00

=00

A7 =00 B
Rads
PeoOl Sk

B

BHE

&)

R
R’

BC

=000
(41

=070 1
000«
1701
0000
@20
0000

L=0700

o000
Q100
0000
0700
=0 000
0700
0000
O&HOO

0000

=0400

0000
04600
QOO0
:"]‘-"“'("
0000
04600
0000
04600
2000
0500
Q000
0500
0000
Q500
0000
0500

OO0
Q500
0000

!

Shaek

: )r}t‘i DE=0000

It
1

I'FE
I

[

i
14 g
[f
|2 1id
bk
]-
DNE

3

0000

=000A

0000

=000A
Nnes

Q000
000A

0000

000A
0000

=000A

Q000

=0014

0000
0014
0000
0014

=0000

0014
0000
0014
0000
0014
QOO0
0o
0000
0028
OO0
Q.8
QOO
o0
QOO0
0028
0000
0028
OO0
D050
OO
0050

FATSTA IR ]

b

B)

HL

HL

HL.
H
Hl
H*
Hl
H’

Hl
HL
H

HI

HI

0000

0005

=0000

0005

0000

0004
0000

0005
O000

QOO0
000l
Q000
Ol
Q000
Q00!
QQO0O
QOOf
0000
[$1e1¢]]
0000
OO0
0000
QOOF
OO0
QOO
QOO0
ODOF
(§15141¢)
QOOI
o000
QOO!

YOO

-QO0O0F

Q000
QQ0l
[aTRTATE]

Mﬂjﬁih ﬁ{i

O0C
Q000

X=0000

8

X
s
X
o
>

X

,'\

OO
OO
QOO% * \'1.

0300

0300
Q000
0300
0000
0300
Q000

0200
t)\)f )

QOO0
‘_‘i 0300
¥=D000
5=0300
X =0000
$=0300
X=0000
H=0.35300
X=0G00
H+- 0300
X =000
G0300
X=Q000
S+=03500
X 0000
S5-0300
X =000
50300
X=0000
S S00
X =0000
G=-0300
X=0000
5=0300
X=0000
520300

YYONY

Y
£

P
Y

Q000
QLOSG

Q000

010A
0000
0100
0000

=010F

a
0119
QOO0
01 \f
Q00
0111
0000

0LL3
Q000

1 10%
0000
0118
0000
OLL?
0000
0108
000«
0111
0oc00
Q114
OO0
0lléa
Q000
OL1La
0000
0119
OO0
0101
QOO
0111
Q000
Q149
w000
0114

0000

[=00

0100
[ =00
010F

Ollé

[=00

o118

=00

01197

Q0
0101

oLLL’

=00

019

[=00
01148
L=Q0
0119
I = Q0
01
=00
QL1
| =00

l Yy
01 0f
I =00
oL

1= 00

LAHS AND RINETY-FIVE CENTS

Cat. No. 62-2066

LI

\"-

N |

AL

el A
qal

DE» CODO2
202"
O

Hi v 0000
COO00 )

g 70
A 95
3L

HL_ v LI

NC«OLLA4

(01147 )

|7¢‘7)|
1
NEO114
0114
T
B .
N T
{ 10 )

v O 134

12



PROGRAMMING
THE Z80






PROGRAMMING
THE Z80

RODNAY ZAKS

IIIIIIIIIIII



780" is a registered trademark of ZILOG Inc., with whom SYBEX is not connected
In any way.

Cover Design by Daniel le Noury

Every effort has been made to supply complete and accurate information. However,
Sybex assumes no responsibility for its use; nor any infringements of patents or other
rights of third parties which would resuit. No license is granted by the equipment manu-
facturers under any patent or patent rights. Manufacturers reserve the right to change
circuityy at any time without notice.

In particular, technical characteristics and prices are subject to rapid change. Com-
parisons and evaluations are presented for their educational value and for guidance
principies. The reader s referred to the manufacturer’s data for exact specifications.

Copyright ©1980, SYBEX Inc. World rights reserved. No part of this publication may
be stored in a retrieval system, transmitted, or repreduced in any way, including but not
limited to, photocopy, photograph, or magnetic or other record, without the prior written
permassion of the publisher.

Library of Congress Card Number: 80-5468
1SBN: 0-89588-094-6

First Edition published 1979, Third Edition [981
Printed in the United States of America
Printing 109876543



ACKNOWLEDGEMENTS

Designing a programming textbook is always difficult. Desigming it so that it will teach
elementary programming as well as advanced cancepts while covering both hardware and
software aspects makes it a challenge. The author would like to acknowledge here the
many constructive suggestions for ymprovements or changes made by: O.M. Barlow,
Dennis L. Feick, Richard D. Reid, Stanley E. Erwin, Philip Hooper, Dennis B, Kitsz,
R. Ratke, and Fim Crocker.

A special acknowledgement is also due to Chris Willlams for his contribution to the
mstruction-set and the data structures section,

Any additional suggestions for improvements or changes should be sent to the author,
and will be reflected in forthcoming editions.

Several tables in Chapter Four showing hexadecimal codes for the Z80 instructions
have been reprinted by permission of Zilog Inc. Tables 2.26 and 2.27 have been reprinted
by permission of Intel Corporation.






TABLE OF CONTENTS

PREFACE 13

BASICCONCEPTS 15
Introduction, What is programming?, Flowcharting, Informa-
tion Representation

Z30 HARDWARE ORGANIZATION 46

Introduction, System Architecture, Internal Organization of
the Z80, Instruction Formats, Execution of Instructions with
the Z80, Hardware Summary

BASICPROGRAMMING TECHNIQUES 94

Introduction, Arithmetic Programs, BCD Arithmetic Multipli-
cation, Binary Division, Instruction Summary, Subroutines,
Summary

THE Z80 INSTRUCTION SET 154

Introduction, Classes of Instructions, Summary, Individual
Descriptions

ADDRESSING TECHNIQUES 438

Introduction, Possible Addressing Modes, Z80 Addressing
Modes, Using the Z80 Addressing Modes, Summary



vi. INPUT/OUTPUT TECHNIQUES 460

Introduction, Input/output, Parallel Word Transfer, Bit Serial
Transfer, Peripheral Summary, Input/Output Scheduling,
Summary

Vil. INPUT/OUTPUT DEVICES 511

Introduction, The Standard PIO, The Internal Control Register,
Programming a PIO, The Zilog 280 PIO

VIII. APPLICATION EXAMPLES 520

Introduction, Clearing a Section of Memory, Polling 1/0
Devices, Getting Characters In, Testing A Character, Bracket
Testing, Parity Generation, Code Conversion: ASCIH to BCD,
Convert Hex to ASCII, Finding the Largest Element of a Table.
Sum of N Elements, A Checfsum Computation, Count the
Zeroes, Block Transfer, BCD Block Transfer, Compare Two
Signed 16-bit Numbers, Bubble-Sort, Summary

IX. DATASTRUCTURES 539

PART |—THEORY
Introduction, Pointers, Lists, Searching and Sorting, Section
Summary

PART 2 DESIGN EXAMPLES
Introduction, Data Representation for the List, A Simple List,
Alphabetic Set, Linked List, Summary

X. PROGRAMDEVELOPMENT 579

Introduction, Basic Programming Choices, Software Support,
The Program Development Sequence, Hardware A {ternatives,
The Assembler, Conditional Assembly, Summary



Xi. CONCLUSION

Technological Development, The Next Step

APPENDIX A

Hexadecimal Conversion Table

APPENDIXB
ASCII Conversion Table

APPENDIXC
Relative Branch Tables

APPENDIX D

Decimal to BCD Conversion

APPENDIX E
Z8G Instruction Codes

APPENDIXF
Z380 to 8080 Equivalence

APPENDIX G
8080 to 280 Equivalence

INDEX

602

604

605

606

607

608

615

616

617






PREFACE

This book has been designed as a complete self-contained text for
{earning programming, using the Z80. It can be used by a person who
has never programmed before, and should also be of value to anyone
using the Z80.

For the person who has already programmed, this book will teach
specific programming techniques using (or working around) the speci-
fic characteristics of the Z80C. This text covers the elementary to inter-
mediate techniques required to start programming effectively.

This text aims at providing a true level of competence to the person
who wishes to program using this microprocessor. Naturally, no book
will effectively teach how to program, uniess one actually practices.
However, it is hoped that this book will take the reader to the point
where he feels that he can start programming by himself and can solve
simple or even moderately complex problems using a microcomputer.

This book is based on the author’s experience in teaching more than
1000 persons how to program microcomputers. As a result, it is strongly
structured. Chapters normally go from the simple to the complex. For
readers who have already learned elementary programming, the intro-
ductory chapter may be skipped. For others who have never program-
med, the final sections of some chapters may require a second reading.
The book has been designed to take the reader systematically through
all the basic concepts and techniques required to build increasingly
complex programs. It is, therefore, strongly suggested that the ordering -
of the chapters be followed. In addition, for effective resuits, it is
important that the reader attempt to solve as many exercises as possible.
The difficulty within the exercises has been carefully graduated. They
are designed to verify that the material which has been presented is
really understood. Without doing the programming exercises, it will
not be possibie to realize the full value of this book as an educational
medium. Several of the exercises may require time, such as the multi-
plication exercise. However, by doing them, you will actually program
and learn by doing. This is indispensable.

For those who have acquired a taste for programming when reaching
the end of this volume, a companion volume is planned: the Z80 Ap-
Dlications Book.

13



Other books in this series cover programming for other popuiar
MIiCTOProcessors.

For those who wish to develop their hardware knowledge, it is sug-
gested that the reference books From Chips to Systems: an Introduction
to Microprocessors (ref. C201A) and Microprocessor Interfacing
Technigues (ref. C207) be consuited.

The contents of this book have been checked carefuily and are
believed to be reliable. However, inevitably, some typographical or
other errors will be found. The author will be grateful for any comments
by alert readers so that future editions may benefit from their experience,
Any other suggestions for improvements, such as other programs
desired, developed, or found of value by readers, will be appreciated.
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1
BASIC CONCEPTS

INTRODUCTION

This chapter will introduce the basic concepts and definitions re-
fating to computer programming. The reader already familiar with
these concepts may want to glance quickly at the contents of this
chapter and then move on to Chapter 2. It is suggested, however,
that even the experienced reader ook at the contents of this intro-
ductory chapter. Many significant concepts are presented here in-
cluding, for example, two's complement, BCD, and other represen-
tations. Some of these concepts may be new to the reader; others
may improve the knowledge and skills of experienced programmers.

WHAT IS PROGRAMMING?

Given a problem, one must first devise a solution. This solution,
expressed as a step-by-step procedure, is called an algorithm. An
algorithm is a step-by-step specification of the solution to a given
problem. It must terminate in a finite number of steps. This
algorithm may be expressed in any language or symbolism. A sim-
ple example of an algorithm is:

1—insert key in the keyhole

2—turn key one full turn to the left
3—seize doorknob

4—turn doorknoh left and push the door

15



PROGRAMMING THE Z80

At this point, if the algorithm is correct for the type of lock in-
volved, the door will open, This four-step procedure qualifies as an
algorithm for door opening.

Once a solution to a problem has been expressed in the form of
an algorithm, the algorithm must be executed by the computer.
Unfortunately, it is now a well-established fact that computers
cannot understand or execute ordinary spoken English (or any
other human languagej. The reason lies in the syntactic ambiguity
of all common human languages. Only a well-defined subset of
natural language can be ‘‘understood” by the computer. This is
called a programming language.

Converting an algorithm into a sequence of instructions in a pro-
gramming language is called programming. To be more specific,
the actual translation phase of the algorithm into the program-
ming language is called coding. Programming really refers not just
to the coding but also to the overall design of the programs and
“data structures’” which will implement the algorithm,

Effective programming requires not only understanding the
possible implementation techniques for standard algorithms, but
also the skillful use of all the computer hardware resources, such as
internal registers, memory, and peripheral devices, plus a creative
use of appropriate data structures. These techniques will be
covered in the next chapters.

Programming also requires a strict documentation discipline, so
that the programs are understandable to others, as well as to the
author, Documentation must be both internal and external to the
program.,

internal program documentation refers to the comments placed
in the body of a program, which explain its operation.

External documentation refers to the design documents which
are separate from the program: written explanations, manuals,
and flowcharts.

FLOWCHARTING

One intermediate step is almost always used between the
algorithm and the program. 1t is called a flowchart. A flowchart is
simply a symbolic representation of the algorithm expressed as a
sequence of rectangles and diamonds containing the steps of the
algorithm. Rectangles are used for commands, or “‘executable
statements.” Diamonds are used for tests such as: If information

16



BASIC CONCEPTS

X is true, then take action A, else B. Instead of presenting a formal
definition of flowcharts at this point, we will introduce and discuss
flowcharts later on in the book when we present programs.
Flowcharting is a highly recommended intermediate step be-
tween the algorithm specification and the actual coding of the solu-
tion. Remarkably, it has been observed that perhaps 10% of the
programming population can write a program successfully with-
out having to flowchart. Unfortunately, it has also been observed
that 90% of the population believes it belongs to this 10%! The
result: 80% of these programs, on the average, will fail the first
time they are run on a computer. (These percentages are naturally
not meant to be accurate.) In short, most novice programmers sel-
dom see the necessity of drawing a flowchart. This usually results
in “‘unclean’ or erroneous programs. They must then spend a long
time testing and correcting their program (this is called the

STARY

READ TEMPERATURE SETTING T
ON THERMQOSTAT BOX

1 1

READ ACTUAL ROOM TEMPERATURE "R”
FROM THERMOMETER OR OTHER SENSOR

{(ROOM

TOO COLD) TOO HOTH)

a

HEATERQN {4 HEATER OFF

i

(OPTIONAL DELAY) (OPTIONAL DELAY)

Fig. 1.1: A Flowchart for Keeping Room Temperature Constant
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PROGRAMMING THE Z80

debugging phase). The discipline of flowcharting is therefore
highly recommended in all cases, It will require a small amount of
additional time prior to the coding, but will usually result in a clear
program which executes correctly and quickly. Once flowcharting
is well understood, a small percentage of programmers will be able
to perform this step mentally without having to do it on paper. Un-
fortunately, in such cases the programs that they write will usual-
ly be hard to understand for anybody else without the documenta-
tion provided by flowcharts. As a result, it is universally recom-
mended that flowcharting be used as a strict discipline for any
significant program. Many examples will be provided throughout
the book.

INFORMATION REPRESENTATION

All computers manipulate information in the form of numbers or
in the form of characters, Let us examine here the external and
internal representations of information in a computer.

INTERNAL REPRESENTATION OF INFORMATION

All information in a computer is stored as groups of bits. A bit
stands for a binary digit(**0°" or *°1’"). Because of the limitations
of conventional electronics, the only practical representation of infor-
mation uses two-state logic (the representation of the state *‘0”’ and
““1I'. The two states of the circuits used in digital electronics
are generally ““on’ or ‘‘off”, and these are represented logi-
cally by the symbols *“0" or *‘I”’. Because these circuits are
used to implement “logical” functions, they are called “binary
logic."" As a result, virtually all information-processing today is
performed in binary format. In the case of microprocessors in
general, and of the Z80 in particular, these bits are structured in
groups of eight. A group of eight bits 1s called a byte. A group of
four bits is called a nibble.

Let us now examine how information is represented internally in
this binary format. Two entities must be represented inside the
computer. The first one is the program, which is a sequence of
instructions. The second one is the data on which the program will
operate, which may include numbers or alphanumeric text. We will
discuss below three representations: program, numbers, and alpha-
numerics,

18



BASIC CONCEPTS

Program Representation

All instructions are represented internally as single or multiple
bytes. A so-called “‘short instruction” is represented by a single
byte. A longer instruction will be represented by two or more
bytes. Because the Z80 is an eight-bit microprocessor, it fetches
bytes successively from its memory. Therefore, a single-byte
instruction always has a potential for executing faster than a two-
or three-byte instruction, It will be seen later that this is an impor-
tant feature of the instruction set of any microprocessor and in
particular the Z80, where a special effort has been made to pro-
vide as many single-byte instructions as possible in order to im-
prove the efficiency of the program execution. However, the limita-
tion to 8 bits in length has resulted in important restrictions which
will be outlined. This is a classic example of the compromise be-
tween speed and flexibility in programming. The binary code used
to represent instructions is dictated by the manufacturer, The
Z80, like any other microprocessor, comes equipped with a fixed
instruction set. These instructions are defined by the manufac-
turer and are listed at the end of this book, with their code. Any
. program will be expressed as a sequence of these binary mstruc-
tions. The Z80 instructions are presented in Chapter 4.

Representing Numeric Data

Representing numbers is not quite straightforward, and several
cases must be distinguished. We must first represent integers, then
signed numbers, i.e., positive and negative numbers, and finally we
must be able to represent decimal numbers. Let us now address
these requirements and possible solutions.

Representing integers may be performed by using a direct
binary representation. The direct binary representation is simply
the representation of the decimal value of a number in the binary
system. In the binary system, the right-most bit represents 2 to
the power 0. The next one to the left represents 2 to the power 1,
the next represents 2 to the power 2, and the left-most bit
represents 2 to the power 7=128.

b;beb, bbb by

represents
b,27 4 be2® + by2% + b2¢ + b,2* + b.2* + b,2' + by2°
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The powers of 2 are:
2"=128,2°=64,2°=32,2°=16,2°=8,2=4,2'=2,2°= 1

The binary representation is analogous to the decimal representa-
tion of numbers, where 123" represents:

1 X 100 = 100
+2X 10= 20
+3X 1= 3§
= 123

Note that 100 = 10% 10 = 10%, 1 = 10%

In this “positional notation,” each digit represents a power of 10.
In the binary system, each binary digit or “'bit" represents a power
of 2, instead of a power of 10 in the decimal system.

Example: “‘00001001°" in binary represents:

1 X 1=1 {29
00X 2=0 {24
00X 4=0 (2
1X 8=8 (29
00X 16=0 {24
00X 32=0 (29
00X 64=0 {28
0X128=0 (29
in decimal; = 8

Let us examine some more examples:

**10000001" represents:

| O T T

el
b
WO SO OO O

OO OO
XX XXX XX
0RO D W g

ot
B O QO

in decimai: = 129

*“10000001°" represents, therefore, the decimal number 129,

20



BASIC CONCEPTS

By examining the binary representation of numbers, you will
understand why bits are numbered from 0 to 7, going from right to
left. Bit 0 is “‘b,” and corresponds to 2°% Bit 1 is “'b,” and cor-
responds to 2', and so on.

Decimal | Binary Decimal | Binary
0| 00000000 32 | 00100000
1 00000001 33 § 001000061
2 00000010 .

3] 00000011 .

4 | 00000100 .

51 00000101 62 1 00111111
6| 00000110 64 1 01000000
71 00000111 65 | 01000001
B | 00001000 .

9 | 00001001 *

10 | 00001010 127 101111111
11§ 00061011 128 | 16000000
12 | 00001100 129 { 10000001
13 | 00001101

14 | 00001110 .

15 | 00001111 .

16 | 00010000

17 | 060010001 .

. 254 111111110
31 | 060011111 255 | 11111111

Fig. 1.2: Decimal-Binary Table

The binary equivalents of the numbers from 0 to 255 are shown
in Fig. 1-2.

Exercise 1.1: What is the decimal value of “11111100"'¢
s -

B i

21



PROGRAMMING THE Z80

Decimal to Binary

Conversely, let us compute the bmary equivalent of “11"
decimal: 5
11 +2=5 remains 1 «~==] (L.SB)
5+2=2 remains } =1
2+2=1} remams 0 —=0
1+2=0 remains | —e] (MSB)

The binary equivalent is 1011 {read right-most column from bot-
tom to topl.

The binary equivalent of a decimal number may be obtained by
dividing successively by 2 until a quotient of 0 is obtained,

Exercise 1.2: What is the binary for 2572
+ Exercise 1.3: Convert 19 to binary, then back to decimal.
Operating on Binary Data

The arithmetic rules for binary numbers are straightforward.
The rules for addition are:

0+0= .0
0+1= 1
1+40=. 1
l+1=(1) O

where (1) denotes a “carry” of 1 (note that ‘*10"-is the binary
equivalent of “2” decimal). Binary subtraction will be performed
by “‘adding the complement” and will be explained once we learn
how to represent negative numbers.

Example:
(2} 10
+(1} +01
=(3) 11

Addition is performed just like in decimal, by adding columns,
from right to left:

Adding the right-most column:

10
+01

{0 + 1 = 1. No carry.j
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BASIC CONCEPTS

Adding the next column:

10
+01

11 {1 + ¢ =1. No carry.}

Exercise 1.4: Compute 5 -+ 10 in binary. Verify that the result is 16.

ol
Some additional exampies of binary addition: e ”: n
R
0010 {2 0011 (3)
-+0001 (1} 40001 (1}

=0011 (3} =0100 {4)

This last example illustrates the role of the carry.

Looking at the right-most bits: 1 + 1 = (1} 0
A carry of 1 is generated, which must be added to the next bits:

001 — column 0 has just been added
-+000 —
4+ 1 (carry)

= {1)0— where (1) indicates a new
carry into column 2,

The final result is: 0100

Another example:

0111 (7}
+0011 -+ (3}
1010 =(10}

In chis example, a carry is again generated, up to the left-most co-
lamn.

Exercise 1.5: Compute the result of:

1111
+0001

Er
=?:/E:F"J
{
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Does the result hold in four bits?

With eight bits, it is therefore possible to represent directly the
numbers 00000000 to 11111111, Le, "0’ to "255". Two
obstacies should be visible immediately. First, we are only
representing positive numbers. Second, the magnitude of these
numbers is limited to 255 if we use only eight bits. Let us address
each of these problems in turn.

Signed Binary

In a signed binary representation, the left-most bit is used to in-
dicate the sign of the number. Traditionally, ‘0" is used to denote
a positive number while “1"' is used to denote a regative number,
Now "11111111" will represent —127, while “01111111" will
represent +127. We can now represent positive and negative
numbers, but we have reduced the maximum magnitude of these
numbers to 127,

Example: 0000 0001” represents +1 ({the leading 0" is ““+",
followed by "'000 0001 = 1),

“1000 0001" is —1 {the leading *‘1" is ** "),

Exercise 1.6: What is the representation of **~5"" in signed binary?
ANeRdeE

Let us now address the magnitude problem: in order to represent
larger numbers, it will'be necessary to use a larger number of bits.
For example, if we use sixteen bits (two bytes) to represent
numbers, we will be able to represent numbers from —32K to
+32K in signed binary (1K in computer jargon represents 1,024,
Bit 15 is used for the sign, and the remaining 15 bits (bit 14 to bit
0) are used for the magnitude: 2'* = 32K. If this magnitude is still
too small, we will use 3 bytes or more. If we wish to represent large
integers, it will be necessary to use a larger number of bytes inter-
nally to represent them. This is why most simple BASICs, and
other languages, provide only a limited precision for integers. This
way, they can use a shorter internal format for the numbers which
they manipulate. Better versions of BASIC, or of these other
languages, provide a larger number of significant decimal digits at
the expense of a large number of bytes for each number.

Now let us solve another problem, the one of speed efficiency.
We are going to attempt performing an addition in the signed
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BASIC CONCEPTS

binary representation which we have introduced. Let us add *'—5"
and “+7".

+7 is represented by 00000111
—5 is represented by 10000101

The binary sum is: 10001100, or —12

This is not the correct result. The correct result should be +2. In
order to use this representation, special actions must be taken, de-
pending on the sign. This results in increased complexity and re-
duced performance. In other words, the binary addition of signed
numbers does not ‘work correctly.” This is annoying. Clearly, the
computer must not oniy represent information, but also perform
arithmetic on it.

The solution to this problem is called the two’s complement
representation, which will be used instead of the signed binary
representation, In order to introduce two's complement let us first
introduce an intermediate step: one's complement.

One's Complement

In the one’s complement representation, all positive integers are
represented in their correct binary format. For example “+3" is
represented as usual by 00000011. However, its complement **—3"'
is obtained by complementing every bit in the original representa-
tion. Bach 0 is transformed into a 1 and each 1 is transformed into
a 0. In our example, the one’s complement representation of *'—3"
will be 11111100.

Another example;

+2 is 00000010
—21is 11111101

Note that, in this representation, positive numbers start with a
“0" on the left, and negative ones with a “*1" on the left.

Exercise 1.7: The representation of “+6"" is “O0000110". What is
the representation of *‘~—6"" in one’s complement?

iy 0w 3
As a test, let us add minus 4 and plus 6:

25



PROGRAMMING THE Z80

—4 15 11111011
+6 is 00000110

the sum is: {1} 00000001 where (1) indicates a
carry

The “‘correct result’’ should be “2", or “00000010".

Let us try again:

—3is 11111100
—21s 11111101

The sum is: {1} 11111001

or ‘-6, plus a carry. The correct result should be “—.” The
representation of ** - 5" is 11111010, It did not work,

This representation does represent positive and negative
numbers. However the result of an ordinary addition does not
always come out “correctly.” We will use still another representa-
tion. It is evolved from the one’s complement and is called the
two’s complement representation.

Two's Complement Representation

In the two's complement representation, positive numbers are
still represented, as usual, in signed binary, just like in one’s com-
plement. The difference lies in the representation of negative
numbers. A negative number represented in two's complement is
obtained by first computing the one's complement, and then ad-
ding one. Let us examine this in an example:

+3 is represented in signed binary by 00000011. Its one’s com-
plement representation is 11111100. The two’s complement is ob-
tained by adding one. It is 11111101,

Let us try an addition;

{3) 00000011
+{5] -+00000101

=(8) =00001000

The result is correct.
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BASIC CONCEPTS

Let us try a subtractiom:

{3} 00000011
{—5 +11111011
=11111110

Let us identify the result by computing the two’s complement:

the one’s complement of 11111110 is 00000001
Adding 1 + 1

therefore the two’s complement 1s 00000010 or +2
Qur result above, **11111110" represents **—2", It is correct.

We have now tried addition and subtraction, and the results were correct
(ignoring the carry). It seems that two's complement works!

Exercise 1.8:  What is the two's complement representation of

27 GHL
Exercise 1.9: What is the two’s complement representation of
—j28ve 1opa Gee

Let us now add -+4 and —3 (the subtraction is performed by add-
ing the two’s complement):

+4 is 00000100
—3is 11111101

The result is: {1} 00000001

If we ignore the carry, the result is 00000001, Le., 1" in decimal.
This is the correct result. Without giving the complete mathe-
matical proof, let us simply state that this representation does
work. In two’'s complement, it is possible to add or subtract signed
numbers regardless of the sign. Using the usual rules of binary addi-
tion, the result comes out correctly, including the sign. The carry
is ignored. This is a very significant advantage. 1f it were not the
case, one would have to correct the result for sign every time, caus-
ing a much slower addition or subtraction time.

For the sake of completeness, let us state that two's complement
is simply the most convenient representation to use for simpler
processors such as microprocessors. On complex processors, other
representations may be used. For example, one’s complement may
be used, but it requires special circuitry to ‘‘correct the result.”
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From this point on, all signed integers will implicitly be represented
mternally in two's complement notation. See Fig. 1.3 for a table of
two’s complement numbers.

Exercise 1.10: What are the smallest and the largest numbers
which ane may represent in two's camplement notation, using only
one byte? 28123

Exercise 1.11: Compute the two's complement of 20. Then com-
pute the two's complement of your result. Do you find 20 again?

The following examples will%%}}ve to demonstrate the rules of two's
complement. In particular, C denotes a possible carry {or borrow}
condition. (It is bit 8 of the result.)

V denotes a two’s complement overflow, i.e., when the sign of the
result is changed “accidentally” because the numbers are too
large. It is an essentially internal carry from bit 6 into bit 7 {the
sign bit). This will be clarified below.

Let us now demonstrate the role of the carry **C" and the overflow
4 LV ’ !5

The Carry C

Here is an example of a carry:

(128) 10000000
+(129) +10000001

{257) = {1} 00000001
where (1) indicates a carry.

The result requires a ninth bit {bit *‘8”, since the right-most bit is
"0} 1t is the carry bit.

If we assume that the carry is the ninth bit of the result, we
recognize the result as being 100000001 = 257.

However, the carry must be recognized and handled with care.
Inside the microprocessor, the registers used to hold information
are generally only eight-bit wide.When storing the result, only bits 0 to
7 will be preserved.

A carry, therefore, always requires special action: it must be
detected by special instructions, then processed. Processing the
cany means either storing it somewhere (with a special instruc-
tion}, or ignoring it, or deciding that it is an error (if the largest
authorized result is “11111111").
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2's complement 2’s complement
+ code - code
+127 011111114 - 128 10000600
+126 Q1111110 - 127 10000001
+125 01111101 - 126 10000010
~ 125 1000001 1
+65 01000001 — 65 TUSENEE
+ 64 01000000 - G4 11000000
+63 ooL1111d —-63 11000001
+33 00100001 -33 PEO1111]
+32 00100000 - 32 11100000
+31 QOOELIILE —31 11100001
+17 00010001 17 11101111
+ 16 00010000 - 16 11110000
+15 00001111 - 15 11110001
+ 14 00001110 - 14 11110010
+ 13 00001101 -13 11110011
+12 00001100 —12 11110100
+ 11 00001011 - 11 11110101
+10 00001010 - 10 11110110
+9 (0001001 -9 11110111
+8 00001000 -8 11111000
+7 00000111 -1 11111001
+6 00000110 -6 F1111010
+5 00000101 -3 IARRRLIIE
+4 (0000100 -4 PHI11100
+3 00000011 -3 FEHI1TI0]
+2 00000010 -2 HRNRRRRLY
+1 00000001 -1 TEELLLD
+0 00000000

Fig. 1.3: 2’s Complement Table
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Cuverflow V
Here is an example of overflow:
bit 6
bit 7“**“""""%
01000000 (64)
+ 01000001 + (65}

= 10000001 ={-~127)

An internal carry has been generated from bit 6 into bit 7. This is
called an overflow.

The result is now negative, by accident.” This situation must
be detected, so that it can be corrected.

Let us examine anocther situation:

i1 (=1)
+11111111  +{=1}

=(1} 11111110 ={—-2}
\

carry

In this case, an internal carry has been generated from bit 6 into
bit 7, and also from bit 7 into bit 8 {the formal “Carry'’' C we have
examined in the preceding section). The rules of two's complement
arithmetic specify that this carry should be ignored. The result is
then correct,

This is because the carry from bit 6 into bit 7 did not change the
stgn bit.

This is not an overflow condition. When operating on negative
numbers, the overflow is not simply a carry from bit 6 into bit 7.
Let us examine one more example,

11600000 (—64)
+10111111 (—65)

={1) 01111111 {(+127)

Y
carry

This time, there has been no internal carry from bit 6 into bit 7, but
there has been an external carry. The result is incorrect, as bit 7
has been changed. An overflow condition should be indicated.
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Overflow will occur in four situations:

1—adding large positive numbers

2--adding large negative numbers

3—subtracting a large positive number from a large negative
number

4--subtracting a large negative number from a large positive
number,

Let us now improve our definition of the overflow:

Technically, the overflow indicator, a special bit reserved for this
purpose, and’called a “*flag,”” will be set when there is a carry from
bit 6 into bit 7 and no external carry, or else when there is no carry
from bit 6 into bit 7 but there is an external carry. This indicates
that bit 7, ie., the sign of the result, has been accidentally
changed. For the technically-minded reader, the overflow flag is
set by Exclusive ORing the carry-in and carrv-out of bit 7 (the sign
bit}. Practically every microprocessor is supplied with a special
overflow flag to automatically detect this coundition, which re-
quires corrective action.

Overflow indicates that the result of an addition or a subtraction
requires more bits than are available in the standard eight-bit
register used to contain the result.

The Carry and the Overflow

The carry and the overflow bits are called "“flags.” They are pro-
vided in every microprocessor, and in the next chapter we will
learn to use them for effective programming. These two indicators
are located in a special register called the flags or “status”
register. This register also contains additional indicators whose
funetion will be clarified in Chapter 4.

Examples

Let us now illustrate the operation of the carry and the overflow
in actual examples. In each example, the symbol V denotes the
overflow, and C the carry.

If there has been no overflow, V = 0. If there has been an
overflow, V = 1 {same for the carry C). Remember that the rules of
two's complement specify that the carry be ignored. (The
mathematical proof is not supplied here.)
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Positive-Positive

00060110 {+6)
+ 00001000 (+8)

= 00001110 ({+14) V0 C:0
(CORRECT)
Positive-Positive with Overflow

011131111 (+127)
+ 00000001 {+1)

= 10000000 (-128) V:1 C:0
The above is invalid because an overflow has occurred.
{(ERROR}

Positive-Negative (result positivej

000600100 {+4)
4+ 11111110 {—2)

=(11000000610 {42} V:0 C:1 (disregard)
(CORRECT)
Positive-Negative {result negative;

00000010 (+2)
+ 11111100 (—4)

= 11111110 (-2} V0 C:0

(CORRECT)
Negative-Negative
11111110 (—2)
+ 11111100 {—4)
={1}11111010 {86} V:0 C:1 {disregard)
(CORRECT)

Negative-Negative with Overflow

10000001 (—127)
+ 110006010 (—62)

=({1)01000011 &N Vi1 C1
(ERROR}
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This time an “underflow’ has occurred, by adding two large
negative numbers. The result would be —189, which is too large to
reside in eight bits.

Exercise 1.12:  Complete the following additions. Indicate the

result, the carry C, the overflow V, and whether the result is correct
or not:

10111111 () 11111010 ()

+11000001  (___j +11111001 ()

= Vi C = Vi C

OCORRECT ] ERROR [JCORRECT [ ERROR
00010000 () 01111110 ()

+01000000  {___ +00101010 ()

= Vi C = Vi G

[J CORRECT O ERROR 0 CORRECT O ERROR

Exercise 1.13: Can you show an example of overflow when adding a
positive and a negative number? Why?

Fixed Format Representation

Now we know how to represent signed integers. However, we
have not yet resolved the probiem of magnitude. If we want to
represent larger integers, we will need several bytes. In order to
perform arithmetic operations efficiently, it is necessary to use a
fixed number of bytes rather than a variable one. Therefore, once
the number of bytes is chosen, the maximum magnitude of the
number which can be represented is fixed.

Exercise 1.14: What are the largest and the smallest numbers
which may be represented in two bytes using two's complement?

The Magnitude Problem

When adding numbers we have restricted ourselves to eight bits
because the processor we will use operates internally on eight bits
at a time. However, this restricts us to the numbers in the range
—128 to +127. Clearly, this is not sufficient for many applications.

Multiple precision will be used to increase the number of digits
which can be represented. A two-, three-, or N-byte format may

33
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then be used. For example, let us examine a 16-bit, ‘‘double-pre-
cision” format:

00000000 00000000  is 0"
00000000 006000001 is 1"

01111111 11111111 1s *32767"
11111113 11111111 is *—1"
11111111 11111110 is *—2"

Exercise 1,15: What is the largest negative integer which can be
represented in a two's complement triple-precision format?

However, this method will result in disadvantages. When adding
two numbers, for example, we will generally have to add them
eight bits at a time. This will be explained in Chapter 3 (Basic Pro-
gramming Techniques). It results in slower processing. Also, this
representation uses 16 bits for any number, even if it could be
represented with only eight bits, It is, therefore, common to use 16
or perhaps 32 bits, but seldom more.

Let us consider the following important point: whatever the
number of bits N chosen for the two’'s complement representation,
it is fixed. If any result or intermediate computation should
generate a number requiring more than N bits, some bits will be
lost. The program normally retains the N left-most bits (the most
significant) and drops the low-order ones. This is called truncating
the resuit.

Here is an example in the decimal system, using a six digit
representation:

123456
X 1.2

246912
123456

=1481472

The result requires 7 digits! The 27 after the decimal point will be
dropped and the final result will be 148147, It has been truncated.
Usually, as long as the position of the decimal point is not lost, this
method is used to extend the range of the operations which may be
performed, at the expense of precision.

The problem is the same in binary. The details of a binary multi-
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plication will be shown in Chapter 4.

This fixed-format representation may cause a loss of precision,
but it may be sufficient for usual computations or mathematical
operations.

Unfortunately, in the case of accounting, no loss of precision is
tolerable, For example, if a customer rings up a large total on a
cash register, it would not be acceptable to have a five figure
amount to pay, which would be approximated to the dollar,
Another representation must be used wherever precision in the
result is essential. The solution normally used is BCD, or
binary-coded decimal,

BCD Representation

The principle used in representing numbers in BCD is to encode
each decimal digit separately, and to use as many bits as necessary
to represent the complete number exactly. In order to encode each
of the digits from 0 through 9, four bits are necessary. Three bits
would only supply eight combinations, and can therefore not en-
code the ten digits. Four bits allow sixteen combinations and are
therefore sufficient to encode the digits 0" through “'9", It can
also be noted that six of the possible codes will not be used in the
BCD representation (see Fig. 1-4}. This will result {ater on in a potential
problem during additions and subtractions, which we will have to solve.

BCD BCD
CODE SYMBQOL CODE SYMBOL

0000 0 1000 8

0001 1 1001 9

0010 2 1010 unused
0011 3 1611 unused
0100 4 1100 unused
0101 5 1101 unused
0110 & 1110 unused
Oi1l 7 1l unused

Fig. 1.4: BCD Table
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Since only four bits are needed to encode a BCD digit, two BCD digits
may be encoded in every byte. This is called “‘packed BCD.”’

As an example, “00000000" will be 00" in BCD. 10011001
will be "'99",

A BCD code is read as follows:
0010 0001
BCD digit 2"
BCD digit "'1" -+
BCD number ©“21”
Exercise 1.16: What is the BCD representation for V2877 ©'91''?
Exercise 1.17: Is V10100000" a valid BCD representation? Why?

As many bytes as necessary will be used to represent all BCD
digits. Typically, one or more nibbles will be used at the beginning
of the representation to indicate the total number of nibbles, Le.,
the total number of BCD digits used. Another nibble or byte will
be used to denote the position of the decimal point. However, con-
ventions may vary.

Here 1s an example of a representation for multibyte BCD in-
tegers:

[ T3 T + T 2 [ 2 [ 1 ] (3bytes
R WP
nun‘%beg l number **221"
of digits

fup to 255) sign

This represents +221
{The sign may be represented by 0000 for +, and 0001 for —, for
example.}

Exercise 1.18: Using the same convention, represent “—23123"
Show it in BCD format, as above, then in binary.

Exercise 1.19: Show the BCD for “222" and “111", then for the re-
sult of 222 X 111. {Compute the result by hand, then show it in the
abouve representation.j

The BCD representation can easily accommodate decimal
numbers,
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For example, +2.21 may be represented by:
digit 3 digit 2 digit 1

[3 L2 ] + 2 | 2 1|
e T e
l l i 221
3 digits “"isonthe +

left of digit 2

The advantage of BCD is that it yields absolutely correct
results. Its disadvantage is that it uses a large amount of memory
and results in slow arithmetic operations. This is acceptable only
in an accounting environment and is normally not used in other
cases.

Exercise 1.20: How many bits are required to encode ‘'9999" in
BCD? And in two's complement?

We have now solved the problems associated with the represen-
tation of integers, signed integers and even large integers. We
have even already presented one possible method of representing
decimal numbers, with BCD representation. Let us now examine
the problem of representing decimal numbers in a fixed length for-
mat,

Floating-Pogint Representation

The basic principie is that decimal numbers must be represented
with a fixed format. In order not to waste bits, the representation
will normalize all the numbers.

For example, “0.000123" wastes three zeros on the left of the
number, which have no meaning except to indicate the position of
the decimal point. Normalizing this number results in.123 X 10,
“.123" is called a normalized mantissa, **—3" is called the expo-
nent. We have normalized this number by eliminating all the meaning-
less zeros on the left of it and adjusting the exponent,

Let us consider another example:

22.1 1s normalized as .221 x 10?

or M X 10E where M is the mantissa, and E is the exponent.
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It can be readily seen that a normalized number is characterized
by a mantissa less than 1 and greater or equal to .1 in all cases
where the number is not zero. In other words, this can be repre-
sented mathematically by:

AdsM<lorlosM<CI0®
Similarly, in the binary representation:

2-1<M<2 (or .55 M<1)
Where M is the absolute value of the mantissa (disregarding the
s1gnj.
For example:

111.01 is normalized as: .11101 X 2%

The mantissa 1s 11101,

The exponent is 3.

Now that we have defined the principle of the representation,
let us examine the actual format. A typical floating-point represen-
tation appears below.

3 24 23 & 15 8 7 0

|
5 EXP 5 M oA N T 1 5 5 A
i

Fig. 1.5: Typical Floating-Point Representation

In the representation used in this example, four bytes are used
for a total of 32 bits, The first byte on the left of the illustration is
used to represent the exponent. Both the exponent and the man-
tissa will be represented in two's complement. As a result, the
maximum exponent will be — 128, *8” 1n Fig. 1.5 denotes the sign
bit.

Three bytes are used to represent the mantissa. Since the first
bit in the two’s complement representation indicates the sign, this
feaves 23 bits for the representation of the magnitude of the man-
tissa.

38



BASIC CONCEPTS

Exercise 1.21: How many decimal digits can the rmantissa repre-
sent with the 23 bits?

This is only one example of a floating point representation. It is
possible to use only three bytes, or it is possible to use more. The
four-byte representation proposed above is just a common one
which represents a reasonable compromise in terms of accuracy,
magnitude of numbers, storage utilization, and efficiency in
arithmetic operation,

We have now explored the problems associated with the rep-
resentation of numbers and we know how to represent them in in-
teger form, with a sign, or in decimal form. Let us now examine
how to represent alphanumerie data internally.

Representing Alphanumeric Data

The representation of alphanumeric data, i.e. characters, is com-
pletely straightforward: all characters are encoded in an eight-bit
code. Only two codes are in general use in the computer world, the
ASCII Code, and the EBCDIC Code. ASCII stands for ** American
Standard Code for Information Interchange,” and is universally
used in the world of microprocessors. EBCDIC is a variation of
ASCII used by IBM, and therefore not used in the microcomputer
world unless one interfaces to an IBM terminal.

Let us briefly examine the ASCII encoding, We must encode 26
letters of the alphabet for hoth upper and lower case, plus 10
numeric symbols, plus perhaps 20 additional special symbols. This
can be easily accomplished with 7 bits, which allow 128 possible
codes. (See Fig.1-6.3 All characters are therefore encoded in 7 bits.
The eighth bit, when it is used, is the parity bit. Parity is a tech-
nique for verifying that the contents of a byte have not been ac-
cidentally changed. The number of 1's in the byte is counted and
the eighth bit is set to one if the count was odd, thus making the
total even. This is called even parity. One can also use odd parity,
L.e. writing the eighth bit (the left-most) so that the total number of
1's in the byte is odd.

Example: let us compute the parity bit for '0010011" using even
parity. The number of 1's is 3. The parity bit must thereforebeal
so that the total number of bits is 4, i.e. even. The result is
10010011, where the leading 1 is the parity bit and 0010011 iden-
tifies the character.
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The table of 7-bit ASCII codes is shown in Fig. 1-6. In practice, it
is used ‘‘as is,”” i.e. without parity, by adding a 0 in the left-most
position, or else with parity, by adding the appropriate extra bit on
the left.

Exercise 1.22: Compute the 8-bit representation of the digits 0"
through “'9", using even parity. (This code will be used in applica-
tion examples of Chapter 8

Exercise 1,23: Same for the letters “A’ through “F".

Exercise 1.24: Using a non-parity ASCII code (where the left-most
bit is “07), indicate the binary contents of the 4 characters below:

rtzq L)
L4 K? ry
¢ f3 1
l'l‘b LR
HEX _MSD 0 1 2 3 4 5 6 7
iso | BITS {000 00t 010 011 100 101 110 111
0 0000 | NUL DLE SPACE 0 @ P - p
1 0001 | SOH  DCH ! 1A Q a g
2 goto | STX  DGC2 - 2 8 R b r
3 go1t | ETX  DC3 # 3 & & ¢ s
4 0100 § EOT  DC4 $ 4 D T d
5 0101 | ENQ  NAK % 5 E U e u
6 0110 | ACK  SYN & & F VvV v
7 o111 { BEL  ETB ; 7 G W g w
8 1000 85  CAN ( 8 H X nh  x
9 1001 HT EM ) 9 1Y oy
A 1010 LF suB : dZ i oz
B 1011 VT ESC + . K [ k [
C 1100 FF FS < LA I
D 1101 CR GS - = M ] m |
E 1110 S0 RS : > N A N
F 1111 s us / " 0 <« o DEL

Fig. 1.6: ASCII Conversion Table

{see Appendix B for abbreviationsi

In specialized situations such as telecommunications, other
codings may be used such as error-correcting codes. However they
are beyond the scope of this book.
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We have examined the usual representations for both program
and data inside the computer. Let us now examine the possible ex-
ternal representations.

EXTERNAL REPRESENTATION OF INFORMATION

The external representation refers to the way information is pre-
sented to the user, i.e. generally to the programmer, Information
may be presented externally in essentially three formats: binary,
octal or hexadecimal and symbolic.

1. Binary

It has been seen that information is stored internally in bytes,
which are sequences of eight bits {0's or 1's). It is sometimes
desirable to display this internal information directly in its binary
format and this is called binary representation. One simple exam-
ple is provided by Light Emitting Diodes (LEDs} which are essen-
tially miniature lights, on the front panel of the microcomputer. In
the case of an eight-bit microprocessor, a front panel will typically
be equipped with eight LEDs to display the contents of any inter-
nal register. (A register is used to hold eight bits of information
and will be described in Chapter 2). A lighted LED indicates a one.
A zero is indicated by an LED which is not lHghted. Such a hinary
representation may be used for the fine debugging of a complex
program, especially if it involves input/output, but is naturally
Impractical at the human level. This is because in most cases, one
likes to look at information in symbolic form. Thus 9" is much
easier to understand or remember than “1001’". More convenient
representations have been devised, which improve the person-
machine interface.

2. Octal and Hexadecimal

“Octal” and "hexadecimal’’ encode respectively three and four
binary bits into a unique symbol. In the octal system, any
combination of three binary bits is represented by a number be-
tween 0 and 7.

"“QOctal" Is a format using three bits, where each combination of
three bits is represented by a symbol between 0 and 7;
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bmary

octal

000
001
010
011
100
101
110
111

-} N T R GO DD e (O

Fig. 1.7: Octal Symbels

For example, 00 100 100" binary is represented by:

vy v vy
0 4 4

or ‘044’ in octal.

Another example: 11 111 111 is:

v v
3 7

or 877" in octal.

Y
7

Conversely, the octal 211" represents:

010 001 001

or “10001001"" binary.

Octal has traditionally been used on older computers which were
employing various numbers of bits ranging from 8 to perhaps 64.
More recently, with the dominance of eight-bit microprocessors,
the eight-bit format has become the standard, and another more

practical representation is used. This is Aexadecimal.

In the hexdecimal representation, a group of four bits is en-
Hexadecimal digits are
represented by the symbols from 0 to 9, and by the letters A, B, C,
D, E, F. For example, *'0000" is represented by 07, "“0001" 1s
represented by 1’ and “*1111"" is represented by the letter “F"

coded as one hexadecimal

(see Fig. {-8).

42

digit.



BASIC CONCEPTS

DECIMAL BINARY HEX OCTAL
0 0000 0 0
1 001 1 1
2 0010 2 2
3 0on 3 3
4 010G 4 4
5 0101 5 5
8 0110 6 5
7 0111 7 7
8 1000 8 10
g 1001 g 11
10 1010 A 12
1 101 8 13
12 1100 c 14
13 1101 D 15
14 1110 E 18
15 1111 F 17

Fig. 1.8: Hexadecimal Codes
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Example: 1010 0001 in binary is represented by
e R

A 1 in hexadecimal

Exercise 1.25: What is the hexadecimal representation of
©10101010¢°

Evercise 1.26: Conversely, what is the binary equivalent of *'FA™
hexadecimal?

Exercise 1.27: What is the octal of “01000001"?

Hexadecimal offers the advantage of encoding eight bits into on-
ly two digits. This is easier to visualize or memorize and faster to
type into a computer than its binary equivalent. Therefore, on
most new microcomputers, hexadecimal is the preferred method of
representation for groups of bits.

Naturally, whenever the information present in the memory has
a meaning, such as representing text or numbers, hexadecimal is
not convenient for representing the meaning of this information
when it is brought out for use by humans.

Symbolic Representation

Symbolic representation refers to the external representation of
information in actual symbolic form. For example, decimal num-
bers are represented as decimal numbers, and not as sequences of
hexadecimal symbols or bits. Similarly, text is represented as
such. Naturally, symbolic representation is most practical to the
user. It is used whenever an appropriate display device is
available, such as a CRT display or a printer. (A CRT display is a
television-type screen used to display text or graphics.} Unfortu-
nately, in smaller systems such as one-board microcomputers, it is
uneconomical to provide such displays, and the user is restricted
to hexadecimal communication with the computer.

Summary of External Representations

Symbolic representation of information is the most desirable
since it Is the most natural for a human user. However, it requires
an expensive interface in the form of an alphanumeric keyboard,
plus a printer or a CRT display. For this reason, it may not be
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available on the less expensive systems. An alternative type of rep-
resentation is then used, and in this case hexadecimal is the domi-

nant representation. Only in rare cases relating to fine de-bugging
at the hardware or the software level is the binary representation
used. Binary directly displays the contents of registers of memory
in binary format.

{The utility of a direct binary display on a front panel has always
been the subject of a heated emotional controversy, which will not
be debated here.)

We have seen how to represent information internally and exter-
nally. We will now examine the actual microprocessor which will
manipulate this information.

Additional Exercises

Exercise 1.28: What is the advantage of two's complement over
other representations used to represent signed numbers?

Exercise 1.29: How would you represent '1024"" in direct binary?
Signed binary? Two's complement?

Exercise 1.30: What is the V-bit? Should the programmer test it
after an addition or subtraction?

Exercise {.31: Compute the two's complement of “+16", “+17",
”'+'18", "—16”, ..____17n‘ |s_181!}

Exercise 1.32: Show the hexadecimal representation of the follow-
ing text, which has been stored internally in ASCII format, with
no parity: = “"MESSAGE",

45



2

Z80 HARDWARE ORGANIZATION

INTRODUCTION

In order to program at an elementary level, it 15 not necessary (o
understand in detail the internal structure of the processor that one is
using., However, in order to do efficient programming, such an
understanding is required. The purpose of this chapter is to present the
basic hardware concepts necessary for understanding the operation of
the ZB0 system. The complete microcomputer system includes not only
the microprocessor unit (here the Z80), but also other components.
This chapter presents the Z80 proper, while the other devices (mainly
input/output) will be presented in a separate chapter (Chapter 7).

We will review here the basic architecture of the microcomputer
systemn, then study more ciosely the internal organization of the Z80.
We will examine, in particular, the various registers. We will then study
the program execution and sequencing mechanism. From a hardware
standpoint, this chapter is only a simplified presentation. The reader in-
terested in gaining detailed understanding is referred to our book ref.
C201 (“*Microprocessors,”” by the same author}.

The Z80 was designed as a replacement for the Intel 8080, and to of-
fer additional capabilities. A number of references will be made in this
chapter to the 8080 design.

SYSTEM ARCHITECTURE

The architecture of the microcomputer system appears in Figure 2.1,
The microprocessor unit (MPU), which will be a Z80 here, appears on
the left of the illustration. It implements the functions of a central-
processing uni (CPU) within one chip: it includes an arithmetic-logical
unit {ALY), plus its internal registers, and a controf unit (CU), in
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charge of sequencing the system. Its operation will be explained in this
chapter,

64

=M K 7 73

- 0

i 780 ROM RAM PIO <:>m "

%, 2 - T
ST [ ARl

¥ |

AODRESS  BuS >
< CORIROL 803 >

AR

v GHND

Fig. 2.1: Standard Z80 System

The MPU creates three buses: an 8-bit bidirectional dara bus, which
appears at the top of the illustration, a 16-bit unidirectional address
bus, and a control bus, which appears at the bottom of the illustration.
Let us describe the function of each of the buses.

The data bus carries the data being exchanged by the various ele-
ments of the system. Typically, it will carry data from the memory to
the MPU or from the MPU to the memory or from the MPU to an in-
put/output chip. (An input/output chip is a component in charge of
communicating with an external device.)

The address bus carries an address generated by the MPU, which wili
select one internal register within one of the chips attached to the
system. This address specifies the source, or the destination, of the data
which will transit along the data bus.

The controf bus carries the various synchronization signals required
by the system.

Having described the purpose of buses, fet us now connect the addi-
tional components required for a complete system,

Every MPU requires a precise timing reference, which is supplied by
a clock and a crystal. In most “*older’” microprocessors, the clock-oscil-
lator is external to the MPU and requires an extra chip. In most recent
microprocessors, the clock-oscillator is usually incorporated within the
MPU. The quartz crystal, however, because of its bulk, is always exter-
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nal to the system. The crystal and the clock appear on the left of the
MPU box in Figure 2.1,

Let us now turn our attention to the other elements of the system.
Going from left to right on the illustration, we distinguish:

The ROM is the read-only memory and contains the program for the
system. The advantage of the ROM memory is that its contents are per-
manent and do not disappear whenever the system is turned off. The
ROM, therefore, always contains a bootstrap or a monitor program
(their function will be explained later} to permit initial system opera-
tion. In a process-control environment, nearly all the programs will
reside in ROM., as they will probably never be changed. In such a case,
the industrial user has to protect the system against power failures; pro-
grams must not be volatile. They must be in ROM.

However, in a hobbyist environment, or in a program-development
environment (when the programmer tests his program), most of the
programs will reside in RAM so that they can be easily changed. Later,
they may remain in RAM, or be transferred into ROM, if desired.
RAM, however, is volatile. Its contents are fost when power is turned
off.

The RAM (random-access memory) is the read/write memory for the
system. In the case of a control system, the amount of RAM will
typically be small (for data only). On the other hand, in a program-
development environment, the amount of RAM will be large, as it will
contain programs plus development software, All RAM contents must
be loaded prior to use from an external device.

Finally the system will contain one or more interface chips so that it
may communicate with the external world. The most frequently used
interface chip is the PIO or parallel input/output chip. It is the one
shown on the illustration. This PIO, like all other chips in the system,
connects to all three buses and provides at least two 8-bit ports for
communication with the outside world. For more details on how an ac-
tual PIO works, refer to book £201 or, for specifics of the Z80 system,
refer to Chapter 7 (Input/Qutput Devices).

All the chips are connected to all three buses, including the control
bus.

The functional modules which have been described need not
necessarily reside on a single LSI chip. In fact, we could use combina-
tion chips, which may include both PIO and a limited amount of ROM
or RAM.

Still more components will be required to build a real system. In par-
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ticular, the buses usually need to be buffered. Also, decoding logic may
be used for the memory RAM chips, and, finally, some stgnals may
need to be amplified by drivers. These auxiliary circuits will not be
described here as they are not relevant to programming. The reader in-
terested in specific assembly and interfacing techniques is referred to
book C207 ““Microprocessor Interfacing Techniques.'’

INSIDE A MICROPROCESSOR

The large majonity of all microprocessor chips on the market today
implement the same architecture. This ““standard’’ architecture will be
described here. It is shown in Figure 2.2. The modules of this standard
microprocessor will now be detailed, from right to left.
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Fig. 2.2: “*Standard’’ Microprocessor Architecture

The control box on the right represents the control unit which syn-
chromzes the entire system. lts role will be clarified within the re-
mainder of this chapter.
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The ALU performs arithmetic and logic operations. A special
register equips one of the inputs of the ALU, the left input here. It is
called the accumulator. (Several accumulators may be provided.) The
accumulator may be referenced both as input and output (source and
destination) within the same instruction.

The ALU must also provide shift and rotate facilities.

A shift operation consists of moving the contents of a byte by one or
more positions to the left or to the right. This is illustrated in Figure
2.3. Each bit has been moved to the left by one position. The details of
shifts and rotations will be presenied in the next chapter.

SHIFT LEFT

P N D DU NP b NS b Nl I N S

( CARRY

ROTATE LEFT

L DD DN DY -
( )

Note: Some Shift and Rotate insiructions do not include the Carry.

Fig. 2.3: Shift and Rotate

The shifter may be on the ALU output, as illustrated in Figure 2.2, or
may be on the accumulator input.

To the left of the ALU, the flags or status register appear. Their role
is to store exceptional conditions within the microprocessor. The con-
tents of the flags register may be tested by specialized instructions, or
may be read on the internal data bus. A conditional instruction will
cause the execution of a new program, depending on the value of one of
these bits.

The role of the status bits in the Z80 will be examined later in this
chapter.
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Setting Flags

Most of the instructions executed by the processor will modify some
or all of the flags. It is important to always refer to the chart provided
by the manufacturer listing which bits will be modified by the instruc-
tions. This is essential in understanding the way a program is being ex-
ecuted. Such a chart for the Z80 15 shown in Figure 4-17,

The Registers

Let us look now at Figure 2.2. On the left of the illustration, the Teg-
isters of the microprocessor appear. Conceptually, one can distinguish
the general purpose registers and the address registers,

The General-Purpose Registers

General-purpose registers must be provided in order for the ALU to
manipulate data at high speed. Because of restrictions on the number of
bits which it is reasonable to provide within an instruction, the number
of (directly addressable) registers is usually limited to fewer than eight.
Each of these registers is a set of eight flip-flops, connected to the
bidirectional internal data bus. These eight bits can be transferred
simultaneously to or from the data bus. The implementation of these
registers in MOS flip-flops provides the fastest level of memory
available, and their contents can be accessed within tens of
nanoseconds.

Internal registers are usually labelled from 0 to n. The role of these
registers is not defined in advance: they are said to be “‘general
purpose.”” They may contain any data used by the program,

These general-purpose registers will normally be used to store eight-
bit data. On some microprocessors, facilities exist to manipulate fwo of
these registers at a time. They are then called “‘register pairs.’’ This ar-
rangement facilitates the storage of 16-bit quantities, whether data or
addresses.

The Address Registers

Address registers are [6-bit registers intended for the storage of ad-
dresses. They are also often called data counters or pointers. They are
double registers, i.e., two eight-bit registers. Their essential
characteristic is to be connected to the address bus. The address
registers create the address bus. The address bus appears on the left and
the bottom part of the illustration in Figure 2.4.
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The only way to load the contents of these 16-bit registers is via the
data bus. Two transfers will be necessary along the data bus in order to
transfer 16 bits. In order to differentiate between the lower half and the
higher half of each register, they are usually labelled as L (low) or H
(high), denoting bits O through 7, and 8 through 15 respectively, This
label is used whenever if 1s necessary to differentiate the halves of these
registers. At least two address registers are present within most
microprocessors. “MUX" in Fig. 2.4 stands for multiplexer.

DATA BUS (8}
Hux
INDEX | REGISTER
i 16-Bi7
STACK | POINTER ADDRESS REGISTERS
PROGRAM | COUNTER
inx |

ADDRESS BUS (16)

Fig. 2.4: The 16-bit Address Registers Create the Address Bus

Program Counter (PC)

The program counter must be present in any processor. It contains
the address of the next instruction to be executed. The presence of the
program counter is indispensable and fundamental to program execu-
tion. The mechanism of program execution and the automatic sequenc-
ing implemented with the program counter will be described in the next
section. Briefly, execution of a program is normally sequential. In
order to access the next instruction, it is necessary to bring 1t from the
memory into the microprocessor. The contents of the PC will be
deposited on the address bus, and transmitted towards the memory.
The memory will then read the contents specified by this address and
send back the corresponding word to the MPU. This 1s the instruction.
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In a few exceptional microprocessors, such as the two-chip F8, there is
no PC on the microprocessor. This does not mean that the system does
not have a program counter. The PC happens to be implemented direct-
ly on the memory chip, for reasons of efficiency,

Stack Pointer (SP)

The stack has not been introduced yet and will be described in the
next section. In most powerful, general-purpose microprocessors, the
stack is implemented in *‘software,’’ i.e., within the memory. In order
to keep track of the top of this stack within the memory, a l6-bit
register is dedicated to the stack pointer or SP. The SP contains the ad-
dress of the top of the stack within the memory. It will be shown that
the stack is indispensable for interrupts and for subroutines.

Index Register (IX)

Indexing is a memory-addressing facility which is not always pro-
vided in microprocessors. The various memory-addressing techniques
will be described in Chapter 5. Indexing is a facility for accessing blocks
of data in the memory with a single instruction. An index register will
typically contain a displacement which will be automatically added to a
base (or it might contain a base which would be added to a displace-
ment). In short, indexing is used to access any word within a block of
data.

The Stack

A stack is formally called an LIFO structure (last-in, first-out). A
stack is a set of registers, or memory locations, allocated to this data
structure. The essential characteristic of this structure is that it is a
chronological structure. The first element introduced into the stack is
always at the bottom of the stack. The element most recently deposited
in the stack is on the top of the stack. The analogy can be drawn with a
stack of plates on a restaurant counter. There is a hole in the counter
with a spring in the bottom. Plates are piled up in the hole. With this
organization, it is guaranteed that the plate which has been put first in
the stack (the oldest} is always at the bottom. The one that has been
placed most recently on the stack is the one which is on top of it. This
example also illustrates another characteristic of the stack. In normaf
use, a stack is only accessible via two instructions: *‘push’” and “‘pop”’
(or “*pull’”). The push operation results in depositing one element on
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top of the stack (two in the case of the Z80). The puil operation consists
of removing one element from the stack. In the case of a
microprocessor, it is the accumudator that will be deposited on top of
the stack. The pop will result in a transfer of the top element of the
stack into the accumulator. Other specialized instructions may exist to
transfer the top of the stack between other specialized registers, such as
the status register. The Z80 is more versatile than most in this respect.

The availability of a stack is required to implement three program-
ming facilities within the computer system: subroutines, interrupts, and
temporary data storage. The role of the stack during subroutines will be
explained in Chapter 3 (Basic Programming Techniques). The role of
the stack during interrupts will be explained in Chapter 6 {Input/Qut-
put Techniques). Finally, the role of the stack 1n saving data at high
speed will be explained during specific application programs.

We will simply assume at this point that the stack is a required facility
in every computer system. A stack may be implemented in two ways:

1. A fixed number of registers may be provided within the micro-
processor itself. This is a “‘hardware stack.” It has the advantage of
high speed. However, it has the disadvantage of a limited number of
registers.

2. Most general-purpose microprocessors choose another approach,
the software stack, in order not to restrict the stack to a very small
number of registers. This is the approach chosen in the Z80. In the soft-
ware approach, a dedicated register within the microprocessor, here
register SP, stores the stack pointer, 1.e., the address of the top element
of the stack (or, sometimes, the address of the top element of the stack
plus one). The stack is then implemented as an area of memory. The
stack pointer will therefore require 16 bits to pomt anywhere in the
femory.

_MICROPROCESSOR 7 MEMORY 0O
F REGISTER |

|
t
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i
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15 ABDRESS 19
sP } STACK
| — BASE

Fig. 2.5: The Two-Stack Manipulation Instructions
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The Instruction Execution Cycle

Let us refer now to Figure 2.6, The microprocessor unit appears on
the left, and the memory appears on the right. The memory chip may be
a ROM or a RAM, or any other chip which happens to contain
memory. The memory is used to store instructions and data, Here, we
will fetch one mstruction from the memory to illustrate the role of the
program counter. We assume that the program counter has valid con-
tents, It now holds a 16-bit address which is the address of the next in-
struction to fetch in the memory. Every processor proceeds in three
cycles:

1—fetch the next instruction
2—decode the instruction
3—execute the instruction

Fetch

Let us now follow the sequence. In the first cycle, the contents of the
program counter are deposited on the address bus and gated to the
memory (on the address bus). Simultaneously, a read signal may be
tssued on the control bus of the system, if required. The memory will
receive the address. This address is used to specify one location within
the memory. Upon receiving the read signal, the memory will decode
the address 1t has received, through internal decoders, and will select
the location specified by the address. A few hundred nanoseconds later,
the memory will deposit the eight-bit data corresponding to the
specified address on its data bus. This eight-bit word is the instruction
that we want to fetch. In our illustration, this instruction will be
deposited the data bus on top of the MPU box.

Let us briefly summarize the sequencing: the contentis of the program
counter are output on the address bus. A read signal is generated. The
memory cycles, and perhaps 300 nanoseconds later, the instruction at
the specified address is deposited on the data bus (assuming a single
byte instruction). The microprocessor then reads the data bus and
deposits its contents into a specialized internal register, the IR register,
The IR is the instruction register: it is eight-bits wide and is used to con-
tain the instruction just fetched from the memory. The fetch cycle is
now completed. The 8 bits of the instruction are now physically in the
special internal register of the MPLUJ, the IR register. The IR appears on
the feft of Figure 2.7. It is not accessible to the programmer,
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Fig. 2.6: Fetching an Instruction from the Memory

Once the instruction is contained in IR, the control unit of the
microprocessor will decode the contents and will be able to generate the
correct sequence of internal and external signals for the execution of the
specified instruction. There is, therefore, a short decoding delay fol-
lowed by an execution phase, the length of which depends on the nature
of the instruction specified. Some instructions will execute entirely
within the MPU. Other instructions will fetch or deposit data from or
into the memory. This is why the various instructions of the MPU re-
quire various lengths of time to execute. This duration is expressed as a
number of (clock) cycles. Refer to Chapter 4 for the number of
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cycles required by each instruction. Since various clock rates may be
used, speed of execution is normally expressed in number of cycles
rather than in rumber of nanoseconds.

EXTERNAL JHTERNAL DATA BUS
BUs <

L U1

ACCUMULATOR

8 Rl fn
REGISTERS

RESULT (DESTINATION) BUS
Fig. 2.8: Single-Bus Architecture

Fetching the Next Instruction

We have described how, using the program counter, an instruction
can be fetched from the memory. During the execution of a program,
instructions are fetched i sequence from the memory. An automatic
mechanism must therefore be provided to fetch imstructions in se-
quence. This task is performed by a simple incrementer attached to the
program counter. This is illustrated in Figure 2.7. Every time that the
contents of the program counter (at the bottom of the illustration) are
placed on the address bus, its contents will be incremented and written
back into the program counter. As an example, if the progra counter
contained the value *“0°’, the value “0’" would be output onthe address
bus. Then the contents of the program counter would be incremented
and the value **1’” would be written back into the program counter. In
this way, the next time that the program counter is used, it is the in-
struction at address | that will be fetched. We have just implemented an
automalic mechanism for sequencing instructions,

It must be stressed that the above descriptions are stnplified. In reali-
ty, some instructions may be two- or even three-bytes fong, so that suc-
cessive bytes will be fetched in this manner from the memory. However,
the mechanism is identical. The program counter is used to fetch
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successive bytes of an instruction as well as to fetch successive instruc-
tions themselves. The program counter, together with its incrementer,
provides an automatic mechanism for pointing to successive memory

locations.
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We will now execute an instruction within the MPU (see Figure 2.8).
A typical instruction will be, for example; R0 = RO + R1. This means:
“*ADD the contents of RO and R1, and store the results in R0.”’ To per-
form this operation, the contents of RO will be read from register RO,
carried via the single bus to the left input of the ALU, and stored in the
buffer register there. R1 will then be selected and its contents will be
read onto the bus, then transferred to the right input of the ALU. This
sequence Is illustrated in Figures 2.9 and 2.10. At this point,
the nght input of the ALU is conditioned by RI, and the left
input of the ALU is conditioned by the buffer register, containing the
previous value of R0O. The operation can be performed. The addition is
performed by the ALU, and the results appear on the ALU output, in
the fower right-hand corner of Fig. 2.11. The results will be deposited
on the single bus, and will be propagated back to RO. This means, in
practice, that the input fatch of RO will be entabled, so that data can be
written into it. Execution of the instruction is now complete. The
results of the addition are in RO. It should be noted that the contents of
RI have not been modified by this operation. This 15 a general prin-
ciple: the contents of a register, or of any read/write memory, are not
modified by a read operation.

The buffer register on the left input of the ALU was necessary in
order to memorize the contents of R0, so that the single bus couid be
used agamn for another transfer. However, a problem remains.

EXTERNAL INTERNAL DATA BUS
s L e P

[

=]
[~
ol

=
D

N

1 N
ACC + Ri—> RO

Fig. 2.11: Result Is Generated and Goes into R0
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The Critical Race Problem

The simple organization shown in Figure 2.8 will not function cor-
rectly.

Question: What is the timing problem?

Answer: The problem is that the resuit which will be propagated out
of the ALU will be deposited back on the single bus. It will not pro-
pagate just in the direction of RO, but along all of the bus. In particular,
it will recondition the right input of the ALU, changing the result coming
out of it a few nanoseconds later. This is a critical race. The output of
the ALU must be isolated from its input (see Figure 2.12).

Several solutions are possibie which will isolate the input of the ALU
from the output. A buffer register must be used. The buffer register
could be placed on the output of the ALU, or on its input. It is usually
placed on the input of the ALU. Here it would be placed on its right in-
put. The buffering of the system 15 now sufficient for a correct opera-
tion. It will be shown later in this chapter that if the left register which
appears in this illustration is to be used as an accumuiator (permitting
the use of one-byte long instructions}), then the accumulator will require
a buffer too, as shown in Figure 2.13.
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Fig. 2.12: The Criticai Race Problem
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Fig. 2.13: Two Buffers Are Required {Temp Registers)

INTERNAL ORGANIZATION OF THE Z80

The terms necessary in order to understand the internal elements of
the microprocessor have been defined. We will now examine in more
detail the Z80 itself, and describe its capabilities. The internal organiza-
tion of the Z8( is shown in Figure 2.14. This diagram presents a logical
description of the device. Additional interconnections may exist but are
not shown. Let us examine the diagram from right to left.

On the right part of the illustration, the arithmetic-logical unit (the
AL} may be recognized by its characteristic **V*’ shape, The accumu-
lator register, which has been described in the previous section, is iden-
tified as A on the right input path of the ALU. If has been shown in the
previous section that the accumulator should be equipped with a buffer
register. This 1s the register labeled ACT (temporary accumulator).
Here, the feft input of the ALU is also equipped with a temporary
register, called TMP. The operation of the ALU will become clear in the
next section, where we will describe the execution of actual instructions.

The flags register iscalled F”’ inthe Z80,and is shown on theright of the
accumulator register. The contents of the flags register are essentially
conditioned by the ALU, but it will be shown that some of its bits may
also be conditioned by other modules or events.

The accumulator and the flags registers are shown as double registers
labelled respectively A, A’ and F, F'. This is because the Z80 is
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equipped internally with two sets of registers: A + F, and A" + F".
However, only one set of these registers may be used at any one time. A
special instruction is provided (o exchange the contents of A and F with
A’ and F'. in order to simplify the explanations, only A and F will be
shown on most of the diagrams which follow. The reader should
remember that he has the option of switching to the alternate register
set A" and F’ if desired.

The role of each flag 1n the flags register will be described in Chapter
3 (Basic Programming Techniques}.

A large block of registers is shown at the center of the illustration. On
top of the block of registers, two identical groups can be recognized.
Each one includes six registers labeled B, C, D, E, H, L. These are the
general-purpose eight-bit registers of the Z80. There are two peculiari-
ties of the Z80 with respect to the standard microprocessor which has
been described at the beginning of this chapter,

First, the Z80 is equipped with fwo banks of registers, i.e., two iden-
tical groups of 6 registers. Only six registers may be used at any one
time. However, special instructions are provided to switch between the
two banks of registers. One bank, therefore, behaves as an internaf
memory, while the other one behaves as a working set of internal
registers. The possible uses of this special facility will be described in
the next chapter.

Conceptually, it will be assumed, for the ime being, that there are
only six working registers, B, C, D, E, H, and L, and the second
register bank will temporarily be ignored, in order to avoid confusion.

The MUX symbol which appears above the memory bank is an ab-
breviation for muitiplexer. The data coming from the internal data bus
will be gated through the multiplexer to the selected register, However,
only one of these registers can be connected to the internal data bus at
any one time.

A second characteristic of these six registers, in addition to being
general-purpose eight-bit registers, is that they are equipped with a con-
nection to the address bus. This 1s why they have been grouped in
pairs. For example, the contents of B and C can be gated simultaneous-
Iy onto the 16-bit address bus which appears at the bottom of the illustra-
tion. As a result, this group of 6 registers may be used to store either
eight-bit data or else 16-bit pointers for memory addressing.

The third group of registers, which appears below the two previous
ones in the middle of Figure 2.14, contains four “‘pure” address
registers. As in any microprocessor, we find the program counter (PC)
and the stack pointer (SP). Recall that the program counter contains
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the address of the next instruction to be executed.

The stack pointer points to the top of the stack in the memory. In the
case of the Z80, the stack pointer points to the last aciual entry 1n the
stack. (In other microprocessors, the stack pointer points just above the
last entry.) Also, the stack grows “‘downwards, "’ i.e, towards the lower
addresses.

This means that the stack pointer must be decremented any time a
new word is pushed on the stack. Conversely, whenever a word is
removed {popped) from the stack, the stack pointer must be -
cremented by one. In the case of the Z80, the “‘push” and “‘pop”’
always involve fwo words at the same time, so that the contents of the
stack pointer will be decremented or incremented by two.

Looking at the remaining two registers of this group of four registers,
we find a new type of register which has not been described yet: two
index-registers, labeled 1X (Index Register X) and I'Y (Index Register
Y). These two registers are equipped with a special adder shown as a
miniature V-shaped ALU on the right of these registers in Figure 2.14,
A byte brought along the internal data bus may be added to the con-
tents of IX or I'Y. This byte is called the displacement, when using an in-
dexed instruction. Special instructions are provided which will
automatically add this displacement to the contents of IX or 1Y and
generate an address. This is called indexing. It allows convenient access
to any sequential block of data. This important facility will be des-
cribed in Chapter 5 on addressing techniques.

Finally, a special box labeled ¢ + I’ appears beiow and to the left of the
block of registers. This is an increment/decrement. The contents of any
of the register pairs SP, PC, BC, DE, HL (the *‘pure address’’ registers)
may be automatically incremented or decremented every time they depos-
it an address on the internal address bus. This is an essential facility for
implementing automated program loops which will be described in the
next section. Using this feature it will be possible to access successive
memory locations conveniently.

Let us move now to the left of the illustration. One register pair is
shown, solated on the left: T and R. The I register 1s called the wmiterrupi-
page address register. Its role will be described in the section on nter-
rupts of Chapter 6 (Input/Qutput Techniquesj. It 15 used onfy in a
special mode where an indirect call to a memory locatson 1s generated in
response to an interrupt. The I register is used to store the high-order
part of the indirect address. The lower part of the address is supplied by
the device which generated the interrupt.
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The R register is the memory-refresh register. It is provided to refresh
dynamic memories automatically. Such a register has traditionally been
located outside the microprocessor, since it is associated with the
dynamic memory. It 1s a convenient feature which minimizes the
amount of external hardware for some types of dynamic memories. It will
not be used here for any programming purposes, as it is essentially a
hardware feature (see reference C207 ‘‘Microprocessor Interfacing
Techniques™ for a detailed description of memary refresh techniques).
However, 1t 1s possible to use it as a software clock, for example.

Let us move now to the far left of the illustration. There the control
section of the microprocessor is located. From top to bottom, we find
first the wmstruction register IR, which will contain the instruction to be
executed. The IR register is totally distinct from the *‘1, R’' register pair
described above. The instruction is received from the memory via the
data bus, is transmitted along the internal data bus and is finally
deposited into the instruction register, Below the instruction register ap-
pears the decoder which will send signals to the controller-sequencer
and cause the execution of the instruction within the microprocessor
and outside it. The control section generates and manages the control
bus which appears at the bottom part of the illustration.

The three buses managed or generated by the system, i.e., the data
bus, the address bus, and the control bus, propagate outside the
microprocessor through its pins. The external connections are shown
on the right-most part of the illustration. The buses are isolated from
the outside through buffers shown in Figure 2.14.

All the logical elements of the Z80 have now been described. It is not
essential to understand the detailed operation of the Z80 in order to
start writing programs. However, for the programmer who wishes to
write efficient codes, the speed of a program and its size will depend
upon the correct choice of registers as well as the correct choice of
techniques. To make a correct choice, it is necessary to understand how
instructions are executed within the microprocessor. We will therefore
examine here the execution of typical instructions inside the Z80 to
demonstrate the role and use of the internal registers and buses.
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INSTRUCTION FORMATS

The ZB0 instructions are listed in Chapter 4. Z80 instructions may
be formated in one, two, three or four bytes. An mstruction specifies
the operation to be performed by the microprocessor. From a
simplified standpoint, every instruction may be represented as an op-
code followed by an optional literal or address field, comprising one or
two words. The opcode field specifies the operation to be carried out.
In strict computer terminology, the opcode represents only those bits
which specify the operation to be performed, exclusive of the register
pointers that might be necessary. In the microprocessor world, it is con-
venient to call opcode the operation code itself, as well as any register
pointers which it might incorporate. This ‘‘generalized opcode’” must
reside in an eight-tnt word for efficiency (this is the limiting factor on
the number of instructions available in a microprocessor).

The 8080 uses instructions which may be one, two, three, bytes long
{see Figure 2.15). However, the Z80 is equipped with additional indexed
instructions, which require one more byte. In the case of the Z80, op-
codes are, in general, one byte long, except for special instructions
which require a two-byte opcode.

Some instructions require that one byte of data follow the opcode. In
such a case, the instruction will be a two-byte instruction, the second
byte of which is data (except for indexing, which adds an extra hyte).

In other cases, the instruction might require the specification of an
address. An address requires 16 bits and, therefore, two bytes. In that
case, the instruction will be a three-byte or a four-byte instruction.

For each byte of the instruction, the control unit will have to perform
a memory fetch, which will require four clock cycles. The shorter the
instruction, the faster the execution.

A One-Word Enstruction

One-word instructions are, in principle, fastest and are favored by
the programmer, A typical such instruction for the Z80 is:

LDr, 1

This instruction means: ‘“Transfer the contents of register r’ into r.”’
This is a typical ‘‘register-to-register’” operation. Every microprocessor
must be equipped with such instructions, which allow the programmer
to transfer information from any of the machine’s registers into
another one. Instructions referencing special registers of the machine,
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Fig. 2.15 Typical Instruction Formats

such as the accumulator or other special-purpose registers, may have a
special opcode.

After execution of the above nstruction, the contents of r will be
equal to the contents of r', The contents of r’ will not have been
modified by the read operation.

Every instruction must be represented internally in a binary format.
The above representation LD r.r’ 7’ is symbolic or mnemonic, It is
called the assembly-language representation of an instruction. It is
simply meant as a convenient symbolic representation of the actual
binary encoding for that instruction. The binary code which will repre-
sent this instruction mnside the memory is: 01 DD D SSS(bits0to 7).

This representation is still partially symbeolic. Each of the letters §
and D stands for a binary bit. The three D’s, “*D D D"’, represent the
three bits pomting to the desrination register. Three bits allow selection
of one out of eight possible registers. The codes for these registers ap-
pear in Figure 2.16. For example, the code for register Bis ‘000", the
code for register C is ““0 0 1", and so on.

Similarly, *‘5 § 8" represents the three bits pointing to the source
register. The convention here is that register r’ is the source, and that
register r is the destination. The placement of the bits in the binary
representation of an instruction is not meant for the convenience of the
programmer, but for the convenience of the control section of the
microprocessor, which must decode and execute the instruction. The
assembly-language representation, however, is meant for the conve-
nience of the programmer. It could be argued that LD r,r’ should really

RS

mean: ‘“Transfer contents of r into r’.”’ However, the convention has
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been chosen in order to maintain compatibility with the binary
representation in this case. It is naturally arbitrary.

Exercise 2,1: Write below the binary code which will transfer the con-
tents of register C into register B. Consult Fig. 2.16 for the codes cor-
responding to C and B.

Another simple example of a one-word instruction is:
ADDA,T

This instruction will result in adding the contents of a specified
register (r) to the accumulator (A). Symbolically, this operation may be
represented by: A = A + r. It can be verified in Chapter 4 that the
binary representation of this instruction is:

10000885

where § § S specifies the register to be added to the accumulator. Again,
the register codes appear in Figure 2.16.

Exercise 2.2: What is the binary code of the instruction which will add
the contents of register D to the accumulator?

CQDE REGISTER

0oc
00t
010
Gl
10¢0
i0i
110 |- {(MEMORY)
111 14

Lanu= ~N g B = B oo TR

Fig. 2.16: The Register Codes

A Two-Word Instruction
ADD A n
This simple two-word instruction will add the contents of the second

byte of the instruction to the accumulator. The contents of the second
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word of the instruction are said to be a “*literal.’’ They are data and are
treated as eight bits without any particular significance. They could
happen to be a character or numerical data. This is irrelevant to the
operation. The code for this instruction is;

110001 !0 ffollowed by the 8-bit byte **n"

This Is an immediate operation. “‘Immediate,’” in most programming
languages, means that the next word, or words, within the instruction
contains a piece of data which should not be inferpreted (the way an op-
code is). It means that the next one or two words are to be treated as a
literal,

The controf unit is programmed to “‘know’” how many words each
instruction has. It will, therefore, always fetch and execute the right
number of words for each instruction. However, the longer the possible
number of words for the instruction, the more complex it is for the con-
trol unit to decode,

A Three-Word Instruction
LD A, (nm}

The instruction requires three words. It means: “Load the ac-
cumulator from the memory address specified in the next two bytes of
the instruction.” Since addresses are 16-bits long, they require two
words. In binary, this instruction is represented by:

00111010: 8 bits for the opcode
Low address: 8 bits for the lower part of the address
High address: 8 bits for the upper part of the address

EXECUTION OF INSTRUCTIONS WITHIN THE Z80

We have seen that all instructions are executed in three phases:
FETCH, DECODE, EXECUTE. We now need to introduce some
definitions. Each of these phases will require several clock cycles. The
Z80 executes each phase in one or more logical cycles, called a
“‘machine cycle.” The shortest machine cycle lasts three clock cycles.

Accessing the memory requires three cycles for any operands, four
clock cycles for the initial fetch. Since each instruction must be fetched
first from the memory, the fastest instruction will require four clock
cycles. Most instructions will require more,

Each machine cycle 15 labeled as M1, M2, etc., and will require three
or more clock cycles, or *‘states,”” labeled T1, T2, eic.
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The FETCH Phase

The FETCH phase of an instruction is implemented during the first
three states of machine cycle M1; they are called T1, T2, and T3. These
three states are common to all instructions of the microprocessor, as all
instructions must be fetched prior to execution. The FETCH
mechanism 15 the following:

T1: PCOUT

The first step is to present the address of the next instruction to the
memory. This address is contained in the program counter (PC). As the-
first step of any instruction fetch, the contents of the PC are placed on
the address bus (see Figure 2.17). At this point, an address is presented
to the memory, and the memory address decoders will decode this ad-
dress 1n order to select the appropriate location within the memory.
Several hundred ns (a nanosecond is 107 second) will elapse before the
contents of the selected memory location become available on the out-

mramme

BATA BUS
A

1457, AES.
[/
¥ 7
B ¢
5 :
CONTROLLER - -
SEQUENCER " FUAGS

7
3
1 |F i 10 MEMORY
T, 7Tk APy DDRESS BUS

CONTROL
S16HALS

Fig. 2.17: Instruction Fetch—(PC) Is Sent to the Memory

70



Z80 HARDWARE ORGANIZATION

put pins of the memory, which are connected to the data bus. It is standard
computer design to use the memory read time to perform an operation
within the microprocessor. This operation 15 the Incrementation of the
program counter:

T2:PC = PC + |

While the memory is reading, the contents of the PC are incremented
by | {see Figure 2.18). At the end of state T2, the contents of the
memory are available and can be transferred within the micro-
Processor:

T3 : INSTinto IR

(LTI L T /////////f/[/\///% DATA BYS
&
P
Uil

CONTRBLLER

T n oA g

HyX

SEQUEHCER

1
t|F
7 Phaooress bus

{o4TRgL
5}

v | SICHALS

Fig 2.18: PC Is Incremented

The DECODE and EXECUTE Phases
During state T3, the instruction which has been read out of the

memory is deposited on the data bus and transferred into the instruc-
tion register of the Z80, from which point it is decoded.
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Fig, 2.19: The Instruction Arrives from the Memory into IR

it should be noted that state T4 of M1 will always be required. Once
the instruction has been deposited into IR during T3, it is necessary to
decode and execute it. This will require at least one machine state, T4.

A few instructions require an extra state of M1 (state T3). It will be
skipped by the processor for most instructions. Whenever the execution
of an instruction requires more than M1, i.e., M1, M2 or more cycles,
the transition will be directly from state T4 of M1 into state T1 of M2,
Let us examine an example. The detailed internal sequencing for each
example is shown in the tables of Figure 2.27. As these tables have not been
refeased for the Z80, the 8080 tables are used instead. They provide an in-
depth understanding of instruction execution.

LDD,C

This corresponds to MOV 1, 12 for the 8080. Refer to line { of Fig. 2.27.

By coincidence, the destination register in this example happens to be
named ‘D", The transfer is illustrated in Figure 2.20.

This 1nstruction has been described in the previous section. It
transfers the contents of register C, denoted by “C”, mto register D,

The first three states of cycle M1 are used to fetch the instruction
from the memory. At the end of T3, the instruction is in IR, the In-
struction Register, from which point it can be decoded (see Figure 2.19).

During T4: (§ S 8) » TMP.
The contents of C are deposited into TMP (See Figure 2.21).
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During T5: (TMP) » DDD.
The contents of TMP are deposited into D. This is shown in Figure 2.22.

D C
[ oooioool | 15boroono 1§
BEFORE
D J E i C
| 10001000 | 10001000 i
AFTER

Fig. 2.20: Transferring C into D
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Fig. 2.21: The Contents of C Are Deposited into TMP

73



PROGRAMMING THE 280

JATA BN

T

{ONTROLLER

SEQUERCER

| L

CO4TROL
SlguALS

Fig. 2.22: The Contents of TMP are Deposited into DD

Execution of the instruction is now complete. The contents of
register C have been transferred into the specified destination register
D). This terminates execution of the instruction. The other machine
cycles M2, M3, Md, and M5 will not be necessary and execution stops
with MI.

It is possible to compute the duration of this instruction easily. The
duration of every state for the standard Z80 1s the duration of the clock:
500 ns. The duration of this instructon is the duration of five states, or
S x 500 = 2500 ns = 2.5 us. With a 400 ns clock, 5 x 400 = 2000 ns

= 2,0 us.

Question: Why does this instruction require two states, T4 and T3,
in order to transfer the contents C into D, rather than just one? It
transfers the contents of Cinto TMP, and then the contenis of TMP -
to D. Wouldn'r ir be sunpler to iransfer the contents of Cinro D direci-
Iy witiun a single state?

Answer: This i1s not possible because of the implementation chosen
for the internal registers. All the internal registers are, in fact, partof a
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single RAM, a read/write memory internal to the microprocessor chip.
Only one word may be addressed or selected at a time within an RAM
{single-port}. For this reason, it is not possible to both read and write
into, or from, an RAM at two different locations. Two RAM cycles are
required. It becomes necessary first to read the data out of the register
RAM, and store it in a temporary register, TMP, then, to write it back
into the final destination register, here D. This is a design inadeguacy.
However, this limitation is common to virtually all monolithic
microprocessors. A duai-port RAM would be required to solve the
problem. This limitation is not intrinsic to microprocessors and 1t normally
does not exist 1n the case of bit-slice devices. [t 15 a result of the constant
search for logic density on the chip and may be eliminated in the future.

Important Exercise:

At this point, it is highly recommended that the user review by him-
self the sequencing of this simple instruction before we proceed to more
complex ones. For this purpose, go back to Figure 2.14. Assemble a few
small-sized “‘symbols’® such as matches, paperclips, etc. Then move the
symbols on Figure 2.14 to simulate the flow of data from the registers
into the buses. For example, deposit a symbol into PC. T1 will move
the symbol contained in PC out on the address bus towards the
memory. Continue simulated execution in this fashion until you feel
comfortable with the transfers along the buses and between the
registers. At this point, you should be ready to proceed.

Progressively more complex instructions will now be studied:

ADD A, r

This instruction means: ‘‘Add the contents of register r (specified by
a binary code S S S) to the accumulator (A), and deposit the result in
the accumulator.” This is an mplicit instruction. It is called 1mplicit as
it does not explicitly reference a second register. The instruction expli-
citly refers only to register r. It implies that the other register involved
in the operation 1s the accumulator. The accumulator, when used in
such an implicit instruction, is referenced both as source and destuna-
tion. Data will be deposited in the accumulator as a result of this addi-
tion. The advantage of such an implicit instruction 1s that its complete
opcede is only eight bits in fength, It requires only a three-bit register
field for the specification of r. This is a fast way to perform an addition
operation.

Other implicit instructions exist in the system which will reference
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other specialized registers. More complex examples of such implicit in-
structions are, for example, the PUSH and POP operations, which will
transfer information between the top of the stack and the accumulator,
and will at the same time update the stack pointer (SP), decrementing it
or incrementing it. They implicitly manipulate the SP register.

The execution of the ADD A, rnstruction will now be examined in
detail. This instruction will require two machine cycles, M1 and M2, As
usual, during the first three states of M1, the instruction is fetched from
the memory and deposited in the IR register. At the beginning of T4, it
is decoded and can be executed. It will be assumed here that register B is
added to the accumulator. The code for the instruction will then be:
10000000 (the code for register B is 0 0 0). The 8080 equivalent is
ADD r.

T4: (S5 5) »TMP, (A} b ACT

D
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Fig. 2.23: Two Transfers Occur Simultaneously

Two transfers will be executed simultaneously. First, the contents of
the specified source register (here B) are transferred into TMP, i.e., to
the right input of the ALU (see Fig. 2.23). At the same time, the con-
tents of the accumulator are transferred to the temporary accumulator
(ACT). By inspecting Fig. 2.23, you will ascertain that those transfers
can occur in parallel. They use different paths within the system. The
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transfer from B to TMP uses the internal data bus. The transfer from
ACT uses a short internal path independent of this data bus. In order to
gain time, both transfers are done simultaneously. At this point, both
the left and the right input of the ALU are correctly conditioned. The
left input of the ALU is now conditioned by the accumulator contents,
and the right input of the ALU is conditioned by the contents of register
B. We are ready to perform the addition. We would normally expect to
see the addition take place during state TS of M 1. However, this state is
simply not used. The addition is not performed! We will enter machine
cycle M2. During state T1, nothing happens! It is only in state T2 of M2
that the addition takes place (refer to ADD r in Figure 2.27):

T2 of M2: (ACT) + (TMP) » A

The contents of ACT are added to the contents of TMP, and the
resuft is finally deposited in the accumulator. See Figure 2.24. The
operation is now complete.

SRR BATA BES

H3X N ‘ N
e
G NONERE
s | ¢ NN +
’§ by
7 £ 7
COHTROLLER - - N
SEQUEHCER
3P AN
R 3
e NS
N
. &
% |
v [ oapmRESS BUS
coutaey
D siens

Fig. 2.24: End of ADD r

Question: Why was the completion of the addition deferred until
state T2 of machine cycle M2, rather than taking place during state T5
of M1? (This is a difficult question, which requires an understanding of
CPU design. However, the technique involved 1s fundamental to clock-
synchronous CPU design. Try to see what happens.)
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Answer: This is a standard design ““trick” used in most CPU’s. i is
called “‘fetch/execute overlap.”” The basic tdea is the following: looking
back at Figure 2.23 it can be seen that the actual execution of the addi-
tion will only require the use of the ALU and of the data bus. In parti-
cular, it will not access the register RAM (register block). We (or the
control unit} know that the next three states which will be executed after
completion of any instruction will be T1, T2, T3 of machine cycle M1
of the next instruction. Looking back at the execution of these three
states, it can be seen that their execution will only require access (o the
program counter (PC} and use of the address bus. Access to the pro-
gram counter will require access to the register RAM. (This explains
why the same trick could not be used in the instruction LD r.r’.j [t is
therefore possible to use simultaneously the shaded area in Figure 2.17
and the shaded area in Figure 2.24.

The data bus is used during staie T1 of M| to carry status informa-
tion out. It cannot be used for the addition that we wish to perform,
For that reason, it becomes necessary to wait until state T2 before the
addition can be effectively carried out. This is what occurred in the
chart: the addition is completed during state T2 of M2. The mechanism
has now been explained. The advantage of this approach should now be
clear. Let us assume that we had implemented a straightforward
scheme, and performed the addition during state T5 of machine cycle

NN

BEAL
INSTRUCTION n: LIl 1 i2 % T3 l”‘ J:l T I 12 ll" END
|

%-— FETCH _*<—~wf——EXECU¥E—'4

INSTRUCTION N+ b+ o o oo o o [ ORET IR B { ——

pe——FETCH P £xceyTe -

] ]
! 1
} :
‘ H

OVERLAP |

i H
Fig. 2.25: FETCH-EXECUTE Overlap during T1-T2

MI. The duration of the ADD instruction would have been § x 500 =
2500 ns. With the overlap approach which has been implemented, once
state T4 has been executed, the next instruction is initiated. In a manner
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that ts invisible to this next instruction, the “clever’’ control unit will
use state T2 to carry out the end of the addition. On the chart T2 is
shown as part of M2, Conceptually, M2 will be the second machine cy-
cle of the addition. In fact, this M2 will be overlapped, 1.e., be identical
to machine cycle M1 of the next instruction. For the programmer, the
delay introduced by ADD will be only four states, i.e., 4 x 500 = 2000
ns, instead of 2500 ns using the ‘“‘straightforward’ approach. The
speed improvement is 500 ns, or 20%!

The overlap technique is illustrated on Figure 2.25. It is used when-
ever possible to increase the apparent execution speed of the micropro-
cessor. Naturally, it it not possible to overlap mn all cases. Required
buses or facilities must be available without conflict. The control unit
“*knows’’ whether an overlap is possible.

NOTES: 12. { the condition wai mat, the cantanis of the regiter
pair WZ are output on the address lines [Apsg) instead of

i The firgt memory cycle (M) is always an instruction the eantznts of the progeam counter (PC),

tetch; the first {or only] byte, contzining the op cade, is

fetched during this cycie,

2. # 1he READY input lrem memory s nat high during
T2 ot each memary cycie, the procenar will snter & wait
state {TWE untit READY is sampled as high.

3, States T4 and TS are preent, as required, for opers-
tiens which are completely internal to the CPU. The con-
tents of the internad but during T4 end TS ars available a1
the datz bus; this is designed for rasting purposes galy, An
X" denales that 1he state o prosent, but is anly used for
such internal operanions as instruction decoding,

4, Qnly reginter pairs:p = B {registers Band Clar rp= D
fregisters D and E} may be wpecified,

B, Thass states 3re skipped.

. Memory read sub-cyzles; #n sattruction or data wotd
will be read.

7. Memary write sub-evels.

8. The READY signal is 561 regud ed dhuteng the second
and thisd tut-cycles {2 and M3} The HOLD sgnal is
ateepted duning M2 and M3 The SYNC ngnal it nog gane-
sxted duning M2 and M3, During the execution of GAD,
12 snd 33 sre 1equired Tor an internal registerpair zdd;
mamaory 15 nat refezenged.

9. The resulis of these arithmetic, logical or 1o13te in-
sruclions are noi moved inlo the sccumulator LAJ until
sta12 T2 of the next instruction cycle. That is, A is loades
whits the next instruction iy being fetched; this overfapping
of aperations ailows far fzster procesting.

50, i the value of the lzasl signiticent 4-bits of the accumu-

Iator is greater than 9 ar i the guxilinry caery bt isset, 6

i3 added to the accumulator, i the value of the mast signifi-

cant 4bits of the accumuylator is now greater than S, or if
he carzy bit is sat, 6 iy added 10 the mas significan
4-bits of the accumulator,

11. This represents the first sub-cycle (the ingtruction
fetch} of the next insteuchion cycle,

13. if the condition was not mel, sub-cycles M4 and M5
are skipped; the processar instzzd proceeds immediately i
the instruction fesch {M1} of the nextinstructian cycle.
14, If the condition w2t nat met, sub-cycles M and M3
are skipped: the processor insiead rocoeds immediataly 10
the mstruetion fetch (M of the next insiruction cycls,
15. Stack zead sub-cycle.

18. Htack write wb-cycie,

17, CONCHTION cee
N2 ~ notiee (2=0) el

2 —rerof2=1] o

NC — ne carry [CY « O} il

T - arylCY=1} on

PO — parstyodd (P @) 100

PE — parsty even [F = §) im

P plus{S=§j 110

M o~ minus (S= 1) 111

18. 1O sub-eyele: the /0 port’s B-bit stect code it duplis
cated on sddrest lines 0-7 {47} and B15{Ag. st

19. Quiput suh-cycle.

20, The processor will remain idle in tha hal? fale untid

an islerrupt, 3 reses or 2 hald is accepted. When 3 hald re-
duest 1§ aceepted, the £PU entert the keid mode; dter the
holl mode o5 1erminsted, the processor returns to The halt
#ate. After 2 reset is accepied, the proctstor beqini execu-
tson at memory Iocanion zero. Alter an intesrupt 15 acoepied,
the processor exeeutes the initruction foreed onto the dits
bt fussally 2 restart instrection),
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Fig, 2.26: Intel Abbreviations
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Fig. 2.27: Intel Instruction Formats {continued)
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Fig. 2.27': Intel Instruction Formats {continued)
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Question: Would it be possible to go further using this scheme, and
to also use state T3 of M2 if we have to execute a longer instruction?

In order to clarify the internal sequencing mechanism, it is suggested
that you examine Figure 2.27, which shows the detailed instruction
execution for the 8080. The Z80 includes all 8080 instructions, and
more. The information presented in Figure 2.27 is not avaiiable for the
Z80. It is shown here for its educational value in understanding the in-
ternal operation of this microprocessor. The equivalence between Z80 and
8080 instructions is shown in Appendices F and G.

A more complex instruction will now be examined:

ADD A, (HL)

The opcode for this instruction is 10000110, This instruction means
““add to the accumulator the contents of memory location (HL)."” The
memory location is specified through a rather strange system. It is the
memory location whose address is contained in registers H and L. This
instruction assumes that these two special registers (HL} have been
loaded with contents prior to executing the instruction. The 16-bit con-
tents of these registers will now specify the address in the memory
where data resides. This data will be added to the accumulator, and the
result will be left in the accumulator,

This mstruction has a history. It has been supplied in order to pro-
vide compatibility between the early 8008, and its successor, the 8080.
The early 8008 was not equipped with a direct-memory addressing
capability! The procedure used to access the contents of the memory
was to load the two registers H and L, and then execute an instruction
referencing H and L. ADD A, (HL) is just such an instruction. it must
be stressed that the 8080 and the Z80 are not limited in the same way as
the 8008 in memory-addressing capability, They do have direct-memory
addressing. The facility for using the H and L registers becomes an
added advantage, not a drawback, as was the case with the 8008.

Let us now follow the execution of this instruction (it is called
ADD M for the 8080 and 1s the 16th instruction on Figure 2,27} States
T1, T2, and T3 of M1 will be used, as usual, to fetch the instruction.
During state T4, the contents of the accumulator are transferred to 1its
buffer register, ACT, and the left input of the ALU is conditioned,

Memory must be accessed in order to provide the second byte of data
which will be added to the accumulator. The address of this byte of
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data is contained in H and L. The contents of H and 1. will therefore
have to be transferred onto the address bus, where they will be gated to
the memory. Let us doit.

DATA BUS

|nm -n'mcj

INST. REG.

CONTROULER]

SEQUENCER

A
=
In%

1] . *
li

3
- 16 |¢ | TO MEMORY
T, T R AODRESS BUS

ouTRIL
V| stenLs

fr

Fig, 2.28: Transfer Contents of HL to Address Bus

During machine cycle M2, weread: HL OUT.H and L are deposited on
the address bus, in the same way PC used to be deposited there
previous instructions. As a remark, It has already been indicated
that during state T! statfus is output on the data bus, but no use of
this will be made here. From a simplified standpoint, it will require two
states: one for the memory to read its data, and one for the data to
becorne available and transferred onto the right input of the ALU,
TMP.

Both inputs of the ALU are now conditioned. The situation is analo-
gous to the one we were in with the previous instruction ADDA, 1: both
inputs of the ALU are conditioned. We simply have to ADD as before.
A fetch/execute overlap technique will be used, and, instead of exe-
cuting the addition within state T4 of M2, final execution is postponed
until state T2 of M3. It can be seen in Figure 2.27 that during T2 we in-
deed have: ACT + TMP—=A. The addition is finally performed, the
contents of ACT are added to TMP, and the result deposited into the
accumulator A.

85



PROGRAMMING THE Z80

Question: What is the apparent execution time (to the programmer} for
this instruction? Using a 2.5 Mhz clock, is it 3.6 us? 2.8 us?

Another more compiex instruction will now be examined which is a
direct-memory addressing instruction ustng two invisible W and Z
registers:

LD A, {(nn)

The opcode s 00111010, The 8080 equivalent is LDA addr. As usual,
states T1, T2, T3 of M1 will be used to fetch the instruction from the
memory. T4 1s used, but no visible result can be described. During state
T4, the instruction is in fact decoded, The control unit then finds out
that it has to fetch the next two bytes of this instruction in order to ob-
tain the address from which the accumulator will be loaded. The effect
of this instruction is to load the accumulator from the memory contents
whose address is specified in bytes 2 and 3 of the instruction. Note that
state T4 is necessary to decode the instruction. It could be considered a
waste of time since only part of the state i1s necessary to do the
decoding. It 1s. However, this is the philosophy of clock-synchonous
logic, Because rmucroinstructions are used internally to perform the
decoding and execution, this is the penalty that has to be paid in return
for the advantages of microprogramming. The structure of this instruc-
tion appears in Figure 2.29.

K DA (B1) :GPCODE

wtl: (B2} {18-BIT
= ADDRESS =

w+2: (B3) \ADDRESS

Fig. 2.29: LD A, (ADDRESS)} Is a 3-Word Instruction

The next two bytes of instruction will now be fetched. They will
specify an address {see Figure 2.30}.
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Fig. 2.31: After Execationof LD A

Lh A
1002
(HEX)

{hex)

(3A}
(©2)
(19)

The effect of the instruction is shown in Figures 2.30 and 2.3 above.

Two special registers are available to the control unit within the Z80
(but not to the programmer). They are *“W' and “Z"’, and are shown

in Figure 2.28.
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Second Machine Cycle M2: As usual, the first 2 states, T1 and T2, are
used to fetch the contents of memory location PC. During T2, the pro-
gram counter, PC, is incremented. Sometime by the end of T2, data be-
comes available from the memory, and appears on the data bus. By the
end of T3, the word which has been fetched from memory address PC
{B2, second byte of the instruction} is available on the data bus. [t must
now be stored in a temporary register. It 1s deposited into Z: B2 & Z
(see Figure 2.32).

B2 s Z
ST —
1 um /
L7 d %
7 B3
pC
W//////’//////” ADDRESS
m Wm ADDRESS DECODER
780 —~ 280 MEMORY

Fig. 2.32: Second Byte of Instruction Goes into Z

Machine Cycle M3: Again, PC 1s deposited on the address bus, incre-
mented, and finally the third byte, B3, is read from the memory and de-
posited into register W of the microprocessor. At this point, i.e., by the
end of state T3 of M3, registers W and Z inside the microprocessor con-
tain B2 and B3, i.e., the complete 16-bit address which was originally
contained in the two words following the instruction in the memory.
Execution can now be completed. W and Z contain an address. This ad-
dress will have to be sent to the memory, in order to extract the data.
This 15 done in the next memory cycle:

Machine Cycle M4: This ime, W and Z are output on the address bus.
The 16-bit address is sent to the memory, and by the end of state T2,
data corresponding to the contents of the specified memory location
becomes available. It 15 finally deposited in A at the end of state T3.
This terminates execution of this instruction.
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This illustrates the use of an immediate mstruction. This instruction
required three bytes in order to store a two-byte explicit address. This
instruction also required four memory cycles, as it needed to go to the
memory three times in order to extract the three bytes of this three-
word instruction, plus one more memory access in order to fetch the
data specified by the address. It is a long instruction. However, it is also
a basic one for loading the accumulator with specified contents residing
at a known memory location. It can be noted that this instruction re-
quires the use of W and Z registers.

Question: Could this instruction have used other registers than W, Z
within the sysrem?

Answer: No. If this instruction had used other registers, for example
the H and L registers, it would have modified their contents. After ex-
ecution of this instruction, the contents of H and L would have been
lost. It is always assumed in a program that an instruction will not
modify any registers other than those it is explicitly using. An instruc-
tion loading the accumulator should not destroy the contents of any
other register, For this reason, it becomes necessary to supply the extra
two registers, W and Z, for the internal use of the control umt.

Question: Would it be possible to use PC instead of W and Z?

Answer: Positively not. This would be suicidai. The reader shouid ana-
lyze this.

One more type of instruction will be studied now: a franch or jump
instruction, which modifies the sequence in which instructions are
executed within the program. So far, we have assumed that instructions
were executed sequentially. Instructions exist which allow the pro-
grammer to jump out of sequence to another instruction within the
program, or in practical terms, to jump to another area of the memory
containing the program, or to another address. One such instruction is:

JP nn

This instruction appears on Line 18 of Figure 2.27* as *“JMP addr.”
Its execution will be described by following the horizontal line
of the Table. This is again a three-word instruction. The first word
is the opcode, and contains 11000011. The next two words contain the
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16-bit address, to which the jump will be made, Conceptually, the ef-
fect of this instruction is to replace the contents of the program counter
with the 16 bits following the “JUMP’ opcode. In practice, a some-
what different approach will be implemented, for reasons of efficiency.

As before, the first three states of M1 correspond to the instruction-
fetch, During state T4 the instruction 1s decoded and no other event is
recorded (X). The next two machine cycles are used to fetch bytes B2
and B3 of the instruction. During M2, B2 is fetched and deposited into
internal register Z. The next two steps will be implemented by the pro-
cessor during the next instruction-fetch, as was the case already with the
addition. They will be executed instead of the usual steps for 71 and T2
of the next instruction. Let us look at them.

The next two steps will be: WZ OQUT and (WZ) + | & PC. In other
words, the contents of WZ will be used instead of the centents of PC
during the next mstruction-fetch. The control unit will have recorded
the fact that a jump was being executed and will execute the beginning
of the next instruction differently.

The effect of these two extra states 1s the following:

The address placed on the address bus of the system will be the ad-
dress contained in W and Z. In other words, the next instruction wili be
fetched from the address that was contained in W and Z. This is effec-
tively a_jump. In addition, the contents of WZ will be incremented by |
and deposited 1n the program counter, so that the next instruction will
be fetched correctly by using PC as usual. The effect is therefore cor-
rect.

Question: Why have we not loaded the contents of PC directly? Why
use the intermediate W and Z registers?

Answer: It is not possible to use PC. If we had loaded the lower part
of PC(PCL) with B2, instead of using Z, we would have destroyed PC!
It would then have become impossible to fetch B3.

Question: Would it be possible to use just Z, instead of Wand Z?

Answer: Yes, but it would be slower. We could have loaded Z with
B2, then fetched B3, and deposited it into the high order half of PC
{PCH). However, it would then have become necessary to transfer Z in-
to PCL., before using the contents of PC. This would slow down the
process. For this reason, both W and Z should be used. Further, and in
order to save time, W and Z are not transferred into PC. They are
directly gated to the address bus in order to fetch the next instruction,
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Understanding this point is crucial to the understanding of efficient ex-
ecution of instructions within the microprocessor.

Question: (For the alert and informed reader only). What happens
in the case of an interrupt at the end of M3? (If instruction execution is
suspended at this point, the program counter points to the instruction
following the jump, and the jump address, contained in W and Z, will
be lost.}

The answer is left as an interesting exercise for the alert reader.

The detailed descriptions we have presented for the execution of
typical instructions should clarify the role of the registers and of
the internal buses. A second reading of the preceding section may
help in gaining a detailed understanding of the internal operation
of the Z80.

CLOCK § ] 5
AQ
30 1o 40 ADDRESS
8US {FUSHG ] 25 and BUS
CONTROL  |BUSAR a—o| 23 l1o s 4.

NAAL ——gd 17
NT —»] 1
MPU TIATT i 24
CONTRCL m - 18
RESET —=1 26 71015 DO DATA
{except 11) D7 BUS
MREQ -—] 19
M ——
MEMORY ) e 20
AND 110 it
D -2
CONTROL Wi " 02
BFSH i 78
29 "
GND +5V
POWER
Fig. 2.33: Z80 MPU Pinout
The Z80 Chip

For completeness, the signals of the Z80 microprocessor chip will be
examined here. It is not indispensable to understand the functions of
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the Z80 signals in order to be able to program it. The reader who is not
interested in the details of hardware may therefore skip this section.
The pinout of the Z80 appears on Fig. 2.33. On the right side of the
illustration, the address bus and the data bus perform their usual role,
as described at the beginning of this chapter. We will describe here the
function of the signals on the control bus. They are shown on the left of
Figure 2.33.

The control signals have been partitioned in four groups. They will
be described, going from the top of Figure 2.33 towards the bottom.

The clock input 1s @, The Z80 incorporates the clock oscillator within
the microprocessor chip. Only a 330-ohm pull-up resistor is necessary
externally. It is connected to the 0 input and to 5 volts. However, at 4
MHz, an external clock driver 1s required.

The two bus-controf signals, BUSRQ and BUSAK, are used to dis-
connect the Z80 from its busses. They are mainly used by the DMA,, but
could also be used by another processor in the system. BUSRQ is the
bus-request signal. It is issued to the Z80. In response, the Z80 will place
its address bus, data bus, and tristate output control signals in the high-
impedance state, at the end of the current machine cycie. BUSAK 1s the
acknowiedge signal issued by the Z80 once the busses have been placed
in the high-impedance state.

Six 780 controf signals are related to its internal status or to its se-
quencing:

INT and NMI are the two interrupt signals. INT is the usual interrupt
request. Interrupts will be described in Chapter 6. A number of in-
put/output devices may be connected to the INT mterrupt line. When-
ever an interrupt request is present on this line, and when the internal
interrupt enable flip-flop (IFF) is enabled, the Z80 will accept the inter-
rupt (provided the BUSRQ is not active). It will then generate an
acknowledge signal: IORQ (issued during the M1 state). The rest of the
sequence of events 1s described m Chapter 6.

NMI is the non-maskabie interrupt. It is always accepted by the Z30,
and it forces the Z80 to jump to location 0066 hexadecimal. It too is
described in Chapter 6. (It also assumes that BUSRQ is not active.)

WAIT is a signal used to synchronize the Z80 with slow memory or
input/output devices. When active, this signal indicates that the
memory or the device 1s not yet ready for the data transfer. The Z80
CPU will then enter a special wait state until the WAIT signal becomes
inactive. It will then resume normal sequencing.

HALT 1s the acknowledge signal supplied by the Z80 after it has ex-
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ecuted the HALT instruction. In this state, the Z80 waits for an exter-
nal interrupt and keeps executing NOPs to continually refresh memory.

RESET is the signal which usually initializes the MPU. It sets the
program counter, register I and R to ‘0", It disables the interrupt
enable flip-flop and sets the interrupt mode to *0”". It is normally used
after power is applied to the board.

Memory and 1/0 Control

Six memory and 1/0 control signals are generated by the Z80. They are:
MREQ is the memory request signal. It indicates that the address pres-
ent on the address bus is valid. A read or write operation can then be
performed on the memory.

M1 is machine cycle 1. This cycle corresponds to the fetch cycle of an
instruction.

IORQ is the input/output request. It indicates that the /0 address
present on bits 0-7 of the address bus is valid, An 1/0 read or write
operation can then be carried out. IORQ is also generated together with
M1 when the Z80 acknowledges an interrupt. This information may be
used by external chips to place the interrupt response vector on the data
bus. (Normal 170 operations never occur during the M1 state. The
combination IORQ plus M1 indicates an interrupt-acknowledge situa-
tion.)

RD is the read signal.* It indicates the Z80 is ready to read the con-
tents of the data bus into an internal register. It can be used by any ex-
ternal chip, whether memory or 170, to deposit data onto the data bus.

WR is the write signal.” It indicates that the data bus holds valid
data, ready to be written into the specified device.

RFSH is the refresh signal. When RFSH is active, the lower seven
bits of the address bus contain a refresh address for dynamic memories.
The MREQ signal is then used to perform the refresh by reading the
memory.

HARDWARE SUMMARY

This completes our description of the internal organization of the
Z80. The exact hardware details of the Z80 are not important here.
However, the role of each of the registers is important and shouid be
fully understood before proceeding to the next chapters. The actual in-
structions available on the Z80 will now be introduced, and basic pro-
gramming techniques for the Z80 will be presented.

*used in conjunction with MREQ or IOREQ,
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3
BASIC PROGRAMMING
TECHNIQUES

INTRODUCTION

The purpose of this chapter is to present the basic techniques neces-
sary in order to write a program using the Z80, This chapter wiil intro-
duce new concepts such as register management, loops, and sub-
routines. It will focus on programming techmques using only the nter-
nal Z80 resources, i.e., the registers. Actual programs will be de-
veloped, such as arithmetic programs. These programs will serve to il-
justrate the various concepts presented so far and will use actual in-
structions. Thus, it will be seen how instructions may be used to
manipulate the information between the memory and the MPU, as well
as to manipulate information within the MPU itself. The next chapter
will then discuss in complete detail the instructions available on the Z80.
Chapter 5 will present Addressing Techniques, and Chapter 6 will pre-
sent the technigues available for manipulating information outside the
Z80: the Input/Ourput Technigues.

In this chapter, we will essentially learn by ““doing.”” By examining
programs of increasimg complexity, we will learn the role of the various
instructions, of the registers, and we will apply the concepts developed
so far. However, one important concept will not be presented here; it is
the concept of addressing techniques. Because of its apparent complexi-
ty, it will be presented separately in Chapter 5.

Let us immediately start writing some programs for the Z80. We will
start with arithmetic programs. The “programmer’s model’’ of the Z80
registers 15 shown in Figure 3.0.
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MAIN SET ALTERNATE SET
A F i s
{ {accumulaior) {flogs} A F
1800) 3 C (001} g [
GEMNERAL—
010 D E [©1; [ £ PURFOSE
REGISTERS
(300) H L (101} H I
i R
{interrupt vecior)] {mem refresh)
X INDEX
ty REGISTERS
SP
{stack ponter)
PC
{pregram counler)
Fig. 3.0: The Z80 Registers
ARITHMETIC PROGRAMS

Arnithmetic programs include addition, subtraction, muitiplication,
and division. The programs presented here will operate on integers.
These integers may be positive binary integers or may be expressed in
two’s complement notation, in which case the left-most bit is the sign
bit (see Chapter 1 for a description of the two’s complement notation).

8-Bit Addition

We will add two 8-bit operands called OP1 and OP2, respectively
stored at memory address ADRI, and ADR2. The sum will be called
RES and will be stored at memory address ADR3. This is illustrated in
Figure 3,1. The program which will perform this addition is the follow-

ing:

Instructions

LD A,(ADRD)
LD HL,(ADR2)

ADD A, (HL)

LD (ADR3) A

Comments

LOAD OPIINTOA

LOAD ADDRESS OF OP2 INTO HL
ADD GP2 TO QP!

SAVE RESULT RES AT ADR3
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MEMORY

\/\/\/\/\/

ADR} ——im ol (FIRST OPERAND)
ADR2 et op2 (SECOND OPERAND)
YK ——— RES (RESULT)

ADDRESSES /\/\/\\/\/\

¥ig. 3.1: Eight-Bit Addition RES = OP1 + OP2

This is our first program. The instructions are listed on the left and
comments appear on the right. Let us now examine the program. Itisa
four-instruction program. Each line is called an instruction and is ex-
pressed here in symbolic form. Each such instruction will be translated
by the assembler program into one, two, three or four binary bytes. We
will not concern ourselves here with the translation and will only look at
the symbolic representation,

The first line specifies loading the contents of ADRI into the accu-
mulator A. Referring to Figure 3.1, the contents of ADRI are the first
operand, *OP1’". This first instruction therefore results in transferring
OP1 from the memory into the accumuiator. This is shown in Figure
3.2. “ADRI” is a symbolic representation for the actual 16-bit address
in the memory. Somewhere else in the program, the ADRI symbol will
be defined. It could, for example, be defined as being equal to the ad-
dress “100".

This load instruction will result in a read operation from address 100
(see Figure 3.2), the contents of which will be transferred along the data
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280 MERORY

DAIA BUS
001 i
'

'

[l

H

(ADR1)

 —

ADORESS BUS

Fig. 3.2: LD A, (ADR1): OP1 s I oaded from Memory

bus and deposited inside the accumulator. You will recall from the pre-
vious chapter that arithmetic and logical operations operate on the
accumulator as one of the source operands. (Refer to the previous
chapter for more details.) Since we wish to add the two values OP1 and
OP2 together, we must first {oad OP1 nto the accumulaior. Then, we
will be able to add the contents of the accumulator, ie., add OP1 1o
OP2. The right-most field of this instruction is called a comment {ield.
{t is ignored by the assembler program at translation time, but is pro-
vided for program readability. In order to understand what the pro-
gram does, it is of paramount nmportance to use good comments. This
1s called documenting a program.

Here the comment is self-explanatory: the value of QPI, which is
located at address ADRI, is loaded into the accumulator A.

The result of this first instruction is illustrated by Figure 3.2. The
second instruction of our program is:

LD HL, (ADR2)

1t specifies: ““Load from (ADR2) into registers H and L.”’ In order
to read the second operand, OP2, from the memory, we must first place
its address into a register pair of the Z80, such as H and L. Then, we
can add the contents of the memory location whose address is in H and
L to the accumulator.

ADD A, (HL)

Referring to Figure 3.1, the contents of memory location ADR2 are
OP2, our second operand. The contents of the accumulator are now
OP1, our first operand. As a result of the execution of this instruction,
OP2 will be fetched from the memory and added to OPI. This is il-
tustrated in Figure 3.3
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DATA BUS

(-

ADR?

TADR 2}

ADOGRESS BUS

Fig. 3.3: ADD A, (HL)

The sum will be deposited in the accumulator. The reader will
remember that, in the case of the Z80, the results of the arithmetic oper-
ation are deposited back into the accumulator. In other processors, it
may be possible to deposit these results in other registers, or back into
the memory.

The sum of OP1 and OP2 is now contained in the accumulator. To
complete our program, we simply have to transfer the contents of the
accumulator into memory focation ADR3, in order to store the results
at the specified location. This is performed by the fourth instruction of
our program:

LD (ADR3), A

This instruction loads the contents of A into the specified address
ADR3. The effect of this final instruction 1s illustrated by Figure 3.4,

280 MEMDRY
:>..-_____I
""" 1
DATABUS i
Fa
$ 1
1
a RIS : 1
0
H 1
\JI
apri | RES: L
£a0R3

ADBRISS DUk

Fig. 3.4: LD (ADR3), A (Save Accumauiator in Memory)
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Before execution of the ADD operation, the accumulator contained
OP!1 (see Figure 3.3). After the addition, a new result has been written
into the accumulator. It is “OP1 + QP2 Recall that the contents of
any register within the microprocessor, as well as any memory location,
remain the same after a read operation has been performed on this
register. In other words, reading the contents of a register or memory
location does not change its contents. It is only, and exclusively, a wrire
operation into this register location that will change its contents. In this
example, the contents of memory locations ADR1 and ADR2 remain
unchanged throughout the program. However, after the ADD instruc-
tion, the contents of the accumulator will have been modified, because
the output of the ALU has been written into the accumulator. The
previous contents of A are then lost.

Actual numerical addresses may be used instead of ADRI, ADR2,
and ADR3. In order to keep symbolic addresses, it will be necessary to
use so-cailed *‘pseudo-instructions’ which specify the value of these
symbolic addresses, so that the assembly program may, during transla-
tion, substitute the actual physical addresses. Such pseudo-instructions
could be, for example:

ADRI1 = 100H
ADRZ = 120H
ADR3 = 200H

Exercise 3.1: Now close this book. Refer only to the list of instructions
at the end of the book. Write a program which will add two numbers
stored at memory locations LOC! and LOC2. Deposit the results at
memory location LOC3. Then, compare your program to the one
above.

16-Bit Addition

An B-bit addition will only allow the addition of 8-bit numbers, i.e.,
numbers between 0 and 255, if absolute binary is used. For most prac-
tical applications it is necessary to add numbers having 16 bits or more,
.., to use multiple precision. We will here present examples of arith-
metic on 16-bit numbers. They can be readily extended to 24, 32 bits or
more (always muftiples of 8 bits). We will assume that the first operand
1s stored at memory locations ADR1 and ADRI-1. Since OP1 is a 16-bit
number this time, it will require two 8-bit memory locations. Similariy,

99



PROGRAMMING THE Z80

OP?2 will be stored at ADR2 and ADR2-1. The result s 10 be deposited
at memory addresses ADR3 and ADR3-1. Tlus 1s Hustrated m Iigure
3.5. H indicates the hugh hall (bits 8 through 15), while 1. mdicanes the
tow halt (bus 0 through 7h

MEMORTY

ADRY - 1 {OPHH
ADRI (OP1 R

ADR7 - 1 {QP2H
ADRZ {oP2)L
ADR3 | {RESH
ADRY (RES%

Fig. 3.5: 16-Bit Addition—The Operands

The logic of the program is exactly like the previous one. First, the
lower half of the two operands will be added, since the microprocessor
can only add on 8 bits at a time. Any carry generated by the addition of
these low order bytes will automatically be stored in the internal carry
bit (*‘C"). Then, the high order half of the two operands will be acdded
together along with any carry, and the result will be saved in the
memory. The program appears below:

LD A,(ADRD 1.OAD LOW HALF OF OPI

LD HL, ADR2 ADDRESS OF L.LOW HALF OF OF2
ADD A, (HL}, ADD OPl AND OP2 L.OW

LD (ADR3), A STORE RESULT, LOW

LD A, (ADRI-1) LOAD HIGH HALF OF OPI

DEC HL ADDRESS OF HIGH HALF OF OP2
ADC A, (HL) {OP! + OP2) HIGH + CARRY

LD (ADR3-1}, A STORE RESULT, HIGH
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The first four instructions of this program are identical to the ones
used for the 8-bit addition in the previous section. They result in adding
the least significant haives (bits 0-7) of OP1 and OP2. The sum, called
“RES” 15 stored at memory location ADR3 (see Figure 3.5).

Automatically, whenever an addition is performed, any resulting
carry (whether *“0’" or “*1"’) s saved in the carry bii C of the flags
register (register F). If the two numbers do generate a carry, then the C
bit will be equal to *“1”” (it will be set}. If the two 8-bit numbers do not
generate any carry, the value of the carry bit will be 0",

The next four instructions of the program are essentially like those
used in the previous 8-bit addition program. This time they add
together the most significant half (or high half, i.e., bits 8-15) of OP1
and OP2, plus any carry, and store the result at address ADR3-1.

After execution of this 8-instruction program, the 16-bil result is
stored at memory locations ADR3 and ADR3-{, as specified. Note,
however, that there 15 one difference between the second half of this
program and the first half, The “ADD" istruction which has been
used is not the same as in the first half. In the first half of this program
(the 3rd instruction}, we had used the “ADD* instruction. This instruc-
tion adds the two operands, regardless of the carry. in the second half,
we use the “ADC” instruction, which adds the two operands together,
plus any carry that may have been generated. This is necessary in order
to obtain the correct result. The addition initially performed on the low
operands may result in a carry. Such a possible carry must be taken into
account in the second half of the addition.

The question which comes naturally then is: what if the addition of
the high half of the operands also results in a carry? There are two pos-
sibilities: the first one is to assume thal this is an error. This program is
then designed to work for results of only up to 16 bits, but not 17. The
other one is to include additional instructions to test explicitly for the
possibility of 4 carry at the end of this program. This is a choice which
the programmer must make, the first of many choices.

Note: we have assumed here that the high part of the operand is
stored “*on top of"" the lower part, i.e., at the lower memory address.
This need not necessarily be the case. In fact, addresses are stored by
the ZB0 in the reverse manner: the low part is first saved in the memory,
and the high part 1s saved in the next memory location. In order to use a
common convention {or both addresses and data, it is recommended
that data also be kept with the low part on top of the high part. This is
ilustrated in Figure 3.6.
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FAERORY

ADRY

{OPLL

ADR1 + 7

{OP1IM

ADRY

(OF23L

ADRT+ |

{OP23H

{RESW

ADRE+ 3

Fig. 3.6: Storing Operands in Reverse Order

When operating on multibyte operand, it is important to keep in mind

two essential conventions:

—the order in which data is stored in the memory.
——where data pointers are pointing: low byte or high byte.
Exercises 3.2 and 3.3 are designed to clarify this point.

Exercise 3.2: Rewrite the 16-bu additnton program above with the

memory layout indicated in Figure 3.6.

Exercise 3.3: Assume now that ADR|1 does not pownt to the lower half

of OPI (as in Figures 3.5 or 3.6), but points to the higher part of OPI.
This is illustrated in Figure 3.7. Again, write the corresponding pro-

gram.
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MEMORY
ADRI (OP1)L
— ADR! (OP1H
ADR2-1 (oP2)L
— ADRZ (OP2)H
ADR31 (RESN
i ADR3 (RESIH

Fig. 3.7: Pointing to the High Byte

It is the programmer, i.e., you, who must decide how to store 16-bit
numbers (i.e., low part or high part first) and also whether your address
references point to the lower or to the higher half of such numbers. This
is another choice which you will learn to make when designing
algorithms or data structures.

The programs presented above are traditional programs, using the
accumulator. We will now present an alternative program for the 16-bit
addition that does not use the accumulator, but instead uses some of
the special 16-bit instructions available on the Z80. Operands will be
assumed to be stored as indicated in Figure 3.5. The program is:

LD HL,(ADRI) LOAD HL WITH OP1
LD BC, (ADR2) LOAD BC WITH OP2
ADD HL, BC ADD 16 BITS

LD (ADR3), HL STORE RES INTO ADR3

Note how much shorter this program is, compared (0 our previous ver-
sion. It is more *‘elegant.”” In a limited manner, the Z80 allows registers
H and L to be used as a 16-bit accumulator.
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Exercise 3.4: Using the 16-bit instructions which have just been intro-
duced, write an addition program for 32-bit operands, assuming that
operands are stored as shown in Figure 3.8. (The answer appears
below.)

Answer :

LD HL, (ADRI)
LD BC, (ADR2)
ADD HL, BC

LD (ADR3)

LD HL, (ADR1+2)
LD BC, (ADR2+2)
ADC HL, BC

LD (ADR3+2)

MEMORY

ADR1 +3 HIGH
OPR1

ADRI1 LOW
HIGH

OPR2

ADR2 LOW
HIGH

RES

ADR3 LOW

Fig. 3.8: A 32-Bit Addition
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Now that we have learned to perform a binary addition, let us turn to
subtraction.

Subtracting 16-Bit Numbers

Doing an 8-bit subtract would be too simple. Let us keep it as an ex-
ercise and directly perform a 16-bit subtract. As usual, our two num-
bers, OP1 and OP2, are stored at addresses ADRI and ADR2. The
memory layout will be assumed to be that of Figure 3.6. In order to
subtract, we will use a subtract operation (SBC) instead of an add
operation (ADD).

Exercise 3.5: Now write a subtraction program.

The program appears below. The data paths are shown in Figure 3.9.

LD HL, (ADR1]) OP1 INTO HL
LD DE, (ADR2) OP2 INTO DE
AND A CLEAR CARRY
SBC HL, DE OP1 — OP2

LD (ADR3),HL RES INTO ADR3

The program is essentially like the one developed for 16-bit addition.
However, the Z80 instruction-set has two types of additions on double
registers: ADD and ADC, but only one type of subtraction: SBC.

As aresult, two changes can be noted.
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MEMORY
H 5
[OPHH (el T8
i {oPI% ADRS
{OP1H ADRY + |

Fig. 3.9: 16-Bit Load — LD HL, (ADR1)

A first change is the use of SBC instead of ADD.

The other change 1s the “‘AND A’ instruction, used to clear the carry
flag prior to the subtraction. This instruction does not modify the value
of A.

This precaution is necessary because the Z80 is equipped with two
modes of addition, with and without carry on the H and L register, but
with only one mode of subtraction, the SBC mstruction of “*subtract
with carry” when operating on the HL register pair. Because SBC auto-
matically takes into account the value of the carry bit, # must besetio 0
prior 1o starting the subtraction. This is the role of the "AND A™ in-
struction.

Exercise 3.6: Rewrite the subtraction program withowy usiig  the
specialized 16-bit instruction.,
Exercise 3.7: Write the subtract program for 8-bu operands.

It must be remembered that in the case of two's complement arithme-
ug, the final value of the carry flag has no meaming. [f an overflow con-
dition has occurred as a result of the subtraction, then the overilow bit
(b1t V) of the Hags register will have been set. 1t can then be tested.
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The examples just presented are simple binary additions or subtrac-
tions. However, another type of arithmetic may be necessary; it 1s BCD
arithmetic.

BCD ARITHMETIC
8-Bit BCD Addition

The concept of BCD arithmetic has been presented in Chapter 1. Let
us recall its features. It is essentially used for business applications
where it is imperative to retain every significant digit in a result. In the
BCD notation, a 4-bit nibble is used to store one decimal digit (0
through 9). As a resuit, every 8-bit byte may store two BCD digits.
(This is called packed BCD). Let us now add two bytes each containing
two BCD digits,

In order to dentify the problems, let us try some numeric examples

first.
Let us add “*01°" and **027’:

““01”* is represented by: 0000 0001
102" is represented by: 0000 0010

The result is; 0000 0011

This 15 the BCD representation for **03"". (It you feel unsure of the
BCD equivalent, refer to the conversion table at the end of the book.j
Everything worked very simply in this case. Let us now try another ex-
ample.

08" 1s represented by 0000 1060
03" 15 represented by 0000 0011

Exercise 3.8: Compute the sum of the two numbers above in the BCD
representation, What do you obtain? {answer follows)

if you obtain **0000 1011"", you have computed the binary sum of 8
and 3. You have indeed obtained 11 in binary, Unfortunately, *1011°""
is an iflegal code in BCD. You should obtain the BCD representation of
117, ie., 0001 000T!

The problemn stems from the fact that the BCD representation uses
only the first ten combinations of 4 digits in order to encode the decimal
symbols 0 through 9. The remaining six possible combinations of 4
digits are unused, and the illegal **10}1"" is one such combination. In
other words, whenever the sum of two BCD digits is greater than 9,
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then one must add 6 to the result in order to skip over the 6 unused
codes.
Add the binary representation of ‘6" to 1011:

1011 (illegal binary resulf)
+ 0110 {+6}

The result is: 0001 0001

This is, indeed, **11"" in the BCD notation! We now have the correct
result.

This example illustrates one of the basic difficulties of the BCD
mode. One must compensate for the six missing codes. A special in-
struction, “DAA™, called “*decimal adjust,” must be used to adjust the
result of the binary addition. (Add 6 if the result is greater than 9.)

The next problem is illustrated by the same example. In our example,
the carry will be generated from the lower BCD dignt (the right-mosi
onet into the lefl-most one. This internal carry must be taken into ac-
count and added to the second BCD digit. The addition astruction
takes care of this automatically. However, it s often convenient to
detect this internal carry from bit 3 to bt 4 (the “*half-carry™). The H
flag is provided for this purpose.

As an example, here is a program to add the BCD numbers 11" and
227

LD A, lIH LOAD LITERAL BCD ‘i1’
ADD A, 22H ADD LITERAL BCD 22’
DAA DECIMAL ADJUST RESULT
LD (ADR), A STORE RESULT

In this program, we are using a new symbol ““H”'. The “H" sign
within the operand field of the instruction specifies that the data it
follows 15 expressed in hexadecimal notation. The hexadecimal and the
BCD representations for digits **0"’ through "*9°" are identical. Here we
wish to add the literals {or constants} ““11°" and “22’'. The result is
stored at the address ADR. When the operand is specified as part of the
instruction, as it is in the above example, this is called immediate ad-
dressing. (The various addressing modes will be discussed in detail in
Chapter 5.) Storing the result at a specified address, such as LD (ADR), A
is called absolute addressing when ADR represents a 16-bit address.
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MEMORY

ADR
[RESULY) {ADR)

Fig. 3.10: Storing BCD Digits

This program is analogous to the 8-bit binary addition, but uses a
new instruction: ““DAA’’. Let us illustrate its role in an example. We
will first add ‘11"’ and *'22°" 1n BCD:

00010001 (1D
+ 00100010 (22)

= Q0110011 (3%
v\‘w-'

3 3
The result is correct, using the rules of binary addition.
Let us now add “*22" and *'39"", by using the rules of binary addi-

tion: 00100010 (22)
+ 00111001 (39)

= 01011011

A i Pl

5 7

10117 is an illegal BCD code. This is because BCD uses only the
first 10 binary codes, and “‘skips over’' the next 6. We must do the
same, t.e. add 6 to the result:

01011011 (bmary resulr)
s 0110 (6

= 01100001 (6I)
.

& i
This is the correct BCD result.
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Exercise 3.9 Could we imove the DAA instruction in the program after
the msirucrion LD (ADR), A?

BCD Subtraction

BCD subtraction is, in appearance, complex. In order to perform a
BCD subtraction, one must add the ren’s complement of the number,
just as one adds the two's complement of a number to perform a binary
subtract. The ten’s complement is obtamned by computing the comple-
ment io 9, then adding 17, This requires typically three to four opera-
tons on a standard microprocessor. However, the Z80 1s equipped with
a powerful DAA nstruction which simplifies the program.

The DAA instruction automatically adjusts the value of the resuit in
the accumulator, depending on the value of the C, H and N flags before
DAA., to the correct value, (See the next chapter for more details on
DAAL

16-Bit BCD Addition

16-bit addition is performed just as simply as in the binary case. The
program for such an addition appears below:

LD A, (ADRD LOAD (OPD L INTO A

LD HL,(ADR2) LOAD ADRZ INTO HL

ADD A {(HD) (OP1 + OP2) LOW

DAA DECIMAL ADJUST

LD (ADR3), A STORE (RESULT) LOW

LD A,(ADRI + 1 LD(OPIYHINTO A

INC HL POINT TO ADR2 + |

ADC A (HL) (OF1 + OP2Y HIGH + CARRY
DAA DECIMAL ADJUST

LD (ADR3 + 1), A  STORE (RESULTY HIGH

Packed BCD Subiract

Elementary BCD addition and subtraction have been described.
However, 1t actual practice, BCD numbers :nclude any number of
bytes. As a sumplified example of a packed BCD subtract, we will
assume that the two numbers NI and N2 include the same number of
BCD bytes. The aumber of bytes is called COUNT. The register and
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memory allocation is shown in Figure 3.11. The program appears
below:

BCDPAK LD B, COUNT

LD DE, N2
LD HL, NI
AND A CLEAR CARRY
MINUS LD AL {DE) N2 BYTE
SBC A, (HL;j N2 - NI
DAA
LD  (HL} A STORE RESULT
INC DE
INC HL
DINZ MINUS DEC B, LOOP UNTIL B = 0.
B COUNT
. E N N2
D NZ o
l COUNT
T L
H r\:i

Y

Ni

Fig. 3.11: Packed BCD Subtract: N1-e— N2 - N1

N1 and N2 represent the addresses where the BCD numbers are stored.
These addresses will be loaded 1n register pairs DE and HL:

BCDPAK LD B, COUNT
LD DE, N2
LD HL, NI
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Then, in anticipation of the first subtraction, the carry bit must be
cleared. [t has been pointed out that the carry bit can be cleared in a
number of equivalent ways. Here, for example, we use;

AND A
The first byte of N2 15 loaded into the accumulator, then the first byte
of N1 is subtracted from it. The DAA instruction is then used, to obtain
the correct BCD value:

MINUS LD A, (DE)

SBC A, (HL)
DAA
The result is then stored into NI:
LD {HLj, A
Finally, the pointers to the current byte are incremented:
INC DE
INC HL

The counter is decremented and the subtraction loop is executed until it
reaches the value “*0"";

DINZ MINUS

The DINZ mmstruction is a special Z80 instruction which decrements
register B and jumps if il 1s not zero, i a single mnstruction,

fxercise 3.10: Compare the program above 1o the one for the 16-bit
binary additton. What 15 the difference?

Exercise 3.11: Can you exchange the roles of DE and HL? (tHint: Be
careful wih SBC.}

Exercise 3.12: Write the subtraction program for a 16-hit BCD.

BCD Flags

In BCD mode, the carry flag set as the result of an addition indicates
the fact that the result is larger than 99. This is not like the two’s com-
plement situation, since BCD digits are represented in true binary. Con-
versely, the presence of the carry flag after a subtraction indicates a
borrow.

Instruction Types

We have now used two types of microprocessor instructions. We
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have used LD, which loads the accumulator from the memory address,
or stores s contents at the specitied address, This is a data rransfer in-
struction.

Next, we have used arirhunetie instructions, such as ADD, SUB,
ADC and SBC. They perform addition and subtraction operations.
More ALU insiructtons will be introduced soon in this chapter,

Still other types ol instructions are available within the micropro-
cessor which we have not used yet, They are in parucular “jump’” in-
structions, which will modify the order i which the program 15 being
execuled. This new type of instruction will be mtroduced in our next ex-
ample. Note that jump instructions are often called **branch’ for con-
ditional situations, 1.e. mstances where there is a logical choice i the
program. The “branch™ derives its name from the analogy 10 a tree,
and implies a lork 1n the representation of the program.

MULTIPLICATION

Let us now examine a more complex arithmetic problem: the mults-
plication of binary numbers. In order to introduce the algorithm for a
binary multiplication, fet us start by examining a usual decimal mult-
plication: We will multiply 12 by 23,

12 (Multiplicand)
X 23  (Multiplier)

36 (Partial Product)
+ 24

= 276 {(Final Result)

The multiplication is performed by multiplying the right-most digit of
the multiplier by the multiplicand, i.e., *“3’" x **12”". The partial prod-
uct is “36'". Then one multiplies the next digit of the multiplier, i.e.,
“2 by 12", 247 is then added to the partial product.

Rut there is one more operation: 24 is gffser (o rhe left by one posi-
tion. We will say that 24 is shifted left by one position. Equivalently, we
could have said that the partial product {36} had been shifted one post-
tion to the right before adding.

The two numbers, correctly shifted, are then added and the sum 13
276. This is simpie. The binary multiplication is performed in exactly
the same way.
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Let us look at an example. We will multiply § x 3;

(5} 101 (MPD}
(3) x 01l (MPR)
101 (PP
101
000

(155 01l (RES)

In order to perform the multiplication, we operate exactly as we did
above. The formal representation of this algorithm appears in Figure
3-12. It 1s-a flowchart for the algorithm, our first flowchart. Let us ex-
amine 1t more closely.

i

SET RESULT TO ZERO

[ves

RESULT =
RESULT <+ MPD

|

LEFT SHIFT {1} MFD
OR RIGHT SHIET {1} RES

:

NEXT (5B (MAPR}

DONE FOR 8 BiTS?

YES

DNE
Fig, 3.12: The Basic Multiplication Algorithm—Flowchart
This flowchart is a symbolic representation of the algorithm we have

Just presented. Every rectangle represents an order to be carried out. It
will be translated into one or more program instructions. Every
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diamond-shaped symbol represents a test being performed. This will be
a branching point in the program. If the test succeeds, we will branch to
a specified location. If the test does not succeed, we will branch to
another location. The concept of branching will be explained later, in
the program itself. The reader should now examine this flowchart and
ascertain that it does indeed exactly represent the algorithm which has
been presented. Note that there is an arrow coming out of the last dia-
mond at the bottom of the flowchart, back to the first diamond on top.
This is because the same portion of the flowchart will be executed eight
times, once for every bit of the multiplier. Such a situation, where ex-
ecution will restart at the same point, is called a programn loop for ob-
viQus reasons,

Exercise 3.13: Multply ©4°" by 7" 1 binary, using the flowchart, and
verifv that vou obtain “'28". If you do not, try again. It s only if vou
obtain the correct result that you are ready to translate this flowchart
info a program.

8-By-8 Multiplication

Let us now translate this flowchart into a program for the Z80. The
complete program appears in Figure 3.13. We are going to study it in
detail. As you will recall from Chapter 1, programming consists here of
transtating the flowchart of Figure 3.12 o the program of Figure
3.13. Each of the boxes in the flowchart will be translated by one or
more mnstructions.

1t 15 assumed that MPR and MPD aiready have a value.

MPY88 LD BC,(MPRAD} LOAD MULTIPLIER INTO C

LD B.8 B IS BIT COUNTER

LD DE,{MPDAD} LOAD MULTIPLICAND INTO E

LD D,0 CLEARD

LD HL,0 SET RESULT TO 0
MULT SRL C SHIFT MULTIPLIER BIT INTO

CARRY

JR NC, NOADD TEST CARRY

ADD HL,DE ADD MPD TO RESULT
NOADD SLA E SHIFT MPD LEFT

RL D SAVEBITIND

DEC B DECREMENT SHIFT COUNTER

JP NZ.MULT DO IT AGAIN IF COUNTER # 0
LD (RESAD), HL STORE RESULT

Fig. 3.13: 8 x 8 Multiplication Program
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The first box of the flowchart is an initialization box. It is necessary
to set a number of registers or memory locations to ““0’’, as this pro-
gram will require their use. The registers which will be used by the
multiplication program appear in Figure 3.14.

(COUNTER)
MPR (MPRAD)
B C _

LMY

RES (RESAD)

MPD (MPDAD)

C (RESULT)

Fig 3.14: 8 x 8 Multiplication—The Registers

Three register pairs of the Z80 are used for the multiplication pro-
gram. The 8-bit multiplier is assumed to reside at memory address
MPRAD. The multiplicand MPD is assumed to reside at memory ad-
dress MPDAD. The multiplier and the multiplicand respectively will be
loaded into registers C and E (see Figure 3.14). Register B will be used
as a counter.

Registers D and E will hold the multiplicand as it is shifted left one

bit at a time.
Note that, even though only C and E need to be loaded initially, a 16-

bit load must be used, so that B and D will also be loaded from memory,
and will have to be reset respectively to *‘8”°* and to *“0”’.
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Finally, the results of an 8-bit by 8-bit multiplication may require up
to 16 bits. This 1s because 2* x 2* = 2'*, Two registers must therefore
be reserved for the result. They are registers H and L, as indicated on
Figure 3.14,

The first step is to load registers B, C, and E with the appropriate
contents, and (o nitialize the result (the partial product) to the value
“0°* as specified by the flowchart of Figure 3.12. This 15 accomplished
by the following instructions:

MPY88 LD BC, (MPRAD)

LD B,8

LD DE, (MPDAD}
LD D,0

LD HL, 0O

The first three instructions respectively load MPR into the register pair
BC, the value ‘8" into register B, and MPD into the register pair DE.
Since MPR and MPD are 8-bit words, they are, in fact, loaded into
registers C and E respectively, while the next words in the memory after
MPR and MPD get loaded into B and D. This is shown in Figure 3.15
and 3.16. The next instruction will zero the contents of D.

in this multiplication program, the multiplicand will be shifted left
before being added (o the result (remember that, optionally, it 1s pos-
sible to shift the result right instead, as indicated in the fourth box of
the tflowchart of Figure 3.12). The multiplicand MPD will be shifted in-
to regisier D at each step. This register D must therefore be initialized to
the value **0"’. This is accomplished by the fourth instruction. Finally,
the fifth instruction sets the contents of registers H and L to O n a single

mstruction.
MEMORY

|

Fig. 3.15: LD BC, (MPRAD)
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MEMORY

MPDAD

Fig. 3.16: LD DE, (MPDAD)

Referring back to the flowchart of Figure 3.12, the next step is to test
the least significant bt (the right-most bityof the multiplier MPR. If this
bit1sa *'17, then the value of MPD must be added to the partial result,
otherwise it will not be added. This is accomplished by the next three in-
structtons:

MULT SRL C
JR NC, NOADD
ADD HL, DE

The first problem we must solve is how to test the least significant bit of
the multiplier, contained in register C. We could here use the BIT in-
struction of the Z80, which allows testng any bit in any register, How-
ever, In this case, we would like to construct a program as simple as
possible, using a loop. If we were using the BIT instruction here, we
would first test bit 0, then iater test bit [, and so on until we reached bit
7. This would require a different instruction every time, and a simple
loop could not be used. In order to shorten the length of the program,
we must use a different instruction, Here we are using a shift instruc-
tion.

Note: There is a way to use the BIT instruction and a loop, but this
would require the program to modify itself, a practice we will avoid.
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SRL is a new type of operation within the arithemetic and logical
unit. It stands for ‘‘shift right logical.”” A logical shift to the right is
characterized by the fact tnat a*‘0’’ comes into bit position 7. This can
be contrasted to an arithemtic shift to the right, where the bit coming
into position 7 is identical to the previous value of bit 7. The different
types of shift operations will be described in the next chapter. The
effect of the SRL C instruction is illustrated in Figure 3.14 by an arrow
coming out of register C and into the square used to designate the carry
bit (also called ‘‘C*’). At this point, the right-most bit of the MPR will
be in the carry bit C, where it can be tested.

The next instruction, ‘“JR NC, NOADD?", is a jump operation. It
means ‘‘jump on no carry’’ (NC) to the address (the label) NOADD. If
the contents of the carry bit are ‘0" (no carry), then the program will
jump to the address NOADD. If the contents of C are “‘1"’ (the carry
bit is set), then no branch will occur, and tHe next sequential instruction
will be executed, i.e., the instruction ‘““ADD HL, DE"’ will be executed.

This instruction specifies that the contents of D and E be added to H
and L, with the result in H and L. Since E contains the multiplicand
MPD (see Figure 3.14), this adds the multiplicand to the partial result.

At this point, regardless of whether MPD has been added to the
result or not, the multiplicand must be shifted left (this is the fourth box
in the flowchart of Figure 3.12). This is accomplished by:

NOADD SLA E

SLA stands for ‘‘shift left arithmetic.”" It has just been explained above
that there are two types of shift operations, a logical shift and an arith-
metic shift. This is the arithmetic one. In the case of a left shift, an SLA
specifies that the bit coming into the right part of the register (the least
significant bit) be a ‘0"’ (just as in the case of an SRL before).

As an example, let us assume that the initial contents of register E
were 00001001. After the SLA instruction, the contents of E will be
00010010. And the contents of the carry bit will be 0.

However, looking back at Figure 3.14, we really want to shift the
most significant bit (called the MSB) of E directly into D (this is il-
lustrated by the arrow on the illustration coming from E into D).
However, there is no instruction which will shift a double register such
as D and E in one operation. Once the contents of E have been shifted,
the left-most bit has ‘‘fallen into’’ the carry bit. We must collect this bit
from the carry bit and shift it into register D. This is accomplished by
the next instruction:

RL D
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RL is still another type of shift operation. It stands for *‘rotaie left. "
In a roration operation, as opposed 1o a s4ift operation, this bit coming
into the register 15 the contents of the carry bit C (see Figure 3.17), This
is exactly what we want. The contents of the carry bit C are loaded into
the right-most part of D, and we have effectively transferred the lefi-

most bit of E.
This sequence of two wstructions 15 illustrated in Figure 3.18. It can

be seen that the bit marked by an X in the most significant position of E
will first be transferred into the carry bit, then into the least significant
position of D, Effectively, it will have been shifted from E into .

At this point, referring back to the flowchart of Figure 3.12, we must
point to the next bit of MPR and check for the efghth bit. This is ac-
complished by decrementing the byte counter, contained in register B
(see Figure 3.14). The register is decremented by:

DEC B

This is a decrement instruction, which has the obvious effect.

Finally, we must check whether the counter has decremented to the
value zero. This is accomplished by checking the value of the Z bit, The
reader will recall that the Z (zero) flag indicates whether the previous
arithmetic operation (such as a DEC operation) has produced a zero
result. However, note that DEC HL, DEC BC, DEC DE, DEC IX,
DEC SP do not affect the Z flag. If the counter is not “0"", the opera-
tion 1s not fimished, and we must execute this program loop agamn. This
15 accomplished by the next instruction:

1P Nz MULT SHIFT LEFT

L. DN NN DN L,

( CARRY

ROTATE LEFT

L DD DD DD D <

( CARRY )

Fig, 3.17: Shift and Rotate
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Fig. 3.18: Shifting from E into D

This s a jump instruction which specifies that whenever the Z bit s
not set (NZ stands for non-zero), a jump occurs to location MULT. This
is the program loop, which will be executed repeatedly until B decre-
ments {o the value 0. Whenever B decrements to the value 0, the Z bit
will be set, and the IP NZ nstruction will faii. This will result in the
next sequential instruction being executed, namely:

LD (RESAD), HL

This instruction merely saves the contents of H and L, 1.e., the result of
the multiplication, at address RESAD, the address specified for the
result, Note that this instruction will transfer the contents of both regis-
ters H and L into two consecutive memory locations, corresponding to
addresses RESAD and RESAD + 1. It saves 16 bits at a time.

Exercise 3. 14: Could you write the same multiplication program using
the BIT instruction (described in the next chapter}) instead of the SRL C
instruction? What would be the disadvantage?

Let us now improve the program, if possible:

Exercise 3,15: Can JR be substituted for JP at the end of the program?
If so, what is the advantage?

Exercise 3.16: Can you use DJNZ to shorten the end of the program?
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Exercise 3.17: Examine the two instructions: LD D, O and LD HL, 0at
the beginning of the program. Can you substitute:

XOR A

LD D A
LD  H, A
LD L A

If so, what 15 the impact on size (number of byres) and speed?

Note that, in most cases, the program that we have just developed
will be a subroutine and the final instruction in the subrouting will be
RET (return}. The subroutine mechanism will be explained later in this
chapter.

Important Self-Test

This is the first significant program we have encountered so far. It in-
cludes many different types of instructions, including transfer instruc-
tions (LD}, arithmetic operations {ADD), logical operations (SRIL.,
SLA, RL), and jump operations (IR, IP). It also implements a pro-
gram loop, in which the lower seven mstructions, starting at address
MULT, are executed repeatedly. In order to understand programming,
it 15 essential 1o understand the operation of such a program in ¢com-
plete detail. The program 1s much longer than the previous simple arith-
metic programs we have developed so far, and it should be studied in
detail. An important exercise will now be proposed. The reader is
strongly urged to do this exercise completely and correctly before pro-
ceeding. This will be the only real proof that the concepts presented so
far have been understood. If a correct result is obtamned, it will mean
that you have really understood the mechanism by which nstructions
manipuiate information in the microprocessor, transfer it between the
memory and the registers, and process it If you do not obtain the cor-
rect result, or if you do not do this exercse, it is likely that you will ex-
perience difficulties later 1n writing programs yourself. Learning to pro-
gram requires personal practice. Please pause now, take a piece of
paper, or use the illustration of Figure 3.19, and do the following exer-
cise;

Exercise 3.18: Every time that a program is written, it should be verified
by hand, in order to ascertain that its results will be correct, We are go-
ing to do just thai: the goal of this exercise is to fill in the table of Figure
3.19 completely and accurately.
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LABEL [INSTRUCTION| B C C D E H L

("
{CAREYY

Fig. 3.19: Form for Multiplication Exercise

You may want to write directly on Figure 3.19 or make a copy of it,
You must determine the contents of every relevant register in the Z80
after the execution of each instruction tn the program, from beginning
to end. All the registers used by the program of Figure 3.13 arc shown
in Figure 3.19. From left 1o right, they are registers B and C, the carry
C, registers D and E, and, finally, registers H and L. On the left part of
this illustration, fill in the label, if applicable, and then the instructions
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being executed. On the night of the instruction, fill in the contents of
each regisier after execution of the mnstruction. Whenever the contents
of a register are not known (indefinite}, you may use dashes to repre-
sent its contents. Let us start filling in this table together. You will then
have to fill it out by yourself until the end. The first line appears below:

LABEL [INSTRUCTION| B C C D £ H L

MPYEB | LDBC,(0200)] 00 | 03 - -- =" “e fo--

Fig. 3.20: Multiplication: After One Instruction

We will assume here that we are multiplying “‘3" (MPR) by *‘5"
{MPD).

The first instruction to be executed is “LD BC, (MPRAD)Y". The
contents of memory location MPRAD is loaded into registers B and C,
[t has been assumed that MPR is equal to 3, i.e., “*00000011"". After ex-
ecution of this instruction, the contents of register C have been set to
3" Note that this instruction will also resuit in loading register B with
whatever followed MPR in the memory. However, the next instruction
in the program will take care of this by loading register B with “8”", as
shown in Figure 3.21. Note that, at this point, the contents of D and E
and H and L are still undefined, and this is indicated by dashes. The LD
instruction does not condition the carry bit, so that the contents of the
carry bit C are undefined. This is also indicated by a dash.

LABEL HINSTRUCTION| B c c D E H L

- - - - - L] -

MPY88 | LDBC,(0200)} 00 | 03 | = | we | = | == | s
LD B, 08 08 | 03 | = § «=f o= | ouf -

Fig. 3.21: Multiplication: After Two Instructions

The situation after the execution of the first five instructions of the
program (just before the MULT) is shown in Figure 3.22.
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LABEL |INSTRUCTION| B | C C D E ML
MPY88 | LDBC,(0200}§ 00 | O3 - - -- I
LDB.08 08 | 03 - - - R

LD DE,{0202)] 08 | 03 N Qo 5 [ == | ==

DD, 00 08 | 03 = 00| 05| "] -
LDHLO000 | 08 | O3 = 100} 05100 00

Fig. 3.22: Multiplication: After Five Instructions

The SRL instruction will perform a logical shift right, and the right-
most bit of MPR will fall into the carry bit. You can see in Figure 3.23
that the contents of MPR after the shift is ‘0000 0001°", The carry bit C
is now set to **1*’, The other registers are unchanged by this operation.
Please continue to fill out the chart by vourself,

A second iteration is shown at the end of this chapter in Fig. 3.41,

LABEL }INSTRUCTION| B C C D E H L
MPY88 | LDBC, (0200} 00 ¢ O3 - "= “- .-} o=
tDB.08 o8 | 03 - .- -- i
IDDE,(0202)] 08 { 03 - Q0 05 R Bl
DD, 00 08 | 03 - 00 05 - -
£D HL, 0000 08 | 03 - 00 05 | 00 | 00
MULT SRLC o8 | O1 1 0o G5 | 00 | OO
JRNCO114 | 08 | O 1 0o 05 | 00} Q0
ADD HL,DE 08 | O o 00 05 [ 00 ] 05
NQADD | SLAE og | O o 00 0A | 00| 05
RLD og | O 0 00 OA | 00 | O3
DECB o7 | 01 0 00 QA | 00 | 05
JP NZ,O10F 07 | O 0 0o 0A | 00 05

Fig. 3.23: One Pass Through The Loop.
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A complete listing showing the contents of all the Z80 registers and
the flags is shown in Fig. 3,39 at the end of this chapter for the complete
multiplication. A hex or decimal listing is shown in Fig. 3.40.

Programming Alternatives

The program that we have just developed could have been written.in
many other ways. As a general rule, every programmer can usually find
ways to modify, and often improve, a program. For example, we have
shifted the muitiplicand left before adding. It would have been mathe-
matically equivalent to shift the result one position to the right before
adding it to the multiplicand. As a matter of fact, this is an interesting
exercise!

Exercise 3.19: Write an 8 x 8 multiplication program using the same
algorithm, but shifting the result one position to the right instead of
shifting the multiplicand by one position to the left. Compare it to the
previous program, and determine whether this different approach
would be faster or slower than the preceding one. The speeds of the Z80
instructions are given in the next chapter.

Improved Multiplication Program

The program that we have just developed is a straightforward trans-
lation of the algorithm to code. However, effecrive programming re-
quires close attention 10 detail, and the length of the program can often
be reduced or its execution speed can be improved. We are now going to
study alternatives designed to improve this basic program.

Step 1

A first possible improvement lies in the better utilization of the Z80
instruction set. The second-to-last instruction as well as the preceding
one can be replaced by a single instruction:

DINZ LOOP

This 15 a special Z80 **automated jump’’ which decrements the B register
and branches to a specified location if it is not **0"". To be absolutely
correct, the instruction is not completely identical to the previous pair

DECB
JP NZ, MULT
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for it specifies a displacement, and one can only jump within the range
of - 126 to + 129. However, we must here jump to a location which is
only a few bytes away, and this improvement is legitimate. The
resulting program is shown in Figure 3.24 below:

MPY88B LD DE, (MPDAD)
LD BC, (MPRAD])

LD B, 8 BIT COUNTER
LD HL, 0

MULT  SRL C
JR NC, NOADD

ADD HI., DE
NOADD SLA E

RL D

DINZ MULT

LD (RESAD), HL

RET

Fig. 3.24: Improved Muitiply, Step 1
Srep 2

In order to umprove this multiplication program further, we will
observe that three different shift operations are used in the initial pro-
gram of Figure 3.13. The multiplier is shifted right, then the multipli-
cand MPD is shifted left, in two operations, by first shifting register E
left, then rotating register D to the left. This is time-consuming. A stan-
dard programming “‘trick’” used in the case of multiplication is based
on the following observation: every time that the multiplier is shifted by
one bit position, another it position becomes available in the mulu-
plier register. For example, assuming that the multiplier shifts right (in
the previous example}, a bit position becomes available on the left.
Simultaneously, it can be observed that the first partial product (or
“result’’) will use, at most, 9 bits. If a single register had been allocated
10 the result in the beginning of the program, we could then use the bit
position that has been vacated by the multiplier to store the ninth bit of
the resuit.

After the next shift of the MPR, the size of the partial product will be
increased by just one bit again. In other words, a single register can be
reserved intially for the partial product, and the bit positions which are
being freed by the multiplier can then be used as the MPR is being
shifted. In order to improve the program, we are therefore going to
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assign MPR and RES to a register pair. Ideally, they should be shifted
together in a single operation. Unfortunately, the Z80 shifts only 8-bit
registers at a time, Like most other 8-bit microprocessors, it has no in-
struction that allows shifting 16 bits at a time.

However, another trick can be used. The Z80 (like the 8080) is
equipped with special 16-bit add instructions that we have already used.
Provided that the multiplier and the result are stored in the register pair
H and L, we can use the instruction:

ADD HL, HL

which adds the contents of H and L to itself. Adding a number to
itself 15 doubling it. Doubling a number in the binary system is equiva-
lent to a left shift. We have just obtained a 16-bit shift in a single in-
struction. Unfortunately, the shift occurs to the left when we would like
it to occur to the right. This is not a problem.

Conceptually, the MPR can be shifted either Ieft or right, We have
used a right shift algorithm because this is the one which is used i or-
dinary addition. However, it does not necessarily need to be so. The
addition operation is commutative, and the order can be reversed: shif-
ting the MPR to the left is just as valid.

In order to take advantage of this simulated 16-bit shift, we will have
to shift the MPR to the left. Therefore, the MPR will reside in register
H and the result n register L. The resulting register configuration is
shown in Figure 3,25,

B[ Counter

D 0 MPD

MPR et RES

1 |

Fig. 3.25: Registers for Improved Multiply
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The rest of the program is essentially identical to the previous one.
The resulting program appears below:

MULSSC LD HL, (MPRAD-I)

LD L, O

LD DE, (MPDAD)

LD D, 0

LD B,§ COUNTER
MULT ADD HL, HL SHIFT LEFT

IR NC, NOADD

ADD HL, DE
NOADD DINZ MULT

LD {RESAD), HL

RET

Fig. 3.26: Improved Muitiply, Step 2

When comparing this program Lo the previous one, 1t can be seen that
the length of the muitiplication loop (the number of instructions be-
tween MULT and the jump) has been reduced. This program has been
written in fewer mstructions and this will usually result in faster execu-
uon. This shows Lthe advantage of selecting the correct registers to con-
tain the information.

A straightforward design will generally result in a program that
works, It will not result 1n a program that is opinized. 1 s theretore
unportant (o understand and use the available registers and instructions
in the best possible way. These examples illustrate a rational approach
to register selection and instruction selection for maximum efficiency.

Exercise 3.20: Compute the speed of a nudiplication operation usig
thus last program. Assume that a branch will occur 1 50% of the cases.
Look up the number of cycles required by everv instruction in the mdex
section. Assume a clock rare of 2 MHz fone cyele = 2 us).

Exercise 3.21: Note thai here we have used the register pawr D and £ 10
contain the multiplicand. How would the above program be changed i/
we had used the register pair B and C wstead? (Hine: this would re-
quire a modification at the end.)

Exercise 3.22: Why did we have to bother Zerowmg register D when
loading MPD nto E?

Finally, let us address a detail which may look irritating to the pro-
grammer who 15 not vet familiar with the Z80. The reader will have
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noticed that, in order to load MPD into E from the memory, we had to
load both registers D and E at the same time from a memory address.
This is because, unless the address is contained in registers H and L,
there is no way to fetch a single byte directly and lead it into register E.
This is a feature carried over from the early 8008, which had no direct
addressing mode. The feature was carried forward into the 8080, with
some improvements, and improved still further in the Z80, where it is
possible to fetch [6 bits directly from a given memory address (but not
8 bits - except toward register A),

Now, having solved this possible mystery, let us execute a more
complex multiplication.

A 16 X 16 Multiplication

In order to put our newly acquired skills to a test, we will multiply
two 16-bit numbers. However, we will assume that the result requires
only 16 bits, so that it can be contained in one of the register pairs.

The result, as in our first multiplication example, is contained in
registers H and L (see Figure 3.27). The multiplicand MPD is contained
in registers D and E.

B <
A
COUNTER MPR, HIGH
MPR, LOW

Fig. 3.27: 16 X 16 Multiply—The Registers
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It would be templing to deposit a multiplier into register B and C.
However, if we want to take advantage of the DINZ instruction,
register B must be allocated to the counter, As a result, half of the
multplier will be in register C, and the other half in register A (see
Figure 3.27). The multiplication program appears below:

MULt6 LD A, (MPRAD + 1) MPR, HIGH

LD C, A
LD A, (MPRAD) MPR, LOW
LD B, 16 COUNTER
LD DE, (MPDAD) MPD
LD HL, 0
MULT SRL C RIGHT SHIFT MPR,
HIGH
RRA ROTATE RIGHT MPR,
LOW
IR NC, NOADD TEST CARRY
ADD HL, DE ADD MPD TO RESULT
NGCADD EX DE, HL
ADD HL, HL DOUBLE - SHIFT MPD
LEFT
EX DE, HL
DINZ  MULT
RET

Fig. 3.28: 16 X 16 Multiplication Program

The program is analogous to those we have developed before. The
first six instructions (from label MUL16 to tabel MULT) perform the
initialization of registers with the appropriate contents. One complica-
tion is introduced here by the fact that the two halves of MPR must be
loaded in separate operations. [t is assumed that MPRAD points to the
fow part of the MPR in the memory, followed in the next seqguential
memory location by the high part. (Note that the reverse convention
can be used.) Once the high part of MPR has been read into A, 1L must
be transferred into C:

LD A, (MPRAD + 1)
LD C, A

Finally, the low part of MPR can be read directly into the accumulator:
iD A, (MPRAD)
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The rest of the registers, B, D, E, H, and L are initialized as usual:

LD B, i6
LD DE, (MPDAD)
LD HL, 0

A 16-bit shift must be performed on the multiplier. It requires two
separate shift or rotate operations on registers C and A:

MULT SRL C
RRA

After the 16-bit shift, the right-most bit of the MPR, L.e., the LSB, is
contained in the carry bit C where it can be tested:

JR NC, NOADD

As usual, the multiplicand is not added to the result if the carry bit 1s
“0". and is added to the resuit if the carry bit is **I"";

ADD HL, DE

Next, the multipiicand MPD must be shifted by one position to the left.

However, the Z80 does not have an instruction which will shift the
contents of register D and E simultaneously to the left by one bit posi-
tion, and it can also not add the contents of D and E to itseff. The con-
tents of D and E will therefore first be transferred into H and L., then
doubled, and transferred back to D and E. This is accomplished by the
next three instructions:

NOADD EX DE, HL
ADD HL, HL
EX DE, HL

Finally, the counter B is decremented and a jump occurs to the begin-
ning of theloopas long as it does not decrement to “°0:

DINZ MULT

As usual, it is possible to consider other register allocations which may
{or may not) result 1n shorter codes:

Exercise 3.23: Load the nultiplier inro registers B and C. Place the
counter in A. Write the corresponding multiplication program and
discuss the advaniages or disadvantages of this register allocation.
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Exercise 3.24: Referring to the origmal 16-bit nudtiplication program
of Figure 3.28, can you propose a way to shift the MPD, contained in
registers D and E, without transferring it nito registers H and L?

Ixercise 3.25: Wrie a 16-by-16 muduplication progrum wiluch derects
the fact that the result has more than 16 bits. This 1s « siiple improve-
ment of our basic program,

Exercise 3.26: Wrie g 16-by-16 multuplication program wah a 32-bit
result. The suggested regisier altocation appears in Figure 3.29.
Remember that the mitial resuft after the first additton ur the loop will
require only 16 bus, and that the muluplier will free one bit for each
subsequent ueration,

i
B MPD <
I
E
o MPR E
I RESULT
AFTER
MLILTIPUCATION
H RES

Fig. 3.29: 16 x 16 Muitiply with 32-Bit Result

Let us now examine the last usual arithmetic operation, the division.

BINARY DIVISION

The algorithm for binary division 1s analogous to the one which has
been used for the multiplication. The divisor 1s successively subtracted
from the high order bits of the dividend. After each subtraction, the
result 15 used instead of the initial dividend. The value of the quotient 15
simultaneously increased by | every time. Eventually, the result of the
subtraction 15 negative. This i1s called an overdraw. One must then
restore the partial result by adding the divisor back to it. Naturally, the
quotient must be simultaneously decremented by i. Quouent and divi-
dend are then shifted by one bit position 10 the leit and the algonthm is
repeated. The flow-chart is shown in Figure 3.30.

The method just described is called the restoring miethod. A vanaton
of this method which yields an improved speed of execution is called the
non-restoring method.
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T3

INITIALIZE
QUOTIENT =0
SHIFTCOUNTER = &

SHIFT LEFT
DIVIDEND
[WITH B LEADING §'s)
AND QUOTIENT

'

IRIAL SUBTRACT:
LECT (BVIDEND)-DIVISOR

YES
BORROW?
NG
RESTORE:
[QUOTIENT = QUOTIENT + 1 ADD OIVISOR

b .

COUNTER = COUNTER— 1

NO
YES

END (REMAINDER N LEFT (DIVIDEND)

Fig. 3.30: 8-Bit Binary Division Flowchart

B | COUNTER C

H § DIVIDEND/QUOTIENT

Fig. 3.31: 16/8 Division—The Registers
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16-by-8 Division

As an example, let us here examine a 16-by-8 division, which will
yield an 8-bit quotient and an 8-bit remainder dividend. The register
allocation 1s shown in Figure 3.31.

The program appears below:

DiVIes LD A (DVSAD) LOAD DIVISOR
LD DA INTO D
LD E. O
LD HL,(DVDAD) LOAD 16-BIT DIVIDEND
LD B.8 INITIALIZE COUNTER
PIvV XOR A CLEAR C BIT
SBC HL, DE DIVIDEND — DIVISOR
INC HL QUOTIENT = QUOTIENT «+ 1
P P, NOADD TEST IF REMAINDER
POSITIVE
ADD Hi, DE RESTORE IF NECESSARY
DEC HL QUOTIENT = QUOTIENT - |
NOADD ADD HL, HL SHIFT DIVIDEND LEFT
DINZ DIV LOOP UNTIL. B =0
RET

Fig. 3.32: 16/8 Division Program

The first five instructions 1n the program load the divisor and the divi-
dend respectively into the appropriate registers, They also initialize the
counier, 1a register B, to the value 8. Note again that register B is a pre-
ferred location for a counter if the specialized Z80 instruction DINZ is
to be used:

pbivies LD A, (DVSAD)

LD B, A
LD E, 0
LD HL, (DVDAD)
LD B, 8

Next, the divisor is subtracted {rom the dividend. Since an SBC in-
struction must be used {there is no 16-bit subtract without carry}, the
carry must be set to the value ‘0’ before subtracting. This can be ac-
complished in a number of ways. The carry can be cleared by perform-
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ing mnstructions such as:

XOR A
AND A
OR A

Here, an XOR is used:

DIV XOR A
The subtraction can then be performed:
SBC HL, DE

It is anticipated that the subtraction will be successful, 1.e., that the re-
mainder will be positive. This is called the “‘trial subtract”’ step (refer to
the flowchart of Figure 3.30). The guotient is therefore incremented by
one. I the subtraction has in fact failed (i.e., if the remainder is
negative), the quotient will have to be decremented by one later on:

INC HIL.
The resuit of the subtraction is then tested:
jp P, NOADD

If the remainder is positive or zero, the subtraction has been successful,
and it 15 not necessary to store it. The program jumps to address
NOADD. Otherwise, the current dividend must be restored to its
previous value, by adding the divisor back to it, and the guotient must
be decremented by one. This is performed by the next instructions:

ADD HL, DE
DEC HL

Finally, the resulting dividend is shifted left, in antictpation of the
next trial subtract operation. Finally, the B counter is decremented and
tested for the value *0"". As long as B is not zero, this loop 1s executed:

NOADD ADD HL, HL
DINZ DIV
RET

Exercise 3,27: Verify the operation of this division program by hand,

by filling out the table of Figure 3.33, as in Exercise 3.18 for the multi-
plication, Note that the contents of D need not be entered on the form
of Figure 3.33, since they are never modified.
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LASEL INSIRUCTION

Fig. 3.33: Form for Division Program

8-Bit Division

The following program uses a restoring method, and leaves a com-
plemented quotient in A, It divides 8 bits by 8 bits (unsigned).

E IS DIVIDEND
C IS DIVISOR

A IS QUOTIENT
B IS REMAINDER

DIVES XOR A
LD B.&
LOOPE8 RL E

RLA

SUB C

JR NC,$ + 3
ADD A, C
DINZ LOOPS38
LD B.A

LD AE

RLA

CPL

RET

CLEAR ACCUMULATOR
LGOP COUNTER

ROTATE CY INTO ACC-
DIVIDEND

CY WILL BE OFF

TRIAL SUBTRACT DIVISOR
SUBTRACT OK

RESTORE ACCUM, SET CY

PUT REMAINDER IN B
GET QUOTIENT
SHIFT IN LAST RESULT BIT

COMPLEMENT BITS

Note: the 8" symbol in the sixth instruction represents the value of the

program couiter,
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Non Restoring Division

The following program periorms a 16-bit by 15-bit integer division,
using a non-restoring technique. IX points to the dividend, 1Y to the
divisor (not zero). (see Figure 3.34.).

Al DVD,HI !

B| countr || DWDLO |c
D | DIVISOR |E
H REM L
IX DVD ADDRESS

by DVS ADDR

Fig. 3.34: Non-Restoring Division—The Registers

Register B is used as a counter, initially set to 16.
A and C contain the dividend.
D and E contain the divisor.
H and L contain the result.
The 16-bit dividend is shifted left by:
RL C
RLA
The remainder is shifted left by:
ADC HIL., HL.
The final quotient is left in B, T, with the remainder in HL. The
program follows.
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DiVie LD B.(IX + 1)

LD C. (1Xx)
LD DY + 1)
LD E. (Y}
LD A, D
OR E (DIVISOR) HIGH OR
(DIVISOR) LOW
iR Z,ERROR  CHECK FOR DIVISOR =
ZERO
LD A, B GET (DVD) HI
LD HL,0 CLEAR RESULT
LD B, 16 COUNTER
TRIALSB RL c ROTATE RESULT + ACC
LEFT
RLA
ADC HL, HL LEFT SHIFT. NEVER SETS
CARRY.
SBC HL,DE MINUS DIVISOR
NULL CCF RESULT BIT
JR NC, NGV ACCUMULATOR
NEGATIVE?
PTV DINZ TRIALSB COUNTER ZERO?
JP DONE
RESTOR RL C ROTATE RESULT + ACC
LEFT
RLA
ADC HL, HL AS ABOVE
AND A
ADC HL,DE RESTORE BY ADDING DVSR
JR C,PTV RESULT POSITIVE
iR Z, NULL RESULT ZERO
NGV DINZ RESTOR COUNTER ZERO?
DONE RL C SHIFT IN RESULT BIT
RLA
ADD HL, DE CORRECT REMAINDER
LD B, A QUOTIENT ISIN B, C
RET
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Exercise 3.28: Compare the previous prograimn (o the following one, us-
ing a restoring fechnigue:

DIVIDEND IN AC
DIVISOR IN DE
QUOTIENT IN AC
REMAINDER IN HL

DiVIie I.D FHL,0 CLEAR ACCUMULATOR
LD B, 16 SET COUNTER

LOOPIS RL C ROT ACC-RESULT LEFT
RLA
ADC HL,HL LEFT SHIFT
SBC HL,DE TRIAL SUBTRACT DIVISOR
JR NC,% +3 SUB WAS OK
ADD HL,DE RESTORE ACCUM
CCF CALC RESULT BIT
DINZ LOOPIL6 COUNTER NOT ZERO
RL C SHIFT IN LAST RESULT BIT
RLA
RET

Note: The symbol ‘37’ means “‘current location” {eighth instruction}.

LOGICAL OPERATEONS

The other class of instructions which can be executed by the ALU in-
side the microprocessor is the set of logical instructions. They include:
AND, OR and exclusive OR (XOR). In addition, one can also include
here the shift and rotate operations which have already been utilized,
and the comparison instruction, called CP for the Z80. The individual
use of AND, OR, XOR, will be described in Chapter 4 on the instruc-
tion set.

Let us now develop a brief program which will check whether a given
memory location called LOC contains the value “*0", the value *“1"’, or
something else.

The program will introduce the comparison instruction, and perform
a series of logical tests. Depending on the result of the comparison, one
program segment or another will be executed.
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The program appears below:

LD A (LOO) READ CHARACTER IN

LOC
CP  0CH COMPARE TO ZERO
P Z,ZERO ISITAQ?
CP  OlH COMPARE TO ONE
JP Z, ONE
NONEFOUND ..
ZERO
ONE

The first instruction: “LD A, (LOC)"’ reads the contents of memory
location LOC, and loads it into the accumulator. This 15 the character
we want to test. It 1s compared to the value O by the following instruc-
tion:

CcpP 00H

This mstruction compares the contents of the accumulator to the hex-
adecimal value ““00”, i.e., the bit pattern **0000 0000’’. This compari-
son instruction will set the Z bit in the flags register (o the vaiue **1 if
1t succeeds. This bit can then be tested by the next instruction:

JP Z, ZERO

The jump instruction tests the value of the Z bit. If the COMpPArison suc-
ceeds, the Z bit has been set to one, and the jump will succeed. The pro-
gram will then jump to the address ZERO. If the test {ails, then the next
sequential mstruction will be executed:

CP 01H

Similarly, the following jump instruction will branch to location ONE
if the comparison succeeds. If none of the comparisons succeed, then
the instruction at location NONEFQUND will be executed.

JP Z, ONE
NONEFOUND . ..
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This program was mntroduced to demonstrate the value of the com-
parison instruction followed by a jump. This combination will be used
in many ol the following programs.

Evercise 3.29: Refer (o the definition of the LD A, (LOC) mstruction in
the next chapter. Exannne the effect of this astruction on the flags, if
any. Is the second instruction of this program necessary (CPO0H)?

Fvercise 3.30: Write the program which will read the contents of
memory locanon 24" and branch (o an address called "STAR{[ there
was @ < memory location 24, The b patern for a **"" tn binary
notation will be assumed 1o be represented by “001010107".

INSTRUCTION SUMMARY

We have now studied most of the imporiant mstructions of the Z80
by using them. We have transierred values between the memory and the
registers. We have performed anthmetic and logical operations on such
data. We have tested it, and depending on the results of these tests,
have executed various portions of the program. In particular, special
“automated”’ Z80 instructions such as DINZ have been used to shorten
programs. Other automated instructions: LDDR, CPIR, INIR will be
introduced throughout the remainder of this book.

Full use has been made of special Z80 features, such as 16-nt register
snstructions (o simplify the programs, and the reader should be careful
nol 1o use these programs on an 8080: they have been optimized for the
Z80.

We have also introduced a structure calied a loop. Another impor-
tant programming structure will be itroduced now: the subroutine.

SUBROUTINES

In concept, a subroutine 15 sunply a block of instructions which has
been given a name by the programmer. From a practical standpoint, a
subrounne must star with a special instruction called a subrouiine
declaration, which identifies it as such for the assembler. It is also ter-
minated by another special instruction called a refurn. Let us first il-
lustrate 1he use of a subroutine in a program in order to demonstrate its
value. Then, we will examine how 1t 1s actually implemented.
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Mk PROGRAN

SUBRGUst

; -
- 15f
j: - 62 e

LAL SUB b e m e b s QEIUEN

Catsue P -

Fig. 3.35: Subroutine Calls

The use ol a subroutine 1s illustrated in Figure 3.35. The main pro-
gram appears on the Ieit of the llustraton. The subroutine is shown
symbolically on the right. Let us examune the subroutine mechanism.
The lines of the mamn program are exceuted successively until a new in-
struction "CALL SUB” is met. This special instruction is the
subrontine call and results in a transfer 10 the subroutine. This means
thai the next mnstruction to be executed after the CALL SUB is the first
instruction within the subroutine. This 15 illustrated by arrow { on the
illustration.

Then, the subprogram within the subroutine executes just like any
other program. We will assume that the subroutine does not contain
any other calls. The last instruction of this subroutine is a RETURN.
This is a speaial mstruction which will cause a return 1o the main Pro-
granm. The next instructuon (o be executed after the RETURN 15 the one
following the CALL SUB in the main program. This is illustrated by ar-
row 3 on the illustration. Program cxecution continues then, as il-
lustrated by arrow 4,

In the body of the mam program 2 second CALL SUB appears. A
new fransfer occurs, shown by arrow 5. This means that the body of the
subrounne is agam executed lollowing the CALL SUB instruction.

Whenever the RETURN wathun the subroutine s encountered, a
return oceurs 1o the insiruction following the CALL SUB in question.
This s illustrated by arrow 7. Following the return (o the main pro-
gram, program execuiton proceeds normally, as illusirated by arrow 8.

The effect of the 1wo spewsal instrucnons CALL SUB and RETURN
should now be clear. What 1 the value ol the subroutine mechanism?

The essental value of the subroutine s that 1t can be called from any
aumber of points v the mam program, and used repeatedly witiout
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rewrtting if. A first advantage is that this approach saves memory
space, since there is no need to rewrite the subroutine every time. A se-
cond advantage is that the programmer can design a specific subroutine
oniy once and then use 1l repeatedly. This is a significant simplification
in program design.

Fxercise 3.31: What is the main disadvantage of a subroutme? (Answer
follows.y

The disadvantage of the subroutine should be clear just by examining
the flow of execution between the main program and the subroutine. A
subroutine resulls in a Sfower execufion, smce exira mstructions must
be exceuled: the CALL SUB and the RETURN.

Impiementation of the Subroutine Mechanism

We will examine here how the two special instructions, CALL SUB
and RETURN, are implemented internally within the processor. The
etfect of the CALL SUB instruction 1s 10 cause the next nstruction (o
he letched at a new address. You will remember {or eise read Chapter
[ agam t that the address of the next insiruction 0 be execuled ina
computer 1s contained in the program counter (PC). This means thal
the effect of the CALL SUB is to substitule new vonients in register PC.
lis effect is 1o load the start address ol the subroutine m the program
counter. Is that really sufficient?

To answer this question, let us consider the other instruction which
has 10 be implemented: the RETURN. The RETURN must cause, as its
name indicates, a relurn to the instruction that follows the CALL SUB.
Thas 1s possible only if the address of this instruction has been preserved
somewhere. This address happens to be the vaiue of the program
counler at the time that the CALL SUB was encountered. Thus is
because the program counter is automatically incremented every time it
is used (read Chapter | again). Thisis preciscly the address that we want
10 preserve, so that we can later perform the RETURN,

The next problem is: where can we save this return address? This ad-
dress must be saved 1n a focation where it 1s guaranteed that it will not
be erased.

However, let us now consider the following situation, illustrated by
Figure 3.36. [nthisexample, subroutine | contains a call to SUB2. Our
mechanism should work in this case as well. Naturally, there might even
be more than two subroutines, say N *‘nested”’ calls. Whenever a new
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CALL 15 encountered, the mechanism must therefore again store the
program counter. This implies that we need at least 2N memory loca-
tions for this mechanism. Additionally, we will need to relurn from
SUBZ first and SUBI next. in other words, we need a structure which
can preserve the chronological ordering in which addresses have been
saved.

The structure has a name and has already been introduced. 1t is rhe
stack. Figure 3,38 shows the actual contents of the stack during suc-
cessive subroutine calls. Let us look at the main program first. At ad-
dress 100, the first call is encountered: CALL SUBIL. We will assume
that, 1n this microprocessor, the subroutine call uses 3 bytes (RST is an
exception). The next sequential address 15 therefore not **101°*, but
1037, The CALL instruction uses addresses **100", CHOET, Y102
Because the control unit of the Z80 “‘knows™ that il is a 3-byte instruc-
tion, the value of the program counter, when the call has been com-
pletely decoded, will be *“103". The effect of the call will be to load the
valuc **280" in the program counter. *280" is the starting address of
SUBI.

om L]

-

§
£
|

Caat .

_—4
#

rrturn

Fig. 3.36: Nested Calls

We are now ready to demonstrate the effect of the RETURN instruc-
tion and the correct operation of our stack mechanism. Execution pro-
ceeds within SUB2 until the RETURN instruction is encountered at
time 3. The effect of the RETURN nstruction is simply to pop the top
ol the stack into the program counter. In other words, the program
counter is restored to its value prior 1o the entry into the subroutine.
The 1op of the stack in our example is 303", Figure 3.38 shows that, at
time 3, value ““303"" has been removed from the stack and has been put
back nto the program counter. As a result, instruction execution pro-
ceeds from address **303”. At time 4, the RETURN of SUBI is encoun-
tered. The value on top of the stack is **103"". It is popped and is in-
stalled in the program counter. As a result, program execution will pro-
ceed from location **103’" on within the main program. This is, indeed,
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the effect that we wanted. Figure 3.38 shows that at time 4 the stack is
agamn empty. The mechanism works.

The subroutine call mechanism works up to the maximum dimension
of the stack. This is why early microprocessors which had a 4- or
8-register stack were essentially limited to 4 or 8 levels of subroutine
calls.

Note that, on Figures 3.36 and 3.37, the subroutines have been
shown to the right of the main program. This is only for the clarity of
the diagrarm. In reality, the subroutines are typed by the user as regular
instructions of the program. On a sheet of paper, when producing the
listing of the complete program, the subroutines may be at the begin-
ning of the text, in its middle, or at the end. This is why they are pre-
ceded by a subroutine declaration: they must be identified. The special
instructions tell the assembler that what follows should be treated as a
subroutine. Such assembler directives will be discussed in Chapter 10.

ADDRESS {MAING
00, CAULSUB1 @
1053 (Sl 1y
0
@ 200 (5Un 2}
e i
- 0. CalLsun2
—_ 3 —
RETURN JEENTEI-.S

@
@ RETURMN

Fig, 3.37: The Subroutine Calls

siack: | ime (D) | TmE@) | TmE(Q) | TImE (@)

103 10

[ 3%

103

3

L]

Fig. 3.38: Stack vs, Time
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Z80 Subroutines

The basic concepts relating to subroutines have now been presented.
It has been shown that the stack is required in order to implement this
mechanism. The Z80 is equipped with a 16-bit stack-pointer register.
The stack can therefore reside anywhere within the memory and may
have up to 64K (1K = 1024) bytes, assuming they are available for that
purpose. In practice, the start address for the stack, as well as its max-
imum dimension, will be defined by the programmer before writing his
program. A memory area will then be reserved for the stack.

The subroutine-call instruction, in the case of the Z80, is called
CALL, and comes n 1wo versions; the direct or unconditional call,
such as CALL ADDRESS, is the one we have already described. In ad-
dition, the Z80 is equipped with a conditional call mstruction which wil}
call a subroutine if a condition is met. For example: CALL NZ, SUBI
will result in a call to subroutine 1 if the Z flag is zero at the time of the
test, This is a powerful facility, since many subroutine calls are
conditional, i.e., occur only if some specific condition is met,

CALL CC, NN s executed only if the condition specified by “CC™
is true. CC is a set of three bits (bits 3, 4, and 5 of the opcode) which
may specify up to eight conditions. They correspond respectively to the
four flags ““Z", «“C’*, “p/y», «g» veing either zero or non-zero.

Similarly, two types of return instructions are provided: RET and
RET CC.

RET 1s the basic return instruction. It occuples one byte, and causes
the top two bytes of the stack to be re-installed in the program counter.
1t is unconditional.

RET CC has the same effect except that it is executed only if the con-
ditions specified by CC are true, The condition bits are the same as for
the CALL instruction just described.

Additionally, two specialized types of return are available which are
used O terminate mnterrupt routines: RETI, RETN. They are described
in the section on the Z80 instructions as well as in the section on inter-
rupts,

Finally, one more specialized nstruction is provided which is analo-
gous to a subroutine call, but allows the program to branch to only one
of eight starting locations located in page zero. This is the RST P in-
struction. This is a one-byte instruction which automatically preserves
the program counter in the stack, and causes a branch to the address
specified by the three-bit P field. The P fieid corresponds to bits 3, 4
and 5 of the insrtuction, multiplied by eight.
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In other words, if bits 3, 4, 5 are “000"*, the jump will occur to loca-
tion O0H. If these bits are “*0017", the branch will oceur 1o O8H, eic. up
to 111, which will cause a branch to location 38H. The RST instruction
1s very efficient in terms of speed since it is a single-byte instruction.
However, it can jump to only eight locations, in page 0. Additionally,
these addresses in page 0 are only eight bytes apart. This instruction s a
carry-over from the 8080 and was extensively used for mterrupts. This
will be described in the interrupt section. However, this instruction may
be used for any other purpose by the programmer, and should be con-
sidered as a possible specialized subroutine call.

Subroutine Examples

Most of the programs that we have developed and are going 10
develop would usually be written as subroutines. For example, the
multiplication program is likely to be used by many areas of the pro-
gram, In order to facilitate and clarify program development, it is
therefore convenient to define a subroutine whose name would be, for
example, MULT. At the end of this subroutine we would simply add
the instruction RET.

Evercise 3.32: If MULT s used as a subroutine, would it “‘damage”’
any internal flags or registers?

Recursion

Recursion is a word used to indicate that a subroutine 1s calling itself.
If you have understood the implementation mechanism, you should
now be able to answer the following question:

Exercise 3.33: Is it legal 10 let a subroutine call itself? (In other words,
will everything work even if a subroutine calls itself?) If you are not
sure, draw the stack and fill it wih the successive addresses. Then, look
at the registers and memory (see Exercise 3.18) and determine if @ pro-
blem exists.

Interrupts will be discussed in the mput/output chapter (Chapter 6).
All returns except returns from interrupts are one-byte instructions; all
calls are 3-byte instructions (except RST}.

Exercise 3.34: Look ar the execution times of the CALL and the RET
instructions in the next chapter. Why is the return from a subroutine so
much faster than the CALL? (Hint: if the answer is not obvious, look
again ai the stack implementation of the subroutine mechanism, and
analyze the internal operations that must be performed.)
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Subroutine Parameters

When calling a subroutine, one normally expects the subroutine to
work on some data. For example, in the case of multiplication, one
wants to transmit two numbers to the subroutine which will perform
the multiplication. We saw in the case of the multiplication routine that
this subroutine expected to find the multiplier and the multiplicand in
given memory locations. This illustrates one method of passing para-
meters: through memory. Two other techniques are used, so that we
have three ways of passing parameters.

I—through registers

2—through memory

3—through the stack

Registers can be used to pass parameters. This is an advantageous
solution, provided that registers are available, since one does not need
to use a fixed memory location: the subroutine remains memory-inde-
pendent, If a fixed memory location is used, any other user of the sub-
routine must be very careful that he uses the same convention and that
the memory location is indeed available (look at Exercise 3.19 above).
This is why, in many cases, a block of memory locations is reserved
simply to pass parameters among various subroutines.

Using memory has the advantage of greater flexibility (more data),
but results in poorer performance and also in tying the subroutine to a
given memory area.

Depositing parameters in the stack has the same advantage as using
registers: it is memory-independent. The subroutine simply knows that
it is supposed to receive, say, two parameters which are stored on top of
the stack. Naturally, it has disadvantages: it clutters the stack with data
and, therefore, reduces the number of possible levels of subroutine
calls. It also significantly complicates the use of the stack, and may re-
quire multiple stacks.

The choice is up to the programmer. In general, one wishes to remain
independent from actual memory locations as long as possible.

If registers are not available, a possible solution is the stack. How-
ever, if a large quantity of information should be passed to a sub-
routine, this information may have to reside directly in the memory. An
elegant way around the problem of passing a block of data is simply 1o
transmit a pointer to the information. A pointer is the address of the
beginning of the block. A pointer can be transmitted in a register, or in
the stack (two-stack locations can be used to store a 16-bit address), or
in a given memory location(s).
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Finally, if neither of the two solutions is applicable, then an agree-
ment may be made with the subroutine that the data will be at some
fixed memory location (the ‘“‘mail-box’’).

Exercise 3.35: Which of the three methods above is best for recursion?

Subroutine Library

There is a strong advantage to structuring portions of a program into
identifiable subroutines: they can be debugged independently and can
have a mnemonic name. Provided that they will be used in other areas
of the program, they become shareable, and one can thus build a
library of useful subroutines. However, there is no general panacea in
computer programming. Using subroutines systematically for any
group of instructions that can be grouped by function may also result in
poor efficiency. The alert programmer will have to weigh the advan-
tages against the disadvantages.

SUMMARY

This chapter has presented the way information is manipulated inside
the Z80 by instructions. Increasingly complex algorithms have been in-
troduced and translated into programs. The main types of instructions
have been used and explained.

Important structures such as loops, stacks and subroutines, have
been defined.

You should now have acquired a basic understanding of program-
ming, and of the major techniques used in standard applications. Let
us study the instructions available.
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A=00
#°=00
AH=00
A =00
A=00
Al =00
A=090
AT=00

A=00-

AT=00
A=00
A =00
a=00
A’ =00
600
A’=00
A=00
a7 =00
A=((
84'=00
A=00
A =00
A=00
A" =00
A=00
=00
A=00
A =00
A=00
AT =00
A=00
a6 =00
A=00
A =00
A=00
=00
fi=00
A =00
A=00
A=00
A=00
A’=0D
A=00
AT =00
A=00
AT=C0
A=00
HT =00
=00
a7=00
A=00
AT=00
A=00
A =00
A=00
AT=0¢
A=00
A =00
A=00
AY=00
A=00
AT=00
A=00
A =00

BC=00Q0
B =0000
BC=0003
B =0000
BC=0803
B =0000
BC=0803
B*=0000
BC=0803

‘=G000
BC=0BO3
B*=0000Q
BE=0801
H’=0000
BE=0801
Br=0000
BC=0801
B =0000C
BC=0B801
B =000
RC=0801
B*=0000
BC=0701
B’ =0000
BC=0701
B =0000
BL=0700
F=0000
BC=0700
R/ =0000
BO=070¢
B =0000
BC=G700
B/ =0000
RC=G700
B =0000
BE=0500
B/ =0G000
BE=0600
B =00C0
HC=0400
D =0000
HC=0400
B =0000
BC=0400
B =0000
BC=DA0C
B’ =0000
BL=0%00
82 =0000
BC=0500
B =0000
EC=0500
L =00G0C
BLC=0500
i =0000
BC=0300
B =0000
BL=0500
1Y =0000
HC=0400
F/=0000
BC=0G400
B =0000

NE=4000
D7=0000
DNE=GG00Q
B =¢Cco0
DE=0000
D =0000
DE=000%
O =(000
DE=0005
I =0000
DE=000%
0=0000
DE=0(05

‘=000¢0
RE=000T

=000
NE={00Y
0 =0000
DE=0004
nr=0000
DE=000A
B7=0000
BE=0004
B/ =0000
BE=0004
L =0000
GE=0004A
L7 =0000
RE=000A
D =300
DE=000A
04 =0G000
DE=Q01 4
0 =G000
RE=0014
n°=0c00
DE=0QC14
o =0G00
DE=0014
I =0000
DE=0014
L =00G0
NE=00%4
0/ =0000
DE=0028
I =0000¢
DE=0026
I =0000C
DE=Q028
B =0000
DE=0028
0 =0000
DE=00028
07 =0000
DE=0028
2 =0000
BE=0050
¥ =0000
BE=00%0
[+ =0000
LE=0050
It =0000
DE=0050
D =G00¢
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HL=0000
H =0000
HL=0000
H=GC00
HL=0000
H/=0000
HL=0000
H =0000
HL=0000
H=0000
HL=0000
HY=0000
HEL.=CG000

*=0000
HL=0000
H =0000
HL=0002
HI =000
HL=0005
H'=0006
HL=0005%
H=0000
HL=000%
H=0000
HL=000%5
H'=0000
HL=0003
H =0000
HL=000%

‘=0000
HL=000F
H =0000
HL=CCOF
H =0000Q
HE=00Q0F
H/=0000
HE =QGOF
H=0000
HL=00GF
H"=0000
HL=000F
H"=0000
HL.=000F
M =0000C
HL=000F
H"=0000
HL=000F
H’=Q00C
HL=000F
H7=0000
Hi_=000F
B =0000
HL=000F
H’=0Q0¢
HL=000F
H*=0000
HEL=000F
B =0000
HL=000F
H=0009
HL=000F
R =0000
HL=C000F
H'=0000

G=G300
X=0000
50300
X=000¢
S=0300
X=0000
8=0300
X=0000
§=0300H
X=0000
S=0300
X=0000
5=0300
X=03000
520300
X=0040
§=0300
X=0000
S5=0300
X=0000
5=0300
X=03000
5=0300
X=0000
5=0300
X=00040
§=0300
X=0000
S=03040
X=0000
§=030¢
X=G00C
§=0300
X=0¢000
520300
K=G000
§=01100
X=0000
5=0300
X=0000
S=0300
X=00C0
S=0300
H=0000
S5=0300
X=0000
S=0300
X=0000
5=0300
X=0400
5=0300
%=0000
5=0300
X=0000
5=0300
X=04300
£=0300
X=0000
$=0300
X=0000
S=0300
X=0000
§=0300
X=000¢

P=0100
T=0000
F=0104
Y=0000
F=0104
Y=0000
P=010A
Y=000G¢
FP=010C
¥Y=0000
P=010F
Y=000G0
P=015%
Y=0040
P=0113
Y=0000
F=0114
Y=0000
F=0114
¥Y=0000
F=0118
¥=0000
F=0119
Y=0C00
e=03i0F
Y=000¢
F=0111
Y=0000
P=0£13
Y=0000
F=0114
Y=0000
F=0114
Y=0000¢
P=0118
Y=0000
QL LD
Y=0000
E=010¥F
Y=0000
F=0111
Y=0000
F=0114
¥=0000
F=0114
Y=0000
F=0118
Y=0000
F=01L?
Y=00¢00
£=010F
¥=0000
F=0111
¥=0000
F=Qlia
Y=0000
F=0114
Y=0C¢G0
F=0118
Y=0000
P=0i1e
Y=0000
F=010F
¥=0000

01007
1=00
01047
I=00
0106°
1=00
010A°
I=00
0107
1=00
010F -
1=00
61117
1=00
01137
I=00
01147
I=00
0114/
I=00
0118°
1=00
0119°
1=00
010F *
1=00
011t°
1=00
01137
I=00
01147
1=00
01167
I=00
c11a-
I=00
61197
1=00
010F ©
I=00
0111+
1=00
0114¢
I=00
01167
1=00
01187
I=00
0LLY”
1=00
O10F
=00
0111’
I=00
oLiq’
1=00
01147
1=00
01187
1=00
0119"
1200
oLOF”
1=00

Ln
LD
in
Lk
L
SKL
JR
ALD
5LA
RL
DEC
JSF
SRL
JR
AlE
SLA
R
DEC

JE

JiR
SLa
RL

DEC

SRL
JR
S
RL

BEC

SRL

Fig, 3.39: Multiplication: A Complete Trace
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FARY) a=G0
A =00

Vv A=00
A7 =00

5 v =00
AT=00

v a=00
a'=00

’ =00

N A=00
=00

vy a=00
A =00

v A=00
Ar=00

£ A=Ge
AT=00

aA=G0o

A=00

i A=00
Ar=00

a*=00

FARY A=00
A =CC

¥ A=GO
8’ =00

] A=QQ0
Ar=00

A=00

a'=00

M A=0QC
=00

N A=00

A =00

FAR" &=00
‘=00

zv Aa=00
AT=00

v L A=00
AT=00

Y A=D0
a7 =00

Z N A=00
A =00

A7=00
Z N A=00
87 =00

Fig.
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BC=0400
L =000¢
RE=CA00
' =0000
BC=0400
#=0000
BC=0400
L =0000
BE=0300
B =0000
BL=0G300
B/=0000
BC=0300
B =0000
RC=0300
£ =0000
B=0300
R/=0000
BC=0300
B =00G0
BI=02G0
B =CGO00
nC=0200
2 =0000
HL=0200
B =0800
BC=0200
B =00CG0
BO=QI00
B =03000
BL=Q200
2 =0000
LC=0100
&’ =0000
BC=0100
B =0000
BE=0L00
B=00060
RC=0160
B =C000
BC=C100
I =0000
BC=Q100
7’ =0000
BL=0000
& =0000
RC=0000
B =000C
HC=D000
B =0000

NE=005C
0 =0000
NE=00S0
1 =0000
DE=00A0
£ =0000
NE=00n0
n-=0000
HE=00AC

c=000G
DE=00A0
n =0000
DE=00A0
b =000
OE=00A0
0 =0000
BE=0040
0 =0900
DE=0140
n=000¢
NE=0140C
Br=00600
NE=0140
=000
GE=014{)
£/ =0000
DE=0140
L =000¢
TE=0180
=0000
DE=G280
[11=0000
DE=0180
o’ =0000
BE=0280
0’ =0000
NE=0280
n‘=000¢C
DE=028¢
L =0000
DE=0200
7 =0000
DE=CDH00
n*=¢o00
GE=0500
I =0000
DE=0500
I =4000
DE=0300
n=000¢

HL.=000F
H ={000
HL=00GF
H7=0000
HL=CO00F
K7 =0000
HL=000F

*=0000C
HL=000F
H =0000
HL=000F
H =0000
HL=000F
H=G000
HL=0GCOF
#H=0000
HL,=000F
H?=0000
HL=000F
H/=00006
HL=000F
H7=0060
HL=000F
H=0000
HL=000F
H*=0000
BL=000F
H=0000
HL=0Q00F
7 =0000
HL=000F
7 =G000
HL=000F
H =G000
HL=000F
K’ =0000
HL=000F
W =4000
HL=00CF
H'=0000
HL=000F
H’=0000
HL=0CO0F
H=0000
HL=GOOF
H*'=(000
HL=000F
H7=0000
HL=000F
H'=000¢

5=030¢
X=0000
5=0300
X=0000
§=0300
X=0000
$=0300
X=3000
G=030¢
X=00C0
§=0300
X=0000
S5=0300
X=0000
5=G300
X=0000
§=0300
x=0000
G=0300
X=0000
S=0300
X=0000
5=0300
X=GQ00
5=0300
XK=0000
5=0300
X=0000
5=0300
X=0C00
5=0300
%X=0000
S=0300
X=0000
S=0300
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5=0300
X=0000C
5=0300
X=000<
5=0300
2=0000
§5=0300
X=G000
5=0300
X=00G0
5=0300
X=0000
g=0300
X=000C

P=0111
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F=0114
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F=a0l1é
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P=0118
Y=G000
P=0119
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¥=0000C
P=0111
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F=0114
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*=(011éb
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F=0118
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F=0111
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F=0114
Y=0G000
F=0114
Y=0000
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¥=00600
F=01179
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F=010F
Y¥=0000
F=0111
T=GG00
F=0114
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F=0114
Y=0000
F=0118
¥=0000
F=0Q119
¥=0000
F=0110
Y=006C
F=011F
Y=0Q000
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I=00
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=00
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QL14’
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0419
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=00
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0119’
=00
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Q11F”
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SRL
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3.39: Multiplication: A Complete Trace {(continued)
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ANSWERS TO EXERCISE 3.18 (MULTIPLICATION}:

CREHEHCE CDOS 200 ASSLMBELER worsion 02,190 FAGE 0003

0000 0003 oRe G1O0H

{oIo0) 0007 MPRAR oL O100H

{0202) 2003 HPBADR pL GI02H

604> Q004 REGAR L [thele L)

Q005

0109  Epampogel Q004 HPABD Lis Ly (HPRAD? FLOAD HULTIPLIER INE0 O
aica 0400 0007 Li fi.g FiCOFS BTV CORUNTER
Q166 EBSBOZ0D Q008 L B> (HFDAED FLOAD MUTIFLICARE THTC E
o10A 1600 Q007 L [E e FOLEAN D
oleE 210000 Q016G Lis HIlL» O FRET REGULT T O
010F  Cp37 0011 HULY SRL o ISHIFT SMIHYTFLIER BIT THID CARRY
QIi1  300: 0017 JE HE r RGADD FTEST CARKY
2113 1% e leF B3 121 HL e DE FALD HPD IO RESULT
o114 gB23 0014 MOABD SLA E TSHIFT MFD LEFT
Q114 EBID (103 51 RL o FEAVE DIT N U
Q11g oo 001s BLE I SHEEREAEHT SHIFT COUNTER
0117  CIOF0L 0017 JR HIHULY oD TE OAGATN IF COONTER oo
011C 270402 oeig LD (REGADD 150 FOTURE RESUL
0L1F (200G 0017 END
Errors o

Fig. 3.40: The Multiplication Program (Hex)

LABEL {INSTRUCTION| B C ‘CA(RZM B E H L
0o a0 0 00 0 | 00 ] 00

MP488 LD BC,(0200)] 00 03 0 00 gc ;1 00 | QO
LbB. o8 08 03 0 00 Qo | 00 ; 00
IDDE{0202)] 08 | 03 0 00 05 | 00| 0O

tbD. o0 08 | 03 o 00 05 | 00| 00

LD HL,C000 08 | 03 0 GO 05 | 00 | OO

MULT SRLC a8 | N 1 00 05 | 00| 0O
JRNC 0114 | 08 | O1 1 a0 05 | 00| OO

ADD HL,DE a8 | 01 0 00 05 { Q0 | 05

NOADD | SLAE 08 | 01 ¢ 00 0A | 00§ 05
RED 08 | 01 0 00 0A | OO | 05

DECB 07 1 01 0 00 OA | 00} 05

JP NZ,010F 07 {01 0 00 O0A | 00 | 05

MULT SRLC 7 | 00 1 00 0A | 00 | 05
JRNC. 0114 | 07 | 00 ] o 0A | 00 | 05

ADD HL,DE 07 | GO 0 o0 OA | 00} OF

NOADD | SLA E Q7 | GO 0 00 4 { 00 | OF
RL D g7 | Q0 o 00 14 | 00 | OF

DECB g6 § 00 ] 00 14 | 00 | OF

JP NZ,010F 06 | 00 0 0o i4 1 00| OF

Fig. 3.41: Two Iterations Through the Loop
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4
THE Z80 INSTRUCTION SET

INTRODUCTION

This chapter will first analyze the various classes of instructions
which should be available in a general-purpose computer. It will then
analyze one by one all of the instructions available for the 280, and ex-
plain in detail their purpose and the manner in which they affect flags
or can be used in conjunction with various addressing modes. A de-
tailed discussion of addressing techniques will be presented in Chapter
5.

CLASSES OF INSTRUCTIONS

Instructions may be classified in many ways, and there is no stan-
dard. We will here distinguish five main categories of instructions:

j-~data transfers
2—data processing
3—test and branch
4.-input/output
5—control

Let us now examine each of these classes of instructions in turn.

Data Transfers

Data transfer instructions will transfer data between registers, or be-
tween a register and memory, or between a register and an input/output
device. Specialized transfer instructions may exist for registers which
play a specific role. For example, push and pop operations
are provided for efficient stack operation. They will move a word of
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data between the top of the stack and the accumulator in a single in-
struction, while automatically updating the stack-pointer register,

Data Processing

Data processing instructions fail into five general categories:

[—arithmetic operations (such as plus/minus)

2—bit manipulation (set and reset}

3—increment and decrement

4—Ilogical operations (such as AND, OR, exclusive OR)
5-—skew and shift operations (such as shift, rotate)

It shouid be noted that, for efficient data processing, it is desirable to
have powerful arithmetic instructions, such as multiply and divide.
Unfortunately, they are not available on most microprocessors. It is
aiso desirable to have powerful shift and skew instructions, such as
shift n bits, or a nibble exchange, where the right haif and the left half
of the byte are exchanged. These are also usually unavailable on most
MICTOProCessors.

Before examining the actual Z80 instructions, let us recall the dif-
ference between a shift and a rofarion. The shifl will move the contents
of a register or a memory location by one bit location to the left or (o
the right. The bit falling out of the register will go into the carry bit.
The bit coming in on the other side will be a **0"’ except in the case of an
tarithmetic shift right,”” where the MSB will be duplicated.

In tne case of a rotation, the bit coming out still goes in the carry.
However, the bit coming in is the previous value which was in the carry
bit, This corresponds to a 9-bit rotation. 1t is often desirable 1o have a
true 8-bit rotation where the bit coming in on one side is the one falling
from the other side. This is notprovided on most microprocessors
but is available on the Z80 (see Figure 4.1).

Finally, when shifting a word to the right, it 1s convenient to have one
more type of shift, called a sign extension or an “‘arithmetic shift
right.”” When doing operations on {wa'’s complement numbers, parti-
cuiarly when implementing floating-point routines, it is often necessary
to shift a negative number to the right. When shifting a two’s compie-
ment number to the right, the bit which must come in on the iefl side
should be a **I"" {the sign should get repeated as many times as needed
by the successive shiftsy. This is the anithmetic shift right.
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SHIFT LEFT

LN DN DD DY DY

Q CARRY

ROTATE LEFT
L N DD DY Y

it

Fig. 4.1: Shift and Rotate

Test and Jump

The test instructions will test bits in the specified register for ‘0"’ or
1", or combinations. At a minimum, it must be possible to test the
flags register. It is, therefore, desirable to have as many flags as pos-
sible in this register. In addition, it is convenient to be able to test Tor
combinations of such bits with a single instruction. Finally, it is
desirable to be able to test any bit position in any register, and to test
the value of a register compared to the value of any other register
(greater than, less than, equal). Microprocessor test instructions are
usually limited to testing single bits of the flags register. The Z80, how-
ever, offers better facilities than most.

The jump instructions that may be available generally fall into
three categories:

{—the jump, which specifies a full [6-bit address

2—the relative jump, which often is resiricted to an 8-bit displace-
ment field

J--the call, which is used with subroutines
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1t is convenient to have two- or even three-way jumps, depending, for
example, on whether the result of a comparison is **greater than,”” *‘less
than,” or ‘“‘equal.” It is also convenient to have skip operations, which
will jump forward or backwards by a few instructions. However, a
“skip’ is equivalent to a “‘jump.’” Finally, in most loops, there is
usually a decrement or increment operation .at the end, followed by a
test-and-branch. The availability of a single-instruction increment/
decrement pfus test-and-branch is, therefore, a significant advan-
tage for efficient loop implementation. This i1s not available in most
microprocessors. Only simple branches, combined with simple tests,are
available. This, naturally, complicates programming and reduces effi-
clency. In the case of the 280, a *“*decrement and jump’’ instruction is
available. However, it only tests a specific register (B) for zero.

Input/Qutput

Input/output instructions are specialized nstructions for the hand-
ling of input/output devices. In practice, a majority of the 8-bit micro-
processors use memory-mapped I/0; input/output devices are con-
nected to the address bus just like memory chips, and addressed as
such. They appear to the programmer as memory locations. All
memory-type operabions normally require 3 bytes and are, therefore,
stow, For efficient input/output handling in such an environment, it 1s
desirable to have a short addressing mechanism available so that 1/0
devices whose handling speed is crucial may reside in page 0. However,
if page 0 addressing is available, 1t is usually used for RAM memory,
which prevents its effective use for input/output devices. The
280, like the 8080, 15 equipped with specialized /0 instructions. As a
result, 1n the case of the Z80, the designer may use either method: in-
put/output devices may be addressed as memory devices, or else as in-
put/output devices, using the [/0 nstructions.

They will be described later in this chapter.

Contro! Instructions

Control instructions supply synchronization signals and may suspend
or interrupt a program. They can also function as a break or a simu-
fated mnterrupt. (Interrupts will be described in Chapter 6 on In-
put/Qutput Techniques. )
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THE Z30 INSTRUCTION SET

Introduction

The ZB0 microprocessor was designed to be a replacement for the
8080, and to offer additional capabilities. As a result of this design
philosophy, the Z80 offers all the instructions of the 8080, plus addi-
tional structions. In view of the limited rumber of bits available in an
8-bit opcade, one may wonder how the designers of the Z80 succeeded
in implementing many additional ones. They did so by using a few
unused 8080 opcodes and by adding an additonal byte to the opcode
for indexed operations. This 1s why some of the Z80 instructions oc-
cupy up to five bytes in the memory.

It is important to remember that any program can be writlen in many
different ways. A thorough knowledge and understanding of the in-
struction set s ndispensable for achieving efficient programming.
However, when learning how o program, it is not essential to write op-
timized programs. During a first reading of this chapter, it 1s therefore
unimportant to remember all the various instructions. It 1s important to
remember the categories of instructions and to study typical examples,
Then, when writing programs, the reader should consuilt the Z80
mstruction-set description, and select the instructions best suited to his
needs. The various instructions of the Z8O will therefore be reviewed in
this section with the intent of stmplifying them and grouping them in
logical categories. The reader interested 1n exploring the capabilities of
the various instructions is referred (o the individual descriptions of the
instructions.

We will now examine the capabilities provided by the Z80 in terms of
the five classes of instructions which have been defined at the beginning
of this chapter.

Data Transfer Instructions

Data transfer instructions on the Z80 may be classified in four
categories: 8-bit transfers, 16-bit transfers, stack operations, and
black transfers. Let us examine them.

Eighe-Bit Data Transfers

All eight-bit data transfers are accomplished by load instructions.
The format is:

LD destination, source
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For example, the accumulator A may be loaded from register B by
using the instructions:

1D AB

Direct transfers may be accomplished between any two of the
working registers (ABCDEHL).

In order to load any of the working registers, except for the accu-
mulator, from a memory iocation, the address of this memory loca-
tion must first be loaded into the H-L register pair.

For example, 1n order to {oad register C from memory location 1234,
register H and 1 will first have to be loaded with the value *“1234", (A
load instruction operating on 16 bits will be used. This is described in
the following section.)

Then, the mnstruction LD C, (HL) will be used and will accomplish
the desired result.

The accumulator is an exception. it can be loaded directly from any
specified memory location. This is called the extended addressing
mode. For example, in order to load the accumulator with the contents
of memory location 1234, the following instruction will be used:

LD A, (1234H) (Notethe use of ‘()" to denote ‘‘contents of.”"}
The instruction will be stored in the memory as follows:

address PC 13A {opcode)
PC + 1:34 (low order half of the address)
PC + 2:12 (high order half of the address)

Note that the address is stored in “‘reverse order’” in the instruction
itself:

3A | lowaddr | high addr |

All the working registers may also be loaded with any specified eight-bit
value, or ‘‘literal,” contained in the second byte of the instruction {this
is called rmmediate addressing). An example is:

LD E, 12H

which loads register E with the value 12 hexadecimal.
In the memory, the instruction appears as:

PC: IE {opcode)
PC + 1:12 (literal operand)
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As a result of this instruction, the immediate operand, or literal value
will be contained in register E.

The ndexed addressing mode is also available for loading register
conients, and will be fully described in the next chapter on addressing
techniques. Other miscellaneous possibilities exist for loading specific
registers, and a table listing all the possibilities is shown in Figure 4.2
( tables supplied by Zilog, Inc.). The grey areas show instructions
common with the 80R0A.,

EXE.
1ML RECETER REG INDIRECT ; IKQEXEDR {ADOR

L 33
57

=

m

5

:

E

s

xeply
. 1
H

A28 fee |

REGISTER | D

;;‘ agg fag:

¥

UEATINATION

REC
HDRECT

HHDEXED

[ eug

Ext apdRr| fnnd

rLIE0

Fig. 4.2: Eight-Bit Load Group—‘LD’

16-Bit Data Transfers

Basically, any of the 16-bit register pairs, BC, DE, HL, SP, IX. IV,
may be loaded with a literal 16-bit operand, or from a specified
memory address {extended addressing), or from the top of the stack,
i.e., from the address contained in SP. Conversely, the contents of these
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register pairs may be stored 1n the same manner at a specified memory
address or on top of the stack. Additionally, the SP register may be
loaded from HL, IX, and IY. This facilitates creating muitipie stacks,
The register pair AF may also be pushed on top of the stack.

The table listing all the possibilities is shown in Figure 4.3. The stack
push and pop operations are included as parts of the 16-bit data
transfers. All stack operations transfer the contents of a register pair to
or from the stack. Note that there are no single push and pop instruc-
tions for saving individual eight-bit registers.

SOURCE

im. | EXT. | REG,
REGISTER EXT. } ADDR.]INDIA,
AF BC DE Hi [ 74 4 nn Innl | ISP
AF
'
B oE
E
G
; HL
DESTINATION b
E
R | g oo
Fg
X
8%
exT %
Aogk, | ! n
n
PUSH REG. | IsFl on o
INSTRUCTIONS ™™ 1 15y £5 [
NOTE: The Push & Pop Instructioas adjust *

the SP aftar svary exacution PaR
INSTRUCTIONS

Fig. 4.3: 16-Bit Load Group—‘LD’, ‘PUSH’ and ‘POP’

A double-byte push or pop is always executed on a register pair: AF,
BC, DE, HL, IX, I'Y(see the bottom row and right-most column in
Figure: 4.3).

When operating on AF, BC, DE, HL, a single-byte is required for the

instruction, resulting in good efficiency. For example, assume that the
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stack pointer SP contains the value *0100"°, The foilowing instruc-
tion 15 executed:

PUSH AF

When pushing the contents of the register pair on the stack, the stack
pointer SP is first decremented, then the contents of register A are de-
posited on top of the stack. Then the SP 1s decremented again, and the
contents of F are deposited on the stack. At the end of the stack trans-
fer, SP points to the top element of the stack, which in our example
isthe value of F.

It is important to remember that, in the case of the Z80, the SP
points to the top of the stack and the SP is decremented whenever a
register pair is pushed. Other conventions are often used in other pro-
cessors, and this may be a source of confusion.

IMPLIED ADDRESSING

AF |Bc DE &HL | HL | X 1y

AF V]

BC,
DE

IMPLIED; &
HL

Dg

DE

REG. | {sP} JE3 | DD | fD
INDIR. sl 3 | g3

Fig. 4.4: Exchanges ‘EX’ and ‘EXX’

Exchange Instructions

Additionally, a specialized mnemonic EX has been reserved for ex-
change operations. EX is not a simple data transfer, but a dual data
transfer. It actually changes the contents of fwo specified locations. EX
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may be used to exchange the top of the stack with HL, IX, 1Y and also
to swap the contents of DE and HL and AF and AF’ (remember that
AF’ stands for the other AF register pair available in the Z80).
Finally, a special EXX instruction is available to exchange the con-
tents of BC, DE, HL with the contents of the corresponding registers in
the second register bank of the Z80.
The possible exchanges are summarized in Figure 4.4,

SOURCE
REG.
iNDIR.
(ML}
ED ‘LDV — Load (DE)-—{HL}
AD Ine HL & DE, Dee BC
=] ‘LDIR," — Load (DE}-a—(HL)}
Ec BG int HL & DE, Dec BG, Repeat untif BC = 0
DESTINATION FNDi‘R. {DE}
EC ‘LDD" — Load {DE)-s#—[HL}
AB Dec HL & DE. Dec BC
ED ‘LDDR’ — Load {DE}—{HL}
B8 Dec HE & DE, Dec BC, Repeatuntit BC=§

Reg HE  pomts to source
Reg DE  ponts 1o destinatton
Reg BC s byte counter

Fig. 4.5: Block Transfer Group

Block Traasfer Instructions

Block transfer instructions are instructions which will result in the
transfer of a block of data rather than a single or double byte. Block
transfer instructions are more complex for the manufacturer to imple-
ment than most instructions and are usually not provided on micropro-
cessors. They are convenient for programming, and may improve the
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performance of a program, especially during input/output operation.
Their use and advantages will be demonstrated throughout this book.
Some automatic block transfer instructions are available in the case of
the Z80. They use specific conventions.

All block transfer instructions require the use of three pairs of
registers: BC, DE, HL:

BC 15 used as a 16-bit counter. This means that up to 2'* = 64K bytes
may be moved automatically. HL 1s used as the source pointer. It may
point anywhere 1n the memory. DE 15 used as the destination pointer
and may point anywhere in the memory.

Four block transfer instructions are provided:
LDD, LDDR, LBPl, LDIR

All of them decrement the counter register BC with each transfer, Two
of them decrement the pointer registers DE and HL, LDD and LDDR,
while the two others increment DE and HL, LDi and LDIR. For each
of these two groups of instructions, the letter R at the end of the
mnemonic indicates an automatic repeat. Let us examine these instruc-
tions,

LDI stands for ‘‘load and increment.”” It transfers one byte from the
memory location pointed to by M and L to the destination in the
memory pointed to by D and E. It also decrements BC. it will automati-
cally increment H and L and D and E so that all register pairs are pro-
perly conditioned to perform the next byte transfer whenever required.

LDIR stands for “*load increment and repeat,” i.e., execute LDI
repeatedly until the counter registers BC reach the value “*0°". It is used
to move a continuous block of data automatically from one memory
area to another.

LDD and LDDR operate 1n the same way except that the address
pointer.is decremented rather than incremented. The transfer therefore
starts at the fughest address in the block instead of the lowest. The ef-
fect of the four instructions 1s summarized in Figure 4.5.

Similar autornated instructions are available for CP (compare) and
are summarized in Figure 4.6.

Data Processing Instructions

Arithmetic

Tweo main arithmetic operations are provided: addition and subtrac-
tion. They have been used extensively in the previous chapter. There are
two types of addition, with and without carry, ADC and ADD respec-
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SEARCH
LOCATION
AREG.
tNDIR.
{HL}
€D ‘CPL"
Al Inc HL, Dec BC
ED ‘CPIR’, Ing HL, Dec BC
B1 repeat until BC = 0 or find match
ED s~y Ht
a9 ChD” D¢ HL B BC
£ ‘CPDR" Dsc HL & BC
BO Fuepoat umtil BC = 0 o1 find match

Hi pumts to iocation (n memory
to be compared with accumulator
contents

BC is byte countar

Fig. 4.6: Block Search Group

tively. Similarly, two types of subtraction are provided with and
without carry. They are SBC and SUB,

Additionally, three special instructions are provided: DAA, CPL,
and NEG. The Decimal Adjust Accumulator instruction DAA has been
used to implement BCD operations. [t is normally used for each BCD
add or subtract. Two complementation instructions also are available.
CPL will compute the one’s complement of the accumulator, and NEG
will negate the accumulator into its complement format{two’s comple-
ment}.

All the previous instructions operate on eight-bit data. 16-bit opera-
tions are more restricted. ADD, ADC, and SBC are available on
specific registers, as described in Figure 4.8.

Finally, increment and decrement instructions are available which
operate on all the registers, both in an eight-bit and a 16-bit format.
They are listed in Figure 4.7 (eight-bit operations) and 4.8 (16-bit opera-
tions).
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SOURCE
REG.
REGISTER ADDRESSING INDIR.| INDEXED |IMMED,
3 8 [ 5] E H L HL) | UX+d) ] itYsdh[ =
B P o |oe FD
‘ADD* 87 . 81 B2 183 ). BA foBS | 86 . gs 3& -2
L RS DD FD L
ADDwCARRY P BF B8 |89 Ba 88 8c 8n | 8E BE 13 CE
‘Apc . TR I R R . . ald d o
] Do FD L
SUBTRACT 7 96 a6 D&
‘SUB' ! d d "
o . - {ob FO
SUBw CARRY | OF . J88: E: = gE
‘sBC’ - d d
B PR -} 8D £0
‘AND’ TAY LA o AG AB
L 1d ]
L e B o ) FD
XOR’ AF L S AE
) ¢ ¢
C o ] FD
an’ B7 i BB BE
. Hd d
53] Fi
COMPARE ;1 BE BE
fiars g d d

INCREMENT | 305
NG S

DECREMENT | ap 7|
‘DEC’ o

Fig. 4.7: Eight-Bit Arithmetic and Logic

Note that, in general, all arithmetic operations modify some of the
flags. Their effect is fully described in the instruction descriptions later
in this chapter. However, it is important to note that the INC and DEC
instructions which operate on register pairs do not modify any of the flags.

This detail is important to keep in mind. This means that if you incre-
ment or decrement one of the register pairs to the value “0', the Z-bit
n the flags register F will not be set. The value of the register must be
explicitly tested for the value “*0” in the program.

Also, it is important to remember that the instructions ADC and SBC
always affect all the flags. This does not mean that all the flags will
necessarily be different after their execution. However, they might.
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SOURCE
BC DE i 5P X N
HL 09 19 29 a9
Z | Ao 1% oo | op oo | DD
E 09 19 39 28
<
z
e Iy £D FD FD £o
] 09 19 a9 el
]
ADD WITH CARRY AND | HL ED ED ED ED
SETFLAGS ‘ADC 4n 5A 6A T4
SUBWITH CARRY AND | HL ED ED ED ED
SET FLAGS  'SBC 42 52 62 72
INCREMENT  “INC’ ] 13 23 33 DD FD
23 23
DECREMENT 'DEC’ o8 1B 28 38 DD o)
28 28
Fig. 4.8: Sixteen-Bit Arithmetic and Logic
Logicai

Three logical operations are provided: AND, OR (inclusive) and
XOR (exclusive), plus a comparison instruction CP. They all operate
exclusively on eight-bit data. Let us examine them in turn. (A table list-
ing all the possibilities and operation codes for these instructions is part
of Figure 4.7.)

AND

Each logical operation is characterized by a fruth fable, which ex-
presses the logical value of the result in function of the nputs. The
truth table for AND appears below:
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0 AND 0 =0 AND | o I
OANDI =0

iANDO =0 o |0 0 0
IANDI = | i 0 1

The AND operation is characterized by the fact that the output is
“1" only if both mputs are ““I"". In other words, if one of the inputs is
“0’7, it is guaranteed that the result is “°0°*. This feature is used to zero
a bit position in a word. This is called ‘‘masking.”’

One of the important uses of the AND instruction is to clear or
“‘mask out”’ one or more specified bit positions in a word. Assume for
example that we want to zero the right-most four-bit positions in a
word. This will be performed by the following program:

LD A, WORD WORD CONTAINS 10101010’
AND 111100008 ‘11110000° IS MASK

Let us assume that WORD is equal to ‘10101010’. The resuit of this
program is to leave the value ‘10100000’ in the accumulator. “B”’ is
used to indicate a binary value. *

Exercise4.1: Write a three-line program which will zero bits I and 6 of
WORD.,

Exercise 4.2: What happens with a MASK = “11111111°7
OR

This instruction is the inclusive OR operation. It is characterized by
the following truth table:

0ORO =0 orR | o |
QOR1 = |

{ORO =1 7 0 0 !
10R1 =1 i I 1

The logical OR is characterized by the fact that if one of the operands
is 1”7, then the result is always *‘1'". The obvious use of OR is to set
any bit in a word to **1".

Let us set the right-most four bits of WORD to 1’s. The program is:

LD A, WORD
OR A, 00001111B
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Let us assume that WORD did contain ‘10:01010°. The final value of
the accumulator will be *10101111°.

Exercise 4.3: What would happen if we were to use the instruction
OR 10101111 B?

Exercise 4.4: What is the effect of ORing with ‘‘FF’’ hexadecimal?
XOR

XOR stands for “‘exclusive OR.”” The exclusive OR differs from the
inclusive OR. that we have just described in one respect: the result is
“1°" only if one, and only one, of the operands is equal to ““1”’. If both
operands are equal to ‘1", the normal OR would give a *‘1"" result.
The exclusive OR gives a “‘0"’ result. The truth table is:

0 XOR 0 =0 xor] o | i
OXOR I =

IXORO=1 o [ 0 ] 0O}
{ XOR1 = 0 T | 1] o

The exclusive OR is used for comparisons. If any bit is different, the
exclusive OR of two words will be non-zero. In addition, in the case of
the Z80, the exclusive OR may be used to complement a word, since
there is no complement instruction on anything but the accumulator,
This is done by performing the XOR of a word with all ones. The pro-
gram appears below:

LD r, WORD
XOR, 11111111 B
ILDr, A

where “r"’ designates the register.

Let us assume that WORD contained *°10101010"°. The final value of
the register will be ““01010101”", You can verify that this is the comple-
ment of the original value.

XOR can be used to advantage as a “*bit toggle.”

Exercise 4.5: What is the effect of XOR using a register with ““00"" hex-
adecimal ?

Skew Ogperations (Shift and Rotate)

Let us first differentiate between the shift and the rotate operations,
which are iflustrated in Figure 4.9. In a shift operation, the contents of
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the register are shifted to the left or to the right by one bit position. The

bit which falls out of the register goes into the carry bit C, and the bit
which comes in is zero. This was explained in the previous section.

SHIFT LEFT

EARAARNDAA RN

( CARRY

ROGIATE (EFY
}. e e Y N N W I
Id

\ = )

L]

Fig. 4.9: Shift and Rotate

One exception exists: it 1s the shift-right-arithmetic. When perform-
ing operations on negative numbers in the two’s complement format,
the left-most bit is the sign bit. In the case of negative numbers it is
““1"", When dividing a negative number by ““2" by shifting it to the
right, it should remain negative, i.e., the left-most bit should remain a
“17, This ts performed automatically by the SRA instruction or Shift
Right Arithmetic. In this arithmetic shift right, the bit which comes in
on the left is identical to the sign bit. It is *0"" if the left-most bit was a
*0", and 1" if the left-most bit was a ““1". This is illustrated on the
right of Figure 4,10, which shows all the possible shift and rotate opera-
{romns.

Rotations

A rotation differs from a shift by the fact that the bit coming into the
register is the one which will fall from either the other end of the
register or the carry bit. Two types of rotations are supplied in the case
of the Z80: an eight-bit rotation and a nine-bit rotation.

The nine-bit rotation is iltustrated in Figure 4.11. For example, in the
case of a right rotation, the eight bits of the register are shifted right by
one bit position. The bit which falls off the right part of the register
gaes, as usual, into the carry bit. At this time the bit which comes in on
the left end of the register 1s the previous value of the carry bit (before it
is overwritten with the bit falling out.) in mathematics this is called a
nine-bit rotation since the eight bits of the register plus the minth bit (the
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carry bit} are rotated to the right by one bit position. Conversely, the
left rotation accomplishes the same result in the opposite direction.

P
a et e dod e o} o * B[ et oL
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mel sl |l mialolalolal s rieal o
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Fig. 4.10: Rotates and Shifts

7 REGISTER o c
RIGHT ] - — “j
7 REGISTER G C
i
LEFT i—g =~ ‘]
L

Fig. 4.11: Nine-Bit Rotation

The eight-bit rotation operates in a similar way. Bit 0 is copied into
bit seven, or else bit seven is copied into bit 0, depending on the direc-
tion of the rotation. In addition, the bit coming out of the register is
also copied in the carry bit. This is illustrated by Figure 4.12.

C
F g
RIGHT

C
L 7 8] L
LEFY ]

Fig. 4.12: Eight-Bit Rotation
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Special Digit Instructions

Two special digit-rotate instructions are provided to facilitate BCD
arithmetic. The result is a four-bit rotation between two digits con-
tained in the memory location pointed to by the HL registers and one
digit in the lower half of the accumulator, This 15 illustrated by Figure

4.13.

MEMORY

/\/’\/_

RIGHT: : x - -0

H ADDRESS - S e N

MEMORY

LEFT: @ @<« P
i

Fig. 4.13: Digit Rotate Instructions (Rotate Decimal)

Bit Manipulation

It has been shown above how the logical operations may be used to
set or reset bits or groups of bits in specific registers. However, it is con-
venient to set or reset any bit in any register or memory location with a
single instruction. This facility requires a considerable number of op-
codes and is therefore usually not provided on most microprocessors.
However, the ZB0 is eguipped with extensive bit-manipulation
facilities. They are shown in Figure 4.14. This table also includes the
test instructions which will be described oniy in the next section.

Two special instructions are also available for operating on the carry
flag. They are CCF {Complement Carry Flag) and SCF (Set Carry
Flag). They are shown in Figure 4.15.

Test and Jump

Since testing operations rely heavily on the use of the flags register,
we will here describe in detail the role of each of the flags. The contents
of the flags register appear in Figure 4.16.
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Fig. 4.14: Bit Manipulation Group
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Decimal Adjust Acc, ‘DAA’ 27
Complement Acc, 'CPL’ 2F ;.
Negate Ace, ‘'NEG’ ED
{2's complement} 44

Complement Carry Flag, ‘CCF" |- 3F -

Set Carry Fiag, 'SCF’ 37

Fig. 4.15: General-Purpose AF OQperations

7 6 5 4 3 2 I c
5 Z ] — | H I 1PV NC
M {n n

Fig. 4.16: The Flags Register

C is the carry, N is add or subtract, P/V is parity or overflow, H is half
carry, Z s zero, S s sign. Bits 3 and 5 of the flags register are not used
{*“—"). The two flags H and N are used for BCD arithmetic and cannot
be tested. The other four flags (C, P/V, Z, S) can be tested in conjunc-
tion with conditional jump or call instructions.

The role of each flag will now be described.

Carry (C)

In the case of nearly all microprocessors, and of the Z80 in par-
ticular, the carry bit assumes a dual role. First, it 15 used to indicate
whether an addition or subtraction operation has resulted in a carry (or
borrow}. Secondly, it is used as a ninth bit in the case of shift and rotate
operations. Using a single bit to perform both roles facilitates some
operations, such as a multiplication operation. This should be clear
from the explanation of the multiplication which has been presented in
the previous chapter.
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When learning to use the carry bit, it is important to remember that
all arithmetic operations will either set it or reset it, depending on the
resuit of the instructions. Similarly, all shift and rotation operations use
the carry bit and will either set it or reset it, depending on the value of
the bit which comes out of the register.

In the case of logical instructions (AND, OR, XOR), the carry bit
will always be reset. They may be used to zero the carry explicitly.

Instructions which affect the carry bit are: ADD A,s; ADC As:
SUB s; SBC A,s; CP s; NEG; AND s5; OR 51 XOR s; ABD DD,ss; ADC
HL,ss: SBC HL,ss; RLA; RLCA; RRA; RRCA; RL m: RLCm: RR m;
RRC m; SLA m; SRA m: SRL m; DDA SCF; CCF; NEGs:

Subtract (N)

This flag is normally not used by the programmer, and is used by the
Z80 itself during BCD operations. The reader will remember from the
previous chapter that, following a BCD add or subtract, a DAA
(Decimal Adjust Accumulator) instruction is executed to obtain the
valid BCD results. However, the “‘adjustment’ operation is different
after an addition and after a subtraction. The DAA therefore executes
differently depending on the vaiue of the N flag. The N flag is set to
*¢'* after an addition and is set to a “*1’" after a subtraction,

The symbol used for this flag, **N’', may be confusing to program-
mers who have used other processors, since it may be mistaken for the
sign bit. It is an internal operation sign bit.

N is set to “0"" by: ADD A,s; ADC A.s;ANDs;ORs: XORs; INCs;
ADD DD,ss; ADC HL,ss; RLA; RLCA: RRA; RRCA; RL m; RLCm;
RR m: RRCm; SLA m; SRA m: SRL m; RLD; RRD; SCF; CCF; IN1,
(C); LDI; LDD; LDIR; LDDR; LD A, I LD A, R; BIT b, s.

N is set to *“1"" by: SUBs; SBC A.s; CP 5; NEG; DEC m; SBC HL, ss3
CPL; INI; IND; QUTI; OUTD; INIR; INDR; OTIR; OTDR: CPL
CPIR; CPD; CPDR.

Parity/Overfiow (P/V)
" The parity/overflow flag performs two different functions. Specific
instructions will set or reset this flag depending on the parity of the
result; parity is determined by counting the total number of ones in the
result, If this number is odd, the parity bit will be set to *"0" (odd pari-
ty). If it is even, the parity bit will be set to “*1"" (even parity). Parity is
most frequently used on blocks of characters (usually in the ASCII for-
mat). The parity bit is an additional bit which is added to the seven-bit
code representing the character, in order to verify the integrity of data
which has been stored in a memory device. For example, if one bit in
the code representing the character has been changed by accident, due
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to a malfunction in the memory device (such as a disk or RAM
memory), or during transmuission, then the total number of ones in the
seven-bit code will have been changed. By checking the parity bit, the
discrepancy will be detected, and an error will be flagged. In particular,
the flag is used with logical and rotate instructions. Also, naturally,
during an input operation from an 1/0 device, the parity flag will in-
dicate the parity of the data being read.

For the reader familiar with the Intel 8080, note that the parity flag in
the 8080 is used exclusively as such. In the case of the Z80, it is used for
several additional functions. This flag should therefore be handled with
care when going from one of the microprocessors to the other.

In the case of the Z80, the second essential use of this flag is as an
overflow flag (not available in the 8080). The overflow flag has been de-
scribed in Chapter I, when the two’s complement notation was intro-
duced. It detects the fact that, during an addition or subtraction, the
sign of the result is““accidentally ’changed due to the overflow of the
result into the sign bit. (Recall that, using an eight-bit representation,
the largest positive number is + 127, and the smallest negative number
is — 128 in two’s complement,)

Finally, this bit is also used, in the case of the Z80, for two unrelated
functions,

During the block transfer instructions (LDD, LDDR, LDI, LDIR),
and during the search instructions (CPD, CPDR, CP], CPIR), this flag
is used to detect whether the counter register B has attained the value
0, With decrementing instructions, this flag is reset ta 0" if the
byte counter register pair is **0’’. When incrementing, it is reset if BC —
I = O at the beginning of the instruction, i.e., if BC will be decremented

to ‘0™ by the instruction,
Finally, when executing the two special instructions LD A, and LD

A.R, the P/V flag reflects the value of the interrupt enable flip-flop
(IFF2). This feature can be used to preserve or test this value.

The P flag 1s affected by: AND s: OR s; XOR s5; RL m; RLC m: RR m;
RRC m; SLA m; SRA m; SRL m; RLD; RRD; DAA: IN r,{C).

The V flag 1s affected by: ADD A.s; ADC A,5;SUB s: SBC A.5:CP 5;
NEG: INCs; DEC m; ADC HL,ss; SBC HL,ss.

It 1s also used by: LDIR; LDDR (set to “0"); LDI; LDD; CPI:
CPIR; CPD; CPDR.

The Half-Carry Flag (H)

The half-carry flag indicates a possible carry from bit 3 into bit 4 dur-
ing an arithmetic operation. In other words, it represents the carry from
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the low-order nibble (group of 4 bits) into the high order one. Clearly, it
is primarily used for BCD operations. In particular, it is used internally
within the microprocessor by the Decimal Adjust Accumulator (DAA)
instruction in order to adjust the result to its correct value.

This flag will be set during an addition when there is a carry from bit
3 to bit 4 and reset when there is no carry. Conversely, during a subtract
operation, it will be set if there is a borrow from bit 4 to bit 3, and reset
if there 15 no borrow.

The flag will be conditioned by addition, subtraction, increment,
decrement, comparisons, and logical operations.

Instructions which affect the H bit are: ADD A,r : ADD A.s: SUBs:
SBC A,s; CP 5; NEG: AND s; OR s5; XOR s5; INC s5; DEC m:; RLA;
RLCA; RRA; RRCA; RL m: RLC m; RR m; RRC m; SLA m: SR m;
SRL m; RLD; RRD; DAA; CPL, SCF; INr(C); LLDI; LLD; LDIR:
LDDR; LD A;: LD Ar; BIT b,r.

Note that the H bit is randomly affected by the 16-bit add and sub-
tract instructions, and by block input and output instructions.

Zero (Z}

The Z flag is used to indicate whether the value of a byte which has
been computed, or is being transferred, is zero. it is also used with com-
parison {nstructions to indicate a match, and for other miscellaneous
functions.

In the case of an operation resulting in a zero result, or of a data
transfer, the Z bit is set to **1"” whenever the byte is zero. Z is reset to
0 otherwise,

In the case of comparison instructions, the Z bit is set to ‘1" when-
ever the comparison succeeds and to **0”' otherwise,

Additionally, in the case of the Z80, it is used for three more functions:
it is used with the BIT instruction to indicate the value of a bit being
tested. It is set to “*1°7 if the specified bit s **0"" and reset otherwise.

With the special “‘block input-output instructions” (INI, IND,
OUTI, QUTD), the Z flag is set if D — | = 0, and reset otherwise; it is
set if the byte counter will decrement to “0" (INIR, INDR, OTIR,
OTDR).

Finally, with the special instructions IN r,(C), the Z flag is set to ““1”
to indicate that the input byte has the value ‘0"’

In summary, the following instructions condition the vatue of the Z
bit: ADD A,s; ADC A,5:SUB s; SBC As; CPs; NEG; AND s; OR s;
XOR s; INC s; DEC m:; ADC HL, ss; SBC HL,ss; RL m; RLC m;
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RR m; RRC m: SLA m; SRA m; SRL m: RLD; RRD; DAA; IN r,(C);
INI; IND; QUTIL OUTD; INIR; INDR; OTIR; OTDR,; CPl; CPIR;
CPD; CPDR; LD A, L LD A, R; BITh,s; NEGs.

Usual instructions which do not affect the Z bit are: ADD DD, ss;
RLA; RLCA; RRA; RRCA; CPL; SCF; CCF; LDI; LDD; LDIR;
LDDR; INC DD; DEC DD.

Sign (5)

This flag reflects the value of the most significant bit of a result or of
a byte being transferred (bit seven). In two’s complement notation, the
most significant bit is used to represent the sign. *‘0” indicates a posi-
tive number and a ‘1"’ indicates a negative number. As a result, bit
seven is called the sign bit.

In the case of most microprocessors, the sign bit plays an important
role when communicating with input/output devices. Most micropro-
cessors are not equipped with a BIT instruction for testing the contents
of any bits in a register or the memory. As a result, the sign bit is usual-
iy the most convenient bit to test, When examining the status of an in-
put/output device, reading the status register will automatically condi-
tion the sign bit, which will be set to the value of bit seven of the status
register. It can then be tested conveniently by the program. This is why
the status register of most input/output chips connected to micropro-
cessor systems have their most important indicator (usually ready/not
ready) in bit position seven.

A special BIT instruction is provided in the case of the ZB0.
However, in order to test a memory location {which may be the address
of an 1/0 status register), the address must first be loaded into registers
iX, I'Y or HL. There is no bit instruction provided to test a specified
memory address directly (i.e., no direct addressing mode for this in-
struction), The value of positioning an input/output ready flag in bit
position seven, therefore, remains intact, even in the case of the Z80.

Finally, the sign flag is used by the special instruction IN, (C) to in-
dicate the sign of the data being read.

Instructions which affect the sign bit are: ADD A,s; SUB s; SBC A.s:
CP s; NEG;: AND s;: OR 5; XOR s; INC s; DEC m; ADC HL, ss; SBC
HL,ss; RLm: RLCm; RRm; RRCm; SLAm; SRAm; SRLm; RLD:
RRD; DAA: IN r,(C); CPR; CPIR: CPD; CPDR:; LD AL LDA.1
NEG.
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Stmmary of the Flags

The flag bits are used to automatically detect special conditions with-
in the ALU of the microprocessor. They can be conveniently tested by
specialized instructions, so that specific action can be taken in response
to the condition detected. It is important to understand the role of the
vartous indicators available, since most decisions taken within the pro-
gram will be taken in function of these flag bits. All jumps executed
within a program will jump to specified locations depending on the
status of these flags. The only exception involves the interrupt
mechanism, which will be described in the chapter on input/output and
may cause jumping to specific locations whenever a hardware signal is
received on specialized pins of the Z80.

At this point, it is only necessary to remember the main function of
each of these bits. When programming, the reader can refer to the de-
scription of the instruction later in this chapter to verify the effect of
every instruction of the various flags. Most flags can be ignored most of
the time, and the reader who is not yet familiar with them should not
feel intimidated by their apparent complexity. Their use will become
clearer as we examine more application programs.

A summary of the six flags and the way they are set or reset by the
various instructions is shown in Figure 4.17.

The Jump Instructions

A branch instruction is an instruction which causes a forced bran-
ching to a specified program address, It changes the normal flow of
execution of the program from a sequential mode into one where a dif-
ferent segment of the program is suddenly executed. Jumps may be
conditional or unconditional. An unconditional jump is one in which
the branching occurs 1o a specific address, regardless of any other con-
dition.

A conditional jump is one which occurs to a specific address only if
one or more conditions are met. This is the type of jump instruction
used to make decisions based upon data or computed resuits.

In order to explain the conditional jump instructions, it is necessary
te understand the role of the flags register, since all branching decisions
are based upon these flags. This was the purpose of the preceding sec-
ttorn. We can now examine in more detail the jump instructions pro-
vided by the Z80.

Two main types of jump instructions are provided: jump instructions
within the main program (they are called ‘‘jumps’’), and the special
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Fig. 4.17: Summary of Flag Operation

180



THE Z80 INSTRUCTION SET

type of branch instructions used to jump to a subroutine and to return
from it (“‘call’ and *“‘return’’). As a result of any jump instruction, the
program counter PC will be reloaded with a new address, and the usual
program execution will resume from this point on. The full power of
the various jump instructions can be understood only in the context of
the various addressing modes provided by the microprocessor. ‘This
part of the discussion will be deferred until the next chapter, where the
addressing modes are discussed. We will only consider here the other
aspects of these instructions.

Jumps may be unconditional (branching to a specified memory ad-
dress) or else conditional. in the case of a conditional jump, one of four
flag bits may be tested. They are the 2, C, P/V, and S flags. Each of
them may be tested for the value “0" or 1", ‘

The corresponding abbreviations are:

Z zero (Z = 1)

NZ = non zero (Z = 0)
C =carry (C = 1)
NC= no carry (C =0}
PO = odd parity

PE = even parity
P = positive (§ = 0)
M = minus (8§ = 1)

In addition, a special combination instruction is available in the Z80
which will decrement the B register and jump to a specified memory ad-
dress as long as it is not zero. This is a powerful instruction used to ter-
minate a loop, and it has already been used several times in the previous
chapter: it is the DINZ instruction.

Similarly, the CALL and the RET (return) instructions may be condi-
tional or unconditional. They test the same flags as the branch instruc-
tion which we have already described.

The availability of conditional branches is a powerful resource in a
computer and is generally not provided on other eight-bit micropro-
cessors. It improves the efficiency of programs by implementing in a
single instruction what requires two instructions otherwise.

Finally, two special return instructions have been provided in the case
of interrupt routines. They are RET] and RETN. They will be described
in the section of Chapter 6 on interrupts.

The addressing modes and the opcodes for the various branches
available are shown in Figure 4.18.
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CONDETION
UN- MOK MON [PARITY |PARSTY | SIGN TIGH REG
conp. | caRny| casry| zean | zero [EvEN  jonD NEG | POS Be0
c3 pa [*F] CA c2 EA E2 FA £2
Jump  F SMMED, nn n o n n n n a n n
XY, n # n n n n # n n
Jume R’ BELATIVE | PC+r kL] a g 8 20
=2 el ¥ 2 =7
JUME P HLL £3
Jume g REG. i jale}
tNDIA, EQ
JUMP P fiy] FD
3]
co oc D4 cc c4 2 E4 24 Fa
‘CALL” IMMED. nn n " n n n n a n n
EXT. n n ] n n a n n ]
DECREMENT 8,
JUMP IF NON RELATIVE | PG+ Hi]
ZEAD RINZ' =2
RETURAN REGISTER | (57} g [r:3 oo | es [=1) E2 EQ 5 Fo
‘RET" INDIR, [5P+ %}
RETURN FROM | HEG, r) ER
INT "HETP SNDER. [sP+31| 40
RETURN FROM
NON MaskanLE | RES K £
INT “RETN" INDIR, (SP+1} 3 a5

Fig. 4.18: Jump Instructions

A detailed discussion of the various addressing modes is presented
in Chapter 5.
By examining Figure 4.18, it becomes apparent that many ad-
dressing modes are restricted. For exampie, the absolute jump JP nn

can test four flags, while IR can only test two flags.

Mote an important observation: JR tends to be used whenever
possible as it 1s shorter than JP (one less byte) and facilitates program
relocation. However, IR and JP are not interchangeable: JR cannot
test the parity or the sign flags.
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One more type of specialized branch is available; this is the restart or
RST instruction. It is a one-byte instruction which allows jumping to
any one of eight starting addresses at the low end of the memory. Its
starting addresses are, in decimal, 0, 8, 16, 24, 32, 40, 48 and 56. Itis a
powerful instruction because it is implemented in a single byte. It pro-
vides a fast branch, and for this reason is used essentially to respond to
interrupts, However, it is also available to the programmer for other

uses. A summary of the opcodes for this instruction is shown in Figure
4.19.

op
CODE
0000, BST O
ooos,, "RST &
¢ | oo, ‘HST 16"
L
L
A ogi8, ‘AST 24
B
D
g | o020, RST 32
s
]
0028, | AST 40°
0030, ‘RST 48*
0038 ‘ST 56’

H indicates a hexldecimal number.

Fig. 4.19: Restart Group

Input/Output Instructions

Input/output techniques will be described in detail in Chapter 6.
Simply, input/output devices may be addressed in two ways: as
memory locations, using any one of the instructions that have aiready
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been described, or using specific input/output instructions. Usual
memory addressing instructions use three bytes: one byte for the op-
code and two bytes for the address. As a result, they are slow to ex-
ecute, since they require three memory accesses. The main purpose of
specialized input/output instructions 1s to provide shorter and,
therefore faster, instructions. However, input/output instructions have
two disadvantages.

First, they “‘waste’’ several of the precious few opcodes available
(since usually only 8 bits are used to supply all opcodes necessary for a
microprocessor}. Secondly, they require the generation of one or more
specialized input/output signals, and therefore ‘‘waste’” one or more of
the few pins available in the microprocessor. The number of pins is
usually limited to 40. Because of these possible disadvantages, specific
input/output instructions are not provided on mMost MiCroprocessors.
They are, however, provided on the original 8080 (the first powerful
eight-bit general-purpose microprocessor introduced) and on the Z80,
which we know is compatible with the 8080.

The advantage of input/output instructions 1s to execute faster by re-
quiring only two bytes. However, a similar result can be obtained by
supplying a special addressing mode called “‘page 0" addressing, where
the address 1s limited to a field of eight bits. This solution s often
chosen 1n other microprocessors.

The two basic input/output instructions are IN and OUT. They
transfer either the contents of the specified 170 locations into any of
the working registers or the contents of the register into the I/0 device.
They are naturally two bytes long. The first byte is reserved for the op-
cade, the second byte of the instruction forms the low part of the ad-
dress. The accumulator is used to supply the upper part of the address.
1t is therefore possible to select one of the 64K devices. However, this
reguires that the accumnulator be loaded with the appropriate contents
every ime, and this may slow the execution.

In the register-input mode, whose format is IN r, {C), the register
pair B and C is used as a pointer to the I/0 device. The contents of B
are placed on the high-order part of the address bus, The contents of
the specified I/0O device are then loaded into the register designated by
T.

The same applies to the QUT instruction.

Additionally, the ZB0 provides a register-indirect mode, plus four
specialized block-transfer instructions for input and output.

The four block-transfer instructions on input are: INI, INIR
(repeated INI), IND and INDR (repeated IND). Similarly, on output,
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they are: QUTIL, OTIR, OUTD, and OTDR.

In this automated block transfer, the register pair H and L is used as
a destination pointer. Register C is used as the 1/0 device selector (one
out of 256 devices). In the case of the output instruction, H and L point
to the source. Register B is used as a counter and can be incremented
or decremented. The corresponding instructions on input are INI
when incrementing and IND when decrementing.

NI ¢ an automated single-byte transfer. Register C seiects the input
device. A byte 1s read from the device and is transferred to the memory
address pointed to by H and L. H and L are then incremented by i, and
the counter B is decremented by .

INIR 1s the same instruction, automated. It is executed repeatedly
until the counter decrements to *“0”’. Thus, up to 256 bytes may be
transferred automatically. Note that to achieve a total transfer of exact-
ly 256, register B should be set to the value *0" prior to executing this
instruction. .

The opcodes for the input and output instructions are summarized in
Figures 4.20 and 4.21,

Control Instractions

Control instructions are instructions which modify the operating
mode of the CPU or manipulate its internal status information. Seven
such instructions are provided.

The NOP instruction is a no-operation instruction which does
nothing for one cycle. it is typically used either to introduce a deliberate
delay (4 states = 2 microseconds with a 2MHz clock}, or to fill the gaps
created in a program during the debugging phase. In order to facilitate
program debugging, the opcode for the NOP is traditionally all O's.
This is because, at execution time, the memory is often cleared, i.e., all
0’s. Executing NOP's is guaranteed to cause no damage and will not
stop the program execution,

The HALT instruction is used in conjunction with interrupts or a
reset. It actually suspends the operation of the CPU., The CPU will then
resume operation whenever either an interrupt or a reset signal 1s re-
ceived. In this mode, the CPU keeps executing NOP’s. A halt is often
placed at the end of programs during the debugging phase, as there is
usually nothing else to be done by the main program. The program
must then be explicitly restarted.

Two specialized instructions are used to disable and enable the inter-
nal interrupt flag. They are EI and DI. Interrupts will be described in
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Chapter 6. The interrupt flag is used to authorize or not authorize the
interruption of a program. To prevent interrupts from occurring during
any specific portion of a program, the interrupt flip-flop (flag) may be
disabled by this instruction. It will be used in Chapter 6. These in-
structions are shown in Figure 4,22,

‘NOP”
‘HALT’
DISABLE INT “(D8)’

ENABLE INT "{EI}

i
ST ODE 0 8080A MODE
SET INT MODE 3 ED | caLLTo LocATION 0038,
-
SET INT MODE 2 ED | INDIRECT CALL USING REGISTER
™Mz §E | ¢AND 8 BITS FROM INTERRUFTING
DEVICE AS A POINTER.

Fig. 4.22: Miscellaneous CPU Contro}

Finally, three interrupt modes are provided in the Z80. (Only one is
available on the 8080). Interrupt mode 0 is the 8080 mode, interrupt 1 is
a call to location 038H, and interrupt mode 2 is an indirect call which
uses the contents of the special register I, plus 8 bits provided by the in-
terrupting device as a pointer to the memory location whose contents
are the address of the interrupt routine, These modes will be explained
in Chapter 6.
which will also be explained in Chapter 6, They are the IRQ and the
NMI pins.
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SUMMARY

The five categories of instructions available on the Z80 have now
peen described. The details on individual instructions are supplied in
the following section of the book. It is not necessary to understand the
role of each instruction in order to start to program. The knowledge of
a few essential instructions of each type is sufficient at the beginning.
However, as vou begin to write programs by vourself, you should learn
about all the instructions of the Z80 if you want to write good pro-
grams. Naturally, at the beginning, efficiency is not important, and this
is why most instructions can be ignored.

One important aspect has not yet been described. This 1s the set of
addressing techniques implemented on the Z80 to facilitate the retrieval
of data within the memory space. These addressing techniques will be
studied in the next chapter.
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THE Z80 INSTRUCTIONS: INDIVIDUAL DESCRIPTION

ABBREVIATIONS
FLAG ON QFF
Carry C (carry) NC (no carry)
Sign M (minus) P (pius)
Zero Z (zero) NZ (non zero}
Parity PE (even) PO (odd)

) changed functionally according to operation

Q flag is set to zero

i flag is set to one

? flag is set randomly by operation

X special case, see accompanying note on that page

bit positions 3 and 5 are always random
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ADCA,s Add accumulator and specified operand with
Carry.

Function: A~A+s5+C

Format: s:may ber, n, (HL),(IX + d), or (1Y + d)

r [ foJefo = ]
n F[;]o]ol%[flfiol pyte i: CE

[ T T ! byte 2: immediate

data

]

HL [JoJoele[ T ]1]e] sE

(IX + d) [‘[.|a|[t;[n|oluj byte 1: DD

[;Iolololiln|x10! byte 2: 8E

[ Lo 4 —— 1 byte 3: offset value

(LY + d) [1||11||1|]:|oiil byte I: FD

rlio‘o‘olrlflllﬂl byie 2: BE
T ¥

] : e %’ t : l, ]byte3:offsetvaiue

r may be any one of:

A — 111 E - Ol
B - 000 H - 100
C - Q0 L - 101
D - 010
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Description: The operand s and the carry flag C from the status
register are added to the accumulator, and the
result is stored in the accumulator. s is defined in
the description of the similar ADD instructions.

Data Flow:

A

B

D £ AL [ }
H ¢

Timing: usec
o M cycles: | T states: | @ 2 MHz.
r i 4 2
n 2 1 3.5
(HL) 2 7 3.5
(IX + d) ) 19 9.5
ay + d 5 19 9.5

Addressing Mode:

Byte Codes:

Flags:

Example:

T

CE
1A

o~
OBJECT CODE

r: implicit; n: immediate; (HL): indirect; (IX +
d), Y + d): indexed.

ADC Ar o A 8 C o E H 1L
[3F|ss|avla/\;aslaclaol

s 7 H PO N C
leie| (o] [e[O]®]

ADC A, IA

Before: After:

Al s | 13 [ A o

191



PROGRAMMING THE Z80

ADC HL, ss

Add with carry HL and register pair $s.

Function: HL «~ HL + ss + C
Format:
]'l'i4|9i'ii|0|‘J byte | ED
I(}Ilis:51llG¥£IOj byte 2
Description: The contents of the HL register pair are added to
the contents of the specified register pair, and then
the contents of the carry flag are added. The final
result is stored back in HL. ss may be any one of:
BC - 00 HL - 10
DE — 01 Sp - 11
Data Flow:
A s —> \/
B C
D E ALY
L ].HV////////A//////' AL ] +

se|

Timing:

Addressing Mode:

Byre Codes:

192

4 M cycles; 15 T states: 75 usec @ 2 MHz

Implicit.

BC DE HL $P

§5: oo



Flags:

Example:

ED

5A

OBJECT
CODE

THE ZBO INSTRUCTION SEF

H PO N C

CORER0OE0

H is set if there is a carry from bit 11.

ADC HL, DE
Before: After:
LA ST
o 3291 E D 3791 3
H 0F18 C MY AT
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ADD A, (HL) Add accumulator with indirectly addressed
memory location (HL).

Funcrion: A+~ A + (HL)
Format:
[ [efofofol [rlof 36
Deseription: The contents of the accumulator are added to the

contents of the memory location addressed by the
HL register pair. The result 1s stored in the ac-
cumulator.

Data Flow: {L i}
A 7 \/ %J
8 AL
D £ + /_\-*.-
H ‘L‘l MEMORY
Tinung.! 2 M cycles; 7 T states: 3.5 usec @ 2 MHz

Addressing Mode: Indirect.

Flags: 5 Z H PN C
[e]e] [e] [®[Cle|
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Example: ADD A, (HL)
Before: After:
A A8
B 9520 | H] 9620 ]
86 9620 B1 9630 81
OBJECT CODE
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ADD A, (IX + d) Add accumulator with indexed addressed
memory location (IX + d)

Function: A=A+ (IX +d)

Format:

[%lilﬂ’al;lllﬂlll byte i: DD

[llolclnlolils\ol byte 2: 86

d Z l byte 3: offset value

Description: The contents of the accumulator are added to the
contents of the memory location addressed by the
contents of the IX register plus the immediate off-
set value. The result is stored in the accumulator.

Data Flow:
A - \/ /—\/
5 DATA
D E ALU
H t i N
°
T /_\J
[ i =
d
/\_/
Timing: 5 M cycles; 19 T states: 9.5 usec @ 2 MHz

Addressing Mode: Indexed.

z H PAY N C

Flags: 5 .
CICINCINCIEI0)
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Example: ADD A (IX + 3)
Before: After:
Al ] T
x| 0861 1 x[ 0861 ]
N N N
[+ 0841 04 0B 04
86 0862 B2 oB&2 82
03 0863 36 0863 36
{Be4 21 OB64 21
/\_/
OBJECT CODE TN TN
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ADD A, (IY + d)  Add accumulator with indexed addressed
memory iocation (IY + d)

Function: A+ A+ (Y +d)
ot [Tl byt w
L fofofofo]t]r]o] bye2:86
[———— 35 ————] byte 3: offset value
Description: The contents of the accumulator are added to the

contents of the memory location addressed by the
contents of the TY register plus the given offset
value. The result is stored in the accumulator,

Data Flow:
m' L o]
A DATA
: - \/
D E ALU
H L + /\/
/—\/
1Y i LE
d
ADD
/\_/
Timing: 5 M cycles; 19 T states; 9.5 usec @ 2 MHz

Addressing Mode: Indexed.

Flags: H PADN C

OOROEOE0
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Example.

T

FD

BS

ol}

v

CBJECY
CODE

THE Z80 INSTRUCTION SET

ADD A, (Y +1)

Before: After:
Al s 7] Y Yy
] 0028 I X 0026

/’\--._,__,_ /\

0028 06 0028 06
002C FA ozC A
/—h\\_’_‘ /-\__'_
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ADDA,n

Function:

Formai:

Description.

Data Flow:

Add accumulator with immediate data n.

A+<A+n1n

Illi'ﬂlﬂlﬂl%iiiUIb)’tEl:Cé

i T T T lbytez immediate
H | 1 1 i Il ata

The contents of the accumulator are added to the
contents of the memory location mmmediately
following the op code, The result 1s stored in the
accumulator.

T o w P

Timing:

Addressing Mode:

Flags:

Example:

T

o]
E2

b —
OBJECT CODE

200

MEMORY

2 M cycles; 7 T states: 3.5 usec @ 2 MHz
Immediate.

PPN C

[e[e] Te[ Te[0fe]

ADD A, E2
Before: After:
al s ] ~ DT



ADDA,r

Function:

Format;

Description:

Data Flow:

Timing:

Addressing Mode:

Byte Codes:

Flags:

I o e >

THE 280 INSTRUCTION SET

Add accumulator with register r.

A b+

Lifolofolol—rim

The contents of the accumulator are added with
the contents of the specified register. The result 1s
placed in the accumulator. 1 may be any one of:

A -~ 111 E - 011
B — 000 H - 100
C - 001 L - 101
D - 010

E—

c \/
E ALL
L +

—=

i Mcycle; 4 T states: 2 usec @ 2 MHz.

Implicit.

A B C D E H L
IB?IED‘B%*BZISS!M‘SSl

H @ N <

DOROE0E0
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PROGRAMMING THE 280

Example:

VR

&

/’\\_____
OBJECT CODE

202

ADD A,B

Before:

After:

il

2



THE Z80 INSTRUCTION SET

ADD HL,ss Add HL and register pair ss.

Function: HIL. =« HL + ss
Format: ;
(ofofs sfifofofs]
Description: The contents of the specified register pair are

added to the contents of the HL register pair and
the result is stored in HL. ss may be any one of:

BC -~ 00 HL - 10
DE - 01 SP — 11
Data Flow:
A
B
D E Ay
{ " i +
SF | |
Timing: 3 M cycles: 11 T states: 5.5 usec @ 2 MHz

Addressing Mode: Implicit,

Byte Codes: $5: BC DE HL SP

EINEIED

Flags: 5 Z PIV N €
L1 | _[Oe]

C 15 set by carry from bit 15, reset otherwise,

9

His set by a carry from bit 11
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Example: ADD HL, HL

Before:

O — H 0681

—

29

OBJECT
CODE

204

After:

WU T



THE Z80 INSTRUCTION SET

ADDIX,rr Add IX with register pair rr.

Function; IX < IX + 771

Format:
L lefol il [ fo] |byer: pD
(ofofr i [:]ofo] |bye2

Description: The contents of the IX register are added to the

contents of the specified register pair and the
result is stored back in IX. rr may be anyone of:

BC - 00 IX - 10
DE -~ 01 SP - 11
Data Flow: i} F
A
s B c
i b} £ ALY
H L +
sel ]
Timing: 4 M cycles; 15 T states: 7.5 usec @ 2 MHz

Addressing Mode: 1mplicit.

Byte Codes: rr; BC DE X §P

o [o]w[e]s]
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PROGRAMMING THE 280

Flags: s Z MotV N C

L1 ] |_lole]

H is set by carry out of bit 1.
C is set by carry from bit 15.

2

Example: ADD IX, SP
Before: After:
T 1] 0000 | X
l;g sp | 302 | 3021 |
o~
OBJECT

CODE
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ADDIY, Add 1Y and register pair 1T,
Function: IY « 1Y + T
Format:!

‘1l||llxli‘llﬂl'by{el:FD

ool T [ofof Ibyte2

Description: The contents of the 1Y register are added to the
contents of the specified register pair and the
result is stored back in 1Y, rr may be any one of:

BC — 00 Iy — 10
DE - 01 SP - 11
Datg Flow: {} {F
A
{B c
{ n ALU
H L +
i
Timing: 4 M cycles; 15 T states: 7.5 usec @ 2 MHz

Addressing Mode: 1mplicit.

Byte Codes: rr:; BC DE 1Y 5P

o [o[w[=[]

07



PROGRAMMING THE Z80

F!ags.‘ 5 2 H P NOC

L | [Ole]

H is set by carry out of bit 1 1.
C is set by carry out of bit 15.

Example: ADD 1Y, DE
Before: After:
~— o] 8122 e pf 6122 3
:: [ 3057 | w8
OBJECT
CODE
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AND s Logical AND accumulator with operand s.
Function: A< AAs
Format: s may ber, n, (HL), IX + d), or (IY + d)
ropfo]t]elofre—]
noo [ Jele] il ito] byter:E6
l Tt T T byte 2: immediate
- | data

L) [JolJeloli[1]o] A6

(IX + d) |l|1!0]1|111[911| byte 1: DD
[ Je] i Jefo] TiTo] byte2: A6
1 — i gbyteiiz offset value

£ H i

ay +dy [ififife[ibilo] ] bytel: FD

IIIOICIOIOII111GI byte 2: A6

| : : I ‘if ’ ‘ ' l byte 3: offset value
r may be any one of:

A - 111 E - 011

B — 000 H ~ 100

C - 001 L -101

D - 010
Description: The accumulator and the specified operand are

logically *and’ed and the result is stored in the ac-
cumulator. s is defined in the description of the
similar ADD instructions.
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PROGRAMMING THE Z80

Data Flow:
N
B C
) £ ALU [ 5
M L A
Tinung: usec
s M cycles: | Tstates: | @ 2 MHz:
r § 4 2
3| 2 7 1.5
{HL) 2 7 3.5
(X + d} 5 19 9.5
(1Y + d) 5 19 9.5

Addressing Mode: r: implicit; n: immediate; (HL): indirect; (IX +
d), ({Y + d): indexed.

Byte Codes: AND 1 ~a B ¢ D & H
lA?IAGImIA2|A3(A4|A5{

Flags: s Z H (v N ¢
efe] || [e|O[O]
Example; AND 4B
Before: After:
A NI
—
£6
48
CBJECT
CODE
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BIT b, (HL) Test bit b of indirectly addressed memory location

(HL)
Function: Z < (HL}y
Format:
[l fofo fofr ] | byerca.
Lo o=l [ o] byre2
Description: The specified bit of the memory location address-
ed by the contents of the HL register pair is tested
and the Z flag is set according to the result. b may
be any one of:
0 - 000 4 — 100
1 — 001 5 — 101
2 - 010 & — 110
3 — 011 7 111
Data Flow: ;:*‘ T
A % F %
8 C
) E ALY
" t ] —~——_
Tinung: 3 M cycies; 12 T states; 6 usec @ 2 MHz

Addressing Mode: Indirect,

H PN N C

o T T°[°[]

Flags: i
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Byte Codes:

Example:

/\‘__

&)
5E

T — ]
OBJECT CODE

212

- [¢] I 2z e} 4 5 & 7
CB-ldﬁ’dE'SﬁlSE!éﬁ[éEl?él?E|

BIT 3, (HL)
Before: After:
[ o s Vit
H 5442 It H[ 5442 i
/’_\,___’ /\__
&A42 05 6A4Z 05
b /\__‘




THE Z80 INSTRUCTION SET

BIT b, (IX + d) Test bit b of indexed addressed memory location

(IX + d)
Function: Z — (X + d)p
Formaz:
[’I'IBI‘I'I'“’PJ byte 1: DD
I'l'l"l“i*l“" la| byte 2: CB
| : : j R —; } byte 3: offset value
el [—rei=[i{ifo] byea
Description: The specified bit of the memory location address-
ed by the contents of the IX register plus the given
offset value is tested and the Z flag is set according
to the result. b may be any one of;:
0 -~ 000 5 — 101l
{ — 001 6 — 110
2 — 010 7T~ 111
3 - 0I1
4 — 100
Data Flow: J ;: :
N~
A i1 ¢ DATA
8 c
) £ ALY
H L J P —
1X | + /\—7
BIT
y
b
T~
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Timing: 5 M cycles; 20 T states: 10 usec @ 2 MHz

Addressing Mode: Indexed.

des: boo | 2 3 4.5 6 7
Byte Codes o-co-d- a6 [ 4 [ 56 [ 5t [os | o€ |76 |7 |

Flags: s 2z H PV N €
ol L[ T-[o] |
Example: BIT 6,(X + &)
Before: After:
F VN ar
x| AAT1 | | AATT j
[n1s] AAL 42 AATI 42
CB ] b —
0
76
T —
OBJECT CODE
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BIT b, (IY + d) Test bit b of the indexed addressed memory loca-
tion 1Y + d)

Function: 7 < (IY + d)y

T OLLTEL eveno
CTTele e []i] owezca
[————3————| byte 3: offset value
OnEC=nnoltel

Description: The specified bit of the memory location ad-

dressed by the contents of the IY register plus the
given offset vaiue is tested and the Z flag 15 set ac-
cording to the result. b may be any one of:

0 -~ 000 4 — 100
| — 001 5 — 101
2 - 010 6 — 110
3 - 01l 7 - 111

Data Flow: ~_
A |22 F
B C \ / /
D E ALY “l
1| ] I + O e
BIY
3
b
T

215
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Timing: 5 M cycles; 20 T states: 10 usec @ 2 MHz

Addressing Mode: Indexed.

Byte Codes: bi: 9 ¢t 2 3 4 5 & 7
Fs-ca-d-l46I4E|56!SEib&[ési?b]?&f

Flags: 3z H PV N €
ol [ [:[o] ]
Example: BIT 0,{dY + I)
Before: After:
R
1y FF12 | ty| FF12
/\_  — /\__
O FF12 61 FF12 &)
cB £F13 B2 FE1a B2
]
OBJECT COBE
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BIT b,r Test bit b of register r.
Function: 4 *?E
Format: l!]i‘OlOillO‘iilibyteIICB
(0 ‘ i l-———il-b+-—--»——~:—rv~|;—— byte 2
Description: The specified bit of the given register is tested and

the zero flag is set according to the resuits. band r
may be any one of:

b: 0 — 000 4 - 100
1 — 001 5 — 101
2 - 010 6 — 110
3 - 011 7 — 111

T A -1 E - 011
B — 000 H - 100
C - 001 L — 101
D - 010

Dara Flow: l ; J ;
A l7] F
B c
] E ALU
M L
Timing: 2 M cycles; 8 T states; 4 usec @ 2 MHz

Addressing Mode: Implicit.
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Byre Codes; b:nA B € D E H 1L
CB- O [47]40 (43|42 |4a3]4d]a5

I J4F 148149 (4A)14B | 4C| 4D

3 | 5F 58|59 5A)58 (505D

4 {67160 61| 62636465

5 {6F 68 69| 6A| 6B} 4C| 6D

v oNC

°of |

Flags:

s Z H
RONDRE

Example: BIT 4, B

Before: After:
/“‘\H’_

CB
&0

Bl o [ o e [ e ] fs

/—.\._,__,
OBJECT CODE

218



CALL cc, pg

Function:

Format:

Description:

THE ZB0 INSTRUCTION SET
Call subroutine on condition.
if cc true: (SP — 1) = PCppp: (SP - 2) =

PCigw: SP + SP — 2, PC < pq
Ifccfalse; PC — PC 4 3

byte 2: address,

low order
l byte 3: address,
high order

giiilwwi—cc«w—*-‘ lelulbytel
i —
T i
$ T

if the condition is met, the contents of the pro-
gram counter are pushed onto the stack as de-
scribed for the PUSH instructions. Then, the con-
tents of the memory location immediately follow-
ing the opcode are loaded into the low order of the
PC and the contents of the second memory loca-
tion after the the opcode are [oaded into the high
order half of the PC. The next instruction fetched
will be from this new address. 1f the condition is
not met, the address pq is ignored and the follow-
ing mstruction is executed. cc may be any one of:

NZ - 000 PO - 100
Z — 001 PE — 101
NC - 010 P — 100
C - o1 M - 111

An RET instruction can be used at the end of the
subroutine being called to restore the PC.
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PROGRAMMING THE ZB0

Data Flow,
A F }
B c T
: s ford b
-
[ JERD B
sCl
7
- D ]
Tirming: usec
M cyeles; | Tstates: | @ 2 MMz
condition
true: 5 i7 8.5
condition
not {rue: ‘ 3 10 5
Addressing Mode: Immediate.

Byte Codes: CC.NZ.Z NC C PO PE P M
EJVCCIIMZDC!E‘: IECIH {FC]'Q’P
Flags: s 2 H PV N_C

220
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Example:

o —

ce
42
BO

v —
OBJECT CODE

THE ZB80 INSTRUCTION SET

CALL Z, Bo42
Before: After:

& %
pc | QB0 | el okca
se BB12 bose| BB12 i

/\__ /\__ﬂ
8810 BF BB1O BF
8811 04 BB11 04
8B12 32 BB12 32

T — e
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CALL pg

Function:

Format:

Description:

Data Flow.

Timing:

Addressing Mode:

222

Call subroutine at location pq.

(SP — I}~ pchigh; (SP - 2} < PCjgy; SP < 5P

-~ 2; PC +pg
['['°|°[‘|‘l°i'}byteI:CDf-@$

{ i : : % : : : E byte 2: address, low order
E_l_m_iwm;jf__L_{ 1 ] byte 3: address, high order

The contents of the program counter are pushed
onto the stack as described for the PUSH instruc-
tions. The contents of the memory location im-
mediately following the opcode are then loaded in-
to the low order half of the PC and the contents of
the second memory location after the opcode are
foaded 1n the high order half of the PC, The next
mstruction will be fetched from this new address.

I O » >
m
o

U

PC

I
S

5 M cycles; 17 T states: 8.5 usec @ 2 MHz

Immediate.



THE Z80 INSTRUCTION SET

Flags: S_Z H PV N C
LI LT L1 (noeffecn
Example: CALL 40Bl
Before: After:
P | AALD | el s
5P | 0814 | v
T~ T~
fus] OB12 GA 0Bi2 W
Bl opia] o 8130 AhT
40 oB14| 4 0B14
b —

e
OBJECT CODE
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CCF Complement carry flag.
Function: C «<C
Format:

BN IDnnE:
Description: The carry flag is complemented.

Data Flow: . : {L

A
B
[¥) ALY
H
Timing: 1 M cycle; 4 T states: 2 usec @ 2 MHz

Addressing Mode: Implicit. .

Flags: s 2 H PV N C

L[]l ] [Oe
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CPs Compare operand s to accumutator.
Funcrion: A~ s
Format: s: may ber, n, (HL), (IX + d}, or (IY + d).
O —
no fefefofelefi]e] FE
1 T T I byte 2: immediate
e B B data

) o[ [ Te] byess B

(IX + d) Itltlo|!llllioii| byte {: DD

Lefofel Jefelelo] byez:BE

m———d———] byic 3: offset value
ay+d [t i[ ] ]]i]o]¢] bytet:FD

(oL TTTTTTe] w2 me

[~ d————|  byte 3: offset value

r may be any one of:

A~ 111 E — 011
B — 000 H - 100
C - 001 L — 101
D - 010
Descriprion: The specified operand is subtracted from the ac-

cumulator, and the result is discarded. s is defined
in the description of the similar ADD instructions.
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Data Flow:

<

T G wm P

Timing:

ALY { § |
usec
s: M cycles: | T states: (@ 2 MHz
r i 4 2
n 2 7 3.5
(HL) 2 7 3.5
(IX + ) 5 19 9.5
(Y + d) 5 19 9.5

Addressing Modes: 1 implicit; n: immediate; (HL): indirect;

Byte Codes:

Flags.

Example:

8E

CBJECT
CODE

226

(IX + d), (IY + d): indexed

CP r: m A B C D E H 1
IBsIaalB?lBAlBB|Bc|BD|

#H PAZ N C

(@] Te] Tol [¢]

CP (HL)

Before: After:

S T
H] B203 o B203 jt

T T N—
8203 42 8203 42

] S

L



CPD

Function:

Format;

Description:

Data Flow:

B

Timuing:

Addressing Mode:

Flags :

THE Z80 {NSTRUCTION SET

Compare with decrement.

A —[HL]; HL =—HL — I; BC =——BC — |

Ltl(|a|0||ll|u|z[ byte I: ED

lllel |le|||e|0]a—| byte 2: A9

The contents of the memory location addressed by
the HL register pair are subtracted from the con-
tents of the accumulator and the result is discarded.
Then both the HL register pair and the BC register
pair are decremented,

7
Vi

F
<

L

|

4 M cycles; 16 T states: 8 usec @ 2 MHz

indirect.

|.| x| IQ] Ix[i] ] Reset if BC 0 after execution; set otherwise
et

Setif A = [HL]
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+ PROGRAMMING THE Z80

Example:

T —

ED
AQ

LT
QBJECT CODE

228

CPD

Before:

06

B 3154

H B6BS

B&BS 24

8685

After:

T
28
L]

g
e

|\ W



THE 280 INSTRUCTION SET

CPDR Block compare with decrement.

Function: A —[HL]; HL=— HL — 1; BC~—BC —I;
Repeat until BC = Qor A = [HL]

Format:

LD e T ol ] byter:mp

Llel v TeTel 7] byte2: B9

Description: The contents of the memory location addressed by
the HL register pair are subtracted from the con-
tents of the accumulator and the resuit is discard-
ed. Then both the BC register pair and the HL
register pair are decremented. If BC = Oand A =
[HL], the program counter is decremented by two
and the instruction is re-executed.

Data Flow;

DATA

8 C

a

Timing: BC = 0 or A = [HL}: 4 M cycles; 16 T states:
8 usec @ 2 MHz
BC # 0 and A # [HL]: 5 M cycles; 21 T states:
10.5 usec @ 2 MHz

) Reset if BC = Q after
Flags: 5 7 H PV N C execution; set otherwise
OLTTO T:LL | -
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Example: CPDR
Before: After:
Al T | wIF -///W
B 0002 c s 9 o
k[ &0 W vt
e T — P
ED SOFE 05 SOFE 08
&9 SQFF 00 SOFF o
pu— 8100 24 4100 2A
OBJECT CODE P— e
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CPI Compare with increment.
Function: A —[HL]; HL<+—HL + |; BC -—BC ~ |
Formatr:

L'i"'!ﬂ!’['f",'—l byte i: ED

Illﬂlilolﬂlﬂlﬂii] byte 2: Al

Description. The contents of the memory location addressed by
the HL register pair are subtracted from the con-
tents of the accumulator and the result is discarded.

The HL register pair is incremented and the BC
register pair is decremented,

Data Flow:

7
B 7.

| i
G

‘ o
£
i—! /-H\.,

Tinung: 4 M cycles; 16 T states: 8 usec @ 2 MHz

H

Addressing Mode: indirect.

Flags:

[l /YN C

5 Z

Reset if BC = 0 after execution set otherwise
O xi @ ixii
OLLITLL] (= ger75C 2
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Example; CPi

Before:

B 0510 C

Hi B8EY ]

/_\_I /——-M—\-W
ED 8689 98
Al [/-\
/—\
OBJECT CODE

232

B6BS 9B

After:

“/ 70 N
Y W///

T T —

P N



CPIR

Function:

Description:

Data Flow:

THE ZBO INSTRUCTION SET

Block compare with increment,

A —[HL; HL = HL + 1; BC =—~BC — I}
Repeat until BC = Oor A = [HL}

[§|slg|e]|[1|0]1—] byte 1: ED

Lifol ] i]ooo] 1] byte2:BI

The contents of the memory location addressed by
the HL register pair are subtracted from the con-
tents of the accumulator and the result is discarded.
Then the HL register pair is incremented and the
BC register pair is decremented. If BC = 0 and A
# [HL}], then the program counter is decremented
by 2 and the instruction is re-executed.

B

H

Timing:

Addressing Mode:

, |

DATA

_

<
<
el

[
[
| |

BC = O0or A = [HL] : 4 M cycles; 16 T states:
8 usec @ 2 MHz

BC # 0Oand A # [HL]: 5 M cycles; 21 T states:
10.5 usec @ 2 MHz

indirect.
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Flags:
[ :[ i i l:l lv;vl r:‘ ic ! Reset if BC = 0 after execution; set otherwise
] i Jz Setif A = [HIL]
Example: CPIR
Before: After:
A B | A “W //1%
B 00| S5

H{ 0358 it W VR

T — T T T —
D 0398 24 0398 A
Bi 0639C 98 639C 98
L] [alele] V) 0390 04
GBJECT CODE | |
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CPL

Function:

Format:

Description:

Data Flow:

fiming:

Addressing Mode:

Flags:

Example:

2F

OBJECT
CODE

THE ZBG INSTRUCTION SET

Complement accumulator.

A+~A

Lelo[ Jo T[] ] or

The contents of the accumulator are com-
plemented, or inverted, and the result s stored
back in the accumulator {one’s complement).

U
ml———

E ALU

I O o 3
)

[ M cycle; 4 T states; 2 usec @ 2 MHz

Implicit.

5 Z H PV N C
LD T
CPL

Before: After;

AL ] AL
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DAA Decimal adjust accumulator,

Function: See below,

Format:

[oJolTofe fife]2

Description; The instruction conditionally adds “*6"’ to the right
and/or left nibble of the accumulator, based on the
status register, for BCD conversion after arithmetic
operations,
value of value of | #added | C after

N C | high nibble | H | low nibble to A execution

0 0 0-9 0 0-9 00 0
(ADD, | O 0-8 0 A-F 06 0
ADC, 1 0 0-9 i 0-3 06 0
INC} | O A-F 0 0-9 60 1

0 9-F 0 A-F 66 i
0 A-F i 0-3 66 I
H 0-2 0 0-9 60 f
1 0-2 0 A-F 66 1
i 0-3 i 0-3 66 {

1 0 0-9 0 0-9 00 0
(SUB, {0 0-8 1 6-F FA 0
SBC, 1 7-F 0 0-9 AQ i
DEC, i &-F 1 6-F GA 1
NEQ)

Data Flow:

236

I Q w

—rm M ™

ALU

DAA




THE ZBO INSTRUCTION SET

Timing: I M cycle; 4 T states; 2 usec @ 2 MHz

Addressing Mode: Implicit.

Flags: s 7 H AV N C
o0 (o [0 [o]
Example: DAA
Before: After:
T~
3 al_ 82 1 s ral S

OBJECT
CCDE
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DECm Decrement operand m.

Function: m+—m-— |

Format: m: may ber, (HL), (IX+d), IY+d )
r LoJofpr] [o] 1]

(HL) [0'05;5%]0“'9[:[35

ax +d [[iJoli]e] ol bret:

[olo]a1i1u]sio{i| byte 2:

] byte 3:
llillilin

DD

tad

5

offset value

1Y + d) lil%li]i]i!itﬂl‘] byte 1: FD

]7010|lliio‘i|0| %] byte 2: 35
[(————d——— | byte 3: offset value
r may be any one of;
A - 111 E-011
B - 000 H — 100
C - 001 L-—1
D - 010

Description: The contents of the location addressed by the

specific operand are decremented and stored back
at that location.mis defined in the description of

the similar INC instructions.

Data Flow:

Al

B c

o E Al -
H L —1
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Tinung: usec
m: M cyeles: | Tstates: V@ 2 MFHz:
T i 4 2
(HL: 3 1 5.5
(IX + i) ) 23 I1.5
(Y + ) & 23 I1.5

Addressing Mode: roamplicit; (HLY: indirect; {IX + d), (1Y + d): in-

dexed.
Byie Codes: DECr TP A B C D E H L
Izoios[ao|nslm|zs|20{
Flags: s 7 H PAD N C
oo (o [of ] |
Example: DEC C
Before: After:
T I - Ve
oD
GBJECT
CODE
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DEC rr Decrement register pair Ir.
Function: e — |
Formai: :
lofolrieliofe] ]
Description:: ‘The contents of the specified register pair are

decremented and the resuit is stored back in the
register pair. rr may be any one of:

BC - 00 HL — 10
DE - 01 SP - 11
Data Flow:
2
A
B I \/
D £ ALU
H - 1
5Pl ]
Timing: i M cycle; 6 T states; 3 usec @ 2 MHz

Addressing Mode: Implicit.

Byte Codes: IT: BC DE H. SP

EIHEE
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Flags: s 1z H PV N C

L l I [ | | [ f ] (no effect).
Example: DEC BC
Before: After:
B[— 3811 lc s 0

o8

CBJECT COpe
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DECIX

Function:

Formal:

Description:

Dara Flow:

Tinung:

Decrement IX.

IX —ix -1
[rllle]|i|l|!el|!byieizDD
ro]et||o*:|01|[l]by£e2:2}3

The contents of the 1X register are decremented
and the result is stored back in IX.

T o w P

2 M cycles; 10 T states; 5 usec @ 2 MHz

Addressing Modes: {mplicit.

Flags:

Example:

T —

j318)
8

b — ]
OBJECY CODE
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5 2 H PV N C
r l ‘ i \ i l l I (no effect).
DEC IX
Before: After:

i Biia }




DEC 1Y

Function.

Format:

Description;

Data Flow:

Tinung:

Addressing Mode:

Flags:

Example:

e

D
28

b
OBJECT CODE

THE Z80 INSTRUCTION SET

Decrement Y.

IY < 1Y ~ 1

[']'i’l'['liiel'IbytEI"FD

(Lol Lol o 7 T1] byie 2: 28

The contents of the 1Y register are decrementeq
and the result is stored back in 1Y,

I 9w >
rH

2 M cycles; 10 T states; 5 usec @ 2 MHz

Implicit.

Sz H mum c

L L T T T T T tmoeffecn.
DEC 1y

Before: After:

i 900F ]
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DI Disable interrupts.

Function: IFF <= 0

Formar:
i;‘il:!liololilll F3

Description: The interrupt flip-flops are reset, thereby disabling
all maskable interrupts. It is reenabled by an EI
instruction.

Timing: { M cycle; 4 T states; 2 usec @ 2 MHz

Addressing Mode: lmplicit.

Flags: sz W PN C

[ l l | I l | | | (no effect).
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DINZ e Decrement B and jump e relative on no zero.

Function: B+<B ~1ifB®0:PC+~PC + ¢

Formar:
|u{u[o| i [o[e’aiol byte [: 10
| ! l ‘ E;Z : , , ! byte 2: offset value

Description: The B register is decremented, If the result is not
zero, the immediate offset value is added to the
program counter using two’s complement
arithmetic so as to enable both forward and
backward jumps. The offset value is added to the
value of PC < 2 (after the jump). As a resuit, the
effective offset is -126 to 4129 bytes. The as-
sembler automatically subtracts from the source
offset value to generate the hex code.

Data Flow:

T —
B
v BNz
@2
T — ]

Timing:

B #0: 3 M cycles; 13 T states; 6.5 usec @ 2 MHz.
B = 0: 2 M cycles; 8 T states; 4 usec @ 2 MHz

Addressing Modes: Immediate.
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Flags:

Example:

/"\\‘_—’

16
Fo

N
OBJECT CODE

246

5 Z H PV N €
| I i l ‘ I ! | |(noeffec£}

DINZ § ~ 5 ($ = current PC)

Before: After:
B s
sC COE| | e




El

Function:

Format:;

Description:

Timing:

Addressing Mode:

Flags:

Example:

THE ZBQ INSTRUCTION SET

Enable interrupts.

IFF = |

The interrupt flip-flops are set, thereby enabling
maskable interrupts after the execution of the in-
struction following the EI instruction. In the mean-
time maskable interrupts are disabled.

1 M cycle; 4 T states; 2 usec @ 2 MHz
implicit,

5 Z H PV N C

[ i | f | ! | | l(noeffect).

A usual sequence at the end of an interrupt routine is;
El

RETI

The maskable interrupt is re-enabled following
completion of RETI.
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EX AF, AF’

Function:

Format:

Description:

Data Flow:

fiming:

Addressing Mode:

Flags:

Example:

N

5]

N

OBJECT CCDE

248

Exchange accumulator and flags with alternate
registers.

AF=a=AF

(ofefefefJofofo] o8

The contents of the accumulator and status
register are exchanged with the contents of the
alternate accumufator and status register.

.’. i Fl

[l

Ju s B+ -

Ll

1 M cycle; 4 T states; 2 usec @ 2 MHz
Implicit,

(eTe[o]ole]o e]e]

EX AF. AF!

Before: After:




EX DE, HL

Function.

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

Example:

TN

]

/'\-/

OBJECT CODE

I W owmr

THE Z80 INSTRUCTION SET

Exchange the HL and DE registers.

DE - HL

(o o Tr] ks

The contents of the register pairs DE and HL are

exchanged.

sl E =
i

I M cycle; 4 T states: 2 usec @ 2 MHz

Implicit.
5 2 H PA N _C
l l i | l I ! l |(no effect).
EX DE, HL
Before: After:
AdES E © 5604
9604 L H A4ES
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EX (SP), HL  Exchange HL with top of stack.

Function: (SPy+~L: (8P + 1+ H
Format: LT fofofol [t &3
Description: The contents of the L register are exchanged with

the contents of the memory location addressed by
the stack pointer. The contents of the H register
are exchanged with the contents of the memory
location immediately following the one addressed
by the stack pointer.

Data Flow:
; c
D E
7
57 }—‘—l I
Timing: 5 M cycles; 19 T states; 9.5 usec @ 2 MHz

Addressing Mode: Indirect.

Flags: 5 Z H PV N C
| l I l 1 | 1 ] I {no effect).
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Example:

o —

£3

T~
OBJECT CODE

H

57

B40?
B40A

EX (5P), HL

Before:

THE Z80 INSTRUCTION SET

After

| 1290

\o W

B40%

{ sp| B409 i

T

3F

GE

o —

pavl) %97
8e0A 827
e
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EX (SP),IX Exchange IX with top of stack.

Function: (SP) ~X|gw: (SP + 1) = 1Xpjgh
Formar:

lu||[01|||||le||§ byte t: DD

[:| |i '|°l°|el'|'1 byte 2: E3
Description. The contents of the low order of the IX register

are exchanged with the contents of the memory
jocation addressed by the stack pointer. The con-
tents of the high order of the IX register are ex-
changed with the contents of the memory location
immediately following the one addressed by the
stack pointer.

Data Flow:

A

B C

o E

H L

1X |

DATA

Spl }—-—-—1 r\/

Tinung: 6 M cycles; 23 T states; !1.5 usec @ 2 MHz

Addressing Mode: Indirect.

Flags: s z H PV N C
| 1 | ! ] I [ l ] (no effect).
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Example: EX (SP), IX
Before: After:
1%| 9234 ] x] oes ]
sp| 0402 | se| 0402 |

TNl T TN

Do Q402 6B 0402 34
E3 0403 ol 0403 92

TN TN N

OBJECT COBE
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EX (SP),IY

Funcrion.

Format:

Description:

Data Flow.

Tinung:

Addressing Mode:

Flags:

254

Exchange 1Y with top of stack.

(SP) < 1Yjow: (SP + 1) = I¥high

I!Iilil!ii|ti01%! byte {: FD

l||6!!|0|0|0|1||l byan:EB

The contents of the low order of the 1Y register
are exchanged with the contents of the memory
jocation addressed by the stack pointer. The con-
tenis of the high order of the Y register are ex-
changed with the contents of the memeory location
immediately following the one addressed by the
stack pomnter.

T QO m
m

5e |_} TN

6 M cycles; 23 T states; 11,5 usec @ 2 MHz

Indirect.

| i ! | I | | | ] {no effect).




THE Z80 INSTRUCTION SET

Example; EX {(SPL 1Y
Before: After:
1y | BFO3 |
5o | 6211 | s 6211 !
/\/ /_\,/
FD 42 90 4211
] 6212 4D 6212}
.
OBJECT CODE
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EXX Exchange alternate registers.
Function: BC «-BC" DE «~DE" HL «—HL'
Format:
Ll fofefifofef ] Do
Description: The contents of the general purpose registers are

exchanged with the contents of the corresponding
alternate registers.

Data Flow:
A i
87 SIS T
D e
H |z e Y
Tinung: I' M cycle; 4 T states; 2 usec @ 2 MHz

Addressing Mode: Implicit.

Flags: s z H pv N C
LI T TP T T coeffec.
Example: EXX
Before: After:
A 04 78 E A o ™ ;
8 39 2 ¢ s[ e = c
b 24 02 E D:iva Do P
H Fl Do L H i o )
/‘\_.___'
DQ AI IF 2A FE AI Kid A F'
B! B8C fo'e) cog 2 % o
mr_‘ of 3 o IEY D 54 @l
i i - -
CODE ; i BV H F1 B9 - I
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HALT

Function:

Format:

Description:

Timing:

Addressing Mode:

Flags:

THE Z80 INSTRUCTION SET

Halt CPU.
CPU suspended.
ofrfrprfef il fef %

CPU suspends operation and executes NOP's so
as to continue memory refresh cycles, until in-
terrupt or reset is received.

| M cycle: 4 T states; 2usec @ 2 MHz + inde-
fimte Nop’s.

implicit.

5 Z H PAY N C
| i | | | | I l | (no effect).
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MO Set interrupt mode (0 condition.
Function: internal interrupt control.
Format:
‘?If!il{)l;!:'ﬂl!{ byte 1: ED
iﬂli!ﬂ;ﬂlo!lilfoi byte 2: 46
Description: Sets interrupt mode 0. In this condition, the in-

terrupting device may nsert one instruction onto
the data bus for execution, the first byte of which
must occur during the interrupt acknowledge cycle.

Timung: 2 M cycle: 8 T states; 4 usec @ 2 MHz

Addressing Mode: Implicit.

Flags: 5z H PAY N C
I | l ! I I | f I (no effect}.
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M1 Set interrupt mode 1 condition.

Function: Internal interrupt control.

ot nnnonnonk
LT[ Tel T Te] bwe2: 56

Description: Sets interrupt mode 1. A RST 0038H instruction

will be executed when an interrupt occurs.

Data Flow: 00 38
PC
U o db aoss [ E
[ E ] ROUTINE
(at time of interrupt)
. T —
PCH
PCL
f\_____
STACK
Timing: 2 M cycles; 8 T states; 4 usec @ 2 MHz
Addressing Mode: Implicit,
Ffags_‘ 5 Z H pY N C
[T T T T 11] ot
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IM2

Function:

Format;

Description:

Timing:
Addressing Mode:

Flags:

260

Set interrupt mode 2 condition.

Internal interrupt control.

Iuia§|£o|:]i|o!l] byte I: ED

|ﬂ‘|!0¥%|ils}f]0] byte 2: SE

Set interrupt mode 2. When an interrupt occurs,
one byte of data must be provided by the peripheral
which 1s used as the low order of an address. The
high order of this vector addressis taken from the
contents of the I register. This points to a second
address stored in memory,which is loaded 1nto the
program counter and begins execution,

2 M cycles; B T states; 4 usec @ 2 MHz
Implicit.

CTTTITLL tmostec




IN r, ()

Function:

Format:

Description:

Data Flow:

Tinung:

Addressing Mode:

Byte Codes:

THE Z80 INSTRUCTION SET

L.oad register r from port{C)

€[ili10[!|€ ol‘]bylei:ED
— o lo]

|
1ol

0 o|bytez

The peripherai device addressed by the contents of
the C register s read and the result is loaded nto
the specified register.

C provides bits AQ 1o A7 of the address bus.

B provides bits A3 to AlS.

PORT

I g o>
Frt

B e

i

r may be any one of:

A - |11 E -~ 011
B - (00 H - 100
C - 001 L - 101
D - 010

3 M cycles: 12 T states; 6 usec @ 2 MHz

External.

cof 7] s ] o] s eo 1]
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Flags: 5 Z - H @v N C
®o/e] |&| [®/c] |
It is important to note that INA,(N) does not have
any effect on the flags, while IN 1, (C) does.
Example: IN D, (C)
Before: After:
s c e
- of ov | [en|eort oE5777) [ A Jeomt
A5 AS
b —

QBJECT CODE
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IN A, (N)

Function:

Formai:

Descriptton:

Data Flow:

Tinung;

T O m >

Addressing Mode:

Flags:

Example.

DB
B2

T —
CBIECT CODE

THE Z80 INSTRUCTION SET

Load accumulator from input port N,

'loi *I ‘]bytel:DB
: i : ]byte 2: port address

The peripheral device N is read and the result is
loaded into the accumulator.

The literal N is placed on lines AQ to A7 of the
address bus. A supplies bits A8 to A13.

// /—\\-u—.-

B

PORY

3 M cycles; ] T states; 5.5 usec @ 2 MHz

|

External.
I 5 l Z i l H! [PN| " | - ] (no effect).
IN A, (B2)
Before: After:
84

| BF; [port Al ) FGRT

263



PROGRAMMING THE 280

The contents of the specified register are in-

E - 011
H — 100
L — 101

F

\/

ALU
+1

INCr Increment register r.
Function: T+r+1
Format: ool ]e]o]
Description:
cremented. r may be any one of:
A - 111
B - 000
C — 001
D - 010
Data Flow:
A
B C
D £
H L
Timing: [ M cycle: 4 T states: 2 usec @ 2 MHz

Addressing Mode:

Byte Codes:

Flags:

Example:

 N—

14

OBJECT
CODE

264

Implicit.

I' A B C D E H
[3c|o4|c}c|14|1c]24[2c|

H PO N C

[e[e] Te[ Jo[o] |

INC D

Before: After:

o[ o ]

o Yl
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INC r Increment register pair rr.
Function: T rr + |
Formai:
|o|a ri-'2G|G|I|¥|
i
Description: The contents of the specified register pair are in-

cremented and the result is stored back in the
register pair. rr may be any one of:

BC - 00 HL - 10
DE ~ 01 SP - 11

Data Flow:

J
\/

ALU
+

T O @ >
(x4}

sp| !

Timung: I M cycle; 6 T states; 3 usec @ 2 MHz
Addressing Mode: 1mplicit.

Byte Codes: rr; BC DE HL SP

w[[o]]
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Flags:

Example:

23

QOBJECT
COBE

266

5 z H PAY N ©

| | | | I | | | } {no effect)}.
INC HL

Before: After:

M 0B14 I
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INC (HL) Increment indirectly addressed memory location
(HL).

Function: (ML) - (HL) + |

Formati:
elefidedofefefo] na

Description: The contents of the memory location addressed by

the HL register pair are incremented and stored
back at that [ocation.

Data Flow:
A
8 7
) £ ALY
: 7 Y 9
Tintung: 3 M cycles; 11 T states; 5.5 usec @ 2 MHz
Addressing Mode: indirect.
Flags: 5 7 H P N C
o[e |e] [8[O] |
Example: INC {(HL;
Before: After:
H 0681 o H 0681 L
VR T —
34 0881 a8 B\ 37
\_,_/
GBJECT
CODE
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INC (X + d) Increment mdexed addressed memory location

(IX + d).
Function: (IX + d)~({IX + d) + |
Formai:
ll!I]Gil!llf[ﬂl%lbyteiiDD
|o|o| 'I ;|0| ¢|o|o]byte2:34
l : , : c:J ' ' ‘ I byte 3: offset value
Description: The contents of the memory location addressed by
the contents of the [X register plus the given offset
value are incremented and stored back at that
location.
Data Flow: ]
A 72
8 | oaia |
D E
H L
X  — —
L
”'\—__/
Timing: 6 M cycles; 23 T states; 11.5 usec @ 2 MHz

Addressing Mode: Indexed.

Flags: H PPN C
lwlel ®] [e[0] ]
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Example: INC (IX + 2)
Before: After:
1X] 0361 | ix | o381
nb 381 81 0381 Bl
34 0382 B85 0382 85
0z 0383 BY oIl k)
] o
OBJECT
CODE

269
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INC (Y + d) Increment indexed addressed memory location (IY

+ d)
Function. {(IY +d)y Y + d) + 1
Format:
Ll p e ] bye 1 FD
20|0|I!llﬂ'il0l0! byte 2: 34
f : l : cj! 1 l I byte 3: offset value
Description: The contents of the memory location addressed by
the contents of the I'Y register plus the given offset
value are incremented and stored back at that
location,
Data Flow:
A
B
o E
H L
v
d
—
Timing: 6 M cycles; 23 T states; 11.5 usec @ 2 MHz

Addressing Mode: Indexed,

Flags:

5 2z H PAY N C
®[e [o [0 |

270



Example:

FD

34

OBJECT
CODE

INC (IY +0)

Before:

1] 0601

0401 51
Ba02 BO

THE Z80 INSTRUCTION SET

| 060! ]

e
| B |

0602
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INC IX Increment IX.

Function: IX+~1X + 1

o [T o] e 1 o
lofoftfofofoli[r]byte2 23

Description: The contents of the IX register are incremented

and the result 15 stored back in IX.

Data Flow:
8
y f
N e—
Timung: 2 M cycles: 10 T states; 5 usec @ 2 MHz

Addressing Mode: Implicit.

Flags: 5 z H PV N C

[ I l I I [ I f ] {no effect}.
Example: INC X

Before: After:
s ix{ B180 1 =
—

OBJECT CODE
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INC 1Y

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

Example:

T —

FD
23

b —
OBJECT CODE

THE 280 INSTRUCTION SET

Increment 1Y

IY < 1Y + 1

[T LT o] Josee 1 k0

|o‘o] ||o|o|o|1i ||byte2:23

The contents of the 1Y register are incremented
and the result is stored back in 1Y.

2 M cycles; 10 T states; 5 usec @ 2 MHz

Implicit.

5 2 H PV N C

LLT LT T ] ] moeffect

INC 1Y

Before: After:

L el |~
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IND Input with decrement.
Function: (HL) < (C; B+ B — |I; HL « HL - !
Format:

L[] o] ] Je]1] bytet: ED
|i|oi||o|i|eille|byte2:AA

Description: The peripheral device addressed by the C register
is read and the result is loaded into the memeory
location addressed by the HL register pair. The B
register and the HL register pair are then each

decremented.
Data Flow:
A DATA
B ¥icaunter ] C
D E PORY
W
Timing: 4 M cycles; 16 T states; 8 usec @ 2 MHz
Addressing Mode: External,
Flags: 5 Z H BV NG
|x | :'I [*[ i l ] Set if B = 0 after execution
i__ Reset otherwise
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Example: IND

Before: After:

sl & [ 85 ¢ sfZR7. 8 Ic
H] 06BA v W

85 BS
(T s (™
) 06BA 00 INT R
Al b ] _

i
QBJECT CQDE
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INDR Block input with decrement,
Function: (HL) < (C); B+~ B - I; HL < HL ~ 1|
Repeat until B = 0
Format:
DT el fidol ] bytes:ED
1iEGEI1|[|¥G||iO] by[ez BA
Description: The peripheral device addressed by the C register
is read and the resuit is loaded into the memory
location addressed by the HL register pair. Then
the B register and the HL register pair are
decremented. If B i1s not zero, the program
counter is decremented by 2 and the instruction is
re-executed.
Data Flow:
A
BE.COUNTERA
D
W
Timung: = (4 M cycles; 16 T states; 8 usec @ 2 MHz.

Addressing Mode:

Flags:

276

B = 0:5 M cycles; 21 T states; 10.5 usec @ 2 MHz.

External

S £ H PV IN__C

[ L] ]

3




Example:

T~

ED
BA

f\w/
GBJECT CODE

THE Z8Q INSTRUCTION SET

INDR
Before: After:
Bl 03 | B0 ss c
H| 092 HE s 77
T~
5 O9EF
oo wro P77
ooF1| 4B e
o9r2| 9A Y
—__|




PROGRAMMING THE 280

INI Input with increment.
Function: (HLY = (C; B~ B - I; HL - HL + 1
Format:

Jofel el JoyerED

r
|

|
Tol TololoT o] ovez a2

Description: The peripheral device addressed by the C register
15 read and the result is loaded into the memory
focation addressed by the HL register pair. The B
register is decremented and the HL register palir is
incremented.

The contents of C are placed on the low half of the
address bus. The contents of B are piaced on the
high half, I/0 selection is generally made by C,
Le., by A0 to A7. B is a byte counter.

Data Fiow.
DATA
FORT
Timing: 4 M cycles; 16 T states; 8 usec @ 2 MHz
Addressing Mode: External.
Flags: 5 7 H PAY N C
Lelx[ fo] el ] ]

Z is set if B = 0 after execution,
Reset otherwise
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Example:

T~

EC
A2

T
CBJECT CODE

THE Z80 INSTRUCTION SET

INj]

» Before: After:

TR T
T

PORT

e
g
=

2% 21

e
AlZ2 09 INNVR Y
] |
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INIR

Function:

Format:

Description:

Dara Flow:

Block input with increment.

(ML} < (C); B+ B — 1: HL < HL + [; Repeat
untit B = 0

nonnooly
[x[o|;me|e|f‘ﬂlbytez:132

The peripheral device addressed by the C register
is read and the resull is loaded nto the memory
location addressed by the HL register pair. The B
register is decremented and the HL register pair 1s
incremented. If B is not zero, the program counter
15 decremented by 2 and the mstruction is re-
executed,

Tinung:

Addressing Mode:

Flags:

280

lm-
_'
17:;

7/
o~

B = 0: 4 M cycles; 16 T states; 8 used @ 2 MHz.
B #0:5M eycles; 21 T states; 10,5 usec @ 2 MHz.

External,




Example:

TN~
D
82

/’—\\__.4
OBJECT CODE

THE Z80 INSTRUCTION SET

INIR

Before: After:

g7 R & R
H| 9145 W WS

21 ]PORT ’W PORT
LY 55
e
S1A5 BF
Q1A 30
F1A7 o
/\M
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JP cc,pg Jump on condition to location pq.
Function: if cc true: PC < pg
Format: —
nE==nnoky
| SN S I Y N I byte 2: address,
3 1 ? : 1 1 fow order
l T T } byte 3: address,
P T B S T R high order
Description: If the specified condition 15 true, the two-byte ad-

dress immediately following the opcode will be
lpaded 1nto the program counter with the first byte
following the opcode being loaded into the low
order of the PC. If the condition is not met, the
address is ignored. cc may be any one of:

NZ — 000 no zero
Z — 001 ZEero
NC -~ 010 no carry
C - 011 carry
PO - 100 parity odd
PE — 104 parity even
P~ 110 plus
M - 111 MInus
Data Flow: {}
A . T——
CONTROL
8 o 10GIC P CC
b O T _ q
H L T C P
e

PC
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Tintng:

Addressing Mode:

Byte Codes:

Flags:

Example:

T~

DA
2
38

b~
GBJECT CODE

THE Z80 INSTRUCTION SET

3 M cycles; 10 T states: 3 usec @ 2 MHaz

fmmediate.

NZ Z NC C PO PE P M
ICQ[CAID?|DA1€2|€A|F2!FA|

5 Z H PPY N C
LT P LT T ] moefrect
JP C, 3B24
Before: After:
(s MR
el 0032 |
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PROGRAMMING THE Z80

JP pq Jump to location pq.
Function: PC — pg
Format: t,l,!0¥o|o|eli‘|[ byte : C3 |45
T 7 T T byte 2: address,
T o 37 low order
LS ‘13 T T I by{{? 3: address,
{ 1 H i t i i 2 h!gh order
Description: The contents of the memory location immediately

following the opcode are loaded into the low order
half of the program counter and the contents of
the second memory location immediately follow-
ing the opcode are loaded into the high order of
the program counter. The next instruction will be
fetched from this new address.

Data Flow: A T
<) C P
D E q
M L P

Tinung: 3 M cycles; 10 T states; 5 usec @ 2 MHz

Addressing Mode: Immediate,

Flags: 5 7 M PV N C
’ [T T T 1T T Joettern
Example: JP 3025
Before: After:
T P | 5520 |
3 -
OBJECT CODE
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THE Z80 INSTRUCTION SET

JP (HL) Jump to HL.

Function: BC — HL

Formai: |
F!lll|0|ilﬂl0!l! E9

Descripiion: The contents of the HL register pair are loaded in-

o the program counter. The next insiruction is
fetched from this new address.

Duata Flow:

<
E
L

I o w >

el

Timng, I M cycle; 4 T states; 2 usec @ 2 MHz

Addressing Muode:  1mplicit,

(TTTT T T toeten.
Example: JP (HL)

Before: After:
~— W[ e w[en
& ec 8001 S

OBJECT CODE
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PROGRAMMING THE Z80

Jp (IX)

Function:

Format!

Description.

Data Flow:

Tinung:

Jump to IX.

PC < IX

[Tl L Lol bweriop
Irio]ulo]@ltf byte 2: E9

The contents of the 1X register are loaded nto the
program counter. The next instruction is fetched
from this new address.

T O w P
(g

x [ | ]
Y

87

2 M cycles; 8 T states; 4 usec @ 2 MHz

Addressing Mode: Implicit.

Flags:

Example:

T

oD
EG

]
OBJECT CODE

286

5 Z H PPV N C
F | l ‘ ( l l | I (no effect).
JP (X}
Before: After:
i { BoF 1 box] 8071 ]

FC | 3B4A | e 7




JP (aY)

Function:

Formai:

Description,

Daia Flow:

Tinnng:

Addressing Mode:

Flags:

Example:

T

FD
£9

v
GBJECT CODE

THE Z80 INSTRUCTION SET

Jump o 1Y
PC - 1Y

(LT TTTT omerro
{1{:‘1{011{0{0\& byte 2: E9

The contents of the 1Y register are moved 1nto the
program counier. The next mstruction will be fet-
ched from this new address.

2 M cycles; 8 T states; 4 usec @ 2 MHz

implicit.
s Z H P/Y N C
{ I l l ] ‘ | || noeftect.
JP Yy
Before: Afler:
| AAaB |y AALD |
el £410 | s
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PROGRAMMING THE 280

JR ce,e

Function:

Format.;

Description:

Daia Flow!

Jump e relative on condition.

if ce true, PC+ PC + ¢

oo

% i ] T efz [ i

[

ololalbytei

‘o

N T i }byie2: offset value

If the specified condition is met, the given offsel
value is added to the program counter using two’s
complement arithmetic so as to enable both for-
ward and backward jumps. The offset value is
added to the value of PC + 2 (after the jump). As
a result, the effective offset is -126 to + 129 bytes.
The assembier automatically subtracts 2 from the
source offset value to generate the hex code. If the
condition is not met, the offset vake is ignored
and instruction execution continues in sequence,
¢c may any one of:

A

8
o
H

NZ — (00 NC - 10
Z - 01 C - 11
F e
C JR
E A'-U e-2
L ]

CONTROL 1 |
< B

Tinung:

238

Hsec

M cycles: | Tstates: | @ 2 MHz:

condition

met: 3 12 6
condition

not met; 2 7 3.5




THE Z80 INSTRUCTION SET

Addressing Mode: Relative.

Byte Codes: ce: NZ 2 NC C

(o[ []

Flags: 5 Z H PV N C

L P L[] | [ ] (no effect).
Example: JR NC, § -3 $ = current PC

Before: After:

o Jr [ oo ¢
T oC 8000 | U
5

]
OBJECT CODE
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PROGRAMMING THE 280

JRe Jump e relative.

Function: PC<PC +e

Format: I””ﬂ"'l”“i”tbytel:lg
AL UL byte 2: offset value
l 1 L 1 1 1 ] | }

Description: The given offset value is added to the program

counter using two’s complement arithmetic so asto
enable both forward and backward jumps. The off-
set value is added to the value of PC + 2 (after the
jump). As a result, the effective offset is -126 to
+ 129 bytes. The assembler automatically subtracts
2 from the source offset value to generate the hex

code.
Data Flow.
A T~
5 IR
D £ ALU &2
H L | + ——
Timing: 3 M cycles; 12 T states: 6 usec @ 2 MHz

Addressing Mode: Relative.

F[ags; s Z H PV N €

I l ‘ l l | ‘ | I(ﬂoeffect)

Example: JR D4
Before: After:
T PC | B100 |
;g (This is a backwards jump.)
]
OBJECT CODE
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LD dd, (nn)

Funcrion:

Format:

Description;

Data Flow:

THE Z80 INSTRUCTION SET

Load register pair dd from memory locations ad-
dressed by nn.

ddjgw * (nn); ddhlgh ~—{nan +1j)

[T Lo LT To L] byee : B

'
b

oL el ol by

1 [ S B B R E byie 3: address,
L f low order

1 | 4 H

[T T T 1byte4:address.
SN SRS E S SN high order

The contents of the memory location addressed by
the memory locations immediately following the
opcode are loaded into the low order of the
specified register pair. The contents of the
memory location immediately following the one
previously loaded are then loaded into the
high order of the register pair. The low order byte
of the nn address immediately follows the opcode.
dd may be any one of;:

BC — 00 HL - 10
DE - 01 SP - 11
/\/
_®
A I
8 n ]
2 3 n
H L /\/
s} f |
a_._—ﬁv—_{g__, N
ﬁ vy
,-\_/
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PROGRAMMING THE 780

Timing: 6 M cycles; 20 T states; 10 usec @ 2 MHz
Addressing Mode: Direct.

Byte Codes: dd: BC DE HL SP

o [#] ][

Flags.' 5 Z H Py NC

r] | l [ [ l [4] (no effect)

Example: LD DE, (5021

Before: After:

| DBE2 ¥ oA

ED 5021 F4 5021 F4

58 5022 30 5022 s}

21

= N TN
ORJECT COBE
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LD dd, nn

Function:

Format:

Description:

Data Flow:

Tinung:

Addressing Mode:

Byte Codes:

Flags:

THE Z80 INSTRUCTION SET

Load register pair dd with immediate data nn.

dd = nn

[eTele s Tolo [ ] owee

T 1T 171 byte 2: immediate

ey

[ [
IR T O A A A ! data, low order

L O A Ibyte3: immediate
AN T R S data, high order

The contents of the two memory locations im-
mediately following the opcode are loaded into the
specified register pair, The lower order byte of the
data occurs immediately after the opcode. dd may
be any one of:

BC - 00 HL - 10
DE — 0! SP — I
A /\/
B el A
D E zr*”“_““_.ﬁ_w_,
" L o
ol SN

3 M cycles; 10 T states; 5 usec @ 2 MHz

Immediate.

dd: BC DE Ml SP

ls |z] iHl fW|N|C] {no effect)

293



PROGRAMMING THE 280

Example: LD DE, 4131

Before: After:

TN o] 0394 =L

11
3t
41

OBJECT CODE
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LDr,n

Function:

Format:

Description:

Data Flow:

Tinung:

Addressing Mode:

Byte Codes:

Flags:

THE Z80 INSTRUCTION SET

Load register r with immediate data n.

r+n

Lelof===] [ To]byte

| —————n ————|byte 2: immediate data

1 ! I} A 1

The contents of the memory location immediately
following the opcode location are loaded into the
specified register. r may be any one of:

A — 111 E — 011

B — 000 H - 100

C - 001 L — 101

D - 010

/’\___

A
8 c Lo
D e<~— id
H t /‘\__,

2 M cycles; 7 T states; 3.5 usec @ 2 MHz

Immediate.

fTA 8 C D E M L
Iseloo|oe|w|ze|2a|zsl

$ Z H PV N C

| l I l ! | I I l {no effect).
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Example: LD C,3B
Before: After:

(T o | <FE

;3
38

/—‘-'-..,_‘_“_"_/
OBJECT CODE
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LDr, ¢

Function:

Format:

Description:

Data Fiow:

Timing:

Addressing Mode:

Byte Codes:

Flags:

THE Z80 INSTRUCTION SET

Load register r from register r’.

The contents of the specified source register are
loaded into the specified destination register. r and
r’ may be any one of;

A — 111 E - 0l1
B - 000 H - 100
C - 001 L - 101
D - 010

A

B C JR—

D £

H L

R

t

I M cycle; 4 T states; 2 usec @ 2 MHz

Implicit.

A B C D E H L (source}

75
47
4F
57
SF
67
6F

78179
40 | 41
48 | 49
5615
58159
o0 61
68 | 6%

7A
42
44
52
BA
62
1%

78
43
48
53
58
&3
4B

70
44
4C
54
5C
&4
[zl

70
45
4D
55
50
65
6D

S Z H P’V N C

HENEEEEE

{no effect).
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PROGRAMMING THE Z80

Example: LD H,A
Before: After:
[T Al BC | Al s |
&7
w o ] T
e
OBJECT CQDE
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THE Z80 INSTRUCTION SET

LD (BO.A Load indirectly addressed memory location (BO)
from the accumulator.

Function: (BOY+< A
Format: — l
50;0__010%0;0[1 }cl 02
Description: The contents of the accumulator are loaded into

the memory location addressed by the conients of
the BC register pair.,

Data Flow:
A
B C
0 ] ]
H L o
DATA
Tinung: 2 M cycles; 7 T states; 3.5 usec @ 2 MHz
Addressing Mode: Indirect.
F[ﬂg&" s Z H PAVN
LI LI ] ] toeffecn.
Exampie: LD (BC), A
Before: After:
A aF | 3F
B 4109 c s 4109 C
/\/ /\\/
0z 4109 1E

OBJECT CODE
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PROGRAMMING THE Z80

LD (DE). A

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

Example:

OCBJECT COCE

300

A

D

0392

T O w P>

Load indirectly addressed memory location (DE)
from the accumulator.

(DE) — A
[ofefoftfofofe]o]i2

The contents of the accumulator are loaded into
the memory location addressed by the conients of
the DE register pair.

. o
L=

2 M cycles; 7 T states; 3.5 usec @ 2 MHz

Indirect.

s Z 2] FAY N C
L LU LT T 1 (noeffet
LD (DE), A
Before; After:
N

0392 Ie D] 0392 E

0392

N
—~_




THE Z80 INSTRUCTION SET

ILDHL), n Load immediate data n into the indirectly ad-
dressed memory location (HL}.

Function: (HLj} +n

Format:

LololTiTo] Te [o] bvie 1:36

l" DT TP byte 20 immediate
FIRROONN PO T N DO N | data
Description. The contents of the memory location immediately

following the opcode are loaded into the memory
location indirectly addressed by the HL data

pointer
/—\\\-__.
Data Flow: N 5
a mn
)
H
Timing: 3 M cycles; 10 T states; 5 usec @ 2 MHz

Addressing Mode: Immediate/indirect.

Flags: s Z H PV N C
I i | 1 | I | ] ) {no effect).

n



PROGRAMMING THE Z80

Example; LD (HL), 5A

Before: After:

H A342 I 4| A342
T~ T~

26 A342 D) N2l R
5A ] ]
/‘\\__,
OBJECT CODE
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LD #HL),r

Function;

Format:

Description:

Dara Flow:

Timing:

Addressing Mode:

Byte Codes:

THE 280 INSTRUCTION SET

Load indirectly addressed memory location (HL)
from register r.

{HL) <~

Lol fe ] fol—rae

The contents of the specified register are loaded
into the memory location addressed by the HL
register pair. r may be any one of:

A — 111 E - 0il
B — 000 H - 100
C - 001 L — 101
D - 010

A

B C

D E DATA

H [ g

2 M cycles; 7 T states; 3.5 usec @ 2 MHz
Indirect.

A B C D E H L
|77l70]71!72*?3iu|75|

303



PROGRAMMING THE Z80

Flags: 5 7 H PV N C

l | | l l | l ! | {no effect).
Example; LD (HL), B

Before: After:

H| csot L H] 501
T
70 50! oA 501
T —

CBIECT CODE
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THE Z80 INSTRUCTION SET

LDr, (IX + d) Load register r indirect from indexed memory
location {IX + d)

Function. r— (X + d}
Format:
(Tl el] owetiop
|o| | !..M_'_;m_._i ; [i ie] byte 2
| S AL l byte 3: offset value
i i 1 1 3 i 1
Description: The contents of the memory focation addressed by

the IX index register plus the given offset value,
are loaded into the specified register. r may be any

one of:
A - 11] E - 011
B — 000 H - 100
C - 001 L — 101
D - 010
DATA
Data Flow: . _ /\__“_}
8 < 2 T —
D E o\
H L } LD
iX ; d
/'\_‘_-’
Timing. 5 M cycles; 19 T states; 9.5 usec @ 2 MHz
Addressing Mode: Indexed.
Byre Codes: rm A B C D E H L

SD:|7E‘4614El£6¥5E1661¢El“d
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PROGRAMMING THE Z80

F!ags.' 5 Z H PV N C
I [ ‘ | [ l | l J {no effect).
Example: LD E, (X + 5
Before: After:
E A E
XL 3020 | x| 3020 |
T T~ T~
oD 3020 2A 3020 24
5€
05
| 2025 15 3025 15
OBJECT CODE ] T —
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LDr, (Y + d)

THE Z80 INSTRUCTION SET

Load register r indirect from indexed memory
location (IY + d)

Function: r+—{IY + d)
Format:
II!IIIIIIfI*IOI'lbyzei:FD '
!Olii I : I*l'lol byte 2
l ; : c% : : : ‘ byte 3: offset value
Description: The contents of the memory location addressed by
the 1Y index register plus the given offset value,
are loaded into the specified register. r may be any
one of:
A - 111 E - 011
B - 000 H - 100
C - 001 L - 101
D - 010
N~
DATA
Dara Flow:
ara ow A /\—_‘._‘
B c N~
] E
H L + ]
5y ! d
T — ]
Tirung. 5 M cycles, 19 T states; 9.5 usec @ 2 MHz

Addressing Mode:

Indexed.
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PROGRAMMING THE Z80

Byte Codes:

Flags:

Example:

T

FD

7€

02

]

OBJECT CODE

308

r

A B C D E H i

FD-| 7E|«56145156[5b|66‘615|-d

5 Z

H PV NC

I ] 1 I | | | l ](noeffect).

LD A (Y + 2)

Before: After:
A N 51 R
] 5005 | BOOS
/\_ /_\_w_
BOOS 81 BOOS 61
8007 Fo BOG7 29
e~ T




LDUX + d),n

Funcrion:

Format:

Description:

Data Flow:

Tinung:

Addressing Mode:

Flags:

THE Z80 INSTRUCTION SET

Load indexed addressed memory location (IX +
d} with immediate data n.

(X + dy+n

||||]Gl|l|l||0!||byteE:DD

[ofof t[rfeji]iTolbyre236

l i : : f:i — ,Ebyteiizoffsetvaiue

l LA A L A |byte 4: immediate
[}

data

The contents of the memory location immediately
following the offset are transferred into the
memory location addressed by the contents of the
index register plus the given offset value.

A DATA
B C g .
] E
H L T~
x| 10
d
n
b T —

5 M cycles: 19 T states: 9.5 usec @ 2 MHz

Indexed/immediate.

5 2 M PV N C

I | ‘ l I I | | ] {no effect).
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PROGRAMMING THE Z80

Example:

i

DD
36

04

FF

b~
OBJECT CODE

310

LD (IX + 4), FF

Before: After:

x[ eI 1 x| B109

B109 60 B109 60

B10D 4E BIOD
T — |




THE Z80 INSTRUCTION SET

LD (Y + d),n  Load indexed addressed memory location (IY +
d) with immediate data n.

Function: (1Y + d) < n
Format:
||[1J1|111!1 1o|1J byte 1: FD
[o|o|wl1 IOIIIII(Ll byte 2: 36
I-—: : : c:i ll { 141 byte 3: offset value
FE] e
Description: The contents of the memory location immediately

following the offset are transferred into the me-
mory location addressed by the contents of the
index register plus the given offset value.

Data Flow:

“ 1 e D

B ; J =

H| ik d

[ ]
70
e )

Timing: 5 M cycles; 19 T states; 9.5 usec @ 2 MHz

Addressing Mode: Indexed/immediate.

Flags: s Z H PAY N C
[TTTT T 1 1] tnoeffect).

i



PROGRAMMING THE Z80

Example:

N

FD
36
03
BA,

/\/

GCBJECT COBLE

312

LD (Y + 3), BA

Before: After:

i 0100 ] o100

0100 D2 0100 D2
73 62
OF GF

0103 [ 0103 %



LD (X + d)r

THE Z80 INSTRUCTION SET

Load indexed addressed memory location (IX +
d) from register r.

Function: (IX + d)=r
Format:
] ;l ||oi !lil llelll byte 1:DD
Lofol [ fol——rr] byte2
I i i :d : : ] I | byte 3: offset value
Description: The contents of specified register are foaded into
the memory location addressed by the contents of
the index register plus the given offset value, r may
be any one of:
A — 111 E - 011
B — 000 H - 100
C - 001 L - 101
D - 010
Data Fi 7
ata Flow:
we e
: c| —~
D E !
H i ) LD
x } d
/_\__'/
Timing: 5 M cycles; 19 T states; 9.5 usec @ 2 MHz
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PROGRAMMING THE Z80

Addressing Mode: Indexed.

Byte Codes: rr A 8 ¢ D E H L
DD-!??’?O!?]’72]73‘7475!—6

Flags: 5 2 H PV N €
| l I | ‘ 1 ‘ | | (no effect).
Example: LD (IX + 1},C
Before: After:
[ Jc & Jc
X 4462 | x| aaes ;
/\__ /\__‘_‘
oo 4462 9D
71 4463 DF
o |
/_"\__"
OBJECT CODE
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EDAY + d), r

Function:

Formar:

Descriprion:

Data Flow:

Tinung:

Addressing Mode:

Byte Codes:

roww >

L

THE Z80 INSTRUCTION SET

L.oad indexed addressed memory location (1Y +
d) from register r.

(IY + dy«<r

byte 1: FD

i |
0 l*—‘““'l byte 2
: |

byte 3: offset value

The contents of the specified register are loaded
into the memory location addressed by the con-
tents of the index register plus the given offset
value. r may be any one of:

A — 111 E - 011
B -~ 000 H - 100
C - 001 L - 101
D — 010

S

Y
o~

~ om0

5 M cycles; 19 T states; 9.5 usec @ 2 MHz
Indexed.

A B C D E #H L

F[J-l?? ]7{)17] ]72 l?B ]713 l?ﬁl-d
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PROGRAMMING THE 280

Flags:

Example:

/\~w

FD

77

03

/-‘\‘-'-'——d
OBJECT CODE

316

5 2 H Py N €
[ l i { ] | i | ’{noeffect).

LD (Y + 3), A

Before: After:
A A
1 SABA 1 Y
SABa . saga| 2

5AB7 5A 5 AB?W
b



THE Z80 INSTRUCTION SET

LD A, (nn) Load accumulator from the memory location
(nn).
Function: A < (nn}
Format:
Lofof it ifel Jo] bytet:3a
! L L N | byte 2: address, low
i i . 1 : ] | order byte
| AN T A L A ‘j byte 3: address, high
bttt order byte
Description. The contents of the memory [ocation addressed by

the contents of the 2 memory locations immediate-
ly following the opcode are loaded into the ac-
cumulator. The [ow byte of the address occurs im-
mediately after the opcode.

Data Flow: N
"N S —— DATA
8 d -
) E ~
H L
/x
o
n
n
f\-/
Timing: 4 M cycles; 13 T states: 6.5 usec @ 2 MHz

Addressing Mode: Direct.
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PROGRAMMING THE Z80

Flags:

Example:

TN

3IA

01

33

TN

OBJECT CODE

318

3 z H PV N C
[ I I I 1 ! | I ! {no effect).
LD A, (3301
Before: After:

A{ oA [ A iZf/%ZB%///

3301 i 330% 28



LD (nn), A

Function:

Format:

Deseription:

Data Flow:

Tinng:

Addressing Mode:

I O %

THE Z80 INSTRUCTION SET

Load directly addressed memory location (nn)
from accumulator.

{nn) < A

{oloi alflu‘oltiotby{ei:ﬂ

l N A A N B l byte 2: address, low
I R S W T order

l i ; ; ;: : : : ] t(:);:éc;f: address, high

The contents of the accumulator are {oaded into
the memory location addressed by the contents of
the memory locations immediately following the
opcode. The low byte of the address immediately
follows the opcode.

A

E—

it e

4 M cycles; 13 T states; 6.5 usec @ 2 MHz

Direct.
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PROGRAMMING THE 280

Flags: 5 Z H PV N C
l ] l | | I l ]](noeffect)

Example: LD (0320, A

Before: After:

Al _ae | AT

H

2
3 0321 06 0321 PZZpi T
21
03 TN

OBJECT CODE
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LD (nn),dd

Function:

Format:

Descriptions:

Data Flow:

I U m >

THE Z80 INSTRUCTION SET

Load memory locations addressed by nn from
register pair rr.

(nn) <ddjgy; (nn + 1) <ddhjgh

Lol To]i] bwe i: 20

|o‘1|ajdlﬂloli|llbyte2

I T T T I T ¥ T

1 byte 3: address,
¢ fow order
byte 4: address,
high order

L 1 i 1 L i H

H i i1 T
i ¢ |
i 1 i 1 i 1 L

The contents of the low order of the specified
register pair are loaded into the memory location
addressed by the memory locations immediately
following the opcode. The contents of the high
order of the register pair are loaded into the
memory location immediately following the one
loaded from the low order. The low order of the
nn address occurs immediately after the opcode.dd
may be anyone of;

BC - 00 HL - 10
DE ~ 01 SP -~ 11
N
LD
c dd
E n "
L n
| z N
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PROGRAMMING THE 280

Tinung: 6 M cycles: 20 T states; 10 usec @ 2 MHz
Addressing Mode: Direct.

Byte Codes: dd: BC DE HL 5P

o [a[ =] ]

Flags: 5 2 H PV N C
i I ! | l | ! l l(noeffect}.

Example: LD (040B), BC
Before: After:
8 022) e s 0221
/\_/ /w\/
ED 0408 06 s 77577
43 040C AB 040C W )
0B
04 TN
OBJECT
CODE
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LD (nm), HL

Function:

Format.

Description:

Datg Flow:

Tirung:

Addressing Mode:

r o w >

THE Z80 INSTRUCTION SET

Load the memory locations addressed by nn from
HL.

(nn) —~ L;{nn + N« H

|

oo Tolo

ofz ln lbyteI:ZZ
T -l byte 2: address,

i T

[ n
H 1 i 1.

T T

n

.|

i low order
[ T J byte 3: address,
T O R S high order

The contents of the L register are [oaded into the
memory location addressed by the memory loca-
tions immediately following the opcode. The con-
tents of the H register are loaded into the memory
location immediately following the focation
loaded from the L register. The low order of the
nn address occurs immediately after the opcode.

N

LD

—

3 M cycles; {6 T states; 8 usec @ 2 MHz

Direct.
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PROGRAMMING THE 28O

Flags: 5 2 H PV N C

[ l l ] 1 [ I l [ {no effect).
Example: LD (40B9, HL
Before: After:

W moaa  hed . ma [

22 4089 20 40B% 4A
89 40BA 9F 40BA 30
40 (—\/ /\_/
QOBJECT
CODE
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LD (nn),IX

Function:

Formai:

Description:

Data Flow:

Timing:

Addressing Maode:

I O

THE Z80 INSTRUCTION SET

Load memory locations addressed by nn from 1X.

(nn) < Xjgw; (0 + 1) < IXpjen

liif‘O!llllljﬂileytﬁI:DD

[ofo!sioinle%;[o}bytezzzz

[y byte 3: address,
fo b1 low order

I S | Ty T T I by{e 4: address,
l high order

i i 2 L H 1 1

The contents of the low order of the X register
are loaded into the memory location addressed by
the contents of the memory location immediately
following the opcode. The contents of the high
order of the IX register are loaded into the
memory location immediately following the one
loaded from the low order. The low order of the
nn address occurs immediately after the op code.

(N

LD

.
’///////

6 M cycles; 20 T states; 10 usec @ 2 MHz

Direct.
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PROGRAMMING THE 280

Flags:

Example:

[3]8]
22
28
o1

OBJECT
CCDE

326

S

f-ﬁ lHT IPN[ND (no effect].

LD (012B), IX

Before: After:
x[ o4 B Py
0128 D3 0128 9
013¢C 94 o19C ,04,/

-



LD (nn), 1Y

Function:

Format:

Descriprion:

Data Flow:

Tinung:

Addressing Mode:

I O w

THE ZBO INSTRUCTION SET

Load memory locations addressed by nn from 1Y,

(nn < I¥|gw: (0 + 1}~ Whigh

lu}|i|T|l||||0ll]byteI:FD

lojolfoofolt o] byte2: 22

I i T T byte 3: address,
n
v 2 v | ow order

T byte 4: address,
PR S S high order

The contents of the low order of the 1Y register are
loaded into the memory location addressed by the
contents of the memory locations immediately
following the opcode. The contents of the high
order of the 1Y register are loaded into the
memory location immediately following the one
loaded from the low order. The low order of the
nn address occurs immediately after the opeode.

N

LD

6 M cycles; 20 T states; 10 usec @ 2 MHz

Direct.
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PROGRAMMING THE Z80

Flags: s Z H PV N C
LT T T ] (oeffeen
Example:. 1D (BD04), 1Y
Before: After:
| D204 1 D204
/\/ /_\_)
£ 8004 AS BDO04 7770477
22 8005 96 BOOS 7
04
) N
/\/

ORJECT CODE
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LD A, (BO)

Function:

Format:

Descripiion:

Data Flow:

Tinung:

THE 280 INSTRUCTION SET

Load accumulator from the memory location in-
directly addressed by the BC register pair.

A = (BO)

Llolofof Jof o] 0a

The contents of the memory location addressed
Dy the contents of the BC register pair are loaded
into the accumulaior.

€ TN
: DATA
H

/\/

2 M cycles; 7 T states; 3.5 usec & 2 MHz

=1

I o w >

Addressing Mode: Indirect.

Flags:

Example:

N

QA

)

OBJECY CODE

s 2 H PV N C
| l i I l l I l i (no effect).
LD A, (BO
Before: After:
A AB l A %
8 3201 lc g 3303 c
TN TN
kyinl! 41 3901 "
TN SN
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LD A, (DE)

Function:

Format:

Description:

Data Flow;

Tirmng:

Load the accumulator from the memory location
indirectly addressed by the DE register pair.

A <~ (DE)

pnnnnnnoE

The contents of the memory location addressed by
the cantents of the DE register pair are loaded nto
the accumulator.

N

Addressing Mode:

Flags:

Example:

/‘\_W_—d
OBJECT CODE

330

) C DATA J
D E

H L /-\‘_

2 M cycles; 7 T states; 3.5 usec @ 2 MHz

Indirect.
5 Z H PV N OC

I E l | } | ‘ | ] (No effect).
LD A, (DE}
Before: After:

A N A

o 6051 e D 5051 ¢
T — e

4051 09 5051 p
] |




THE Z80 INSTRUCTION SET

LD A\l Load accumulator from interrupt vector register [.
Function: A1
Format:

Ll efe]ofifelr] byte 1: ED
UL R TT T b

Description: The contents of the interrupt vector register are
loaded into the accurnulator.

Daia Fiow:

Tinung: 2 M cycles; 9 T states; 4.5 usec @ 2 MHz

Addressing Mode: Implicit,

Flags: 5 zl H PN N C s 0
et to the contents
(o[ [ T TI0T Jr-Seioe
Example: LD AL
Before: After:

TN Al 0 e AEZE e ]

ED
57

OBJECT CODE
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b LA Load Interrupt Vector register | from the ac-
cumulator.

Function: P~ A

Format: i‘l'|‘|°|'!'|°|’|byteE:ED
|0][Io|a}ci§ i; li | byte 2: 47

Description: The contents of the accumulator are loaded into

the Interrupt Vector register.

Duata Flow.

Jo o R - s =
[a]

W7
Timing: 2 M cycles; 9 T states; 4.5 usec @ 2 MHz
Addressing Mode: Implicit.

Flags: s 2 H PPY N C

l i l l | ! | IJ(ﬂoeffect)

Example; LD LA
Before: After:
//\/ Al 06 I l D2 i A{ 06 E | Gt
D
47

OBJECT CCDE
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Lf) AR Load accumulator from Memory Refresh register
R.
Function: A =R
Format;
[ll Il |IG| IIIIO[J byte 1: EDw
Loi ||e] l] |||||]| | byte 2: 5F
Description: The contents of the Memory Refresh register are

ioaded into the accumulator.

Dara Flow:
i

Timning: 2 M cycles; 9 T states; 4.5 usec @ 2 MHz

Addressing Mode:  Implicit.

Flags‘. 5 2 H PV N C
(@@ [O] [x[o] |
A set 10 contents af [FF2
Example: LD AR

Before: After:

/_\_, Al 62 R w | Az g"”—'ZA—]

GBJECT Copt
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LD HL,(nn) Load HL register from memory locations addres-

sed by nn.
Function: L~k H+~{an+ D
Format:
[ala|1{ 1| lot( }0{ byte I: 2A
[ T I byte 2: address, low
. order
L R S A l byte 3: address, high
% ! i i i 3 ! ! order
Description: ‘The contents of the memory iocation addressed by
the memory locations immediately after the op-
code are loaded into the L register. The contents
of the memory location after the one loaded into
the L register are loaded into the H register. The
low byte of the nn address occurs immediately
after the opcode.
/\/
Data Flow: o
A
B c
D E
« W o
/\_A
| x
| y
"\_/
Tinung: 5 M cycles, 16 T states; 8 usec @ 2 MHz
Addressing Mode:  Direct,
Flags: sz K PAYN C
LI DT L[ L] | oeffecn
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Example: LD HL, (0024

Before: After:

OBJECT CODE

335



PROGRAMMING THE 280

LD IX,nn Load IX register with immediate data nn.
Function: IX < nn
Format:
ClTef ] fol Jbyer:DD
[oTo T e To e o[ by 22
L L SO O B byte 3: immediate
oL v 1 data, low order
| IS O S S S S l byte 4: immediate
t 1 e bt J data, high order
Description: The contents of the memory locations immediate-
ly following the opcode are loaded into the IX
register. The low order byte occurs immediately
after the opcode.
Data Flow:
A
8 [«
o £
" . T
X [E>)
Ve
Tinung: 4 M cycles; {4 T states; 7 usec @ 2 MHz

Addressing Mode: lmmediate.

pY N C

Flags: s

(LT LT toetten
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Example: LD IX,BOB1
Before: After:
T x| 306F | X

oo
21

Bi
80

OBJECT CODE
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LD IX, (nn) Load 1X register from memory locations ad-
dressed by nn.

Function; Xigw = (nnk [Xpigh < (00 + N

Ol fe Jbvet: DD
CoTol oot fofbye22a

L N l byte 3: address,
I YT T low order

T T T T T byte 4: address,
l ; " lj high order

] i (! L !

Format:

Descriptions: The contents of the memory location addressed by
the memory locations immediately following the
opcode are loaded into the low order of the 1X
register. The contents of the memory location 1m-
mediately following the one loaded nto the low
order are loaded into the high order of the X reg-
ister. The low order af the nn address immediately
follows the opcode.

Data Flow: I
N— -
B C L
D E
H L
X N
/\_A
x
/\/
Tinung: 6 M cycles; 20 T states; 10 usec @ 2 MHz

Addressing Mode: Direcl.
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THE 780 INSTRUCTION SET

Flags: 5 2 H PV NC

l | l , ( I i i l (no effect).
Example: LD IX, (010B)

Before: After:

(ST

/’\/

bD 0108 0108 )

)
2A olec 32 e T

TN

GBJECT CCOE

339



PROGRAMMING THE 280

IDIY, nn

Function:

Format:

Description.

Data Flow;

Timing:

Addressing Mode:

340

Load IY register with immediate data nn.

IY « nn
rullltlxlllxloll|by[e§:FD
0 l 0 F"[—o‘m—e—[’@'m byte 2: 21
A S, byte 3: immediale
( AN RV T B J data, low order
[ L J byte 4: immediate

data, tugh order

The contents of the memory locations immediate-
ly following the opcode are foaded into the Y
regisier. The low order byte occurs immediately
after the opcede.

4 M cycles; 14 T states; 7 usec @ 2 MHz

Immediate.




Flags:

Example:

N

o
21

2t

00

—~

QBJECT CODE

THE 280 INSTRUCTION SET

8 Z H PAV NOC
L J I f ’ | I ! ] {no effect)
LD 1Y, 24
Before: After:
Iy | 0698 ] iy W%’méoza
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PROGRAMMING THE 780

LD IY, (nn) Load register IY from memory focations addressed
by nn.

Function: [¥igw = (nn); Whigh ~—{(nn + b

Formai:

W]; ;Iil%lo\;JEbytei:FD
[olo] ] 1u] To |byie 2: 24

T —+—1 byte 3; address,

5]

T T liow order

L A L A B 1 byie 4: address,
U SRR high order
Description: The contents of the memory location addressed by

the memory locations immediately following the
opcode are loaded into the low order of the 1Y
register. The contents of the memory logation tm-
mediately following the one loaded into the low
order are loaded into the high order of the IY
register. The low order of the nn address tm-
mediately follows the opcode.

Data Flow: /\1
10
N =
13 ——
8
D E
H - /\/

w

I ———
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Tinung: 6 M cycles; 20 T states; 10 usec @ 2 MHz

Addressing Mode: Direct.

Flags: H PV N C
* [TTTTTTT] woertn.
Example: LD 1Y, (500D
Before: After:
Iy | 6002 Y sy )
TN N, N
D 500D 03 500D 03
2A 500E 44 5008 44
(;L; TN TN
OBJECT
CODE
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PROGRAMMING THE Z80

LD RA

Function:

Format:

Description:

Data Flow:

Tinung:
Addressing Mode:

Flags:

Example:

£D
4F

OBJECT CODE

344

Load Memory Refresh register R from the ac-
cumulator.

R« A

[TT el T Lel:] brer:ep

|o|(io|ol‘|»||||| byte 2: 4F

The contents of the accurnulator are loaded into
the Memory Refresh register.

A
B C
D
H

R

2 M cycles; 9 T states; 4.5 usec @ 2 MHz

[mplicit.

5 2 H PV N C
1 l J(noeffect)

l—

1D R, A
Before: Afler:
Ao R _w Al e [ RPZGT




LD SP,HL

Function:

Formart:

Description:

Data Flow:

Timing:

THE Z80 INSTRUCTION SET

Load stack pointer from HL.

SP ~ HL

Ll ofelr] ro

The contents of the HL register pair are ioaded in-
10 the stack pointer.

o v N+ I Y

C
E
L
5 mg

I M cycles; 6 T states; 3 usec @ 2 MHz

Addressing Mode: Implicit.

Flags:

Example:

N

F9

.

OBJECTY
CODE

5z M PY N
I ] I | l _l __l I J (no effect)
LD SP, HL
Before: After:
H! J6AF ]L HI D6AF [L
sp | DROE | SPW GAr ]
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LD SP.IX Load stack pointer from IX register.
Function: SP < IX
Formai:
r:{ 510!||i|llﬁlllbyleliDD
DT Je o] Joye2:F9
Description: The contents of the 1X register are foaded into the

stack pointer.

Data Flow: I
A
=Y
D £
H L
1%} H
Timing.: 2 M cycles; 10 T states; 5 usec @ 2 MHz

Addressing Mode: 1lmplicit.

Flags: s z M PV NE
[_ L LJ i E lm:[;i J {no effect)
Example: LD SP,IX
Before: After:
N
x| 0502 Lo [ asD2 ]
Do
Fo sp 54A0 | w7
TN
QBJECT
CoDt
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THE Z80 INSTRUCTION SET

LD SP, 1Y Load stack pointer from 1Y register.
Funcuon: SP < 1Y
Formar:

LL[; ;E;Emmby{el:}‘{)
L Lo ol ez o

Description: The contents of the 1Y register are Joaded into the
stack pointer.

Data Flow:
' I
Timing: 2 M cycles; 10 T states; 5 usec @ 2 MHz

Addressing Mode: Implicit.

Flags: 5 2 H P/Y N C
| I l l ‘ ] I | l(noeffect)

Example: LD SP, 1Y
Before: After:
N
;: | 09AB 2 AR

RN SP[ 6004 | SPE - 0ms 7

OBJECT CORE
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PROGRAMMING THE Z80

LDD Block ioad with decrement.

Function: (DE) < (HL); DE < DE - {: HL+~HL - [
BC + BC ~ |

Format:
||||||lo§|]|leill byte I: ED

[xloktl0||10‘0\0| byte 2: AB

Description: The contents of the memory location addressed by
HL are loaded into the memory location address-
ed by DE. Then BC, DE, and HL are all
decremented.

Dara Flow: %
/%W 77 —
o sk
eSS
\
v
Timing: 4 M cycles; 16 T states; 8 usec @ 2 MHz

Addressing Modes. Indirect.

Flags: s z H PV N C

L LTIl [X|of |

b Reset if BC = 0 after
execution, set otherwise,

348



Example:

T~

5G

AB

]
QBJECT CODE

THE Z80 INSTRUCTION SET

LDD
Before: After:
8 0804 C 8 ORC
D 6211 e o &e A
H 8438 L H L
.
211 98 621617
o~ |~

/‘\___‘_
8438 62 6438 62
P — ]
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PROGRAMMING THE Z80

LDDR Repeating block [oad with decrement.
Function: (DEY< (HLy; DE<DE - I; HL+—HL - 5
BC < BC - I; Repeat until BC = 0
Format:
LD fefef e[ fofe] byer:ED
l|lo}rt||||olotol byte 2: B8
Description: The contents of the memory location addressed by
HL are loaded ito the memory location address-
ed by DE. Then DE, HL, and BC are ali
decremented. 1f BC # 0, then the program counter
is decremented by 2 and the instruction re-
executed.
_______ -
(ietaigy l
Data Flow: , == ;
A Lol Py b
B TR T c - 1
o Gy . RN
H ' i
A b
e
3
2
Tinung: BC # (: 5 M cycles; 21 T states; 10.5 usec @ 2

Addressing Mode:

Flags:

350

MHz.
BC = 0: 4 M cycles; 16 T states; 8 usec @ 2 MHz

indirect.

ey N C

ST T Ior Jomo] ]




Example:

OBJECT CODE

Before:

LDDR

0003

0662

9035

06AF
06BG
06B1

Q6B2

9032
2033
P34
9035

92

DE

El
BF

THE Z80 INSTRUCTION SET

After:
¢ sl oo
£ WM/A
\OHE R

DeAF

08B0 m
0681 W
0s82 {78k )

B

5032 92
9033 DE
9034 El
9035 BF
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LDI Block load with increment.

Function: (DE) < (HL); DE < DE + 1; HL < HL + 1;
BC <« BC -1

Format:
L[ Jo T Tol ] byte1:ED

Llolzlolo‘olom byte 2: A0

Description: The contents of the memory location addressed by
HI are loaded into the memory location addressed
by DE. Then both DE and HL are incremented,
and the register pair BC is decremented.

i DATA
Data Flow: X 7
: /W /
ol

H

(o]
.

Timing: 4 M cycles; 16 T states; 8 usec @ 2 MHz

i //////

L

T

Addressing Mode: Indirect.

F[gg_;-_‘ 5 Z H PV N C

Reset if BC = 0 after
cxecution, set otherwise.
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Example: LDI

Before:

THE Z80 INSTRUCTION SET

After:

o

34B1

3902

34B1

OBJECT CODE

3902

0A

42

34B1

3902

[
2
P~}
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PROGRAMMING THE 280

LDIR Repeating block load with increment.

Function: (DE) =~ (HL); DE<~DE + I; HL < HL + [;
BC = BC — I; Repeat until BC = 0

Formmat:

[T [el L] e s 0
Izlola]xio|oio|0i byte 2: BO

Description: The contents of the memory [ocation addressed by
HL are [oaded into the memory location ad-
dressed by DE. Then both DE and HL are in-
cremented. BC is decremented. If BC # 0 then
the program counter is decremented by 2 and the
instruction 1s re-executed.

vy,
$
Al

I~

Data Flow:

H

o e s s i1 inm

Timing: For BC # 0: 5M cycles: 21 T states; 10.5 usec @ 2
MHaz.
For BC = 0: 4 M cycles; 16 T states; 8 usec @ 2
MHz

Addressing Mode: Indirect.
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Flags:

Example:

N

ED

—_

OBJECT CODE

THE ZBO INSTRUCTION SET

5 2 PN N C

L] IOl 10l0] |

LDIR

Before: After:
B 0002 8 b ic
b 4AD3 ///////%KVM////
H 96ZA i

4A03

i2

4804

Fa

4805

QLA

3B

P628

90

62C

4E

wosl ,E/ 7
4ADAE 00 7

4A05

) (i

AA

962A

38

2628

962C

6E
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PROGRAMMING THE Z80

LDr, (HL) Load register r indirect from memory location
(HL).
Function: r < (HL)
Format:
T T
[elr]-grefafv[5]
Description: The contents of the memory location addressed by

HL are loaded into the specified register. r
may be any one of:

A — 111 E — 011
B — 000 H - 100
C - 001 L — 101
D - 010
Data Flow:
A
B C s S
D E
H | —————————f DATA
T S|
Timing: 2 M cycles; 7 T states; 3.5 usec @ 2 MHz

Addressing Mode: Indirect.

Byte Codes:

rr A B C D E H L
IJE[-46| 4E156I5E166l6E|
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THE Z80 INSTRUCTION SET

Flags: s z H PV N C

l | ] I I \ I I ] (no effect).

Example; LD D, (HL)
Before: After:
D 3A N
H oc | 32 L H oc | 32 |
o /\—l
56 0C32 24 0C32 24
V_\___, ’—"‘-._,__/

OBJECT CODE
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PROGRAMMING THE Z80

NEG Negate accumulator.
Function: A<0-A
Format:

L1!‘|'l°['l'l°m byte 1: ED

LTelele [ ToTo] byte2: a4

Description: The contents of the accumulator are subtracted
from zero (two’s complement) and the result is
stored back in the accumulator.

Data Flow: | {L

NG, —
B C
D E AlU
H L
Timing: 2 M cycles; 8 T states; 4 usec @ 2 MHz

Addressing Mode: Implicit.

F[ags_' S Z H ®v N C
o/e] o [@] @
C will be set if A was 0 before the instruction.
P will be set if A was 80H.
Example: NEG
e Before: After:
ED Al ] A
44
OBJECT
CODE

358



NOP

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

THE Z80 INSTRUCTION SET

No operation.

Delay.

[eefefo e o o]0} 0o

Nothing is done for 1 M cycle.

No action

=k

L

I o w P

1 M cycle; 4 T states; 2 usec @ 2 MHz

Implicit

Z H PV N C

i ‘ | I ‘ ‘ u (no effect).
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PROGRAMMING THE Z80

OR s Logical or accumulator and operand s.
Function: A< AVs
Format: s: may be r, n, (HL), (IX+ d), or (IY + d)
nODnnn=zs
2 [Tl i) be t:Fs
i e s i
@) [Tl TelTiTe] bve i m
ax+d [ JoJe[ [ Ji]o] ] bytel: DD
[ToT T[T To] evie2: 56
[————3d———— byte 3: offset value
ay +ay (][ of [ efJo] ] byter:FD
Llof [ rTof T iTo] byte2: s
[ d—————] byte 3: offset value

r may be any one of:

A — 111 E - 011
B - 000 H - 100
C -~ 0ol L — 101
D - 010
Description: The accumulator and the specified operand are

logically “or’ed, and the result is stored in the ac-
cumulator. s is defined in the description of the
similar ADD instructions.
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THE Z80 INSTRUCTION SET

Data Flow: & F
B o
D £ ALU s ]
H L M
Tinung: usec
se M cyeles: | T states: @ 2 MHz:
r i 4 4
n 2 7 3.5
{HL} 2 7 3.5
(IX + ) 5 19 9.5
Iy + 4 5 19 9.5

Addressing Mode:

Byie Cades:

Flags:

Example:

BO

OBJECT
CODE

r: implicit; n; immediate; (HL): indirect; (IX +
d), Y + d¥: indexed.

OR

rm A B
|a7|aoia;|szzlas]aalss‘

5 7 H Bv N C
@je] O] [@|0[0]

OR B
Before: After:
0 N
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OTDR Block output with decrement

Function: {(O)=(HL); B<B — I; HL<HL - I;
Repeat untit B = 0.

Format:

[T Tl ] byee 1: €0

[‘[01|||l||0}|'i]byEEZZBB

Description: The contents of the mermory location addressed by
the HL register pair are output to the peripheral
device addressed by the contents of the C register.
Both the B register and the HL register pair are
then decremented. if B # 0, the program counter
is decremented by 2 and the instruction is re-
executed, C supplies bits AQ to A7 of the address
bus. B supplies (after decrementation) bits A8 to
AlS.

Data Flow:

DATA

A i ] 2

B FCOUNTERY c —'-WC; =3 ‘i |
o E FORT

b — ]
HU ]

Tinung: B = (: 4 M cycles; 16 T states; 8 usec @ 2 MHz.
B #0:5Mcycles; 2] T states; 10.5 usec @ 2 MHz

Addressing Mode: External,

Flags: sz H P N C
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Example:

T~

ED
BB

/_-.-"‘-—___,_/
OBJECT CODE

THE Z80 INSTRUCTION SET

OTDR
Before: After:
T
H
T
004F o2 QQaF o2
0050 68 G050 R
G051 A 0051 QA
/m\—-\h___‘ /\_
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OTIR Block output with increment.

Function: Q)<= (HL; B+ B — I; HL < HL + 1{; Repeat
untiil B = 0

Formai: e
Lo T o] ] byee - ED
F[o||l|]o‘oi: ]‘1 byte 2: B3

Description: The contents of the memory location addressed by

the HL register pair are output to the peripheral
device addressed by the contents of the C register.
The B register is decremented and the HL register
pair 1s incremented. [f B # 0, the program counter
is decremented by 2 and the insiruction is re-
executed. Csupplies bits AO to A7 of the address
bus. B supplies (after decrementationi bits A8 to
AlS,

Dara Flow:

counters

rT o w>»

Tinung: B = 0: 4 M cycles; 16 T states:; § usec @ 2 MHz.
B #0:5M cycles; 21 T states; 10.5 usec @ 2 MHz

Addressing Mode: External.

Flags: 5 2 H PN €

364




THE 7280 INSTRUCTION SET

Example: OTIR
Before: After:
IS Al le 8 007, AQ c
H 5550 |t WM L
T vom
AD AQ
T — N N~
ED 5550 4B 5550 5B
83 5551 0z 5551 02
] 5552 oA 5552 94
OBJECT CODE 5553 45 5553 85
/\___ /\\\_’
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ouT (), r

Function:

Format:

Description;

Data Flow:

Tinung:

Addressing Mode:

Flags:

Byte Codes:
ED-

366

Qutput register r to port L.

i | byte 1: ED
'] byte 2

B
o[ o]

The contenis of the specified register are output to
the peripheral device addressed by the contents of
the C register. r may be any one of:

A - 111 E - 01
B - 000 H - 100
C -001 L — 101
D - 010

Register C supplies bits A0 to A7 of the address
bus. Register B supplies bits A8 to AlS.

PORT

I 2w >
g

3 M cycles; 12 T states; 6 usec @ 2 MHz

External.

[ (no effect).

A B C D E H

[l [ Tor o]




Example:

N

£D
41

b —
CBJECT CODE

THE Z80 INSTRUCTION SET

QUT (), B
Before: After:
sf o | A Jc s o | B dc
[ Bs _JpowT 75 Il
£l £

367
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GUT (N). A Output accumulator to peripheral port N.

Function: {(N)~— A
Format:

Ldrfolfofol [ ]byet:D3

[ { : } 2 i : ] byte 2: port address
Description: The contents of the accumulator are cutput to the

peripheral device addressed by the contents of the
memory location immediately following the op-

code.
Data Flow: T
A
3 o out
B e Vi~ n
H L PORY
f‘\m_’
Timing: 3 M cycles, 11 T states; 5.5 usec @ 2 MHz
Addressing Mode: External,
Flags: 5 7 H PV N C
[TTT T L] woett
Example; OUT (0A), A
Before: After:
T~ A s V[ eowt A st | BT rom
-~ 0A 0A
0A
b~

OBJECT CODE
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oUTD Output with decrement.
Function: (Cy+~{(HL; BC+~B - {; HL <~ HL ~ |
Format:
Llebrfefrfrfol fbyer:ED
t||e|e|e||10|l|!]byieZ:AB
Description: The contents of the memory location addressed by

the HL register pair are output to the peripheral
device addressed by the contents of the C register.
Then both the B register and the HL register pair
are decremented. C supplies bits AQ to A7 of the
address bus. B supplies (after decrementation) A8

to AlS.
Data Flow:
A DATA
B ¥ COUNTER ¢ el
vy & FORY /_\-—._“
W
Timing: 4 M cycles; 16 T states; 8 usec @ 2 MHz

Addressing Mode: External.

Flags:
s 2z H PV N

Set if B = 0 after execution,
{ reset otherwise,
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Example: ouUTDh

Before: After:

o[ w [ w Jc oGFTL_»
Hi 228F v w7,

(o]

PORT V577 owe
A
£D 228F 4A 2IBF 4A
AB e} ]

b ]
OBJECT CODE
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OUTl Output with increment.
Function; (O~ HL);; B~ B - |; HL — HL +
Format:
ol ol ] ]o] /] bytes:ED
L lolrfofofofr]r] bye2:as
Description: The contents of the memory location addressed by
the HL register pawr are output to the peripherai
device addressed by the C register. The B register
15 decremented and the HL register pair is mcre-
mented.
C supplies bits AQ to A7 of the address bus.
B (after decrementation} supplies bits A8 to AlS.
Data Flow:
DATA
c 7 ‘1
£ PORT
/‘\-,___‘___
Al
Tinung: 4 M cycles; 16 T states; 8 usec @ 2 MHz
Addressing Mode: External.
Flags:
5 7 PAY N C

! l i —— Set if B = 0 after execution,

reset otherwise.
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Example: OUTI

Before: After:

T E e o
] OF9A . WA

PORT 7 onl APORT
B8 BB
T T T
) OF9A Iy OF9A ¥y
AZ b /\W
b — ]

OBJECT CODE
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POP qq Pop register pair qq from stack.
Function: Q5w — {SPY; 9p0p+ (SP + 1); SP=SP + 2
Format:

Ll tfa afofofof ]

Description. The contents of the memory location addressed by
the stack pointer are loaded into the low order of
the specified register pair and then the stack
pointer 15 incremented. The contents of the
memory location now addressed by the stack
pointer are loaded into the high order of the
register pair, and the stack pointer is again in-
cremented. ggmay be any one of:

BC - 00 HL - 10
DE - 01 AF ~ 11
Dara Flow:
A F
B o
D £
H L
d @@
Timing: 3 M cycles; 10 T states; 5 usec @ 2 MHz

Addressing Mode: Indirect.

Byte Codes: aw: BC DE ML AF

o fa[r]

373



PROGRAMMING THE 280

Flags: 5 2

H PV N C

LU TT L] moefteen.

Example: POP BC
Before: After:
® B90A Sy
s | 0158 | ST
cl o158 0A 01358 oA
| 0I5C 42 015C 42
OBJECT CODE 015D b3 015D o3
TN SN,

374




POP IX

Function:

Format:

Description:

Dara Flow:

Tinng:

Addressing Mode:

THE Z80 INSTRUCTION SET

POP IX register from stack.

IX

Xlow ™ (5P, IXhmh < (5P + 1) SP~SP + 2

Clodo T le T bye 1: DD

i*éz{zio[rj%ojo]sibyteZ:EE

The contents of the memory location addressed by
the stack pointer are loaded 1ni1o the iow arder of
the 1X register, and the stack pointer 15 in-
cremenited. The contents of the memory location
now addressed by the stack pointer are loaded in-
to the high order of the IX remster, and the stack
poinler is agan mcremented.

4 M cycles; 14 T states; 7 usec @ 2 MHz

Indirect.
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Flags: s 2 H PN N _C
{ i L | i ‘ 1 l ] (no effect).
Example: POP IX
Before: After:
1xi aao? ;

se[ 0908 !

oD Q908 % 0o0B 36

£ ggoci o4 woc| o4
S, oo 82 0%0D B2
CBJECT oD F\_/ /\/
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POP 1Y

Function:

Format;

Description:

Data Flow:

Tinung:

Addressing Mode:

Flags:

I 0w »

THE Z80 INSTRUCTION SET

POP 1Y register from stack.

1Y ow ™ (SPy; 1Y high “ (5P + 1);SP+~SP + 2

CL T Tol ] oyee v

|.l={1|0[u|0|0[u} byte 2: El

The contents of the memory location addressed by
the stack pointer are loaded into the low order of
the 1Y register, and then the stack pointer is incre-
menied. The contents of the memory location now
addressed by the stack pointer are loaded nto the
high order of the 1Y register, and the stack pointer
1s again incremented.

4 M cycles: 14 T states; 2 usec @ 2 MHz

Indirect.

fs l zl IHE fwvi NI C] {no effect).

3
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Example; POP 1Y
Before: After:
| 0324 | N7
57| 3004 ]

3004 &1 3004 &

3005 40 3005 a0

3006 9 3006 39
OBJECY CODE N N
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PUSH gqq

Function:

Formuat:

Description;

Data Flow:

Tinung:

Addressing Mode:

Byie Codes:

THE Z80 INSTRUCTION SET

Push register pair onto stack.

(SP — 1Y <=qqhighs (SP — 2) ~Qqlows
SP~S8P ~2

Ll dayafof ol ]

The stack pointer is decremented and the contents
of the high order of the specified register pair are
then loaded inio the memory location addressed
by the stack pointer. The stack pointer 15 agan
decremented and the contents of the low order of
the register pamr are loaded into the memory loca-
ton currently addressed by the stack pomnter. qq
may be any one of:

BC - 00 HL - 0
DE - 01 AF — I
N E
B e
5 B £
" T L

| l:;%"/

3 M cycles; [l T states; 6.5 usec @ 2 MHz

indirect.

qq: BC DE HL AF

[os[s ]
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Flags: 5 % H PV N €
CT LT L[] o
Example: PUSH DE
Before: After:
D} 0403 | e | 0AD3 | e
5 | 008! s
N N
b5 QOAF B&
0BG Ty
TN 00BI oF
OBJECT CODE
/\/
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PUSH IX

Funcuon:

Formai:

Description:

Data Flow:

Timng:

Addressing Mode -

Flags:

5P

I o« >

THE ZBO INSTRUCTION SET

Push 11X onto stack,

(SP - Y+~ Exhsgh; (8P — ) = IX|gws
SP—SpP-12

T TeT [T [oT ] bwe 1 m

Ll feledi o] foyeaEs

The stack pointer is decremented, and the contents
of the high order of the 1X register are loaded into
the memory locauon addressed by the stack
pointer. The stack pointer is again decremented
and then the contents of the low order of the IX
register are loaded into the memory location ad-
dressed by the stack pointer,

4 M cycles; 15 T states; 7.5 usec @ 2 MHz

Indirect.

H Ry c

fﬁt[ | IE_T] (no effect)
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Example: PUSH IX
Before: After:
X f 04A2 1 x! 04A2
spl 0095 | 5, 6094

0094 a8
14051 9F
0096 04

OB8JECT COBE TN
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PUSH 1Y Push 1Y onto stack.

Funcrion: (SP = 1} = 1Y 01 (SP = 2) = 1Y |quws
SP—Sp -2

Format:

CLTT e [ To [Towe v

N A .
ifg*;u@;@*,0.‘:b3"'32-55

Description: The stack pointer 1s decremented and the contents
of the hugh order of the 1Y register are loaded o
the memory location addressed by the stack
pointer. The stack poimnter 1s agan decremented
and the contents of the low order of the 1Y register
are joaded nto the memory location addressed by
the stack pommier,

Dara Fiow:

ol

B, C
D, £
M i
28 L R
L | !

‘,"/'/'.154'/ T
SF AT il /_.{/.: é%fj_ﬁj

Tinnng: 3 M cycles; 15 T states; 7.5 usec @ 2 MHz

Addressing Mode:  Indirect.

Flags: sz H PAY N C
L L L L[] (moeffecty
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Example:

N

Fo
£5

TN

OBJECT CODE

384

PUSH IY

Before:

After:

v | 90BF

33 [_ o0Bé

N

0084 FF
0oBS 8
0084 9D

TN

|Y§ S0BF

gy
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RES b,s Reset bit b of operand s.
Function: Sy < 0
Formai: s
r ‘1I||G|G[|iﬁiliii byte 1: CB
(Lo ] oyee
(HLj I%lflﬁ|0[i|0llll‘ byte 1: CB
['IGI‘_:‘t":—”‘I'I’IO] byte 2
(X + d) lflsfulililiiolllbyteE:DD
]x[;‘o!c]||e||!|| byte 2: CB
} ; : ; ;%l : : : lbyte:’::offsetvaiue
CTo o [ o) by
(Iy + d4) ]"*l'f'|'[‘,0]€;byEei:FD
(Lol ol ol 1] bviezcn
] : : : d ; : :7 byte 3: offset value
L[ ol—er—] [ ] o] byees
b may be any one of:
0 - 000 4 — 100
I — 001 5 - 101
2z — 010 6 — 116
3 - 011 7 - 11
r may be any one of;
A — 111 E — 011
B - 000 H — 100
C — oot L — 101
D ~ 010
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Description:

Data Flow:

The specified bit_of the location determined by s is
reset. s is defined in the description of the similar
BIT instructions.

. v
8 c Y
o E
H L ALU
Timing: usec
N M cycles: | T states: | @ 2 MHz:
r 2 8 4
(HL) 4 15 7.5
(X + d) 6 23 1.5
(ay + d) 6 23 11.5
Addressing Mode: r: implicit; (HL): indirect; (IX + d), (1Y + d): 1n-
dexed.
Byte Codes: RES b, r
b mA B C D E H L
CB— o | 87| B0iB81|82|8B3|84]{B5
1 lariBelsoieales|6C|aD
2 o790 !9 {9293 94 |95
3 |oF| 98|99 |9ateBioc oD
s | A7] A0| AT AZ| A3 A4 A5
5 1AF]AB| AV | AA|AB|ACIAD
6 {87801 B1|B2|B3|B4|BS
7 | BF | B8 B9 BA|BB|BC D
o 0t 2 3 4 5 & 7
RES b, (HL) CB— lBﬁiBEl%i‘?ElAélAElelBé]
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RES b, X +d) oocB- 4 o | 2 35 4 3
RES r/(HL) CB
RES b,(IY +d) soce-

5 7
leiSEI%!OE|A6|AEIB&|EE]

Flags: 5 Z H PV N C
LL LT T T T Javoetreen
Examples: RES [, H
Before: After
e T
ca
BC
b —
OBJECT CODE
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RET Return from subroutine
Function: PCiow = (SP); PCpjgp < (SP + 1); SP <~ SP + 2
Format:

nonnnoone

Description: The program counter is popped off the stack as
described for the POP instructions. The next in-
struction fetched is from the location pointed to

by PC.
Darta Flow:
F:9
B
D E
H L
pC
(e
2CL
PCH
5p e —
Timing: 3 M cycles; 10 T states; 5 usec @ 2 MHz
Addressing Mode: Indirect.
Flags: s 7 H PV N C
[T LT T LT Josten

388
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Example: RET
Before: After:
rc| 0881 | e
sp | 3310 L s
<2 3310 2 3310 an
— 3an B4 3an 84
OBJECT CODE ] ]
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RET cc Return from subroutine on condition.

Function: If cc true: PClgy + (SP); pChggh — (SP + 1}
SP-SP + 2

Format; —

G eiofofo ]

Description: If the condition is met, the contents of the pro-
gram counter are popped off the stack as described
for the POP instructions. The next instruction is
fetched from the address in PC. If the condition is
not met, instruction execution continues in
sequence.

Data Flow:

A £
B c
) £
H S
CONTROL
LOGIC
s
STACK
o PCL
R PCH A‘
- b~
Y
¢cc may be any one of:
NZ — 000 PO - 100
Z - 001 PE - 101
NC - 010 P - 110
C - 0t1 M - 111
Timing: Condition met: 3 M cycles; 11 T states; 6.5 usec @

Addressing Mode:

356

2 MHz.
Condition not met: I M cycle; 5 T states; 2.5 usec
@ 2 MHz

Indirect.
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Byte Codes: CC. NZ Z NC C PO FE 7 m
[co|cs|nn|oa|soles]m|ss—1

Flags: sz H B N__C

Ll I i [ ! J JW(noeffect)

Examiple: RET NC
Before; After:
F L ]f
e[ 0124 ] £C E.:!"B.'_‘e
SP{ Bt | SP s
Lo 8511 8s BA11 85
8512 81 8512 B
OBJECT CODE | b

N
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RETI

Function:

Format.

Descniption:

Data Flow:

Timing:

Return from interrupt.

PClow * (SP); PChigh = (BP + 1;;SP<SP + 2

ol Je [ Jo || bytel: ED
ro]||o|otn||101.JbyteZ:tf»D

The program counter is popped off the stack as
described for the POP instructions. This instruc-
tion is recognized by Zilog peripheral devices as
the end of a peripheral service routine so as to
allow proper control of nested priority interrupts.
An El instruction must be executed prior to RETI
in order to re-enable interrupts.

4 M cycles: 14 T states; 7 usec @ 2 MHz

Addressing Modes: Indirect.

Flags:

392

5 Z H PV N C

l i l | ! l l l l {no effect).




THE Z80 INSTRUCTION SET

Example: RETI
Before: After:
| B4E} | e
5| 8982 | s
T T — T
GouecT TosE T T

393



PROGRAMMING THE Z80

RETN Return from non-maskable interrupt.

Function: PClow * (SP); PChigh — (SP + 1); SP = SP +
2; IFF1 + IFF2

Format.

1ol Jel i fof ] byter:ED
] !||e|e’0}:|ols| byte 2: 45

Description: The program counter is popped off the stack as
described for the POP instructions. Then the con-
tents of the IFF2 (storage flip-flop) is copied back
into the [FF1to restore the state of the interrupt
flag before the non-maskable interrupt.

Data Flow:

STACK
PCL
PCH

5P /\\.__.-

Timing: 4 M cycles; 14 T states; 7 usec @ 2 MHz

Addressing Mode: Indirect.

394



Flags:

Example:

ST —
)
45

b —
OBJECT CODE

THE Z8Q INSTRUCTION SET

5 2 H 2y N C
i I ] | l | | (noeffect).
RETN
Before: After
re | ASE] |
5¢ | BBaC |
o — /\‘_
8Bac| O 8BAC o
8B40 Gh 884D oA
T |
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RL s

Function:

Format:

Description:

396

Rotate left through carry operand s.

[ e g
zC: S
v :|0|0|1I0||I|]byt€§CB

|
| ,
[T lolel Tol T ovetice
1Glolelflulziilajbyte2:16
[l o[ LT [o] ] bve 1: DD
(L ool [o] [ bve2 cB
(l : ; c:! : i :bete-}: offset value
ool o[ ] [o]bye s: 16
T LT L o] byt D
[(l||oioi;|o[|||lbyteZ:CB
| : : ; c:! : ; ; lbyte.’}:offsetvaiue
[efofofifoft]r]ofoyed: 16
r may be any one of:
A - 111 E ~ 011
B — 000 H - 100
C — 001 L. — 101
D - 010

The contents of the location of the specific
operand are shifted left one bit place. The con-
tents of the carry flag are moved to bit § and the
contentis of bit 7 are moved to the carry flag. The
final resuft is stored back in the original location. s
is defined in the description of the similar RLC in-
structions,



THE Z80 INSTRUCTION SET

Data Fiow:
A
8
[}
H
Timing: usec
s M cycles: | Tstates: | @ 2 MHz:
r 2 8 4
(HL) 4 15 7.5
{IX <+ d) 6 23 11.5
(IY + d) 6 23 11.5

Addressing Mode: r:mmplicit; (HL): indirect; (IX + d), (IY + d¥: in-
dexed.

Byte Codes: RL r R A 8 ¢ D E H &
ca%|7|1o|11||2[|3l|4||51

Flags: s Z H BV N C
o® O] @[Of0]
C is set by bit 7 of source,
Example: RL E
/\_‘ Before: After:
@ [ I D
v~
OBJECT CODE
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RLA Rotate accumulator ieft throughr carry flag.
Function:
e
c A
Format:
Lefefofifol fefi] 1
Description: The contents of the accumulator are shifted left
one bit position. The contents of the carry flag are
moved into bit 0 and the original contents of bit 7
are moved into the carry flag. (9 bit rotation.)
Data Flow:
A
8
D
1
Timing: 1 M cycle: 4 T states: 2 usec @ 2 MHz

Addressing Mode: Implicit.

) 5 2 H BV N O
Flags: L1110l | [oe]
Cissetbybit7of A.
Example: RLA
Before: After:

T Ao T o Jr A KR

17

QBJECT CODE
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RLCA

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

Example:

07

b
OBJECT CODE

THE Z80 INSTRUCTION SET

Rotate accumulator left with branch carry.

=

Clelolelo [ [

The contents of the accumulator are rotated left
one bit position. The original contents of bit 7 15
moved to the carry flag as well as to bit 0.

T O wm »

i M cycie; 4 T states; 2 usec @ 2 MHz

Implictt,

s Z H BV N C

L1 [ o] [ IO]e]
Cisset by bit 7 of A.

RLCA

Before: After:

Al_ee [ o Jr Aol %"

Note: This instruction is identical to RLC A, ex-
cept for the flags. It is provided for compat-
ibility with the 8080.
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RICr

Function:

Format:

Description:

Data Flow:

Tinung:

Addressing Mode:

Byte Codes:

400

Rotate register r left with branch carry.

="

l;|§|o|01|10‘1[|]byteI:CB

[oTo ToTe [o o] byte 2

The contents of the specified register are rotated
left. The original contents of bit 7 are moved to
the carry flag as well as bit 0. r may be any one of:

A — 111 E — 011
B — 000 H - 100
C - 00l L — 10
D — 010
L

A Feqr

) c

D E ALU

H L -

it

2 M cycles; 8 T states; 4 usec @ 2 MHz

Implicit.

E

: L
cs-{orioe|m]oz‘oa[oa[os]




Flags:

Example:

P

[:]
00

v
CBJECT CODE

THE 280 INSTRUCTION SET

H &V N C

OOEEEOE0

C is set by bit 7 of source register.

RLC B
Before: After:
s[__e2 [ % [F 700/ F
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RLC (HL) Rotate left with branch carry mermory location
(HL).
Function:
(HL)
Format;
[ frfofolifol ] t] byei:cn
]olololo|o‘ : i ! ;0! byte 2: 06
Description: The contents of the memory location addressed by
the contents of the HL register pair are rotated left
one bit position and the result is stored back at
that location. The contents of bit 7 are moved to
the carry flag as well as to bit 0.
Data Flow:
: B Sl
8 c !
5 : 7
H L — | —2ATA |
Timing: 4 M cycles; 15 T states; 7.5 usec @ 2 MHz
Addressing Mode: Indirect.
Flags: H @&v N C

402

[6[e] To[ [e[ole]

C is set by bit 7 of the memory location.




Example:

T

)

o6

.
OBJECT COBE

THE Z80 INSTRUCTION SET

RLC (HLy
Before: After:
F 8T
H| 6114 It A 6114 v
T —
5114 cs
e~

403
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RLC (IX + d) Rotate left with branch carry memory location (1X

Funcrion:

Format:

Description:

Data Flow.

+d)

D-‘-é—;?-«———-———c-‘—i

ot (X + d}
[lli|0|||1|;|0§|!bytei;DD
l'I"Ol°|‘|°|‘lilbyte2:CB

l : : : C:‘ : : z |bytc33: offset value
[ofofofofofifriofbye4ns

The contents of the memory location addressed by
the contents of the X register plus the given offset
value are rotated left and the result is stored back
at that location. The contents of bit 7 are moved
to the carry flag as well as to bt 0.

T oW P

404




Timing:

THE Z80 INSTRUCTION SET

6 M cycles: 23 T states: 11.5 usec @ 2 MHz

Addressing Mode: Indexed.

Flags:

Example:

T —

pD

=]

Ci

06

T — ]

OBJECY CODE

e[e[ 0] Telol®)

C is set by bit 7 of memory location.

RLC (IX + D

Before: After:
F ST
1] 04B1 I 04B1 |
/\_
0481 &3
0482 94
,\_—/
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RLC (LY + d) Rotate left with carry memory location (IY + d).

Function:
= on
C {1y + d]
Format:
Ll el byte 1 FD
Iils|olel|‘c~l|[s]by[eZ:CB
! : : : <% : , § byte 3; offset value
|o|o]o|oto|u l: Ia!byte4:06
Description: The contents of the memeory location addressed by
the contents of the 1Y register plus the given offset
value are rotated left and the result is stored back
at the iocation. The contents of bit 7 are moved to
the carry flag as well as bit {,
Data Flow: i____
A Edr
: ; \V4
L E AU
H L
Iy
N~
RLC

406
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Tinung: 6 M cycles; 23 T states; 11.5 usec @ 2 MHz

Addressing Mode: indexed.

Flags: sz Ho @V NoC
[ej®| [0 [eO]e]
C1s set by bit 7 of memory location.
Example: RLC (Y + 2)
Before: After:
[ o if A
v | oozt 1oy o021 |
D 0021 05 002 05
cB 0022 Bl 0022 B!
02 0023 A2 6023 W
[65] b~ | ¢

b —
OBJECT CODE
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RLD

Function:

Format:

Description.

Data Flow.

Rotate left decimal.

A 2 I O A R [

o

o

10
|

lxlllﬂlll byte i: ED
][] byte2:6F

The 4 low order bits of the memory location ad-
dressed by the contents of HL are moved to the
high order bit positions of that same location, The
4 high order bits are moved to the 4 low order bits
of the accumulator. The low order of the ac-
cumulator is moved to the 4 low order bits of the
memory location originally specified. All of these
operations occur simultaneously.

e

R e

X o w >

Tirning.:

Addressing Mode:

408

i
| oA ]

]

5 M cycles; 18 T states: 9 usec @ 2 MHz

{ndirect.



THE Z80 INSTRUCTION SET

Flags: s Z W Y N C
le/® [Of [@[O] |

Examples: RLD
Before: After:
A N
H BaF2 j L H B4F2
(T s [
) B4F2 48 vaez 71116
&F T -
b —
OBJECT CODE
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RR s

Function:

Format.

{HL)

(IX + d}

(IY + &)

Description:

410

Rotate right s through carry,

Ll lofol fof ]
Lololo ]+ ferrrir]
Ll tfofof o ][]
Lofofol ] ifi [ ]o]
Lolofolifefofo] ]
Llrfofolefofrfr]
et
Lofofof f ] ] ]e]
Hunnnnon
L fefof ol 1]
e e Bt e e
Lelofof el ol fefo]
r may be any one of:

A -~ 111 E - 01
B — 000 H - 100
C -~ 001 L — 101
D — 010

byte I:

byte 2

byte 1:
byte 2:
byte 1:
byte 2:
byte 3:
byte 4:
byte {:
byte 2:
byte 3:
byte 4:

CB

CB

IE

DD

CB

offset value
iE

FD

CB

offset value

1E

The contents of the location determined by the
specific operand are shifted right. The contents of
the carry flag are moved to bit 7 and the contents
of bit 0 are moved to the carry flag. The final
result is stored back in the original location. s is
defined in the description of the similar RLC in-

structions.



Data Flow:

T o w >

Tinung:

Addressing Mode:

THE Z80 INSTRUCTION SET

usec

5! M cycles: | T states: 1 @ 2 MHz:
r 2 8 4
(HL3 4 15 7.5
(X + d) 6 23 1.5
(Y + d) 6 23 1.5

r: implicit; (ML) indirect; (1X + d), (1Y + d)n-

W A

dexed.
Byte Codes: RR w A B C D E H L
CB-I&F|IB{]9|1A11311C1%D[
Flags: s Z H PV N C
e[®| O (8O0
C is set by bit 0 of source data.
Example: RR H
Before: After:
T HE &8 1| a1 F
cB
1c

OBJECT CODE

411




PROGRAMMING THE Z80

RRA

Function:

Format:

Descriprion.

Data Flow;

Tinung:

Addressing Mode:

Flags:

Example:

T

iF

—
OBJECT CCDE

412

Rotate accumulator right through carry.

-

A cf

ofofof fel e ] IR

The contents of the accumulator are shifted right-
one bit position. The contents of the carry flag
are moved to bit 7 and the contents of bit 0 are
moved to the carry flag (9-bit rotation).

—

ALU

—_—

[ M cycle; 4 T states; 2 usec @ MHz

Implicit.

3 z H FAY N C

L 1o | [Oe
Cis set by bit 0 of A.

RRA

Before: After:

Al ra | 95 e AT

Note: This instruction isalmost identicalto RR A It
15 provided for 8080 compatibility,



Function:

Formaz: 5!

{HL)

(IX + d)

(Y + )

Description:

THE Z80 INSTRUCTION SET

Rotate right with branch carry s.

S

<

sisany ofr (I—IL) (IX + ), Y + d)

t lﬂ!llj byte 1: CB

E gjo0io ]w~—~—q byte 2

Lu 1je o |GJ IlibyteICB
U ojojo niulf[ﬂbyte.?.OE
L| 0 C1 a!ulbyteI:DD

-

olaltio glq byte 2: CB

]
llll
L fofe]
Jofofo]
L o] ]
lll]
[o]o]o]
Ll ]
non
[ofo]o]

L]

o]
l‘ : : :~] byte 3: offset vailue
Lofol ool T o! byte4: oE
Li bl .I»lﬂ!q byte 1: FD
[u i]ole |'ol|||1byteZ:CB
[ ] byte 3: offset value
fojofo]o L[] ]o] bytea: oE

r may be any one of;

A - 111 E - 011
B - 000 H - 100
C - 001 L - 101
D - 010

The contents of the location determined by the
specified operand are rotated right and the result
Is stored back in the original location. The con-
tents of bit 0 are moved to the carry flag as well as
to bit 7. s is defined in the description of the
similar RLC instructions,
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PROGRAMMING THE 780

Dara Flow:

Timng:

I O o »

I
i
C e T T
L P
user
5! M cveles: 1 Tstates: | @ 2 MHz:
4 2 8 4
(HL1 4 13 7.5
(X -+ d) 6 21 11.5
(ly + d) 6 23 I1.5

Addressing Mode: r: implicit; (HL): indirect; (IX 4 d), (1Y + d):n-

Byte codes:

Flags:

Example;

T ——

B
OF

e
GBJECT CODE

414

dexed.

RRC r o A B

cC b & H t
CBA‘ OF | 0B l 09 [E‘\ OBT o EOD {

5 Z Fvv N C
DORER0E0
C is set by bit 0 of source data.

RRC (HL)
Before: After:
[ s Ir
Ml 3FF2 It H] 3FF2 Tt
TN
JFF2 06
T




THE Z80 INSTRUCTION SET

RRCA Rolate accumulator right with branch carry.

Function:

==

popononnk:

Formati:

Description: The contents of the accumulator are rotated right
one bit position. The contents of bit 0 are moved
to the carry flag as well as to bt 7.

| 7

Data Flow:

B N\ o
D E ALU
H L —
L
Timing: I M cycle; 4 T states; 2 usec @ 2 MHz

Addressing Mode: Implicit.

Fl’ags.' 5 2 H PV N £
L[ o] | [o]e]
Cis set by bit 0 of A,

Example: RRCA
Before: After:

O T— Al pa ] 51 |e

oF
T

OBJECT CODE
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RRD Rotate right decimal.

| 1 ¥
Funcrion; al7 al3 7 ajz o

H

. !
Format: {'g'g’lﬂli|?iﬁl*]bytel:ED
Lol T fefei [ [t] byre2:67

Description: The 4 high order bits of the memory location ad-

dressed by the contents of the HL register pair are
moved to the low order 4 bits of that location. The
4 low order bits are moved to the 4 low order bits
of the accumulator. The low order bits of the ac-
cumulator are moved to the 4 high order bit posi-
tions of the memory location originally specified.
All of the above operations occur simultaneously.

Data Flow:
i ava—t
A AN ] \/
B C
s] E ALU
~ L fin
Tinung: 5 M cycles; 18 T states; 9 usec @ 2 MHz

Addressing Mode: Indirect.
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Flags: sz H Brv N C
lo/®] (O] [e]O] ]
Example: RRD
Before: After:
Al ez ] N
Hi FEBI St FEBI 1L
e T —
ED FEB] 50 £EBI
57 e
T

OBJECT CODE

417
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Y
*RST p

Function:

Format:

Description:

Data Flow:

Restart at p.

(SP = 1) = PChyghi (SP = 2) = PClow; SP ~ SP
~ 2; PCpigh =~ 0; PClow = P

nn===k

[ 1

The contents of the program counter are pushed
onto the stack as described for the PUSH instruc-
tions. The specitied value for p1s then loaded into
the PC and the next instruction is fetched from
this new address. p may be any one of:

O0OH -
08H -
I0H -
18H —

000
001
010
011

20H
28H
30H
38H

100
101
1o
111

This instruction performs a jump to any of cight
starting addresses in low memory and requires only
a single byte. {t may be used as a fast response to

an interrupt.

I O ®° >

418
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Tinung:

THE ZB0 INSTRUCTION SET

3 M cycles: 11 T states; 5.5 usec @ 2 MHz

Addressing Mode: ndirect.

Byte Codes:

Flags:

Example:

FF

]
OBJECT CODE

p: 00 08 10 18 20 28 30 38
1C7|CF|D7lDF|E7|EF]F7|FF|
i

s _Z H PV N C
l l ' I I l [ I i {no effect).
RST 38H
Before: Afler:
PC[_ 4414 ]
s | 0266 I
T
0209 51 0269 17
0264 BF 0264 1
G268 03 0268
T
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SBCA,s

Function:

Format:

(HL}

(IX+d)

(IY + d)

Subtract with borrow accumulator and specified
operand,

A+~A -5 -C

s:may be r,n, (ML), X + d), or IY + d)

r may be any one of:

DE‘SCI'IPUOH N

420

Lefofol [e [
liillﬂllllll‘llol byte 1: DE

e S m e e byte 2: immediate
] P — J data
{aiolo!uls|;|:lo| byte [: 9E
L lefol o fefel ] byet:pD
Llofof ] o] fof 9
| : i 16: ! : ‘ I byte 3: offsel value
Clelefefelefof ] byer:Fp
Lrfofofefifilifof bye2E
| z t id: : : : ! byte 3: offset value
A — 111 E — 011

B - 000 H — 100

C - 001l L — 101

D - 010

The specified operand s, summed with the con-
tents of the carry flag, i1s subtracted from the con-
tents of the accumulator, and the result is placed
in the accumulator. s 1s defined in the description
of the similar ADD instructions.



Data Flow:

Tinung:

Addressing Mode:

Byte Codes:

Flags:

Example:

/\-ﬁ._.

gt

e
CBJECT CODRE

THE ZBG INSTRUCTION SET

U

F

£ AlLLF ! S l
L -5
Hsec
s M cycles: | T states: | @ 2 MHz:
r | 4 2
i} 2 7 3.3
(HL» 2 7 3.5
(IX + d) 5 I9 9.5 |
1Y + d) 5 19 9.5 i

d), (1Y + d¥: indexed.

SBC A,r ua 8

z

C D E H

[9F l %8| 99 94 9| oc| o

H PAD N

C

[e]e] [o] To[ [e]

r:amplicit; n: immediate; (HL): indirect; (IX +

SBC A, {HL)
Before: After:
AL B | 8 AR
[ 3600 [T 3600 It
/“\_w_‘— /\—
3600 oF 3600 OF
— Th—
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PROGRAMMING THE 280

SBC HL,ss  Subtract with borrow HL and register pair ss.

Function: HL < HL -3 — C

o CTT e Tel Jovee 1 £
LT s eleTiTe] bye

Description: The contents of the specified register pair plus the

contents of the carry flag are subtracted from the
contents of the HL register pair and the result is
stored back in HL. ss may be any one of:

BC - 00 HL - 10
DE - 01 SP - 11
Data Flow: 0 E.
A iC F :>
B C
D £
UliH L ﬂ
sp| |
Thmng: 4 M cycles; 15 T states; 7.5 usec @ 2 MHz

Addressing Mode: Implicit.

Byte Codes: S§: BC DE HL SP

o [a]a[x]7]

422



Flags:

Exampile:

ED

52

CBJECT
CODE

w

THE Z80 INSTRUCTION SET

5z H PA® N C
oo |'| [ e
H is set if borrow from bit 12.
Cis setif borrow.

SBC HL, DE

Before: After:

(e ¢ ik
06BY £

H
L

D 0889
3142 L H WAXW%

423



PROGRAMMING THE 280

SCF Set carry flag.
Function: C =1
Formai:
lofofefefel e fefe] 37
Description: The carry flag 15 set.
Timing: 1 M cycle; 4 T states; 2 usec @ 2 MHz

Addressing Mode: 1mplicit.

Flags: s Z H PV N C

L1 [ o[ | [ol]
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SET b,s Set bit b of operand s
Function; Sp 1
Format: 50
r Lu ||o(o[||o|a[;§ byte {: CB

r% : I-‘—b—"”"'-“'—]?—"‘"‘i byte 2

|
]
HL o (L Jee [T T byer:ca
[!i‘i"_:b:_"§|"°i byte 2
ax+d el T lol ] pwer: pp
CLTe ol ol T s cn
1 : : ; ‘:;" : : :j; byte 3: offset value
[T FEmT o] bves
ay + d L'l'i‘|'l'|'|0]*1 byte {: FD
L'I'f°l°|'|°l‘l*] byte 2: CB
| : : : ‘;* : : : ; byte 3: offset value
e T o] bytes
I may be any one of:
A ~ 111 E - 01}
B — 000 H ~ 100
C - 00t L — 101
D - 010
b may be any one of:
0 ~ 000 4 —~ 100
i — 001 5 — 101
2 — 010 6 - 110
3 - 011 7 - 111
Description: The specified bit of the iocation determined by s is

set. s 1s defined in the description of the similar
BIT instructions.
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Data Flow:
A S
B C
D £
H
Tinung: usec
kN M cycles: | Tstates: | @ 2 MHz:
3 2 8 4
(HL) 4 15 7.5
(X + d) ] 23 11.5
(IY + d) 6 23 11.5
Addressing Mode: r: implicit; (HL): indirect; (IX + d), Y + d):in-
dexed.
Byte Codes: SET b.r
b:riA B8 C D E H L
cp- o lcrlcolcriczicalcalcs
y Jerieeice|cajesice (oo
2 | 07| DOiDI|D2|D3]D4}DS
3 | DF| DB} D9| DA} DB | DC DD
4 [E7)EO| EY|E2]|E3 | E4 | ES
5 |EF |E8 [E9 | EA[EB [EC|ED
6 | E7{FOl FI[¥2  F3|F4 |F5
7 \FF1Fa | F9 |FA|FB {FC 1FD
SET b, (HL)
b: 0 1 2 3 4 5 &6 7
SET b, (IX + d (CblCElDbiDElEﬁhﬁlFblFEJ

SET b, (Y + d)
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Fmg&. 4 H PV ONOC
I ] I ‘ 1 | I I l(noeffect)

Example: SET 7. A
Before: After:
(T A S
)
FF
/—‘\_w_/
GBJECT CODE

427
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SLA s Arithmetic shift left operand s.
Function:
C 5
Format: 5
r lllt]010‘1‘0|‘|‘] byte |: CB
Colol [ofo e by
{(HL) lsli*ﬁlﬂl%lo‘{lij byte 1: CB
[a|9];|olol||!]ﬂ byte 2: 26
ax +d [ ] Jo[]rir]o]+] byet:DD
['l‘l”lol']ol'lﬂ byte 2: CB
i[ : j : &:i : i j-] byte 3: offsct value
ﬁ]elllelelﬂsln\ byte 4: 26
(iY+Cﬂ[ilzl%lzlil!l{)lllby{EI:FD
Fn[lic~|e I[Gli¥%| byte 2: CB
l : : : ";; i t :~l byte 3: offset value
]G!e!ile D'*lil{j byte 4: 26
r may be any one of:
A — 111 E - 011
B — 000 H - 100
C - 001 L — 101
D - 010
Description: The contents of the location determined by the

428

specific operand are arithmetically shifted left with
the contents of bit 7 being moved to the carry flag
and a 0 being forced into bit 0. The final result is
stored back in the original location. s is defined in
the description of the similar RLC instructions.



Dara Flow:

I oowm >»

Titntng:

Addressing Made:

Byite Codes:

Flags:

Example:

M~

B
26

/—\_‘_—m“_/
OBJECT COBE

THE Z80 INSTRUCTION SET

CiF

c

E

L

usec

50 Moeveles: | T siaies: | @ 2 MHz:
r 2 8 4
(HL} 4 I5 7.5
X + ) 6 23 ti.5
{y + dy 6 23 11.5

dexed.

SLA r

romplicit (HL: indirect; (IX + d), (Y + d¥: m-

H ®v n C

'ole[ [0 [e[0]e]

C is set by bit 7 of source data.

SLA  (HL)
Before:
[ e ¢
H OFF2 Il

GFF2 Fi

After:

H
4

cofir [ [ [ ae [

B

CFF2 Jt

vl Y
b~
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SRA s

Function:

Format:

Description:

430

Shift nght arithmetic s.

7 —= 0
7

"IG‘Gl'lGl‘I’jbytehCB
Colol Tol ) byee2
l‘l°|°l'l°l‘llj byte 1. CB
“l”l'l‘}l“‘l'lojbyiezzzﬁ
l’l“l‘l’l‘ioljbytel:DD
‘]‘l“i”‘i]°l'|*|byte2:c3
?Z l : %‘ ; : ;jbyiekoffsﬂvaiue
CeleliTol vl i fo] byea:2E
yO L DL felr ] oyer:¥D
[T ool ol |+] brie2:CB
|“?“;*"':——E‘ %‘T*: : -—i byte 3: offset value
!Q!Oi'loll|!1'i0!by£e4:2E

r may be any one of:

A - 111 E — 01
B — 000 H - 100
C - 001 L — 10l
D - 010

The contents of the location determined by the
specific operand are arithmetically shifted right.
The contents of bit 0 are moved to the carry flag
and the contents of bit 7 remain unchanged. The
final result is stored at the original focation. s is
defined in the description of the similar RLC in-
structions.



THE ZBO INSTRUCTION SET

Dara Flow: i\/i
| e <N

Al : \ i

B! C \ Y/ SN H S

o e 1\ A s
; VAN

Tinng: usec
3! M eycles: | Tsiates: | @ 2 MHz
r 2 8 4
(HL} 4 [3 7.5
(IX + by 6 23 {1.5
ady + dy 6 23 11.5

Addressing Mode; 1 implicit; (HLY: indirect: (IX + d), (1Y + d): in-
dexed.

Byte Codes: SRA '
yte Codes: ' CS-L;{;{;ifAljeixiﬂ

Fiags: 5_* H ®v N ¢
e[e] O] [e[Ofe]
Cis set by bit 0 of source data,
Example: SRA A
Before: After:
- A o8 G e N
ca
2F
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SRL s

Function:

Formal: 5

{HL)

(X + d)

1y + 4&)

Description:

432

Logical shift right s.

a pp———y——_—

5 <
{a ilolo aio].lsibytei:CB
ia bl ;‘_,ML,_’_,I byte 2
rl 1lolo 110 |+ byte 1: CB

|
o

[

byte 2: 3E
byte t: DD

byte 2: CB

i

,““1
o | TH] -
@
(=]

[

byte 4: 1E
byte I: FD
byte 2: CB

l

|

|

j

j byte 3: offset value
|

|
|

-

4

| byte 3: offset value
Tl ]e) bye4: 3E

[w)

T
©

r may be any one of:

A — 111 E - 011
B - 000 H - 100
C - 001 L - 101
D - 010

The contents of the location determined by the
specific operand are {ogically shifted right. A zero
is moved into bit 7 and the contents of bit 0 are
moved nto the carry flag. The final result is stored
back in the original location.



THE Z80 INSTRUCTION SET

Data Elow: l, ST i

A L ClF ’ M/ i
B C / __“1
H i e s {\\[
o
e T
Timing: usec
S M cveies: | Tstates: | @ 2 MHz:
T 2 8 4
{HL; 4 i5 7.5
(X + d) 6 23 IS
(Y + 6 23 11.5

Addressing Mode: 1 implicit; (HL1: indirect; (IX + d), (0¥ + d):in-

dexed.
Byie Codes: SRL v A B C D E H L
cs 'Laf[ 331 39[ SAI 33! 3(:[ 30!
Flags: 5 1 H O @vin ¢

(ole] [O] [@[C[e]

C is set by bit 0 of source data,

Example: SRL E
Before: After:
T
F
-
/\'\W.J
OBJECT CODE
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SUB s Subtract operand s from accumulator.
Function: A A -5
Format: s:mayber, n, (HL), IX + d)or (IY + d)
o [fefo[r]o =]
» [Tl el [ ]e) bveet:pe
l L YL 'J gyte?.: immediate
P T E S ata
w [Joefef Jol fe]of 9
ax +d [ [Je[ [ Jt]ol ] byet:DD
[Tolol Jof frlof bye2:96
[ ll j : c:! : : ; ] byte 3: offset value

Yy + 4 l‘l'l’l‘]'l"el!l byte 1: FD

Fl(’]“}"(}lil*‘ol byte 2: 96

[ , — ‘% ’ ' | byte 3: offset value

i ]

r may be any one of:

A~ 111 E - 011
B — 000 H - 100
C - 001 L - 101
D - 010
Description: The specified operand s is subtracted from the ac-

cumulator and the result is stored in the ac-
cumulator. The operand s 15 defined in the
description of the similar ADD instructions.
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THE Z80 INSTRUCTION SET

Data Flow; {L
A
B C
) E ALU { 5
H L -
Timing: usec
& M cycles: | T states: | @ 2 MHz4
r { 4 2
n 2 7 3.5
(HL) 2 7 3.3
{(IX + ) 5 19 9.5
{(IX + d) 5 18 9.5

Addressing Mode:

Byte Codes:

Flags:

Example:

P

S0

"\___‘“’/

OBJECT CODE

r: implicit; n: immediate; (HL): indirect; (IX +
d), {IY + d): indexed

SUB r

. A s
L97|90191|92193|94]¥|

H pPAON C

@[e] o[ Jo[ Je]

SUB B
Before: After:
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XOR s

Function:

Formar:

(HL)

(IX + d)

(IY + d)

Exclusive or accumulator and s.

A~ A% s

s: may be r,n,(HL), (IX + d), or (IY + d)

LTl ]l =]

nonooonn
e ——
nEnonnon
nnEnnoon
nonannnn
=

el
dof defefffo]

r may be any one of:

Description;

436

R fr——
A — 111 E - 011
B - 000 H - 100
C - 001 L — 101
b - 010

byte i: EE

byte 2: immediate
data

AE

byte 1: DD

byte 2: AE

byte 3: offset value
byte I: FD

byte 2: AE

byte 3: offset value

The accumulator and the specified operand s are
exclusive ‘or’ed, and the resuli is stored in the ac-
cumulator. s 1s defined in the description of the

similar ADD instructions,



THE Z80 INSTRUCTION SET

Date Flow:
A
8
D £ Aty & l
H L -
Timing: usec
8 M cycles: | T states: | @ 2 MHz:
r I 4 2
n 2 7 3.5
(HL) 2 7 35
(IX + d) 5 19 9.5
Iy + ) 5 19 9.5

Addressing Modes: 1: implicit; n: immediate; (HL): indirect: (X +

Byte Codes:

Flags:

Example:

/"\_

EE
Bl

/“\

QBJECT CODE

d), (1Y + d): indexed

XOR r a8 ¢ b £ H 1L

!AF lA81A91M|ABiAC]AD|

S Z H v N C
®/®] [O] [e[0]0]

XOR BIH
Before: After:
AL__36 ] A
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5
ADDRESSING TECHNIQUES

INTRODUCTION

This chapter will present the general theory of addressing and the
various technigues which have been developed to facilitate the retrieval
of data. In a second section, the specific addressing modes available in
the Z80 will be reviewed, along with their advantages and limitations.
Finally, in order 1o familiarize the reader with the various (rade-olfs
possible, an applications seciion will demonstrate possible trade-otfs
between Lhe various addressing techniques by studying specific applica-
tion programs,

Because the Z80 has several 16-bit registers, in addition to the pro-
gram counter, which can be used 1o specify an address, 1t i1s important
that the Z80 user understand the various addressing maodes, and in par-
ticular, the use of the index registers. Complex retrieval modes may be
omitted at the beginming stage. However, all the addressing modes are
useful n developing programs for thig microprocessor. Let us now
study the various alternatives available.

POSSIBLE ADDRESSING MODES

Addressing refers to the specification, within an instruction, of the
tocation of the operand on which the instruction will operate. The mam
addressing methods will now be examined. They are all illustrated in
Figure 5.1.

Implicit Addressing (or **Implied,” or “Register™’)

Instructions which operate exclusively on registers normaily use -
plicit addressing. This 1s illustrated i Figure 5.1, An implient wstruce-
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tion derives its name from the fact that it does not specifically contain
the address of the operand on which it operates. Instead, its opcode
specifies one or more registers, usually the accumulator, or else any
other register(s). Since internal registers are usually few in number
{commoily eight), this will require a small number of bits. As an exam-
ple, three bits within the instruction will point to one out of eight inter-
nal registers. Such instructions can, therefore, normally be encoded
within eight bits. This is an important advantage, since an eight-bit in-
struction normally executes faster than any two- or three-byte mstruc-
tion,
An example of an implicit instruction is:

LD A,B

which specifies “‘transfer the contents of Binto A" {Load A from B.)
Immediate Addressing

Immediate addressing is illustrated in Figure 5.1. The eight-bit op-
code 15 followed by an 8 or 16-bit literal (a constant). This type of
instruction is needed, for example, to load an eight-bit value in an
eight-bit register, Since the microprocessor is equipped with [6-bit reg-
isters, t may also be necessary to load 16-bit literals. An example of an
immediate instruction is:

ADD A, OH

The second word of this instruction contains the literal **0"*, which 15
added to the accumulator.

Absolute Addressing

Absolute addressing usually refers to the way inwhich data i1s retrieved
from or placed in memory, in which an opcode 15 followed by a 16-bit
address. Absolute addressing, therefore, requires three-byte mstruc-
tions. An example of absolute addressing 1s:

LD (1234H), A

It specifies that the contents of the accumulator are 10 be stored al
memory location **1234’" hexadecimal.

The disadvantage of absolute addressing 1s 1o require a three-byte in-
struction. In order to improve the efficiency of the miCrOprocessor,
another addressing mode may be made available, whereby only one
word 1s used for the address: direct addressing,
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|
IMPLICIT/IMPLIED GPCODE A {

IMMEDIATE OPCCODE

LITERAL

i LITERAL !

EXTENDED/ABSOLUTE OPCODE

FULL T6-BIT

ADDRESS

DIRECT/SHORT OPCODE

SHORT ADDRESS

1
OPCODE :

INDEXED CPCODE XREG

DISPLACEMENT

; OR ADDRESS {

Fig. 5.1: Basic Addressing Modes
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Direct Addressing (or ‘*Short,”” or ‘‘Relative”)

in thus addressing mode, the opcode 15 followed by an eight-bit ad-
dress. This is also illustrated in Figure 5.1. The advantage of this ap-
proach is to require only (two bytes instead of three for absolute ad-
dressing. The disadvantage is to limit all addressing within this mode to
addresses 0 to 255 or else — 128 to +127. When using 0 to 255 (“‘page
zero™), this 1s also called short addressing, or O-page addressing. When-
ever short addressing is available, absolute addressing 1s often called ex-
tended addressing by contrast. The range — 128 (o + 127 1s used with
branch wstructions. This 1s called relative addressing.

Relative Addressing

Normal jump or branch instructions require eight bits for the op-
code, plus the 16-bit address to which the program has to jump, Just as
in the preceding example, this mode has the disadvantage of requiring
three words, r.e., three memory cycles. To provide more efficient
branching, relative addressing uses only a two-word format. The first
word 1s the branch specification, usually along with the test it is imple-
menting. The second word is a displacement. Since the displacement
must be positive or negative, a relative branching mstruction allows a
branch forward to 127 locations (seven-bits) or a branch backwards to
128 locations (usually + 129 or —126, since PC will have been mcre-
cremented by 2). Because most loops tend to be short, relative branch-
ing can be used most of the time and resuits in significantly improved
performance for such short routines. As an example, we have already
used the mstruction JR NC, which specifies a “jump if no carry” to a
location within 127 words of the branch instruction {more precisely
+ 129 to —126}.

The two advantages of relative addressing are improved performance
(fewer bytes used) and program relocatability (independence from ab-
solute addresses).

Indexed Addressing

Indexed addressing is a techmque used to access the elements of a
block or of a table successively. This will be illustrated by examples
later in this chapter. The principie of indexed addressing is that the in-
struction specifies both an index register and an address. The contents
of the register are added to the address to provide the final address. In
this way, the address could be the beginning of a table in the memory.
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The index register would then be used to access all the elements of a
table successively in an efficient way. (This requires the availability of
increment/decrement instructions for the index register). In practice,
restrictions often exist which may limit the size of the index register, or
the size of the address or displacement field.

OPCODE INDEX REGISTER
————— T
DISPLACEMENT i BASE
I H
i
1
1
I
BASE ——i] -
TABLE +
displacement T
DATA
. < finol address

MEMORY

Fig. 5.2: Addressing (Pre-indexing)

Pre-Indexing and Post-Indexing

Two modes of indexing may be distinguished. Pre-indexing is the
usual indexing mode in which the {inal address is the sum of a displace-
ment or address and of the contents of the index register. 1t 1s shownn
Figure 5.2, assurmng an 8-bit displacement field and a 16-bit ndex
register.

Post-indexing treats the contents of the displacement field like the
address of the actual displacement, rather than the displacement 1tself.
This is illustrated in Figure 5.3. In post-indexing, the final address s the
sum of the contents of the index register plus the contents of the mem-
ory word designated by the displacement field. This feature utilizes, in
fact, a combination of indirect addressing and pre-indexing. But we
have not defined indirect addressing yet. Let us do that.
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FAERAORY Y {index)
GPCODE l
ADDRESS —
frosss  POINTER e +
MEMORY
|

FirAL
14T
ADDRESS

fusss  DATAM ]

POINTER = BASE

Fig. 5.3: Indirect Indexed Addressing (Post-Indexing)

Indirect Addressing

We have already seen that two subroutines may wish to exchange a
large quantity of data stored in the memory. More generally, several
programs, or several subroutines, may need to access a common biock
of information. To preserve the generality of the program, it is desira-
ble not to keep such a block at a fixed memory location. In particular,
the size of this block might grow or shrink dynamically, and it may
have to reside in various areas of the memory, depending on its size. It
would, therefore, be impractical to try to access this block using abso-
fute addresses, that is without rewriting the program every time.

The solution to this problem lies in depositing the starting address of
the block at a fixed memory location. This is analogous to a sityation in
which several persons need to get into a house, and only one key exists.
By convention, the key to the house will be hidden under the mat. Every
user will then know where to look (under the mat} to find the key to the
house (or, perhaps, to find the address of the scheduled meeting, Lo
propose a stricter analogy). Indirect addressing, therefore, normally
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uses an opcode followed by a 16-bit address. This address is used to
retrieve a word from the memory. Usually, it will be a 16-bit word (in
our case, two bytes) within the memory since it is an address. This is il-
lustrated by Figure 5.4. The two bytes at the specified address Al con-
tain “A2”. A2 is then interpreted as the actual address of the data that
one wishes to access.

INSTRUCTION MEMORY
OPCODE
INDIRECT (A} FIMAL
ADDRESS A ADDRESS (A |
A DATA

Fig. 5.4: Indirect Addressing

Indirect addressing 1s particularly useful any tme that pointers are
used. Various areas of the program can then refer to these pointers to
access a word or a block of data conveniently and elegantly. The final
address may also be obtamed by pointing within the instruction to a
16-bit register in which it is contaned. This 1s called *‘register indirect.”

Combinations of Modes

The above addressing modes may be combined. In particular, it
should be possible in a completely general addressing scheme to use
many levels of indirection. The address A2 could be interpreted as an
indirect address again, and so on.

Indexed addressing can also be combined with indirect access. This
allows the efficient access to word n of a block of data, provided one
knows where the pointer to the starting address is (see figure 5.2).
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We have now become familiar with all usual addressing modes that
can be provided 1n a system. Most microprocessor systems, because of
the limitation on the complexity of an MPU, which must be realized
within a single chip, do not provide all possible modes but only a small
subset of these. The Z80 provides a good subset of possibilities. Let us
examine them now,

Z80 ADDRESSING MODES
implied Addressing (Z80)

Impiied addressing is essenuially used by single-byte instructions
which operate on internal registers. Whenever implicit instructions
operate exclusively on internal registers, they require only one machine
cycle to execute.

Examples of instructions using unplied (or “‘register’) addressing
are: LDr.r’; ADD A,r; ADC As; SUBs; SBCA,s; ANDs: OR s;
XOR s; CPs; INCT.

Zilog further distinguishes between “‘register addressing” and “‘im-
plied addressing.” Implied addressing is then limited, in that definition,
to instructions that do not have a specific field to point to an mnternal
register. This introduces one more addressing mode. This 15 one reason
why the number of addressing modes 1s insufficient to characterize the
capabilities of a microprocessor,

Immediate Addressing (Z80)

Since the Z80 has both single-length registers {etght bitsy, and double-
length register pairs (16 bits), it provides (wo types of immediate ad-
dressing, both with 8-bit and [6-but literals. Instrucuons are then
either two or three bytes long. The second {and sometimes the third)
byte contains the opcode, followed by the constant, or literal, to be
loaded in a register or used for an operation. Exceptions are LD IX and
LD 1Y, which require 16-bit opcodes.

Examples of instructions using the immediate addressing mode are:

LD r,n (1wo bytes)
L.D dd,nn (three bytes)

and
ADD A.n (two bytes)

When the literal s two hytes long, the mode 15 called “‘immediate ex-
tended,” in the case of the Z80.
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Absolute or “‘Extended’’ Addressing (Z80)

By definition, absolute addressing requires three bytes. The first byte
is the opcode and the next two bytes are the 16-bit address specifying
the memory location {the ‘‘absolute address’’}).

By contrast with “‘short addressing” {eight-bit address), this mode is
also called “‘extended addressing.”

Examples of instructions using extended addressing are:

LD HL, (nn) and JP nn

where nn represents the 16-bit memory address, and (nn) represents the
contents of the specified location.

Maodified Zero-Page Addressing (Z80)

Zero-page addressing 1s not available i the Z80, except through the
RST instruction. The special addressing mode used by this instruction
is called **modified zero-page addresing.”

The RST instruction contains a 3-bit field in bit position b, b, b, us-
ed to pint to one of 8 locations in page 0 memory. The effective
address is bsbsb3000 and is loaded into PC. Since it requires only a
single byte, this instruction executes rapidly, and 15 easily generated in
hardware. It was generally used to respond to multiple interrupts (up to
8.) Its disadvantage is either to limit the execution sequence to & loca-
tions, or to require a jump eliminating the speed advantage. This is
pecause each of the 8 branch addresses are 8-bytes apart,

Relative Addressing (Z86)

By definition, relative addressing requires two bytes. The first one is
the “‘sump relative’” opcode, whereas the second one specifies the dis-
placement and 1ts sign.

In order to differentiate this mode from the absolute jump instruc-
tion, it is labeled “JR'".

From a timing standpoini, this instruction should be examined with
caution. Whenever a test fails, 1.e., whenever there 1s no branch, this in-
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struction requires only seven 7T cycles.” This 15 because the next
instruction lo e executed 15 already pointed to by the program counter.

However, when the test succeeds, i.e., whenever the jump takes
place, this mstruction requires 12 “T-states’’; a new effective address
must be computed and toaded snto the program counter.

When computing the duration of the execution of a program seg-
ment, caulion must be exercised, Whenever one 1s not sure whether or
not the jump will succeed, one must take into consideration the fact
that sometimes the jump will require 12 T-states, (condition met),
sometumes 7 (condition not met),

When designing a loop, execution will, therefore, be faster using a
JR (Jump Relative) testing a condition usually nor met, such as a non-
zero condition for the counter.

When JR’s are used outside of loops, and the condition under test 15
unknown, an average timing value is often used for the duration
of JR.

This timing problem does not apply to the unconditional jump JR e. It
does not test any condition, and always fasts 12 T-states.

Indexed Addressing (Z80)

This addressing mode did not exist in the 8080, and was added to the
Z80 (as well as the two index registers). As a result, it became necessary
10 add an extra byte to the opcode, making it a [16-bit opcode in the Z80
mmstruction set (LDIR is another example of a [6-bit opcodel. The
structure of an indexed instruction is shown on Figure 5.5.

OFCODE 8YTE
OPCODE BYTE 2
DISPLACEMENT BYTED
i i
1 LITERAL p BYTE4
L o s s e e e e e |

Fig. 5.5: Indexed Addressing Has 2-byte Opcode
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Instructions allowing indexed addressing are:
LD, ADD, INC, RLC, BIT, SET, CP, and others.

This mode will be used extensively in the programs operating on
blocks of data, tables or lists.

Indirect Addressing (Z80)

The ZB0 provides a limited indirect addressing capability called
““Register Indirect Addressing.”” In this mode, each of the 16-bit regis-
ter pairs BC, DE, HL may be used as a memory address.

Whenever they point to [6-bit data, they point to the lower part. The
higher part resides at the next (higherj seguential address.

Combinations of Modes

Combinations of modes are essentially non-existent, except that in-
structions referring to two operands may use a different type of ad-
dressing for each.

Thus, a /oad or an arithmetic instruction may access one operand in
the immediate mode, and the other one through an indexed access.

Also, the bit addressing mechanism may access the eight-bit byte
through one of the three addressing modes, as explained in the follow-
ing paragraph. The specific addressing modes available for each in-
struction are indicated in the tables of the preceding chapter.

Bit Addressing

Bit addressing 1s generally not considered an addressing mode if ad-
dressing is defined as accessing a byre. However, whether defined as a
mode or a group of instructions, 1t 1s a valuable facility. Since it 15 de-
fined as an “‘addressing mode’ in Zilog nomenclature, it will be so de-
scribed here. It is specific to the Z80 and was not provided on the 8080.

Bit addressing refers to the access mechanism to specified bits. The
Z30 is equipped with special instructions for setting, resetting and test-
ing specified bits i a memory location or a register. The specified byte
may be accessed through one of three addressing modes: register, regis-
ter-indirect, and indexed. Three bits are used within the opcode to select
one of eight bits.
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USING THE Z80 ADDRESSING MODES
Long and Short Addressing

We have already used relative jump instructions in various programs
that we have developed. They are self-explanatory. One interesting
question i1s: What can we do if the permissible range for branching 1s
not sufficient for our needs? On many microprocessors, the solution is
to use a so called Jong jump. This is simply a jump to a location which
contains an absolute or “‘long” jump specification:

JRNC, § + 3 BRANCH TO CURRENT ADDRESS
+3 IF C CLEAR
JP FAR OTHERWISE JUMP TO FAR

(NEXT INSTRUCTION)

The two-line program above will result in branching to location FAR
whenever the carry is set. In the case of the Z80, JP may be used instead
of JR to test all conditions and removes this problem.

Use of Indexing for Sequential Block Accesses

Indexing is primarily used to address successive locations within a
table. The restriction is that the maximum length must be fess than 256
so that the dispiacement can reside in an eight-bit index register,

We have learned to check for a character. Now we will search a table
of 100 elements for the presence of a **’. The starung address for this
table 1s called BASE. The table has only 100 elements. The program ap-
pears below: (see flowchart on Figure 5.6):

SEARCH LD IX, BASE

LD A, ¥

LD B, COUNT
TEST CP (IX)

JR Z, FOUND

INC IX

DEC B

JR Nz, TEST
NOTFND

An improved program will be presented below in the section on
Block Transfer, using DJ NZ,
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INITIALIZE
TCELEMENTD

I

READ NEXT
ELEMENT

YES
g STARFOUND

NG

POINTTO
NEXT ELEMENT

G

YES

NOT FOUND

Fig. 5.6: Character Search Flowchart

A Block Transfer Routine for Fewer Than 256 Elements

We will call “COUNT?®’ the number of elements in the block to be
moved. The number is assumed to be less than 256. FROM is the base
address of the block. TO is the base of the memory area where it should
be moved. The algorithm is quite simple: we will move a word at a time,
keeping track of which word we are moving by storing its position 11
the counter C, The program appears below:

BLKMOV LD IX, FROM

LD 1Y, TO
LD BC, COUNT
NEXT LD A (IX) GET WORD
LD (IY), A
INC IX
INC 1Y
DEC C

IR NZ, NEXT
Let us examine it;

BLKMOV LD IX,FROM
LD IY.,TO
LD C,COUNT

These three instructionsinitialize registers IX, 1Y, and C respectively, as
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f
0 1
AT ! MEMORY
| |
I
c{_count ! ; - R
1 BN
x| SOURCE } L | FROM
03! DESTINATION |

Fig. 5.7: Block Transfer: Initializing the Register

illustrated in Figure 5.7. Index register X is used as the source pointer,
and will be incremented regudarly. Index register 1Y is used as the desti-
nation pointer, and would be incremented regularly. Register C is load-
ed with the maximum number of elements to be transferred (limited to
256 since this 1s an eight-bit register) and will be decremented regularly.,
Whenever C decrements to zero, all elemenis have been transferred.
The next two instructions:

NEXT LD A, {(IX)
LD (IY), A

load the contents of the memory location pointed to by IX into the ac-
cumulator, then transfer it into the memory location pointed to by reg-
ister 1Y, In other words, these two instructions transfer an element of
the source block into the destination block. The two index registers are
then incremented:

INC IX
INC 1Y

And the counter register is decremented:
DEC C

Finally, as long as the counter 1s not 0, the program loops back to the
label NEXT:

JR  NZ, NEXT
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This is an example of the possible utilization of index registers. How-
ever, let us compare it to the same program written for another micro-
processor, the MOS Technology 6502, which is also equipped with an
indexing capability, but uses different conventions (i.e., has different
limitations on a generaf-purpose indexing facility). The program appears
below:

LDX #ANUMBER

NEXT LDA FROM, X
STA T0O, X
DEX
BNE NEXT

Without going mnto the details of the above program, the reader will
immediately notice how much shorter it is than the previous one. This is
because the index register X is used as a vanable displacement, whereas
FROM and TO are used as the fixed source and destination addresses.

This example should point out that although in theory indexing 15 a
powerful facilily, 1t does not necessarily lead to efficient coding, due to
the addressing limitations 1mposed on it in the case of various micro-
processors. Truly general-purpose indexing requires the possibility of a
16-hit displacement or address field as well as a [6-bif index register.

However, 1t should be noted that this specific problem is solved, in
the Z80 by the presence of specialized instructions. A general-purpose
biock transfer will now be described which can be implemented in just
four instructions. However, 1o be far to the Z80, let us suggest addi-
tional exercises for the reader:

Exercise 5.1: Wrue the block transfer program for the Z80 in the style
of the above program for the 6302, i.e., assunung rthat the index register
contains a displacement. Assume that the source and the destination
block are located 1 page 0, 1.e., ar addresses 0 to 256. Naturally, it will
be assumed that the number of elements within each block is smail
enough that they do not overlap,

Exercise 5.2: Assume now that the source and the destinarion blocks are
located anywhere in the memory, except that they are both within the
same page. Rewrite the above program in that case. (Is there a dif-
Jerence, Ie., does page zero play any role for the Z307)

Generalized Block Transfer Routine {More Than 256 Elements)

The register aliocation and the memory map are shown in Figure 5.8.
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The program is shown below:

LD BC, COUNT NUMBER OF BYTES

LD DE, TO DESTINATION ADDRESS
LD HL, FROM START ADDRESS

LDIR TRANSFER ALL BYTES

Memory used: 11 bytes
Timing: 21 cycles/byte transferred

The first instruction is:
LD BC, COUNT

It {oads the number of elements to be transferred (a [6-bit value} into
the register pair BC. The next two instructions initialize the register pair
DE and the register pair HL respectively;

LD DE, TO
LD HL, FROM

Finally the fourth instruction:
LDIR

performs the complete transfer.

LDIR is an guiomated block-transfer instruction. Its power should
be obvious from this exampie. LDIR results in the following sequence:
The contents of the memory location pointed to by H and L are trans-
ferred into the memory location pointed to by DE: (DE) =(HL). Next,
DE is incremented: DE = DE + |. Then, HL is incremented: HL =
HI + I. Next, BCis decremented: BC = BC — 1. If BC becomes 0, the
instruction is terminated. Otherwise, the instruction is repeated.

i
;! COUNTER c
D DESTINATION - FROM
H SOURCE -Lj*-r
REGISTERS COUNT

/ O
MEMORY
Fig. 5.8: A Block Transfer-Memory Map
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The value and power of the LDIR instruction shouid be apparent at
this point without further comments. Similarly, our search for the char-
acter “‘star*’can be improved by the use of an automated instruction,
CPIR, special to the Z80. The corresponding program appears below:

LD A, ™

Lb BC, COUNT

LD HL, STRING
STAR CPIR

JR Z, STAR
NOSTAR —

The first instruction ioads the accumulator with the code for the
character star. Next, the register pair BC is initialized to the count of
the number of words to be searched within the block:

LD BC, COUNT

The register pair H and L is set to the starting address of the block to
be searched (STRING). The automated instruction is then executed:

LD HL . STRING

CPIR
The CPIR instruction is an automated compare instruction. The con-
tents of the memory location specified by the address contained in H
and L is compared to the contents of the accumulator. If the compani-
son succeeds, then Z of the flags register will be set to i. Then, the reg-
ister pair H and L is incremented and the register pair BC 15
decremented. The instruction is repeated until either the pair BC goes to
0 or else the comparison succeeds. After the instruction CPIR is ex-
ecuted, it is therefore necessary to test the Z flag to determine whether
the comparison has succeeded (the CPIR might have looped through
64K words without success in the extreme case). This is the purpose of
the last instruction of the program:

JR Z, STAR

Exercise 5.3: Rewrite the above program so that a search proceeds
backwards. (Hint: Use the CPDR instruction) Continue the block
transfer until ‘“*’ is found.

Let us now develop a program combining the features of the two pre-
vious ones. We will implement the block transfer from location FROM
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to location TO, which shall stop automatically whenever an escape
character, “‘star’’, is found. The program appears below:

LD  BC, COUNT
LD HL, FROM

LD DE, TO
LD A% DELIMITER (ESCAPE CHAR)
TEST CP (HL) COMPARE WITH MEMORY

CHARACTER

IR Z,END END IF SUCCESS

LD} TRANSFER CHARACTER AND
UPDATE POINTERS AND
COUNT

JP  PE, TEST KEEP TESTING UNLESS DONE

P/V INDICATES WHETHER BC =0

The {irst three instructions of the program perform the usual nitiali-
zation, setting up the counter registers and the source and destination
pointers:

LD BC, COUNT
LD HL, FROM
LD DE, TO

The star character is deposited, “‘as usual’’ into the accumulator, so
that it can be compared to the character read from a memory location.

LD A%
This is exactly what is done by the next instruction:
TEST CP (HL)

The success or failure of the comparison is determined by testing the Z
bit. The Z bit will have been set if the comparison has succeeded. This is
performed by the next instruction:

JR Z, END
The next instruction 1s an automated transfer instruction:
LDI

This instruction transfers the character, and updates the pointers and
the count in a single instruction. LD! transfers the contents pointed to
by H and L into the memory location pointed to by D and E: (DE) =
(HL). It mcrements DE and HL:

DE = DE + |
Hi. = HL + 1
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Finally, it decrements BC: BC becomes BC - |. The particularity of
this instruction is that the P/V flag is cleared if BC decrements to **0”’
and set otherwise. This will be explicitly tested by the last instruction in
the program to determine whether exit should occur:

JP PE, TEST
Adding Two Blocks

A program will be developed here to add element! by element two
blocks starting respectively at addresses BLKI, and BLK2, and having
equal numbers of elements, COUNT. The program 1s shown below:

BLKADD LD IX, BLKI
LD Iy, BLK2
LD B, COUNT

XOR A

LOOP LD A (X +0)
ADC A (IY + ()
iD (1X), A
DEC IX
DEC 1Y
DEC B

JR NZ, LOOP

ST
i L 5

MEMORY

Fig. 5.9: Adding Two Blocks: BLK1==BLKI 4 BLK?
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The memory layout is shown 1n Figure 5.9, The program 1s straightfor-
ward. The number of eiements to be added 1s loaded into the counter
register B, and the two index registers X and 1Y are initialized to their
vahues BLK! and BLK2:

BLK ADD LD IX, BLKI
LD 1Y, BLK2
LD B, COUNT

The carry bit 1s then cleared in anticipation of the first addition:

XOR A
The first element is loaded mto the accumulator:
LOOP LD A (X + O

The corresponding element of BLK2 is then added to it:
ADC A, (Y +0)

and finally saved nto the element of BLK1:
LD (IX), A

The two pointer registers X and Y are decremented:

DEC X
DEC Y

as well as the counter register:
DEC B

As long as the counter register is not 0, the addition loop is executed:
JR NZ, LOOP

Exercise 5.4: Can you use the above progran to perform a 32-bit addi-
tion?

Exercise 5.5: Can you use the above program to perform a 64-bit addi-
tion?

Exercise 5.6: Modify the above program so that the result is stored in q
separate block startmg qt address BLK3.

Exercise 3.7: Modify the above program to perform a subtraction
rather than an addition.
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Exercise 5.8: Modify the onginal program above so that BLKI! and
BLK2 are at the top of each block rather than the bottont (see Fig.5.10).

FROM el
COUNT =N

SOURCE BIOCK
_____________ TRANSFER

A X
ELEMENT ] ! COUNTER

00—

DESTINATION BLOCK

Fig. 5.10: Memory Organization for Block Transfer

SUMMARY

A complete description of addressing modes has been presented. It
has been shown that the Z80 offers many possible mechanisms, and the
specific addressing modes available on the Z80 have been analyzed.
Finally, several application programs have been presented to demon-
strate the value of the various addressing mechanisms. Programming
the Z80 efficiently requires an understanding of these mechanisms.
They will be used throughout the programs in the remamnder of this
book.

EXERCISES

5.9: Wrute a program to add the first 10 bytes of a table stored at loca-
rion “‘BASE'’. The result will have 16 bits. (This is a checksun com-
putation}.

5.10: Can you solve the same problem without using the indexing
mode?
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5.11: Reverse the order of the 10 byies of this table. Store the result
al address "REVER"

5.12: Search the same table for its largest element. Store 1t at wiemory
address “LARGE".

3.13: Add together the corresponding elements of three tables, whose
bases are BASEl, BASE2, BASE3. The length of these tables is stored
at address “LENGTH"".
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INPUT/OUTPUT TECHNIQUES

INTRODUCTION

We have learned so far how 10 exchange information between the
memory and the various registers of the processor. We have learned 1o
manage the registers and 1o use a vanety of astructions to manipulate
the data. We must now learn to communicate with the external world,
This 15 called input/output.

Input refers to the capture of data from cutside peripherals (key-
board, disk, or physical sensor). Queput refers to the transfer of data
from the microprocessor or the memory Lo external devices such as a
printer, a CRT, a disk, or actual sensors and relays.

We will proceed in two steps. First, we will learn to perform the input/
output operations reguwired by common devices. Secondly, we will
fearn to manage several input/output devices simultaneously, i.e., lo
schedule them. This second part will cover, in particular, polling vs. in-
terrupts.

INPUT/OUTPUT

In this section we will learn to sense or to generate simple signals,
such as pulses. Then we will study techniques for enforcing or measur-
ing correct iming. We will then be ready for more complex types of in-
put/output, such as high-speed serial and parallel transfers.

The Z80 Input/Qutput Instructions

The 780 is equipped with a special set of input and output instruc-
tions. Most eight-bit microprocessors are not equipped with a special
set of input and output instructions, and use the general instruction set

460




INPUT/OUTPUT TECHNIQUES

on input/output devices. The Z80, like the 8080, is equipped with basic
mput and output instructions. However, the Z80 is also equipped with
additional 1/0 instructions. These will be described in more detail here
in order to facilitate understanding of the programs that will be pre-
sented throughout this section.

The basic input and output instructions are respectively: IN A, (n}
and OUT (n),A. These two instructions are inherited from the 8080.
They will respectively read or write one byte between the selected port
and the accumulator. The actual addressing process is such that the 1.0
device address *‘n’’ is gated on lines AO through A7 of the address bus,
while the contents of the accumulator appear on address lines A8 through
Al5. When only 256 devices are addressed, it may be necessary to zero
the contents of the accumulator explicitly if any of the address lines A8
through A15 may be decoded by an 1/0 device. In the simple examples
that follow, we will assume that fewer than 256 devices are present and
that they are not connected to addresses A8 through A5, so that it will
not be necessary to zero the contents of the accumulator explicitly, for
example prior to using the IN instruction.

A special input instruction: IN r, (C), allows using the contents of
register C as the [/0 device'address. When using this instruction, the
contents of register B automatically provide the top part of the address
(AB through A15). The specified register r is loaded from the specified
address. ‘‘r’” may be any of the usual seven general-purpose registers.

Generate a Signal

In the simplest case, an output device will be turned off (or on) from
the computer. In order to change the state of the output device, the pro-
grammer will merely change a level from a logical **0°" to a [ogical ““17",
or from ““I" to ““0"". Let us assume that an external relay is connected
to bit ‘0" of a register called *““OUTI1”’. In order to turn it on, we will
simply write a “‘1”" 1nto the appropriate bit position of the register. We
assume here that QUTI represents the address of this output register
within our system. A program which will turn the reiay on is:

TURNON LD A, 00000001B LOAD PATTERN INTO A
OUT (OUTI), A OUTPUT IT TO DEVICE

where QUT is the output instruction.

We have assumed that the state of the other seven bits of the register
OUTT is irrelevant. However, this is often not the case. These bits
might be connected to other relays. Let us, therefore, improve this sim-
ple program. We want to turn the reiay on, without changing the state
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of any other bit within this register. We will assumne that 1t 15 possible to
read and write the contents of this register. Qur improved program now
becomes:

TURNON IN A, (OUTH READ CONTENTS OF OUT!
OR 000000018 FORCE BIT “0" TO “i1” IN A
QUT (OUTI1), A

The program first reads the contents of location OUTI, then per-
forms an inclusive OR on its contents. This only changes bit position 0
to 1", and leaves the rest of the register intact. (For more details on
the OR operation, refer to Chapter 4.) This is iflustrated by Figure 6.1.

BEFORE AFIER

DAl Bus

RELAY

Gyt Qui:

Fig. 6.1: Turning on a Relay

Pulses

Generating a pufse is accomplished exactly as in the case of the /eve/
above. An output bst is first turned on, then later turned off, This re-
sults in a pulse. This is illustrated in Figure 6.2, This time, however, an
additional problem must be solved: one must generate the pulse for the
correct tength of time, Let us, therefore, study the generation of a com-
puted delay,

CPY QUIPLT PORT SIGNAL
REGISTER
[ S—
——i G e
———— 0 fe——
————] O b
s B I e N USEC e
JEE Y — !
P 4 e o — e ——————d —
[ ] -1
S

THE PROGRARY SBECT QUIPUT PORT

LOAD QUIFLT PORT REGISTER WITH PATIEAN
WAIT {LOOFFOR N USEC)

LOAD GUIFLT FORT WiTH ZERD

RETURN

Fig. 6.2: A Programmed Pulse
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Delay Generation and Measurement

A delay may be generated by software or by hardware methods. We
will here study the way to perform it by program, and later show how it
can also be accomplished with a hardware counter, called a program-
mable interval timer (PIT).

Programmed delays are achieved by counting. A counter register Is
foaded with a value, then 15 decremented. The program loops on itself
and keeps decrementing until the counter reaches the value *0’. The
total length of time used by this process will implement the required
delay. As an example, let us generate a delay of 82 clock cycles:

DELAY LD A3 A IS COUNTER
NEXT DEC A DECREMENT
JR NZ,NEXT NEXT TEST

This program loads A with the value 5. The next instruction decre-
ments A and the following instruction will cause a branch to NEXT to
occur as long as A does not decrement to “‘0”’. When A finally decre-
ments to zero, the program will exit from this foop and execute what-
ever instruction follows. The logic of the program is simple and appears
in the flowchart of Figure 6.3.

Let us now compute the effective delay which will be implemented by
the program. In Chapter 4 of the book, we will [ook up the number of
cycles required by each of these instructions:

LD in the immediate mode requires seven clock cycles. DEC will use
four cycles. Finally, JR will use 12 cycles except during the last itera-
tion, where it will use 7 cycles. When looking up the number of cycles
for JR in the table, verify that two possibilities exist: if the branch does
not occur, JR will only require seven cycles. If the branch does succeed,
which will usually be the case during the loop, then 12 cycles are re-
quired.

The timing is, therefore, seven cycles for the first instruction, plus 11
cycles for the next two, muitiplied by the number of times the loop will
be executed, minus an extra five-cycle delay for the last unsuccessful JR:

Delay = 7 + 16 X 5 — 5 = B2 ¢cycles.

Assuming a .5 microsecond cycle, this programming delay will be 41
microseconds,
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{

COUNTER=VALUE

v

DECREMENT COUNTER

ouT

Fig. 6.3: Basic Delay Flowchart

The delay loop which has been described 15 used by most input/output
programs. It should be well understood. Try to do the following exercises:

Exercise 6.1: What are the maxunn and the nuinnan delays whiel
can be nnplemented with these three istructions?

Exercise 6.2: Modify the program (o obtain a delay of abour 100 nucro-
seconds.

If one wishes to implement a longer delay, a simple solution is to add
extra instructions in the program, before DEC. The simplest way to do
50 is to add NOP instruction. (The NOP does nothing for four cycles.)

Longer Delays

Generating longer delays by software can be achieved through using
a wider counter. A register pair can be used to hold a 16-bit count. To
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simplify, let us assume that the fower count is “0’", The lower byte
will be loaded with “0”’, the maximum count, then go through a
decrementation loop. Since the first decrementation results in 00+=FF
and does not affect the 7 flag whenever it is decremented to 07, the
upper byte of the counter will be decremented by 1. Whenever the up-
per byte 1s decremented to the value 0, the program terminates. If
more precision is required in the delay generation, the lower count can
have a non-null value. In this case, we would write the program just as
explained and add at the end the three-line delay generation program,
which has been described above.

A 24-bit delay program appears below:

DEL24 LD B, COUNTH COUNTER HIGH (8 BITS)

DELI6 LD DE, —|

LOOPA LD HL, COUNTL COUNTER LOW

LOGPB ADD HL,DE DECREMENTIT
JR C, LOOPB GO ONUNTIL NULL
DINZ LOOPA DECREMENT B AND JUMP

Note that DE is loaded with ** — 1", and used to decrement the [6-bit
counter HL.

Naturally, still longer delays could he generated by using more than
three words. This is analogous to the way an odormeter works on a car.
When the right-most wheel goes from “*9" to **0”’, the next wheel to the
left is incremented by 1. This is the general principle when counting
with multiple discrete units.

However, the main disadvantage of this method 15 that when one is
counting delays, the microprocessor will be doing nothing else for hun-
dreds of milliseconds or even seconds. If the computer has nothing eise
to do, this 1s perfectly acceptable. However, in general the microcom-
puter should be available for other tasks, so that longer delays are nor-
mally not implemented by software. [n fact, even short delays may be
objectionable i a system if it is to provide some guaranteed response
time 1n given situations. Hardware delays must then be used, [n addi-
tton, if interrupts are used, timing accuracy may be lost if the counting
loop can be interrupted.

Exercise 6.3: Write g progrant (o unplement a 100 mis delaqy {tvpical of a
Teletvpe),

Hardware Delays

Hardware delays are implemented by using a programmabie interval
timer or “‘imer’” 1n shorl. A register of the timer 1s loaded with a value.
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The difference is that the timer will automatically decrement the
counter periodically. The period can usually be adjusted or selected by
the programmer. Whenever the timer has decremented to 0", it will
normally send an interrupt 1o the microprocessor. It may also set a
status bit which can be sensed periodically by the computer. The use of
interrupts will be explained later in this chapter.

Other timer operaling modes may include starting from 07 and
counting the duration of the signal, or, counting the number of pulses
recetved. When functioning as an wierval timer, the timer 1s said (o
operate in a one-shot mode. When counting pulses, it 15 said to operale
in a pulse counting mode. Some timer devices may even include mul-
tipie registers and a number of optional facilities which the programmer
can select.

Sensing Pulses

The problem with sensing pulses is the reverse of that of generating
pulses, and ncludes one more difficully: whereas an output pulise 1s
generated under program control, input pulses oceur asyichronously
with the program. In order io detect a pulse, two methods may be used:
polfing and tnrerrupts. 1nterrupls will be discussed later in thus chapter.

Let us now consider the polling technique. Using this techmque, the
program reads the value of a given input register continuously, testing a
bit position, perhaps bit 0. [t will be assumed that bit 0 is originally
Q" . Whenever a pulse 1s received, this bit will take the value **1"". The
program continuously monitors bit 0 until it takes the value **17". When
a ““I"" is found, the pulse has been detected. The program appears

below:
POLL IN A, {INPUT} READ INPUT REGISTER
ON BIT 0, A TEST FOR O

IR Z, POLL KEEP POLLINGIFO

Conversely, let us assume that the input line1s normally U7 and that
we wish to detect a ‘0"’ This 1s the usual case for detecting a START
bit, when monitoring a line connected to a Teletype. The program ap-
pears below:

POLL IN A, (INPUT READ INPUT REGISTER
BIT 0, A SETZFLAG
IR NZ, POLL TEST IS REVERSED
START

466



INPUT/QUTPUT TECHNIQUES

Monitoring the Duration

Monitoring the duration of the pulse may be accomplished in the
same way as computing the duration of an output pulse. Either a hard-
ware or a software technique may be used. When monitoring a pulse by
software, a counter 1s regularly incremented by |, then the presence of
the pulse s verified. If the puise is still present, the program loops upon
itself. Whenever the puise disappears, the count contained in the
counter register is used to compute the effective duration of the pulse,
The program appears below:

DURTN LD B, 0 CLEAR COUNTER
AGAIN IN A, (INPUT) READ INPUT

BIT 0,A MONITOR BIT 0

JR  Z, AGAIN WAIT FOR A 17
LONGER INC B INCREMENT COUNTER

IN A, (INPUT) CHECK BITO

BIT 0, A

JR NZ, LONGER WAIT FOR A “0”

Naturally, we assume that the maximum duration of the puise will
not cause register B to overflow, If this were the case, the program
would have tobe changed to take that into account (or else it wouldbe a
programming errori).

Since we now know how to sense and generate pulses, let us capture
or transfer larger amounts of data. Two cases will be distinguished:
senal data and parallel data, Then we will apply this knowledge to ac-
tual input/output devices,

PARALLEL WORD TRANSFER

It 15 assumed here that eight bits of transfer data are available in par-
allel at address “INPUT"" (see Fig. 6.4). The microprocessor must read
the data word at this location whenever a status word indicates that it is
valid. The status information will be assumed to be contained in bit 7 of
address “STATUS"". We will here write a program which will read and
automatically save each word of data as it comes in. To simplify, we
will assume that the number of words to be read is known in advance
and is contained in location **COUNT”. If this mformation were not
available, we would test for a so-called break character, such as a
rubout, or perhaps the character *“*"’. We have learned to do this al-
ready.
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Fig. 6.4: Parallel Word Transfer - The Memory

The flowchart appears in Figure 6.5. 1t is quite straightforward. We
test the status information until it becomes *“1"", indicating that a word
is reacdly. When the word is ready, we read it and save 1t at.an appropri-
ate memory location. We then decrement the counter and test whether
it has decremented to “‘0°". If so, we are finished; if not, we read the
next word. A simple program which implements this algorithm appears
below;

PARAL LD A, (COUNT) READ COUNT INTOA
B

LD LA B IS COUNTER
WATCH IN A, (STATUS) LOOK FOR ‘DATA READY’
TRUE
BIT 7, BIT 7 IS “1”" IF DATA READY

A
JR Z, WATCH DATA VALID?
IN A, (INPUT) READ DATA
PUSH AF SAVE DATA INTO STACK
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DEC B DECREMENT COUNT
JR NZ, WATCH DO IT UNTIL ZERO

[t 15 assumed that the “data ready’’ flag 15 automatically cleared when
STATUS is read.
The first two instructions initialize the counter register B:

PARAL LD A, (COUNT)
LD B, A
Note that there 1s no easy way to load B only from memory. One must
either [oad A, then transfer its contents to B, or load B and C
simultaneously,

POLLING OR SERVICE REQUEST

|

READ COUNT

WORD READY?

TRANSFER
WORD

v

DECREMENT
COUNTER

NO

COUNT =07

YES
¥
out

Fig. 6.5: Parallel Word Transfer: Flowchart
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The next three instructions of the program read the status mforma-
tion and cause a loop to occur as long as bit seven of the status register
is 0" (It is the sign bit, Le., bit N.)

IN A, (STATUS)
BIT 7, A “IN"’ DOES NOT SET THE FLAGS
JR Z, WATCH

When IP fails, data 1s valid and we can read it:
IN A, (INPUT

The word has now been read from address INPUT where it was, and
must be saved. Assuming that a sufficient stack area is available, we
can use:

PUSH AF

which saves A (and F)in the stack. If the stack 1s full, or the number of
words to be transferred 1s large, we couid not push them on the stack
and we would have 1o transfer them to a designated memory area, us-
ing, for example, an indexed instruction. However, this would require
an extra instruction to increment or decrement the index register.
PUSH is faster {only 1I clock cyclesi.

The word of data has now been read and saved. We will simply decre-
ment the word counter and test whether we are finished:

DEC B
IR NZ,WATCH

This nine-instruction program can be called a benchmark. A benchmark
program is a carefully optimized program designed to test the capabilities
of a given processor in a specific situation. Parallel transfers are one such
typical situation. This program has been designed for maximum speed and
efficiency. Let us now compute the maximum transfer speed of this pro-
gram. We will assume that COUNT is contained in memory. The duration
of every instruction is determined by inspecting the tables in Chapter Four

and is found to be the following:

PARAL LD A, (COUNT) 13
B

LD . A 4
WATCH IN A, (STATUS) 11
BIT 7, 8

A
JR Z, WATCH /12
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IN A (INPUT i1
PUSH AF {1
DEC B 4
IR NZ, WATCH 7/12

The mimmum execution tme 5 obtained by assuming that data is
available every time that we sample STATUS. In other words, the first
JP will be assumed to fail every ime. Timuing s then:

B+4+ (1 +8+7+ 11+ 4+ 12)* COUNT

Neglecting the first 17 cycles necessary to inthalize the counter regis-
ter, the time used to transfer one word is 64 clock cycles or 32
microseconds with a 2 MHz clock.

The maximum data transfer rate 1s, therelore:

{

——————— = 3] K bytes per second
32{10°%)

Exercise 6.4: Assunie thar the number of words 10 be trunsferred 1s
greater than 256. Modify the program accordingly and deternune the
unpact on the iaxumon daia transfer rate.

Exercise 68.5: Modify tihus program in arder to (rv 1o HHPEOVE 1S speed:
f—using JR instead of JP
2—usng DINZ
3eysing INI or IND

Was the above program truly optinal?

We have now learned to perform high-speed parallel transfers. Let us
consider a more complex case.

BIT SERIAL TRANSFER

A senial input s one in which the bits of informaton (0's or 1’si come
in successively on a line, These bits may come in at regular mtervals.
This 15 normally called synciironous transmission, Or, they may come
as bursts of data at random intervals. This is called asynchironous trans-
mission. We will develop a program which can work 1n both cases. The
principle of the capture of sequential data is simple: we will watch an
input line, which will be assumed to be line 0. When a bit of data is de-
tected on this line, we will read the bit in, and shift 1t into a holding reg-
ister. Whenever eight bits have been assembled, we will preserve the
byte of data into the memory and assemble the next one. In order to
simplify, we will assume that the number of bytes to be received is
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known in advance. Otherwise, we might, for example, have to watch
for a special break character, and stop the bit-seral transfer at this
learned to do that. The flowchart for this program ap-

point. We have
pears 11 Figure

SERIAL LD
LD
LD

LOOP IN
BIT
JR
SRL
RL
JR
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6.6. The program appears below:

C. 0 CLEAR INPUT WORD

A, (COUNT) LOAD B WITH BYTE COUNT
B, A

A, (INPUT) READ PORT

7, A BIT 7 1S STATUS, BIT 0 IS DATA

Z, LOOP WAIT FOR A 17

SHIFT DATA BIT INTO CARRY

A
C SAVE INPUT BINTO C
N

C, LOOP CONTINUE UNTIL 8 BITS IN

POLLING OR SERVICE REQUEST

¢

READ WORD COUNT

BIT READY?

STORE BIT
INCREMENT COUNTER

WORD-ASSEMBLED?

STORE WORD
RESET BiT COUNTER
DECREMENT WORD COUNT

WORD COUNT =Q?

YES

DONE

Fig. 6.6: Bit Serial Transfer—Flowchart
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PUSH BC SAVE WORD IN STACK
LD C, 0IH RESET MARKER BIT
DEC B DECREMENT BYTE CQUNTER

IR NZ, LOOP  ASSEMBLE NEXT WORD

This program has been designed for efficiency and will use new tech-
niques which we will explain (see Fig. 6.7).

The conventions are the following: memory location COUNT is as-
sumed 1o contain a count of the number of words Lo be transferred.
Register C will be used to assemble eight consecutive bits coming in.
Address INPUT refers to an input register. It is assumed that bit posi-
tion 7 of this register is a status flag, or a clock bit. When it is <0’ data
is not valid. When 1t is ‘17", the daia is valid. The data itself will be as-
sumed to appear in bit position 0 of this same address. In many m-
stances, the status mformation will appear on a different register than
the data register. It should be a simple 1ask, then, to modify this pro-
gram accordingly. In addition, we will assume that the first bit of data
1o be received by this program 15 guaranteed to be a *“1"’. It indicates
that the real daia follows. If this were not the case, we will iater see an
obvious modification to take care of it. The program corresponds ex-
actly to the flowchart of Fig. 6.6. The first few lines of the program im-
plement a waiting ioop which tests whether a bit is ready. To determine
whether a bt 15 ready, we read the input register, then test the zero b
(£). As long as this bit is *‘0”", the instruction JR will succeed, and we
will branch back to the loop. Whenever the status {or clock} bit
becomes true (“‘1"), then JR willfail and the next instruction will be
executed.

This mmtial sequence of mstructions corresponds to arrow 1 in Fig.
6.7,

AL this pomnt, the accumulator contams a **1"” in bit position 7 and
the actual data bt in bit position 0. The first data bit to arrive 15 going
tobea 1" However, the following bits may be either 0"’ or *‘1’’. We
fow wish 1o preserve the data bit which has been coliected in position (.
The mstruction:

SRL A

shif1s the contents of the accumulator right by one position. This causes
the right-most bit of A, which is our data bit, to fall into the carry bit.
We will now preserve this data bit into register C (this process s illus-
trated by arrows 2 and 3 in Fig. 6.7}

RLC
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COUNT X

STATUS

SERIAL
4 DATA
if]

INPUT

Fig. 6.7: Serial-to-Parallel: The Registers

The effect of this instruction is to read the carry bit into the right-most
bit position of C. At the same time, the left-most bit of C falls into the
carry bit. (If vou have any doubts about the rotation operation, refer (o
Chapter 41

It is important to remember that a rotation with carry operation will
both save the carry bit, here into the right-most bit position, and also
recondition the carry bit with the value of bit 7 {or bit 0).

Here, a “‘0’" will fall into the carry. The next istruction:

JR NC, LOOP
tests the carry and branches back to address LOOP as long as the carry
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15 0", This 1s our automatic b counter. It can readily be seen that, as a
resuit of the first RL, C wiil contain “‘00000001"" Eight shifts later, the
“U" will finally fall into the carry bit and stop the brancihing. This s an
ingenious way (o implement an automatic loop counter without having
to waste an instruction o decrement the contents of an index register.
This techmique is used 1n order 10 shorlen the program and improve s
performance.

When JR NC finally fails, 8 bits will have been assembled into C.
This value should be preserved in the memory. This s accomplished by
the next mstruction (arrowd on Fig, 6.7):

PUSH BC

We are here saving the contents of B and C into the stack. Saving into
the stack is possible only if there 15 enough room i the stack. Provided
that this condition 1s met, 1t ts usually the fastest way o preserve a word
in the memory, even though we save an unnecessary register {R), The
stack pointer is updated automatcally. If we were not pushing a word
in the stack, we would have to use one more instruction (o update a
memory pointer. We could equivalently perform an indexed addressing
operation, but that would also involve decrementing or Incrementing
the index, using extra time.

After the first word of data has been saved, there 1s no longer any
guarantee that the first data bit (o come in will be a **17°, it can be any-
thing. We must, therefore, reset the contents to **00000001°" so that we
can keep using it as a bit counter. This is performed by the next instruc-
on:

LD C 0H

Finally, we will decrement the word counter, since a word has been
assembled, and test whether we have reached the end of the transfer.
This 15 accomplished by the next two instructions:

DEC B
JR NZ, LOOP

The above program has been designed for speed, so that one may
capture a fast input stream of data bits. Once the program terminates,
it is naturally advisable to immediately read away from the stack the
words that have been saved Lhere and transfer them elsewhere into the
memory. We have already learned to perform such a block transfer in
Chapter 2,
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Exercise 6.6: Compute the maxunum speed ar which tius progrant will
be able to read serial biis. Look up the number of cyeles required by
every instruction i the table ai the end of this book, then compute the
time wich will elapse during execution of this program. To compute
the length of tune which will be used by a foop, simply inultiply the
toral duration of thus loop, expressed i microseconds, by the number
of times 1 will be executed, Also, when computing the maxunum speed,
assime that a data bir will be ready every tme thar the mpui locaiion is
sensed.

This program 1s more difficult to understand than the previous ones.
Let us look at it again {refer to Fig. 6.6) in more detail, examining some
Lrade-offs.

A bil of data comes into bit position 0 of “INPUT’" from time to
time. There might be, for example, three *‘[s’" in succession. We must,
therefore, differentiate between the successive bits coming in. This is
the function ol the “*clock™ signal.

The clock (or STATUS) signal tells us that the input bit is now valid.
Before reading a bit, we will therefore f{irst test the status bit. If the
status is 0", we must wail. 1f it is 17", then the data bit is good.

We assume here that the status signal 1s connected to bit 7 of register
INPUT.

Exercise 6.7: Can you explaun wiy bit 715 used for status. and but G for
data? Does it matter?

Once we have captured a data bil, we want to preserve it in a safe
locauion, then shift it feft, so that we can get the next bit.

Unfortunately, the accumulator 15 used to read and test both data
and status in this program. 1f we were to accumulate data in the accu-
mulator, bit position 7 would be erased by the stalus bit.

Exercise 6.8: Can you suggest ¢ way {0 1est stains without erasing the
confenis af the accunudaior (u speciad mstruction)? If thus can De done,
could we use the aecmulator 10 gecuniiate the successive bits conung
n? Can you improve speed by using an “automated jump’’?

Exercise 6.9: Rewrite the program, using the accumulator to store the
bits comng m. Compare it to the previous one in fernis of speed and
nuther of isiructions.

Let us address (wo more possible variations.
We have assumed that, in our particular example, the very first bit to
come in would be a special signal, guaranteed to be 17", However, in
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general, 1 may be anything.

Exercise 6.10: Modify the program above, ussuming that the very first
it ta come s valid dara (nor 1o be discarded), and can be 0" or
U HDe our Vi counter” showldd siill work correctly, if vou imitial-
ine wowith the correct vatue.

Finally, we have been saving the assembled word i the stack, 10 gam
time. We could naturally save it in a specified memory area.
Exercise 6.11: Modify the progrean aliove, and save the asseimbled word
i othe memory area startig al BASE.
Exercise 6.12: Modify the program above so that the rransfer will stop
when the characrer 'S s detected w1 the inmput streamn.

The Hardware Alternative

As usual for most standard input/cutpus algorithms, 1t 15 possible to
implement this procedure by hardware. The chip s called a UART . 1t
will automatcally accumulate the bits. However, when one wishes to
reduce the component count, this program, or a vanauon of it, will be
used 1nstead.

Exercise 6.13: Mudify the program, assutung thai data s available i bit
position 0 of location INPUT, while the status information is available
i bit position 0 of address INPUT + 1.

BASIC 170 SUMMARY

We have now learned to perform clementary mput/output opera-
tions as well as 1o manage a stream of parallel data or serial bits, We are
now ready 1o communcate with real mput/outpui devices.

COMMUNICATING WITH INPUT/OUTPUT DEVICES

{n order to exchange data with snpui/output devices, we will firsi
have o asceriain whether dawa s available, if we want (o read it; or
whether the device 1s ready 1o accept data, 1f we want 1o send 1it. Two
procedures may be used: handshaking and interrupts. Let us study
handshaking first.

Handshaking

Handshaking s generally used 1o communicale between any two
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DEVICE
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Fig. 6.8: Handshaking (Output)

asynchronous devices, i.e., belween any two devices which are not syn-
chronized. For example, if we want to send a word {0 a paraliel printer,
we must {irst make sure that the mput buffer of this printer 1s available.
We will, therefore, ask the printer: Are you ready? The printer will say
“ves' or “no.tt it is not ready we will wait, 1 it is ready, we will send
the data (sec Fig. 6.8).

DATA

MPL

CHATACTR

READY 7

YES MO

Al
REGISIER
R
RECISIER

(—

INPUT
DEVICE

Fig. 6.8a: Handshaking (Input)

Conversely, before reading data from an input device, we will verify
whether the data s valid. We will ask: “*Is data valid?”’ And the device
will tell us “ves" or “*no."” The “*ves or no’” may be indicated by status
bits, or by other means (see Fig. 6.8a).

As an analogy, whenever you wish to exchange information with
someone who 1s mdependent and might be doing something else at the
tme, you should ascertain that he s ready (o communicate with you.
The usual rule of courtesy 1s to shake his hand. Data exchange may then
follow. This is the procedure normally used 1n communicating with n-
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put/output devices,
Let us now iilustrate this procedure with a simple example.

Sending a Character To The Printer

The character will be assumed 10 be contained in memory location
CHAR. The program to print i appears below:

WAIT IN A, (STATUS)
BIT 7. A TEST IF READY
JR Z, WAIT OTHERWISE WAIT

LD A, (CHAR) GET CHARACTER
OUT (PRNTD), A PRINTIT
JR WAIT GO FOR NEXT

The print program 15 strarghtforward and uses the handshaking pro-

cedure which has been described above. The data paths are shown in
Figure 6.9.

STATUS

]
| S

- o
I

PRINTER

CHAR DAIA %

N2

C [ DATA l

MEMORY 780

Fig, 6.9: Printer—BData Paths

The character (called DATA,) is located al memory locauon CHAR.
First, the status of the printer 1s checked. Whenever bit 7 of the status
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register becomes 1, it indicates that the printer ready for input, i.e., its
input buffer is available. At this point, the character is loaded into
the accumulator, then outpui 1o the printer, via the accumulator. As
fong as the status bul remams ¢, the program will remam m a loop,
called WAIT in the program,

Exercise 6.14: How many instructions would be saved in the above pro-
gram by loading data directly into register C as well as outputing the con-
tents of register C directly?

Exercise 6.15: When using an actual printer, 1f 15 usually necessary io
send a siart order before using the device. Modify tius program to gen-
erate such an order, assuming thai the start conmand 15 obtamned by
wrining a I in but position 0 of the STATUS regisier, which is assumed
1o be budirectional.

Exercise 6.16: 1f the BIT wnstruction were not avaifable, could you use
another instruction instead, in line 2 of the program? If so, explain the
advantage of using the BIT instruction, if any.

Exercise 6.17: Modifv the program above ro print a string of n charac-
ters, where n will be assuned 1o be less than 255.

Exercise 6. 18: Modify the above program (o prutt a string of characters
until a “‘carrage-return’’ code is encountered,

Let us now complicate the output procedure by requiring a code con-
version and by outputting to several devices at a time:

Output To a Seven-Segmeni LED

A traditional seven-segment light-enutting diode (LED} may dispiay
the digits **0” through **9"", or even 0" through *‘F"’" hexadecimal by
lighting combinations of its 7 segments. A seven-segment LED 15 shown
in Figure 6.10. The characters that may be generated with this LED
appear 1 Figure 6.11.

The segments of an LED are labeled **a” through *‘g’ m Figure 6.10.

For example, ‘0" will be displayed by lighung the segments abedef,
Let us assume, now, that bii **0"" of an output port 1s connected Lo seg-
ment “‘a’', that **17" is connected 1o segment b’ and so on. Bt Tis
not used. The binary code required to light up fedeba (to display 0™
is, therefore, “0111111" In hexadecimal this is “*3F". Do the follow-
Ing exercise.
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™

S~
|~
M.\II
[

I
—— --..._J
T
‘--.~
"‘-..-‘ .--.
I
‘*--.. ——
h__,

Fig. 6.11: Hexadecimal Characters Generated
with a Seven-Segment LED
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Exercise 6.19: Compute the seven-segiment equivalent for the hexadeci-
mal digits 0"’ through “F”. Fill out the table below:

LED code} Hex|LED codelHex LED code LED code

3F

@

c.omr—acg

o O Q|
P

-1 N 7 W D

s o o

Let us now dispiay hexadecimal vaiues on several LED’s.

Driving Multiple LED’s

An LED has no memory. It will display the data only as long as 1ts
segment lines are active. In order to keep the cost of an LED display
{ow, the microprocessor will display information on euch of the LED’s
in turn. The rotation between the LED’s must be fast enough so that
there is no apparent blinking. This implies that the time spent from one
LED to the next is Iess than 100 milliseconds. Let us design a program
which will accomplish this. Register C will be used to point to the LED
on which we want to display a digit. The accumuiator is assumed to
contain the hexadecimal value to be dispiayed on the LED. Our first
concern Is to convert the hexadecimal value into its seven-segment rep-
resentation. In the preceding section, we have built the equivalence
table. Since we are accessing a table, we will use the indexed addressing
mode, where the displacement index will be provided by the hexadeci-
mai value. This means that the seven-segment code for hexadecimal
digit **3” is obtained by looking up the third element of the table after
the base. The address of the base will be called SEGBAS. The program
appears below:

LEDS LD E. A A CONTAINS HEX DIGIT
LD D,0 USE “DE" AS DISPLACEMENT
LD HL, SEGBAS USE “‘HL" AS INDEX
ADD  HL,DE TABLE ADDRESS
LD A, (ML) READ CODE FROM TABLE
LD B, 50H DELAY VALUE = ANY

LARGE NBR

DELAY OUT (C), A OUTPUT FOR SET DURATION

DEC B DELAY COUNTER
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IR NZ, DELAY KEEP LOOPING

LD A C C IS PORT NUMBER
DEC C

CP MINLED DONE FOR LAST LED?
JR NZ, OUT

LD BC, (MAXLED) IF SO, RESET C TO TOP LED
ouT RET

The program assumes that register C contains the address of the LED
to be illuminated next, and that the accumulator A contains the digit to
be displayed.

The program first looks up the seven-segment code corresponding to
the hexadecimal value contained in the accumulator. Registers D and E
are used as a displacement field, and registers H and L are used as a
16-bit index register. The hexadecimal digit is added to the base address
of the tabie:

LEDS LD E, A 7-SEGMENT CODE
LD D, 0
L.D HL, SEGBAS
ADD HL, DE

A delay loop is then implemented, so that the code obtained from the
table 1s displayed for an appropriate duration. Here the constant 50"
hexadecimal has been arbitrarily chosen:

LD A, {HL) READ CODE FROM TABLE
LD B, 50H DELAY VALUE

The delay is accomplished using a classic deiay loop. The first instruc-
tion:
DELAY OUT (C), A

outputs the contents of the accumulator at the /O port pointed to by
register C (the LED number). The next two instructions implement the
delay loop:

DEC B
JR NZ, DELAY
Once the delay has been implemented, we must sumply decrement the
LED pointer, and make sure that we loap around to the highest LED
address if the smallest LED address has been reached:

LD  AC
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DEC C

CP MINLED

JR NZ, OUT

LD BC, (MAXLED)
out RET

It is assumed here that the above program has been written as a sub-
routine, and the last instruction is then RET:*return from subroutine”

Exercise 6.20: It 1s usually necessary (o turn off the segment drivers for
the LED prior to displaying the digit. Modify the above program by
adding the necessary instructions foutpul 00" as the character code
prior (o oulpuiting the characier).

Evercise 6.21: What would happen to the display if the DELAY label
were moved up by one line position? Would this change the tuming?
Would this change the appearance of the display?

Exercise 6.22: You will notice that the first four instructions of the pro-
gram are, in fact, performing a 16-bit indexed memory access. How-
ever, if seems’clumsy. wirhout using rhe indexing mechanism. Assuimne
that the SEGBAS address is known in advance. Call SEGBSH the
high-order part of this address, and SEGBSL the low part of this ad-
dress. Store SEGBSH n the high-order part of the IX register. Now
write the above program. using the Z80 index-addressing mechanisni,
and using SEGBSL as the displacement field of the instrucion. What
are the advantages and disadvantages of (s approach?

Exercise 6.23: Assuming that the above program 1s a subroufine, you
will notice thar 1t uses registers B, D, E, H and L mternally, and modi-
Sies their contents, If the subrouting may freely use the memory area
designated by address T1, T2, T3, T4, T3, could you add instructions at
the beginning and at the end of this program which will guarantee that,
wihen the subroutine returns, the cantents of registers B, D, E, H and L,
will be the same as when the subroutine was entered?

Exercise 6.24: Same exercise as above, bur assume that the memory
area T1, etc., 1s not available to the subroutine. (Hint: remmember that

there 1s a built-in mechanisin i every computer for preserving informa-
tron i a chronological order.)

We have now solved common mput/cutput problems. Let us con-
sider the case of a common peripheral: the Teletype.

484




INPUT/OUTPUT TECHNIQUES

Teletype Inpul-Output

The Teletype 1s a serial device. It both sends and receives words of in-
formation 1n a senal format. Each character is encoded in an 8-bit
ASCII format (the ASCH table appears at the end of this book}. {n ad-
dition, every character is preceded by a *‘start’ bit, and terminated by
two “'stop™ bits. In the so-called 20-milliamp current loop interface,
which 1s most frequently used, the state of the line is normally a “*1'",
This is used to indicate to the processor that the line has not been cut. A
startisa *[’'-to-"0"" transition. It indicates to the recerving device that
data bits follow. The standard Teleiype 15 a [0-characters-per-second
device. We have just established that each character requires 11 bits.
This means that the Teletype will transmit 110 bits per second. It is said
to be a 110-baud device. We will design a program to serialize bits out
to the Teletype at the correct speed.

START PULSE 2 STOP PULSES

et oS
STOP 1, STOP 2,4
H

MARK ~=~— l
KS?ACE ~~~~~ YL eTelelsle Ta] o "

9.09 ta5 ——Fper—r]
i

i
Fig. 6.12: Format of a Teletype Word

One-hundred-and-ten bits per second implies that bits are separated
by 9.09 milliseconds. This will have to be the duration of the delay foop
to be implemented between successive bits, The format of a Teletype
word appears in Figure 6.12. The flowchart for bit Impul appears in
Figure 6.13. The program follows;

TTYIN IN A, (STATUS)

BIT T, A DATA READY?
JR Z, TTYIN OTHERWISE WAIT
CALL DELAYI CENTER QF PULSE

IN A, (TTYBIT) START BIT
OUT (TTYBIT), A ECHOIT
CALL DELAYSY NEXT PULSE (9 MS)
LD B, O08H BIT COUNT

NEXT IN A, (TTYBITY READ DATA BIT
OUT (TTYBIT), A ECHOIT
SRL A SAVE IT IN CARRY
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TTYIN

START BiT?

walf 4.5 ms
ECHO START BIT

3

WAIT 2.09 ms

A
SHIFT N DATA BIT
ECHOIT

CHARACTER
ASSEMBLED?
l ves

WAIT2.09ms

QUTPUT STCPBIT

WAIT 13.59 ms 3

Fig. 6.13: TTY Input with Echo
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RR C PRESERVE IT INTO C
CALL DELAY®Y NEXT PULSE (9 MS)
DEC B DECREMENT BIT COUNT

IR NZ, NEXT
IN A, (TTYBIT) READ STOP BIT
OUT (TTYBIT), A ECHOIT

CALL DELAY9 SKIP SECOND STOP
RET

Fig. 6.14: Teletype Program

Let us examine the program in detail. First, the status of the Teletype
must be tested to determine if a character 1s available;

TTYIN IN A, (STATUS)
BIT 7, A
IR Z, TTYIN
The “*BIT"" instruction is a useful Z80 facility which allows testing
any bit in any data register. It does not modify the contents of the regis-
ter under test, The Z flag is set if the specified bit is 0, and reset other-
wise.
This program will, therefore, foop until the status finally becomes
1", It 15 a classic polling ioop.
Note also that, since the STATUS does not need to be preserved, we
could advantageously use

AND  10000000B
tnstead of

BIT 7, A
However, using the AND instruction destroys the contents of A
{acceptabie here).

When optimizing a program, remember that each new instruction
may introduce side-effects,

Next, a 4.5 ms defay is implemented in order to sense the start bit in
the middle of the pulse.

CALL DELAY!
where DELAY1 is the delay subroutine implementing the required

delay. The first bit to come 15 the start bit. It should be echoed to the
Teletype, but otherwise ignored. This is done by the next instructions:

TTYIN IN A (TTYBIT)
OUT (TTYBIT), A
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We must then wait for the first data bit. The necessary delay 1s equal to
9.09 milliseconds and 1s implemented by a subroutine:
CALL DELAY9

Register B 15 used as a counter and 1s loaded with the value 8 1n order 10
capture the 8 data bits:

LD B, 08H

Next, each data bit will be read 1n turn into the accumulator, then
echoed. It 15 assumed to arrive in bit position 0 of the accumulator. The
data bit will then be preserved into register C, where it will be shifted .
The transfer from A to C is performed through the carry bit:

NEXT IN A, (TTYBIT
OUT (TTYBIT), A

SRL A
RR C
This sequence is illustrated in Figure 6.15.
A 1/0 SPACE
®
A ¢
X
% -t
STATUS TELETYPE
DATA e
B < TTYBIT
COUNTER l —»{ X

Fig. 6.15: Teletype Input

Next, the usual 9 millisecond delay is implemented, the bit-counter 1s dec-
remented, and the loop is entered again as jong as the eight bits have
not been captured:

CALL DELAY?Y

DEC B

IR NZ, NEXT
Finally, the STOP bit is captured, and echoed. It 1s usually sufficient 1o
send a single STOP bit, however both could be sent back using two
more instructions:

IN A, (TTYBIT
ouT (TTYBIT), A

CALL DELAY9
RET
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The program should be examined with attention. The logic 1s quite
simple. The new fact is that whenever a bit is read from the Teletype (at
address TTYBIT), it is echoed back to the Teletype. This is a standard
feature of the Teletype. Whenever a user presses a key, the information
is transmitted to the processor and then back to the printing mechanism
of the Teletype. This verifies that the transmission lines are working
and that the processor is operating when a character is, indeed, printing
correctly on the paper.

ENTER ENTER
¥ 7
SEND START coSuENTTsaR”To
BiT ELEVEN
v -
SEND DATA STTRUT
BITS A i”
% DELAY
SEND STOP 9,1 wmsgc
BIT
¥ ND
EXIT
y YES
RET

Fig. 6.16: Teletype Output

Exercise 6.25: Wrue the defay routine which results i the 9.09 millisec-
ond delay. (DELAY subroutine)

Exercise 6.26: Using the example of the program developed above,
wrife a PRINTC program which will print on the Teletype the contents
af memory location CHAR (see Fig. 6.15).

The answer appears below:

PRINTC LD B, 11 COUNTER = 11 BITS
LD A, (CHAR) GET CHARACTER
OR A CLEAR CARRY = START BIT
RLA CARRY INTC A
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NEXT OUT (TTYBIT), A OUTPUT

CALL DELAY

RRA NEXT BIT

SCF CARRY = | (STOP BIT)
DEC B BIT COUNT

JR NZ, NEXT

RET

Register B is used as a bit counter for the transmussion. The contents
of bit 0 of A will be sent to the Teletype line (*“TTYBIT "}, Note how
the carry is used to provide a minth bit (the START bit}. Also, note that
the carry is cleared by:

OR A
At the end of the program, the carry 15 set to one by:
SCF

in order to generate a stop bit.

Exercise 6.27: Modify the program so that it waits for o START bit in-
stead of a STATUS bit.

Printing a String of Characters

We will assume that the PRINTC routine (see Exercise 6.20} takes
care of printing a character on our printer, or display,or any output de-
vice. We will here print the contents of memory locations (START) to

{(START + N).
The program is straightforward (see Figure 6.17):
PSTRING LD B, NBR LENGTH OF STRING
LD HIL., START BASE ADDRESS
NEXT LD A, (HL) GET CHARACTER
CALL PRINTC PRINT IT
INC HL NEXT ELEMENT
DEC B
JR NZ, NEXT DO IT AGAIN
RET
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MEMORY

B A

COUNTER

START 40 2

TOPRINTER
CUTRUT REGISTER

Fig. 6.17: Printing a Memory Block

PERIPHERAL SUMMARY

We have now described the basic programming techniques used to
communicate with typical input/output devices. [n addition to the data
transfer, 1t will be necessary to condition one or more controi registers
within each 170 device in order to condition the transfer speeds, the in-
terrupt mechamsm, and the various other options correctly. The man-
ual for each device should be consuited. (For more details on the spe-
cific algorithms for exchanging information with all the usual peripher-
als, the reader is referred to our book, C207, Microprocessor Inierfac-
tng Techniques.)

We have now learned to manage single devices. However, in a real
system, all peripherals are connected to the buses . and may request
service simuftaneously. How are we going to schedule the processor’s
time?

INPUT/OUTPUT SCHEDULING

Since input/output requests may occur simuitaneously, a scheduling
mechanism must be implemented in every system to determine in which
order service will be granted. Three basic input/ouiput techniques are
used, wiuch can be combined with each other. They are; polling, inter-
rupt, DMA. Polling and interrupts will be described here. DMA is
purely a hardware technique, and as such will not be described here. (It
1s covered in the reference books €201 and C207.)
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Polling

Conceptually, polling is the simplest method for managing muitiple
peripherais. With this strategy, the processor inlerrogates the devices
connected to the buses in turn. If a device requests service, the service
is granted. If 1t does not request service, the next peripheral 1s exam-
ined. Polling is used not just for the devices, but for any device service
routine.

As an example, if the sysiem is equipped with a Teletype, a tape re-
corder, and a CRT display, the polling routine would interrogate the
Teletype: “*Do you have a character to transmit?"’ It would interrogate
the Teletype outpui routine, asking: ‘Do you have a character 1o
send?’’ Then, assuming that the answers are negative so far, it would
interrogate the tape-recorder routines, and finally the CRT display. If
only one device is connected to a system, polling will be used as well Lo
determine whether it needs service. As an example, the flowcharts for
reading a paper-tape reader and for printing on a printer appear in Fig-
ures 6.20 and 6.21.

MEMORY
t DATA BUS

MPU )> POLLING

e e e e e - — |
MPL - - INTERRUPT
T o] [Tvo )
INTL (i L
i
HOLD FAEMORY [ DMA ]
114 )
AMPU 7 : DMA
H ¢
i e} /0
L o e o  — — —

Fig. 6.18: Three Methods of 1/0 Control
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Example: a polling loop for devices |, 2, 3, 4 {see Fig. 6.19):
POLL4 IN A, (STATUS 1) GETSTATUS OF DEVICE !

BIT 1, A SERVICE REQUEST?
CALL NZ, ONE BIT7 = 17

IN A, (STATUS2) DEVICE 2

BIT 7, A

CALL NZ,TWO

IN A, (STATUS3I) DEVICE 3
BIT 7, A

CALL NZ, THREE

iN A, {(STATUS4) DEVICE 4

BIT 7. A
CALL NZ, FOUR
JR POLL4 NO REQUEST, TRY AGAIN

Bit 7 of the status register for each device 1s **1"” when 1t wants serv-
ice. When a request is sensed, this program branches to the device
handler, at address ONE for device I, TWO for device 2, etc.

A fine point 1s worth noting here. For ¢ach nstruction, it is mpor-
tant to verify carefully the way in which it affects the condition codes.
1t should be noted that the IN A instruction does not change the flags.
If an IN r instruction has been used instead of an IN A instruction, bit 7
of the mput would automatically be reflected as the SIGN bit in the
flags register. The special instruction “‘BIT 7,A”’ would become un-
necessary. However, because the IN A instruction does not change the
flags, this extra test must be included in the program.

In some hardware implementations, input/output devices may be
treated as memory devices for purposes of addressing. This i1s called
memory-mapped input/output. In this case, the IN mnstruction would
be repiaced by an LD instruction and the rest of the program would be
as above, since LD does not affect the flags.

The advantages of polling are obvious: it 1s simple, does not require
any hardware assistance, and keeps all input/output synchronous with
the program operation. [ts disadvantage is just as obvious: most of the
processor’s time Is wasted looking at devices that do not need service.
In addition, by wasting so much time, the processor might give service
to a device too late.

Another mechanism is, therefore, desirable in order to guarantee that
the processor’s time can be used to perform useful computations rather
than polling devices needlessly all the time, However, let us stress that
polling is used extensively whenever a microprocessor has nothing bet-
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A
REQUESTING
SERVICE?

YES

SERVICE ROUTINE
FORDEVICE A

B
REQUESTING
SERVICE?

SERVICE ROUTINE
FQRDEVICER

<
REQUESTING
SERVICEY

SERVICE ROUTINE
NO FORDEVICEC

|

Fig. 6.19: Polling Loop Flowchart

Y

SET READER
ENABLE ON

r

READY?
NC

YES

READ CHARACTER

Fig. 6.20: Reading from a Paper-Tape Reader
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NO

YES

LOAD PUNCH
OR PRINTER
BUFFER

¥

TRANSMIT
DATA

Fig. 6.21: Printing on a Punch or Printer

ter to do, as it keeps the overall orgaruzation simple. Let us examine the
essential alternative 1o polling: interrupts.

Enterrupts

The concept of interrupts 1s illustrated 1n Figure 6.18. A special hard-
ware line, the interrupt line, is connected to a speciglized pin of the mi-
croprocessor. Multiple input/output devices may be connected to this
interrupt line. When any one of them needs service, it sends a level or a
pulse on this line, An interrupt signal is the service request from an in-
put/output device to the processor. Let us examine the response of the
processor to this interrupt.

In any case, the processor completes the instruction that it was cur-
rently executing; otherwise, this would create chaos inside the micro-
processor. Next, the microprocessor should branch to an interrupt-han-
dling routine which will process the interrupt. Branching to such a sub-
routine implies that the contents of the program counter must be saved
on the stack. An wnrerrupt must, therefore, cause the automatic preser-
vation af the program counter on the stack. In addition, the flag regis-
ter F should be aiso preserved automatically, as its contents will be
altered by any subsequent instruction, Finally, if the interrupt-handling
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routine shouid modify any mnternal registers, these internal regisiers
should also be preserved on the stack (see Figures 6.22 and 6.23).

5P e PCL

PCH

Fig, 6.22: Z80 Stack After Interruption

\_/\/

lnielm]olm

e N\

Fig. 6.23: Saving Some Working Registers

After all these registers have been preserved, one can branch to the
appropriate interrupt-handling address. At the end of this routine, all
the registers should be restored, and a special interrupt return should be
executed so that the mamn program will resume execution. Let us exam-
ine 1n more detail the mterrupt lines of the Z80.

ZB0 Interrupts

An interrupt 15 a signal sent to the microprocessor, which may re-
quest service at any time and is asynchronous to the program. When-
ever a program branches to a subroutine, such branching is synchiron-
ous to program execution, i.e., scheduled by the program. An inter-
rupt, however, may occur at any time, and will generally suspend the
execution of the current program {without the program knowing it).
Because 1t may happen at any time relative to program execution, it s
called asynchronous.

Three interruption mechanisms are provided on the Z80: the bus re-
quest (BUSRQ), the non-maskable mterrupt (NMI) and the usual inter-
rupt (INT).

Let us examine these three types.
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The Bus Request

The bus request s the highest priority interrupt mechamism on the
Z80. The interrupt sequence for the Z8( 1s shown in Figure 6.24. As a
general rule, no mterrupt will be sensed by the Z80 until the current
machine cycle 15 completed, The NMI and INT interrupts will not be
taken into account until the current instruction is finished. However,
the BUSRQ will be handled at the end of the current machine cycle,
without necessarily waiing for the end of the instruction. It is used for

¥ig. 6.24: Interrupt Sequence
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a direct memory access (DMA), and will cause the Z80 to go into DMA
mode (see ref. C201 for an explanation of the DMA mechanism). If the
end of an instruction has been reached, and if any NMI or INT were
pending, they would be-memorized internally in the Z80 by setting spe-
cialized flip-flops: the NMI flip-flop, and the INT flip-flop. In DMA
mode, the Z8Q suspends operation and releases its data-bus and
address-bus in the high-impedance state. This mode is normally used by
a DMA controller to perform transfers between a high-speed input-
output device and the memory, using the microprocessor data-bus and
address-bus. The end of a DMA operation 1s indicated to the Z80 by
BUSRQ changing levels. At this point, the Z80 will resume normal
operation. In particular, it will first check whether its internal NMI or
INT flip-flops had been set and, if so, execute the corresponding inter-
rupts.

The DMA should normally not be of concern to the programmer, un-
less timing 1s important. If a DMA controller is present in the system,
the programmer must understand that the DMA may delay the
response to an NMI or an INT.

The Non-Muaskable Interruprt

This type of interrupt cannot be inhibited by the programmer. It is
therefore said to be non-maskable, hence its name. It will always be ac-
cepted by the Z80 upon completion of the current instruction, assuming
no bus request was received. (If an NMI is received during a BUSRQ,
it will set the internal NMI flip-flop, and will be processed at the end of
the instruction following the end of the BUSRQ.)

‘The NMI will cause an automatic push of the program counter into
the stack and branch to address 0066H: the two bytes representing the
address 0066H will be installed in the program counter. They represent
the start address of the handling routine for the NMI (see figure 6.25).

This interrupt mechanism has been designed for speed, as it is used in
case of “‘emergencies’’. Therefore, it does not offer the flexibility of the
maskable interrupt mode, described below,

Note also that an interrupt routine must have been loaded at address
0066H prior to using the NMI.

NMI will first cause:

SP =+—S8P - |

{SP) «— PCH

SP -—sp 1 | PWRFC
(SP) =— PCL
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MEMORY
IFFi IFF2
0 ]—{] 0066
NA
HANDLER

L=
O

- PC 4 stock

Fig. 6.25: NMI Forces Autematic Vectoring

Then, NMI causes an automatic restart at location 0066H. The com-
plete sequence of events is the following:

PC —sssme- STACK (preserve program counter}
IFFp e IFEF2 {preserve [FF)

4] e [EE] (reset IFF}

JUMP TO 0066H {execute inierrupt handler)

Also, the status of interrupt-mask-bit flip-flop (IFF1) at the time that
NMI was received is preserved automatically into IFF2. Then, IFFl 15 re-
set in order to prevent any further interrupts. This feature is important to
prevent the loss of lower-priority INT”s and simplifies the external hard-
ware: the status of a pending INT is preserved internally in the Z80.

The NMI interrupt is normally used for high priority events such as a
real-time clock or a power failure.

‘The return from an NMI is accomplished by a special instruction, RETN:
“return from non-maskable interrupt.” The contents of IFF1 are restored
from IFF2, and the contents of the program counter PC are restored from
their location in the stack. Since IFF1 had been reset during execution
of the NMI, no external INT’s could be accepted during the NMI
(unless the programmer uses an EI instruction within the NMI routine):
there has been no loss of information.

Upon termination of the interrupt handler, the sequence is:

[FF2  swweeeemweie IEE] {restore IFF)
STACK - P (restore program counter}

Note that, once IFF1 is restored, maskable interrupt enable status is
restored.
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Interrupt

The ordinary, maskable,interrupt INT may operate in one of three
modes. They are specific to the Z80, as the 8080 is equipped with only a
single mterrupt mode. The ordinary interrupt INT may also be masked
selectively by the programmer. Setting the interrupt flip-flops IFF1 and
IFF2 to a ““I"" will authorize interruptions. Setting them to a **0”’
{masking them) will prevent detection of INT. The EI instruction is
used to set them, and the DI instruction is used to reset them. [FFI and
IFF2 are set or reset simultaneousty. During execution of the El and DI
instructions, INT’s are disabled in order to prevent any loss of informa-
tion.

Let us now examine the three interrupt modes:

Interrupt Mode 0

This mode is identical to the 8080 interrupt mode. The Z8§0 will
operale 1n nterrupt mode 0 either when initially started (when the RE-
SET signal has been applied) or else when an IMO instruction has been
executed. Once mode O has been set, an interrupt will be recognized if
the interrupt enable flip-flop IFF1 1s set to 1, provided no bus-request
or non-maskable interrupt occurs at the same time. The interrupt will
be detected only at the end of an instruction. Essentially, the Z80 will
respond to the interrupt by generating an IORQ (and an M1 signal),
and then do nothing, except wait.

It is the responsibility of an external device to recognize the IORQ
and M1 (this is called an interrupt acknowledge or INTA) and to place
an instruction on the data-bus. The Z80 expects an instruction io be
placed on its data bus by the external device within the next cycle. Typi-
cally, an RST ¢r a CALL instruction is placed on the bus. Both of these
instructions automatically preserve the program-counter in the stack,
and cause branching to a specific address. The advantage of the RST in-
struction is that it resides within a single byte, i.e., it executes rapidly.
Its disadvantage is to branch to only one of eight possible locations in
page zero (addresses O through 255). The advantage of the CALL in-
struction is that it is a general-purpose branch instruction which speci-
fies a full 16-bit address. However, it requires three bytes and therefore
executes less rapidly,

Note that once the interrupt processing starts, all further interrupts
are disabled. IFF1 and IFF2 are automatically set to “0’’. It is then the
responsibility of the programmer to insert an EI instruction (Enable In-
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terrupts) at the appropriate focation within his program if he wishes to
enable interrupts, and, in any case, before returning from the interrupt.

The detailed sequence corresponding to the mode O interrupt is
shown in Figure 6.26.

.W:?E 0 HADDE 1 MODE 2
TISABLE INTERRUPTS DISABLE INTERRUFTS DILABLE INTERRUPIS
P IFFR =0 1FF1IFF2 = O IFF1,iFF2 = 0
READ FIRST BYTE [ PC— STACK } i READ VECTOR 1
GQF INSTRUCTION
{1, HORCLOW) * *
5 LUMP 10 0G38H i l PG ~mSTACK !
.
[ .
* FORM VECTOR
WAORE BYTES £1 (ENABLE INTERRUFTS) TABLE ADORESS:
REQUIRED FOR REG + VECTOR
FNSTRUCTION %
RET
STACK - PG GET STARTING
FEAD NEXT BYTE ABDRESS FROM
VECTOR TABLE
[HORMAL MEM. READ
WiTH PC STATIONARY) L
-
ILIP 1O NEW LOCATION
START INTERRUPT
CALLOR RST SERVICE ROUTINE
.
.
P STACK N
]
1 £ (ENABLE NIERRUFTS)
! EXECUTE INSTRUCTION l

€1 {(ENABLE INTERRUPTS)
RET
STACR—»PC

Fig. 6.26: Interrupt Modes

RET
STACK—»PC

FOR CALL
QR R5T
CHLY

The return from the interrupt is accomplished by an RETI instruc-
tion. Let us remind the programmer at this point that he/she is usually
responsibie for explicitly clearing the interrupt which has been serviced
on the 1/0 device, and always for restoring the imterruptdisable flag in-
side the Z80. However, the peripheral controller may use the INTA sig-
nal to clear the INT request, thus freeing the programmer of this chore.

in addition, should the interrupt-handling routine modify the con-
tents of any of the internal registers, the programmer is specifically re-
sponsible for preserving these registers in the stack prior to executing
the interrupt-handling routine. Otherwise, the contents of these regis-
ters will be destroyed, and when the interrupted program resummes exe-
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cution, 1t will fail. For example, assuming that registers A, B, C, D, E,
H and L will be used within the mterrupt handler, they will have to be

saved (see Figure 6.27). A

D DECREASING
ADDRESSES

F

A

PCL
PCH

STACK
Fig. 6.27: Saving the Registers

The corresponding program is:

SAVREG PUSH AF
PUSH BC
PUSH DE
PUSH HL

Upon completion of the interrupt-handling routine, these registers must
be restored. The interrupt handler will terminate with the following se-
quence of instructions:

POP HL
POP DE
POP BC
POP AF
El (unless EI was used earlier in

the routine)

Additionally, if registers IX and 1Y are used by the routine they must
also be preserved, then restored.
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Interrupt Mode |

This interrupt mode is set by executing the IMI instruction. It is an
automated interrupt handler which causes an automatic branch to loca-
tion 0038H. It is therefore essentially analogous to the NMI interrupt
mechanism except that it may be masked. The Z80 automatically pre-
serves the contents of PC into the stack (see Figure 6.28).

o INT 0
avlomatic 38 INTERRUPT
veciorsng ROUTINE
PROGRAM 5P
PCL LOCATION OF
ot 1
wlomalic > oCH }%N?ERQUPTION
preserve
] ST
0038 Ak
{outomatic)

MEMORY

Fig. 6.28: Mode 1 Interrupt

This automated interrupt response, which “*vectors® all interrupts to
memory location 38H, stems from the earfy 8080's requirement to
minimize the amount of external hardward necessary for using inter-
rupts. Its possible disadvantage is to cause a branch to a single memory
location, In case several devices are connected to the INT line, the pro-
gram starting at location 38H will be responsible for determining which
device requested service. This problem will be addressed below,

One precaution must be taken with respect to the timing of this inter-
rupt: when performing programmed input/output transfers, the Z80
will ignore any data that may be present in the data bus during the cycle
which follows the interrupt (the mterrupt acknowledge cycle).
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Interrupt Mode 2 (Vectored Interrupts)

This mode 15 set by executing an IM2 nstruction. It is a powerful
mode which allows automatic vectoring of interrupts. The interrupt
vector 1s an address supplied by the peripheral device which generated
the interrupt, and used as a memory pointer to the start address of the
interrupt-handling routine. The addresssing mechanism provided by
the Z80 in mode 2 is indirect, rather than direct. Each peripheral sup-
plies a seven-bit branching address which is appended to the 8-bit ad-
dress contained in the special { register in the Z80. The right-most bit of
the final 16-bit address bit { is set to ““0”’. This resulting address points
to an entry in a table anywhere 1n the memory. This table may contan
up to 128 double-word entries. Each of these double words is the ad-
dress of the interrupt handler for the corresponding device. This is ii-
fustrated in Figures 6.29 and 6.30.

f———INT
DEVICE 2X VECTOR
7 BIT VECTOR O ~
USTART
ADDRESS  —
—{j
{

DEVICE
HANDLER

MEMORY
Fig. 6.29: Mode 2 Interrupt

The interrupt table may have up to 128 double-word entries.

In this mode, the Z80 also automatically pushes the contents of the
program counter into the stack. This (s obviously necessary, since PC
will be reloaded with the contents of the interrupt table entry corre-
sponding to the vector provided by the device.

Interrupt Overhead

For a graphic comparison of the poliing process vs. the interrupt
process, refer to Figure 6.18, where the polling process is illustrated on
the top, and the interrupt process underneath. It can be seen that in the
polling technique the program wastes a lot of time waiting.
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0152
| = pgoeﬂ
e | o1 : 22 VECTOR
] TABLE 4.»0500
sp 0 , ® ) /7////////////
BEFORE . / ///
___
CONTROLLER | o s /7// /// 2
FC 20 ] o [
sp o . b ]

AFTER

-
o

MEMORY

Fig. 6.30: Mode 2~ A Practical Exampie

Using interrupts, the program 1s interrupted, the interrupt 1s serviced,
then the program resumes. However, the obvious disadvaniage of an
interrupt is to introduce several additional instructions at the beginning
and at the end, resulting in a delay before the first instruction of the de-
vice handler can be executed. This 1s additional overhead.

Exercise 6.28:Using the tables indicating the number of cycles per in-
struction, in Chapter 4, compute how much time will be lost to save and
then restore registers A, B, D, H.

Having clarified the operation of the interrupt lines, let us now con-
sider two tmportant remaining problems:

|—How do we resolve the problem of multiple devices triggering an
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interrupt at the same time?
2-How do we resolve the problem of an wterrupt occurring while
another interrupt is being serviced?

Muitiple Devices Connected to a Single Interrupt Line

Whenever an interrupt occurs, the processor branches to a specified
address, Before it can do any effective processing, the interrupt han-
dling routine must determine which device triggered the interrupt. Two
methods are available to identify the device, as usual: a software
method and a hardware method.

In the software method, polling is used: the microprocessor interro-
gates each of the devices in turn and asks them, *Did you trigger the in-
terrupi??’ If the answer Is negative, it interrogates the next one. This
process is illustrated in Figure 6.31. A sample program Is:

POLINT IN A, (STATUSI) READ STATUS
BIT 7,A DID DEVICE REQUEST INT?
JP NZ, ONE HANDLE IT IF SO
IN A, (STATUS2)

BIT 7. A
P NZ, TWO
ete. -—

The hardward method provides the address of the interrupting device
simultaneously with the interrupt request,

INT i FOLLiKG TNTERRUPT YECTORED
I_ i
POLLING 3 i
WHICH 2 ROUTIHE e 8
DEVICE? e
SEAVICE
ROUIINE P
SERVICE
ROUT [RE
SERVICE
ROUTINE H

Fig. 6.31: Polled vs. Yectored Interrupt
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To be more precise, when operating in mode 0, the peripheral device
controller will supply a one-byte RST or a three-byte CALL on the data
bus in response to the interrupt acknowledge, thus automating the in-
terrupt vectoring, and minimizing the overhead.

Note that a subroutine call instruction i1s required as the Z80 does not
save the PC when operating in mode 0.

In most cases, the speed of reaction to an interrupt 1s not crucial, and
a polling approach 1s used. If response time is a primary consideration,
a hardware approach must be used.

Simultaneous Interrupts

The next problem which may occur 1s that a new interrupt can be trig-
gered during the execution of an interrupt-handling routine. Let us
examine what happens and how the stack is used to solve the problem.
We have indicated in Chapter 2 that this was another essential role of
the stack, and the time has come now to demonstrate its use. We will
refer to Figure 6.33 to illustrate multiple interrupts. Time elapses from
left to right in the illustration. The contenis of the stack are shown at
the bottom of the illustration. Looking at the left, at time TO, program
P is in execution. Moving to the right, at ime T1, interrupt [1 occurs.
We will assume that the interrupt mask was enabled, authorizing 1.
Program P will be suspended. This 1s shown at the bottom of the illus-
tration. The stack will contain the program counter and the status reg-
ister of program P, at least, plus any optional registers that might be
saved by the interrupt handler or 1 itself,

e 70
MeY INTERFACE] *** |INTERFAC
(NT ; .

1 ;l#TL ‘l?ﬂn

Fig. 6.32: Several Devices May Use the Same Interrupt Line

At time T1, interrupt 11 starts executing until time T2, At time T2, in-
terrupt 12 occurs, We will assume that interrupt 12 has a higher prionty
than interrupt [1. If it had a lower priority, 1t would be ignored until [1
had been completed. At time T2, the registers for [l are stacked, and
this appears at the bottom of the illustration. Again, the contents of the
program counter and AF are pushed into the stack. In addition, the
routine for 12 might decide to save an additional few registers. 12 will
now execute to completion at ume T3.
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When 12 terminates (with an RETI), the contents of the stack are
automatically popped back into the Z80, and this is illustrated at the
bottom of Figure 6.33. Thus, automatically Il resumes execution. Un-
fortunately, at time T4, an interrupt 13 of higher priority occurs again,
We can see at the bottom of the illustration that again the registers for
i1 are pushed into the stack. Interrupt 13 executes from T4 to TS5 and

HME fa i Te L 1. s fa

PROGRARM P F'—"'“'*sl------—-—.___._....__,_,___
INTERRUPT 1, r— e e e e o -
INTERRUPT 1) ¥ P————

! ——

INTERRUPT |\ '

,

[
= @O E oo
L . T, 1

1 L) * & 5

Fig. 6.33: Stack Contents During Multiple Interrupts

terminates at T5, At that time, the contents of the stack are popped into
ZB0, and interrupt 11 resumes execution, This time it runs to comple-
tion and terminates at T6. At T6, the remaining registers that have been
saved in the stack are popped into Z80, and progam P may resume ex-
ecution. The reader will verify that the stack is empty at this point. In
fact, the number of dashed lines indicating program suspension in-
dicates at the same time how many levels there are in the stack.

Exercise 6,29: Assime that the area available to the stack is linited o
300 locations in a specific program. Assume that all the registers must
always be saved and that the progranuner allows mterrupts 10 be nes-
ed, 1e., to interrupt each other. Which s the maxitmum number of
simultaneous interrupts that can be handled? Will any other factor con-
tribute (o stilf reduce further the maxinmum number of simultaneous in-
terrupts?

It must be stressed, however, that, in practice, microprocessor sys-
tems are normally connected to a small number of devices using inter-
rupts, It is, therefore, unlikely that a high number of simultaneous in-
terrupts will occur in such a system.

We have now solved all the problems usually associated with inter-
rupts. Their use is, in fact, simple and they should be employed to ad-
vantage even by the novice programmer.
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SUMMARY

In this chapter we have presented the range of techniques used to
communicate with the outside world. From elementary nput/output
routines to more complex programs for communication with actual
peripherals, we have learned to develop ali the usual programs and have
even examined the efficiency of benchmark programs in the case of a
parallel transfer and a parallel-to-serial conversion. Finzlly, we have
learned to schedule the operation of multiple peripherals by using poli-
ing and interrupts. Naturally, many other exotic input/output devices
might be connected to a system. With the array of techniques which
have been presented so far, and with an understanding of the peripher-
als involved, it should be possible to solve most common problems,

In the next chapter, we will examine the actual characteristics of the
input/output interface chips usually connected to a Z80. Then, we will
consider the basic data structures that the programmer may use,

Exercise 6.30: Compute the overhead when operating in mode 0, as-
suming that all registers are saved, and that an RST s received in re-
sponse to the interrupt acknowledge. The overhead 1s defined as the
total delay incurred, exclusive of the instructions requrred to unplemert
the mterrupt processing proper.

Exercise 6.31: A 7-segment LED display can also display digits other
than the hex alphabet, Compute the codes for: H, 1, J, L, O, P. 5, U,
Yoe ooy lon oo por oy

Exercise 6.32; The flowchart for interrupt managemen! appears in Fig-
ure 6.34 Answer the followmng questions:
a-What is done by hardware, what is done by software?
b— What is the use of the mask?
c—How many registers should be preserved?
d—How is the interrupting device identified?
e What does the RETI instruction do? How does it differ fron a
subroutine return?
Sf—Suggest a way to handle a stack overflow situation.
g—What is the overhead (“'lost time”’} introduced by the nrerrupt
mechanism?
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EXECUTE
NSTRUCTION

INTERRUFT
REQUEST

NEXT INSTRUCTION

l SEY MASK -l
PRESERVE REGISIERS
0 necessary)
l UNSET MASK ‘l

IDENTIFY DEVICE
il necessary)

i EXECUTE ROUTING ‘!

l RESTORE REGISTERS ]

'

RETURN

Fig. 6.34: Interrupt Logic
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INTRODUCTION

We have [earned how to program the Z80 microprocessor in most
usual situations. However, we should make a special mention of the
input/output chips normally connected to the microprocessor. Be-
cause of the progress in LSI integration, new chips have been intro-
duced which did not exist before. As a result, programming a system
requires, naturally, first to program a microprocessor itself, and then
to program the input/output chips. in fact, it is often more difficult
to remember how to program the various control options of an input/
output chip than to program the microprocessor itself! This is not be-
cause the programming in itself is more difficuit, but because each of
these devices has its own idiosyncrasies. We are going to examine here
first the most general input/output device, the programmable input/
output chip {in short a ““PIQ’), then some Zilog 1/0 devices.

The “*Standard PIO”’

There isno “‘standard PIO", However, each PIOdeviceis essentially
analogous in function to all similar PIO’s produced by other
manufacturers for the same purpose. The purpose of a PIO is to
provide a multiport connection for input/output devices. {A “*port”’ is
simply a set of 8 input/output lines.} Each PIO provides at least
two sets of 8-bit lines for 1/0 devices. Each 1/0 device needs a dara
buffer in order to stabilize the contents of the data bus on outpur at
least. Our PIO will, therefore, be equipped at a minimum with a
buffer for each port.

In addition, we have established that the microcomputer will use
a handshaking procedure, or else interrupts to communicate with the
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1/0 device. The PIO will also use a similar procedure to communicate
with the peripheral. Each PIO must, therefore, be equipped with at
least two control lines per port to implement the handshaking
function.

The microprocessor will also need to be able to read the status of
each port. Each port must be equipped with one or more séafus bits.
Finally, 2 number of options will exist within each PIO to configure its
resources. The programmer must be able to access a special register
within the PIO to specify the programming options. This 1§ the
control-register. In some cases the status information is part of the
control register.

CRA DDRA PDRA e CAl
et (C 07
o
@ L8 ﬁ% g g o3 :
- Lz -E R L "]
DATA BU <_‘:""> 3 qo3 §;%<—::>PORTA
o 9 = CZ) =
CRB DDRB “DRB
=
C") i 8
REGISTER | ——|RS@ 5 ?Z:, (::.___> PORTB
SELECT | et RSY g+
RQA ] et CB2
RQB = e CBI
Fig. 7.1; Typicai PIQ

One essential faculty of the PIO is the fact that each line may be
configured as either an input or an ocutput line. The diagram of
a PIO appears in illustration 7.1. The programmer may specify
whether any line will be mmput or output. In order to program the
direction of the lines, a dara-direction register is provided for each
port. On many PIO’s, ‘0" in a bit position of the data-direction
register specifies an input. A *1"’ specifies an output. Zilog uses the
reverse convention.

It may be surprising to see that a “‘0" is used for input and a “1"
for output when really 0’ should correspond to output and 1"’ to
input, This is quite deliberate: whenever power is applied to the
system, it is of great importance that all the I/0 lines be configured as
input. Otherwise, if the microcomputer is connected to some
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dangerous peripheral, it might activate it by accident. When a reset is
applied, all registers are normally zeroed and that will result in con-
figuring all input lines of the PIO as inputs. The connection to the
microprocessor appears on the left of the illustration. The PIO
naturally connects to the 8-bit data bus, the microprocessor address
bus, and the microprocessor control-bus. The programmer will simply

specify the address of any register that it wishes to access within the
PiC.

The Internal Control Register

The Control Register of the P1O provides a number of options for
generating or sensing interrupts, or for implementing automatic hand-
shake functions. The complete description of the facilities provided is
not necessary here. Simply, the user of any practical system which uses
a P10 will have to refer to the data-sheet showing the effect of setting
the various bits of the control register. Whenever the system is
initialized, the programmer will have to ioad the control register of the
PIO with the correct contents for the expected application.

- — Y
e - C A 2
: v IDDRAY
: DATA
T r" N DIRECTION
—_ PERIPHERAL @P AG-PAT
CONTRIL INTERFACE A :
i
~1 [HCHIP SELECT e PERIPHERAL @?BMBY
- [ INTERFACE 8
-+ | L REGISTER )
—d |V SELECT — CATA
o ] DIRECTION
S v (DORBY
RESET —~a |
I - , CONTROL
] CB 1
Ikas N :CB )

Fig, 7.2: Using a PIO-Load Contrel Register
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U L ¥ ODRAY
L DATA:
BUS INPUT - _ o
¥
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Fig. 7.3: Using a PIQ-Load Data Direction
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[ = 8
{(RA}
DATA BUS
09-07 . .
e-07 G | i (::' = CONTROL
U' i TDDRA;
r_.. DATA
BUS INPUT : »)  DIRECTION
b PERIPHERAL Pap-PAT
CORTROL INTERFACE A CD
— n
| {1 CHIP SELECT — PERIPHERAL @F‘BB-’PE?
— INTERFACE B
—w! || REGISTER 4P
— SELECT : DATA
_— ————~}  DIRECTION
EH v {CORB)
RESEY —»! L
T _____> CONTROL
(CRB) @i
IRag STI:;(JS | a— L) é
Fig. 7.5: Using a PIO Read INPUT
Programming a P10

A typical sequence, when using a PIO channel, is the following (as-
suming an input):

Load the control register

This is accomplished by a programmed transfer between a Z80 re-
gister (usually the accumulator) and the P10 control register. This sets
the options and operating mode of the PIO (see Figure 7.2). It is nor-
mally done only once at the beginning of a program.

Load the direction register

This specifies the direction in which the 1/0 lines will be used. (See
Figure 7.3.)

Read the status
The status register indicates whether a valid byte is available on in-
put. (See Figure 7.4).

Read the port
The byte 15 read into the Z8O0. (See Figure 7.5).
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Fig. 7.6: Z80 P10 pinout
The Zitog Z86¢ P10

The Z80 PIO is a two-port P1O whose architecture 15 essentially
compatible with the standard model we have described. The actual
pinout 1s shown in Figure 7. 6, and a block diagram is shown in Figure
7.7

Each PIO port has six registers: an 8-bit input register, an 8-bit out-
put register, a 2-bit mode-control register, an 8-bit mask register, an
8-bit input/output select {direction register), and a 2-bit mask-control
register, The last three registers are used only when the port is program-
med to operate in the bit mode.

Each port may operate in one of four modes, as selected by the con-
tents of the mode-control registers (2 bits). They are: byte output, byte
input, byte bidirectional bus, and bit mode.

The two bits of the mask control register are loaded by the program-
mer, and specify the high or low state of a peripheral device which is to
be menitored, and conditions for which an interrupt can be generated,
generated.

The 8-bit input/output select register allows any pin to be either an
input or an output when operating in the bit mode.
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Fig. 7.7: Z30 P10 Block Diagram
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Programming the Zilog P10

A typical sequence for using a P10, say in bit mode, would be the
following:
Load the mode control register to specify the bit mode.
Load the input/output select register of port A to specify that
lines 0-3 are inputs and lines 6 and 7 are outpuis.
Then a word would be read by reading the contents of the input
buffer.
Additionally, the mask register could be used to specify the status
conditions.
For a detailed description of the operation of the P10, the reader is
referred to the companion volume in this series, the Z80 Applications
Book,

The Z80 S10

The SIO(Serial Input/Output) is a dual-channel peripheral chip de-
signed to facilitate asynchronous communications in serial form. It in-
cludes a UART., i.e., a universai asynchronous receiver-transmitter.
Its essential function is serial-to-parallel and parallel-to-serial conver-
sion. However, this chip is equipped with sophisticated capabilities,
like automatic handling of complex byte-oriented protocols, such as
IBM bisync as well as HDLC and SDLC, two bit-oriented protocols.

Additionally, it can operate in synchronous mode like a USRT, and
generate and check CRC codes. It offers a choice of polling, interrupt,
and block-transfer modes. The complete description of this device is
beyond the scope of this introductory book and appears in the Z80 Ap-
plications Book.

Other 1/0 Chips

Because the Z80 is commonly used as a replacement for the 8080, it
has been designed so that it can be associated with almost any of the
usual 8080 input/output chips, as well as the specific I/0 chips manu-
factured by Zilog. All the 8080 input/output chips may be considered
for use 1n a Z80 system.
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SUMMARY

In order 1o make effective use of mput/output components it is
necessary Lo understand in detail the function of every bit, or group of hits,
within the vartous control registers. These complex new chips automate a
number of procedures that had 1o be carred ouw by software or special
togic before. In particular, a good deal of the handshaking procedures are
automated within components such as an SIO. Also, mterrupt handling
and detection may be internal. With the information that has been pre-
sented 1n the preceding chapter, the reader should be abie to understand
what the functions of the basic signals and registers are. Naturally, siill
newer components are gotng 1o be introduced which will offer a hardware
implementation of suill more complex algonithms.
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8
APPLICATION EXAMPLES

INTRODUCTION

This chapter 15 designed Lo test your new programming skills by pre-
senting a collection of utility programs. These programs or “routines’’
are frequently encountered 1n applications, and are generally called
“utility routines.” They will require a synthesis of the knowledge and
techniques presented so far.

We are going to fetch characters from an [/O device and process
them in various ways. But first, let us clear an area of the memory (this
may not be necessary-—each of these programs is only presented as a
programming example).

CLEARING A SECTION OF MEMORY

We want to clear (zero) the contents of the memory from address
BASE to address BASE + LENGTH, where LENGTH is less than 256.

The prograin is:

ZEROM LD B, LENGTH LOAD B WITH LENGTH

LD A0 CLEAR A
LD HL, BASE POINT TO BASE

CLEAR LD (HL), A CLEAR A LOCATION
INC HL POINT TO NEXT
DEC B DECREMENT COUNTER
JR NZ, CLEAR END OF SECTION?
RET

In the above program, the length of the section of memory is as-
sumed to be equal to LENGTH. The register pair HL. is used as a point-
er to the current word which will be cleared. Register B 1s used, as
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APPLICATION EXAMPLES

usual, as a counter.

The accumulator A 1s loaded only once with the value 0 {(all zeros),
then copied into the successive memory locations.

In a memory test program, for example, this utility routine could be
used to zero the contents of a biock. Then the memory test program
would usually verify that 1ts contents remained 0.

The above was a straightforward implementation of a clearing rou-
tine. Let us improve on it.

The improved program appears below.

ZEROM LD B, LENGTH
LD .HL, BASE

LOGP L.D {HL), 0
INC HL
BINZ LOOP
RET

The two improvements were obtained by eliminating the LD A, 0 in-
struction and loading a *‘zero’® directly into the focation pointed to by H
and L, and ziso by using the special Z80 instruction DINZ,

This improvement example should demonsirate that every time a
program is written, even though 1t may be correct, it can usually be im-
proved by exarnining it carefully. Familiarity with the complete instruc-
tion set is essential for bringing about such improvements, These im-
provements are not just cosmetic, They improve the execution time of
the program, require fewer instructions and therefore less memory
space, and also generally improve the readability of the program and,
therefore, its chances of being correct.

Exercise 8.1: Write a memory test program which zeroes a 256-word
block, then verifies that each location is 0. Then, 1t will write all ] 's and
verify the conitents of the block. Then 1t will write 01010101 and ver{fy
the contenis. Finally, it will write 10101010, and verify the contents.

Exercise 8.2: Modify the above program so that 1t will Jill the memory
sectron with alternating s and 1's tall 0’s, then all I's).

Let us now poll our /0 devices 10 find which one needs service.

POLLING 10 DEVICES

We will assume that those 1/0 devices are connected to our 5YS-
tem. Their status registers are located at addresses STATUSI,

STATUS2, STATUS3. The program is:
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PROGRAMMING THE ZBO

TEST IN A, (STATUSI]} READ 10 STATUS!
BIT 7. A TEST “READY” BIT (BIT7)
P Nz. FOUND1 JUMP TO HANDLER |
IN A, (STATUS2) SAME FOR DEVICE 2
BIT 7,A
jP NZ, FOUND2
IN A, (STATUS3) SAME FOR DEVICE 3
BIT 7,.A
JP NZ, FOUND3
{failure exit)

The MASK will contain, for example, ‘‘10000000"" if we test bit posi-
tion 7. As a result of the BIT instruction, the Z bit of the status flags
will be set to 1 if “MASK AND STATUS is zero, Le., if the cor-
responding bit of STATUS matches the one in MASK. The JP NZ in-
struction (jump if non-equal to zero) will then result in a branch to the
appropriate FOUND routine.

GETTING CHARACTERS IN

Assume we have just found that a character is ready at the keyboard.
Let us accumulate characters in a memoryarea called BUFFER until we
encounter a special character called SPC, whose code has been previ-
ously defined.

The subroutine GETCHAR will fetch one character from the key-
board (see Chapter 6 for more details) and leave it in the accumulator.
We assume that 256 characters maximum will be fetched before an SPC
character 1s found.

STRING LD HL, BUFFER POINT TO BUFFER
NEXT CALL GETCHAR GET A CHARACTER

CP SPC CHECK FOR SPECIAL CHAR
JR Z, OUT FOUND IT?
LD {HL), A STORE CHAR IN BUFFER
INC HL NEXT BUFFER LOCATION
JR NEXT GET NEXT CHAR

ouT RET

Exercise 8. 3: Let us improve this basic routine.
a—~Echo the character back to the device (for a Teletype, for example).
b—Check that the input string is no longer than 256 characters.

We now have a string of characters in & memory buffer. Let us proc-
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ess them 1n various ways.

TESTING A CHARACTER

Let us determine if the character at memory location LOC is equal to
0,1, 0r2:

Z0T LD A, (LOCO) GET CHARACTER
CP 00 ISIT A ZERO?
P Z, ZERO JUMP TO ROUTINE
cp 01 A ONE?
Jp Z, ONE
Cp 02 A TWQO?
iP Z, TWO
JP NOTFND FAILURE

We simply read the character, then use the CP mstruction Lo check its
value.
Let us run a different test now,

BRACKET TESTING

Let us determine if the ASCI character at memory location LOCisa
digit between 0 and 9:

BRACK LD A, (LOC) GET CHARACTER
AND  TFH MASK OUT PARITY BIT
Cp 30H ASCII O
IR C, our CHAR TOO LOW?
Cp 39H ASCIL 9
IR NC, OUT CHAR TOO HIGH?
CP A FORCE ZERO FLAG

ouT RET EXIT

ASCII 0" is represented in hexadecimai by 30" or by “BO”’,
depending upon whether the parity bit is used or not. Similarly, ASCII
9" 1s represented in hexadecimal by 39" or by “B9”.

The purpose of the second nsiruction of the program is to delete bit
7, the parity bit, In case 1t was used, so that the program is applicable to
both cases. The value of the character is then compared to the ASCII
values for ‘0’ and 9", When using a comparison instruction, the Z
flag 1s set i the comparison succeeds. The carry bit is set in the case of
borrow, and reset otherwise. in other words, when using the CP in-
strucuon, the carry bit will be set if the value of the literai that appears
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in the instruction is greater than the value contained in the accumu-
jator. It will be reset (*‘07"} if less than or equal.

The last instruction, CP A, forcesa ““1” into the Z flag. The Z flagis
used to indicate to the calling routine that the character in CHAR was
indeed in the interval (0, 9). Other conventions can be used, such as
loading a digit in the accumulator in order to indicate the result of the
test.

Exercise 8.4: Is the following program equivalent to the one above?;

1D A, (CHAR)

SUB  30H

JP M, OUT
SUB 10

P P, OUT
ADD 10

Exercise 8.5: Determine if an ASCII character contained in the accumni-
lator is a letter of the alphabet.

When using an ASCII table, you will potice that parity is often used.
For example, the ASCII for ‘0" 1s 0110000, a 7-bit code. However,
if we use odd parity, for example, we guarantee that the total number
of ones in a word is odd; then the code becomes: 101100007, An extra
1" is added to the left. Thisis *“‘B0” in hexadecimal. Let us therefore
develop a program to generate parity.

PARITY GENERATION

This program will generate an even parity with bit position 7:

PARITY LD A, (CHAR) GET CHARACTER

AND 7FH CLEAR PARITY BIT
P PE, OUT CHECK IF PARITY
ALREADY EVEN
OR 80H SET PARITY BIT
OuT LD (LOC), A STORE RESULT

The program uses the internal parity detection circuit available 1n the
Z30.

The third instruction: JP PE, OUT checks whether parity of the
word in the accumulator is already even. This instruction will succeed if
the parity is even, “PE”, and will exit.

If the parity is not even, i.e., if the jump instruction failed, then the
parity is odd, and a ‘‘1’’ must be written in bit position 7. This is the
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purpose of the fourth instruction:
OR 80H

Finally, the resulting value is saved in memory location LOC.

Exercise 8.6: The above problem was too simple to solve, using the -
ternal parity detection circuitry. As an exercise, you are requested (o
solve the same problem without using this carcuitry. Shift the contents
of the accumulator, and count the number of I's in order to determine
which but should be written into the pariLy position.

Exercise 8.7: Using the above brogram as an example, verify the parity
of a word. You must compute the correct parity, then compare it 1o the
one expected,

CODE CONVERSION: ASCHI TO BCD

Converting ASCI!I to BCD is very simple. We will observe that the
hexadecimal representation of ASCII characters 010 9%is30to 39 or BO
to BY, depending on parity. The RCD representation is simply obtained
by dropping the ““3” or the “B", |.e., masking off the left nibble (4
bits):

ASCBCD CALL BRACK CHECK THAT CHAR IS0 TO 9
JP NZ, JLLEGAL EXIT IF ILLEGAL CHAR
AND OFH MASK HIGH NIBBLE

LD {(BCDCHAR), A STORE RESULT
Lxercise 8.8: Write a program to convert BCD 10 ASCII.

Exercise 8.9: Write a program to convert BCD o binary (more diffi-
cult).

HintzNy Ny N, No in BCDis (((N: X 10) + Nuy) x 10 + Ny x 10 + Nein
binary.

To multiply by 10, use a left shift (= x2), another left shift (= x4},
an ADC (= X 3), another left shift {= x 10).

In full BCD notation, the first word may contain the count of BCD
digits, the next nibble contain the sign, and every successive nibble con-
tain a BCD digit (we assume no decimal point}. The last nibble of the
block may be unused.

CONVERT HEX TO ASCU

“A” contams one hexadecimal digit. We simply need to add a ““3** (ora
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“B’" into the left nibble:

AND OFH ZERO LEFT NIBBLE (optional)
ADD A, 30H ASCH

CP A, 3AH CORRECTION NECESSARY?
P M, OUT

ADD A7 CORRECTION FORATO F

Exercise 8. 10: Convert HEX to ASCII, assuming a packed format (two
hex digits i A).

FINDING THE LARGEST ELEMENT OF A TABLE

The beginning address of the table is contained at memory address
BASE. The first entry of the table is the number of bytes it contains.
“This program will search for the fargest element of the table. Its value
will be left in A, and its position will be stored in memory location IN-
DEX.

This program uses registers A, F, B, H and L, and will use indirect
addressing, so that it can search a table anywhere in the memory (see
Figure 8.1}).

MAX LD HL, BASE TABLE ADDRESS
LD B, (HL) NBR OF BYTES IN TABLE
LD A,0O CLEAR MAXIMUM VALUE
INC HL INITIALIZE INDEX
LD (INDEX), HL NEXT ENTRY

LOOP CP (HL) COMPARE ENTRY
JR  NC, NOSWITCH JUMP IF LESS THAN MAX
LD A, (HL) LOAD NEW MAX VALUE
LD (INDEX), HL LOAD NEW MAX VALUE

NOSWITCH INC HL POINT TO NEXT ENTRY
DEC B DECREMENT COUNTER
JR NZ, LOOP KEEP GOING IF NOT ZERO
RET

This program tests the nth entry first. If it is greater than 0, the entry
goes in A, and its location 1s remembered into INDEX. The (n-1)st en-
try 1s then tested, etc,

This program works for positive integers.

Exercise 8.11: Modify the program so that it works also for negative
numbers in (two’s complement.

Exercise 8.12: Will this program also work for ASCII characters?
Exercise 8.13: Write a program which will sort n numbers in ascending
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/\/\/L

| POINTERTO _] INDEX
MAX

COUNT =N BASE
’. ELEMENT |

A | _CURRENTMAX |

B | COUNTER i

INCREASING
ADDRESSES

- .

HL | .

ELEMENT N

Rl W

Fig. 8.1: Largest Element in a Table

order.

Exercise 8.14: Write a program which will sort n names (3 characters
each) in alphabetical order,

SUM OF N ELEMENTS

This program will compute the 16-bit sum of N positive entries of a
table. The starting address of the table is contained at memory address
BASE, The first entry of the table contains the number of elements N.
The 16-bit sum will be left in memoy locations SUMLO and SUMHLI. If
the sum should require more than 16 bits, only the lower 16 will be
kept. (The high order bits are said to be truncated.)

This program will modify registers A, F, B, H. L, IX. It assumes 256
elements maximum (see Figure 8.2).

SUMN LD HL, BASE POINT TO TABLE BASE

LD B, (HLj READ LENGTH INTO
COUNTER
SUMIG iNC HL POINT TO FIRST ENTRY

LD IX,SUMLO POINT TO RESULT, LOW
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LD (IX+0),0 CLEAR RESULT LOW
LD (IX+1D,0 AND HIGH

ADLOOP LD A, (HL) GET TABLE ENTRY
ADD A (IX+0) COMPUTE PARTIAL SUM
LD (IX+0)L A STORE IT AWAY
JR NC, NOCARRY CHECK FOR CARRY
INC {(IX+1D ADD CARRY TO HIGH BYTE

NOCARRY INC BHIL POINT TO NEXT ENTRY
DEC B DECREMENT BYTE COUNT
IR NZ. ADLOOP KEEP ADDING TILL END
RET

B{  COUNT J<
1
LENGTH=N | BASE
H | BASE J—-r ELEMENT |

ELEMENT N

] i H
|
i

SUMLC

SUMH I

Fig. 8.2: Sum of N Elements

This program is straightforward and shouid be self-explanatory.

Exercise 8.15: Modify this program to:
a—compute a 24-6it sum

b—compute a 32-bit sum

c—detect any overflow,

A CHECKSUM COMPUTATION

A checksurn is a digit or set of digits computed from a block of suc-
cessive characters. The checksum 1s computed at the time the data is
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stored and put at the end. In order 1o verify the integrity of the data, the
data is read, then the checksum is recomputed and compared against
the stored value. A discrepancy indicates an error or a failure.

Several algorithms are used. Here, we will exclusive-OR all bytes in a
table of N elements, and leave tie result in the accumulator. As usual,
the base of the table is stored at address BASE. The first entry of the
table is its number of elements N. The program modifies A, F, B, H, L.
N must be less than 256

CHKSUM LD HL, BASE LOAD ADDRESS OF TABLE
INTO HL
LD B, (HL} GET N = LENGTH
XOR A CLEAR CHECKSUM
INC HL POINT TO FIRST ELEMENT
CHLOOP XOR (HL) COMPUTE CHECKSUM
INC HL POINT TO NEXT ELEMENT
DEC B DECREMENT COUNTER

IR NZ, CHLOOP DO IT AGAIN IF NOT END
LD  (CHECKSUM),A PRESERVE CHECKSUM
RET

COUNT THE ZEROQES

This program will count the number of zeroes in our usual table, and
leave it in location TOTAL. It modifies A, B, C, H, L. F.

ZEROS LD HL, BASE POINT TO TABLE

LD B, (HL) READ LENGTH INTO COUNTER
LD C. 0 ZERO TOTAL
INC HL POINT TO FIRST ENTRY
ZLOOP LD A, (HL) GET ELEMENT
OR O SET ZERO FLAG
JR  NZ,NOTZ ISIT A ZERO?
INC C [F SO, INCREMENT ZERO COUNT
NOTZ INC HL POINT TO NEXT ENTRY
DEC B DECREMENT LENGTH COUNTER
JR  NZ, ZLOOP
L AC

LD ({TOTAL), A SAVEIT

Exercise 8.16: Modify this program to count
a~the number of stars (the character ****’)
b~the number of letters of the alphaber
c—the number of diguts between 0" and 9"
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BLOCK TRANSFER

Let us pick up every third entry in the source biock at address FROM
and store it into a block at address TO:

FER3 LD HL. FROM

LD DE, TO SET UP POINTERS
LD BC, SIZE
LOOP LDI AUTOMATED TRANSFER
INC  HL
INC HL SKIP 2 ENTRIES

JP PE, LOOP

BCD BLOCK TRANSFER

We will push up BCD digits in the memory, i.e, shift 4-bit nibbles
{see Figure 8.3). The program appears below:

A o,
8 COUNT r‘%/yf///%j
B
// -

“;%/%

- i el

[
Hq BLOCK
|§

Fig. 8.3: BCD Block Transfer - The Memory

DMOV LD B, COUNT
LD HL, BLOCK

XOR A A=290
LOOP RLD
DEC HL POINT TO NEXT BYTE
DJNZ LOOP DEC COUNT LOOP UNTIL ZERO
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The program uses the RLD instruction, which we have not used yet.
RLD rotates a BCD digit feft between A and (HL). (HLyor M designate
the contents of the memory location pointed to by H and L.

M LOW goes into M HIGH
M HIGH goes into A LOW
A LOW goes into M LOW

Here, *"low’ and *‘high’” refer to a 4-bit nibble.

In order to use the powerful DJNZ instruction, register B is used as
the digit counter. HL 1s set to point to the beginning of the block.

A 1s used to store the left digit displaced by each rotation between
two successive accesses 10 the block.

By convention, **0" will be entered at the bottom of the black.

COMPARE TWO SIGNED 16-BIT NUMBERS

IX points to the first number N1.
[Y poinis to N2 (see Figure 8.4).

The program sets the carry bit if NI< N2, and the Z bit if NI = N2,
COMP LD B.(IX+1D) GET SIGN OF NI
LD A, B
AND  80H TEST SIGN, CLEAR CY
IR NZ, NEGM1 NIISNEG
BIT 7,(dY+1

RET NZ N2 IS NEG
LD A, B
CP Y+ 1 SIGNS ARE BOTH POS
RET NZ
LD AL (IX)
CP {IY)
RET
NEGM1 XOR (IY + 1)
RLA SIGN BIT INTO CY
RET C SIGNS DIFFERENT
LD A, B
Cp (IY+D BOTH SIGNS NEG
RET NZ
LD A, (IX)
CP {1Y)
RET

The program first tests the signs of NI and N2. If N1 is negative, a
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jump occurs to NEGM1. Otherwise, the top of the program 1s executed.

MEMORY

AN

Ban N1, LOW

N1, HIGH

l HIGH ADDRESSES

" [ N2, LOW

N2, HIGH

P Ve

Fig. 8.4: Comparing Two Signed Numbers
Note that the BIT instruction is used in the 5th line to test directly the
sign bit of N2 in the memory:
BIT 7Y + 1}

The same could have been done for NI, except that we will need the
value of N1 shortly. It is therefore simpler to read N1 from memory
and preserve it into B:

COMP LD B, (IX + 1)

It is necessary to preserve NI into B because the AND may destroy the
contents of A:

LD A B
AND  BOH

Note also that a conditional return is used (line 6):
RET NZ
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This 1s a powerful feature of the Z80 which simplifies programming.
Note that the comparison instruction executes directly on the con-
tents of memory, in indexed mode:

CP {(IY + 1)

When comparing the two numbers, the most significant byte is com-
pared first, the least significant one second.

Note the extensive use of the indexing mechanism in this prograri,
which results in efficient code.

BUBBLE-SORT

Bubble-sort is a sorting technique used to arrange the elements of a
table in ascending or descending order. The bubble-sort technique de-
rtves its name from the fact that the smallest element ‘“bubbles up'’ to
the top of the table. Every time it “‘collides’” with a “*heavier"’ element,
it jumps over it.

A practical example of a bubble-sort 1s shown on Figure 8.5 The list
to be sorted contains: (10, 5, 0, 2, 100), and must be sorted in descend-
ing order (*‘0’" on top). The algorithm is simple, and the flowchart is
shown on Figure 8.7

The top two (or else bottom twolelements are compared. If the lower
one is less (“‘lighter””) than the top one, they are exchanged. Otherwise
not. For practical purposes, the exchange, if it occurs. will be remem-
bered in a flag called “EXCHANGED" . The process is then repeated
on the next pair of elements, etc., until all elements have been com-
pared two by two.

This first pass 1s illustrated by steps 1, 2, 3, 4, 5, 6 on Figure 8.5, go-
mng from the bottom up. (Equivalently we coulid go from the top down.)

If no elements have been exchanged, the sort 1s complete. If an ex-
change has occurred, we start all over again.

Looking at Figure 8.6, it can be seen that four passes are necessary in
this exampie.

The process is simple, and is widely used.

One additional complication resides in the actual mechanism of the
exchange.

When exchanging A and B, one may not wrile

A =B
B=A

as this would result in the loss of the previous value of A (try it on an
example).
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100> 2:
NO CHANGE

2<10:
EXCHANGE

o |t 1=3
2 e— | =4
100
220
NG CHANGE
10 [t— 1 = !
o - | =2
5
2
100
€0
EXCHANGE!
0
19
5 g 1223
2 s | 4
190
¢ %
EXCHANGE!
¢
1
10
5
100
EXCHANGED

®

00

0¢5
£XCHANGE!

©)

]

EXCHANGE O
eND OF PASS Y

®

$ND OF PASH 1

]

EXCHANGED

0 -cf— | ==
7 g (=7
10
5
100
>0
NO CHANGE

®

END OF PASS 2

Fig. 8.5: Bubble-Sort Example: Phases 1 to 12
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0 ] 0
2 2 2
1o s] g | =3 5 :I
5 o el 5 - | g 10
100 -1 5 00 100
100> 5 5.0
NO CHANGE

EXCHANGE! EXCHANGED

0 o o— 1= | a
B -— -7 2 st (=3 3
5 ) 5 5
10 10 10 e =4
100 100 100 [ =5
5.2 250 10 3 10:
NO CHANGE NO CHANGE

NO CHANGE
©

END QF PASS 3

4] ¢ I -— =

2 -— =2 - (=2
5 e i=3 5 o 2l BN 5
¢ =4 10 10
100 100 100
025 5> 2 >0

NO CHANGE NO CHAMNGE NG CHANGE

@
END

Fig. 8.6: Bubble-Sort Example: Phases 13 to 21

The correct solution is to use a temporary variable or location to pre-
serve the value of A;

TEMP = A
A = B
B = TEMP

It works (try it on an example). This is called a circular permutation.

This s the way all programs implement the exchange. This technique
is illustrated on the flowchart of Figure 8.7.
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;

i EXCHANGED = 0O

v

GET NUMBER OF
ELEMENTS N
i=N

]y ¥
READ ELEMENT
E(l)

Y
DECREMENT §

y

4 READ B}

‘

YES

NO

EXCHANGE E AND £
TEMP = (I}
By = E{l)
£} = TEMP

¥
EXCHANGED = i

Fig. 8.7: Bubble-Sort Flowchart
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EXCHANGE/NOT

A | FLAG IN

{ I
Bl PIR I|  count  lc TEM:_ b
ol wmext | b cumeent e

-

Fig. 8.8: Bubble-Sort

The register and memory assignments are shown on Figure 8.8, and
the program is:

BUBBLE LD (TEMP), HL TEMP = (HL)

AGAIN LD IX, (TEMP) IX = (HL)
RES FLAG, H EXCHANGED FLAG =0
LD B,C
DEC B
NEXT LD A (IX)
LD DA D =CURRENT ENTRY
LD E, (X+D E=NEXT ENTRY
CP E COMPARE
JR NC, NOSWITCH GO TO NOSWITCH IF
CURRENT 2 NEXT
XCHANGE LD (IX) E STORE NEXT INTO
CURRENT
LD {IX+1,Db STORE CURRENT INTO
NEXT
SET FLAG, H EXCHANGED FLAG=1
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NOSWITCH INC IX NEXT ENTRY
DINZ NEXT DEC B, CONTINUE UNTIL
ZERO
BIT FLAG.H EXCHANGED=1?
JR  NZ, AGAIN RESTART IF FLAG = |
RET
SUMMARY

Common utility routines have been presented in this chapter which
use combinations of the techniques we have described in the previous
chapters. They should allow you to start designing your own programs
now. Many of these routines have used a special data structure, the
table. Qther possibilities exist for structuring data, and will now be re-
viewed.
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9
DATA STRUCTURES

PART I ~— THEORY

INTRODUCTION

The design of a good program involves two tasks: algorithm design
and data structures design. In most simple programs, no significant
data structures are involved, so the main objective in learning program-

ming 15 designing algorithms and coding them efficientiy n a given
machine language. This i1s what we have accomplished here. However,
designing more complex programs also requires an understanding of
data structures. Two data structures have already been used through-
out the book: the table and the stack. The purpose of this chapter is to
present other, more general, data structures that you may want
to use. This chapter 15 completely independent of the microprocessor,
or even the computer, selected. It is theoretical and involves the fogical
organization of data In the system. Specialized books exist on the topic
of data structures, just as specialized books exist on the subject of
efficient multiplication, division or other usual algorithms. This
chapter, therefore, will be limited to essentials only. It does not claim
to be complete. The most common data siructures will now be reviewed,

POINTERS

A pointer is a number which 15 used to designate the location of the
actual data. Every pointer 1s an address. However, every address is not
necessarily called a pointer. An address is a pointer only if it points at
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some type of data or at structured information. We have already en-
countered a typical pointer: the stack pointer, which points to the top
of the stack {or usually just over the top of the stack}. We will see that
the stack is a common data structure, called an LIFO structure.

As another example, when using indirect addressing, the indirect ad-
dress is always a pointer to the data that one wishes (o retneve.

Exercise 9.1: Exarmune Fig. 9.1. At address 15 in the memory, there is a
pointer to Table T. Table T starts at address 500. What are the actual
contents of the pomnter to T?

8
15
—  POINTERTOT
16
500
TABLE T

Fig. 9.1: An Indirection Pointer

LISTS

Almost all data structures are organized as lists of various kinds.

Sequential Lists

A sequential list, or table, or block, 1s probably the simpiest data
structure, and is one that we have aiready used. Tabiles are normally
ordered in function of a specific criterion, such as alphabetical ordering
or numerical ordering. [t is then easy (0 retrieve an clement i a table,
using, for exampie, indexed addressing, as we have done. A block nor-
mally refers to a group of data which has defin:te limits but whose con-
tents are not ordered. It may contain a string of characters; it may
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be a sector on a disk: or it may be some logical area (called segment) of
the memory. In such cases, it may not be easy to access a random ele-
ment of the block.

In order to facilitate the retrieval of blocks of information, directo-
ries are used.

Directories

A directory is a list of tables or blocks. For exampie, the file system
will normally use a directory structure. As a simple example, the master
directory of the system may include a list of the users’ names. This s il-
lustrated 1n Figure 9.2. The entry for user “*John'’ points to John's file
directory. The file directory is a table which contains the names of all of
John’s files and their [ocation. This is, again, a table of pointers. In this
case, we have just designed a two-level directory. A flexible directory
system will allow the inclusion of additional intermediate directories, as
may be found convenient by the user.

1S3ER DRECIORY

JOHNCS
FILE DiRECTORY
JouN
SOHN'G FIE
ALPHA
ALPHA
SIGMA OATa
SHGMA

Fig. 9.2: A Dircctory Structure

Linked List

in a system there are often biocks of information which represent
data, events, or other structures which cannot be moved around eas-
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ily. If they could, we would probably assemble them in a table in order
10 sort or structure them. The problem now s that we wish to leave
them where they are and still establish an ordering among them such as
first, second, third, fourth. A linked list wili be used to solve this prob-
lem. The concept of a linked list 15 illustrated by Figure 9.3. On the il-
lustration, we see that a list pointer, called FIRSTBLOCK, points to the
beginning of the first block. A dedicated location within Block ! such
as, perhaps, the first or the last word in i, contains a posnter to Block
2, called PTRI. The process is then repeated for Block 2 and Block 3.
Since Black 3 is the [ast entry in the list, PTR3, by convention, either
contains a special **nil’” value, or points (o itself, so that the end of the
list can be detected, This structure is economical, as it requires only a
few pointers (one per block) and frees the user from having to physi-
cally move the blocks in the memory.

FIRSY
et BLOCKT
BLOCK

PTR 2

PIR3
L4

BLOCK 2 BLOCK 3

PIR ¥

Fig. 9.3: A Linked List

Let us exanune, for example, how a new block will be inserted. This
15 Hllustrated by Figure 9.4. Let us assume that the new block is at ad-
dress NEWBLQOCK, and s to be inserted between Block | and Block 2.
Pointer PTR1 is simply changed to the value NEWBLOCK, so that it
now points to Block X. PTRX will coniain the former value of PTRI,
i.e., it will point to Block 2. The other pointers in the structure are lefl
unchanged. We can see that the insertion of a new block has simply re-
gutred updating two pointers in the structure. This is clearly efficient.

Exercise 9.2: Draw a diagram showing how Block 2 would be removed
Jrom this structure.

NEW BEOCK meemtans
BOCK X

L BLOCXZ

Fig. 8.4: Inserting a New Block

PIR X

-

FIRST
et
BLOCK

oK1

BLOCK 3

PIR 2

PTR ¥

PIR 3

542



DATA STRUCTURES

Several types of lists have been developed to facilitate specific types
of access, msertions, and deletions to and from the list, Let us examine
some of the most frequently used types of linked lists.

Guene

A queue is formally called a FIFO, or first-in-first-out list. A queue
is illustrated 1n Figure 9.5, To clarify the diagram, we can assume, for
example, that the block on the left is a service routine for an output
device, such as a printer. The blocks appearing on the right are the re-
quest blocks from various programs or routines, to print characters,
The order in which they will be serviced 15 the order established by the
waiting queue. [ can be seen that the first event which will obtain serv-
tce ts Block [, the next one is Block 2, and the following one is Block 3.
In a queue, the convention is that any new event arriving in the queue
will be inserted at the end. Here it will be inserted after PTR3, This
guarantees that the first block to be inserted in the queue will be the
first one to be serviced. it is quite common in a computer system to
have queues for a number of events whenever they must wait for a
scarce resource, such as the processor or some input/output device.

SERVICE ROUTINE BOCKE

REXT a— PIR1

MOk 3

[ FiR3

HIGCK 2

FIRZ —

Fig. 9.5: A Queue
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Stack

The stack structure has already been studied in detail throughout the
book. It 1s & last-in-first-out structure (LIFO). The last element depos-
ied ontop is the first one to be removed. A stack may either be im-
plemented as a sorted block, or it may be unplemented as a list. Because
most stacks 1n microprocessors are used for high-speed events, such as
subroutines and interrupts, a continuous block is usually allocated to
the stack instead.of using a linked list.

Linked List vs. Block

Similarly, the queue could be implemented as a block of reserved
locations. The advantage of using a continuous block is fast retrieval
and the elimmation of the pointers. The disadvantage is that it is usu-
ally necessary to dedicate a fairly large block to accommodate the
warst-case size of the structure. Also, it makes it difficult or impractical
to nsert or remove elements from within the block. Since memory is
traditionally a scarce resource, blocks have usually been reserved for
fixed-size structures or structures requiring the maximum speed of re-
trieval, such as the stack.

Circular List

“Round robin™ 1s a commeon name for a circular list. A circuiar list 1s
a linked list in which the last entry points back to the first one. This is il-
lustrated in Figure 9.6. In the case of a circular list, a current-block
pointer is often kept. In the case of events, or programs, waiting for
service, the current-evens pointer will be moved by one position to the
left or to the right every time. A round robin usually corresponds to a
structure in which all blocks are assumed to have the same priority.
However, a circular list may also be used as a subcase of other struc-
tures simply to facilitate the retrieval of the first block after the iast
one, when performing a search.

As an example of a circular list, a polling program usually goes in a
round robin fashion, interrogating all peripherais and then coming
back to the first one,

Trees

Whenever a logical relationship exists among all elements of a struc-
ture (this 1s usually called a syntax), a tree structure may be used. A sim-
ple example of a tree structure is a descendant, or genealogical, tree,
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T S T f“"'

i

CURRENT EVENT

Fig. 9.6: Round Robin is Circular List

This is illustrated in Figure 9.7. It can be seen that Smith has two chil-
dren: a son, Robert, and a daughter, Jane. Jane, in turn, has three
children: Liz, Tom and Phil. Tom, in turn, has two more children: Max
and Chris. However, Robert, on the feft of the illustration, has no de-
scendants.

This is a structured tree. We have, in fact, already encountered an ex-
ample of a simple tree 1n Figure 9.2. The directory structure is a two-
level tree. Trees are used {0 advantage whenever elements may be classi-
fied according to a fixed structure. This facilitates insertion and re-
trieval. In addition, they may establish groups of information in a
structured way which may be required for later processing, such asina
compiler or interpreter design.

SMITH

T~

ROBERT JANE

tz FHIL

N

CHRIS

Fig. 9.7: Genealogical Tree

Doubly-Linked Lists

Additional links may be established between elements of a list. The
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simplest example is the doubly-linked list. This is illustrated n Figure
9.8. We can see that we have the usual sequence of links from left to
right, plus another sequence of links from right to left. The goal is to
allow easy retrieval of the element just before the one which is being
processed, as well as just after it, This costs an extra pointer per block.

BLOCK ¢

PR

BOoCK 2 b BLOCK 3

PIR
PR

Fig. 9.8: Doubly-Linked List

SEARCHING AND SORTING

Searching and sorting elements of a list depends directly on the type
of structure which has been used for the list. Many searching algo-
rithms have been developed for the most frequently used data struc-
tures. We have already used indexed addressing. This is possible when-
ever the elements of a table are ordered in function of a known
criterion. Such elements may then be retrieved by their numbers.

Sequential searchung refers to the linear scanning of an entire block.
This is clearly inefficient but may have to be used when no better tech-
nique is available, for lack of ordering of the elements.

Binary, or logarithnuce, searching attempts to find an element 1n a
sorted list by dividing the search interval in half at every step. Assum-
ing that we are searching an alphabetical list, one might start, for exam-
ple, in the middle of a table and determine if the name we are looking
for is before or after this point. If it is after this point, we will eliminate
the first half of the table and fook at the middle element of the second
half. We compare this entry again to the one we are looking for, and we
restrict our search to one of the two halves, and so on. The maximum
length of a search is then guaranteed to be [og.n, where n is the number
of elements in the table.

Many other search techniques exist.

SECTION SUMMARY

This section was mntended as only a brief presentation of usual data
structures which may be used by a programmer. Although most com-
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mon data structures have been organized in types and given a name, the
overall orgamzation of data in a complex system may use any combina-
tion of them, or require the programmer (o invent more appropriate
structures. The array of possibilities 1s only lirmited by the imagination
of the programmer. Similarly, a number of well-known sorting and
searching techniques have been developed for coping with the usual
data structures. A comprehensive description is beyond the scope of
this book. The contents of this section were intended to stress the im-
portance of designing appropriate section siructures for the data to be
mampulated and to provide the basic tools to that effect.
Actual programming examples will now be presented in detail.

547



PROGRAMMING THE £80

PART II — DESIGN EXAMPLES

INTRODUCTION

Actual design examples will be presented here for typical data struc-
tures: table, sorted list, linked list. Practical searching and insertion and
deletion algorithms will be programmed for these structures.

The reader interested in these advanced programming technigues is
encouraged to anatyze in detail the programs presented in this section.

However, the beginning programmer may skip this section initially,
and come back to it when he feels ready for it.

A pood understanding of the concepts presented in the first part of
this chapter is necessary to follow the design examples. Aliso, the pro-
grams will use all of the addressing modes of the Z80, and integrate
many of the concepts and techniques presented in the previous chapters.

Three structures will now be introduced: a simple list, an alphabetical
list and a linked-list plus directory. For each structure, three programs
will be developed: search, enter and delete.

DATA REPRESENTATION FOR THE LIST

Both the simple list and the alphabetic list will use a common repre-
sentation for each list element;

cccnné§ng

B i
3-byte label Data
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ENTLEN M LENG T4 OF ENTRY
TABLEN e NUMBER OF ENTRIES
TAB BASE
LABEL
ENTRY MEBYTES
DATA

/‘\/\/\/\/\ - ENTER NEWY ELEAENT

Fig. 9.9: The Table Structure

< J
C LABEL
c }
)
Elff‘\?ENT ENTLEN
NN
{ DATA
PAVAVAVA VAW WaY s
A § S v
C ) L
C ; LABEL
c )
ELEMENT ° ENTLEN
NN
8 DATA
VAV AV VAV eV Ve,
D

Y

Fig 9.10: Typical List Entries in the Memory
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Each efemnent, or “‘entry’’, includes a 3-byte label, and an n-byte block
of data, with n between I and 253. Thus, at most, each entry uses one
page (256 bytes), Within each list, all elements have the same length (see
Figure 9.10). The programs operating on these two simple lists use some
common variable conventions:

ENTLEN is the length of an element. For example, if each element
has 10 bytes of data, ENTLEN =3 + 10 = 13

TABASE s the base of the list or table in the memory

POINTR  is 4 running pointer to the current element

OBJECT s the current entry to be located, inserted or deleted

TABLEN  is the number of entries.

All Iabels are assumed to be distinct. Changing this convention would
require a minor change in the programs.

! -
2 BASE ot FLEMENT 3 I N
BEMENT 2
POINTR CLThEN]
> TLERENT
SLEMEND R PABEN ~m
FREE SPACE — e FAES SPACE et
ORECT
10 BE INSERTED

Fig. 9.11: The Simple List
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A SIMPLE LIST

The simple list is organized as a table of n elements. The elements are
not sorted (see Figure 9.11). When searching, one must scan through
the list until an entry is found or the end of the table is reached. When
inserting, new entries are appended to the existing ones, When an entry
1s deleted, the entries 1n higher memory locations, if any, will be shifted
up to keep the table continuous.

Searching

A senal search technique is used. Each entry’s fabel field 1s compared
in turn to the OBJECT s label, letter by letter.
The running pointer POINTR is initialized to the value of TABASE.

SEARCH

¥

COUNTER =
MNUMBER OF ENTRIES

! COUNTER = 0 l
: Y

NO

COUNTER = COUNTER — §

FOUND
{SET A TQ FF)

FAILURE EXIT

l POINT TO NEXT ENIRY l

]

Fig. 9.12: Table Search Flowchart
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The search proceeds in the obvious way, and the corresponding flow-

chart is shown on Figure 9.12. The program appears on Figure 9.16
at the end of this section (program “SEARCH"). A sample run of the

program is shown in Figure 9.17.

Inserting

When inserting a new element, the first available memory block of
(ENTLEN}) bytes at the end of the list 15 used {(see Figure 9.11).

The program first checks that the new entry 15 not already m the list
(all labels are assumed to be distinct in this example). If not, it incre-
ments the list length TABLEN, and moves the OBJECT to the end of
the list. The corresponding flowchart is shown in Figure 9.13.

The program is shown in Figure 9.16. It is called ““NEW"’ and resides
at memory locations 0135 to 015E.

The index register 1Y points to the source. HEL and DE are destina-
tion pointers.

- EXIT

L SAVE OLD TABLE LENGTH l

v

i IMCREMENT TABLE tENGTH ]

v

POINT AFTER
END OF TABLE

v

l INSERT OBIECT 1

/

END

Fig. 9.13: Table Insertion Flowchart
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Deleting

In order to delete an element from the list, the elements following it
in the list at higher addresses are merely moved up by one element posi-
tion, The length of the list is decremented. This is iHustrated on Figure
9.i4.

The corresponding program is straightforward and appears on Fig-
ure 9.16. It is called “DELETE”, and resides at memory addresses
015F 10 0187, The flowchart 1s shown in Figure 9.15.

Memory Jocation TEMPTR 15 used as a temporary pointer pointing
to the element to be moved up.

During the transfer, POINTR always points to the ‘“*hole’” in the list,
1.e., the destination of the next block transfer.

The Z flag is used to indicate a successful deletion upon exit.

Note how the LDIR instruction is used for efficient automated block
transfer (refer to address 0178 in Figure 9.16).

LD A B BLOCK COUNTER
NEWBLOC LD BC, (ENTLEN) BLOCK LENGTH

LDIR

DEC A

P NZ, NEWBLOC

BEFORE AFTER

DELETE ~—tm]
MOVE

TEMPTR st

OLOEO

MOVE

OLIOEEG

NN

Fig. 9.14: Deleting an Entry (Simple List)
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;i

FIND ENTRY

out

DECREMENT TABLE LENGTH

}

FIND NBR OF ENTRIES
AFTER OBJECT IN TABLE

EXIT
SHIFT ONE ENTRY UP
A

DECREASE COUNT OF

ENTRIES REMAINING

AFTER THE ONE SHIFTED

NO
out

Fig. 9.15: Table Deletion Flowchart
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Lelelele] ORG Q1908
(0IB7) ENTLEH DL ENDER
(01893 TABLEN DL ENBERTD

{018a) TARASE DL, ENDBERED
10180 TEMP o, ENDER+S

0168 14600 éEAREH LD Ds0 iCLEAR O

0107 IABTGL LD Ar (CTABLEN) iCHECK FOR A ZERD TABLE LENGTH
0105 A7 AND A JSET FLAGS
0104 CB REY 2
0107 47 LD Bea $STORE TABLE LEMGTH
0108  DDIABAOL LD IXr (TABASE) PPUT BASE ADDR. IH IX
030C  DOVEQD LOOP LD Ar (IX40) $CHECK FIRST LETTER OF EMTRY
010F FDHEQO cP CIVHO!
0132 £anyos 4P NZ+HEXTOHE
0115 DB7EO: LD Al CIXHL} FCHECK DHD LETTER
0118 FDREOL P (IY41)
011k C20703 I NIsHEXTONE
Q11  BDPEOR Ln A3 {IN43H PCHEEK 38D LETTER
0121 FDBEO2 cP (IY433
0124 CA3D0S S Z.Foulin FEXIT IF AtL LETTERS MATOH
0127 05 NEXTONE DEC B i PECREMENT TABLE LENGTH COUNTER
0178 €8 RET 2 PEXIT IF AT END OF TABLE
0129  EDSRBFOZ LD DE r {ENTLER) PSET IN TD NEXT ENTRY ABDR.
0120 1019 AN IX4BE
012§ ciocol 4P L8P PTRY AGAIN
0133 14FF FOUNE B B GEEN PBET D TD SHOW TX CONTAINS ADDR.
G134 ©9 RET 1o 8F ENTRY IN TABLE
;
0135  CDOOOT HEW LALL SEARCH PGEE IF DBJECT IS THERE
0138 14 INC &
0139 CASEO1 JF 7 QUTE HIF B owAS FE, EXIT
G130 3A8%01 ib ar (TABLEN)
913F  SF LE LTS FLOAD E WITH TARLE LENGTH
4140 3C e f
6141 328901 LB {TAELEM) rf FINCREMENT TABLE LENGTH
o144 1400 LB e
o144 2a8A01L Lp HL ¢ (TABASED
0145  ERABOIGL LB BC+ (ENTLEN) FSET B TO LENGTH OF AN ENTRY
o1ap Al LB B.C
01aE 19 LEOPE  ADD HLsDE
014F 1OFL DJNZ  LOOPE PADD HL TO (ENTLEH:TABLEN)
8151 ED4BE7OL LE BCr (ENTLEN?
0155 FRES PUSH 1Y FHOVE 1Y TO DE
0157 b1 POF  DE
0158 EW EX DErHL
0157 ERHD LDIR SHOVE MEHORY FROM ORJECT TO END
015k GIFFFF Lh BE L OFFFFH 5. .0F TABLE
0156 ©F DUTE RET
B
3
i
OLSF  CROGOL PELETE CALL SEARCH PFIND ENTRY TO BE DELEYED
0162 14 NG # PSEE IF 1T WAS FOUND
0143 £28401 P HZ,OUT
0isé&  IABYOL LD Ar CTABLEN) FBECREMENT TABLE LENGEH
0149 3D e A
0i4A 228701 LE (TABLEN) 18
6i60 05 fEC R P4 NOW<$ DF EHIRIES LEFT IN TALLE
014€ CAB3O0% JP ZoEXIT i, AFTER ONE 70 BE BELETED
0171 [DES FUSH IX SHOVE IX TO DE
0173 81 FOP  DE
0174 248701 LD HL s (ENTLEN} SSET HLL ONHE ENTRY AHEAD OF DE
Q177 19 ADE  HLeDE
0178 7 %] Ak iSET BLOCK COUNTER
0179 EDADEZOL  HEWRLOC LR BCs (ENTLEN} FSET BLOCK LENGTH EDUNTER
0170 EDRD LBk $EHIFT | ENTRY OF TAHLE
0i7F 3D DEC A
G01BO  CIP901 JP HZ fNEUBLGE PSHIFT ANOTHER BLOCK
0183 OIFFFF EXIT LB BCsOFFFFH i5HOW THAT IT WAS BONE
0:B6 9 auT RET
0187 (0000) ENDER  ENR

Fig. 9.16: Simple List— The Programs
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STHBOL TABLE

BELETE O15F ENDER G187 ENTLEN 0387 EXIT 6183 FOUNR 0132
o8P c1o8 168PE  O14E HEW 0135 HEWBLE 6179 HEXTOH 0137
ouT [i31:72 ouTe 01SE SEARCH 0300 TABASE  018A TABLER 01BY
TEMP G1EC
Fig. 9.16: Simple List— The Programs (cont.}
Diispiny Memory Listlng of Objects
with their locations
In memory
~DH3Q0
0300 53 4F AE 31 31 31 31 31-31 31 3t 31 31 G0 OC G0 SONI13fIptifti...
0310 44 41 44 32 32 33 32 32-32 32 32 32 IT 40 G4 00 DADRIDRDDOIOD. ..
0370 4D AF AD 33 33 33 33 33-33 33 33 23 33 00 00 00 HOM3I3IIIIIIII...
0330 S5 4E 43 34 34 34 34 34-34 34 34 34 34 G0 0D 00 UHCA443423335...
0340 41 SE Sa 35 3% 35 35 35-35 35 35 35 35 00 00 00 ANTSS55S555555...
0350 00 00 GO GO 00 00 00 00-0C 00 00 D0 08 G0 80 00 .iaavsrrivsnnnsn
0340 00 00 00 00 GO 00 0O GO0-00 00 €0 86 86 60 60 00 ...euw.
3370 00 00 00 00 00 00 00 00-00 00 00 68 08 00 08 00 sesrrerrareaanss
-5y )
v=0000 300 Set1Y to 0300H {(pointer toc QBJECT)
-GLI93/198
p=0194 o194’ Run ‘INSERT’
Tabie configuration
after program r
01400 Progrim run
040G 53 4F 4F 31 31 31 31 31-31 31 31 31 31 00 00 00 SOMI11111111d...
0416 ©C 8O 00 90 00 00 00 00-00 00 00 00 G0 00 G0 00 .uvnrsenrrancnas
0420 GG 06 00 ©0 00 00 00 50-00 00 GG 0G0 00 00 GO 90 +veuiescaess .
0430 GG ©0 00 00 00 00 00 00-00 00 ©8 OO G0 00 G0 00 «vuuiranssasenns
0443 00 00 00 00 00 00 00 00-00 00 O8 GO 60 00 G0 00 «ueusevesnecsaas
0450 GO 00 9T 00 00 00 08 GO-00 00 88 G0 00 00 GO0 00 +eenrurrerensnn.
0460 GG 06 00 00 00 00 08 00~00 00 08 00 00 OC G0 00 .vuerussssansses
0470 GG GG 00 00 00 00 06 00-00 00 08 00 00 08 GG 00 .euvnsssnrsannnns
~8Y
v=03e6 310 Set 1Y to 6310H (next OBJECT}
-G193/1%4
r=0:96 0195’ Run ‘INSERT’
Tabde configuration
after second insert
~DHA00
0400 53 4F 4E 31 31 31 31 31-¥1 31 3: 3 3% 44 41 44 SON1111111111DAD
0410 X2 32 A2 37 32 32 32 32-32 32 86 0O G0 00 OG 00 2D2IDIDIIT. L ...,
0420 ©O 08 CC 0O 00 00 OC 00-00 60 GO 00 00 00 00 00
0430 ©G 06 00 00 00 00 00 00-00 00 GG GO 0D (O OO OO
044G GG 00 00 00 00 09 00 00-00 00 ©C CG CC GG GO OO
0450 GG 0C 00 0D 00 00 00 00-00 00 GG 0G0 00 00 00 00 «yuusrvvrvvsnsns
0450 GG G 00 00 00 00 00 50-00 00 GG GG GO OC G0 00 +vucsennrnansans
0470 GG 08 00 00 00 00 00 00-00 00 88 CO G GG GO0 00 ,vvnererrrrsrnns
VN R S s e
{More insertions) Tuble canfiguration
_pHace after several Inserls
G400 53 4F 4E 31 31 31 31 31-31 31 31 31 31 A3 51 44 SOMA1111111:11DAD
G410 32 3D 32 32 32 37 32 30-32 32 S5 AE 43 34 34 34 200007003 3UNCEAA
0420 34 34 34 34 34 34 34 40-4F 4D 33 33 33 33 33 33 4444444H0HIZIZI3
0430 33 33 33 33 4@ 4E 54 I5-35 35 35 35 35 35 35 35 II3IANTSESS55555
0440 35 00 Q0 00 00 00 QO 0O-00 00 00 00 G0 00 00 GO0 Suvrrerrrenneres
Q450 00 00 00 00 00 00 00 00-00 DO 00 GG GO0 00 00 GO Cees
0440 00 00 GO 0O 00 GO 0O GO-00 00 00 00 00 00 0D OO cees
0470 00 00 00 00 00 0O 00 00-00 00 00 OO 00 0O 0G G0
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=57
¥=0340 320
~-G190/1%93

r=0173 0193° Run ‘SEARCH’
Reg D shows that Object was found

-HR Hegister contents
T N A=Al BC=O2FF DE=FFOD HE =034D 5=0100 F=G173 D1F3’ [CALL 0135

A’=00 B =0000 D‘=0000 H'=0880 X=0A27 ¥Y=0320 (=00 01357
Address of Object
~Gi%4/199
r=0t99 0199+ Run 'DELETE’ Table configuration

after deletien
~IH400
0400 53 AF AE 31 33 X1 3: 3:-31 33 31 33 3i 44 A4f 44 SOHIIfIIItitihng
0410 3T 32 3T 32 32 A7 J7 323D 32 5% 4E 43 34 34 34 ID23D233DDCUNRCA4A4
0420 34 34 34 34 34 34 34 A1-4E 54 35 35 35 35 35 IS 4444444AHTES5555
0430 3% 35 35 35 4) 4E 54 35-35 35 35 35 3% IS5 35 35 SE55ANTSS5555555

0440 35 G0 00 GG GO G0 OF GG-CO 00 00 00 00 G0 00 00 Suvenrritsnrsrss
0450 @O0 GC GC GG GO Q0 GO 0C~0O0 0D 00 00 Q0 00 00 D0 «issisiveanarnss
04466 00 GG 86 Gf GG GG GG GG-CO 0D 00 00 GG GO 00 GO +vvrvivnnnsraans

0470 ©C GO 00 0D 00 00 B0 G0-0C 00 00 00 GG G0 GO B8  «.uvunevaraiany,

-5y

Y=0240 340

TG186/199 Delete fast entry in table Note: no apparent

P=0199 0199 change in table
cenfiguratien

~DH400

0400 §53 AF AE 31 31 31 31 31-31 31 31 31 31 44 41 44 SONL1111111110AR
0410 3T 32 32 32 32 32 32 32-32 37 5T 4F 43 34 34 34 20000DDIDIUNCASS
0420 34 34 34 34 34 34 34 41-4E 54 35 35 35 35 35 35 4444444nNTSSSSSS
0430 35 35 35 35 41 A€ 54 35-35 35 35 35 35 35 35 35 SHSSAHTSS555555S
0440 35 00 00 00 00 00 00 00-00 00 00 08 O 00 00 00 &..
0450 00 00 00 00 00 00 00 00-00 00 00 08 G0 G0 OC GO
0440 QO 00 00 00 00 0O 0O 0O-00 00 08 GG 60 00 006 00
0470 00 00 00 00 00 00 00 0O0-G0 00 00 00 00 00 00 00

~DHiB?S5:
9(1;?30/?33"-— Memory location 'TABLEN® — shows true length of table

P=0193 0193° Run ‘SEARCH’ for deleted Object

Dshows that Object was not found

=Rk
Z N A=35 BC=00FF DE=000D HL=0441 $=0100 F=0193 0193° CALL 0135
/7=60 B =00G0 N'=0000 N "=0000 X=041A Y=0340 =00 (013572

Fig. 9.17: Simple List— A Sample Run (cont.)
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ALPHABETIC LIST

The alphabetic list, or *‘table,”” unlike the previous one, keeps all
its elements sorted in alphabetic order. This allows the use of fast-
er search techniques than the linear one. A binary search 1s used here.

Searching

The search algorithm is a classic binary search. Let us recall that
the technique is essentially analogous to the one used to find a name in
a telephone book. One usually starts somewhere in the middle of the
book, and then, depending on the entries found there, goes either back-
wards or forward to find the desired entry. This method is fast and
reasonably simple to implement.

The binary seach flowchart is shown in Fig. 9.18, and the program is
shown in Fig. 9.23,

This list keeps the entries in alphabetical order and retrieves them by
using a binary or “‘logarithmic’ search. An example is shown in Figure
9.19. The search is somewhat complicated by the need to keep track of
several conditions. The major problem to be avoided is searching for an
object that is not there. In such a case, the entries with immediately
higher and lower alphabetic values could be alternately tested forever.
To avoid this, a flag is maintained in the program to preserve the value
of the carry flag after an unsuccessful comparison. When the INCMNT
value, which shows by how much the pointer will next be incremented
reaches a value of “*1'", another flag called ““CLOSENOW”’, which we
will abbreviate to ““CLOSE”’, is set to the vaiue of the COMPRES
flag Thus, since all further increments will be ‘1", if the pointer goes
past the point where the object should be, COMPRES will no longer
equai CLOSE and the search will terminate. This feature also enables
the NEW routine to determine where the logical and physical pointers
are located, relative to where the object will go.

Thus, if the OBJECT searched for is not in the tabie, and the running
pointer is incremented by one, the CLOSE flag will be set. On the next
pass of the routine, the result of the comparison will be opposite to the
previous one. The {wo flags will no longer match, and the program will
exit indicating “*not found”.

558



DATA STRUCTURES

L FLAGS = @ s
POINT TO TABLE BASE l

1

LOGICAL POSITION =
INCREMENT VALUE =
TABLELENGTH / 2
{ADD 1 IF T WAS ODD)

YES
NOT FOUND
NO
L PGINT TO MIDDLE OF TABLE ]

* Y‘—————--- {ENTRY S

l INCREMENT VALUE = INCREMENT VALLIE/2 ]

'

ADD ONE #F IT WAS ODD

{

COMPARE OBJECT TO ENTRY ]

,__._

YES
FOUND

NO

FRESERVE CARRY (SIGN OF COMPARISON)
IN COMPRES FLAG

i

15 INCREMENT
VALUE ONE?

{NEXT TEST}

(LAST ONE}

Fig. 9.18: Binary Search Flowchart

559



PROGRAMMING THE ZBO

(NEXT JEST) (LAST OhE}

HOT FOUNQ

WILL INCREMENT
GO BAST END
OF TAREY

AT IMG
OF TABLE?

Ls)
l FOGH}
MEVE POINTERS
UFDATE POINIERS ur sY )
(ENIRY)

WLt INCREMENE
GO PAST END
OF TABLE?

AT
[OTTOM OF
TARIE?

UPDATE POIMIERS

ENTRY)

NOT g
FOUND

(FOOLCY

INCREMENT = 3
RACIVE PGINIERS g -
DOWN BY 1 CLOSENOW = COMPRES

{ENTRY)

Fig. 9.18: Binary Search Flowchart (cont.)
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The other major problem that must be dealt with is the possibility of
runmng off one end of the table when adding or subtracting the incre-
ment value. This is solved by performing a test “*add’ or “subtract’’
using the fogical pointer and length value which record the actual num-
ber of entries, not the physical positions in memory used by the physical
pointers,.

In summary, two flags are used by the program to memorize infor-

{0i21) LD A, C
SRL A
ADC 0
LD C. A
o8ECT
] “SYB
TABASE
AAA
BAC
{NO) o
e fIL 165
S @_— x¥z
Xyl
FIRST TRY SECOND TRY
SEARCH INTERVAL = 5§ SEARCH INTERVAL = 2

Fig. 9.19: A Binary Search
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mation: COMPRES and CLOSE. The COMPRES flag is used to preserve
the fact that the carry was either ““0"’ or *‘1"” after the most recent com-
parison. This determines if the element under test was larger or smaller
than the one with which it was compared. The C indicates the relation.
Whenever the carry C was ‘1", and the element was smaller than the
object COMPRES is set to *“I””, Whenever the carry C was *'0"", indi-
cating that the element was greater than the object, COMPRES will be
set to “FF’,

The second flag used by the program 1s CLOSE. This flag 1s set equal
to COMPRESS when the search increment INCMNT becomes equal to
“17, It will detect the fact that the element has not been found if

COMPRES is not equal to CLOSE the next time around.
Other variables used by the program are:

LOGPOS which indicates the logical position in the table
{element number)

INCMNT  which represents the value by which the running
pointer will be incremented or decremented if
the next comparison fails

TABLEN represents as usual the total length of the list.

LOGPOS and INCMNT will be compared to TABLEN in order to
assure that the limits of the list are not exceeded.

The program called **SEARCH" is shown on Figure 9.23. It resides
at memory locations 0100 to 01 CF, and deserves to be studied with care,
as it is much more complex than 1n the case of a linear search.

An additional complication is due to the fact that the search interval
may at times be either even or odd. When it 15 odd, a correction must
be introduced. (It cannot, for instance, point to the middle element of a
four-element list.) When it is odd, a “trick” 1s used to point to the
middle element: the division by 2 is accomplished by a right shift. The
bit ‘“falling off™ into the carry after the SRL instruction will be *‘I"* if
the interval was odd. 1t is merely added to the pointer.

The OBIECT is then matched against the entry in the middle of the
new search interval. If the comparison succeeds, the program exits,
Otherwise (“NOGOOD"), the carry is set to *'0” if the OBJECT is less
than the entry. Whenever the INCMNT becomes ““17°, the CLOSE flag
(which had been initialized to “*0"") is then checked to see if it was set. If
it was not, it gets set. If it was set, a check is run to determine whether we
passed the location where the OBJECT should have been but is not.
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Also note that when the carry was “*1"", the running pointer will point

to the entry below the OBJECT.

Element Ensertion

In order to insert a new element, a binary search is conducted. If the
element is found in the table, it does not need to be inserted. (We
assume here that all elements are distinct). If the elerment was not found
in the table, it must be inserted immediately before or immediately after
the last element to which it was compared. The value of the COMPRES
flag after the search indicates whether it should be inserted immediately
before or immediately afterwards. All the elements following the new
location where it is going to be placed are moved down by one block
position, and the new element 15 inserted,

BEFORE AFTER
TABASE —mmnnt AAA A
ABC ABC
BAT BAC e NEWY
ELEMENT
TAR BAT
ZAP TAR
ZAP
¥
OBJECT —=] BAC MOVE DOWN

Fig. 9.20: Insert: “*“BAC"
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The insertion process is illustrated in Figure 9.20, and the corre-
sponding program appears in Figure 9.23.

The program is called NEW, and starts at memory location 01DQ.
Note that the automated Z8Q instructions LDDR and LLDIR are used for
efficient block transfers.

Element Deletion

Similarly, a binary search is conducted fo find the object. If the
search fails, it does not need to be deleted. If the search succeeds, the
element is deleted, and all the following elements are moved up by one
biock position. A corresponding example is shown n Figure 9.21, and
the program appears in Figure 9.23. The flowchart 1s shown n Fig.
9.22.

The program is called “DELETE" and resides at address 0221.

A sample run of the above programs is shown in Fig. 9.24,

BEFORE AFTER
AAA AAA
MOV; up ABC ABC
BAC = BAT
BAT TAR
— TAR ZAP
ZAP
\
DELETE

Fig. 9.21: Delete “BAC"
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DELETE

{

ALREADY N7 LHAES

COUNT HOW MANY
ELEMENTS FOULOW THE
ONE TO 8E DELETED

|

LES]

NG

RESULT = COumiER
{L0G POS)

!

POINT TO NEXT ENTRY
POINTER = TEMP (SOURCE -

!

TRANSFER IT UF ONE BLOCK

'

POINT 10 NEXT EndIRY
FOINTER = POINTER {DESTINATION.

!

L DECREMENT LOGPOS i

(DOWNTAB) g YES

L SET 2 FLAGS l‘h

/1S

Fig. 9,22: Deletion Flowchart (Alphabetic List)
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falelele] 0K 01004
102an) CLOSENGY I EHbED
10048 LOMPRES 14 EHBEBH
orafy TAMLEN DL EREEDD
(e2ap) TARNGE . EHDEDES
olar) EHELEN FS CHBEDD
4190 3500 SEARCH i
orer  Inanol gt THOWY « P 7ER FLAG LUOATIENG
0105 32AR0D [R{ (COKFRES) « A
0ioB 07 Lh e
0109 2A4BOD Lh Hi_» { TARASE PIHITIALIZE 1
610C  3AACAT2 th AL TARELINY
G1GF  LBRAF BiL. n FREVInE by 7
o111 CERG ang o 3AIM 175 KIT BACK I
otL3  4aF Lo Lt ISTORE AS THOREMEHT VALUE
iia 47 1t Hedd PSTORE AS LOGICAL FOSITION VALUE !
0115 CARAGE WP 2 HOTFGUNE FCHECK TF LEWGIH IS ZERG
01318 IF (R £ FHULTIFLY (E-11uGNTLEN
R0 A & BEL 3
011Aa  CREBOL (M HULT
aitg 19 ADD Hi. » BE PSET HL TO HIDDLE OF TakLE
01iE  ES EMTRY fi5H HL sEInf HE THIO IX
011F TER POF 84
4121 79 ih Al FRIUIDE THOREMENT ALUE TY TuD
0122 CR3F SHL &
0124 CEOO ane a
0I26  4F R} [
0127 DBR7EOO L A IXEO) PNDMPARE FIRST LETTER
012Aa FDREOO ety £TI7H0 Y
#10k 2001 JE NZ cHDGOON
0136 BD7EGL L AsLIXEL) ICOHFARE IHD LETTER
0133 FOBECE ooy (IYFLY
0136 a0l JF HY rNOGDOR
0139 DBRVEQGD in A CIXET) PCOMFARE IRP LETYER
013C  FOREOD oF LIYED)
S353F  CAPLOY JF T FIHIND
0142 3ECGL HOGDOL LD o § P5ET GCOHPARE RESULY FLAG 10
niaa  DARFoL Je s TESTS .. -RESULT COF COREARE (1¢FF)
0147 3EFF L s OFFH
Q14% 324002 TESTS LR (COHFRES o 0
a1aL 79 in Al + IS THCREHENT VALUE 17
otap IR BEL n
013E CZ&%01 N HZ (HEXTESYE
0151 3A4ADD Ln Ar (CLOSENGWY iYESs TS CLOSE Fint SET?
0154 A7 NN n
019% L[A&303 o Z-HBTCLGSE
o158 857 Lhn [LEYe] FYES,SEE TF HAVE PASSED WHERE
4157 JA4T02 v Ay {CGMFRES) 7. EHTRY SHOULD BE BUT ISH'T
o15C %2 SUk n
0150 ChR&YOL iy Z+HEXTESGT
040 C3pAct i ROTFOUND
0143  3A4ARDDT HOTCLOSE LD Ar (COHPRES) s$ET CLOSE FLAf 7O DIRECTION OF
G148 314802 B {CLOBEHGW Y oA re SUARCH TO PREVENY REFETIVION
G147 DEED HEXTESY FuS#  IX sPREPARE HL AND DE FOR aDN OR
o1&k Ef FOF Wi s. . 5UE OF [NCREMENT VALUE
014C 59 [&1) Efl
Q161 CDRNOL cail, HULY
0170 IA4HOD LD fuor CCOMFRES) PTEST IF WANHT TO Aabl DR SUR
0173 3¢ INT n
{174  CI9401 JF HTsADNTT
0177 78 LR At $TEST TO SEE TF SUb WILL RUH
or7g %1 5Uk [ .o JOFF BOTTON OF TARLE
0179 CABOOL JF T.TOOLOW
0170 PABS0E JP L+ TOOLOW
O17F 47 Li Hel sHET MEW LOGICAL FOSITION VALUE i
©180 EDSD Sil HL s ItE P CANBE ABDRESS [TSELF
o187 C31E6] JE EHTRY
018s 78 TOOL B4 .0 Aell PSEE IF FOSITTON IS5 ¢
o1gé& 30 bEC [¢]
0187 CABAOL JP Z e HOYFOUND 3i{F 50 EXIT
Qiga  EDGRAFO2 Lo BEr (ENTLEH) i JUST SUR U ENTRY FOSITION
018E 37 SCF
018F 3F CeF
199 ED52 SnC HL s DE
2193 05 U i FCHANGE LOGICAL POSITION
0193 C3AFQ1 JF REALCLUS

Fig. 9.23: Binary Search Program
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0124
0179
Q19n
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QI7E
G1FF
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ran
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14l
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(e H)
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e
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m
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i

SO IHSERT
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A
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DE S CEHTLEHD
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SETUR
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W

75 INSERT
Fan

HILY

HL o 11,

21}

B e kit

HL+ (EHTL I
HE s IiE

IE <1

NP CENTLEND
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HZ v BOUFH

HIL.

Iy

DE

BE ML

M CEHTLEM

AriTaplEm
(]

{TARLEN I A
PLAOFFFEH

DATA STRUCTURES

HILST M SEE IF CURRENT POSTTTOM
o FLUS THORFHFHT WILL GO Fast
FoeLEHDOF THL Yang

18 hs
FLHANGE

CHANGE AT TUAL
LGl FNS.

ABDRESS
uaLur

INEE TP IRSTLIN 15 AT 105 OF
TeTBREED TSARE AS TADLEN-I)
AR §OENTRY #0511T0H

FTHOREMENE  GEI0AL
FSCY THOCREHEHT in ¢

DLOSE 1AL 10 coseprg
S

TOSTITHIN

SRHEFTFL SES © BY (JHTLENY .

e LUALNE IR D OM FXTT

PSRRI OBB L G AL ARY  DHEL
sURILE Fise 0 1AM

FEOBIRLS i GSET ML alUE wHr

=R BECEUT SUES B o

FLOHFRES =0« SE0 B F0k SURTRAC]
FSEE MM MANY FHTRES ARF 013

FOHL
e FHTERY

FOLAST POSITION (8 LAGT

FSET DY U CHIRY ABNVE HL

FSHITT B ONE ENTRY DF HMEMGRY

FREFERL T8 NELEESuANY

L TH OFRONT OF NOW EMFIY SEACE

FLOAD QIIECT THTO EMETY SPALE

FINUREMENT TaRe s LENGTH

FEHOW THAT 1T WnG HONE

Fig. 9.23: Binary Search Program (cont.)
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0221 LBOGG1 BELETE LAt SEARCH $GET ADDRESS OF DHJECY

Qa4 14 IHC n iSEE IF UBJECT 15 THERE

0375 CAAT02 JP ZsQUTE

a23728  EpSHAFOD [} E» (ENTLEN)

Q20 ER EX BE rHL

ganh 19 ADD HL. s BE PBE IS LOGC. OF DBJECT HL 1§
022E  3AAC02 Lh Ar{TABLEND r++ONE EHTRY OBROVE

o231 F0 SUE B $SEE HOW MANY ENTRIES ARE LEFT
0232 LCA3FOZ JP Z+DOUNTAD

0035  ED4R4F0I  SHEIFTIN LE By (ENTLEND

0237 EDBO LBIR FSHIFT DOWH 1 ENTRY LENGTH
@23 3D DEC a

0238 £I3S502 JP HZsSHIFTIN

OXIF  3paLoD LOUNTARR LD Ay {TARLEN} FDECREMENT TABRLE LENGTH

on42 3D BEC a

0243 IZ4C07 Lo {TABLENY 1A

0244 OQIFFFF Lh BLrOFFFFH ;SHOU THAT ACTION WAS TAKEN
ora9 L% QUTE RET

024p (GOOCH ENBED EXND

SYHROL TADLE

ARDEY 21C? ADDIT 9194 CLOSEN ©l4A COMPRE 0248 DELETE 0221
DOWNTA  GI3F ENDER cIan ENTLEN O24F ENTRY D11E FOUND Q18T
HISIDE OLED INSERT 0200 HOVEH 0203 MULT CiBD NEW GibC
HEXTES 0149 NDGOOD 014 NOTCLO 0143 HOTFOU OLlBA ouT [dednde]
oute 0249 REALCL 0Q1AF SEARCH 0100 BETUP OLEE SHIFT] 0235
TABASE Glab TABLEN 0240 TESTE £14% TOOHIG 03RS foOLOW 0185

Fig. 9.23: Binary Search Program (cont.j

LINKED LIST

The linked list is assumed to contain, as usual, the three alphanu-
meric characters for the label, followed by one to 250 bytes of data, foi-
lowed by a two-byte pointer which contains the starting address of the
next entry, and lastly followed by a one-byte marker. Whenever this
one-byte marker is set to *‘1”, it will prevent the insert-routine from
substituting a new entry in the place of the existing one.

Further, a directory contains a pointer to the first entry for each let-
ter of the alphabet, in order to facilitate retrieval. It 1s assumed in the
program that the labels are ASCII alphabetic characters. All pointers at
the end of the list are set to a NIL value which has been chosen fiere to
be equal to the table base, as this value should never occur within the
linked list.

The insertion and the deletion programs perform the obvious pointer
manipulations. They use the flag INDEXED to indicate if a pointer
pointing to an object came from a previous entry in the list or from the
directory table. The corresponding programs are shown in Figure 9.29.

The data structure is shown in Figure 9.25.
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DATA STRUCTURES

Enitigl 1uhiv

D I T,

Listing of Ohjects
ang 1heir fucutions

i memory
SONEE§E371831...
BADDODDNaOONN, L,
MOM3AZJIITI33. ..
HCAAA4444444, .
AHTHESHHNES5S5. .

Table after dnsertivn
HOK333I33I33333. .,

Listing of trdle after
tnsertion, Note: tnble
is kept slphabetic
haDZ3202 IHOM
3333333333 .

LIS AP R

Aadecrerraaanas

trrrs st

Fig. 9.24: Alphabetic List—A Sample Run
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Table canliguration
wficr all Objects
~EHA00 have been inserted

0400 41 AE 54 35 35 35 35 35-35 35 3D 15 35 44 41 44 ANTSSS5SLSSSISDAD X
5410 32 32 32 37 32 3D 37 32-32 37 alr AF 4D 33 33 33 22D0000000H0HIND I
5470 33 33 33 33 33 33 33 53-4F 4E 31 31 31 31 31 31 333IA3380H111111
5430 31 31 31 31 55 AE 43 34-34 34 34 34 34 34 34 34 1111HNCA94444444
gaas 34 00 00 00 0C ¢ GO 0O-0G 0O Q0 00 00 00 GO 00 Aivesrrsaserrres
045C 00 CC Gf 0C GG OO Q0 ¢O-0C0 00 00 00 QO 00 00 00
0agt 00 DO 0O 0O GG 0O 00 00-00 00 OO 00 00 00 80 00
0470 00 00 00 00 00 Q0 00 00-00 00 00 00 00 88 00 0O

-5Y ;
¥=0340 300 i

~4240/243 Run ‘SEARCH' for “SON"" (at address 0300)
P=0263 02637

-DR _r——Faund
Z H A=4E BC=0404 DE=000H HL=0427 $=0100.P=02&3 02437 CALL 0180
A*=00 B7=0000 D°=0000 H'=0000 X=0427 Y=0300 I=00 S UM

Address of Object in table
{verify in Table above that it is “SON"™}

(1447247
Run ‘DELETE’ on “SON"

P=OZEF 02671 Table configuration
after deletion, Note:
thut UNC was shifted :
ap, The lnst UNC
entry must be

—BH400 discegarded !

0400 41 4E 54 35 3% 35 35 35-35 35 35 35 35 44 41 44 ANTSISSHESESSDAL
0410 32 32 37 32 32 32 32 32-37 32 4D 4F 4R 33 33 33 20000002220HOR3IZ
0470 33 33 33 33 33 33 33 S5-4E 43 34 34 34 34 3a 34 IIITITIUNCAA4A44

G470 34 34 34 34 55 4E 43 34=34 34 34 34 34 34 34 34 A344UNCAA4244444

GanC 34 00 00 00 00 00 0O 00-0O GG 0O 00 00 00 GO OF Auv.weiuivsnrias ;
045¢ 00 OO 00 00 00 GO 0O GC-GD OO 00 00 00 00 GO 00 ..vcv-. i
0460 ©C GG 80 GG GO OB 0O GG-G0 00 00 00 00 00 00 00 ,.iciierricarres
0470 GO O GO 00 DO OO 0O 0G-00 00 00 00 00 00 00 00 .ieeeerrirrrcnes

-G260/243

Try run of “SEARCH" again (on SSON™Y
P=0324T 02537

R Not found
s N A=FE DBC=0401 DE=FFOD HL=0427 S=0100 P=0263 0J43’ CALL 0110
AT=00 ©’=0000 R’=0000 H’=0000 X=0427 ¥=0300 1=00 (01B0°1

54T/ 084 . i
Re-insert Object (*SON'"

P=0R44 02447
Current fable
configuration.
Compare o the ane
price io {he

~BH400 BELETE

oS00 43 4E 54 35 35 35 35 35-35 35 3% 35 35 44 41 aa ANTS5555555550AD
0418 2 32 37 32 32 32 32 32-33 37 AR AF AD 33 33 33 220203222 080M333
0420 33 33 33 33 33 33 33 53-4F 4E 31 31 31 31 91 31 3333333580M111111
0430 31 31 31 31 55 4E 43 34-34 34 34 34 34 32 34 34 1111UNCAAMA44444
844G 34 00 00 00 08 0O 80 8C-0G0 G0 00 00 00 00 B0 00 Auiiiiiruraiaaers
0455 GO 00 00 00 60 00 GO OG-CG0 00 00 00 00 G0 00 0O crevesrrivevrsnr
0440 GO GO 08 GG GO G0 OO0 00-00 00 00 00 00 00 00 00 rervcvvrrrraners
0470 OG OC Q0 GO 0O 00 CO 00-00 00 00 00 00 00 00 00 ...crevsinvannnn

Shows that action was executed

A=H% BL=FFFF BE=0434 HL=G30D S=0:100 P=0J&66 02&6° ChLL 0221
A‘=00 B =0000 [’:=0080 H'=0000 X=0427 ¥=0360 I=00 (o221

Fig. 9.24; Alphabetic List—A Sample Run (cont.)
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DIRECTORY
op
POINTER 1
I._’ -
POINTER l A
R NIL
TR POINTER e
NiL

Fig. 9.25: Linked List Structure

An application for this data structure would be a computerized ad-
dress book, where each person is represented by a unique three-letter
code (perhaps the usual initials) and the data field contains a simplified
address, plus the telephone number {up to 250 characters). Let us exam-
ine the structure in more detail. The entry format is;

Tl o[58+ [+ o
i

W S - i ———t
unique fabel data (1 to 250 bytes) pointer to
(ASCID next .
occupied

As usual the conventions are:

ENTLEN: total element length (in bytes)
TABASE: address of base of list

The address of the OBJECT is always assumed to reside in the I'Y register
prior to entering the program. Here, REFBASE points to the base ad-
dress of the directory, or *‘reference table,”’

Each two-byte address within this directory points to the first occur-
rence of the letter to which it corresponds in the list. Thus, each group
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of entries with an identical first letter in their labels actually forms a sep-
arate list within the whole structure. This feature facilitates searching
and is analogous to an address book. Note that no data are moved dur-
ing an insert or delete. Only pointers are changed, as in every well-
behaved linked list structure,

If no entry starting with a specific letter is found, or if there is no en-
try alphabetically following an existing one, their pointers will point 1o
the beginning of the table (= **NIL™}. At the bottom of the table, by
convention a value is stored such that the absolute value of the differ-
ence between 1t and **Z’" is greater than the difference between A"
and “*Z"'. This represents an End Of Table (EOT) marker. The EOT
value is assumed here to occupy the same amount of memory as a nor-
mal entry but could be just one byte if desired. The letters are assumed
to be alphabetic letters in ASCII code. Changing this would re-
quire changing the constant in the PRETAB routine.

The end-of-table marker is set to the value of the beginning of the
tabie (“*NIL™).

By convention, the *“NIL pointers”, found at the end of a string, or
within a directory location which does not point to a string, are set to
the value of the tabie base to provide a unique identification. Another
convention could be used. In particular, a different marker for EOT
results 1n some space savings, as no NIL entries need be kept for non-
existing entries.

Insertion and deletion are performed in the usual way (see Part I of
this chapters by merely modifying the required pointers. The
INDEXED flag 1s used to indicate if the pointer to the object is in the
reference table or another string element.

Searching

The SEARCH program resides at memory locations 0100 10 0155
an uses subroutine PRETAB at address 01D2,

The search principle 1s straightforward:

1—Get the directory entry corresponding to the letter of the alphabet
in the first position of the OBIJECT’s iabel.

2—Get the pointer. Access the element. If NIL, the entry does not
€XISt.

3—If not NIL, match the element against the OBJECT. If a match is
found, the search has succeeded. If not, get the pointer to the next entry
down the list.

4-—Co back to 2.
An example is shown in Figure 9.26.
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@ ®

ABC AZT
___l-b _r titl

@"“‘—’ A-POINTER
B-POINTER
OBIECT — ] AzC

{FOUND)

{4 STEPS RECHARED;

Fig. 9.26: Linked List— A Search

Inserting

The insertion is essentially a search followed by an insertion once a
““NIL’" has been found.

A block of storage for the new entry is allocated past the EOT
marker by looking for an occupancy marker set at “‘available’’.

The program 1s called ““NEW’’ in Figure 9.29 and resides at ad-
dresses 0156 to 1A3. An example is shown in Figure 9.27.

BEFQRE

A-POINTER CAB —J—> czz
BPOINTER ‘ NHL
C-POINEER

CBS o Q38JECT

N

AFTER

A-FOINIER can czz
B-POINTER MNIL
C-POINTER

cas

Fig. 9.27: Linked List: Example of Insertion
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Deleting

The element is deleted by setting its occupancy marker to ““available”
and adjusting the pointer to it from the directory or else the previous

glement.
The program is called “DELETE”’, and resides at addresses 01A4 to

011,
An example of a deletion is shown in Figure 9.28.

tBEFOREY

L Fayohy

DAF POINIER
_l—-b- DAF f o

DOC POINTER

DELEE

(AFTERS

Tone e

DOC PONIER T ~poc-

N

MOTE QAF 15 NOT ERASED, BU “INwISIBLE”

Fig. 9.28: Example of Deletion (Linked List)
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O e THEOE
(R 2N B LR E L R ERTR N
E:R YRR TAFSSE 1 [EHER
(Qifnr BEERASE 0 PUDFEE
tarres FHIELEY 1 HEH R EE N
LA RC I 4] TEARC R fiaes CRECHER B IS A B IS
Qaran B £ it
a103 1 I
4104 ERf CHEE XE D ey
aInF Uil EAET I Han £ PR ADRE P INBEY PRIHTEE
o100 i EEER SMIME BOTHIFE EBNIENES IO
LEE S b 1oy
a1or tHI £y
TR [ EER T
GI0L &S in Hety
GHOF LH 41 M
0110 St IY
o R AT {11 Arrlyron I AT FPEVERR O [ HYEY
LR R i n [N HARRE
UL BINSGL i BRI HINTE Ehdige
Dria DIEDE Go B Supt {EF0 HIOAEALE TS P CFRERS
giil Fuheaon £F tEY ROy
HiPa DA3EA| B e HEGO
G105 Toeno 8 B2 NI
s RIEM Tl ETER AT S SIOMUART DRD LT
FIRF O EE TIY RS
HASFOT # L HBEGI
[T B H NI 0NN
L1 B o g LR Art Yy FEBMEARE 3RD EERTIERS
FLuron iF EIYiy
0PI LANI0T i Vi uND
A1EE PP i HO NI 3ben
GFEF DhEn HOGEHD BHsH ix
atag M Nt TH
014y ALCOL [ HE s (0L E N PHEOHG O TOETHITR O EMERY
Dy 19 Al HE « BF
AT i [RERE1 3] SEHEE OPHEMICE WAL TH ORI
LTS TH "
a1 En HERS 1INt
G14ai Fresssbe peft FLOOlE TR UTTH O iRiEe
G149 ERs I B4
1ab JE0G iR L Fiedr
R U S A 3] il FRHIE XTI ey SRESET OB DS
G910 L3100t EH LAMFART
GI5F 0 OAF VR L P OfEH
L2 VLTI S HUEFDUHD B
TFI5E Ehooeg [ £atd SE AR H PRREOUMEED 0BT SHIN B oGn
GISY 04 [N H
D194 UAA30L i Tt
[E23 L (TN EERE D HTURD ADbc. 8 FRIVIONG LRiNY
[+ poid U E P HE « CIADIALE SETHD SIATL I8 Tnfdf TOF NFY
3 50 N I HE P TN Ex [ AR PROVE DI LN NPT LUy
FEAD TALEA A WO
G145 1 Hit DD L EOR KEAE LEMGTH BE §NTEY
vlAsE 13 T HE
f11Hr 13 1H{ Hi
[ rai) T Al HL I
Grav L EREE
VLA 3R Bl n
IST LAATOGE I S NE X PIEOOROML IR IS IR ERE . IRY AnAIH
aLat 12 Erde: 1
IR on BHEGH BE ATAU OS5 TIION s DT LneT
D170 1 DED HHOH [ FHIE T T OB
. 10f Ht
LRI S 8 (R S O in e fb g SHUUF HEAFCT THIOD TR E
G1Fy Db [IIRR
L I T FUSH T FIHE AT THO LHTRY GFFER SR T
[ e LI FrERF in se il TOTHIFK POSETio
Q10 ER [ 4 Pl v 1Y
(R g RN Ll LHE Y
B1F 3 NG HE
G177 10 EHE Yrnl
41840 s 145 [EES
1141 a0t i [F1EN PO BPUDANLY MARREE

Fig. 9.29: Linked List—The Programs
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i3 EL FOF L SGET ADNR OF WHERE THIS SPRCE 1S
Q184 3AEVOL Ln fe{ THEEXED? SSEE WHAT PREVINUS POINTERS MUSY
0187 3R LELD A .o H T
9188 CAYEOL P ZAGETINX
o189 £3 £X {503 HL iGET ADNR OF ERTRY FREVIOUS TO
1AL EDBLPECOL &n E s (EHTLEN? .. BEJECT & MOVE TN FOIHTER AREA
0190 19 ann HL + DE
(R8-S BN U} O nE GSRETRIEVE ahBR 6F ORJECT
ol 73 i {HLY+E JFOT fT AT POTRIER POSTTION
0193 23 e HL
0194 72 10 {HL D
4195 {3a00) 4P FINTSH
o3 Cl SETIRX FOF Hiin SCLEAR DHT STalh
iy COnzot oAbl FRETAR SGET IHDEY ANDRESS
oi9L  EH ¥ TE 2 HI PLgaln HLOINTD IT
019 73 LIt {HL T F
G19E 23 THE Ex:
of¥F 72 i CHL Y ri¥
01a0  OLFFTF FTHIGH L #C-OFFFFH PGHNW THAT 1T 88 [IOHE
agnd 07 out RE?
i
siaa LIHOOOL BELETE oLl SEARCH JGEY ARBRESS OF ORJECT
ola? 04 {HE H iGEE IF TT {4 THERE
oian Criniod JF HZ - DUTE
01al HBED FusH IX PGET HIL T POIHIFN AREAR OF DRJIECT
1Al £ FOF HL
41aE  ENARECSH i EBE e (ERTLERDY B
O1E2 0¥ snp HI_¢ BIL ¥
o1y AE Li CriHLY SRETRTEVE PHTNTER v
otha 3 tH L i
G10G 40 LI Tre CHL)
a1kéa 23 THE HL
o177 34800 L {HE YD FREROVE NCCUPANEY HARKER
aipy 3a078) (R U e CTHDEXE D) GEE IF THDEX HEENS CHAMGLHG
DI nEC 4]
OLED JE HZ v THANGEH
aice 2alt FPRETAR SFUT BDREOTHTR HE
0G ER £X HIAR N
nics  DACHOE i HOVTH
a1C7  HECDT CHAHGEH LD HL s {ENTELENY SBET ML T PRENIER OF PREVIOUS
Sl 19 Akl FIEAES 1
a{eh 71 HOVIN ik 35 RN SPHT ARRE OF HENT 1IN WENTEVER
oirr 23 THC Hl, 4L GETTHER INBEY (R ENTRY!
oicn 7Y Lo {HL 1e2t
O3CE DLFFFF Lt HEPOFFFFN
o1t L9 OUIE RET
[£3] Ca B} PRETAR FHOH HL
aLny FOYVEGE Ln B tIYROY IGFT FIRGT LETTER OF OWIECT
afng 3 nEC 1] IREHRVE ASCTT LEARLR
iR HEAD G A0H
N1 R2T SLA 1] iMg TEPLY RY O
aln 2AEADT (B} e {REFRASE Y
HIRE BT it I.
oy BF &F L Loafy
OLED  RICI0 JE REFEXUR
01E3 M4 THE 1]
niga Fir Fixul FY DE+HI
OIEYS ER Lyt Hl
Q1EL 19 REY
Q1L7 (0000} EHDER EHD

SyYnamE tapt b

CHANGE 0107 CosiaR 011 NELEYE  0Oing ENRER OLE? ENTLEN 0180
FINISH 0Inb FTXUF QlEa FUND 0{53 INBEXE  DIEY HOVIN {11LF
HEW 0158 NEXTION O1&1 KOGDODN  Oi3F MUOTFOE DLGE oul aind
OUTE ond FRETAR 0ADD REFANS  OIEA SEARCH G1od RETINY  o1%R

TADNSE  OLEB

Fig. 9.29: Linked List—The Programs (cont.}
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ki
33
RT3
35
K2

37
3y

Q0
G
Q0
Lalo]
a0
(4]

an
{40

440

a0
on
oa
o0
00
00

G138 3 31 4

R
33
AL
a5
34
iz
A

o0
ot
E1¢)
a9
H)
a0

114}
(114

ra
04
a4
jele]
ele]
an
(4]
ag

i
4
ES
A4
35
34
52
An

009
[210]
o0
00
a0

a0
Qo

00
a0
a6
GG
Gty
a4
213

[ild]
G0
(1103
[¢15]

2
(14}

[t]3]
00

HH
00
a0
o0
a0
o0

(0
a0

a4
4
04
oG
[od0}
oo
on
oo

[114]
o0
Q0
a0
00
G0
[e1E3

90

an
040
a0
[ele]
ag
a0

00
Q0

a0
00
a0
o0
oo
to
oc
[+

[¢14]
a9
a0
a0
(4183
0o

00
a0

04
04
o
on
oo
oo
(1183

Occupaney markers —

HMIOO

LS C2 eIV S T E T £ TR B £ I £

QTG A3 A1 a4 3D 4D 3D A0 q7.aD a0
BI00 Ak o an 44 13 40 31 33 oy
340 SL oA a4 44 3a 3 1434 34
D340 a1 af 54 3% 35 3% 35-3% 3%
QNG 4y a1 ar 34 s Sé 34-%58 56
Gl 4L Sh 6 SN VK N Y
N3P0 LI 4% aq A AR IR 30348 38
Lrsaety
GH0 i M 00 00 00 00 68 B0 46 oD
0510 00 90 00 0D 08 G0 00 00 -00 00
a0 00 00 80 00 00 00 00 9000 00
G430 00 C0 00 00 Q0 00 00 00-00 00
Q340 D0 QG G0 00 40 00 00 00-00 00
Q450 00 G0 08O 00 00 00 00 00-00 0D
AdLD 00 00 GO GO G0 60 00 000D DO
DATG GO GG 00 08 00 DO 00 00 00 00
~BMn00

a500 00 04 00 04 00 04 00 39-00 Q4
G540 00 03 00 04 00 03 0D 04-00 04
ALI0 00 T4 00 0 00 04 On 0400 Oa
2536 606 64 00 04 00 GO 0O 00-00 0D
Q540 GG G0 80 00 00 90 GO GO-00 0D
BESG 00 60 040 00 00 06 00 00-00 00
D560 08 00 006 068 40 44 G0 GO-00 0O
a%TE 606 00 606 40 90 60 00 DO-Ge 0D
i
G800 YROgU 00 00 60 00 00 00 06 0b
410 af Ar ERNREFINE 1 I PR SRR 31
alrn 44 41 R AT
DAY At at T T S P
EA0 5345 34 31 3y
SALG AR AE AR 34 3% 1% a3 33
2440 53 4% 44 38 in 40 3p I8
REFACIENEE BT R TR IR B S DO 3 ¥

oY

Yaksn 310

(s 00Y Delfete an entry
PO gl

1

G0 FHOAME £ 00 00 00 NG00 00
EERECANEE E NG S AT I LR 11 R LI 4
L R T R B T B S S s ooan
LG A1 A1 a1 A4 44 44 &
AL LR AP ar 31 31 Iy ERER S|
REE DL § 1 S-7 (I B O e X { AR )
ML LU L 1 1 T £ T 131 R I £11
[EEX A1 0A LA 3P Lr 4 8 -3 317

Pointers —

00
a5
1
14

L8]
RES

i
43

00
)3
an
0
fel}]
o
4c
Go

a0
70
o0
X
W+
pit
i
3}

04

a4
04
a4
a4
04
4
N4

[11+]
O
o4
34
[t
aa
aa

DATA STRUCTURES

Listing of Uhjects
and their locartons

in memsry
GHHEEFI111883...

15313333733, ..
Hrrrasaaa3aa44, .,

ANTESHESS5 LY

SLEREGLING ...

AARELELOGASEAL . o
BFETTIFPITIIIN L.
SimigAAnRsAnag, . .

== EAT charecter in
inifiul tahle

‘Tabkle ¢nnfiguration
after severaf
tnserdisrs.

BOHLITTILIIE . ..
MR IIARI3AT. .,

SInBREnLBRERLE
B2PIFITITIINLL L.

Oaly chanpe

ANTORLULNSTNS R . .
AN RE v
HOBAEEAAREALL . ..
MR EERE R RE R PN
HOHAZIZII338. ..
Sinaggsannaage.
ANFPZRPVIRIIIT L

Fig. 9.30: Linked List—A Sampie Run
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~GAN0sINd

Run ‘SEARCH?" for deleted entry

F=0223 0023

o —Not found

-uR

N =37 HC-DOFF BE=0400 HL=0000 S$=0100 P=02123 02237 CALL 0L7L
A7=00 [ =0000 D =0000 H/=0000 ¥=0400 Y=0310 =00 (o171}

-5y

Y=0310 310

~pza0san3 Ran *SEARCH™ for an existent entry

F=0003 003’ .
—Eniry Found

~ Ll

+ u  a=54 GC=FFLO DE=0430 HL-043E S=0100 £=0223 GINX" LALL OL71
A'=00 B=0000D D°*=00RO0G 370600 X7041G ¥=0340 T=040 {01717)

-(226/379

Delete ——Address of enlry in table

#2229 0309

Note: Charges in
poiniers.

-BRAGH

G400 7B OB GG 0O 00 GO GG CO-06 G0 DO 00 00 00 09 00
04j0 41 AR S4 35 35 35-35 3% 3% 3% 3% 70 04 00
0420 44 ap 44 3T A A7 d° 232 37 32 00 04 00
OA30 a4t a1l a1 36 356 34 36 20 64 Ot .
04480 S 4F aF 3t 31 7 K 35 31 00 Ca 01 SoNITIRRRETED.L..
Q450 4N AF ab 33 43 3 33 33 00 04 01 HOMIIIIIA3ARI...
S4560 53 4% 44 348 30 411 3 34 39 38 40 04 01 SILBEBODSBERONBE..
0470 41 SA 5n 37 37 87 ¥ 37 37 00 04 Q1 ATIVIVITTITIIVV...

il

Fig. 9.30: Linked List— A Sample Run (cont.}

SUMMARY

The beginning programmer need not concern himself yet with the
details of data structures implementation and management. However,
efficient programming of non-trivial algorithms requires a good under-
standing of data structures. The actual examples presented in this
chapter should help the reader achieve such an understanding and solve
all the common problems encountered with reasonable data structures.
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PROGRAM DEVELOPMENT

INTRODUCTION

All the programs we have studied and developed so far have been
developed by hand without the aid of any software or hardware re-
source. The only improvement over straight binary coding has been the
use of mnemonic symbols, those of the assembly language. For effec-
tive software development, it is necessary to understand the range of
hardware and software development aids. It is the purpose of this chap-
ter to present and evaluate these aids,

BASIC PROGRAMMING CHOICES

Three basic alternatives exist: Writing a program in binary or hexa-
decimal, writing it in assembly-level language, or writing it in a high-
level language. Let us review these alternatives.

Hexadecimal Coding

The program will normally be written using assembly language mne-
monics. However, most low-cost, one-board computer systems do not
provide an assembier. The assembler is the program which will auto-
matically translate the mnemonics used for the program into the re-
quired binary codes. When no assembler is available, this transiation
from mnemonics into binary must be performed by hand. Binary is
unpleasant to use and error-prone, so that hexadecimal is normally
used. It has been shown in Chapter | that one hexadecimali digit will
represent four binary bits, Two hexadecimal digtts will, therefore, be
used to represent the contents of every byte. As an example, the rable
showing the hexadecimal equivalent of the Z8&0 Instructions appears in
the Appendix.
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In short, whenever the resources of the user are Limited and no assem-
bier is available, he will have to translate the program by hand into hex-
adecimal. This can reasonably be done for a small number of instruc-
tions, such as, perhaps, 10 to 100. For larger programs, this process 1s
tedious and error-prone, so that 1t tends not to be used. However, near-
iy all single-board microcomputers require the entry of programs in
hexadecimal mode. They are not equipped with an assembler and a full
alphanumeric keyboard, in order to timit their cost.

in summary, hexadecimal coding 15 not a desirable way (o enler a
program in a computer. ft1s simply an economical one. The cost of an
assembler and the rtequired alphanumeric keyboard 1s traded-off
against increased labor required to enter the program 1n the memory.
However, this does not change the way the program itsell is written.
The programi is stiil written in assemmbiy-level language so that it can be
examined by the human programmer and be meaningful.

Assembly Language Programming

Assembly-level programming Ccovers both programs that may be
entered in hexadecimal and those that may be entered in symbaolic
assembly-level form in the system. Lel us now examine the eniry of a
program directly in its assembly language representation. An assembler
program must be available. The assembler will read each of the mne-
monic instructions of the program and translate it 1nio the required bit
pattern using I to 5 bytes, as specified by the encoding of the mnstruc-
tions. In addition, a good assembler will offer a number of additonal
facilities for writing the program. These will be reviewed 1n the section
on the assembler below. In particular, direciives are availabie which
will modify the value of symbols. Symbolic addressing may be used and
a branch to a symbolic location may be specified. During the debugging
phase, when a user may remove of add instructions, it will not be neces-
sary to rewrite the enure program if an extra mstruction is inserted be-
rween a branch and the point to which it branches, as fong as symbolic
labels are used. The assembler will take care of automatically adjusting
all the labels during the translation process. in additzon, an assembler
allows the user to debug his program in symbelic form. A disassembler
may be used to examine the contents of a memory location and recon-
struct the assembly-level instruction that 1t represents. The various soft-
ware resources normally available on a system will be reviewed below.
Let us now examine the third alternative,
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POWER OF
THE
LANGUAGE

APL
coag
FORTRAN HIGH-LEVEL

PL/M
PASCAL

BASIC
MINILBASIC

-t MACRD [
SYMBOUC | | CONDITIONAL ASSEMBLY-LEVEL
rad  ASSEMBLY

HEXADECIMALS )
Lt OCTAL

% MACHINEAEVEL
‘—‘ BiNARY

Fig. 10.1: Programming Levels

High-Level Language

A program may be written in a high-level language such as BASIC,
APL, PASCAL, or others. Techniques for programming in these vari-
ous languages are covered by specific books and will not be reviewed
here. We will, therefore, only briefly review this mode of program-
ming. A high-level language offers powerful instructions which make
programming much easier and faster. These instructions must then be
translated by a complex program into the final binary representation
that a microcomputer can execute. Typically, each high-level instruc-
tion will be translated into a large number of individual binary instruc-
tions. The program which performs this automatic translation is called
a compiler or an nterpreter. A compiler will translate all the instruc-
tions of a program in sequence into object code, In a separate phase,
the resulting code will then be executed. By contrast, an interpreter will
interpret a single instruction, then execute it, then “‘transiate’” the next
one, then execute it. An interpreter offers the advantage of interactive
response, but results in low efficiency compared to a compiler. These
topics will not be studied further here. Let us revert to the programming
of an actual microprocessor in the assembly-ievel language.
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SOFTWARE SUPPORT

We will review here the main software facilities which are (or should
be) availabie in the compiete system for convenient software develop-
ment. Some of the definitions have aiready been introduced. They will
be summarized here and the rest of the important programs will be de-
fined before we proceed.

The assembler is the program which translates the mnemonic repre-
sentation of instructions into their binary equivalent. It normally trans-
jates one symbolic mnstruction into one hnary insiruction (which may
occupy 1, 2 or 3 bytes). The resulting binary code 13 called obyject code.
It s directly executable by the microcomputer. As a side effect, the
assembler will also produce a complete symbolic listing of the program,
as well as the equivalence tables to be used by the programmer and the
symbol occurrence list in the program. Examples will be presented later
in this chapter.

In addition, the assembler wiil list syntax errors such as instructions
misspelled or illegal, branching errors, duplicate labels or missing
labels.

1t will not delete fogical errors {this is your problem}.

A compiler 1s the program which translates high-level language in-
structions nto their binary form.

An nterpreter is a program similar to a compiler, which also trans-
jates high-level instructions into their binary form but does not keep the
intermediate representation and executes them immediately. In fact, it
often does not even generate any intermediate code, but rather execules
the high-level instructions directly.

A monror s the basic program which 15 indispensable for using the
hardware resources of this system. It continuously monitors the input
devices for input and manages the rest of the devices. As an example, 2
minimal monitor for a single-board microcompuier, equipped with a
keyboard and with LED’s, must continuously scan the keyboard for a
user nput and display the specified contents on the light-emitting
diodes. in addition, 1t must be capable of understanding a number of
limited commands from the keyboard, such as START, STOP, CON-
TINUE, LOAD MEMORY, EXAMINE MEMORY. On a large sys-
1erm, the monitor is often qualified as the execufrve program, when
complex file management or task scheduling is also provided. The over-
all set of facilities 15 called an aperaring sysiem, 1 files are resuding on a
disk, the operating system is qualified as the disk operating system, or
DOS.
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An editor is the program designed to facilitate the entry and the mod-
ification of text or progams, It allows the user to enter characters con-
veniently, append them, insert them, add lines, remove lines, search for
characters or strings. It is an important resource for convenient and ef-
fective text entry.

A debugger is a facility necessary for debugging programs. When a
program does not work correctly, there may typically be no indication
whatsoever of the cause. The programmer, therefore, wishes to nsert
breakpoints in his program n order to suspend the execution of the
program at specified addresses, and to be able to examine the contents
of registers or memory at this point. This is the primary function of a
debugger. The debugger allows for the possibility of suspending a pro-
gram, resuming execution, examining, displaying and modifying the
contents of registers or memory. A good debugger will be equipped
with a number of additional facilities, such as the ability to examine
data in symbolic form, hex, binary, or other usual representations, as
well as to enter daia in this format.

A loader, or linking {oader, will place various blocks of object code
at specified positions in the memory and adjust their respective sym-
bolic pointers so that they can reference each other. It is used to relocate
programs or blocks in various memory areas. A spxulator or an entu-
lator program is used to simulate the operation of a device, usually the
microprocessor, in its absence, when developing a program on a simu-
lated processor prior to placing it on the actual board. Using this ap-
proach, it becomes possible to suspend the program, modify it, and
keep it in RAM memory. The disadvantages of a simulator are that:

{—It usually simulates only the processor itself, not input/output
devices

2——The execution speed is siow, and one operates in simulated time.
{15 therefore not possibie to test real-time devices, and synchronization
problems may still occur even though the logic of the program may be
found correct.

An emudaror 1s essentially a simulator in real time. It uses one proces-
sor to simulate another one, and simulates it in complete detail.

Utility routines are essentially all the routines which are necessary in
most applications and that the user wishes the manufacturer had pro-
vided!

They may include multiplication, division and other arithmetic oper-
ations, block move routines, character tests, input/output device han-
dlers (or “*drivers’’), and more.
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THE PROGRAM DEVELOPMENT SEQUENCE

We will now examine a typical sequence for developing an assembly-
level program. We will assume that ali the usual software facilities are
available in order to demonstrate their vaiue. If they should not be
available in a particular system, it will still be possible to develop pro-
grams, but the convenience will be decreased and, therefore, the
amount of time necessary to debug the program is likely to be in-
creased.

The normal approach 1s to first design an algorithm and define the
data structures for the problem to be solved. Next, a comprehensive set
of flowcharts is developed which represents the program flow. Finally,
the flowcharts are translated into the assembly-level language for the
microprocessor; this is the coding phase.

Next, the program has to be entered on the computer. We will exam-
ine in the next section the hardware options to be used in this phase.

The program is entered in RAM memory of the system under the
control of the editor. Once a section of the program, such as one or
mare subroutines, has been entered, it will be tested,

First, the assembler will be used. If the assembler did not already
reside in the system, it would be loaded from an external memory, such
as a disk. Then, the program will be assembled, 1.e., transiated into a
binary code. This results in the object program, ready to be executed.

One does not normally expect a program {o work correctly the first
time. To verify its correct operation, a number of breakpoints will nor-
mally be set at crucial locations where i1t 1s easy Lo test whether the inter-
mediate results are correct. The debugger will be used for this purpose.
Breakpoints will be specified at selected locations. A **Go™ command
will then be issued so that program execution is started. The program
will automatically stop at each of the specified breakpoints. The pro-
grammer can then verify, by examining the contents of the regisiers, or
memory, that the data so far 1s correct. If it is correct, we proceed until
the next breakpoint. Whenever we find incorrect data, an error in the
program has been detected. At this point, the programmer normally
refers to his program listing and verifies whether his coding has been
correct. If no error can be found in the programming, the error might
be a logical one and one might refer to the flowchart. We will assume
here that the flowcharts have been checked by hand and are assumed 1o
be reasonably correct. The error s likely to come from the coding. It
will, therefore, be necessary to modify a section of the program. If the
symbolic representation of the program is still in the memory, we will
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simply re-enter the editor and modify the required lines, then go
through the preceding sequence again. In some systems, the memory
available may not be large enough, so that 1t is necessary to flush out
the symbolic representation of the program onto a disk or cassette prior
to execuling the object code. Naturally, in such a case, one would have
to reload the symbolic representation of the program from its support
medium prior to enlering the editor again.

The above procedure will be repeated as long as necessary until the
results of the program are correct. Let us stress that prevention 1s much
more effective than cure. A correet design will typically result in a pro-
gram which runs correctly very soon after the usual typing mistakes or
obvious coding errors have been removed. However, sloppy design may
result 1n programs which will take an extremely fong time to be de-
bugged. The debugging ume 15 generally considered to be much [onger
than the actual design time. in short, 1t 15 always worth investing more
time in the design in order to shorten the debugging phase.

However, using this approach, il is possibie to test the overall organi-
zation of the program, but not to test it in real time with input/output
devices, If input/output devices are to be tested, the direct solution con-
sists of transferring the program onto EPROM’s and installing it on the
board and then watching whether it works.

There 1s a better solution. [t is the use of an in-circuit enmdator. An
in-circuit emulator uses the Z80 microprocessor {or any other onej to
emulate a Z80 in (almost?) real time. It emulates the Z80 physically. The
emulator is equipped with a cable terminated by a 40-pin connector, ex-
actly identical to the pin-out of a Z80. This connector can then be in-
serted on the real application board that one is developing. The signals
generated by the emulator will be exactly those of the Z80, only perhaps
a little slower. The essential advantage is that the program under test
will still reside in the RAM memory of the development system. [t will
generate the real signals which will communicate with the real in-
put/output devices that one wishes to use. As a result, 1t becomes possi-
ble to keep developing the program using all the resources of the devel-
opment system (editor, debugger, symbolic facilities, file system) while
testing input/output in real time.

In addition, a good emulator will provide special facilities, such as a
frace. A trace 15 a recording of the last instructions or status of various
data busses in the system prior to a breakpomt. [n short, a trace pro-
vides the film of the events that occurred prior to the breakpoint or the
malfunction. It may even trigger a scope at a specified address or upon
the occurrence of a specified combination of bits. Such a facility is of
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great value, since when an error is found it is usually too late. The in-
struction, or the data, which caused the error has occurred prior 10 the
detection. The availability of a trace allows the user to find which seg-
ment of the program caused the error to occur. If the trace 1s not long
encugh, we will simply set an earlier breakpoint.
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Fig. 10.2: A Typical Memory Map

This completes our description of the usual sequence of events in-
voiyed in developing a program. Let us now review the hardware alter-
natives available for developing programs.
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HARDWARE ALTERNATIVES
Single-Board Microcomputer

The single-board microcomputer offers the lowest cost approach to
program development. It is normally equipped with a hexadecimal key-
board, plus some function keys, plus 6§ LED’s which can display ad-
dress and data. Since it is equipped with a small amount of memory, an
assembler is not usually available. At best, it has a small monitor and
virtually no editing or debugging facilities, except for a very few com-
mands. All programs must, therefore, be entered in hexadecimal form.
They will also be displayed in hexadecimal form on the LED’s. A sin-
gle-board microcomputer has, in theory, the same hardware power as
any other computer. Simply because of its restricted memory size and
keyboard, 1t does not support all the usual facilities of a larger system
and makes program development much longer. Because it is tedious to
develop programs in hexadecimal format, a single board microcom-
puter is best suited for education and training where programs of [im-
ited length have to be developed and their short length 1s not an obstacle
to programming. Single-boards are probably the cheapest way to learn
programming by doing. However, they cannot be used for complex
program development unless additional memory boards are attached
and the usual software aids are made available.

The Development System

A development system Is a microcomputer system equipped with a
significant amount of RAM memory (32K, 48K} as well as the required
input/output devices, such as a CRT display, a printer, disks, and, usu-
ally, a PROM programmer, as well as, perhaps, an in-circuit emulator.
A development system is specifically designed to facilitate program
development in an industrial environment. It normally offers all, or
most, of the software facilities that we have mentioned in the preceding
section. In principle, it 15 the 1deal software development tool.

The limitation of a microcomputer development system is that it may
not be capable of supporting a compiler or an interpreter. This is be-
cause a compiler typically requires a very large amount of memory,
often more than 1s available on the system. However, for developing
programs in assembly-level language, it offers all the required facilities.
But because development systems sell in relatively small numbers com-
pared to hobby computers, their cost is significantiy higher.
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Hobby-Type Microcomputers

The hobby-type microcomputer hardware s naturally exactly analo-
gous to that of a development system. The main difference lies in the
fact that it is normally not equipped with the sophisticated software
development aids which are availabie on an industrial development sys-
termm. As an example, many hobby-type microcomputers offer only ele-
mentary assemblers, mimmal editors, minimal file systems, no lacilities
to attach a PROM programmer, no in-circuit emulator, no powerful
debugger. They represent, therefore, an intermediate step between the
single-board microcomputer and the full microprocessor development
systern. For a user who wishes to develop programs of modest complex-
ity, they are probably the best compromise, since they offer the advan-
tage of low cost and a reasonable array of software development tools,
event though they are guite limited as to their convenience.

Time-Sharing System

It 15 possible to rent terminals from several compantes which will con-
nect to time-sharing networks. These terminals share the time of the
larger computer and benefit from all the advantages of large installa-
tions. Cross assemmblers are available for all microcomputers on vir-
rually all commercial time-sharing systems. A cross assembler 15 simply
an assembler for, say, a Z80 which resides, for example, in an [BM370.
Formally, a cross assembler is an assembler for microprocessor X,
which resides on processor Y. The nature of the compu ter being used 1s
irrelevant. The user stili writes a program in Z80 assembly-level lan-
guage, and the cross assembler translates it mto the appropriate binary
pattern. The difference, however, 1s that the program cannot be ex-
ecuted at this point. {1 can be executed by a simulated processor, if one
is available, provided it does not use any input/output resources. This
solution s used, therefore, only in industrial environments.

In-House Compuler

Whenever a large in-house compuiter 1s available, cross assemblers
may also be available to facilitate program development. H such a com-
puter offers time-shared service, this option 15 essentially analogous 1o
the one above. 11 it offers only batch service, thisis probably one of the
most inconvenient methods of program development, since submitting
programs in batch mode at the assembly level for a microprocessor re-
sults in a very long development Lime.
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Front Panel or No Front Panel?

The front panel 1s a hardware accessory often used to facilitate pro-
gram debugging. It has traditionally been a tool for conveniently dis-
playing the binary contents of a register or of memory. However, all the
functions of the control panel may be accomplished from a terminal,
and the dominance of CRT displays now offers a service almost equiva-
fent to the control panel by displaying the binary value of bits. The ad-
ditional advantage of using the CRT display is that one can switch at
will from binary representation to hexadecimal, to symbolic, to decimal
(if the appropnate conversion routines are available, naturallyy. The
disadvantage of the CRT is that one must hit several keys to obtain the
appropriate display rather than turn a knob. However, since the cost of
providing a control panel 15 quite substantial, most recent microcom-
puters have abandoned this debugging tool. The value of the control
panel 1s often considered more on the basis of emoticnal arguments in-
fluenced by one's own past experience than by the use of reason. It is
not indispensable.

Summary of Hardware Resources

Three broad cases may be distinguished. If you have only a mimimal
budget and if you wish to learn how to program, buy a single-board
microcomputer. Using it, you will be able to develop all the simple pro-
grams in this book and many more. Eventually, however, when you
want to develop programs of more than a few hundred instructions,
vou will feel the limitations of this approach.

If you are an industrial user, you will need a full development system.
Any sofution short of the full development system will cause a signifi-
cantly longer development time. The trade-off is clear: hardware re-
sources vs, programming time. Naturally, if the programs to be devel-
oped are quite simple, a less expensive approach may be used. How-
ever, if complex programs are to be developed, tt is difficult to justify
any hardware savings when buying a development system, since the
programming costs will be by far the dominant cost of the project.

For a personal computerist, a hobby-type microcomputer will typ:-
cally offer sufficient, although munimal, facilities. Good development
software is still to come for many of the hobby computers, The user will
have to evaluate his system in view of the comments presented in this
chapter,

Let us now analyze in more detail the most indispensable resource:
the assembler,
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THE ASSEMBLER

We have used assembly-level language throughout this book without
presenting the formal syntax or definition of assembly-fevel language.
The time has come to present this definition. An assembier is designed
to allow the convenient symbolic representation of the user program,
and yet to make it sumple for the assembler program to convert these
mnemonics 1nio their binary represeniation.

Assembler Fields

When typing 11 a program for the assembler, we have seen that fields
are used. They are:

The label field, optional, which may contain a symbolic address for
the nstruction that follows,

The siruction field, which includes the opcode and any operands.
(A separate operand field may be distinguished.)

The comment field, far to the right, which is optional and 1s intended
to clarify the program.

These fields are shown on the programming form in Figure 10.3.

Once the program has been fed to the assembler, the assembier will
produce a fisring of it, When generaling a listing, the assembler will
provide three additional fields, usually on the left of the page. An ex-
ample appears on Figure 10.4. On the far left is the line number. Each
line which has been typed by the programmer 1s assigned a symbolic line
number.

The next field to the night is the actual address field, which shows in
hexadecimal the value of the program counter which will point to that
instruction.

Moving still further to the right, we find the hexadecimal representa-
tion of the instruction.

This shows one of the possible uses of an assembler. Even if we are
designing programs for a single-board microcomputer which accepts
only hexadecimal, we should still write the program in assembly-level
language, providing we have access to a system equipped with an as-
sembler. We can then run the programs on the sysiem, using the assem-
bler. The assembler will automatically generate the correct hexadecimal
codes on our system. This shows, in a simple example, the value of ad-
ditional sofiware resources.
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Fig. 10.3: Microprocessor Programming Form
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Tables

When the assembler translates the symbolic program into its binary
representation, it performs two essential tasks:

|—1It translates the mnemonic instructions into their binary en-
coding.

2—1It transiates the symbols used for constants and addresses into
their binary representation.

In order to facilitate program debugging, the assembler shows at the
end of the listing the equivalence between the symbol used and its hexa-
decimal value. This is called the symbol table.

Some symbol tables will not only list the symbol and its value, but
also the line numbers where the symbol occurs, thereby providing an
additional facility.

Error Messages

During the assembly process, the assembler will detect syntax errors
and include them as part of the final listing. Typical diagnostics in-
clude: undefined symbols, label already defined, illegal opcode, illegai
address, illegal addressing mode. Many more detailed diagnostics are
naturally desirable and are usually provided. They vary with each as-
sembler.

The Assembly Language

Opcodes have already been defined. We will here define the symbols,
constants and operators which may be used as part of the assembler
syntax.

Symbols

Symbols are used to represent numerical values, either data or ad-
dresses. Symbols may include up to six characters, and must start with
an alphabetical character. The characters are restricted to letters of the
alphabet and numbers. Also, the user may not choose names identical
to the opcodes utilized by the Z80, the names of registers such as A,B,
C.D.,E,H,L, BC, DE, HL, AF, BC, DE, IX, IY, SP, as well as the
various short names used as pseudo-operators by the assembler. The
names of these assembler ““directives’ are listed below in the corre-
sponding sections. Also, the abbreviations used to designate the flags
should not be used as symbols: C.Z,N,PE,NC.P,PO,NZM.
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Assigning a Value to a Symbol

Labeis are special symbols whose vaiues do not need to be defined by
the programmer. The value will automatically be defined by the assem-
bler program whenever 1t finds that {abel. The label value thus auto-
matically corresponds to the address of the instruction generated at the
line where it appears. Special pseudo-instructions are available to force
a new starting value for labels, or to assign them a specific value,
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Fig. 10.4: Assembler Qutput—An Example
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However, other symbols used for constants or memory addresses
must be defined by the programmer prior to their use.

A special assembler directive may be used to assign a value to any
symbol. A directive 1s essentially an instruction to the assembler which
will not be translated into an executable statement. For example, the
constant LOG will be defined as:

LOG DFW  3002H

This assigns the value 3002 hexadecimal to the variable LOG. The
assembler directives will be examined in detail in a later section,

Constants or Literals

Constants may traditionally be expressed either in decimal, in hexa-
dectmal, in octal, or in binary, or as alphanumeric strings. In order to
differentiate between the base used to represent the number, a symbol
must be used. To load ““0” into the accumulator, we will simply write:

iD A0

Optionally a “‘D’’ may be used at the end of the constant,
A hexadecimal number will be terminated by the symbol “H”. To
load the value “‘FF’’ into the accumulator, we will write:

LD A, OFFH

An octal symbol is terminated by the symbol ‘0" or “Q"'. A binary
symbol is terminated by “B’".

For example, in order to load the value “*11111111" into the accumu-
lator, we will write:

LD A, 11111111B

Literal ASCII characters may also be used m the literal field. The
ASCII symbol must be enclosed in single quotes.

For example, in order to load the symbol **S” into the accumulator,
we will write:

LD A, ‘5

Exercise 10.1: Wilf the following two nstructions load the same value
in the accumulator: LD A, 'S’ and LD 4, 5H?
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Note that in the Zilog convention, parentheses denote an address.
For example:

LD A, (10

specifies that the accumulator is foaded from the contents of memory
tocation 10 (decimal).

Operators

In order to further facilitate the writing of symbolic programs, as-
semblers allow the use of operators. At a minimum, they shouid allow
plus and minus so that one can specify, for example:

LD A, (ADDRESS)
LD A, (ADDRESS +1)

It 1s important to understand that the expression ADDRESS + 1 will
be computed by the assembler in order to determine the actual memory
address which must be inserted as the binary equivalent. It will be com-
puted af assembly time, not at program-execution time.

In addition, more operators may be available, such as multiply and
divide, a convenience when accessing tabies in memory. More special-
ized operators may be also available, such as greater than and less
than, which truncate a two-byte value respectively into its high and low
byte.

Naturally, an expression must evafuate to a positive vaiue. Negative
numbers may normally not be used and should be expressed in a hexa-
decimal format.

Finally, a special symbol 1s traditionally used to represent the current
value of the address of the line: *‘$’". This symbeol should be interpreted
as “‘current location”’ {value of PC).

Exercise 10.2: What is the difference between the following instruc-
tions?

LD A, 101010108
LD A, (10I01010B)

Exercise 10.3: What is the effect of the following instrucrion?

JR NC,§ — 2

Expressions

The Z80 assembler specifications allow a wide range of expressions
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with arithmetic and logical operations. The assembler will evaluate the
expressions in a left-to-right manner, using the priorities specified by
the table in Figure 10.5. Parentheses may be usedto enforce a specific
order of evaluation. However, the outermost parentheses will denote
that the contents are to be treated as an address.

Assembler Directives

Directives are special orders given by the programmer to the assem-
bler, which result either in storing values nto symbols or into the mem-
ory, or in controlling the execution or printing modes of the assembler.
The set of commands which specifically controls the printing modes of
the assembler is also called *‘commands’’ and 15 described in a separate

section.
To provide a specific example, let us review here the 11 assembler

directives available on the Zilog development system:

ORG nn

This directive will set the assembler address counter to the value nn. In
other words, the first executable instruction encouniered after this
directive will reside at the value nn. It can be used to locate different
segments of a program at different memory locations.

EQU nn
This directive is used to assign a value to a label.
DEFL nn

This directive also assigns a value nn to a label, but may be repeated
within the program with different values for the same label, whereas
EQU may be used only once.

DEFB '8’

This directive assigns eight-bit contents to a byte residing at the current
reference counter.

DEFB ‘S’
assigns the ASCII value of “*S”’ to the byte.
DEFW nn

This assigns the value nn to the two-byte word residing at the current
reference counter and the following location.
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QOPERATOR FUNCTION FRIQRITY
+ UNARY PLUS |
- UNARY MINUS |
NOT. or A LOGICAL NOT |
RES. RESULT |
b EXPONENTIATION 2
* MULTIPLICATION 3
/ DIVISION 3
MOD, MODULO 3
.SHR. LOGICAL SHIFT RIGHT 3
JSHL. LOGICAL SHIFT LEFT 3
+ ADDITION 4
. SUBTRACTION 4
LAND, or & {OGICAL AND 5
LOR or i LOGICALOR 6
LXOR. LOGICAL XOR o}
EQL or = EQUALS 7
GToor > {ZREATER THAN 7
AT. or < LESS THAN 7
UGT. UNSIGMNED GREATER THAN 7
JULT. UNSIGMED LESS THAN 7

Fig. 10.5: Operator Precedence
DEFS nn

reserves a block of memory size nn bytes, starting at the current value
of the reference counier.

DEFM 5

stores into memory the string ‘S’ starting at the current reference coun-
ter. It must be less than 63 in length.

MACRO PO PI...Pn

is used to define a label as a macro, and to define its formal parameter
list, Macros are defined in another section below,

END

indicates the end of the program. Any other statements following st will
be ignored.

ENDM

is used to mark the end of a macro definition.
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Assembler Commands

Comuniands are used to modify the format of the listing to control the
printing modes of the assembler. All commands start with a star in col-
umn one. Seven commands are provided by the Z8Q assembler. Typical

exampiles are:
EJECT

which causes the listing to move to the top of the next page; and

LIST OFF

which causes the pnnting to be suspended, effective with this com-
mand. The others are: “*HEADING S, *“*LIST ON"’, “*MACLIST
ON”, *“*MACLIST OFF”, “*INCLUDE FILENAME".

Macros

A macro 18 simply a name assigned to a group of instructions. Itis a
convenience 1o the programmer. I{ a group of mstructions 1s used sev-
eral times in a program, we could define a macro to represent them, in-
stead of always having to write this group of instructions.

As an example, we could write:

SAVREG MACROQO
PUSH AF

PUSH BC
PUSH DE
PUSH HL
ENDM

then simply write the name “SAVREQ’ instead of the above instruc-
tions. Any time that we write SAVREG, the five corresponding lines
will get substituted nstead of the name. An assembler equipped with a
macro facility is called a macro-assembler. When the macro assembler
encounters a SAVREG, 1t performs a mere physical substitution of
equivalent lines.

Muacro or Subroutine?

At this point, a macro may seem to operale in a way analogous to a
subroutine. This 15 not the case. When the assembler is used to produce
the object code, any time that a macro name is encountered, it will be
replaced by the actual instructions that it stands for, At execution time,
the group of instructions will appear as many times as the name of the
macro did,
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By contrast, a subroutine is defined only once, and then it can be
used repeatedly; the program will jump to the subroutine address. A
macro is called an assembly-time facility. A subroutine is an execution-
rime facility, Their operation 1s quite different.

Macro Parameters

Each macro may be equipped with a number of parameters. As an
example, let us consider the following macro:

SWAP MACRO #M, AN, #T

LD A, M 1M INTO A

LD #T, A TAINTOT (=M)
LD A, #N s NINTO A

LD #M, A P AINTOM (=N)
LD A, #T : TINTO A

LD #N, A AINTON(=T)
END M

This macro will result in swapping (exchanging) the contents of mem-
ory locations M and N. A swap between two registers, or two memory
{ocations, 1s an aperation which is not provided by the Z80. A macro
may be used to implement it. ““T’7 in this instance is simply the name
for a temporary storage location required by the prograra. As an exam-
ple. let us swap the contents of memory locations ALPHA and BETA.
The instruction which does this appears below:

SWAP (ALPHA), (BETA}, (TEMP)

In this instruction, TEMP 1s the name of some temporary storage
location, which we know to be available and which can be used by the
macro. The resufting expansion of the macro appears below:

LD A, (ALPHA)
LD (TEMP), A
LD A, (BETA}
LD (ALPHA), A
LD A, (TEMP)
LD (BETA}L A

The value of a macro should now be apparent: it 1s convenient for the
programmer (o use pseudo-instructions, which have been defined with
macros. In this way, the apparent instruction set of the Z80 can be ex-
panded at will. Unfortunately, one must bear in mind that each macro
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directive will expand into whatever number of instructions were used. A
macro will, therefore, run more siowly than any single mstruction. Be-
cause of its convenience for the development of any long program, a
macro facility s highly desirable for such applications.

Additional Macro Facilities

Many other directives and syntactic facilities may be added to a sim-
ple macro facility; macros may be nesfed., i.e., a macro call may appear
within a macro definition. Using this facility, a macro may modify it-
self with a nested definition! A first call will produce one expansion,
whereas subsequent calls will produce a modified expansion of the same
macro. This is allowed by the Z80 assembler, but nested definitions are
not allowed.

CONDITIONAL ASSEMBLY

Conditional assembly is another facility provided in the Z80 assem-
bly. With a conditional assembly facility, the programmer can devise
programs for a variety of cases, and then conditionally assemble the
segments of codes required by a specific application. As an example, an
industrial user might design programs to take care of any number of
traffic lights at an intersection, for a variety of control algorithms. He
will then receive the specifications from the local traffic engineer, who
specifies how many traffic lights there should be and which algorithms
should be used. The programmer will then simply set parameters in his
program and assemble conditionally. The conditional assembly will
result in a **customized’’ program which will retain only those routines
which are necessary for the solution to the problem.

Conditional assembly is, therefore, of specific value to industrial
program generation in an environment where many options exist and
where the programmer wishes to assemble portions of programs quick-
ly and automatically in response to external parameters.

Only two conditional pseudo-OPs are provided in the standard
micro-assembler version supplied by Zilog. They are respectively:

COND NN and ENDC

where NN represents an expression. The pseudo-OP ““COND NN will
result in the evaluation of the expression NN. As long as the expression
evaluates to a true value (non-zero), the statement following the COND

will be assembled. However, if the expression should be false, 1.e., eval-
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uate 1o a zero value, the assembly of all subsequent statements will be
disabied up to the ENDC instruction.

ENDC 15 used 1o ternunate a COND, so that the assembly of subse-
quent slatements is re-enablied. The COND pseudo-OP’s cannot be
nested.

In theory, more powertul conditonal assembly facilities could exist,
with “'IF"" and “ELSE" specification. They may become available 1n
future versions of the assembier.

SUMMARY

This chapter has presented the techmques and the hardware and sofl-
ware tools required to develop a program, along with the various trade-
offs and alternatives.

These range at the hardware level from the single-board microcom-
puter to the full development system; at the software level, from binary
coding 1o high-level programming.

You will have to select them on the basis of your goals and resources.
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CHAPTER 11

CONCLUSION

We have now covered all important aspects of programming, from
definitions and basic concepts to the internal manipulation of the Z80
registers, to the management of input/output devices, as well as the
characteristics of software development aids. What is the next step?
Two views can be offered, the first one relating to the development of
technology, the second one relating to the development of your own
knowledge and skill. Let us address these two points,

TECHNOLOGICAL DEVELOPMENT

The progress of integration in MOS technology makes it possible to
implement more and more complex chips. The cost of impiementing the
processor function itself is constantly decreasing. The result is that
many of the input/output chips or the peripheral-controller chips used
i a system now incorporate a simple processor. This means that most
LSI chips in the system are becoming programmable. An interesting
conceptual dilemma is now developing. In order to simplify the soft-
ware design task, as well as to reduce the component count, the new
1/0 chips now Incorporate sophisticated programmable capabilities:
many programmed algorithms are now integrated within the chip.
However, as a result, the development of programs is complicated by
the fact that all these input/output chips are radically different and
need to be studied in detail by the programmer! Programming the
system is no longer programiming the microprocessor alone, but also
programnung all the other chips attached to it. The learning time for
every chip can be significant,

Naturally, this is only an apparent dilemma. If these chips were not
available, the complexity of the interface to be realized, as well as of the
corresponding programs, would be still greater. The new complexity
that is introduced is the need to program more than just a processor,
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CONCLUSION

and to learn the various features of the differentchips in a system. How-
ever, it is hoped that the techniques and concepts presented in this book
will make this a reasonably easy task.

THE NEXT STEP

You have now learned the basic techniques required to program sim-
ple applications on paper. That was the goal of this book. The next step
i$ actual practice for which there is no substitute. It is impossible to learn
programming completely on paper; experience is required. You shouid
now be in a position to start writing your own programs, It is hoped
that this journey will be a pleasant one.
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APPENDIX A

HEXADECIMAL CONVERSION TABLE

HEX [v] \ z 3 4 5 g .7 B 9 A B C O E F 4] 08¢
o Q i 2 3 4 s & 7 8 & w N 2 13 4 55 ¢ G
i 6 17 18 W 28 21 22 23 24 25 26 27 28 2% W W 256 4196
2 32 %3 34 35 36 37 38 39 40 41 42 43 4 Ak 46 47 Nz 8182
3 48 49 50 51 52 53 54 55 56 57 58 589 60 61 62 63 768 | 12288
4 65 65 66 67 68 B9 V0 TV V2 Y3 T4 V3 8 V7 T8 79 024 16384
5 %) 61 82 83 84 E5 B6 B7 BA B 90 91 92 93 54 95 1280 § 204B0
6 g& 97 9B 69 100 101 102 103 104 105 106 1WF 108 W08 110 1 1536 | 24576
7 112 13 14 115 116 117 N8 18 128 521 122 123 124 125 126 127 1792 | 28872
8 128 129 130 131 132 133 134 135 136 137 136 139 10 191 142 143 2048 | 32768
9 144 145 6 147 148 148 150 151 152 153 {54 155 156 157 158 159 2304 | 36868
A 160 167 162 163 164 155 166 167 168 168 170 17y 172 73 174 175 2560 | 40980
B 176 S77 1A 179 180 181 13c 183 184 5 186 187 B 159 190 191 2616 | 45036
Cc 162 103 194 195 196 197 198 199 200 20} 202 2003 204 205 206 207 g7z | ag52
D 208 209 210 21 212 243 214 01 216 217 B 219 220 321 222 223 3328 | 53248
£ 234 225 226 227 228 229 230 231 232 233 234 235 206 §37 238 239 3584 | 5734
F 240 241 242 243 244 245 246 247 228 248 250 251 252 253 254 255 3850 [T
5 4 k! 2 1 g
HEX DEC HEX{ DEC HEXl DEC {HEX| DEC [HEX§ DEC [HEX| DEC
o o & of O of{ ¢ 0} 0 Q) ¢ ¢
I |,04B,576] 1 65,536 | 40961 | 2561 | 16 H i
2 2,097,152 2 131,072} 2 8,192} 2 5121 2 21 2 2
3 3.145728] 3 196,608] 3 12,288f 3 THRE 3 481 1 3
4 4,194,304] 4 262,144 4 16,384} 4 1,024} 4 64 4 4
5 57242880F 5 32746800 5 20,480 5 1,280 5 803 5 5
& 6.291,456] & 393.216{ &6 24 5761 & 1,836 6 96 & [}
7 7.340,032f 7 4587521 7 28,6721 7 1,792§ 7 112 7 7
8 8,388,608] 8 524,288{ B 32768| B 20481 8 1261 8 8
9 9,437,184] 9 589,824 © 34,8464 9 2,304 @ 144 9 9
A 10,485,760 A 655360 A 40,9601 A 25601 A 160 1 A 10
B 11,534,336f B 720895 B 4505 B 2,816 B 176 { B 11
C 12,582,912F C 786,432} C 49,1521 C 3.072F C 152 1 © 12
D 13,631.488) D B51,968] D 53,2481 D 33281 D 2081 D 13
E 14,680,064f E 917,504] £ 57.344] E 3,584} E 224 E 14
F 15728,640] F 983.040] F 61,440f F 38401 F 240 | F 15
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APPENDIX B

ASCII CONVERSION TABLE
HEX MSD 0 1 2 3 4 5 G 7
15D BITS o200 001 010 011 100 101 10 111
0 0000 NUL DLE SPACE g @ P - p
1 Goo1 SOH DC1 f 1 A Q a q
2 GO0 STX be2 " 2 8 R b r
3 0011 ETX DC3 # 3 c S ¢ s
4 0100 EOT bC4a 3 4 D T d t
5 0101 ENG NAK 2 5 E U e u
6 0110 ACK SYN & 6 F Vi { v
7 0111 BEL  ETB \ 706G W g w
8 1000 BS CAN { 8 H X h X
9 1001 HT EM j 9 1Y i oy
A 1010 LF 5UB * : J Z ! z
B 1011 VT  ESC + K ko
C 1100 FF S . < L 3\ i .
D 1101 CR GS -~ = M ] m |}
E 1110 50 RS . > N A 0N .
F 1111 Sl us / ? O & o DEL
THE ASCIH SYMBOLS
NUL  ~Nult DLE —Data Link Egcape
SOH ~Start of Heading DG —Device Control
STX =Slart of Text NAK —Negative Acknowledge
ETX ~End of Text SYN - Synchronous ldie
EOT —End of Tranamission ETB -End of Transmission Block
ENG —Enquity CAN —cCancei
ACK —Acknowledge EM  —End of Medium
BEL —gell SU8 —Subsiitule
BS --Hsackspace ESC ~Escape
HT  —~Horizontal Tehulation FS  —File Separator
LF  —Line Feed GS ~Group Separator
VT —Vertica! Tabulation RS - Record Separator
FF  —Fomnm Feed US  ~—Unit Separalor
CR  —Carriage Return SP  —Space (Blank)
50 - Shift Out PEL —Lieinle
EH ~~Shift In
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FORWARD RELATIVE BRANCH TABLE

RELATIVE BRANCH TABLES

50 0 ¥ ? 3 1 ] & 7 8 @ A B < 1] F
ARG

o g 1 2 3 4 ] & 7 3 k4 18 [} 12 X 14 15

1 16 17 8 19 20 21 22 3 25 25 2 27 | 29 i) a1

2 az a3 a4 s 34 37 e ki a0 a4 42 kil A 35 4 £7

3 48 49 58 31 52 53 24 55 55 57 Sh 58 &0 &1 &2 &3

o & 63 &8 &7 ] 49 70 71 7273 74 75 78 77 78 kel

5 80 g1 82 B3 84 85 B a7 g8 89 20 a 92 23 Qs 95

& TG 6B 99 300 181 107 103 104 103 106 7 108 1% 1o N

7 Hy2 013 11a 115 e 117 B 119 12p A2 122 433 124 125 126 127

BACKWARD RELATIVE BRANCH TABLE

150 . -
- o H 2 3 4 5 & 7 8 2 A 8 C o i F
§ 1178 177 i2e  1ZS  1R4 133 132 1@ 1200 119 nig 1R Hls 115 pid i3
9 12 it g 109 108 197 106 105 304 303 102 MY 150 99 G5 97
A 195 95 G4 93 92 ¢ 90 g9 @8 87 B¢ a5 B4 BI 82 G
B 180 79 78 77 7& 7S 74 73 72 7i 0 &9 6B &7 b6 65
C o4 &3 &2 &1 &0 59 58 57 56 55 54 53 52 51 50 49
3] 48 4 56 43 44 43 42 41 40 3% 3B 37 38 35 34 33
H 32 3 ] 9 8 7 % 25 24 23 22 el 20 e 18 17
¢ 16 15 14 13 12 i 10 e 8 7 & H 4 3 2 1

600




PENDIX D

DECIMAIL TO BCD CONVERSION

DECIMAL 8CD DEC BCD DEC BCH
0 Q000 0 20018000 0 10610006
I aue 1 40010001 a1 10410001
2 0010 12 00010010 82 10010010
3 @011 13 QU001 93 16016011
4 0100 14 Q0G10100 94 16016100
5 0101 15 00010101 95 10010161
6 0410 1% 00010110 9% 10010110
7 0113 17 03010411 97 10010117
8 1008 18 00011500 o8 10011000
9 001 19 00011001 99 10011403
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PENDIX E

730 INSTRUCTION CODES
{The literal d is shown as 05 in the object code.}
OBdJ SOURCE 0BJ SOURCE
CODE STATEMENT CODE STATEMENT
F:13 ARG AIHLI E620 AND n
DDBERS ADC A X+ CB46 8IT a.HL)
FD8EQS ADC ALY +d) DOCBO546 81T 001X +d}
BF ADC  AA FDCBO546 BIT 0.1 +d}
88 ARC AB caal- aiT QA
89 ADC ac cB40 81T 0.8
8A ADC AD ces BIiT 0.C
an ADC AE cp42 8IT 9.0
8C ADC AH CB43 BIT 0.B
80 ADC AL cBsa 8IT 0.+
CE20 ADC A CRas BT c.L
ED4A ADC HL.BC cpag BIT 1 {HL}
ED5A ADC HL,DE DDCBROS4E BIT 1,41X+d)
EDGA ADC HLHL FDCBOS4E BIT 141Y+d}
ED7A ADC HL.SP CB4F BIT LA
86 ADD  ALHLI CB48 BIT 1.8
DDBENS ADD A41X+d} CR4Y st 1.C
FDBEOS ADD ALY+ CBAA 81T 1.0
87 ADD ALA CB4B 2T 1.8
80 ADD aAB cBac BIT 18
81 ADD AL £B4D BIT 1L
82 ADD AD cess BIT 2.HL)
83 ADD AE DDCBOS5E 8IT 241%+d}
84 ADD AH FDCBOSS6 T 2,01 +d)
as ADD AL CB57 BT 2.A
£620 ADD An CBS0 BIT 2,8
08 ALD HL.BC €851 8iT 2.C
19 ADD HL.DE CBs2 8IT 2.0
29 ADD HL, Hi C853 8IT 2E
39 ADD HL 5P CB54 BIT 2.8
falesil:] ADD 1%,8C 855 8iT 2,L
DD1g ADD I1X,0E CBSE BIT 3,(HL)
o198 ADD XX CDLBOS5E :1h3 3,11%+d)
np29 ADD IX,5P FOCBOSEE BIT 3 Y +d)
FDOY ADD 1Y.BC CBSF 81T 3.A
FD19 ADD  IY.GE casB BT 3.8
FD28 ADD 1YY C85¢ BIT 3c
£D39 ADD 1Y 5P CBSA 817 o
46 AND ML) CBEB BIT 3
DDAGOS AND (EX+d} CBSC BIT M
FOAS0S AND (1Y +d) cBsD 8i7 3L
AT AND A c866 H 4, (1L
AD AND 8 DDCBO566 ETh 4,{1X+d}
Al AND [ FOCBOSE6E BIT a4l1¥+g)
AT AND 0 cBs7 BIT 4,A
AZ AND E CBEG BIT 4,8
Ad AND H [o:13) 8T ac
A5 AND L CB6Z BIT a.D
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APPENDIX

[o1:¥ SOURCE OB SOURCE
CODE STATEMENT CODE STATEMENT
c863 BIT 4.E EDB1 CPIR
casa 8T 4H £DA1 CcPi
CHEY arr 4L 2F CPL
CBEE BIT 5,(HL} 27 DAA
DDCBOSGE  BIT 541 X+d) 35 bec L)
FOCBOSGE BIT 5, (1Y +d} DD3505 QEC X )
caer BIT oA FD3s05 DEC  (I'V+d}
CEES BT S8 30 DEC A
CcB&e BIT 5.C 95 SEC 3
C86A 81T 50 o8 DEC 8¢
CBsB BT se oo beC  C
1% DEC D
CEBBC BIT 5.H
> B DEC  ©E
C86D BIT 5L D bie
CB76 BIT ML 2 ote
ODCBOSTE @It 6,11 X+d) ot bEC L
FOCHOSTE  BIT 5.(1¥+d)
ot air o 0D28 DEC X
CB70 BIT 6.8 Fo28 DEC 1y
D0 DEC L
CB71 BIT 6.C 5 oec P
c872 BIT 6.0 Fa ol
C873 BIT 6.E 1028 BINZ e
cB74 BT .1 £5 £l
CR75 BIT 6.L E3 EX {SP).HL
CB7E 81T TAHLI DODE3 £X (SP1IX
DOCBOSTE 8T 7 4%d) FDE3 £X ISP} 1Y
FOCHOSTE  BIT TALY vel) 08 £X AF AF'
cBIE 8IT 1.8 EB £x DE HL
873 BIT 7.8 09 EXX
Ca79 BIT 7.C 76 MALT
CR7A T 7.0 ED46 1 o
ca7E BIT 7E ED5G ™M ‘
cBIC BIT 7.H EDSE i 2
<BIR BIT L EDME N AACH
DC3405 CALL  Cun £040 in 8.c)
FCB405 CALL  Mnrn ED4g N c.icl
D4B405 CALL  NCnn EDS0 in .10
C58405 CALL  NZnn EDsg i £.4C
F4B405 CALL  Pan EDE0 iN H, (T
£CB40S CALL  PEnn £068 i LI
£4B405 CALL  POan 34 NG L)
CCB405 CALL  Zan DDI405 ING {1XC+di
CDB8405 CALL  nn FD3405 NG Y+
3F CCF 3 NG A
BE cp {HL} 04 INC B
DDBEYS cP (X2} 03 NG 8¢
FOBECS cp 1Y ed} o INC c
BF cp A 14 iINC o
Bg cP 8 13 INC pE
89 cP c 16 INC 3
8a ceP [ 4 NG 2]
Ba ce £ 23 NG HL
BC cP + 0022 INC ix
8D cp £ F023 INC v
FE20 cP a 2c e L
EDAD CPD 23 INe 5P
£DBg CPOR 0B20 1 Adn)
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PROGRAMMING THE Z80

08J SDURCE oBJ $OURACE

CODE STATEMENT CODE STATEMENT
EDAA 1D DD7E0S [Rv] A TX+d]
EDBA IR FDTEGS LD ALY +d]
EDA2 il 3ABAOS LD Ainnl
£0p82 INIR 7F D AA
38405 P an 8 LD AR
2] o tHLY 75 LD AC
cDES JP {1X3 74 LD aD
FDEY a» [tha! 7B LD aE
DABAGS 1P C.an 7C Lo AH
F ARADS i M.nn EDS? LD A
78405 P NE nn 70 LD AL
C28405 P NZ nn 3EZ20 Lo A.n
F28405 Jp P.nn EDSF LD AR
EAB4QS JP PE.nn 46 0 B.{HL}
E7B405 i POnn GDABUS LD BA1X+d}
CABAOS JP Z.nn FD4B08 LG 8,11 +d)
382E JR Ce a7 Lo 8.A
302E IR NE .o a0 LD 8.8
202€ IR NZe 4% LD B.C
2B2€ IR Ze 42 LD 8.0
182E B n ML a3 LD 8.E
02 LD a0y A 44 LD g.H
32 LG {DE}A a5 Lo 8.
77 Lo (HL)A 0520 Lo B.n
10 LD (HLLB £04B88405 0 8C lnn}
71 LD (HL1,C 018405 Lo BC.nn
72 Lo HL.D 4E Lo C.IHL)
73 LD (HESE DD4EQS Lo CliX+di
74 o {HLIH FDAEQS LD ClY+d)
75 LD {HLIL 4F LD C.A
1620 L {HL}n 48 LD c.B
GO7705 Lo (EX+d) A 49 L3 cg
07005 LD (1X+d} B 4A Lo c.o
G037105 LD (iX+dl.C 48 LD CE
oB7205 LD UX+d),D 4c LD [
DnO7305 LD (1X+d} E 4D LD cL
DO7405 LD {I%+dh H DE20 LD C.n
DD750% N3] X+l L 56 iD oML
DD360520 LG {1X+d) 1 D0S605 Lo D.iIX+d)
EDTI05 LD {1Y+d),A FD5605 Lo 0{1Y+d
£07005 LD (1Y +d),8 57 Lo DA
FD7105 LD (Y=g} C 50 LD D.B
FD7205 LD {Iy+d}).B 51 LD oc
FD7305 LD 1Y +d E 52 Lo 0.0
F7405 iD {1Y+di H 53 LD D.E
FD7505 Lo (1y+d),L 54 LD M
FD3B0520 LD (1¥+di.n 55 LD oL
32B405 LG nn},A 1620 LG D.n
£01438405 Lo {nn},BC EDSBBEA05 LG DE lanl
E015338405 LD tnn) DE 118465 LG DE.nn
228405 Lb {ne) HL SE LD £ {HLY
DD228405 0 (nn) 1% DDSEDS LD E41X+d)
FD228405 LD ian) 1Y ENSEQS LD £ 01Y+d)
£0738465 LD inn) 5P 5F LD £.4
0A LD 4.(8C) 58 LG EB
1A LD A (DE) 59 L £.C
7E L0 A HLI 5a LD €0
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APPENDIX

CBJ SOURCE agd SOURCE

CODE STATEMENT cobe STATEMENT
5B LD EE £083 OTIR
5C LD g H ED79 OUT  (CLA
50 LB E.L £041 ouT  (CIp
1£20 LD En Elr40 ouUT  {C1e
&6 ) H.{HL} EDST ouUT  (ciD
0DEEOS Lo H {1X+d) EDSG OuT  ICLE
FDEGOS Lo HAIY+d) ED6I OUT  {ChH
57 LD H.A £Dse out  Ichu
50 Lo H.B 0320 ouT in}l.A
5 Lo K.C EDAB GUTD
62 LD HOD EDAZ ouUTI
63 Lo H.E £ 0P AF
&4 LG HH ¢ POP  BC
55 Lo HL o1 P0P  DE
2620 LD H.n £ pop HL
2AB405 LD Hi Inn} BDET POP 15¢
218405 LD HLnn FDE1 POP Y
ED47 Lo LA £5 PUSH  AF
DDZAB40S LD 1% {60l C5 PUSH  BC
DD218405 ) 1X,an 05 PUSH  DE
£D2AB405 Lo £, {nnl 5 PUSH ML
FD218405 LD 1Y, ne DDES PUSH  IX
GE LD LML EDES PUSH Y
GOSEDS LD L IX+adt CREE RES 0,0HL
FDSEDS LD L{1Y+di DOCBO5BE RES 0.(1X+d}
oF Lh LA £DCHO586 RES 0.i1Y+al
68 Lo L8 CB87 8ES 0.A
69 Lo Le CaBo AES 0.8
GA LD t.D cBs? RES 0c
&8 LD LE ceaz AES a.n
6C LG LH cBal RES 0.E
60 Lo Ll cea4 RES OH
2E20 LD Ln £885 RES aL
ED4F LD A,A CH8E RES LIHL)
ED758405 Lo SPinn} DDCBOSSE  RES 1LUXd)
F9 Lo 5P HL FOCBOSBE  RES 141Y+d)
OOF9 LD SPIX CEEF acs LA
FOF9 LD SP.IY CEEE RES '8
318405 LD 5P nn cBsa RES ic
EDAZ LoD CcBEA AES 1D
zgig tg?” cBse Ags IE
080 LoIR CBEC RES 1M
EDag NEG CBED RES kS
. NOP CBYE RES 2,iHL}
66 oR ML DDCBOSYS RES 2{1%+d)
DOBE0S OR (IXe FICBO596 RES 20y+di
FDBE0S OR {1 +d} €8g7 RES 2.
87 OR A CBaG RES 2.8
BO oR 8 891 RES 2L
81 OR c CBe2 RES 2.0
82 oR o C§93 RES 2B
83 CR £ CRgs RES 2.4
B84 falzd H CBgs RES 2L
BS OR i £BSE RES 3 AHL
F620 oR n DODCBOSSE RES 3EX+d}
ED&8 OTCR FOCROSHE RES 301¥+d)
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PROGRAMMING THE 280

oRd SOURCE 084 SOURCE

CODE STATEMENT CODE STATEMENT
CBOF RES 3A EDAD RETI
CHSB RES aB ED4% RETN
CB%9 AES ic c816 RL HL)
CB9A R]ES ap DDCBOS16 AL {1X+d}
cBaB RES AE FOCBO516 AL 1Y+
CBIC RES 3H ce17 ai, A
CEgD RES 3L CB10 AL B
CBAG RES 4 (HL} cB11 AL o
DOCAOSAE  RES a{1X+d) cB1z L o
FDCBOSAE  RES & {1V +d} €813 RL £
cBAT RES 4. cBi4 RL H
CBAD AES 4B €B1§ RL L
cBA1 RES ac 17 ALA
csaz RES 4.0 CBO6 ALC {HL
CBA3 RES 4E DDCBOS0S ALC X +d}
CBA4 RES 4H FDCBOS06 ALC {1y+d)
CBAS RES 4L cso7? ALC A
CBAE HES 5,{HL} CBOO RLC 8
DOCBOGAE RES 51X+ CBROT RLC c
FDCBOSAE  RES BALY+d) CBO2 RLC o
CBAF RES 5.4 €BO3 ALG £
cBAB RES 5.8 cBo4 RLC H
CBAY RES 5.C CBOS RLC L
CBAA RES 5.0 67 ALCA
csag RES 5.E EDEF RLD
C8AC RES 5.H CBTE AR Hi)
CBAD RES 5L DDCBOS1E RA {1X+d)
CBBG RES 6,(HL} FCHASIE RA {1y +d}
DOCBOSB6  RES B.01X+d) CB1F AR A
FOCBO586 RES 64FY +dt cgig AR 8
c887 RES 6.A CR18 RA c
CEBG RES 5.8 <Bi1A RAR 3]
CBB1 RES B.C CcB18 RR E
cae2 RES 6.0 cB1C RA H
£883 RES B.E fFB% o gg;\ L
Cops Res ot RRC Inul
CBRE ags 74HL) DDCBOSGE RAC 1X+d)
DDCBOSBE  RES  7.1(%+d] FOCBOSOE  RAC  {IY+d)
FOCBOSBE  RES  7(1Y+d) gggg RRC A
ceer RES 78 ceoa RRC €
cess RES 8 CBOA RRC b}
CBB3 RES 7.C o808 aRC .
CBBA RES 7.0 caoe e o
CBBB RES 1.5 caop ERe )
cBBC RES 7.4 OF REAEA
CBBD RES 7.L EDET RRD
c9 RET c7 RST 0oH
bs BET ¢ CF RST 08H
Fs HET ™ o7 RST  10M
oo RET  NC oF AST  1BH
co RET NZ =7 ST 20k
Fo RET ? EF nstT  zoM
£8 RET PE e AsT 0
E0 RET £0 FE RST 38H
ca RET z DEZ0 SBC aAn
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APPENDIX

oRJ SOURCE oBJ SOURCE
CODE STATEMENT CODE STATEMENT
9 SBC AHLY GOCBOSES  SET 4(1%+d)
DDSEDS $BC A1 +d) FDCBOSES  SET 4,(1V+d}
FDYEDS $BC AdlY+d) CBE7 SET 4.8
98 SBC AA CBEOQ SET 4.8
o8 SEC AB CBEj SET 4.0
99 S8C AL CBE2 SET 4.0
aa SBC A.D CBE3 SET 4.E
o8 SBC ALE CBES SET aH
a¢ $BC ALK CBES SET 4L
an sBC AL CBEE SET 5.HL)
ED42 $8C HL BC DDCBOSEE  SET 5,{1X+g}
ED5Z SBC HLDE FOCROSEE  SET §,(1Y+d}
ED62 $BC HLHL CBEF SET 5.4
EB72 s8c HL 5P CBES SET 5.8
37 SCF CBEg SET 5.C
CBCE SET LRETSY CHEA SET 5D
DDCBOSCE  SET o.lX+d} CBER SET 5.5
FDCBOSCE  SET 6.0Y+d) CBEC SET 5 H
cec? SET 0aA CBED SET 5.
CcBCo SET 08 CrFS SET  6.{mL)
cacs SET  oC DDCBOSFE  SET  B.1X=d)
cac2 SET 00 FOCBOSFE  SET  £M1Y+d)
CBC3 SET o€ CRF7 SET B.A
caca SET  OH CBFO SET 6.8
cacs SET oL CBFi $ET  BC
CHCE SET TR cBF2 SeT 50
DDCBOSCE  SET 1L{EX+d} CBE] SET 56
FDCBOSCE  SET 101 +d} CBF4 SET &5
CBCF SET A CBFS SET BL
cscs SET B CSFE SET  7.4HU
caco SET £ DOCBOSFE  SET  7.(iX+d)
CBCA SET 5.0 FOCBOSFE  SET 7Y +d
cace SET LE CBFF SET 7.4
CBCC SET .H CEFg SET 78
CBCD SET iL CRFY SET 7.c
caoe SET 2,IHL) CBFA SET 1.0
ODCROSGH SET 21X +d) CHFB SEY 7,E
FCBOSEE SET PRINETT CBEC SET 7H
cen? SET 2.A CBED SET 71
csbo SET 2B c826 SLA HL}
CBO1 SET 2.C DDCBOS26  SLA X4}
CBD2 SET 2.0 FDCROS26 SLA {1y +d)
CBDI S5ET 2.E ca27 SLA A
ceD4d SET 2.H CB20 SLA 8
CBDS SET 2L £p21 SLa c
CBR8 SET 1o for - o) SLA o
CBDE SET 3,080 cB23 SLA £
DOCBOSDE  SET 3,0%+d ca24 SLA H
FOCBOSDE SET ERINER cBIs 8e A L
CBOF SET 3.A cB2& SAA {HL)
CBDS SET 3c DDCBOSZE 5RA IX+d)
C8DA SET 3.0 FDCBOSZE SAA 1Y +d}
CBDH 3EY 38 cHzE SRA A
c8OC SET aH cao SRA a
csOG SET 3L cs29 SRA c
CBEG SET 4,1HLd CBIA SRA 0
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PROGRAMMING THE Z80

oBJ SOURCE

CODE STATEMENT
£828 SHA E
cazc SRA ¥
ca20 S5RA L
CB3E SRL tHL)
DEGCROB3E SRL {1X+dl
FDCBOS3E SAL {1y =+d
CB3F SAL A
CB3ig SHL 8
CB39 SRL C
CBIA SAL 3]
CB38 SRL E
CB3C SRL H
C83D SAL L
96 5u8 ML)
009605 SuUB {IK+dl}
FDIE05 suB (1Y}
97 suB A
a0 suU8 B8
93 SUB C
92 SuB B
93 suUB E
94 suB H
95 suB i
2620 su8 5
AL X0OR tHL}
ODAEQS XOR {IX+d}
FOAEDS XCR (1Y +d)
AF XOR A
AB XOR B
AQ XOR c
Al XOR 8]
AR XOR E
AL XOR H
AD XOR L
EE2C X0 n

(Courtesy of Zilog Inc.]
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APPENDIX F

Z890 to 80830 EQUIVALENCE

ZBo 8080 80 8080 Zso aogo
ADC A, (HL)  ADCM EX [SP), HL XTHL ORn ORI {82}
ADCA. n ACHIBZY HALY HLT OR« QRA ¢
ADCA, . ADC, INA, {n}) N (B2 CR{HL} GRA f4
ADDA (HL}  ADDM H4C BC iNX B Gut () A out (82
ADD A ADI (B2} HNC DE XD PGP AF PGP PSW
ADD A, ADD ¢ NG HL X H POPBC POPB
ADDHL BC  DADB MNC, R POP OE POFD
ADD HL, DE DADD WNCSP X SP POPHL POP H
ADD HL, HL DADH NC {HL) INR M PUSH AF PUSH PSW
ADDHL SP DADSE PC a0 IC{B2] B H PUSH BC PUSH
AND n AN [82] P, n 1A 18211831 PUSH CE FUSH D
AND ¢ AMA NG, nn INC 1B} (B3 PUSH HL PUSH B
AND {HL) ANA M Pan AP 1RZ] (B3 RET RET
CALLC, an CC 82} {83} PNZ A0 NZIBZ) BN RETC RC
CALEM, nn CM(B2][B3) PP nn P I62) (B3 RET M R
CALL NG, nn CNC (B2 [BH P FE, an IPE 1B2){B3] RET NC RNG
CALL an CALL JPPO, nn PO BB RETNZ RNZ
CALLNZ, nn CNZ iB2}[83) L an 3Z[82] B3] RETP R#
CALLP, nn CP {8283 IR PCHL RETPE RPE
CA{LFE. an  CPE(B2][83) b A {DE; 1BaX RETPO RPO)
CALL PO, an CPO 18211831 LDA, {nnj DA [B2] (23} RETZ RZ
CALLZ, an L2 {8n LDDE, nn LXID, 182] {83 RLA RAL
CCF e tDSP, an LXI 5P, [52] {33] RUCA RC
CPr CMP s LD {BCY A SIAX & HRA RAR
CP{HL) TP M 1D4{BE), A STAX D RRCA RRC
2} CAMA LD{HLY, » MOV M., RSTP RSTP
CPn CPH{BZ| D irnl A STA 182] {831 SBCA, {HL}  SBBM
DaA DAaA LD {nn), HL SHLD 182] [83) 38C A n 581182
DECBC BCXB LD A, (BC) \DAX B S8CA, . 588«
DEC OF ooxo WAL, on LXIB, {82] (B3] See STe
DEC ML DOXH LD HL, {rn) LHLE (B2} (23] SuB U2 B2
DEC . DR+ WHL an 11 H (B2} (B3] S e SuB¢
DEC 5P DCX 5P (D, (HC) MOV T, M SUB {HL) SUB A
DEC (HL) DCR Wrn MV, B2} *QRa XRi 1823
i ot o MOV T, 12 *OR ¢ XRA ¢
£ g LD 5P, HE SPHL XOR (HL) XRA M
EXDE HL ACHG NOP NOP
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8080 to Z8¢ EQUIVALENCE

BOBO 280 8080 80 8086 80
ACIHB2} ADC A, n N [B27 INA, [n} POPH POP HL
ADC M ADC A, {HL} INR M INC [HL) POP PSW FOP AF
ADC. ABCA, v iNEr INC - PUSHB FUSH BT
ADD M ADD A, {BL) INX B INCBC PUSH D PUSH DE
ADD ADD A, s MX D INC DE PUSH H PUSH HL
ADI [B21 ADD A, n HNX H INC HL PUSH P3W PUSH AF
ANA M AMD {HL) INX SF INCSP RAL RLA
ANAC AND T JCIB2){E3 MConn RAR REA

AN fB21 AND n JMIB2I B3] JPM, o RC RETC
calL CAlLrn MBI B3] Pon RET RET
CCIEZ} (B3] CALLC. nn INCIBZ) B3] JPNC, nn RLC RCA
CMIBZ][B3]  CALLM, nn INZIB2IIBI] P NZ, rn RM RET #4
(XY CPL IP(B2}{B3]  JPP an RIC RETNC
ome CCF IPE{B2) (B3]  JPPE, nn RNZ RET NZ
TP A P (ML) JFO82][B3] JFFO, nn RP RETF
CMP e Che JEB2[831  PZ en RPE RETPE
CNC187}{83)  CALLNG, nn \DA(B2] (831 LD A, (rn) RPO REFFC
CNZIB2){BI] CALUNZ nn \DAX B WA, [50) RRC RRCA
CPIBZ][B3I  CAWLF. an WDAXD 10 A, (DF) RST ReT R
CPE(B2}{83] CALLPE nn (HiD [B2] [B3] LOML, {nn} RL RETZ

CPi {B2} Cha 1X:8182]{B31 LDBC, nn SBR M SBCA, (HL)
CPQIBZ] (B3t CALLPO, an DD B2} {83 LDDE, nn 588 SBCA,,
CzisyEn CALL Z, nn X H [B2] (B3] LDHL nn 582187 SBC A, 0
DAA DAA LXI SP (B2} {B3] LDSF, nn SHLD {B2) [B3] 1D (an) HE
GADB ADD HL, BC MOV M, - DMLY, SPHL iDSP, HL
DADD ADD ML, DE MOV, M WO, (HL) STABZ][B3] LD (nn). A
oAb H ADDHL HL MOV 1, e2 . STAX B iD(8cy A
DAD 5P ADD HE, 5P VI M O {HLL n STAXD 1D (DF), A
DR M GEC (HL) MVE: [B2) W n §7C SCF

ocRy DEC, NOP NOP SUB M SUB(HL)
DOXB CEC BC ORA M OR [HU) SUB -« 5UB
Doxp DECDE ORA ORr B Wba
ex o ggg;‘; ot (B2) orn NCHG X DE, L
. o CUT (B2 OUT (n), A XRA M XOR {HL)
& o PCHL IP(HL} XRA T XORr
HALT iy POP & FOPBC XRi {52} XOf n

POR B POF DE XTHiL EX {5P], HL
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A

INDEX

absolute addressing 108, 439, 446
ACT 61
aceumulator 439
ADC i0i
ADIC, ALs 190
ADC HL, 53 192
ADD 10%
ADD A, (HL) 84, 194
ADDA(IX + d) 196
ADDA, (1Y + &) 198
ADDA, n 67, 200
ADDAr 67,75,76, 201
ADDHL, ss 203
ADDIX, rr 205
ADDIY, rr 207
addition 58, 85, 100, 105
address bus 47
address registers 51
addressing 438, 442

azddressing modes
addressing techmques
algorithm
alphabeuice list
aiphanumeric data
ALU
AND
ANDs
application exampies
arithmetic-togical umi
arithmetic programs
arithmetic shift
ASCll
ASC1l conversion table
assembler
assembler directaves
assembler fields
assembly-language
assigning a value
asyrchronous
automated Z80
nstructions

438, 440, 444, 445

438

15, 16, 114, 539
558, 565, 569, 570

¥
46,77, 85
166, 167
209

520

46, 61

94

I9
39,524, 525
40

96, 582, 550
596, 598
390

67, 580, 592
593

471, 496, 518

142, 453, 453

B

B 62
banks of registers 62
BASIC 24
basic architecture 46
basic concepis I5
basic programming choices 579
basie programming Ltechniques 94
BCD 35,37,525
BCD addition 167, 1i0
BCD arithmenc 107
BCD block transfers 530
BCD Mags 112
BCD representation 35
BCD subtraction 110
BCD 1able 35
benchmark 470
binary 20,21, 22,41, 45
binary code 19
bemary digit 18
binary division 133
binary logte 18
binary represestation 41

546, 558, 559, 560,
561, 566, 367, 368

tunary search

BIT b, (HLY 211
BITb, (IX + d) 213
BITh (1Y + ) 215
BiT b, r 217
bt 18, 20, 41
byt addressing 448
bit mampulation 172, 173
bt ser:al gransfer 471,472
block 540, 542, 544

black transfer 450, 451, 453, 458, 530
biock transfer

LSLrucIons 163, 450, 452
bootstrap 48
bracket testing 523
branch mstrection 441
branching point 115
break character 467
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breakpomnt 584, 586
bubbie-sort $33, 534, 535, 536, 537
buffer register 59, 61
buffered 49
buffers 61
bus request 497
BUSRQ 92,497
byie i8, 19, 41, 444
C

C 28, 30,31,62,73
CALL 145, 156, 446, 500
CAlLl.cc,pq 219
CALLpq 222
CCF 224
CALLSUB 143, 144, 145
carry 22,23,26,28, 30, 174
central-processing unit 46
checksum computation 328
circalar list St 545
classes of instructions 154
clearing memory 520
ciock 47
clack cvcles 69
clock-synchronous logic 86
code conversion 525
coding 16
combrnation chips 48
commands i6
commens field 590
compare 531
compiler 545, 581, 582
COND 600
conciusion 602
conditional assembly 600
conditional instruction 50
constants 439, 445, 594
control box 49
control bus 47
control instructions 157, i85

contrgl regisiers 512,543, 515

control signals 21
canirol unit 46
count the zerges 529
counter 463, 465
CP i66
CPs 225
ceD 227
CPDR 229
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CPl 23]
CPIR 233
CPL 165, 235
cPu 46, 187
critical race 60
CRT display 44, 587
crystal 47
cu 46
D

D 62,74
DAA 109, 236
data buffer 5t1

data bus 47
data counters 51

data direction register 512
dala processing 155
data processing instructions 164
data ready 469
data representation 548
data structures 539
data transfers 154, 158, 160
debugper 583
debugging 18
decimal 20,21,22
DECm 238
DEC 240
DECIX 242
DECIY 243
decode 71,86
decoding 56
decoding logic 4¢
decrement 164, 442
DEF8 596
DEFIL. 596
DEFM 53497
DEFS 597
DEFW 596
delay generation 463
defay loop 464, 483
deleting 553, 563,574
design examples 548
destmation register 67
development systems 587
DFB 596
3] 244
direct addressing 439, 441

direct binary 19
direction register 515




directives 146,

directories

disk operating system
displacernent
displacement field
DINZ ¢

DMA

documenting

DOS

doubly-linked lists
double-precision format
drivers

E

E

EBCDIC

echo

editor

El

8-bu addition

8-but division

clement deletion

element saseriion

emulator

END

ENDC

ENDM

EPROM's

EQU

er{or

erTOr MEessages

EX AF, AF!

exchange wstructions

Exclussve ORing

EX DE, HL

executable statements

exXeCuLe

execuiion

execution cycle

exponent

EX (8P}, HL

EX (5P}, IX

EX(SP), 1Y

extended addressing

external representalion
of information

EXX

571, 580, 594
541, 545
541, 582

63

442

245
491, 498
97

582
343, 546
34

49

62

K}

486

583

247

95

134, 137
364
550, 563
583

597

600

597

585

596

586

592

162

162

38

249

16

7%

56, 69, 599
55
37,38
250

252

254

160, 441, 446

41, 44
256

INDEX

F

F 3]
fetch 55,70, 84
fetch-execute overlap 78
FIFO 543
file directory 541
flags 31,30, 51, 179, 180
flags register 61
flip-flops 51

floating pont representation 37, 38

flowcharung 16,17, 114,
450, 464, 469, 494, 559
front panel 45, 589
G
general purpose registers 51
getung characters i 522
H
H 62,176
haif-carry flag (H) 176
HALT 92, 185, 257
hardshaking 477,478,511
hardware 93
hardware delays 465
hardware organization 46
hardware resources 587, 589
HEX 525
hexadecimai 41, 42, 481
hexadecimal coding 43,579
high byte 103
ngh level language 581
I
1 63
iFFi 499
IFF2 499
illegal code 107
IMO 258
IMi 259
M2 260
wamediate addressing 108,159,439,445
mamediate gperation 69
implicit addressing 438, 445
implied addressing 438
unproved muluplication 126, 128, 129
INT(O) 264
INA, (M) 263
in-cEcult emutalor 385
INC(HL) 267
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INCr 264
ncrement 164, 442
merementer 57
INCrr 265
INCIX + &) 268
INCY + d) 270
INCIX 272
INCIY 273
IND 2

index register 33,63, 441,442
mdexed addressing 160, 441, 447, 540

imndexmg 63
wmndirect addressing 443, 444, 448, 540
indirect iadexed addressing 443
indirect memory access 499
INDR 216
informatioa representation 8
in-house computer 588
Hd 278
INIR 280
nput/output 157,460, 518
input/output devices 511,521
mput/oulput instructions 183, 460
nput register 466
mserting 552,373
mstruenen 96
instruction field 550
instruction formats 66
mstruction regesier 55, 64
mstruction set [54
instruction types £12
INT 91
internal control registers 51,513
internal representation
of information 18
inierpreted 69
interpreier 545, 581, 582
Lreereupt 466, 496, 497, 500, 505,
508, 509, 511
interrup! acknowledge 500
interrupt flag 187
nterrupt handier 502
interrupt logic 510
inierrupt-mask-hit 499
mierrupt mode 0 500
interrupt mode | 503
interrupt mode 2 504
interrupt overhead 504

interrupt-page addressing register 63

620

mnterrupt table
IRLErFupt vector
interrapts

170 control
IORQ

R

X

1Y

¥

IPcc, pg
JPne

IP pg
JP(HL}
IPX)
JR (1Y)
JRce, e
JRe
JUMP
Jump nstruction

sump relative (JRY

IK

L

L

label fieid
fargest element
LRPA, (n,m
Lpb,C

LDD

LDDR

LDI

LDIR

LD dd, (nn)
L.Ddd, an
LD

LD, r

LDr

LB (BC), A
LD{DE), A
LD(HL), n
LD(HL), r
LDr, (HL)
LDr. (X + &
LD (IY + &)
LD(IX +d)n
LD({IY + d}),n

504
498
495

92

92, 500
55
53,63
63

282

89

284

285

286

287

288

290
90,172, 179, 441
156, 182
446, 447

24

62
390
526, 527
69, 86
12
164
164
164
142, 164
FitH
293
295
66
297
299
300
301
303
356
305
g7
309
il




LDUX + dyr EIR)
LD{Y + d), 1 315
LD (nn}, A 317
LD {nn}, A 319
LD (nny), dd 321
LD (an}, HE 323
LD (nnj, IX 325
LD (nnj, tY 327
LD A, (BO) 329
LD A, (DE) 330
LDA,I 331
LDi, A EEY
LDAR 333
LD HL, (nn) 334
LD IX, nn 336
1D IX, (nn} 338
LDIY, (an} 340
LD1Y, nn 342
LDR A 344
LDSP, HL 345
LDSP, IX 346
LDSP, 1Y 347
L.BD 348
LDDR 350
LBl 352
LDIR 354
LED 41, 480
LIFO structure 540, 544
light emutting diodes 41
linked lisy 542, 544, 568, 571, 573,
574, 377, 578
linked toader 583
list 340, 548, 549, 550, 553, 556, 557
listing 590
list pointer 542
literal 69, 439, 455, 594
load g6, 106
loader 583
logarithmic searchuing 546, 562
logical 166, 558
logical errors 582
logical operations i41
iogical shift 119
[ong addressiag 449
longer delay 464
M
machine cycle 69
MACRO 597, 598, 600

INDEX

mantissa 38
MASK 168, 522
memory cycles 55
MEMGTy map 453, 586
memory-mapped 1/0 157
memory-refresh register 64
[RICPO INSIrUCLons 86
macmonic 67,579
Ml 92
modes 444
montor 48, 582
momioring 467
MOS Technology 6502 452
MPU 52,59
MPU pinout 91
MREQ 92
muitiple devices 506
multipie LED's 482
multiple precision 98
multiplexer 52,62

multiplication i13, 114, 115, 116,

124, 151, 152, 153

MUX 52,62
N

N 34
NEG 358
negaiive 24,26, 32
nested calls 143
nibble 18, 36
NMI 91,92, 498
nonmaskable mterrupt 498
nonrestoring method 133
NOP 359
NOPs 92
normalize 37
normalized mantissa 37
[0

octal 4], 42
odometer 463
one’s compiement 25
one-shot 466
opcode 66, 86, 439, 444, 446
operand 100, 102, 438, 439
operanng sysem 582
operator precedence 587
OR 166, 168
ORs 360
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ORG

OTDR

OTIR
QUT(Ch r
QUT{N), A
QuUTD

OUTl

output register
pverdraw
overflow
averlap technique

P

packed BCD

packed BCD subtract
paper-tape readers
paraiie! input/output
paraltel work traasfer
parity bit

parity generation
panty/overflow (P/V1
PC

PIC

596
362
364
366
368
369
in
461
133
28,30, 31,32
9

36,107

110, 11

494

48

467, 468, 469
39,40

524

175

52

446, 506

PIO 48,511, 512,513,514, 515, 518
pointers 51, 62, 444, 539, 544, 550, 551

polling
pelling icop
POP qq
POPIX
POPIY
pop

port
positional notation
positive
post-indexing

power failures
pre-andexing

printer

program

program counter
program development
program loops

466, 469, 492, 521, 544

493, 494
373

375

377

53,76, 154
511,515,516
20

24, 26,32
442, 443

48

442

44, 479, 495
16, 48

52

579, 584
63, 12]

programmable input/output chip 511

programmabie interval

timer (PIT)
programmer’s model
programming

pseudo-instructions
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463, 465
94

15, 16, 515, 518, 602
programmung language

16
98

pulse

pulise counting
punch

PUSH gq
PUSH IX
PUSH IY
push

Q

queune

R

R

RAM

random element
RLCA

RD

read operation
read-only memory
read-write memory
TECUrsion
reference table
register addressing

register indirect addressing

register-intersupt
register pairs
registers
relative addressing
relative jump
relays

request blocks
RES b, s

RESET
restoring methad
RET

RETcc

RETI

RETN
RETURN

RFSH

RLs

REA

RLC ¢
RLC{HL}
RLC(IX + d)
RLC{IY + )
RLDD

ROM

rotation

462, 467
466

495

379

381

383
53,76, 154

543, 544

64

48,73, 584, 587
541

85

92
96,515
48
48,75
148

571

438
444, 448
184

51

31,51, 149, 439, 474

441, 446

156

461,462

543

386

92

133

KL

18]

81, 393, 501
181, 395, 499
144, 145

93

397

399

103

402

404

406

408

48

120, 155, 170, 17t




rotate 50, 156
round robin 544, 545
RRs 410
RRA 412
RRCs 413
RRCA 415
RRD 416
RST 183, 500
RSTp 418
rubout 467
S
S 178
saving the registers 502
SBCA,s 420
SBC HL, ss 422
SCF 424
scheduling 491
searching 551, 558,572
segment drivers 484
segments 480,541
sensing pulses 466
sequential lists 540
sequential searching 346
service routing 492
SETY,s 425
seven-segment light-ermtting

diode (LED) 480, 481
shift 50, 118, 120, 155, 156
short addressing 441, 446, 449
short Instruction 19
sign £78
signal 461
signed binary 24,25
signed numbers 532
simple list 551
simulator 583
simultaneous Interrupts 57
single-board microcomputers 587
16-bit accumulator 103
16 by 8 division 134, 135
16 by 16 multiplication 130, 131
skew pperations 169
skip 157
SLASs 428
software aids 582, 587
SP 53
spectal digit instructions 172
speed 476

INDEX

SRAs 430
SRLs 432
stack 53, 146, 149, 496, 508, 539, 544
stack pointer 53, 540
standard architecture 49
standard PI1O 511
staius 31, 85,476,515
status bits 50,512
status register 50
storing operands 102
string of characters 490
SUBA,s 434
subroutine cail 143, 146
subroutine library 150
subroutine mechanism 144
subroutine parameters 149
subroutines 142, 147, 443, 598
subtractson 104
subtract (N} 175
sum of N elements 527,528
symbolic 41, 44
symbols 592, 593
synchronous 471, 496
symtactic ambiguity 16
Syntax 544
sysierm architecture 46
T

tables 526, 339, 5340, 551, 554, 592
technological development 602
teletype 466, 485, 487, 488, 489
LEMPOrary register 61
1est 16, 156, 172
testing a character 523
simer 465
time-sharing system 588
{Hming 463
trace 585
transfers 52
trees 544, 545
truncating 34
truth table 167
two’s compiement 25,26,27,29
two-ievel directory 541
U

UART 477,518
underflow 32
utility routines 583
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Y
v
5
vectoring of interrupis

W

W

WAIT

working registers
WR

624

28, 30, 31
137
504

87
92
496
92

XOR
XOR s

z

Zz

Z80 registers

zero

zero page addressmg
Zilog ZB0O P10

Zilog Z80 810

166, 169
436

87,177
95
177
441, 446
516, 517
518




The SYBEX Library

BASIC PROGRAMS FOR SCIENTISTS AND ENGINEERS
by Alan R. Miller 340 pp., 120 illustr., Ref, B240

This second book in the *“Programs for Scientists and Engineers” series providesa
library of problem solving programs while deveioping proficiency in BASIC.

INSIDE BASIC GAMES

by Richard Mateosian 350 pp., 240 Hiustr., Ref. B245

Teaches interactive BASIC programmung through games. Games are written in
Microsoft BASIC and can run on the TRS-80, APPLE Il and PET/CBM.

FIFTY BASIC EXERCISES

by 1.P. Lamoitier 240 pp., 195 Hlustr., Ref. B250

Teaches BASIC by actual practice using graduated exercises drawn from everyday
applications. All programs written 1n Microsoft BASIC.

EXECUTIVE PLANNING WITH BASIC

by X.T. Bui 192 pp., 19 illustr., Ref. B380

An fimportant collection of business management decision modeis in BASIC,
inciuding Inventory Management (EOQ), Critical Path Analysis and PERT,
Financial Ratio Analysis, Portfolio Management, and much more.

BASIC FOR BUSINESS

by Douglas Hergert 250 pp., 15 illustr., Ref. B390

A logically orgamzed, no-nonsense mntroduction to BASIC programming for
business applications. Includes many fully explained accounting programs, and
shows you how to write them.

YOUR FIRST COMPUTER

by Rodnay Zaks 260 pp., 150 lustr., Ref, C200A
The most popular introduction to smali computers and their peripherals: what
they do and how to buy one.

DON'T {or How to Care for Your Computer)

by Rodnay Zaks 220 pp., 100 llustr., Ref, C400

The correct way to handle and care for all elements of 2 computer system including
what to do when something doesn’t work.

INTRODUCTION TO WORD PROCESSING

by Hal Glatzer 200 pp., 70 illustr., Ref. Wi01

Explains in plain language what a word processor can do, how it improves produc-
tivity, how to use @ word processor and how to buy one wisely.

INTRODUCTION TO WORDSTAR

by Arthur Naiman 200 pp., 30 illustr., Ref, W10

Makes it easy to learn how to use WordStar, a powerful word processing program
for personal computers.

FROM CHIPS TO SYSTEMS: AN INTRODUCTION TO
MICROPROCESSORS

by Rodnay Zaks 560 pp., 255 illustr., Ref. CZ07A

A simple and comprehensive introduction to microprocessors from both a hard-
ware and software standpoint: what they are, how they operate, how to assemble
them nto a complete system,



MICROPROCESSOR INTERFACING TECHNIQUES

by Rodnay Zaks and Austin Lesea 460 pp., 400 Illustr., Ref. C207

Complete hardware and software interconnect techniques inciuding D to A con-
version, peripherals, standard buses and troubleshooting.

PROGRAMMING THE 6502

by Rodnay Zaks 390 pp., 160 Hiustr., Ref. C202

Assembly language programming for the 6502, from basic concepts to advanced
data structures.

6502 APPLICATIONS BOOK
by Rednay Zaks 280 pp., 205 lllusts., Ref. D302
Real life application techniques: the inputioutput took for the 6502,

6562 GAMES

by Rednay Zaks 300 pp., 140 Illustr., Ref. G402

Third in the 6502 series. Teaches more advanced programming techniques, using
games as a framework for learning.

PROGRAMMING THE 780

by Rodnay Zaks 620 pp., 200 1llustr., Ref. C280

A complete course in programming the Z80 microprocessor and a thorough intro-
duction to assembly language.

PROGRAMMING THE Z8060

by Richard Mateosian 300 pp., 125 Illustr., Ref, C28}

How to program the Z8000 16-bit mucroprocessor. Includes a description of the
architecture and function of the Z8000 and its family of support chips.

THE CP/M HANDBQOK (with MP/M)

by Rodnay Zaks 330 pp., 100 Hiustr., Ref. CI00

An indispensable reference and guide to CP/M-—the most widely used operating
system for small computers.

INTRODUCTION TO PASCAL (Including UCSD PASCAL)
by Rodnay Zaks 420 pp., 130 Illusir., Ref. P319

A step-by-step introduction for anyone wanting to iearn the Pascal language.
Describes UCSD and Standard Pascals. No technical background is assumed.

THE PASCAL HANDBOOK

by Jacques Tiberghier 450 pp., 350 Iustr., Ref. P320

A dictionary of the Pascal language, defiming every reserved word, operator, pro-
cedure and funchion found n all major versions of Pascal.

PASCAL PROGRAMS FOR SCIENTISTS AND ENGINEERS
by Alan Miller 400 pp., 80 Itustr., Ref. P340

A comprehensive collection of frequently used algorithms for scientific and
technical applications, programmed in Pascal. Includes such programs as curve-
fitting, 1nteprals and statistical techniques,

APPLE PASCAL GAMES

by Douglas Hergert and Joseph T. Kalash 380 pp., 40 illustr., Ref. P360

A collection of the most popular computer games in Pascal challenging the reader
not only to play but to inveshigate how games are implemented on the computer,



INTRODUCTION TO UCSD PASCAL SYSTEMS

by Charles Y. Grant and Jon Butah 300 pp., 110 illustr., Ref. P370

A simple, clear introduction {o the UCSD Pascal Operating System for beginners
through experienced programmers,

INTERNATIONAL MICROCOMPUTER DICTIONARY

140 pp., Ref, X2

All the definitions and acronyms of microcomputer jargon defined i a handy
pocket-size edition. Includes translations of the most popular ierms inio ten
fanguages.

MICROPROGRAMMED APL IMPLEMENTATION

by Rodnay Zaks 350 pp., Ref. Z10

An expert-level text presenting the complete conceptual analysis and design of an
APL mterpreter, and actual listings of the microcode.

SELF STUDY COURSES

Recorded live at seminars given by recogmzed professionals in the microprocessor
field.

INTRODUCTORY SHORT COURSES:

Each includes two cassettes plus special coordinated workbook. (215 houwrs)
S10~—INTRODUCTION TO PERSONAL AND BUSINESS
COMPUTING

A comprehensive introdoction to small computer systems for those planning to
use or buy one, including peripherals and paufalls.

S1—INTRODUCTION TO MICROPROCESSORS

How microprocessors work, mcluding basic concepts, applications, advantages
and disadvantages.

52-—-PROGRAMMING MICROPROCESSORS

The companion to S1. How to program any standard microprocessor, and how it
operates internally. Requires a basic understanding of microprocessors.
S3-—DESIGNING A MICROPROCESSOR SYSTEM

Learn how to interconnect a complete system, wire by wire, Technigues discussed
are applicable to all standard microprocessors.

INTRODUCTORY COMPREHENSIVE COURSES:

Each includes a 360-500 page seminar book and seven or eight C90 cassetres.

SB3--MICROPROCESSORS

This seminar teaches all aspects of microprocessors: from the operation of an MPU
to the complete mterconnect of a system. The basic hardware course. {12 hours)

SB2—MICROPROCESSOR PROGRAMMING

The basic software course: step by step through all the important aspects of micro-
computer programming. {10 hours)



ADVANCED COURSES:
Each includes a 300-500 page workbook and three or four C90 casseltes,

SB3—SEVERE ENVIRONMENT/MILITARY
MICROPROCESSOR SYSTEMS

Complete discussion of constraints, techniques and systems for severe environ-
mental applications, including Hughes, Raytheon, Actron and other militarized
systems, (6 hours} :

SB5—BIT-SLICE

Learn how to build a complete system with bit slices. Also examines innovative
applications of bit slice techniques. {6 hours)

SB6—INDUSTRIAL MICROPROCESSOR SYSTEMS

Seminar examines actual industrial hardware and software techniques, components,
programs and cost, {414 hours)

SB7—MICROPROCESSOR INTERFACING

Explains how to assemble, interface and interconnect a system. (6 hours).
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PROGRAMMING THE Z80

has been designed both as an educational text and as a self-contained reference book. As such, it
can be usad as a completé introductory book on programming. ranging from the basic concepts to
advanced data structizres manipulations,

It also contains’a comprehensive description of all the Z80 instructions as well as its inteinal
operation, and should provide a comprehensive reference for the reader who is already familiar
with the principles of programming, but wishes to learn the Z80.

This ook is the result of extensive experience by the author in the field of edv cation and
programming. As such, it has been designed to be clear and easy to read. All concepls are
exp'ained in simple yet precise terms, building progressively towards more complex techniques
Tlie reader wiil gain not only an understanding of programming in the languzge of tha Z80 rut also
a detailed understanding of the way a microprocassor such as the Z80 actually executes
instructions. The reader will iollow the flow of execution between the various registers and along
the buses. This is indispensible for effective programming at machine level in the world of
microprocessors. Because programiming is not just the skill of coding an algorithm into a
programming language but also the art of designing appropriate data structures, an extensive
chapter on data structures is prasentec which both introduces the concepts and actual application
programs. The reader will find there lists, tables, binary trees, and the required algoritims.

After reading this book, the reader should have acquired all the basic skills requir-d to
program not just at the elementary level, but in mout practical cases.
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Dr. Rodnay Zaks has been involved with the industrial use of microprocessors since thay first
appeared. He is the author of a number of best-selling books on all aspects of microprocassors. 3
He has taught microprocessor courses to more than 5,000 people interationally, ranging rom the
introcuctory level to bit-slice microprogramming technigues. He holds a Ph.D. in Computer
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