatically generate the correct hexadecimal
codes on our system. This shows, 1n a simple example, the value of ad-
ditional soflware resources.

590

PROGRAM DEVELOPMENT

COMMENTS

OPERAND

SYMBOLIC
OPCODE

LABEL

HEX
INSTRUCTION

1

ADDRESS

Fig. 10.3: Microprocessor Programming Form

591

PROGRAMMING THE Z80

Tables

When the assembler translates the symbolic program into its binary
representation, it performs two essential tasks:

1—It translates the mnemonic nstructions into their binary en-
coding,

2—1It transiates the symbols used for constants and addresses inta
their binary representation.

In order to facilitate program debugging, the assembier shows at the
end of the [isting the equivalence between the symbol used and its hexa-
decimal value. This is called the symbol table.

Some symbol tables will not only list the symbal and its value, but
also the line numbers where the symbol occurs, thereby providing an
additional facility.

Error Messages

During the assembly process, the assembler will detect syntax errors
and include them as part of the final listing. Typical diagnostics in-
clude: undefined symbals, label already defined, illegal opcode, illegal
address, illegal addressing mode. Many more detailed diagnostics are
naturally desirable and are usually provided. They vary with each as-
sembler.

The Assembly Language

Opcodes have already been defined. We will here define the symbols,
constants and operators which may be used as part of the assembler
syntax.

Symbols

Symbols are used to represent numerical values, either data or ad-
dresses. Symbols may include up to six characters, and must start with
an alphabetical character. The characters are restricted to ietters of the
aiphabet and numbers. Also, the user may not choose names identical
to the opcodes utilized by the Z80, the names of registers such as A,B,
C.D.EH,L, BC, DE, HL, AF, BC, DE, IX, lY, SP, as well as the
various short names used as pseudo-operators by the assembler. The
names of these assembler “‘directives’ are listed below in the corre-
sponding sections. Also, the abbreviations used to designate the fags
should not be used as symbols: C.Z,N,PE,NC.P.PO,NZ M.

592

PROGRAM DEVELOPMENT

Assigning a Value to a Symbol

Labels are spectal symbols whose values do not need to be defined by
the programmer. The value will automatically be defined by the assem-
bler program whenever 1t finds that label. The label value thus auto-
matically corresponds to the address of the instruction generated at the
line where it appears. Special pseudo-instructions are availabie to force
a new starting value for labels, or to assign them a specific value,

CHINHE FIE ST0 05 MM EE or Lpane)15 rahey o amed

W0 noer L4 B “rhepug

[2] annld mERAb I, DIU0M

02000 FUD3 BIhiage L fild 1]

fpna aBid BESAN i St

Y .

GG ChHakage? A HIAUR A Y ML Stabh MR S eTE rEEe tdar 0
t104 DA0N oz (X0) LT} SMOLG O MEY eIt
2108 EPLRO2ON 000N L s LMD Y JCIAR MUELEL ICARe Qe]
o106 1600 o007 Ll nel ALLAL o
nac ieoun I (X0 ineo FRE I AEE T TN 1
AHIAF R DTN, N nlie t UMby b s HLIER WL dertlE kR Y
LARN S - ot).! Ji HE » B llw! CokkY
oLy v L 3 abh 1 e bk daib btk 1 KESIN e
Med Chelt a4 tinbib G.A : SUNEEL Al LER
LTI PN L) i ool sL " P H)
CIRLI 8 N IPN (XN " it IR AN FR S
EIS R] g 0 13T N Y "
DUIL S i L [N RF Y (ERTE S
ANIF e LR Lo
[ITI N I

Fig. 10.4: Assembler Qutput—An Example

593

PROGRAMMING THE Z80

However, other symbols used for constants or memory addresses
must be defined by the programmer prior to their use.

A special assembler directive may be used to assign a value to any
symbol. A directive is essentially an instruction to the assembler which
will not be translated into an executable statement. For example, the
constant LOG will be defined as:

LOG DFW 3002H

This assigns the value 3002 hexadecimal to the variable LOG. The
assembler directives will be examined 1n detail in a [ater section.

Constants or Literals

Constants may traditionally be expressed either in decimal, in hexa-
decimal, in octal, or in binary, or as alphanumeric strings. In order to
differentiate between the base used to represent the number, a symbol
must be used. To load *‘0'* into the accumulator, we will simply write:

LD A0

Optionally a **D** may be used at.the end of the constant.
A hexadecimal number will be terminated by the symbol “H". To
load the value **FF'* into the accumulator, we will write:

LD A, OFFH

An octal symbol is terminated by the symbol ““0"" or “*Q"". A binary
symbol is terminated by "“B".

For example, in order to [oad the value *'11111111"" into the accumu-
[ator, we will write:

LD A, 11l11[[1B

Literal ASCII characters may also be used in the literal field. The
ASCH symbol must be enclosed in single quotes.

For example, in order to load the symbol *'S"" into the accumulator,
we will write:

LD A, 'S’

Exercise 10.1: Will the following two wnstructions {oad the saine value
in the accumulator: LD A, '5°, and LD A, 5H?

594

PROGRAM DEVELOPMENT

Note that in the Zilog convention, parentheses denote an address.
For example:

LD A, (I

specifies that the accumulator is loaded from the contents of memory
locauon 10 (decimal).

Operaiors

In order to further facilitate the writing of symbolic programs, as-
semblers allow the use of operators. At a mimmum, they shoutd allow
plus and minus so that one can specify, for example:

LD A, (ADDRESS)
LD A, (ADDRESS +1)

1t 1s important to understand that the expression ADDRESS + [will
be computed by the assembler in order to determine the actual memory
address which must be inserted as the binary equivalent. 1t will be com-
puted at assembly tinie, not al program-execution ume.

[n addition, more operators may be available, such as multiply and
divide, a convenience when accessing tables in memory. More special-
ized operalors may be also available, such as greater than and less
than, which truncate a two-byte value respectively into its high and iow
byte.

Naturally, an expression must evafuate to a posttive value. Negative
numbers may normally not be used and should be expressed in a hexa-
decimal format.

Finaily, a special symbol 15 traditionaily used to represent the current
value of the address of the line: **$'"'. This symbol should be interpreted
as "current location” (value of PC).

Exercise 10.2: What is the difference between the following instruc-
tions?

LD A, 10101010B
LD A, (10101010B)

Exercise 10.3: What is the effect of the followwng nstruction?

JR NC,§ -2

Expressions

The Z80 assembler specifications allow a wide range of expressions

595

PROGRAMMING THE Z80

with arithmetic and logical operations. The assembler will evaluate the
expressions in a left-to-right manner, using the priorities specified by
the table in Figure 10.5. Parentheses may be usedto enforce a specific
order of evaluation. However, the outermosl parentheses will denote
that the contents are to be treated as an address.

Assembler Directives

Directives are special orders given by the programmer to the assem-
bler, which result erther 1n storing values into symbols or into the mem-
ory, or in controlling the execution or printing modes of the assembler.
The set of commands which specifically controls the printing modes of
the assembler 1s also called ‘‘commands’’ and 1s described in a separate

section.
To provide a specific example, let us review here the 11 assembler

directives available on the Zilog development system:

ORG nn

This directive will set the assembler address counter (o the value nn. In
other words, the first executable instruction encountered after this
directive will reside at the value nn. It can be used to locate different
segments of a program at different memory locations.

EQU nn
This directive is used to assign a value to a label.
DEFL nn

This directive also assigns a value nn to a label, but may be repeated
within the program with different values for the same label, whereas
EQU may be used only once.

DEFB 'S’

This directive assigns eight-bitl contents to a byte residing at the current
reference counter.

DEFB 'S’
assigns the ASCII value of *'S"’ to the byte.
DEFW nn

This assigns the value nn to the two-byte ward residing at the current
reference counter and the following location.

596

PROGRAM DEVELOPMENT

OPERATOR FUNCTION PRIORITY
+ UNARY PLUS |
- UNARY MINUS |
NQT. or \ LOGICAL NOT |
.RES. RESULT |
b EXPONENTIATION 2
. MULTIPLICATION]
4 DIVISION 3
.MOD, MODULO 3
.SHR. LOGICAL SHIFT RIGHT 3
JSHL. LOGICAL SHIFT LEFT 3
+ ADDITION 4
- SUBTRACTION 4
AND. or & LOGICAL AND 5
.OR. or i LOGICALOR]
XOR. LOGICAL XOR -]
EQor = EQUALS 7
GT.er > (GREATER THAN 7
AT or ¢ LESS THAN 7
UGT. UNSIGNED GREATER THAN 7
JULT. UNSIGMNED LESS THAN 7

Fig. 10.5: Operator Precedence
DEFS nn

reserves a block of memery size nn bytes, starting at the current value
of the reference counter.

DEFM ‘8§’

stores mto memory the string ‘S’ starting at the current reference coun-
ter. It must be less than 63 in length,

MACRC PO PI...Pn

15 used to define a label as a macro, and to define its formal parameter
list. Macros are defined in another section below.

END

indicates the end of the program. Any other statements following it will
be ignored.

ENDM

is used to mark the end of a macro definition.

591

PROGRAMMING THE ZB0

Assembler Commands

Commands are used to modify the format of the listing to control the
printing modes of the assembler. All commands start with a star i1n col-
umn one. Seven commands are provided by the Z80 assembler. Typical

examples are:
EJECT

which causes the listing to move to the top of the next page; and

LIST OFF

which causes the printing to be suspended, effective with this com-
mand. The others are: ““*HEADING S, *"*LIST ON"', ““*MACLIST
ON", '"*MACLIST OFF”, “*INCLUDE FILENAME".

Macros

A macro 15 simply a name assigned to a group of instructions. It 1s a
convenience to the programmer. If a group of istructions s used sev-
eral times 1n a program, we could define a macro to represent them, in-
stead of always having to write this group of mnstructions.

As an example, we could write:

SAVREG MACRO
PUSH AF

PUSH BC
PUSH DE
PUSH HL
ENDM

then simply write the name “*SAVYREG”' instead of the above instruc-
tions. Any time that we write SAVREGQG, the five corresponding lines
will get substituted instead of the name. An assembler equipped with a
macro facility is called a macro-assembler. When the macro assembler
encounters a SAVREG, 1t performs a mere physical substitution of
equivalent lines.

Macro or Subroutine?

At this point, a macro may seem to operale in a way analogous to a
subroutine. This 1s not the case. When the assembler 1s used to produce
the object code, any time that a macro name is encountered, it will be
replaced by the actual instructions that it stands for. At execution time,
the group of instructions will appear as many times as the name of the
macro did.

598

PROGRAM DEVELOPMENT

By contrast, a subroutine is defined only once, and then it can be
used repeatedly; the program will jump to the subroutine address. A
macro is called an assembly-time facility. A subroutine is an execution-
ime facility. Their operatron 1s quite different.

Macro Parameters

Each macro may be equipped with a number of parameters. As an
example, let us consider the following macro:

SWAP MACRO #M, AN, AT

LD A, M MINTO A
LD #T, A tAINTOT (=M)
LD A, N i NINTO A
LD M, A AINTOM(=N)
LD A, #T : TINTO A
LD #N, A AINTON(=T

END M

This macro will result in swapping (exchanging) the contents of mem-
ory locations M and N. A swap between two registers, or two memory
locations, 1s an operation which 15 not provided by the Z80. A macro
may be used to implement it. **T' in this instance is simply the name
for atemporary storage location required by the program. As an exam-
ple, let us swap the contents of memory locations ALPHA and BETA.
The instruction which does this appears below:

SWAP (ALPHA), (BETA), {TEMP)

In this instruction, TEMP is the name of some temporary storage
location, which we know to be available and which can be used by the
macro. The resulting expansion of the macro appears below:

LD A.{ALPHA)
LD (TEMP), A
LD A, (BETA)
LD (ALPHA), A
LD A, (TEMP)
LD (BETA), A

The value of a macro shouid now be apparent: it 1s convenient for the
programmer to use pseudo-instructions, which have been defined with
macros. In this way, the apparent instruction set of the Z80 can be ex-
panded at will. Unfortunately, one must bear in mind that each macro

599

PROGRAMMING THE Z80

directive will expand tnto whatever number of instructtons were used. A
macro will, therefore, run more slowly than any single instruction. Be-
cause of its convenience for the development of any long program, a
macro facitity 1s highly desirable for such applications.

Additional Macro Facilities

Many other directives and syntactic facilities may be added to a sim-
ple macro facility; macros may be nested, i.e., a macro call may appear
within a macro defimtion. Using this facitity, a macro may modify t-
self with a nested definition! A first call will produce one expansion,
whereas subsequent calls will produce a modified expansion of the same
macro. This is aliowed by the Z80 assembler, but nested definitions are
not atlowed.

CONDITIONAL ASSEMBLY

Conditional assembly is another facility provided in the Z80 assem-
bly. With a conditiona! assembly facility, the programmer can devise
programs for a variety of cases, and then conditionally assemble the
segments of codes required by a specific application. As an example, an
industrial user might design programs to take care of any number of
traffic lights at an intersection, for a variety of control algorithms. He
will then receive the specifications from the local traffic engineer, who
specifies how many traffic lights there should be and which algorithms
should be used. The programmer will then simply set parameters in his
program and assemble conditionally. The conditional assembly will
result in a *‘customized’’ program which will retain only those routines
which are necessary for the solution to the prablem.

Conditional assembly s, therefore, of specific value to industrial
program generation in an environment where many options exist and
where the programmer wishes to assemble portions of programs quick-
ly and automatically in response to external parameters,

Only two conditional pseudo-OPs are provided in the standard
micro-assembler version supplied by Zitog. They are respectively:

COND NN and ENDC

where NN represents an expression. The pseudo-OP *“COND NN witl
result in the evaluation of the expression NN. As long as the expression
evaluates to a true value {non-zero), the statement foltowing the COND
will be assembled. However, if the expression should be false, i.e., eval-

600

PROGRAM DEVELOPMENT

uate 10 a zero value, the assembly of all subsequent statements will be
disabled up to the ENDC instruction,

ENDC 15 used to ternunate a COND, so that the assembly of subse-
quent statements s re-enabled. The COND pseudo-OP’s cannot be
nested.

[n theory, more powertul conditional assembly facilities could exist,
with "[F'" and ““ELSE"’ specification. They may become available 1n
future versions ot the assembier.

SUMMARY

This chapter has presented the techniques and the hardware and sofl-
ware Lools required to develop a program, along with the various trade-
offs and allernanives.

These range at the hardware level from the single-board microcom-
puter Lo the full development system; al the software level, from binary
coding to high-level programming.

You will have to select them on the basis of your goals and resources.

601

CHAPTER 11

CONCLUSION

We have now covered all important aspects of programming, from
definitions and basic concepts to the internal manipulation of the Z80
registers, to the management of input/output devices, as well as the
characteristics of software development aids. What is the next step?
Two views can be offered, the first one relating to the development of
technology, the second one relating to the development of your own
knowledge and skill. Let us address these two points.

TECHNOLOGICAL DEVELOPMENT

The progress of integration in MOS technology makes it possible to
implement more and more complex chips. The cost of implementing the
processor function itself is constantly decreasing. The result is that
many of the input/output chips or the peripheral-controller chips used
In a system now incorporate a simple processor. This means that most
LSI chips in the system are becoming programmable. An interesting
conceptual dilemma is now developing. In order to simplify the soft-
ware design task, as well as to reduce the component count, the new
1/0 chips now incorporate sophisticated programmabie capabilities:
many programmed algorithms are now integrated within the chip.
However, as a result, the development of programs 1s complicated by
the fact that all these input/output chips are radically different and
need to be studied in detail by the programmer! Programming the
system is no longer prograrnming the microprocessor alone, but also
programming all the other chips attached (o it. The learning time for
every chip can be significant.

Naturally, this is only an apparent dilemma, If these chips were not
available, the complexity of the interface to be realized, as well as of the
corresponding programs, would be still greater. The new complexity
that is introduced is the need to program more than just a processor,

602

CONCLUSION

and to learn the various features of the differentchips in a system. How-
ever, it is hoped that the techniques and concepts presented in this book
will make this a reasonably easy task,

THE NEXT STEP

You have now learned the basic techniques required to program sim-
ple applications on paper. That was the goal of this book, The next step
is actual practice for which there is no substitute, It is impossible to learn
programming completely on paper; experience is required. You should
now be 1n a position to start writing your own programs. It is hoped
that this journey will be a pleasant one,

603

APPENDIX A

HEXADECIMAL CONVERSION TABLE

WEX | o 1 =2 3 + 5 6 7 8 9% A P C 0D E E oo | 000 |
[1] p + 2 31 4 5 & F B 9w n 12 dow NG [4
1 6 17 18 19 20 21 22 23 24 25 26 27 2 29 10 M 256 | 4095
2 42 33 34 35 36 37 38 39 40 41 42 4] 44 35 95 47 nz 8152
3 48 49 50 5 52 53 54 55 56 57 53 59 60 &1 62 63 768 | 12208
4 G: 65 GG 67 68 63 70 71 72 7} 74 75 6 77 TH 79 1024 | 15384
3 B) 61 82 83 B B5 BS 87 BB BY DD U1 92 93 94 95 1280 | 20480
6 g6 97 9B 9§99 100 01 102 103 04 105 106 107 10B 109 110 M 1536 | 24576
7 112 113 14 115 16 117 118 U9 120 121 122 120 123 125 126 127 1792 | 28672
8 128 729 130 131 132 133 132 135 136 137 138 139 190 14 W2 143 2048 | 32768
] 144 145 W6 147 148 149 150 151 152 153 154 155 56 157 158 153 2302 | 36864
A 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 17 2560 | 40960
B | tr6 177 178 179 180 181 13z 183 184 185 186 A7 188 189 190 M 206 | 45056
c | 19z 193 194 195 196 197 196 199 200 200 202 203 204 205 206 207 3072 | 9152
D 208 209 210 211 212 23] 214 215 16 17 218 218 220 21 222 223 3328 | 53248
E | 224 225 226 227 228 229 230 231 232 233 214 235 236 217 238 219 3584 | 57348
F | 240 24y 242 243 239 245 246 247 248 249 250 251 252 253 253 255 3B40 | 61440
5 4 3 2 { 0
Hex] pec [mex| oec [mex| oec [mex| oec fmex| pec [mex| oec
o) o ¢ o] O ol 0 0j 0 0] O o)
| 1,048B,576] 1 65,538] | 4,098] 1 2561 | 16 I 1
2 20971521 2 i31,072] 2 B.192} 2 512 2 32| 2 2
3 3,145728] 3 196,608 3 12,288} 3 768 | 3 48§ 3 3
4 4,194,304} 4 262,144 4 16,384] 4 1,024 4 td | 4 4
5 5242,880] 5 327,680 5 20,480 5 1,280] 5 80| 5 5
& 65.291,456| &6 393.216| & 24.576) 6 1,536 & 96 <] [}
7 7,340,032] 7 458,752 7 28472 7 1,792 7 12 7 7
B B,388,608| B 524,2B8| B 32,74B| 8 20B| B iB| B B
9 9.437184] 9 589,824] 9 36,864| 9 2,304| @ 144 | @]
A 10,485760] A 6535360 A 40,960 A .560] A 160 | A 10
8 11,534,336 B 720,894 B 45054| B 2Bls| B 176 | 8 11
C 12,582,912] C 784,432] C 49,152 C 3072] C 192 | C 12
D 13,631,488] D B851,968] D 53,248] D 3,328 D 2081 D 13
E 14,680.064] E 917,504] E 57,344 E 3.584| E 224 E 14
F 157286401 F 983,040] F 61,440 F 3.B4D| F 240 | F 15

604

APPENDIX B

ASCII CONYERSION TABLE
HEX MSD 0 1 2 3 4 5 6 7
LSD BITS 000 0,0} 010 g11 100 101 110 111
0 0000 NUL DLE SPACE 0 @ P - p
1 0001 SOH DC1 ! 1 A Q a q
2 0010 5TX DC2 " 2 B R b r
3 0011 ETX DC3 # 3 c (S c s
4 0100 EOT DC4 3 4 D T d t
5 o1 ENQ NAK %o 5 E u e u
6 0110 ACK SYN & 6 F v f v
7 on BEL ETH ' 7 G w g w
a 1000 BS CAN (8 H X h X
g 1001 HT EM } 9 I Y i y
A 1010 LF s5uB -’ : Jd Z | z
8 101 v ESC + K [k {
c 1100 FF FS . < L A\ | -
D 1101 CR GS - = M] m |}
E 1110 S0 RS . > N A N .
F 1111 sl us / ? O «— o DEL
THE ASCII SYMBOLS
NUL —Nul DLE —Data Link Escapa
SOH —Strrt of Haading DC —Davice Control
STX —S5tart of Text NAK —Negalive Acknowlsdge
ETX —End of Text SYN - Synchronous Idie
EOT —End of Tranamiagign ETB —End of Tranamission Block
ENQ —Enqulry CAN —Cancel
ACK —Acknowledge EM —End of Madium
BEL. —Bal SUB —Substitute
BS —Backspacs ESC —Escaps
HT —Hsrizantal Tabulation FS —Flls Separator
LF —Llns Feed GS —Group Separator
VT —~Vertical Thbuiation AS —Record Sepsmtar
FF —Form Feed UsS —LUnit Sepamator
CR —Camiege Retumn SP —Spece (Blank)
50 ~Shift Out DEL -—Delute
51 ~Shiit In

605

FORWARD RELATIVE BRANCH TABLE

APPENDIX C

RELATIVE BRANCH TABLES

S ¢ 1 2 3 4+ 5 s 7 B % A B C D F
[E]
Q Q 1 2 k] 1 3 6 7 B % 10 1 12 13 e 15
1 te a7 18 19 20 21 22 23 29 35 w37 M ¥ 1o 3l
2 (32 33 31 35 H» 37 W 3w a0 Jl a2 43 a2 J5 s &F
3 K] 49 5 51 52 Lx} 54 55 6 57 58 50 -] &l a2 &3
1 | 62 65 wa 67 68 69 0 7I 72 73 M 15 & 17 1B 79
5 |81 Bl B2 81 B4 B A6 B? BE B9 %0 91 §2 93 94 95
& |96 %7 @8 %9 00 g1 102 103 103 105 10a 147 108 1G® Ti¢ 101
7 ol9I2 113 114 1S e 197 1A HI§ 920 121 122 423 1M 825 128 127
BACKWARD RELATIVEBRANCH TABLE
30 4} 1 2 b & 5 6 7 [] A 8 C a ¥ F
s 2
g liza 127 w3 128 124 1z 122 121 130 11 T8 117 e WIS 11a 113
e [z i 110 09 LGB 107 S04 105 104 03 102 QI 100 %9 98 97
A | % %5 94 93 92 o1 9 B9 B BY By B5 B4 B) 827 BI
B |B0 ™ v 7?2 ¥& 2 7123 72 T 70 & 6B & b4 b5
C |62 &1 2 o6 & 5 3B 57 S8 55 53 & 52 5 50 T4}
o | 48 a7 16 45 a4 Kk] 47 A1 40 39 38 37 b 35 kLl i)
VL 0 X 28 27 W 8 2w 2 22 2 I W9 1B 17
v 6 IS 14 53 12 1o 9 8 7] 3 4 3 2 1

606

APPENDIX D

DECIMAL TO BCD CONVERSION

DECIMAL BCD DEC BCD DEC BCD
o 0000 10 00010008 90 10010000
I 000 1 00010001 N 10010001
2 0010 12 00010010 92 10010010
a oon 12 00010011 93 10010011
4 0100 14 00410100 94 10010100
5 ¢ 15 00010101 95 10010101
6 o110 16 00010110 95 10010118
7 0141 17 0001011 a7 w0010
B 1000 18 Qoe11000 a8 10011600
] 1001 19 00011001 % 10011001

607

APPENDIX E

Z80 INSTRUCTION CODES
(The literal d is shown as 05 in the object code.)
oBJ SOURCE 0BJ SOURCE
CODE STATEMENT CODE STATEMENT
BE ADC A [HL) E620 AND n
ODREDS ADC AlX+d) CBag BIT 0,(HL]
FDBEOS ADC ASlY+d) DOCBO546 :[h 0,(EX+d}
aF ApC AA FOCBOS46 T 0,01Y+d}
aa ADC AB cpa?- BIT 0,A
89 ADC A cBad aiT 0.8
aA ADC AD cB41 8T 0c
88 ADC AE cB42 aT oD
ac ADC AH [of: Lk} :[ks 0.E
:1a] ADC AL CcHad BIT o.H
CE20 ADC An cB45 ar o.L
EDiaa ADC HL.8¢ caaE aT 1 {HLI
EDSA ADC HL,DE DOCBOS4E aT 1,01¢+d)
EOBA ADC HLHL FOCEOS4E -1k 1,01Y+d)
ED?7A ADC HL.5P CH4F aT 1A
85 ADD AHL) ca48 BIT 18
[o]al:[45] ADD A LI X+d}] £B4ag 8IT 1€
FDBG05 ADD ALY +d) Ca4A BT 1.0
87 ADD AR ca4g 8T 1.E
8D ADD Ag caac aT 1H
B1 ADD aC ca40 8IT 1L
82 ADD AD CBS6 BIT 2.IHL)
83 ADD AE DDCBOSS6 BIT 21X +d}
B4 ADD AH FOGCBO556 ;18 2.(1¥+d)
BS ADD AL cas? BIT 2,A
C620 ADD An cB50 aT 2.8
v] ADD HL.8C cas! :Ths 2C
19 ADD HL,DE GBE52 8T 2.0
29 ADD HL,HL [o:1°%] ar €
g ADD HL.5P casa 8T 2.H
(o041} ADD 1X,8C €855 aT 2L
Do18 ADD 1X.DE CBSE alT A.(HL
DO29 ADD XX DDGROSSE BT 3,(1X+d]
oo3s ADD 1%,5P FDCBOSSE aT 3,(0v+d)
FDO9 ADD 1v,8C casF T 3A
FD18 ADD 1¥,DE CBS8 arr 38
FO29 ADD IY,¥ ces9 T 3C
FD39 ADD 1Y 5P casA :1h D
AG AND fHL} case arT aE
DDAGDS AND {IX+d) ca5C a7 3H
FOABDS AND 1Y +d) [o: 1] ar 3L
A7 AND A CBE6 arr 4,(HL)
AD AND 8 DDC 80566 :[hg 4 l1X+d)
Al AND c FOCBDSE6 aT atiY+d)
A2 AND o] [o:]) aiT 4,A
A% AND E <860 aiT 4B
A4 AND H cas! aT ac
AS AND L cas2 BIT 4,0

608

APPENDIX

0BJ SOURCE QaBJ SOURCE
CODE STATEMENT CDDE STATEMENT
CB63 BIT 4E EDBt CPIR
CB64 BIT 4.H EDA1 CPI
CBES BIT 4L 2F cPL
CHEE BT 5,(HL} 7 DAA
ODCBOSGE BIT 5.41X+d) 35 DEC {HLI
FOCBOSEE BIT 5,11V +q} 003505 DEC Xl
CHEF BIT 5A FD3505 QEC (1Y +cl}
CBER BT 5.8 30 DEC A
cBEg aT 5.C 05 oEC 8
CBEA BIT 5D o8 DEC BC
case BIT SE E'g ggg ¢
CcB&C BIT 5H 18 DEC DE
CBSD BIT 5.L
1D DEC E
cB?§ :Ths 6.[HL) 25 DEC H
DDCBOS76 :[ks 6.11X+d) 38 DEC HL
FDCB0576 BIT 6.1Y+d)
ce77 BIT 6.A 0026 DEC X
FD28 DEC Y
ca70 BIT 6.8
20 DEC L
cart BIT 6.C 18 DEC F
ce72 BIT 6.0 F3 ol
CB73 BIT 6.E 102E DINZ It
cB74 BIT 6.H FB El
cB75 BIT 6.L E2 EX {SP1 HL
CB7E BIT 7AHLE ODE2 EX 15PY.1X
DDCBOSTE BIT 7.01X+d) FOE2 EX 5PLEY
FDCBOS7E BIT 7.00¥ rd) 08 EX AF AF'
CB7F BIT 7.A EB EX DEHL
cem BIT 7.8 Dg EXX
cB7a mT .c 76 HALT
CB7A BIT 7.0 ED4E 1] 0
CB78 1R TE EDS6 iM I
carc BIT 7H EDSE M 2
cato BIT 7L ED7B N Aicl
DCB405 caLL Con ED40 IN B.(C)
FCBA40S5 CALL Mon ED4B iN c.icl
D48405 CALL NConn EDSQ IN D.iC)
C4R8405 CALL MNZnn ED5B N E.AC)
F4B405 CALL Ponn EDGQ N H,I1C)
ECBA05 CALL PE nn EDE8 IN L.IC)
E4B405 CALL PO.nn 34 INC tHL)
cCB40s CALL Znn DD3405 NG {IX +d)
CDBA40s CALL nn FD3405 INC 1Y +d)
IF CCF 3c INC A
BE CP IHLE 04 INC B
ODBEQS cP X+ g} 03 INC 8C
FDBEDS cP (1Y v} oc INC c
BF cP A 14 ING o
BB ce B 13 iNC DE
Ba cP c c NG E
BA cp o 24 INC H
[:T:1 cP E 23 INC HL
BC cP H op23 INC 1%
8D cP L FD23 INC 17
FE20 cP n 2C INC L
E£DAY cPD 13 INC 5p
EDBY CPDR D820 IN Atnt

609

PROGRAMMING THE 280

oBRJ SOURCE oBJ SOURCE

CODE STATEMENT CODE STATEMENT
EDAA IND DOD7EQNS LD A1 X+d)
ECBA INDR FOTEDS LD Al1Y+d)
EDA2 INI 3ABAOS LD A.fnn)
EDB2 INIR 7F Lo AR
€38a0s 1P an 78 LD AB
£9 » IHLI 79 Lo agc
0DEY P axy 74 LD AD
FDES P 0yl 78 LD AE
DABA4CS 1P Con 7C LD AH
F ABAOS i1 M.an ED57 L0 Al
D28A05 P NC.nn 70 LD AL
C2B405 P NZ,nn 3E20 LD An
F28405 i’ F.nn EDSF LD AR
EABADS IP PE.nn a6 LD B.(HL)
E28405 JP PO.nn DO460S LD B.{1X+d)
CABADS it Z.nn FDA4605 LD B,(1¥+d)
3B2E A c.u 47 Lo 8.A
302E IR NC 40 LD B.B
202E IR NZ & 4t LD BC
28ZE R 2e 42 L0 B.O
182E i o ik 43 LD B.E
[br] LD 18C).A a4 LD 8.H
12 LD {DELA 45 Lo B.L
77) (HLLA 0520 Lo B.n
70 LD (HLI.B ED48B40S LD BC,Inn}
7 LD HLL.C 018405 LD BC,nn
72 LD {ML),D qE LD C.[HL)
71 LD HLLE DD4EDS LD CliX+d)
74 Lo [HLIH FD4EQDS LD C,lY+d)
75 LD tHLIL 4F LD C.A
3620 Lo [HLl.n 48 LD C.B
DO7705 LD [IX+d) A 49 LD c.c
DO7005% LD [IX+d],B 4A Lo c,0
DD7105 LD [1X+d],C 4B L0 C.E
DD7205 LD {1%+d],D ac L C.H
007305 LD {1X+d E 40 LG c.L
DD7406 LD {IX+d] H QEZD Lo c.n
DO7505 Lo (I1X+d),L 56 L0 O.lHL)
DO360520 LD {I1X+d] n 005605 LD D.ilX+d)
FD7705 LD EY+dlA FD5605 Lo o,l1¥+d]
FD7005 LD l1Y+dl.B 57 Lo DA
FD7105 L0 {Iy+d) C 50 LD D.B
FD7205 LD {1¥+d].D 51 LO o.C
FD7305 LD (ysdLE 52 LD 0.0
FD7405 LD (1Y +dl 4 53 LD D.E
FO7505 LD [y +d),L 54 LD DM
FO360520 LD {1¥+d},n 55 LD D.L
328405 LD {nn}, A 1620 LD D.n
EN43B405 LD tnn} BC EDSBB40S Lo DE, [an]
ED53B405 LD lan) DE 118405 Lo OE nn
22B405 Lo Inn) HL SE LD E.{HLI
DD228405 LD Inn) IX DD5EDS LD E{1X+d]
FO228405 LD (ol FY FDSEQS LD E (1Y +d)
ED738405 LD {nn) 5P 5F LD E.A
0A LD A lBC) 58 LD E.B
tA LD A IDE] 59 Lb E.C
7E LD A (HLY 5 LD ED

610

APPENDIX

OBJ SOURCE 0BJ SOURCE

CODE STATEMENT CODE STATEMENT
5B LD E.E EDE3 OTIR
5C LD EH ED79 puTt (clA
50 LD E.L £D41 auT c1.B
1E20 LD E.n ED43 ouT cle
&5 LD HIHL} EDS1 ouT iCclo
DDGEOS LD H{1X+d) ED59 ouT (CLE
FDEEDS LD H.OY+d) EDE1 ouUT (ELH
&7 LD H.A ED&9 ouT {Cl.L
&0 LD H.B D320 out In}.A
&1 Lo HC EDAB ouTD
62 LD H.D EDA3 OuUTI
63 LD H.E F1 POP AF
&4 Lo HH a POP BC
&5 LD HL o1 POP DE
2620 LD H.n £l POP HL
2a8405 LD HL [an] GOET POP 1%
218405 LD HL,nn FDET POP kg
EDA? LD 1A Fs PUSH AF
DD2AB40S LD 1X tnn] c5 PUSH BC
DD218405 LD 1X,an 05 PUSH DE
FD2ABA0S Lo 1¥,{nn) E5 PUSH HL
FD218405 LD 1¥.nn DDES PUSH IX
&GE LD L.(HL} FDES PUSH Iy
DDGEDS LD L{iX+d) CBRBG RES 0,41
FDGEDS LD LilY+d) DDCBOSES RES D.{1X+d]
&F LD LA FDCBOS86 RES 0.01Y+a)
&8 Lo LB cBB7 RES 0.A
&9 LD LC cBHD RES 0.8
GA LO L.D caBT RES ac
68 Lo LE cBB2 RES 0.0
&C Lo L.H CBB3 RES 0.E
60 LD LL cBBa RES 0.H
2E20 Lo L. CBBS RES oL
EQ4F LD R.A CBBE RES 1(HL}
ED7BB40S Lo 50,(nn} DDCBOSEE RES 1HXrd)
Fg Lo SPHL FDCBOSBE RES 1,01Y+d)
DOFg LD SP.IX CBBF RES 1A
FDFg LD SPIY CEEB RES i.8
318405 LD 5P.nn CHBY RES ic
EQAB LDD CBEA RES Lo
EDBBE LODR cegs RES ILE
Eoa L CBEC RES IH
EDa4 NEG CBBD RES 1L
00 NGP CBY6 RES 2 tHL
BE oR ML) 0DCBO596 RES 2{iX+d)
QDBEQS oR (X) FDCBOS96 RES 2,11Y+di
FDB50S DR Y ed} cBY? RES 2.4
B7 OR A CB30 RES 2.8
B0 oR B cagr RES 2c
a1 DR c cHeo2 RES 2.0
Bz oR o cB93 RES 2.E
B3 OR E cBg4 RES 2H
B4 DA H CB95 RES 2L
85 DA L CBgE AES 3,(HL)
620 OR n DDCHOS3E RES 341X +d)
EDBB OTOR FOCBOS9E RES 3.01Yeeh

611

PROGRAMMING THE Z80

o8J SOURCE oBJ SOURCE

CODE STATEMENT CODE STATEMENT
CBIF RES 1A EDaD RETI
CB9B RES a8 ED4S RETN
cB39 RES ac CB16 AL {HL)
CB9A RES an DDCBOS16 AL (I1X+d)
CBO9B RES 3.E FDCBO516 AL {1y+dh
[::1e RES aH CB17 AL A
CBYD RES L CB10 AL a
CBAG RES 4 [HL) CB11 AL C
ODCBOSAE RES 4.{1%+d) cB12 RL D
FDCROSAG RES a{1Y+d} c813 RL E
cBA? RES a,A cela RL H
CBAD RES 4B CB15 RL L
cBAl RES ac 17 ALA
CBAZ RES 4.0 CHOE RLC HL)
CBA3 RES 4.E DDCBOS06 ALC (1% +d}
cRA4 RES aH FDCBO508 RLC (1Y+d)
CBAS RES aL CRO? RLC A
CBAE RES 5,(HL} CBOC RLC B
DDCBOSAE RES 5.1 X+d) ceot RLC c
FDCBOSAE RES 5,(1Y+d] cBO2 RLC D
CBAF RES 5.4 CBO3 RLC E
CBAB RES 5.8 cao4 RLC H
CBAY RES 5.C CBOS RLC L
CBAA RES 5D 07 RLCA
CBAB RES 5,E EDEF RLD
CBAC RES 5,H CBIE RR (HL)
CBAD RES 5L DDCBOS1E RR {1 %+d)
caaé RES B.(HL} FOCBOS1E AR (1Y +d)
DDCBOSBS RES B.LIX+d) CBIF AR A
FDCBOSBE RES B,([Y+d) cB18 RA 8
cea? RES 6.A cs19 RR C
CHBO0 RES 6.B CB1A AR D
cpa1 RES B.C CB1B RR E
CBB2 AES 6D CBIC RR H
cena RES B.E sg‘ D ::A L
cans Res B cBoe RRC (ML)
CHEE RES 2 HLY DDCHOS0E ARC X +d)
DDCEOSEE RES 71Xl FDCBOS0E RRC Y +d)
FOCBOSBE AES 7(1Y+a) cace ARG B
caar RES 14 cBog ARRC C
caab AES 8 CB0A ARAC D
cass AES e CBOB RRC E
CBBA RES 1.0 cBoC ARG M
cass RES 7E CHOD RRC L
Casc RES 7.H DF ARCA
CBBD RES 7.L EDB? RAD
& RET c7 RST DM
o8 RET c CF R5T DBH
Fa RET M D7 AST 10M
Do RET NC DF AST 1BH
co RET NZ £7 AST 204
Fo RET P EF AST 2BH
EB AET PE F7 AsT 304
E0 RET PO EF s 28H
CB RET z DE20 SBC An

612

APPENDIX

oeJ SOURCE ORBJ SOURCE
CODE STATEMENT COOE STATEMENT
€ SBC A (ML) DDCBOSES SET a{1%+d]
DDYEDS SBC Af1X+d) FDOCHOSEE SET 4,(1¥+d)
FD9EDS sBc ALY +d) CBE7 SET aA
SF sBc AA CBED SET 4B
88 5BC AB CBE| SET aC
ag sBC ac €BE2 SET 4D
9a 5BC aD CBE3 SET aE
98 SBC AE CBE4 SET aH
8¢ SBC AH CRES SET aL
a0 5BC AL CBEE SET 5.(HL)
ED42 SAC HL BC DDCHOSEE SET 5{1X+d)
ED52 SBC HL.DE FOCHOSEE SET 5,[1¥ +d)
EDE2 SBC HLHL CBEF SET 5.4
ED72 sBC HL.5P CBEB SET 5.8
37 SCF caEsg SET 5C
CHCE SET D.IHL) CHEA SET 5D
DOCBOSCE SET 011K +d} CBE@ SET 5E
FDCHOSC6 SET 0,i1Y +d) cREC SET 5.H
cec? SET 0.A CEED SET 5.1
caco SET 0B CBF6 SET B.(HL)
cBc sET DC DOCBOSFE SET 6.(1Xsd)
chca SET 0.0 FOCBOSFE6 SET G(1¥+dl
CcBCa SET OE caF? SET 6.A
CBca SET oM CBFO SET 6.8
cacs SET o.L caF SET s
CBCE SET 1ML CBF3 cET g
DDCBOSCE SET LiLX+d) caF1 SET 8E
FDCBOSCE SET 1,11 ¥ +d) CBFq SET 6.H
cack SET A CBFS SET 6L
CBcB SET 1B CBFE SET 7.0HU
cace SET wC DOCBOSFE SET 7,(1X+d]
CBCA SET t.0 FOCBOSFE SET LU Y+d)
cach SET LE CRFF SET 7.
cecc SET IH CBFA SET 7B
caco SeET L CBFS SET 7€
CBD6 SET 2. HL) CBFA SET 7D
DOCBOSD6 SET 211X +d) CHFB SET 7,E
FDCHOSDE SET 201¥ +d} carFc SET T
cap? SET 2.4 CBFD SET 7L
CBDO SET 2.8 caz26 SLA THL)
cam SET 2c DDCBOS26 SLa (I1X+d)
canz2 SET 2.0 FDCBO526 SLA {1¥+d)
€BD3 SET 2E CB77 SLA A
CBO4 SET 2H tBz0 5LA 8
[o:Tol] SET 2L cB21 SLA c
CBDB SET 3B CHZ22 SLA o]
cCBDE SET 3.(HL) fol:b %] SLA E
DDCBOSDE ~ SET 3.0X+d) p— SLA H
FOCBOSDE SET A(1¥+d) CBIS SLA L
CBODF SET A cazE SRA HL)
cepg SET 3.c 0DCBO52E SAA 11 X+d|
CBDA SET D FDCBOSZE SAA 1Y +d}
CBOB SET iE CB2F SHA A
capc SET Ik 828 SRA 8
cBOD SET 3L cB29 SRR C
CBES SET a,(HL) CBIA SRA o

613

PROGRAMMING THE Z80

aBJ SOQURCE

CODE STATEMENT
CB2B S5RA E
CB2C SRA H
CB2D SAA L
CB3E SRAL HLI
DDCBOS3E SAL {1 Xedl
FOCBOS3E SAL {1¥+d)
CB3F SRL A
CB318 SRAL B
CB39 SAL [+
CB3A SAL 0
CB3B SAL E
CB3C SRL H
cBaD SAL L
a6 5UB (HLI
DD9B0S 5uB (IXed}
F 19605 5uB (1Y +dl
97 suB A
[0 suB B
9 suB c
92 5UB D
93 suB E
a4 SuB H
85 5uB L
0B20 suB n
AE XOR IHL}
DDAEQS XOR {1 X+db
FDAEOS XOR {1¥+d)
AF XOR A
AR XOR R
A9 X0R c
AA X0OR D
AB XDR £
AC XOR H
AD XDA L
EE2D XoR n

fCourtesy af Zilop Inc.)

614

APPENDIX F

Z80 1o 8080 EQUIVALENCE

za0 aoad 780 8080 ZBo soan
ADCA, [HL) ADCM EX [SP). HL XTHL ORn ORI (B2}
ADC A n ACI[B2] HALT HLY ORr ORA ¢
ADC A . ADC. INA, [n} 1N [B2| QR {HL) ORA M
ADD A, (ML) ADDM INCBC INX B OUT [n), A Qaur (82
ADD A, n ADI(B2] INC OE INX D POP AF POP PSW
ADD A. . ADD ¢ WNC ML INX H POP BC FOPB
ADDHL BC DADB INC, INR POP OE POFD
ADDHL DE DADD INT 5P INXSP POP HL FOPH
ADDHL, HL DADH ING {HL) tNR A PUSH AF PUSH F5w
ADDHL SP DADSP JRC.nn IC iB2] [B31 PUSH BC PUSHB
AND R ANI (BZ] JLE.TA Jan (B2]|B2] PUSH DE PUSH D
AND ¢ ANAT JPNC, nn JNC [B2) [B31 PUSH ML PUSH H
ANE (HL] ANA & JPnn JAAP (B2] [B3] RET RET
CALLC. nn CC(82] (B3) JPNZ, nn INZ 182 (B3] REFC RC
CALLM. nn Cm (B2] (B3] JPP. nn JP (B2] [B31 RETM RM
CALLNG, nn CNC (B2] (831 JPPE, nn JPE (B2][831 RETNC RNC
CALL nn CALL IPPO, na PO [BZ)[BT) RET NZ RNZ
CALLNZ nn CNZ182][B3] P Z nn 12 [B2) [B3] RETP R
CALLP nn CP|a2] (83l JP[HL) PCHL RETPE RPE
CALLPE. nn CPEB2] (B3} LD A, (DE) LDAX RET PO RPD
CALLPO. A CFQ (B2 [B3] LDA, (An) DA (B2] (81} RETZ Rz
CALLZ.nn CZ(87][B3] LD DE, nn LXID, (AZ] (B3] ALA RAL
cF oMe LOSF, nn L1 5P, [87] (B3] RLCA R
Pr CMPr D (BCL A SFAX B RRA RAR
CP{ML] CMP M 10 [DE), A SIAX D RRCA RRC
cPl CMA LO ML), - MOV AL, . RSTP RSTP
CPa CPHBZ] L0 (), A STA (82] [63] SBC A, (HL) SBB M
DAA DAA 1O [nn]. HL SHLD (B7] (B3] SBCA.n 5B1 (821
DEC BC DCX B WD A, (BC) |DAXB SBC A, . S8Br
DECDE DCx0 LD BC. nn LXIB, (82] (B3 SCF &TC
DEC HL DCX M LO ML, (rn) LHLO (82} |81 Suén SU11B3Z)
DEC. DCRr LOHL, nn LXI H [B7] (B3] SuB e SuBe
DEC 5P DCX 5P O+, (HC) MOV 1, 5U8 {HL) 5UB M
DEC (HL) DCR ar Dr. n MVL T [82) XOR n XRI [B2)
3] bt or.,' MOV 1, 12 XORr XRA ¢
El El LOSP, HL SRKL XOR (HL) XRA M
EXDE ML XCHG NOP NOF

615

APPENDIX G

8080 to Z80 EQUIVALENCE

8080 z80 8080 X80 8080 80
ACI[BZ} ADC A, n IN [B2] INA, [n} POPH POP HL
ADC M ADC A, [HL} INR M INC (L) POP PSW POP AF
ADC. ADC A, . INR» INC, PUSH B PUISH BC
ADD M ADD A, {HL] INX B INC BC PUSHD PUSH DE
ADDr ADDA, . INX D INC DE PUSHH PUSH HL
ADI [B2] ADDA, n INXH INC HL PUSH PSW PUSH AF
ANA M AND {HL] INX 5P INCSP RAL RLA
ANAr AND JCIB2][BA] JPC.nn RAR RRA

ANI 821 AND n JMIB2][BA] JPM, nn RC RETC
CALL CAlLnn JMPI82](BIl JPnn RET RET
CClaz] (B3] CALLC nn JNCI82] (B3] JPNC, nn RLC RLCA
CMm[B2][83] CALLM. nn INZ[BZ][B3] JPNI nn R RET 84
CMaA CRL JP[B2][83] JPP.nn RNC RET NC
oo ccrF JPE(B2](B]] JPPE.nn RNZ RET NZ
CMP M CP ML) IPQIB2][B3| JPPO, nn RP RETP
ChP s CPr 12i82)[BA1 JPZnn RPE RETPE
CNC |82 [B3] CALLNC. nn DA [B2) (B3] LD A, {nn) RPO RET PO
CNZB3]{B3] CALNZ, nn LDAX B LD A, (BC) ARC RRCA
Crio2] (B CALLP, nn LDAX D LD A, [DE) R5T RASTP
CPE[B2] [BJ] CALLPE, nn LHAD [B2] [B3] LD HL, {an} Rz RETZ

CP B2} CPn LXE8[82][BAl LD BC, nn SHB M SBC A, (HL)
CPOIB2| [B1) CALL PO, nn \DID (B2} |BY LD DE, nn S5BBr SBCA, .
CZ182] [B3] CALL 2. nn XS H[BZ] [BA] LB HL, nn B [B2] SHCA, n
DAA DAA LXISP [B2] {B3] LD 5P, nn SHLD 1B2] (B3] LD (nn}. HL
DAD B ADD HL, BC MOV M, . LB (HL], SPHE LD 5P, HL
DAD D ADDML. DE MOV, M LD, (HL) 5TA[82][B3] LD(nn). A
DADH ADD HL, HL MOV r2 wr, . STAX B LD (BC), A
DAD 5P ADD Ht, 5P MV M LD [ML] n STAX D LD [DE], A
OCR M DEC (HL] MV 182} Br.n ST SCF

DCR ¢ DEC. NOR NOP SUB M 5U8 (HL)
DCX B DEC BC QRA M QR (HL) Sulr SuBr
;lgn DEC DE ORA ¢ ORr SUI 62} SUBn
. ;, g:cc;: Rl |82) QRn XCHG EX DE, ML
oI ol aurrez QuT(nl. A XRA M XQR (HL]
B . PCHL IP(HL) XRA XQR
HALT e POFS PORBL KR {82] XOR n

POFD POP BE XTHL EX (5P, HL

616

INDEX

A B
absolute addressing 108, 439, 446 B 62
ACT 61 banks of regisiers 62
accumulalor 439 BASIC 24
ADC 101 basic archuteciure 46
ADC, A, s 190 basie concepts 1S
ADC HL, ss [92 basic programming choices 5719
ADD 101 basic programming techniques 94
ADD A, (HL) 84, 194 BCD 35, 37, 525
ADD A, (IX + d) 196 BCD addition 107,110
ADD A, (IY + d) 198 BCD arithmetic 107
ADD A, n 67,200 BCD block transfers 510
ADDA,r 67,75, 76, 201 BCD Nags 112
ADD HL, ss 203 BCD representation is
ADDIX, rr 205 BCD subtraction {10
ADDIY,rr 207 BCD 1able 35
additon 58,95, 100, 105 benchmark 470
address bus 47 binary 20,21,22 41,45
address registers 51 binary code 19
addressing 438, 442 binary digt 8
addressing modes 438, 440, 444, 445 binary division 133
addressing techniques 438 binary logic 18
algorithm 15,16, 114, 539 binary represeniation 41
alphabeunc list 558, 565, 569, 570 binary search 546, 558, 559, 560,
alphanumeric data 39 561, 566, 567, 568
ALU 46, 77, BS BIT b, (HL} 211
AND 166, 167 BITh, (IX + d) 213
AND s 209 BITb, (1Y + d) 215
application examples 520 BITb, ¢ 217
arithmeuc-logical unit 46, 61 bt 18, 20, 41
arithmelic programs 94 bit addressing 448
arithmetic shifi 19 bit manipulation 172, 173
ASCI! 39, 524, 525 bt serial transfer 471,472
ASCI! conversion table 40 block 540, 542, 544
assembler 06, 582, 590 block transfer 450, 451, 453, 458, 530
assembler directives 596, 598 block transfer
assembler ficlds 590 Instructions 163,450, 452
assembly-language 67, 580, 592 bootstrap 48
assigning a value 593 bracket testing 523
asynchronous 471, 496, 518 branch instruction 441
automated Z80 branching point 115
nsiructions 142, 453, 455 break character 467

617

PROGRAMMING THE Z80

breakpownt 584, 586
bubble-sort 533, 534, 535, 536, 537
buffer register 59, 61

bufTered 49
bullers 61

bus request 497
BUSRQ 92,497
byte 18, 19, 4], 444
C

C 28, 130, 31,62,73
CALL 145, 156, 446, 500
CALLcc, pg 219
CALL pq 222
CCF 224
CALLSUB 143, 144, 145
carry 22,23, 26,28, 30, 174
central-processing unil 46
checksum compulation 528
circular list 544, 545
classes of instructions 154
clearing memaory 520
clock 47
clock cycles 69
clock-synchronous logic 86
code conversion 525
coding 16
combination chips 48
commands I6
commenl field 590
compare 5131

compiler 545, 581, 582
COND 600
conclusion 602
conditional assembly 600
conditional instruction 50
constanls 439, 445, 594
control box 49
control bus 47
control instructions 157, 185
control registers 512,513, 515
control signals 91
contral umt 46
count the zeroes 529
counter 463, 465
CP 166
CPs 125
CPD pra
CPDR 229

618

CPi 231
CPIR 233
CPL 165, 235
CPU 46, 187
critical race 60
CRT display 44, 587
crystal 47
Cu 46
D

D 62, 14
DAA 109, 216
data buffer 5t1

data bus 47
dala eounlers 51

data dircetion register 512
dala processing 155
data proeessing instructions 164
data rcady 469
data rcpresentation 548
data structures 539
dala transfers 154, 158, 160
dcbugper 583
debugging 18
decimal 20,21,22
DECm 238
DEC rr 240
DECIX 242
DECIY 243
decode H, 86
decoding 56
decoding logic 49
decrement 164, da2
DEFB 596
DEFL 596
DEFM 597
DEFS 597
DEFW 596
delay gencralion 463
delay loap 464, 483
deleting 553, 565,54
design examples 548
desuination register a7
development systcms 587
DFB 596
Di 244
direct addressing 439, 441

direct binary 19
direction register 515

directives 146,

directories

disk operating system
displacemem
displacement field
DINZ ¢

DMA

doeumenting

DOS

doubly-linked lists
double-precision format
drivers

E

E

EBCDIC

echp

editor

El

8-bu addinen

8-bit division

clement deletion

clement inseroen

emulalor

END

ENDC

ENDM

EPROM'’s

EQU

error

Error Messages

EX AF AF!

cxchange instructions

Exclusive QRing

EXDE, HL

execurable statements

cxecute

execulion

execution cycle

cxponent

EX (SP), HL

EX(SP), IX

EX (SP), IY

extended addressing

external representation
of informatien

EXX

571, 580, 594
541, 545
541, 582

a3

442

243

491, 498
97

582
345, 546
34

49

&2

19

486

583

247

95

134, 137
564
550, 563
583

597

600

597

385

596

586

392

162

162

31

249

16

71

56, 69, 599
55
37,38
250

252

254
160, 441, 446

41, 44
256

INDEX

F

F [}
feich 55, 70, 84
letch-execute overlap 18
FIFQ 543
file directory 541
flags 31, 50, 51, 179, 180
flags register 61
flip-Nops 51

floating point representation 37, 38

Mowcharting 16,17, 114,
450, 464, 469, 494, 559
lront panel 45,589
G
gencral purpose regisiers 51
getting characters in 522
H
H 62,176
hall-carry flag (H) 176
HALT 92, 185, 257
handshaking 477, 478, 511
hardware 93
hardware delays 465
hardware argamization 46
hardware resources 587, 589
HEX 525
hexadecimal 41, 42, 48]
hexadecimal coding 43, 579
high byte 103
high level language 581
1
1 53
IFF1 499
IFF2 499
illegal code 107
MO 258
M 259
iM2 260
immediate addressing 108,159,439,445
immediale opcralion 69
implicit addressing 438, 445
implied addressing 438
mmproved muluplication 126, 128, 129
INT, (C) 261
INA, (N} 263
in-eircutt emulator 585
INC{HL) 267

619

PROGRAMMING THE Z80

INCr 264
increment 164, 442
incrementer 57
INCrr 265
INC(IX + &) 268
INC{lY + d} 270
INCIX 2712
INCIY 273
IND 274

index register 53,63, 441 442
indexed addressing 160, 441, 447, 540

indexing 63
indircct addressing 443, 444, 448, 540
indirect indexed addressing 443
indirect memory access 499
INDR 276
information representation 18
n-house computer 588
INI 278
INIR 280
input/output 157,460, 518
nput/output devices 511, 521
mput/output instructions [83, 460
input register 466
inserting 552, 573
instruction 96
instruction field 590
mnstruction formats 66
instruction register 55, 64
instruction set [54
instruclion types 112
INT 9l
mternal control registers 51,513
internal representation
of information 18
interpreted 69
interpreter 545, 581, 582
nterrupt 466, 496, 497, 500, 505,
508, 509, 511
interrupt acknowledge 500
interrupt flag LR7
nterrupt handler 502
interrupt logic 510
interrupt-mask-bit 499
interrupt mode 0 500
interrupt mode (503
interrupt mode 2 504
interrupt overhead 504

mntcrrupl-page addressing register 63

620

interrupt table
mterrupt vector
inlerrupts

170 control
IDRQ

IR

IX

1Y

¥

JPcc, pg
JPnon
JP pg
JP{HL)
JP(IX)
JP{IY)
JRcc, e
JRe
JUMP

Jump instruction
jump relative (JR)

1K

L

L

label ficld
largest element
LDA,(n,m
LbD,C

LDD

LDDR

LDI

LDIR

LD dd. (nm
LD dd,non
LDrn
LDr,r
LDr

LD (BC), A
LD(DE), A
LD {HL), n
LD (HL), r
LDr, (HL)
LDr (IX + d)
LD, (IY + &y
LD{UX + d)un
LD(IY + d},n

504
498
495

92

92, 500
55
53,63
63

282

89

284
285
286
287
288
250
90, 172, 179, 441
156, 182
446, 447

24

62
5%0
526,527
69, 86
12
164
164
164
142, 164
251
293
295
66
297
299
300
301
303
356
305
307
309
311

LD{X + d)r 313
LD{1Y + d), r 315
LD (nm), A 317
LD{nn), A 319
LD {nn), dd 321
LD {nn), HL 323
LD (nny, IX 325
LD (nn), 1Y 327
LD A, (BO) 329
LD A, (DE) 330
LDA,I 33l
LD, A 332
LDAR 333
LD HL, (nm 334
LD IX, nn 336
LD IX, (nn) 338
LD 1Y, {nn) 340
LD1Y,.nn 342
LDR,A 344
LD SP, HL 345
LD SP, IX 346
LDSP, 1Y 347
LDD 348
LDDR 350
LDt 352
LDIR 354
LED 41,480
LIFO siructure 540, 544
light emitung diodes 41
linked list 542, 544, 568, 571, 573,
574,577,578
linked loader 583
list 540, 548, 549, 550, 555, 556, 557
lisung 590
list pointer 542
literal 69, 439, 455, 594
load 96, 106
loader 583
logarithmic searching 546, 562
logical 166, 558
logical errors 582
logical operations 141
logical shift 119
long addressing 449
longer delay 464
M
machine cyele &9
MACRO 597, 598, 600

INDEX

marntissa 38
MASK 168, 522
memory cyeles 55
memory map 453, 586
memary-mapped 1/0 157
memory-refresh regisier &4
MISFQ INSLrUcLions 86
mnemonie 67,579
M1 92
modes 444
monitor 48, 582
monilonng 467
MOS Technology 6502 452
MPU 52,58
MPU pinout 9t
MREQ 92
multiple deviees 506
multiple LED's 482
multiple precision 98
multiplexer 52,62

multiplication 113,114, 115, 116,

124, 151,152, 153

MUX 52,62
N

N 34
NEG 358
ncgauve 24, 26,32
nesied calls 145
nibble 1B, 36
NM1 91,92, 498
nonmaskable interrupt 498
nontestoring method 133
NOP 359
NOPs 92
normalize 37
normalized mantissa 37
(4]

octal 41,42
odometer 465
one’s complement 25
one-shot 466
opcode 66, 86, 439, 444 446
operand 100, 102, 438, 439
Operaling sysiem 582
operator precedence 587
OR 166, 168
ORs 360

621

PROGRAMMING THE Z80

ORG

OTDR

QTIR
QUT(C)
OUTI(N). A
OuUTD

OUTI

outrput register
overdraw
overflow
overiap techmque

P

packed BCD

paeked BCD subtraet
paper-lape rcaders
parallel input/ourput
parallel work transfer
parity hit

parity generation
panty/overflow (/W)
PC

PIC

5%6
362
34
366
368
369
n
461
133
28, 30, 31, 32
79

36, 107

110, 111

494

48

467, 468, 469
39,40

524

175

52

446, 506

P10 48,511,512, 513, 514, 515, 518
pointers §1, 62, 444, 539, 544, 550, 551

polling
polling loop
POP qq
POP IX
POPIY
pop

port
positional notation
positive
post-indexing

power failures
pre-indexing

prinler

program

Program counter
program development
program loops

466, 469, 492, 521, 544

493, 494
mnm

375

377

53,76, 154
511, 515,516
20

24, 26, 32
442, 443

48

442

44, 479, 495
16, 48

52

579, 584
63, 121

programmable input/output chip 511

programmable interval

umer (PIT) 463, 465
programmer's model 94
programming [5,16,515, 518, 602
programming language 16
pseudo-instructions 98

622

pulse 462, 467
pulse counting 466
punch 495
PUSH qq 379
PUSH IX 381
PUSH LY 383
push 53,76, 154
Q

queue 543, 544
R

R 64
RAM 48, 75, 584, 587
random element 541
RLCA 385
RD 92
read operauon 96, 515
read-only memory 48
read-write memory 48,75
Tecursion 148
reference table 571
register addressing 438
register indirect addressing 444, 448
register-interrupt 184
register pairs 51
[CgIsLErs 31, 51, 149, 439, 474
relative addressing 441, 446
relative jump 156
relays 461, 462
request blocks 543
RESh, s 386
RESET 92
restoning method 133
RET 389
RET ce 391
RETI 181, 393, 501
RETN 181, 395, 499
RETURN 144, 145
RFSH 93
RLs 397
RLA 399
RLCr 103
RLC{HL} 402
RLC(IX + d) 404
RLC{lY +) 406
RLD 408
ROM 48
rotation 120, 155, 170, 171

rotate 50, 156
round robin 544, 545
RRs 410
RR A 412
RRCs 413
RRCA 415
RRD 416
RST 183, 500
RSTp 418
rubout 467
)
) 178
saving Lthe registers 502
SBCA,s 420
SBCHL, ss 422
SCF 424
scheduling 491
searching 551, 558, 572
segment drivers 484
segments 480,541
sensing pulses 466
sequential lists 540
sequential searching 546
service rouling 492
SETb, s 425
seven-segment light-emitting

diode (LED) 480, 481
shilt 50, 118, 120, 155, 156
short addressing 441, 446, 449
short instruction 19
SigN 178
signal 461
signed binary 24,25
signed numbers 532
simple list 551
simulator 583
simullaneous INterrupts 507
single-board microcomputers 587
16-bit accumulator 103
16 by B division 134, 135
16 by 16 multiplication 130, 131
skew operations 1689
skip 157
SLA s 428
software aids 582, 587
SP 53
special digit instructions 172
speed 476

INDEX

SRAs 430
SRLs 432
stack 53, 146, 149, 496, 508, 539, 544
stack pointer 53, 540
standard architecture 49
standard P10 511
status 31, 85,476,515
status bits 50, 512
status register 50
staring operands 102
string of characters 490
SUBA, s 434
subroutine call 143, 146
subroutine library 150
subroutine mechanism 144
subroutine parameters 149
subroutines 142, 147, 443, 598
subtraction 104
subtract (N) 175
sum of N elements 527,528
symbalic 41, 44
symbois 592, 593
synchranous 471, 496
syntactic ambiguity 16
syntax 544
system architecture 46
T

tables 526, 539, 540, 551, 554, 592
technological development 602
teletype 466, 485, 487, 488, 489
Lemporary register 61
Lest 16, 156,172
testing a character 523
timer 465
ume-sharing system 588
uming 463
Lrace 58S
transfers 52
trees 544, 545
truncating 34
truth table 167
two's compiement 25,26, 27,29
two-level directory 541
U

UART 477, 518
underflow 32
utility routines 583

623

PROGRAMMING THE Z80

v
v
)
vectanng of interrupts

W

w

WAIT

working registers
WR

624

28,30, 31
137
504

87
92
496
92

XOR
XORs

z

Z

ZB0 regisiers

Zergo

zero page addressing
Zilog ZBO P10

Zilog ZBO SIQ

166, 169
436

87,177
95
177
441, 446
516,517
SIB

The SYBEX Library

BASIC PROGRAMS FOR SCIENTISTS AND ENGINEERS
by Alan R. Miller 340 pp., 120 illustr., Ref. B240

Thissecond book in the ** Programs for Scientists and Engineers’” series provides a
library of problem solving programs while developing proficiency in BASIC.

INSIDE BASIC GAMES

by Richard Mateosian 350 pp., 240 lllusir., Ref. B245

Teaches interactive BASIC programmung through games. Games are written in
Microsoft BASIC and can run on the TRS-80, APPLE II and PET/CBM.

FIFTY BASIC EXERCISES

by J.P. Lamoitier 240 pp., [95 !llustr., Ref. B250

Teaches BASIC by actual practice using graduated exercises drawn from everyday
applications. All programs wnitten in Microsoft BASIC.

EXECUTIVE PLANNING WITH BASIC

by X.T. Bui [92 pp., 19 illusir., Ref. B380

An important collection of business management decision models in BASIC,
including Inventory Management (EQQ), Critical Path Analysis and PERT,
Financial Ratio Analysis, Portfolio Management, and much more.

BASIC FOR BUSINESS

by Douglas Hergert 250 pp., 15 illustr., Ref. B390

A logically orgamzed, no-nonsense introduction to BASIC programmung for
business applications. Includes many fully explained accounting programs, and
shows you how to wnte them.

YOUR FIRST COMPUTER

by Rodnay Zaks 260 pp., [50 Illustr., Ref. C200A
The most popular introduction to small computers and their peripherals: what
they do and how to buy one.

DON'T (or How to Care for Your Computer)

by Rodnay Zaks 220 pp., 100 Illustr., Ref. C400

The correct way to handle and care for all elements of a computer system inciuding
what to do when something doesn’t work.

INTRODUCTION TO WORD PROCESSING

by Hal Glatzer 200 pp., 70 illusir., Ref. W10I

Explains in plain {anguage what a word processor can do, how it improves produc-
tivity, how to use a word processor and how to buy one wisely.

INTRODUCTION TO WORDSTAR

by Arthur Naiman 200 pp., 30 illustr., Ref. W110

Makes 1t easy to learn how to use WordStar, a powerful word processing program
for personal computers.

FROM CHIPS TO SYSTEMS: AN INTRODUCTION TO
MICROPROCESSORS

by Rodnay Zaks 560 pp., 255 illustr., Ref. C207TA

A simple and comprehensive introduction to microprocessors from both a hard-
ware and software standpoint: what they are, how they operate, how to assemble
them into a complete system,

MICROPROCESSOR INTERFACING TECHNIQUES

by Rodnay Zaks and Austin Lesea 460 pp., 400 Illustr., Ref. C207

Complete hardware and software interconnect techniques including D to A con-
version, peripherals, standard buses and troubleshooting.

PROGRAMMING THE 6502

by Rodnay Zaks 390 pp., 160 Illustr., Ref. C202

Assembly language programming for the 6502, from basic concepts to advanced
data structures,

6502 APPLICATIONS BOOK
by Rodnay Zaks 280 pp., 205 Ulustr., Ref. D302
Real life application techniques: the inputioutput book for the §502.

6502 GAMES

by Rodnay Zaks 300 pp., 140 [llustr., Ref. G402

Third in the 6502 series. Teaches more advanced programming techniques, using
games as a framework for [earning.

PROGRAMMING THE 780

by Rodnay Zaks 620 pp., 200 lllustr., Rel. C280

A complete course in pregramming the Z80 microprocessor and a thorough intro-
duction to assembly language.

PROGRAMMING THE Z8000

by Richard Mateosian 300 pp., 125 1llustr., Refl. C281

How to program the Z8000 16-bit mucroprocessor. Includes a description of the
architecture and funcuon of the Z8000 and 1ts family of support chips.

THE CP/M HANDBOOK (with MP/M)

by Rodnay Zaks 330 pp., 100 Hlustr., Ref, C300

An mdispensable reference and guide to CP/M—the most widely used operating
systemn for small computers.

INTRODUCTION TO PASCAL (Including UCSD PASCAL)
by Rodnay Zaks 420 pp., 130 lllustr., Ref. P310

A step-by-step introduction for anyone wanting to learn the Pascal language.
Describes UCSD and Standard Pascals. No technical background is assumed.

THE PASCAL HANDBOOK

by Jacgques Tiberghien 490 pp., 350 [Huscr., Refl. P320

A dictionary of the Pascal language, defiming every reserved word, operator, pro-
cedure and function found tn all major versions of Pascal.

PASCAL PROGRAMS FOR SCIENTISTS AND ENGINEERS
by Alan Miller 400 pp., 80 Hustr., Ref. P340

A comprehensive collection of frequently used algorithms for scientific and
technical applications, programmed in Pascal. Inciudes such programs as curve-
fitting, mteprals and statistical technigues.

APPLE PASCAL GAMES

by Douglas Hergert and Joseph T. Kalash 380 pp., 40 illustr., Rel. P36

A collection of the most popular computer games 1n Pascal challenging the reader
not only to play but to investigate how games are implemented on the computer.

INTRODUCTION TO UCSD PASCAL SYSTEMS

by Charles T. Grant and Jon Butah 300 pp., 110 illustr., Ref. P37¢

A simple, clear introduction to the UCSD Pascal Operating System for beginners
through experienced programmers.

INTERNATIONAL MICROCOMPUTER DICTIONARY

14G pp., Ref, X2

All the definitions and acronyms of microcomputer jargon defined in a handy
pocket-size edition. Includes translations of the most popular terms into ten
languages.

MICROPROGRAMMED APL IMPLEMENTATION

by Rodnay Zaks 350 pp.. Ref. Z10

An expert-level text presenting the complete conceptual analysis and design of an
APL interpreter, and actual listings of the nucrocode.

SELF STUDY COURSES

Recorded live at sentinars given by recogrized professionals in the inicroprocessor
field.
INTRODUCTORY SHORT COURSES:

Each includes two cassentes plus special coordinated workbook. (2 hours)

S10—INTRODUCTION TO PERSONAL AND BUSINESS
COMPUTING

A comprehensive introduction to small computer systems for those planning to
use or buy one, mncluding peripherals and pitfalls.

S1—INTRODUCTION TO MICROPROCESSORS

How microprocessors work, including basic concepts, applications, advantages
and disadvantages.

§2— PROGRAMMING MICROPROCESSORS

The companion to S1. How to program any standard microprocessor, and how it
operates internally. Requires a basic understanding of microprocessors.
S3—DESIGNING A MICROPROCESSOR SYSTEM

Learn how to interconnect a complete system, wire by wire. Techniques discussed
are applicable to all standard microprocessors.

INTRODUCTOR Y COMPREHENSIVE COURSES:

Each includes a 300-500 page senunar book and seven or eight C90 cassettes.

SB3—MICROPROCESSORS

This seminar teaches all aspects of microprocessors: from the operation of an MPU
to the complete interconnect of a system. The basic hardware course. (12 hours)
SB2—MICROPROCESSOR PROGRAMMING

The basic software course: step by step through all the important aspects of micro-
computer programming. (10 hours)

ADVANCED COURSES:

Each includes a 300-500 page workbook and three or four C90 cassettes.
SB3—SEVERE ENVIRONMENT/MILITARY
MICROPROCESSOR SYSTEMS

Complete discussion of constraints, techniques and systems for severe environ-
mental applications, including Hughes, Raytheon, Actron and other militarized
systems. (6 hours) :

SB5—BIT-SLICE

Learn how to build a complete system with bit slices. Also examines innovative
applications of bit slice techniques. (6 hours)

SB6—INDUSTRIAL MICROPROCESSOR SYSTEMS

Semuinar examines actual industrial hardware and software techniques, components,
programs and cost. (42 hours)

SB7—MICROPROCESSOR INTERFACING

Expiains how to assemble, interface and interconnect a system. (6 hours).

FOR A COMPLETE CATALOG
OF OUR PUBLICATIONS

U.S.A

2344 Sixth Street
Berkeley,
California 94710
Tel: (415) 848-8233
Telex: 336311

SYBEX-EUROPE

4 Place Felix Eboue
75583 Paris Cedex 12
Tel: 1/347-30-20
Telex: 211801

SYBEX-VERLAG
Heyestr. 22

4000 Dusseldorf 12
West Germany
Tel: (0211) 287066
Telex: 08 588 163

PROGRAMMING THE Z80

has been designed as an educational text and a self-contained reference
manual. This book presents a thorough introduction to machine language
programming, from basic concepts to advanced data structures and techniques.
Detailed illustrative examples and numerous programs show the reader how
to write clear, well-organized programs in the language of the Z80.

This book is the result of the author’s extensive experience in the fields of
education and programming, and it has been designed for clarity and reada-
bility. All concepts are explained in simple yet precise terms, building pro-
gressively toward more complex techniques. The reader will gain not only an
understanding of programming in the language of the Z80, but also a detailed
understanding of the way a microprocessor actually executes instructions.

Among the subject areas covered in PROGRAMMING THE 780 are:

280 Hardware Organization
Input/Qutput Techniques

Complete Instruction Set

Z80 Addressing Modes

Data Structures—Theory and Design
Applications Examples

With over 200 illustrations, a thorough index and 7 appendices, PROGRAMMING
THE Z80 is an indispensable work for engineers, students, home computerists
and anyone interested in learning machine language programming skills.

THE AUTHOR

Dr. Rodnay Zaks has been involved with the industrial use of microprocessors
since their initial development. He is the author of a number of best-selling
books on all aspects of microprocessors, and has taught microprocessor courses
to several thousand people internationally, ranging from the introductory level
to bit-slice microprogramming techniques. He holds a Ph.D. in Computer Science
from the University of California, Berkeley, and is a member of ACM and IEEE.

ISBN 0-89588-047-4

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285
	Page 286
	Page 287
	Page 288
	Page 289
	Page 290
	Page 291
	Page 292
	Page 293
	Page 294
	Page 295
	Page 296
	Page 297
	Page 298
	Page 299
	Page 300
	Page 301
	Page 302
	Page 303
	Page 304
	Page 305
	Page 306
	Page 307
	Page 308
	Page 309
	Page 310
	Page 311
	Page 312
	Page 313
	Page 314
	Page 315
	Page 316
	Page 317
	Page 318
	Page 319
	Page 320
	Page 321
	Page 322
	Page 323
	Page 324
	Page 325
	Page 326
	Page 327
	Page 328
	Page 329
	Page 330
	Page 331
	Page 332
	Page 333
	Page 334
	Page 335
	Page 336
	Page 337
	Page 338
	Page 339
	Page 340
	Page 341
	Page 342
	Page 343
	Page 344
	Page 345
	Page 346
	Page 347
	Page 348
	Page 349
	Page 350
	Page 351
	Page 352
	Page 353
	Page 354
	Page 355
	Page 356
	Page 357
	Page 358
	Page 359
	Page 360
	Page 361
	Page 362
	Page 363
	Page 364
	Page 365
	Page 366
	Page 367
	Page 368
	Page 369
	Page 370
	Page 371
	Page 372
	Page 373
	Page 374
	Page 375
	Page 376
	Page 377
	Page 378
	Page 379
	Page 380
	Page 381
	Page 382
	Page 383
	Page 384
	Page 385
	Page 386
	Page 387
	Page 388
	Page 389
	Page 390
	Page 391
	Page 392
	Page 393
	Page 394
	Page 395
	Page 396
	Page 397
	Page 398
	Page 399
	Page 400
	Page 401
	Page 402
	Page 403
	Page 404
	Page 405
	Page 406
	Page 407
	Page 408
	Page 409
	Page 410
	Page 411
	Page 412
	Page 413
	Page 414
	Page 415
	Page 416
	Page 417
	Page 418
	Page 419
	Page 420
	Page 421
	Page 422
	Page 423
	Page 424
	Page 425
	Page 426
	Page 427
	Page 428
	Page 429
	Page 430
	Page 431
	Page 432
	Page 433
	Page 434
	Page 435
	Page 436
	Page 437
	Page 438
	Page 439
	Page 440
	Page 441
	Page 442
	Page 443
	Page 444
	Page 445
	Page 446
	Page 447
	Page 448
	Page 449
	Page 450
	Page 451
	Page 452
	Page 453
	Page 454
	Page 455
	Page 456
	Page 457
	Page 458
	Page 459
	Page 460
	Page 461
	Page 462
	Page 463
	Page 464
	Page 465
	Page 466
	Page 467
	Page 468
	Page 469
	Page 470
	Page 471
	Page 472
	Page 473
	Page 474
	Page 475
	Page 476
	Page 477
	Page 478
	Page 479
	Page 480
	Page 481
	Page 482
	Page 483
	Page 484
	Page 485
	Page 486
	Page 487
	Page 488
	Page 489
	Page 490
	Page 491
	Page 492
	Page 493
	Page 494
	Page 495
	Page 496
	Page 497
	Page 498
	Page 499
	Page 500
	Page 501
	Page 502
	Page 503
	Page 504
	Page 505
	Page 506
	Page 507
	Page 508
	Page 509
	Page 510
	Page 511
	Page 512
	Page 513
	Page 514
	Page 515
	Page 516
	Page 517
	Page 518
	Page 519
	Page 520
	Page 521
	Page 522
	Page 523
	Page 524
	Page 525
	Page 526
	Page 527
	Page 528
	Page 529
	Page 530
	Page 531
	Page 532
	Page 533
	Page 534
	Page 535
	Page 536
	Page 537
	Page 538
	Page 539
	Page 540
	Page 541
	Page 542
	Page 543
	Page 544
	Page 545
	Page 546
	Page 547
	Page 548
	Page 549
	Page 550
	Page 551
	Page 552
	Page 553
	Page 554
	Page 555
	Page 556
	Page 557
	Page 558
	Page 559
	Page 560
	Page 561
	Page 562
	Page 563
	Page 564
	Page 565
	Page 566
	Page 567
	Page 568
	Page 569
	Page 570
	Page 571
	Page 572
	Page 573
	Page 574
	Page 575
	Page 576
	Page 577
	Page 578
	Page 579
	Page 580
	Page 581
	Page 582
	Page 583
	Page 584
	Page 585
	Page 586
	Page 587
	Page 588
	Page 589
	Page 590
	Page 591
	Page 592
	Page 593
	Page 594
	Page 595
	Page 596
	Page 597
	Page 598
	Page 599
	Page 600
	Page 601
	Page 602
	Page 603
	Page 604
	Page 605
	Page 606
	Page 607
	Page 608
	Page 609
	Page 610
	Page 611
	Page 612
	Page 613
	Page 614
	Page 615
	Page 616
	Page 617
	Page 618
	Page 619
	Page 620
	Page 621
	Page 622
	Page 623
	Page 624
	Page 625
	Page 626
	Page 627
	Page 628
	Page 629
	Page 630

